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Abstract

Clifford Theory gives us a method to construct irreducible characters of a group G, by
inducing up certain irreducible characters of subgroups H of G. In this thesis, we will apply
Clifford Theory to construct three types of irreducible characters of groups GL(2,Z/p"Z)
and GL(3,Z/p"Z).

Since the method in the GL(2,Z/p"Z) case is similar to the one used in the
GL(3,Z/p"Z) case, this thesis focusses on constructing these three types of irreducible
characters of G = GL(3,Z/p"Z). We start with three different irreducible characters ¢ of
K, anormal subgroup of (7, and calculate the corresponding stabilizers of these characters.
Then find some irreducible characters 1 of the stabilizers, which also satisfy the conditions

in the Clifford’s Theorem. Finally, we induce v up to G and 9€ is an irreducible character
of G.
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Introduction

Nowadays, people are more and more interested in the representations of GL(n, Z,), where
Z, are the p-adic integers. Since every continuous irreducible representation of GL(n, Z,)
comes from a representation of GL(n,Z,/p™Z,) and Z,/p™Z, = Z/p™Z, this thesis
focuses on finding some irreducible characters of GL(n,Z/p™Z).

Let GG be a group and H be its subgroup. Suppose ¢ is an irreducible character of H,
we know ¢© is a character of G. However, we can not tell directly whether ¢ is still
irreducible. Clifford Theory gives us a method to determine when the induced character
#¢ is still irreducible. So we can apply this theory to construct some irreducible characters
of G. In this thesis, we will apply Clifford Theory to construct some irreducible characters
of groups GL(2,Z/p"Z) and GL(3,Z/p"Z).

The main idea of the Clifford’s Theorem is as follows.

Let N < G be a normal subgroup of G. For any character ¢ of NV, we can define
¢* : N — C;¢°(n) = ¢(gng™"),Vg € G,n € N.

Then ¢¥ is also a character of N. Let ¢ € Irr(N), denote Io(¢) = {g € G | ¢¢ = ¢}. If
¥ € Irr(Ig(d)), such that ¢y, @] # 0, then the Clifford’s Theorem tells us that 1€ is an

irreducible character of (.
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To apply Clifford’s Theorem to the group G = GL(n,Z/p™Z), we first need to choose
an appropriate normal subgroup of G. As we will see in the following chapters, we
have two cases, depending on whether m is even or odd. When G = GL(n,Z/p*"Z),
we pick K,,, = {I +p™A | A € Mux(Z/p™Z)} as the normal subgroup N in the
Clifford’s Theorem. While G = GL(n,Z/p*™Z), we will use the normal subgroup
K1 = {1 +p"A | A € Muen(Z/p"2)}.

Secondly, we also need some irreducible characters of the normal subgroups K,, of
GL(n,Z/p**Z) and K,,41 of GL(n,Z/p*™'Z) to start with. Since K,, and K11
are abelian, all their irreducible characters are of degree one, which are also group
homomorphisms that are easy to construct. There are three kinds of irreducible characters
in each case and they are defined on K,,, and K, similarly.

Thirdly, we will calculate the stabilizers I(¢) corresponding to different ¢ and G. With
all the three kinds of irreducible characters we start with, the stabilizers can be computed
directly and the calculations are also similar in the even and odd cases, no matter whether
n=2o0rn=3J.

Finally, in order to construct irreducible characters of (G, we have to find some
irreducible characters 1) of the stabilizer I¢(#), such that [yk, , @] # 0 or [Vk,..., ¢] # 0.
Then by Clifford Theory, we know that ¢ € Irr(G). In this step, we will see that the even
case is much easier than the odd case. In the even case, we can actually extend ¢ of K,
to its stabilizer I(¢). While in the odd case, we need some subgroup H between K, 1,
and I¢(¢) to construct an irreducible character ¢ of Ig(¢) that satisfies [Vk,,.,,d] # O.
We will also notice that when G = GL(2,Z/p*™Z) or G = GL(2,Z/p*™*'Z), with each
character ¢ defined on G, we can only construct one kind of v that satisfies the condition
of Clifford’s Theorem. While in the G = GL(3,Z/p"Z) case, there are more irreducible

characters 9 corresponding to the same ¢. Hence, there are more irreducible characters 1/
of G.

Clifford’s Theorem only gives us a method to construct irreducible characters of G,
but we can not always tell the character values unless we know the character values of ¢
of Ig(¢). In this thesis, we only care about the degrees of the irreducible characters of

GL(n,Z/p™Z). For k < m, itis clear that any irreducible character of GL(n,Z/p*Z) can
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be lifted as an irreducible character of GL(n,Z/p™Z). Hence, we only focus on finding
irreducible characters of G L(n,Z/p™Z) that do not come from G L(n,Z/p*Z), for any
k < n. We also want to know whether the degrees of the irreducible characters found
in this thesis are complete. Since the complete degrees of the irreducible characters of
GL(2,Z/p"Z) are already known, in [3], by comparing them with the ones found in this
thesis, we know that we indeed find out all the possible degrees of the irreducible characters
of GL(2,Z/p"Z). However, we still do not know whether the ones we construct in the
GL(3,Z/p"Z) case are complete or not.

Although we only discuss GL(2,Z/p"Z) and GL(3,Z/p"Z) in this thesis, the methods
can be applied into the general GL(n,Z/p™Z), Vn. However, as n increases, it will become
more complicated and more irreducible characters will appear.

In Chapter 3, we apply Clifford Theory to GL(2,Z/p*"Z) and GL(2,Z/p*™*'Z)
separately to construct three types of irreducible characters. Then we will see that the
degrees of the characters constructed in this chapter do not depend on whether n is even or
odd. There are general formulas for the degrees of irreducible characters of GL(2, Z /p"Z).

Degrees of the irreducible characters of GL(2,Z/p*"Z) constructed in Chapter 3 are :

P p+ 1), (p? - 1), 0" p — 1),

Degrees of the irreducible characters of GL(2, Z/p*™+'Z) constructed in Chapter 3 are:

P (p+ 1), p"™ N (p? — 1),p*"(p — 1).

And we will see that the general formulas for the degrees of the irreducible characters of

GL(2,Z/p"Z) found by Clifford Theory are:

P Hp+1),p" Hp - 1),p" 3 (p? - 1),

which are all the possible degrees of irreducible characters that come from GL(2,Z/p"Z)
directly.

In Chapter 4, we construct some irreducible characters of GL(3,Z/p"Z). Again, we
consider GL(3,Z/p*"Z) and GL(3,Z/p*™*+'Z) separately and find the corresponding

irreducible characters. In this case, we can also apply Theorem 2.2.6 to construct some
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more irreducible characters. It is interesting that some the degrees we find can not be
generalized.

Degrees of the irreducible characters of GL(3,Z/p*™Z) constructed in Chapter 4 are :
PP+ p+ 1), 0" (0 +p+ Lp pt A (0 +p+ 1) (0 + 1), 0" (0 +p+ 1) (0 - 1),
" 2@ +p+ 1) (p+1), p" 2 (PP +p+1)p™  (p— 1), " (PP R+ D (0% - 1),

P = D+ 1), 0" - D+ D™ - ™), PP - 1D (p + 1),

Degrees of the irreducible characters of GL(3, Z/p*™+'Z) constructed in Chapter 4 are:

PP +p+ 1), 0" @ +p+ Up, o™ @ +p+ 1)(p+ 1), 0™ +p+ 1)(p — 1),

PP +p+ )(p+ )p™ " +p+ 1) (p— Dp™ o (0 +p+ 1)(p° — 1)p™ 2,
P2 — 1) +p+ 1), "0 - D)@* +p+ D)™ = ™Y, 0" (p — 1)2(p + 1).

For GL(3,Z/p"Z), there are three kinds of regular irreducible characters with the

following degrees:

PP +p+ 1), 0" 0 - D(p+ 1), 0" P (p— 1)2(p+ 1).

However, there are also some irregular ones. We can not find a general formula for all the

degrees of the above irreducible characters of GL(3,Z/p"Z).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Preliminary

This chapter presents an overview of the character theory and Clifford Theory that is used
throughout the remainder of this thesis. For results in 2.1 and 2.2, see [1]. This chapter
also includes some useful results and lemmas that are used in the following two chapters.
In this chapter, H < G means H is a subgroup of G, and H < G means H is a normal

subgroup of G.

2.1 Character Theory

2.1.1 Definition Let 1/ be a finite-dimensional vector space over C. A representation
p of a group G is a group homomorphism p : G — GL(V). And dim(V') is also called the
dimension of p, denoted by dim(p).

We know that if we choose a basis of V, then GL(V) & GL(n,C), where n = dim(V).
So it is equivalent to say that a group homomorphism p : G — GL(n,C) is also a

representation. In particular, a group homomorphism A : G — C* is a representation.

2.1.2 Definition A subspace W of V is invariant under p if for each w € W and for all
g € G,p(g)(w) € W. A representation p : G — GL(V) is irreducible if there is no proper
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nonzero invariant subspace W of V under p.

We usually use character theory to determine whether a representation is irreducible.

2.1.3 Definition Let p : G — GL(n,C) be a representation of G. Then the character x
of G afforded by p is the function given by x(g) = tr(p(g)). x is called irreduciblee if p
is irreducible. And the degree of x is defined by deg(x) = dim(p) = x(1).

From now on, let Irr(G) represent the set of all irreducible characters of the group G.

2.1.4 Proposition  Let y and 1 be characters of G. Define x1 on G by setting (x¥)(g) =
x(9)¥(g). Then x is also a character of G.

From the definitions above, it is clear that a 1 — dimensional representation p is
irreducible. Moreover, suppose ¥ is the character afforded by p, we have p = x. Namely,
a 1 — dimensional character is also a representation. We will use this fact in the next two

chapters very often.

2.1.5 Definition Let V < G be a subgroup and suppose that ¢ is a character of N. We
say ¢ is extendible to G if v, a character of G, such that ¥y = ¢. We call 4 an extension
of pto G.

2.1.6 Definition Let ¢ and 6 be characters of a group G. Then

1 —
9.0 = 157 Y #(9)0(9)

geG

is the inner product of ¢ and 6.

2.1.7 Corollary  Let A and v be characters of G. Then [A,¢)] = [, A] is a nonnegative
integer. Also A is irreducible if and only if [\, \] = 1.

2.1.8 Definition Let H < G be a subgroup and let ¢ be a character of H. Then ¢€, the

induced character on G, is given by

1 0 -1
¢°(g) = ] > 6°(zgz™),

zeG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ¢° is defined by ¢°(h) = ¢(h) if h € H and ¢°(y) =0ify € H.

By the definition above, it is easy to calculate that

|G
deg(¢®) = deg(¢)77r7-
| H |

Also from the definition of induced character, we have the following proposition.

2.1.9 Proposition Let H < K < G and suppose that ¢ is a character of H. Then
(¢%)% = ¢°.

2.1.10 Lemma (Frobentus Reciprocity) Let H < G and suppose that ¢ is a

character on H and that 8 is a character on G. Then
[¢7 QH] = [¢Ga 0]

2.2 Clifford Theory

Let H<G. If #is acharacter of H and g € G, we define 69 : H — Cby 69(h) = 6(ghg™!).
We say that 89 is conjugate to 8 in G.

2.2.1 Lemma Let H <G and let ¢, 8 be characters of H and z,y € G. Then
(a) ¢" is a character;
(b) (¢*)¥ = ¢™;
(©) [¢%,6"] = [¢,0];
(d) [xm, 9*] = [xu, ¢] for characters x of G.

The Lemma follows from direct calculation.

2.2.2 Definition Let H <G andlet € Irr(H). Then
I6(6) = {g € G | 6° = 6}
is the inertia group of # in G.

We also call I (0) the stabilizer of 6 in G. When I5(0) = G, we say 8 is stable under
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G, or invariant in G.

2.23 Theorem (Clifford,[1]) LetH <G,60 € Irr(H),and T = I(6). Let

A= {y € Irn(T) | [$,8] # 0}, B = {x € Irr(G) | [xar, 6] # O}.

Then

(a) If ¥ € A, then ¢ is irreducible;

(b) The map ¢ — 9 is a bijection of A onto B;

(c) If € = x, with ) € A, then %) is the unique irreducible constituent of 7 which lies
in A;

(d) If € = x, with ¢ € A, then [¢#, 6] = [x#, 0]

In general, it is hard to tell whether the character of GG induced from an irreducible
character of I < G is still irreducible. But this Theorem tells us when the induced
character stays irreducible . So we can apply this theorem to construct some irreducible

characters of G, from certain irreducible characters of the normal subgroup H. Part (a) of

this theorem is used throughout the following two chapters.

224 Corollary Let N <G and @ € Irr(N). Then 6¢ € Irr(G) if and only if
I(6) = N.

The I(0) = N = 6% € Irr(G) direction follows immediately from (a) of last theorem

and we will use this result very often in the next two chapters.

2.2.5 Corollary Let N <G andlet x € Irr(G) and 0 € Irr(N) with [xx, 6] # 0. Then
the following are equivalent:

(@) xnw =ef, withe? =| G : N |;

(b) x vanishes on G — N and @ is invariant in G}

(c) x is the unique irreducible constituent of #% and 6 is invariant in G.

2.2.6 Theorem (Gallagher, [1]) Let NG, x € Irr(G)besuchthat yy = 6 € Irr(N).
Then the characters 3x for 3 € Irr(G/N) are irreducible, distinct for distinct 3, and are

all of the irreducible constituents of 9C.
Note that there is a projection 7 : G — G/N. Thus, for any group representation p

8
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of G/N, p o 7 is a representation of G. And if p is irreducible, p o 7 is also irreducible.
As a result, we can consider the character 3 € Irr(G/N) as an irreducible character of
G .Therefore, 3y above is well defined.

Consider set A in Theorem 2.2.3, we have

A= {y € Irr(T) | l¥w, 0] # 0} = {9 € Irr(T) | [¢,6"] # 0}

In order to apply theorem 2.2.3 to construct irreducible characters of G, we need to induce
up the characters in A. Theorem 2.2.6 tells us that, if we can actually extend 6 to 7', then
by finding out all the irreducible characters of 7'/ H, we can construct all the irreducible
characters in A and, as a result, we will find more irreducible characters of G.

We will apply Theorem 2.2.6 in chapter 4.

2.2.7 Theorem Let N <G with G/N cyclic and let @ € Irr(N) be invariant in G. Then
6 is extendible to .

By applying this theorem, we will come up with some crucial results. The following
three lemmas are useful in the following two chapters to construct certain extensions of

some characters of degree one.

228Lemma LetGbeagroup, N<G,H<GandG = NH.Let¢ € Irr(N),y €
Irr(H) be such that deg(¢) = deg(v)) = 1. Assume dyng = ¥nng and YA € H, ¢" = ¢.
Then 30 € Irr(G) such that deg(6) = 1 and Oy = ¢.

Proof:
Define
6:G— C*;0(nh) = d(n)y(h),Yn € N,h € H.

Since ¢ and i are of degree one, they are also group homomorphisms. And since

ONnH = YNnH, we know that 6 is well-defined. In addition, Vn,,n0 € N,h1,hy € H,
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we have .
9(n1h1n2h2) = H(Tblhlnghi— hlhg)

= ¢p(nihinghy Y (hihy)

= ¢(n1)p(hanghi (k)i (ha)
= ¢(n1)¢" (n2)0(h1)0(hs)

= ¢(n1)(n2)0(h1)0(hz)

= §(n1h1)0(nghs).

Thus, @ is of degree one. And it is clear that Oy = ¢. [ |

2.29 Lemma Let G be a finite abelian group, let N << G and A € Irr(N), then A is
extendible to G.

Proof:

Since G is a finite abelian group, it is a direct product of cyclic groups. Thus, we can
find the subgroups Ny, Ny, ..., N,,, of G, such that N1 /N, Ny /Ny, ..., Ny /N1 and G/ N,
are all cyclic. Thus, by Theorem (1.10), A can be extended to /V;. Call the extension A;.
Since G is abelian, we have that any character of any subgroup of G is stable under G.
Therefore )\; is stable under G, so is stable under N,. Hence it is extended to N,. So A is

extended to /V,. Keeping doing this, we know that finally A will be extended to G. [

2.2.10 Lemma Let G be a group, N < G,S < G, S is abelian, and G = NS. Let
¢ € Irr(N) be such that deg{¢) = 1. Assume ¢ is stable under G, then ¢ is extendible to
G.

Proof:
Let ¥ = ¢snn, then ¢ € Irr(S N N). Since S is abelian, we know SN N < S. By
Lemma 2.2.9, 30 € Irr(S) such that fgny = ¥ = ¢dsnn. Apply Lemma 2.2.8, we know

that ¢ is extendible to (5. ]

Lemma 2.2.10 will be used a lot.

10
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2.3 Useful results

In this section, we will calculate the orders of groups GL(2,Z/p"Z), GL(3,Z/p"Z) and
some of their important subgroups.

In GL(k,Z/p"Z), define K = {I + pA | A € Myxx(Z/p""'Z)}. Then | K |=|
kak(Z/pn—lz) |= pkz(n—l).

k
2.3.1 Proposition | GL(k,Z/p"Z) |= p¥* ™=V [ (p* — p*~ ).
t=1

Proof:

Recall that there is a group homomorphism
¢:Z/p"L — LJ/pZ; éla)=1a, Vac€Z/p"Z.
Thus, we can define
¥ : GL(k,Z/p"Z) — GL(k, Z/pL);%(A) = 4,

where A € GL(k,Z/p"Z) and A;; = $(A;;). Then it is easy to check that 1/ is a surjective

group homomorphism. Moreover, Ker(¢) = K. Hence, we have
GL(k,Z/p"L)/K = GL(k,Z/pZ)

=| GL(k,Z/p"Z) |=| GL(k,Z/pZ) || K | .

And since it is known that | GL(k, Z/pZ) |= [](p* — p*~!), the proposition follows. m
i=1

2.3.2 Corollary | GL(2,Z/p"Z) |= (p* - p)(®* — 1)p**, | GL(3,Z/p"Z) |=
@ - D@’ - p)@* - p*)p* .

Next, we will calculate the orders of two important subgroups of GL(2,Z/p"Z) and
GL(3,Z/p"Z).

Let € € Z/pZ be such that \/€ € Z/pZ,i.e. there is no a € Z/pZ such that a®> = &.
Let

5 = {s’z ( v e ) |s' € GL(Q,Z/pZ)}.

y
Then S’ < GL(2,Z/pZ). Moreover, we can prove that

§' = (Z/pZlVE)* =| 8" |=p* - 1.

11
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The proof is exactly the same as the one in the GL(3,Z/p"Z) case and we will talk about
it later. Consider ¢ as an element of Z/p"Z, e.g. 3 € Z/5Z, 3 is also an element of Z/25Z.

Define
sz{s:(fv ya)ma}.
Yy x

2.3.3 Proposition | S |= (p? — 1)p* 2.

Proof:
Let
v : GL(2,Z/p"Z) — GL(2,Z/pZ)
be the projective group homomorphism defined in the proof of Proposition 2.3.1 in the case

k = 2. Consider the restriction of 9 to S, then it is clear that ¢ maps .S onto S’ and

_ _ 1+px pye
k‘erw—{t*< o 1+px)|t€G}'

Clearly, | kery) |= p®*~2. And since S/kery = S, we have that
| S |=] 5" || kery |= (0* — 1)p*™ 2.

2.3.4 Corollary Suppose n > m. Let G = GL(2,Z/p"Z),K,, = {I +p"A | A €
Mayo(Z/p"™Z)} and S = {( ‘; y; ) | s € G}. Then | K,nS |= p*=2m—2(p? — 1).

Proof:
It is clear that
B 14+pma p™be —m
Kans={( L0 T, ) lebeziia).
so | KNS |= (p™~™)2. Since we also have | K, |= (p"™)*and | S |= (p® — 1)p*"2,

we can conclude that | K,,S |= tﬁ—:}% = p5™=2(p? — 1). m

In particular, when G = GL(2,Z/p*"Z), K, = {I + p"A | A € My o(Z/p™Z),
we have | K,,S |= p2%(p? — 1); and if G = GL(2,Z/p*+'Z), we have | K, S |=
p%™*+2(p% — 1). The subgroups S and K,,, S above play an important role in Chapter 3.

In the GL(3,Z/p"Z) case, there is a similar subgroup and we will now talk about it.

Let t3 — ct? — bt — a be an irreducible polynomial in Z/pZ[t]. Then we have a field

extension of Z/pZ corresponding to the polynomial ¢3 — ct? —bt —a. Call the field extension

12
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Z/pZ|a), then o — ca? — ba — a = 0. We know that Z/pZ|c] is a 3 - dimensional linear
space over Z/pZ, the basis is {1, a, a®}.

Consider
3

l—a,a—a?a®—a®

as a linear transformation from Z/pZ|c| to Z/pZ|c]. Then the corresponding matrix is
0 0 a
B={105b]}.
01 ¢

S ={s =zl +yB+2B*|s € GL(3,Z/pZ)} = (Z/pZ[a))* =| S’ |=p* - L.

Thus,

Consider B above as a matrix in GL(3,Z/p"Z), then
S={s=xl+yB+2B*|2,y,2 € Z/p"Z,s € GL(3,Z/p"Z} < GL(3,Z/p"Z).
2.3.5 Proposition  Let S be the same as above. Then | S |= (p® — 1)p*» 3.

Proof:
By the same argument as in (2.3.3), we know that | S |=| S’ || kery | . In this case,
kery = {s = (1+pz)I + pyB +pzB? | s € GL(3,Z/p"Z)}. Clearly, | kery |= p*(»~1),

and the proposition follows. [

2.3.6 Corollary Suppose n > m. Let G = GL(3,Z/p"Z),K,, = {I+p™A | A €
M3y3(Z/p"™Z)}, and S be the same as above. Then | K,,,S |= (p3 — 1)p®»—5m—3,

Proof:

By the same argument as in Corollary (2.3.4), note that in this case,
KNS = {s = (1+p"2)[+p"yB+p™2B? | z,y,2 € Z/p" ™Z} =| KNS |= (p"™)3.
And the corollary follows. ]

Again from the above corollary, when G = GL(3,Z/p*"Z),| KS |= p**™3(p? — 1);
and if G = GL(3,Z/p*™"Z),| K, S |= p#™*5(p3 — 1). As we will see in Chapter 4,
the above two subgroups are the stabilizers of the characters of K, in GL(3, Z/p*™Z) and

Kont1in GL(3,Z/p*™1Z) respectively.

13
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Characters of GL(2,Z/p"Z)

The degrees of all the irreducible characters of GL(2,Z/p"Z), which do not come from
GL(2,Z/p*Z) for any k < n, are already known, in [3], they are:

P Hp+1),p" (p—1),p" 2 (p* - 1).

In this chapter, we will use Clifford Theory to find some irreducible characters with degrees
" Hp + 1),p" Y (p — 1) and p“2(p*® — 1). In certain cases, we can also easily find
the character values, while in the other cases, we could only construct some irreducible
characters without knowing their values.

In order to apply the Clifford Theory, we will discuss GL(2,Z/p*™Z) and
GL(2,Z/p*™*'Z) separately. And we will find that the GL(2,Z/p*™Z) case is easier
than the other. But finally we will find the characters we want and we will see that their
degrees do not depend on whether 7 is even or odd. We will skip some details of calculating
the stabilizers of some characters, because the calculations are similar to the ones in next
chapter where we will give all the details.

Let p be a prime number, p # 2 and let m be a positive integer.

14
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3.1 Characters of GL(2, Z/p*"Z)

In this section, G = GL(2,Z/p*"Z), K, = {I + p™A | A € Myxo(Z/p™Z)}. We will
apply Clifford Theory to construct three kinds of irreducible characters of GG. We start with
a 1 - dimensional character ¢ of the normal subgroup K,,, calculate its stabilizer Iz(¢),
extend ¢ to ¢' € Irr(lg(¢)), then induce ¢’ up to G. By Theorem 2.2.3, we know that
¥ = (¢')¢ € Irr(G). We begin with three different 1 - dimensional characters of K,,, so

there are three cases.

3.1.1 The character of degree p*"(p + 1)

Since p # 2, we know that (Z/p™Z)* is cyclic. Thus we can find \ : (Z/p*™Z)* — C*
such that A is an injective homomorphism.
Define

¢: Ky — CGo(1 +pmA) = A1+ p™An).

Then
oI +p™A)I +p™"B)| = ¢l +p™(A+ B))

= A1+4+p™(A+ B)1]
=A1+p"A;1 +p"B1)

= A[(1+p™Au)(1 + p™Bu)]
= A1+ p™A;1)A(1 + p™By1)
=¢(I +p"A)¢(I +p™B).

So ¢ is a group homomorphism. Clearly, ¢ is also a character of degree one.

Claim:
N c PR a pmb o 6m=2(,  1)2
IG(¢)—T_{t_(pmc d ),tGG},|T|—p (p 1)
Proof:
Ift=< f,’; pb)eT,then
p"c d

(p™tAt ™) = pTadAnat = pm Ay

15
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= ¢(I +p"A) = ¢'(I +p™A)
= ¢ = ¢
=>tecT

On the other hand, suppose B € I;(¢), then

¢5(I +p™A) = ¢(I + pP"BAB™) = ¢(I + p™A).
By the definition of ¢, we have
AL +p™(BAB™M11) = A1+ p™An).
Since A is injective, we have
1+ p™(BAB™ ™) =1+ p™An

= pm(BAB_l)ll = pmAll.

A:(au 6112) B = bir big B! — b/11 b/12
ay1 Qg9 /)’ byt b )’ 2 bhy )’

(BAB™Y)11 = b (br1aa;1 + bizaz) + by (br1ass + bizag).

Denote

then

Since p™(BAB™1)11 = p™A11,Vai; € Mayo(Z/p™Z), we have

(1) pMbubu =p";
(2) p"bbiz=0;
(3) P"bybu =0.
By multiplying b;; on the both sides of (2), we get p™b;b11b12 = 0. By (1), we have

p"bi2 =0
= b12 = pmb

Similarly from (3), we get that
by, = p™d'.

16
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Note that we also have B~! € T, thus we can replace B with B~1. By the same argument

above, we can conclude that

bor = p™d
=BeT
= IG((b) =T,
And it is clear that | T |= (p™)2(p*™ — p*™ 1) = p"2(p — 1)2. n
Define
/ X, Al a pmb
0 16(6) = 56 (B) =M@ B= ( g, T ) € 1a(0)

Since VB, B’ € Ig(¢), we have (BB’)1; = By B};. Therefore, ¢’ is a character of degree
one, and so it is irreducible. Clearly, ¢ = ¢. Thus, [¢, 4] = 1 # 0. By Theorem 2.2.3,

we have
¥ =(¢)° € Irr(G),
and
degl) = Tt = "o+ 1),

In fact, as we will see in the GL(3,Z/p*™Z) case, this method will work for any
GL(n,Z/p*™),Vn. Let K., = {I + p™A | A € Myxn(Z/p™Z)}, ) be the same as above,
define

¢ Km — C* (1 + p™A) = A1+ p™Any).

Then the stabilizer would be of the similar form and we can extend ¢ to it. Then we can
induce the extension ¢’ up to G to construct an irreducible character of G. Moreover, the
values of the extensions ¢ are easily known, hence the character values of (¢')¢ are also
known.

Notice also that in this case, Ig(¢)/K,, is abelian, any irreducible character of
Ic(¢)/ Ky, is of degree one. Thus, although we can still apply Theorem 2.2.6 to construct
more irreducible characters of 7" that can substitute ¢’, the degree would not change. As
a result, the degree of (¢')¢ will stay the same. However, as in GL(3,Z/p°™Z) case,

I¢(¢)/ K., is not abelian anymore, we can actually find more irreducible characters of T’

17
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with different degrees, which also satisfy the condition in Theorem 2.3.3. Therefore, we
can construct some more irreducible characters of GL(3, Z/p*™Z) with different degrees.
And it is easy to see that as n increases, more irreducible characters will be found by this

method.

3.1.2 The character of degree p>™2(p® — 1)

Let ) : (Z/p*™Z)+ — C* be an injective homomorphism.

Define
¢: Km — C 01 +p™A) = Mp™An).
Then
oI +p"A)I +p"B)] = ¢[(I +p™(A+ B)|
= A[p"™(A + B)ai]
= AMp™ Az )A(p™ Ba1)
= ¢(I+p"A)¢(I +p™B).

Thus, ¢ is a character of degree one. And by the same calculation as in 4.1.2, we have

@)= {B=( iy . ) 108 @D 50 L Ticsa e Z/me},

p"c a+pTd
and
IG(¢) — (p2m . p2m—1)p2m(pm)2 — pﬁm—1<p _ 1)‘
Define
‘. Y oLIP Y _ m . —1 . a b
8 :16(0) = 5 (B) = 2" B = (4 ny ) €6
Let
a b Y 4
B = (pmc a+pmd ) 7B - (pmc/ a’+pmd’ )’
then
BE — aa’ + p™bc ab + a'b + p™bd’
S\ p™dc+ad) ad +pm(Vc+ad +add) |-

18
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We have,
¢'(BB') = Mp™(ac + d’c)(aa’ + p™bc') ™}

= Mp™(ac + d'c)(aa’)™}]
= A(p"ca” ' +pdd )
= Ap"ea A )
= §(B)(B).
Hence, ¢’ is a character of degree one. And for [ + p™A € K, we have
¢'(I+p™A) = Ap™ A (1 +p™ An) 7]
= A[p" Az (1 — p™Au))
= AMp" Aa1)
= ¢(I +p™A).

Namely, ¢%_ = ¢. Thus, [¢, ¢] = 1 # 0. By Theorem 2.2.3, we have
¥ = (¢")% € Irr(Q),

and
_ [ G | _ 2m—27 2

Again, this method can be generalized similarly to any GL(n,Z/p*™Z),¥n. And the

character values can also be computed easily. In addition, when n > 2, I¢(¢)/K,, is
not abelian anymore and as a result, more irreducible characters of GL(2, Z/p*™Z) will

come up.

3.1.3 The character of degree p*™(p — 1)

Let ¢ € Z/pZ be such that /¢ is not in Z/pZ. Consider ¢ as an element of Z/p*™Z, let A

be the same as in 3.1.2. Let B = ( 0 e ) € GL(2,Z/p*™Z).

1 0
Define
¢: Ky — C 01+ p™A) = Altr(p™AB)].

19
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Then
ol(I +p™A)I +p™C)] = ¢[I +p™(A+ C)]

= Altr(p™(A + C)B]
= A[tr(p™AB)|A[tr(p™CB)]
= ¢(I +p"A)p(I + p™C).

As aresult, ¢ is a character of degree one.

Claim: /5(¢) = K,,S, where S = ¢ s = Ty seEGy.
Y

T
Proof: Let s € S and note that sB = Bs, we have
¢*(I +p™A) = ¢(I +p™sAs™")
= A[tr(p™sAs™'B]
= Ntr(p™sABs™"]
= Atr(p™AB))
= ¢(I +p™A).
So s stabilizes ¢, and we have S C Ig(¢). Hence, K,,S C Ic(9).
On the other hand, let C € Ig(¢), then ¢© = ¢. Thus, VI + p™A € K,,, we have
¢“(I +p™A) = ¢(I + p"CAC™) = ¢(I + p™A)

= Atr(p"CAC'B)) = A(tr(p™AB)).
Since A is injective, we have
tr(p™CAC™'B) = tr(p™AB).

Therefore,

tr(A(p™(B — C™'BC)) = 0,VA.

Since the A above is an arbitrary matrix in Msy.o(Z/p™Z), we know p™BC = p™CB.

Ci1 C
C - 1 12 ,
C21 C22

ECo1 ECo C EC
BO — , CB — 12 11 .
Ci1  Cp2 C22 EC21

20
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Since p™ BC' = p™(C B, we have
pcia = pecy, piei = P Coa.

Thus,

me = pmclll ‘f"memB =(C= cid + ca B +me,
for some D € Myy2(Z/p™Z). Since C € Ig(¢) is invertible, C — p™D = ¢y I + ¢ B is
also invertible. Hence, c¢;1] + co1 B € S. Let A = D(c; ] + ¢y B)™}, then

C= (I—|—pmA)(CllI+ Cle).

Therefore, C € K,,S, which implies I(¢) C K, S. And the claim follows. "
From 2.3.6, we have | K,,,S |= p®~2(p? — 1). Moreover, by Lemma 2.2.10, we can find
¢' € Irr(K,S), such that ¢f = ¢. Thus, [¢%_, @] = 1 # 0. By Theorem 2.2.3, we have

¥ =(¢)° € Irr(G),

and

deg(¥) = ok =P - ),

This construction will also work for any G L(n, Z/p*™Z), Vn. However, as n increases,

we should choose different matrix B. And ¢ is defined similarly, but the corresponding
stabilizer would become a little more complicated to calculate. However, in this case, we
only know the existence of the extension ¢’ € Irr(K,,S), without knowing its value, so it

is hard to tell the value of the induced character ¢ = (¢/)° € Irr(G).

3.2 Characters of GL(2,Z/p*""'Z)

In this section, G = GL(2,Z/p*" "' Z), Kmy1 = {I +p™A | A € Moxo(Z/p™Z)}.
We start with certain irreducible characters of the normal subgroup K, ;. Like in last
section, there are also three cases and the three 1 - dimensional characters of K,,,.; are
defined similarly. Note that in this case p*™*! = 0, and by a similar calculation, we can

still find the corresponding stabilizer 7. However, unlike the case in the last section, we

21
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cannot extend ¢ to 1" directly. But we are still able to find a character ¢/ € Irr(T) such
that [¢ .., ¢] # 0. Then by Theorem 2.2.3, we know that ¢ = (¢)¢ € Irr(G).

In 3.2.3, we will also use the normal subgroup K,, = {[ + p™A | A €
Myyo(Z/p™Z)}. And we have

|G |=p"""(p—1)2p+1),| Kn |= 0", | Kpps1 |= 0"

3.2.1 The character of degree p>"(p + 1)

Let A : (Z/p*™17Z)* — C* be an injective homomorphism.
Define
¢ Kpy1 = CG (1 + p™HA) = X1+ p™ Ap).

Then ¢ is a character of degree one. By the same calculation as in 3.1.1, note that

p?>™ 1 = 0, we have
7 -160) = {t= (o, 3 ) lade @ Dibee iz},
and
| T |: (p2m+1 _p2m)2(pm+1)2 — p6m+2(p _ 1)2.
Let
_ _ 1 +pma pm+1b m+ley, mey.
N—{n—( e 14pmd |a,c,d € Z/p™ " Z;be Z/p"Z; ¢ .

Denote

‘o a pmb t—l _ a pmbl . 14+ pmx pm+ly
p'"Lc d H pmcl d/ ? pmz 1 __+__ pmw b
Note that p?™*! = 0 and p™ab’ + p™bd’ = 0, we have
(tnt Yy =™ (P rab'T + ad'y + p™tbd'w).
Thus, tnt™' € N and we have N < T. Moreover, YX,Y € N,(XY);; = X1;Y1:. Thus,
¢+ N — C*¢'(n) = Mnn),Vne N
is a character of degree one and clearly, qS’KmH = ¢.

22
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Let
m+1

H= {h = ( p,flnc p q b ) |beZ/p"Z;c € Z/p™ V' Z;a,d € (Z/pzm‘HZ)x}.
Then H is a subgroup of 7. We want to show I(¢') = H.
Denote

1+pma pm+1b T pm+1y 1 IE’ pm+1yl
A= yh= R = m ./ / )
p"c 1+ p™d Pz w p"z w

then (hAh™1')1; = z(1 + p™a)z’ = 1 + p™a. Thus, h stabilizes ¢’ and hence we have
H C In(¢).

On the other hand, consider
. 1 pm t—l _ 1 +p2m _pm
- pm 1 ’ - _pm 1 + p2m .

(tAt_l)ll =1+ pma —I—p2mc 7é All-

Then

As aresult, t € Ir(¢') = Ir(¢') C T. Note also that
I H |: (p2m+1 _ p2m)2pm+1pm — p6m+1(p _ 1)2

So [z = p. And since H C Ir(¢/) G T, we have H = Ir(¢)).

0:H — C*;0(h) = A(h1),Vh € H.

Since Vh,h' € H,(hh')11 = hi1hiy, € is a character of degree one and y = ¢'. So

[On, @] = 1, hence 67" € Irr(T), and deg(67) = {%ll = p. Note that we also have

[67,67] = [65,0] = 1 #£0,

thus, 0, ., is an irreducible constituent of (0% )k, . ,. Since

m+1*
9Km+1 = (HN)Km+1 - ¢./Km+1 = ¢7 (eg)Km+1 = 0.:1[;",.{..1’
we have 6% 11+ @] # 0. By Theorem 2.2.3, we know
(07)¢ = 6° € Irr(G),

and
G
deg(@G) = ——l| || =p*™(p + 1).

23
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3.2.2 The character of degree p>™!(p? — 1)

Let A : (Z/p*™+1Z)* — C* be an injective homomorphism.
Define
¢ : Kmi1 — CG o1 +p™) = Ap™ A1),

then ¢ is a character of degree one. By the same calculation as in 4.2.2, we have

T:IG(qs):{B:(p,ﬁZc a+l;md)|BeG}.

a b
N—{n—(pm_Hc a—l—pmd)'nET}'

Then | N |= p*"*2(p — 1). Moveover, let

i @ b 1 a 4 - T Y
T\ ptc a+ptd )T T \pd d+pd )T \ plr z4p™w )

note that p?™*! = 0 and p™ca’ + p™ca + p*™dc = 0, we have

Let

(tnt™Hg1 = p™(ad'z + p™ Lecy + p"lacw).

Thus, tnt~! € T and we know that N < 7.

Define

’. X (N o\ {1y a b
Denote

n — a b o — a 174
- pm+1c (L-i—pmd ’ - pm+lc/ a+pmdl 9
then
nny, = aa’ + ", ning, = pmﬂ(acl +d'e).

Thus,

¢'(nn') = A[p™* (ac’ + d'c)(ad’ + p™rbd)
= A[p™*(ac + d'c)(aa’) ]
= A(p™ea™t + pmtida ™)
— ApHea A
= ¢'(n)¢'(n').

24
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/3 / —_—
Hence, ¢’ is a character of degree one and ¢, .. = ¢.

1 0
p™ 1

Moreover, since - pandt = (

V] ) € T does not stabilize ¢/, we have

Ir(¢) = N = o = (¢)T € Irr(T).
Since [¢n, ¢'| = [¥,%] =1 # 0 and ¢, ,, = ¢, we have [YK,ni1, @) # 0. Thus,
¥ = [(¢)1]° = (¢)° € Irr (@),

and

deg(y®) = Iii|| =p"™ 1 (p* - 1).

3.2.3 The character of degree p*"(p — 1)

Let £ be a non square element in Z/pZ and consider it as an element in Z/p*™*+'Z. Let A

0 e ) € GL(2,Z/p*")Z.

be the same as above and let B = ( 10

Define
6 Kor — C (I + g™ 4) = Atr(p™* AB)].
Since in K1, (I + p™tA)I + p™HB) = I + p™1(A + B), we know that ¢ is a

character of degree one. And by the same calculation as in 3.1.3, note that p*™*! = 0, we

have T' = I (¢) = K,,S, where

o-fe(3 1) e}

And by Corollary 2.44, | K,,S |= p®™*2(p* — 1). Moreover, we can find ¢ € Irr(T),

such that
deg(¥) =p,  [Wrmiss 8] # 0 = 9° € Irr(G),
and e
Gy M1 __  2m _
deg(v )—pl 71" (p—1).

The idea to construct an irreducible character 9 of T such that [k, ,, @] # 0 is exactly
the same as the one used in 4.2.3 and the details will be given in next chapter.The main idea

is as follows.
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Let
K1 = {I+pA l A€ ngg(Z/psz)},N = K1 N S, Nm - KmN, Nm+1 = Rmy1-

Then N,,.1 < T In particular, Ny, <8 Ny,.

Step 1, we extend ¢ of K,,,,1to ¢’ of N,,.,1. The existence of ¢’ is guaranteed by Lemma
2.2.10. Moreover, we can also show that ¢’ is stable under 7T'.

Step 2, find an appropriate subgroup H between N,,,; and NN, such that we can extend
@' of N1 to 6 of H. In addition, Iy, (6) = H. Then apply Corollary 2.2.4, we know that
Y =0 € Irr(Np,).

Step 3, we will show that wfvmﬂ = p'¢’ for some integer 4. In this case, i = 1, and we
will see in the next chapter that ¢« = 3. Moreover, v’ vanishes on N,, — N,,,1. Since ¢’ is
stable under 7', we know 1 is also stable under 7.

Step 4, since T'/N,,, is cyclic and ¢’ € Irr(N,,) is stable under 7', by Theorem 2.2.8, we
can extend v’ to 1) of T. And this 1) is what we want.

All the three constructions can be applied to GL(n, Z/p*™*'Z), ¥n. But it will become
more involved as n increases and more irreducible characters will appear.

From the characters constructed in 3.1 and 3.2, we find that their degrees do not depend

on 2m or 2m + 1. For any n, there exist characters of GL(2,Z/p"Z) with degrees:
P Hp+1),p" " (p— 1), and p"2(p? - 1).

26
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Characters of GL(3,Z/p"Z)

In this chapter, we will apply Clifford Theory to construct some irreducible characters
of GL(3,Z/p"Z). Like in the GL(2,Z/p"Z) case, we discuss GL(3,Z/p*"Z) and
GL(3,Z/p*™ ' Z) separately. Still, the even case is easier. We will use the similar method
as in the last chapter and we can find some irreducible characters whose degrees do not
depend on whether 7 is even or not. However, in 4.1.1,4.1.2,4.2.1,4.2.2, by Theorem
2.2.6, we can construct some more irreducible characters, the degrees of which would
depend on the number n.

Let p be a prime number, p # 2. Letm € Z, m > 1.

4.1 Characters of GL(3,Z/p*"Z)

Let
G = GL(3,Z/p*™Z), Ky, = {I + p™A | A € M3x3(Z/p™Z)}.
Then
| G |= "D - 1)(0* - p)(0° — PP), | Kim |= P
In this section, we use the same method as in 3.1. Start with a 1-dimensional character

¢ of the normal subgroup K,,, find its stabilizer T, extend ¢ to character ¢’ of T, then the
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induced character (¢')% € Irr(G). In the GL(2,Z/p™Z) case, there is only one kind of
irreducible character. But in this case, since 7'/ K,, is not abelian, we can construct some

more irreducible characters by applying Theorem 2.2.6.

4.1.1 The character of degree p*™2(p? +p + 1)

Let A : (Z/p*™Z)* — C* be an injective homomorphism.
Define
¢: Ky — C (1 +p™A) = A1+ p™An).

Then ¢ is a character of degree one.
Claim:
a p™b pTc
Ig@)=T=<t=|p"d =z y |, teG},|T|=p""*p-13p+1).
ple =z w
Proof:
a pm"b pTc
Itis easy tocheck thatift = | p™d =z Y € T, then
e =z w
(p™tAt™ )y = pTaAna™t = pT Ay
= (I +p"A) = ¢(I + p™A)
=6 =¢
=>teT

=T C Iz(¢).
On the other hand, suppose B € Ig(¢), then

" (I + p™A) = ¢(I + p"BAB™) = ¢(I + p™A).
By the definition of ¢, we have
A1 +p™(BAB™ )u1) = M1 +p™An).
Since A is injective, we have
1+ p™(BAB™ Y, =1+ p"Ay,
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= pm(BAB_l)ll = pmAll.

Denote
/ / /
a1 Q12 Q13 b1y bz b3 by, bYip bis
-1 / ! /
A= @21 Q22 (a3 >B: bor by bos ,B™" = 21 Y22 Uags )
/ / /
G31 dasg2 Q433 bs1 bsa bss b31 32 b33
then

(BAB™1)11 = b (11011 +b12021 +b13a31 ) +bh; (b11012+b12020+b13a32) +b5; (br1a13+b12a23+b13ass).

Since p™(BAB™)11 = p™A11,Vaij € Max3(Z/p™Z), we have

(1) pbbu =p™
(2) pTbiibiz =0;
(3) p"byybiz =0;
(4) p"bybi =0;
(5) pmbglbll = 0.
Multiply by; on the both sides of (2), we get p™b),b11b12 = 0. By (1), we have
p"bi2 =0
= bip = pmb.

Similarly from (3), (4), (5), we get that
bis = p™c, by = p™d', by = p™e’.

Note that we also have B~! € T, thus we can replace B with B~}, by the same argument
above, we can conclude that

bor = p"'d, bs1 =p™e

=BeT
= Ig(gb) =1T.
Anditis clear that | T’ |= (p*™ — p*™ 1) (p™)* | GL(2,Z/p™Z) |= p**4(p—1)3(p+1).
]
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Since VA, Be T, (AB)H = A11B11, we have ¢/ T — CX, defined by

a p"b pTc
¢t)=Aa)t=1{ p"d z y |E€G,
pme P w

is a group homomorphism, so is a character of degree one. Clearly, ¢} = ¢. Thus
[0,., ®] = [¢, @] = 1 # 0. By Theorem 2.2.3, we know that

»=(¢)° € Irr(G),

and

G
deg(y) = H =p" (P +p+1).

Note that

(x) T/Kp {A: (g
0

By Theorem 2.2.6, we know that V3 € Irr(T/K,,), ¢ is an irreducible constituent of
¢T. Thus,

) LA e GL, Z/me)} ~ (Z/p™Z)* xCL(2, Z/p"Z).

N8O
B o

8¢, 6" = (88 )k, 8] # 0 = (84)° € Irr(G).

And we also have

degl(56/)F) = deg<a¢f)',—;*—; — deg(BA)p™(p* +p + 1).

By (*), we know that any v € Irr[GL(2,Z/p™Z)] can be lifted as an irreducible character
of T. And since we know the degrees of the irreducible characters of GL(2,Z/p™Z) are

p,p+1,p—1,p"" o+ 1),p" (p - 1),p" (0" - 1),
we can find some new irreducible characters of GG with the following degrees:
PR +p+ Dp, o 0P +p+ D+ 1), (0P +p 4+ 1)(p - 1),

"2 (P p+1)p"  (p+1), (0P +p+ )p™ (0 —1), 0 A (0P o+ 1) 2 (P - 1).
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4.1.2 The character of degree p*™ 4(p° — 1)(p + 1)

Let A : (Z/p*™Z)* — C* be an injective homomorphism.
Define
¢ Kn — C* (1 4+ p™A) = AMp™As1).

Then ¢ is a character of degree one.

Claim:
a x Y
Ig(@)=T=<t=1| p™ 2 w |teGy,| T |=p"*™2(p—1)>
me pmd a +pme
Proof:
a x Y
Itis easy to check thatif t = | p™b 2 w € T, then
pmc p™d a4+ pTe
a-1
Colit™' = | p™ |, Rows(p™tA) = ( pmaAz pTtalsy; pTaAsz )

pmcl

Since p?™ = (), we have
(p™t At )51 = p"aAziaTt = p" Az

Thus, ¢(I + p™A) = ¢*(I + p™A),VI + p™A € K,,. Hence, ¢ stabilizes ¢ and we have

T C Is(9).
On the other hand, suppose B € I(¢), then

dP(I 4+ p™A) = ¢(I + P"BAB™) = ¢(I + p™A).
By the definition of ¢, we have
AMp™(BAB™ 1)) = A(p™Asy).
Since ) is injective, we have

p"(BAB™)3; = p™ As1.

a1 a2 Qs b1 b12 b13 b’11 b/12 b’13
A= | an ax amp | ,B=1{ by bn by |,B'= o1 by bh3 |,
asz; asz asg b3i bso bas b§1 béz b§3
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then
(BAB™)3; = b}, (b31a11+b3o1 +b33ass )+, (b31a12+bs2a20+bssasa)+b5; (bs1a13+bs2a25+bssass).

Since p™(BAB )11 = p™An, Vai; € May3(Z/p™Z), we have

(1) p™biibss =p™;
(2) p™bibs =0;
(3) p™biyba =0;
(4) p"by by =0.

By multiplying b33 on the both sides of (2), we get
pmb'11b3gb31 = 0

By (1), we have
P b3 =0

= b31 = pmc.
Similarly from (3), (4), we get that
b32 = pmd, b/21 = pmb/.

SinceB~! € T, we can replace B with B!, by the same argument as above, we can

conclude that

b21 = pmb

Note that we also have
(5) pm(BAB"l)ll = pmb]_lbil = pm

Let (1) — (5), we have
(6) pmb/ll(b33 - bll) =0.

Multiply b33 on the both sides of (6) and by (1), we have
bss — b1 = p™e.
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a x Y

b33 = b]_l -{—pme, B= pmb z w eT.

p"c pmd a+p™e
SoT = IG(¢) And ' T |: <p2m _p2m—1)2(pm)3(p2m)3 — p14m—2(p _ 1)2_ [
Define
a x Yy
¢ T—-C¢ | ™ =z w = Mp™ca™t).
p™c p™d a4+ pTe
Let
a x Yy a x’ v
t=1| p™ =z w A =1 g™ 2 w ,

pmc pmd a +pme pmcl pmd/ a/ +pmel

then

(tt' )11 = ad’ + p™(zb + yc'), (tt')s1 = p™(ad + d'c).
So ()11 ()1 = p™ea™t + p™c’a’ . As a result, ¢’ is a group homomorphism, and so
is a character of degree one. Moreover, since p™c(1 + p™a)~! = p™c, we have ¢} = ¢.
Thus [¢%. ,¢] = [¢, ¢] = 1 # 0. By Theorem 2.2.3, we have that
ECA
| T |
We will turn next to apply Theorem 2.2.6 to construct one more irreducible character of
G.
Note that

¥ = (¢)¢ € Irr(G), deg () PP - 1)(p +1).

a
T/Kn=H={A=| 0 | A€ GL(3,Z/p™Z)
0

o o R
Q N w

LetN ={n= |n€H},thenN<lH.

) -t

where ¢ : (Z/p™Z)" — C* is an injective group homomorphism. Let

o O e
o e 8
e nu

Define
6: N — C*;0 (

o O Q
S Q8
Q v w

a x Yy a z
n=10a 2 |,n”=10 d 2},
0 0 a 0 0 a
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then
(nn)11 = ad’, (nn')19 = az’ + d'z.

So (nn)1a(nn’) = za~' + 2’a’". Hence we have 6 is a character of degree one.

Let
ao To Yo agt T Y a z vy
h=| 0 b 2z |,h'=| 0 b 2, {,n=]101a 2],
0 0 a 0 0 a;t 00 a
then
(hnh™"1, = agaay! = a, (hnh ™)1 = a(apz) + by 'zo) + aoby 'z = agby .
Since

hely)<=0"=0

<= 0(n)=0"n) VYneN
< 0(n) = 0(hnh™)
< o(za™') = o(apby za™?)

L' since o is injective

& 207! = agbytra”
— aphylz =1z
= ag = by
<= heN.
Thus, Iy(c) = N. By Corollary 2.2.4, we have
B =" € Irr(H),

and
deg(B) = :i: =p" —p

Then by Theorem 2.2.6, we have

= x = (#'0)° € Irr(G),

and
I GI _ 4dm—4

deg(x) = deg(ﬁ)l——l =p"™ ' (P® - D(p+ 1)(p™ — p™1).
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4.1.3 The character of degree p®"3(p — 1)%(p + 1)

Let

0 0 a
B=|10 b |e€GL3,Z/p"Z)
01 ¢

be the same as we discussed in 2.3. Let
S={s=xzI+yB+2B?|sc GL(3,Z/p"Z} C GL(3,Z/p"™Z),

then by Corollary 2.3.6, we have | S |= (p% — 1)p®™3.
Let X : (Z/p*™Z)* — C* be an injective homomorphism.

Define
é: K, — C4G (I +pmA) = A(tr(pT AB)).
Then
O +p"A)I +p"C) = o[l +p"(A+ C)]
= Atr(p™(A + C)B]
= Alir(p"AB)|A[tr(p™CB)]
= o(I +p"A)¢(I +p™C).

So ¢ is a character of degree one.

Claim: Denote T’ = I5(¢), we have T = K,,,S and | T' |= p*2™3(p® — 1).

Proof:
Let s € S, since S is abelian and B € S, we have sB = Bs.
Thus,
¢°(I +p™A) = (I + p™sAs™?)

= Mtr(p™sAs™'B))
= Atr(p™sABs™"))
= Atr(p"AB)
=¢(I +pTA).

So ¢* = ¢,s € T and we have S C T. Clearly, K,,, C T, therefore K,,S C T.
On the other hand, let C' € T, then ¢¢ = ¢. Thus,

¢C(I +p™A) = ¢(I + p™CAC™) = ¢(I + p"A), VI + p"A € K.
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By the definition of ¢, we have
Mtr(p™CAC™'B)) = \(tr(p™AB)).

Since A is injective, this yields
tr(p"CAC™'B) = tr(p™AB) = tr(Ap™B) = tr(Ap™C ' BC)
= tr(A(™(B — C'BC)) = 0.
Since the A above is an arbitrary matrix in M33(Z/p™Z), we conclude that

p™(B —C™*BC) =0

= p™BC = p™CB.

Denote
€11 C12 Ci13
C=1{ ca co2 c3 |,
C31 C32 Cs3
then
acs acsy acss ci2 ci13 aci + beyg + ceiz
BC = 11+ bC31 C12 + bC32 C13 + bC33 y CB = Coo Co3 QAC91 + b(322 + CCa3
Co1 +CC31 Coo + CC32 023 + CC33 C3p Cs3 QC3i + bC32 + CC33

Since p™ BC' = p™C B, we have

p" ez = pTacs,

p"eag = p™(c11 + bear),

pMese = P (a1 + cean),

p™ei3 = p™(acy + acear),

p"cas = p™(acs + beay + beesy ),

p™eaz = p™ (e + bear + cear + Pest).
Thus,

pen pacs; p™(acay + accsy)
p"C = 1| p™ca p™(c11 + besi) p™(acs;, + begy + beesy)
pmcar p™(car +cear) p™(cnn + besy + ceoy + cEear)

= pmcllf -+ pm021B + me3le.
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Hence,

C= (211[ + Cng + C3132 -{-me, De M3X3(Z/me).

Since C € T is invertible, C — p™D = c¢11] + ¢ B + c3;B? is also invertible. Hence,
011[ + e B+ C3132 €S LetA= D(CHI +ecn B+ C31B2)_1, then

C = (I +pmA)(011I+ 021B + C31B2).

So C € K,,S, and we have T' C K,,,S. Therefore, T = K,,,S. And by Corollary 2.3.6, we
have | T |= pt2™—3(p3 — 1). N

By Lemma 2.2.10, we can find ¥ € Irr(K,,S) such that ¢x,, = ¢. Therefore, [¢k,,, ] =
1 # 0. By Theorem 2.2.3, we have

x = ¥° € Irr(Q),

and
G _
deg(x) = H — p3p— 12(p 4 1),

Since

T/Km=KnS/S = {z] +yB+ 2B*} < GL(3,Z/p"Z)

is abelian, any 3 € Irr(T/K,,) is of degree one. So deg()3) = deg()) and we can not

find other irreducible characters of G with different degrees.

4.2 Characters of GL(3,Z/p*™ "' Z)

Let G = GL(3, Z/p*™+'Z),
Ko = {1+ 7" A | A € Mygo(Z/p™B)}, Kpuss = {I + ™A | A € Myy(Z/p"2)}.
Then

| G |=p*"(0* - 1)(®* - p)®* — %), | Kms1 |= "™ | K |= p"™F°.

In this section, we start with a 1 - dimensional character ¢ of the normal subgroup K, 11,
find its stabilizer T', then find ¢' € Irr(T) such that [, . ,#] # 0. Then apply Theorem
2.2.3 to find the corresponding irreducible characters of GG. Like in the last section, we can

still apply Theorem 2.2.6 to construct some more irreducible characters of G.
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4.2.1 The character of degree p*™(p?> +p + 1)

Let A : (Z/p*™+1Z)* — C* be an injective homomorphism.
Define

¢ : K1 — C5 (1 +p™1A4) = A1 +p™ 1 A).

By the same argument as in 4.1.1 and note that in this case p*™*! = 0, we can conclude
that ¢ is a character of degree one. Moreover, by the similar method in 4.1.1 to calculate
the stabilizer of ¢, we have
a pmb pTc
I@=T=qt=|r"d = y |[teG,,|T|=p*""(p-1)°0p+1).

ple =z w

Let
1+pma pm+1b pm+lc
N={n= p"d  14+pTx  pTy lneqG
p"e prz 1+ p™w
Then K,,+1 << N < T and we can extend ¢ to N as follows.
Define
1 + pma pm+1b pm+lc
¢:N—=C5¢'| p"d 1+p™z p™y = A(1 +p™a).
pTe p™z 1+ p™w
Note that VA, B € N, we have (AB);; = A;1By;. Thus,¢’ is a character of degree one.
Clearly, ¢, ., = ¢.

Let
1+p™ny p™nge p™Hing
n = PNy 1+p™nge  pMnog €N,
PNz Pz 14 pMns3
a pmb pm c a/ pm b/ pm cl
t = pmd T y , t—-l — pmd/ xl yl c T
pe  z w pre 2 w'
Then
(tnt )11 = aad’ + p*™bd’ + p*™ce + p"aa'ny, + pbngd’ + p*Menga.

Note that

(™1 = ad' + p*™bd’ + p?™ce’ = 1,p™aa’ = p™(tt ) = p™,
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we get

(tnt~Y)y = 1 4 p™ngy + p*™bngia’ + p*Mengiad’.

Since ) is injective, o’ is invertible and 1, and ng; can be any number in Z/p*™*+1Z, we

have
teIp(¢) <= ¢'(tnt™')=¢'(n) YneN

<= A(tntl] = M1+ p™nyy)

e (tnt ™y =1+p™ny

&= 14 p™ngy + pPbngd + pPengid’ = 14 p™nyy
= p*™bng + p*Menz; =0 Vngy,na € Z/p"™Z

<= p""b=10,p""c=0
a pmtip pmtle

&t=| pd oz Yy

pTe z w

Thus,
a pm+1b pm+lc
Ir(¢) = H = =( p"d =z Y L,heT
p"e z w

Define
a Pty pmtle
0:H—-C*6| pd =z Yy = A(a).
p™e z w

Since Vh,h' € H, (hh')11 = hi1h};, we know @ is a character of degree one. And clearly,
On = ¢'. Therefore, [0, ¢'| = 1. By Theorem 2.2.3, we have

0 = 6" € Irr(T),deg(¢) = ||_T__|| = p°.
Since [0',6'] = [0,0] = 1 # 0 and Ok, ., = (ON)Kp = Pk,.,, = ¢ we have

[0%,...> #] # 0. By Theorem 2.2.3 again, we have
(0)C = 6° =y € Irr(Q),

and

G
deg() = ||—H-|| =

We just constructed an irreducible character 1 of GG, and will turn next to apply Theorem

PP +p+1).

2.2.6 to find some more irreducible characters.
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Since N < K,,, and I, (¢') = I7(¢') N K, = HN N = N, by Corollary 2.2.4, we have

| Km | _ o
| V|

a = (¢ )5 € Irr(Ky,), deg(a) =

Since ¢’Km+ . = ¢ and ¢ is stable under K,,,, Vk € Ky, 11, we have

a(k) = ¢'(k)

Therefore, ak,,,, = p*¢.
Claim 1: o is extendible to 7" and the extension is ¢. Namely, 67, = a.

Proof:
Since « is irreducible and deg(f) = deg(f)_) = deg(a) = p? it suffices to show
[0%,.,a] # 0. And note that [0} ,a] = [(0%, )~,¢] = [0,¢], it suffices to show
v, @] # 0. Indeed, since [0, 6] = 1 # 0, we know that 6 is an irreducible constituent of
6%. Hence, ¢’ = @ is an irreducible constituent of (6%;)n = €Y. Therefore, [0}, ¢'] # 0.

Hence, [0, a] # 0. And the claim follows. ]
Claim 2: I;(a)=T.

Proof:

Since 0 = o and @ = 6" is a character of T, V¢ € T\ k € K., we have
at(k) = (0)H(k) = 8 (tkt™) = '(k) = (k).

Thus, T C Ig(a).
On the other hand, note that ag,,,, = p°¢, we know Ig(a) C Ig(¢). And since
Ig(¢) = T, we have Ig(a) C T. The claim follows. [

By Theorem 2.2.6, V3 € Irr(T/K,,), 367 is an irreducible constituent of o”. Then by
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Theorem 2.2.3, we have

(B67)C € Irr(G),

and
deg(B6") = deg(B)deg((6")%) = deg(B)deg(6).

Since

T/Kmu{A:(S
0

any 8 € Irr(GL(2,Z/p™Z)) can be viewed as an element in Irr(T/Ky,). Since we

) VA€ GL(3,Z/me)} = (Z/p"Z)* x GL(2,Z/p™Z),

N8 o
L w ©

already know the degrees of the irreducible characters of GL(2,Z/p™Z), we can find new

irreducible characters of G with the following degrees:
dm (2 am .2 Am . 2
P +p+ Dp,p(p" +p+ 1)+ 1), 0" (0" +p+ 1)(p— 1),
P @+ p+ 1)+ D™ e+ p + 1) - D™ o (0" +p + 1) (- 1)p™

4.2.2 The character of degree p*™2(p? — 1)(p? +p + 1)

Let A : (Z/p*"*1Z)* — C* be an injective homomorphism.
Define
(b : Km—H - Cx; ¢(I +pm+1A) = A(pm+1A31)-

Since Vk, k' € Kpt1, (kk')31 = k31 + k%, we know that ¢ is a character of degree one.

And by the same calculation as in 4.1.2, note that p*™*! = (), we have

a T Y
T=Iz¢)=<Kt=1{ p™ =z w lte Gy,
p"c p™d a4+ p™e
and
[ T ': (pm+1)4(p2m+l . p2m)2(p2m+1)3 — p14m+7(p _ 1)2.
Let

a x Y
N=<{n=| p™ z w lneTj).
pm+1c pm+1d Cl/+pm6
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Then by the same argument as in 3.2.2, we know that N < 7. And | N |=
(pm)Z(pm+1)2(p2m+l _ pZm)2(p2m+1)3 — p14m+5(p _ 1)2
Define
a x Yy
¢ N—-C¢ | p™ 2 w = Ap™*tea™).
pm+lc pm+1d a+pme

Then by the same argument as in 4.1.2, we can check that ¢’ is a character of degree one.

And since p™*te(l + p™tla)™t = p™*ic, we have ¢ | = ¢.

Claim1: Ir(¢)=N

Proof:
Let
1 00 1 00 a T Y
t= 0 10 ),t7t= 0 10 }|,n= p™b z w ,
p™ 0 1 —-p™ 0 1 p™Htle p™tld a4+ pTe
then

(tntﬁl) =a—p™y, (t’nt—l)31 = p™ e — p?™y — pzme.

Since ) is injective and by the definition of ¢/, we know that
t € Ir(¢') <= (tnt Na[(tnt "]t = p™*'ca™t,Vn € N.

However, when y = 0,e = 1, the above equality fails. Namely, ¢ does not stabilize ¢'.

1 0 0
Similarly, we can show that | 0 1 0 | does not stabilize ¢’, either.
0 p™ 1
Since
1 0 O
TINYN ={n'=| 0 1 0 ||neGL3,Z/p™Z)},
p"r pTy 1

Ir(¢')/N should be a subgroup of N'. However, from we just showed, we know that
Ir(¢')/N must be the identity subgroup of N’. As a result, I7(¢/) = N. ]

By Corollary 2.2.4, we have

6= (@) € (D). deg(w) = 1t =
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Also, since[yyy,¢’] = [,9] = 1 # 0, we can conclude that [¢x,,,,, Pk,,,,] =
(VKo @] # 0. By Theorem 2.2.3, we have

G
¥° € 11r(G), deg(u°) = deg) 1 = #™ (6% = (5 +p+ 1)

We have already constructed an irreducible character of GG, we will turn next to apply

Theorem 2.2.6 to construct one more irreducible character.

Consider
1+p™a p™b p"c
No=NNK,, = p"d 14+ p™mz pMy
pm+16 pm-{—lz 1 + pm,w

Then | No |= (p™*)7(p™)? = p*™*". Thus,
l N || Km | B p14m+5(p _ 1)2p9m+9

l NKm |: | NO | pgm+7 ___p14m+7(p - 1)2 =| T l .
Since NCT,K,, CT, wehave NK,, =T.
Define
14+p™a p™b p™c
§': Ny — C*; ¢ p"d 1+4+pTz  pTy = A(p™*e).

p"tle  p™tlz 14 p™w
Since p™*te = p™*'e(l + p™a)~', we know that 6’ = ¢ . Hence, ¢’ is a character of
degree one. It is clear that we also have 0}{m+1 = ¢. Moreover,
Ik, (0) = K, NIr(¢') = KN N = N,.
Thus, by Corollary 2.4.4, we have

0= (65 € Irr(K,,),

and

| Ko |

deg(9) = Nl p’> = deg(¥), bk,.,, = D0

Claim 2: 0 is extendible to 7" and the extension is ¢. Namely, ¥k, = 6.

Proof:
It suffices to show [Yk,.,0] = [¥n,, 0] # 0 because we know @ is irreducible and

deg(Vk,,) = deg(¥) = deg(8) = p®. Since [, 9] = [¥n,d'] = 1, i.e. ¢ is an irreducible
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constituent of 1, we have ¢y = 6 is an irreducible constituent of <,. Therefore,

(YN, ') = [Vx,,,0)] # 0. And the claim follows. [
Claim3: [5(0)=T.

Proof:
By claim 2, since 6 is extendible to T', we know that 7' C I5(6).
On the other hand, since 0’Km+1 = ¢ and ¢ is stable under K,,,,Vk € K,, 1, we have
6(k) = 65 (k)
1
= 0')° (zkx™?
T 2 (@ ka™)

z€EKm

=|]\1,0| Y (k)

2EKm

- ﬁ S 6(k)

zEKm
= p*¢(k).
= p?¢. Therefore, I5(6) C I(¢). Note that Ig(¢) = T, the claim follows. =

Thus, 9k

m-+1

Up to now, we have 6 € Irr(K,,), Is(8) = T and 6 is extendible to 7. The extension is
1. Thus, we can apply Theorem 2.2.6.

/K{( )}H

and we have already known, in last section, that 33 € Irr(H) such that deg(8) =
p™ — p™~1. Then by Theorem 2.2.3, 2.2.6, we have

[("/}ﬁ)Kmagb} 7é 0= X = (%W)G € ITT(G)a

Since

o O
o o8
Q N

and

deg(x) = deg(ﬁ>'|—G——|' = g2 — 1) + p+ " — g,

4.2.3 The character of degree p°™(p — 1)%(p + 1)
Let

0 0 a
B=| 10 b | e€GL3,Z/p*™Z)
01 ¢
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be the same as we discussed in 2.3. Let
S={s=zl+yB+2B*|sec GL(3,Z/p*™ " Z} C GL(3,Z/p*™"'Z),

then by Corollary 2.3.6, we have | S |= p®™(p® — 1).

Let A : (Z/p*™1Z)* — C* be an injective homomorphism.

Define
¢ Kpr1 = Co(1 +pm+1A) = )\[(tr(pm+1AB)].

Since (I + p™tA)(I + p™™B) = I + p™*(A + B), we know that ¢ is a character of

degree one. By the same calculation as in 4.1.3, we have

T = Ig(¢) = KnS,| T |= p"*™(p® - 1).

Let
Ky={I+pA A€ ngg(Z/psz)}, N=KiNnS N,,=KuN,Npt1 = Kpy1N.

Claim1: N, <7, Ny <T,| N |=p5,| Ny |= pt#™45 | Npyy |= 2™

Proof:
By the definition of N, we have
N = {(1+ px)I + pyB + pzB?,x,y,z € Z/p*™"1L}.

Asaresult, | N |= (p?™)3 = ptm.
Since S is abelian and K,, < T = K,,S, we know that T/ K, is abelian. Clearly,

K,, C N, C T, thus N,, << T. Note that K,, C K;, we have

KuyNN=K,NS={(1+p"z)] +p"yB+p™zB,x,y,2 € Z/p™+'Z}.

Thus, | K, NN |= (pm+1)3 = p*™+3_ And | Ny |= |II§:ﬂ“%| = pl2m+6,

Since NN K1 = Kinya NS = {(1+p™x)] +p™yB +p™zB,z,y,2 € L/p™L}, we
know | N N Kyt |= p™. Thus, | Npyt |= Jlgz_ﬁrql_f‘% _ plom

To prove N,,,.1 < T,let I +p™A € K,,,I +pC € N, then
(I+pmA)I +pC)I —p"A+p*™A) =1+ pC +p™(AC — CA)
= (I +pC)[I +p™(1+pC)~Y(AC — CA)).
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Namely, Vk € K,,,, kNk™' C N,,,1. Since K11 <K, weknow Vk € K, kN k7L C
Npy1. Notethat N C S, Sis abelian, and K., 11 <G, we have Vs € S, sN,, 11571 € Nppyi.
Hence, N, 1 < T. ]

Since N is abelian, by Lemma 2.2.10 we know that ¢ € Irr(K,,+1) can be extended to
Nty ice. 3¢" € Irr(Npi1), such that ¢, = ¢.

Claim2: 306 € Irr(N,,) such that fy,,, = p*¢’, and 6 vanishes on N,, — Npp41.
Claim 3: ¢/ is stable under 7.

Suppose the two claims above are correct, then the 8 in Claim 2 is stable under 7. Note
that T = K,,S = N,,,S, we have

T/Np = NinS/Np 2= S/(Nmw N S) = S/(K1 N S)

is cyclic, thus by Theorem 2.2.7, 6 is extended to 7', i.e. we can find 6’ € Irr(T) such that

vam = §. Therefore,
[0,1{m+17¢] = [eKm+l’¢] = [p3¢le+17¢] = [p3¢7 ¢] 7é 0.
By Theorem 2.2.3, we know that

x = (8¢ € Irr(G),

and
d _ 3| G | __.6m -1 2 1
eg(x) =p T (p—1*(p+1).
Proof of Claim 2:
Let
14+ pma  p™Hag P ags
Ny = pan  14+pTax p"ags | a;; € Z/p*™ 'L
p"lag;  p™tlaz, 1+ p™tags
Then

K1 <A Nt Q Ky N1 N Nyt = Ko, | Ny |= p™™ 3.

Let H = Ny Ny, then H < Ny, and | H |= BeallMil _ j12m43

[ Emat1]
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Define
¢1 : N1 — C*; ¢1(n) = Aitr(B(n - I))),n € Ny.

Let

1 + pma11 pm—{-la12 pm+10,13 1 + pmalll pm-i-lall2 pm+1a/13
n = pmaz  1+pTaxn  p™lagx ' = prhah,  14+pTah,  p™tlal,

pm+1a31 pm+1a32 1+ pm-i-la?’3 pm+1agl pm+lalg2 1+ pm+1a§3
then

* P (a2 + apy) *
nn' = * * P (ags + aks)
P (az +af;) P (as + ahy) 1+ 0™ (ass + als)
Thus,
tr[B(n — I)] = p™ ™ ays + p™ags + p™ " (aas + bass + cass),

and

tr[B(nn' — IN] = tr[B(n — I)] + tr[B(n' — I)].
Hence, ¢ is a character of degree one and (¢1)x,, , = ¢ = ¥k, -
Moreover, Vs € S N Kj, since S is abelian and B € S, we know sB = Bs. Denote
n = I+ p™n; € N;, we have

$i(n) = Altr(B(sns™" — 1))]

Notice that H = N1 N,,11 = N1 Kp1(S N K;) = N1(S N Kj), and we just showed ¢ is
stable under S N K. Therefore, ¢, is stable under H. Namely, H C Iy, (¢1).
On the other hand, we can actually show that H = Iy_(¢;). Indeed, let

1 00 1 00 14+ p™a  p™ag P ass
k=| 0 10 ),k'= 0 10 ]),n= pran 1+pMan  p™ass
pm 01 _pm 0 1 pm+1a31 pm+1a32 1+ pm+1a33
then
1+ p™an p"ta  p™tlags
knk™ = p™an 1+pmag  p™lags

2
p mall + pm+1a31 pm+la32 14+ pm+1a33
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Thus,
tr[B(knk™! —1)] = p™ayp + p™ags + p™ (aas; + bass + cazs) + p*™aay
# ™ a1y + ™ agg + p™H (aasy + bags + cass)
= tr[B(n — I)].
As aresult,
¢1(n) = p1(knk™") # 1(n).

Namely, & does not stabilize ¢;. Similarly, we can show that

1 00 10 0

o1 0f,lo1 o

0 p™ 1 00 1+pm
[N

do not stabilize ¢, either. Hence, we know that is at least p3. Since we already

N (61)]
have H C Iy, (¢;) and note that “‘—VHﬂll = p?, we can conclude that H = Iy, (¢1).

Define
¢y 1 H — C ¢ (nmaan1) = @' (Nms1)$1(n1), Mg € Npga, 1y € Ny

Since H = N1N7n+1, Nl N Nm+1 = Km+1 and (¢1)Km+1 = ¢,Km+1 = qb, by Lemma 228,
we know that ¢ is a well-defined character of degree one. And clearly, (¢))n, = ¢].
Therefore, In,,(¢}) C In,,(¢1) = H. Hence, Iy, (¢]) = H. By Corollary 2.2.4, we have

0 = (&)™ € Irr(N,).

By claim 3, we know that ¢’ is stable under T, in particular, ¢’ is stable under N,, C T.
Thus, Vn € N,,,1, we have

1 o _
0(n) = 7 > (¢)°(znz™)

| | TEN,
1 /

=7 2
1
w2 0
P’ (n).

Therefore, fy,,,, = p*¢’. Apply Corollary 2.2.5, claim 2 follows. [
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Proof of Claim 3:

Note that K,,,,15S = N,,4+15 and S is abelian, by lemma 2.2.10, ¢’ can be extended to
K415, and hence ¢’ is stable under K,,,,S. Thus, it suffices to show that ¢’ is stable
under K,,. In the proof of Claim 2, we know that ¢’ is extended to ¢} of H = Ny, 11 N;.
Thus, ¢’ is stable under H = N, 41 N;. In particular, it is stable under N;. In fact, we can

replace the NV, with

14 p™tlay p™a1n a3
N2 — pm+1 as1 1+ pm+1 Qo pm as3 | aij cZ /p2m+1Z ’
P ag, p™tag 1+ p™tlags
or
1 + p-m-l-lall pm+1a12 p'rn+la13
N3 — pm+1a21 1 + pm+1a22 p'm+la23 | a'ij c Z/p2m+1Z
pas; p"as; 1+ p™tlags

This is because both
¢2 : NQ — (Cx; (bz(’ng) = )\(tT(B(ng - I))),’nz € NQ,

and

¢3 1 N3 — C*; ¢3(ns) = A(tr(B(ns — I))),n3 € N3,
are well-defined characters of degree one. And they are both stable under N,,,;. Also,
N2 N Nm+1 - N3 N Nm+1 = Km+1, (¢2)Km+1 = (¢3)Km+1 - ¢,Km+1 = ¢

Therefore, ¢’ can also be extended to Hy = N,,.1 Ny and H3 = N,,,1 N3, s0 it is stable

under H; and Hs. In particular, ¢’ is stable under Ny No N3 < K.

Let
1+p"a 0 0
N, = 0 1+p™ma 0 la€Z/p™Z %,
0 0 1+p™a

since [V, is in the center of G, we have Vn € Ny, (¢')™ = ¢'. Thus, we can conclude that
¢’ is stable under N; Ny N3Ny <1 K,,,. But
| N1N2N3N4 I—_—l Km l:> N1N2N3N4 == Km
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Another way to see N1 NoN3 N, = K, is that, by the definition of N; and Ny, N1 N, will

generate all the matrices in K, of the form

1+pmann  pTai pTais
pran 1+ pTaxn P ag3
pm+1a31 pm+1a32 1 + pm-f-lal33

By the definition of N3, all the matrices in K, of the form

L+pma1 pTase pais
pTagr 1+ pTag p"ag3
pras: plaz, 1+ p™tass

will be generated in N, N, N;. By multiplying N4, we will have all the elements of K,,.
Therefore, NN, N3Ny = K,,,. And Claim 2 follows. |
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