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Chapter 1

Introduction

For some time now, there has been much attention directed to the possibility that 
spacetime may have extra dimensions. For example, superstring theory is naturally 
formulated in a spacetime w ith greater than four dimensions (for example, see [1]). 
However, the extra dimensions of superstring theory are generally compactified to 
being of a very small size, possibly of the order of the Planck length. In 1983, 
Rubakov and Shaposhnikov [2] examined the possibility that the universe could be 
a four dimensional brane embedded in a higher dimensional spacetime, w ith all the 
regular particles of the theory localized to the brane. A major attractive feature 
of such models is that they present the possibility to solve the hierarchy problem, 
that being the question of why is the quantum gravity scale of M Pi ~  1019 GeV 
so much larger than the electroweak scale at M ew ~  102 GeV. Arkani-Hamed, 
Dimopoulos, and Dvali [3] have shown how this is possible by considering that the 
universe actually has 4 +  d dimensions, w ith the extra d dimensions being compact 
w ith a radius R , possibly much larger than the Planck length. In such a universe, 
the Newtonian gravitational potential at a close distance r  (r «  U) from a particle 
of mass M  w ill be given according to Gauss’s law as

V (r « H ) ~  773+2 ^7+1 ’ (1-1)
Pl(4+d) '

w ith Mp/(4+<j) the 4 +  d-dimensional quantum gravity scale, the Planck mass. Far 
away from the particle (r R), the extra d dimensions w ill no longer represent a
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CHAPTER 1. INTRODUCTION 2

drop in the field, as R w ill already have been reached.

v { r > > R ) ~ ^ k ^ '  ( 1 ' 2 )

so we can see that for large r, the regular gravitational scale Mpi(4) is given as

■ (1.3)

Thus, if  we assume that there might be only one fundamental scale, then setting 

Mpi(4+d) =  M ew, we can see how a very large M Pi can result from this mechanism. 
An interesting result of this model is that it opens the possibility of creating black 
holes in particle colliders in the near future [4],

In this model, at distances r  ~  i?, we w ill begin to see deviations from Newton’s 
gravitational law. There have been experiments carried out to examine consistency 
w ith Newton’s gravitational law down to scales less than a m illimeter, putting 
lim its on the maximum size for extra dimensions in such a model [5, 6].

In this thesis, we w ill be considering black holes in a spacetime w ith more 
than (3+1) dimensions. Using compactified extra dimensions for such an analysis 
would most likely lead to very complicated equations, so to sim plify things, we 
w ill assume that the extra dimensions are of a size much larger than the typ i­
cal size of things we w ill be considering. This assumption allows us to consider 
that the extra dimensions of the theory are of an infinite size, and spacetime is 
flat in regions far from the black hole. In particular, most of our attention w ill 
be focused on the higher dimensional black holes found by Myers and Perry [7]. 
Myers-Perry black holes are similar to Kerr black holes in that they represent a 
stationary, asymptotically fla t vacuum solution to the Einstein field equations, but 
they are generalized to an arbitrary number of dimensions. In a (3+l)-dimensional 
spacetime, the Myers-Perry metric reduces to the Kerr metric.

Chandrasekhar [8] once pointed out that the Kerr metric has many properties 
that have endowed it  w ith an aura of the miraculous. Some of these proper­
ties include separability of the Hamilton-Jacobi equations of motion for a particle 
moving in the gravitational field, discovered by Carter [9], and the fact that the 
Kerr spacetime is Petrov type D [10], the same Petrov type as the non-rotating,
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CHAPTER 1. INTRODUCTION 3

Schwarzschild case. Later properties that were added to this were the separability 
of the d’Alembertian and the massive Klein-Gordon equations, [11,12], and further 
the separability of the massless higher spin wave equations [13]. Also discovered 
was separability of the Dirac equation [14] and later the separability of the equi­
librium  equations for a stationary cosmic string near a Kerr black hole [15]. The 
property of separability of such equations in the Kerr metric is due to the existence 
of a rank two K illing  tensor in that spacetime. A K illing  tensor of rank i is any 
tensor which satisfies

=  0 ■ (1-4)

In the case of i  =  1, then the vector which satisfies £(m;a) =  0 is called a 
K illing  vector, and it  represents directly a symmetry in the metric gtiv, that being 

=  0, w ith C being the Lie derivative. For higher rank K illing  tensors, there 
is no simple geometric interpretation as there is in the rank 1 case, but they s till 
represent a symmetry of the spacetime (see [16] for a discussion). This symmetry 
is manifested by the existence of a conserved quantity K, given as

K  =  K il„ iP ^ P ^ - - - P ^  . (1.5)

K  is a conserved quantity for any particle w ith a momentum P^ in geodesic motion. 
Note that the identity g^v-x =  0 guarantees that the metric can be considered a 
K illing  tensor, w ith an associated conserved quantity —ra2, the mass squared of the 
particle. Given two K illing  tensors Aw#i2...Mi and , then defining
as

KtilW-tH+j =  ) (1-6)

then K  w ill be a K illing  tensor, easily shown by the fact that both A  and B 
satisfy (1.4). Further, any fixed linear combination of K illing  tensors is also a 
K illing  tensor. Any K illing  tensor which can be constructed out of other K illing  
tensors and the metric in a combination of these two ways is said to be reducible, 
otherwise we call the K illing  tensor irreducible.

To understand the importance of a K illing  tensor, consider conserved quantities 
for particle motion in the Kerr geometry. Since the Kerr metric is stationary and 
axisymmetric, one has conserved quantities Pt and P^, the energy and 2-component
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CHAPTER 1. INTRODUCTION 4

of angular momentum of the particle. Another constant of motion is the mass of 
the particle; however, this only gives us a total of three conserved quantities in 
a problem w ith four dimensional motion. Carter’s discovery of the K illing  tensor 
and associated conserved quantity in the Kerr metric allowed for the reduction of 
second order geodesic equations to first order equations for the geodesic motion of 
a test particle.

Recently, it  has been demonstrated that the five-dimensional version of the 
higher-dimensional black hole metrics found by Myers and Perry shares many 
of the ‘miraculous’ properties that the Kerr metric has. Frolov and Stojkovic 
demonstrated the separability of the massless scalar field equation in the presence 
of the gravitational field [17], and the separation of the Hamilton-Jacobi equation 
for a particle moving in the gravitational field [18]. Also noted by De Smet was 
the fact that this metric has Petrov type 22, the same Petrov type as if  it  were a 
non-rotating black hole, the Tangherlini-Schwarzschild case [19, 20]. Just as w ith 
the Kerr spacetime case, the separability of such equations is connected w ith the 
existence of a rank-two K illing  tensor in the five-dimensional Myers-Perry metric 
[18]. This thesis w ill be based mostly on the paper [21], examining the ‘miracle’ 
of separation of the equilibrium equations for a cosmic string.

In the first part of this paper, we w ill begin by examining higher-dimensional 
black hole metrics, particularly the Myers-Perry metrics, w ith emphasis on the 
four-dimensional (Kerr) and five-dimensional cases, which are known to have rank- 
two K illing  tensors. Then we w ill examine properties of topological defects, partic­
ularly on cosmic strings. The analysis of general properties of topological defects 
w ill be prim arily done in flat spacetime w ith (3+1) dimensions, but it  w ill be 
made clear how to generalize these results to an arbitrary number of dimensions 
in a curved background.

The main portion of the thesis w ill be considering stationary string configura­
tions near a five dimensional Myers-Perry black hole. Stationary string configura­
tions are of interest if  we wish to consider final states of a string-black hole system, 
because it  is reasonable to assume that many states w ill eventually settle down 
to an equilibrium configuration w ith the string stationary. For this analysis, we 
w ill be considering the cosmic string as a test object in the background black hole 
spacetime, and ignore possible effects that the string may have on the black hole.
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CHAPTER 1. INTRODUCTION 5

In the last chapter, we w ill generalize our results to Myers-Perry spacetimes 

in an arbitrary number of dimensions. It w ill be demonstrated that some of the 
important properties of stationary cosmic strings hold in an arbitrary number of 
dimensions, even though it  is possible that the spacetime lacks a K illing  tensor. 
Also we w ill consider the ‘friction ’ effect, demonstrated by [22]. The analysis done 
there showed a general result of the slowing of a rotating black hole through an 
interaction w ith any topological defects in the slow rotation lim it. We demonstrate 
the explicit equations for this effect due to the interaction of a cosmic string w ith an 
arb itra rily rotating black hole in any number of dimensions. Finally, we consider 
the higher dimensional black hole spacetimes w ith a cosmological constant term 
found by Gibbons, L ii, Page and Pope [23]. We demonstrate in a special case 

that the Hamilton-Jacobi equation for a particle in free-fall and the massive Klein- 
Gordon equation allow separation of variables (see appendix D and [24]). We also 
show that the Hamilton-Jacobi equation for a stationary cosmic string in these 
metrics undergoes a sim ilar separation of variables in this special case.

Throughout this paper, we w ill be working in a set of units where we have 
set the speed of light in vacuum c =  1, but we w ill explicitly leave in the n- 
dimensional gravitational coupling constant, denoted as G^n\  We w ill use the sign 
convention for curvature defined in [25]. For sign conventions on the metric, we 
w ill be working in a metric w ith a signature (—, + , + , + ) ,  or its higher dimensional 
generalization. We w ill denote indices for vectors and tensors in the bulk manifold 
w ith Greek letters (/i,z /,... =  0, ...,N) and indices for vectors and tensors in the 
spatial projection submanifold w ith lowercase Latin letters from the earlier part of 
the alphabet (a, 6,... — 1,..., JV). We w ill denote indices on the induced geometry 
of an M-dimensional brane embedded in N  +  1 dimensional spacetime by capital 
Latin letters from the early part of the alphabet (A, J5,... =  0,..., M) ,  and indices 
in the space normal to the brane as uppercase Latin letters from the later part of 
the alphabet (R, S,... =  M  +  1,..., N). Finally, we w ill also make use of indices 
( i , j ,  k , ...) for miscellaneous purposes, note that we w ill use the convention to sum 
all repeated indices except for this final type which w ill always have a summation 
symbol when a sum is desired. Explicit tensor calculations for this paper have 
been performed using the GRTensor software for Maple [26].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

Chapter 2 

Higher Dim ensional Black Holes

2.1 Static Black Holes

In this thesis, we w ill be considering string configurations in the spacetime of a 
higher dimensional black hole, so first we w ill examine some properties of higher 

dimensional black holes, starting w ith the Tangherlini-Schwarzschild solution [27]. 
In general we may write the line element for any static, spherically symmetric 
configuration in an n-dimensional spacetime as

w ith t being a timelike coordinate, r  being a radial coordinate, /  and g being

unit sphere. I f  we assume a vacuum, then the Einstein field equations give for this 
metric

where a is a parameter w ith dimensionality [length]" 3. The parameter a is con­
nected to the black hole mass M , by

ds2 =  ~ f ( r )  dt2 +  g(r) dr2 +  r 2 d£l2n_2 , (2.1.1)

arbitrary functions of r  alone, and being the line element of a n-dimensional

(2.1.2)

(2.1.3)
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 7

where An is the area of an n-dimensional unit sphere and F is the normal Gamma 

function. We can see that the horizon is located at r n~3 =  a, so a > 0 is required 
to prevent naked singularities.

In three dimensional spacetime, (2.1.1) is a locally fla t metric, consistent w ith 
the fact that in three dimensions both the Riemann tensor and the Ricci tensor have 
6 algebraically independent components, so it turns out to be possible to express 
the Riemann tensor to be linear in the Ricci tensor [28]. Since vacuum implies the 
vanishing of the Ricci tensor, it  must imply the vanishing of the Riemann tensor, 
and thus locally fla t spacetime.

2.2 Stationary Myers-Perry Black Holes

Next we w ill examine black hole solutions in an n-dimensional spacetime which 
is stationary rather than static. This is the consideration of rotating black holes 

w ith a timelike symmetry. The group which represents rotations in N (=  n — 1) 
spatial dimensions is SO(N). For even N, SO(N) has N/2  elements of the Cartan 
subalgebra, while for odd N, the Cartan subalgebra for SO(N) has (N  — l ) /2  
elements. So physically this means the rotation in an even number of spatial 
dimensions can be reduced into rotation w ithin N/2  separate planes of rotation, 
each w ith a spin parameter a*. I f  instead N  is odd then you have (N  — l ) /2  spin 
parameters w ith an extra spatial dimension for which there is no spin parameter. 

We w ill define the spin parameter in a plane connected to the angular momentum 
in that plane, Jj, by

=  (2 .2.1.)

for both even and odd N. We define (2 .2.1) to carry an additional negative sign 
because the sign convention adopted by Myers and Perry is opposite to that used 
in the Kerr metric. It w ill be convenient to denote p as the number of planes of 
rotation so we may say that i runs from 1 to p in all sums and products in this 
section, except where w ritten explicitly.

For most of our analysis, we w ill be examining Myers-Perry metrics using Boyer- 
Lindquist coordinates. The coordinates are given as t being a time coordinate, r  
as a radial coordinate, (pi is an angular planar coordinate associated w ith the plane
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 8

that has spin parameter a*, and Hi is a direction cosine for the plane i. The Hi 
are confined to the unit sphere w ith the restriction Ylil^f =  1- Further, for an 
odd number of spatial dimensions, there is an additional direction cosine, h for the 
extra spatial dimension, and the restriction is replaced by /x2 +  Si /x2 — 1- The 
value of 4>i ranges from 0 to 2n, and the values of </>* =  0 and </>, =  2ir are identified. 
For ^  the range is from 0 to 1, and /x ranges from —1 to 1.

The solution for the metrics is found separately for even or odd number of 
spatial dimensions [7]. For even N

ds2 =  -  dt2 +  (r2 +  a2)(d/x2 +  / / •#■)
i

+ n n >  +  ( d* +  £ »  (2-2 .2) 

and for an odd number of spatial dimensions

ds2 =  - d t 2 +  r 2dfj,2 +  (r2 +  al) ( dPi +  l£d<t>2)
i

+ n nLQ rdr2 +  HZ (dt + ? •  (2-2-3)

In these metrics, I I  and L  are given by

n  =  I I (>-2 +  ^ ) ,  £ =  1 - E = f e -  (2 -2 .4)
i i ' Ui

The restrictions on the Hi and h coordinates te ll us that these coordinates are 
not independent, so it w ill sometimes be convenient to denote by 9k independent 
coordinates. In even N  we may define the coordinates 6k {k — 1, ...,p — 1) by

p—i
Hi =  cos 0p_i+i sin 9k , (2.2.5)

k=1

w ith the convention that 9P =  0 and if  there is ever a product that has a upper
lim it less than the lower lim it, then that product equals one. One can define a
sim ilar /j-(9 relationship for odd N, but we w ill not need its specific form anywhere.
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 9

Sometimes we shall also make use of the notation ujm =  (0j, fa) (m — 2, . . . , N )  
for a to ta l set of ‘angular’ coordinates.

These metrics are stationary, meaning that =  dt is a K illing  vector for 
the metric, called the principal Killing vector. The infinite red-shift surface of the 
black hole, which is the external boundary of the ergosphere, is given by £2 =  0 , 
which is equivalent to

ILL =  a r  for N  odd, IIL  =  a r2 for even N. (2.2.6)

The Myers-Perry black holes are axisymmetric, so that =  <9̂  are also K illing  
vectors associated w ith the planes of rotation. The surface gravity for these black 
holes is given by k =  — <9r (£2)/2 , which takes the form

<9rI I  — 2ar
k =

K

2 a r2 

<9rII  — a

for N  even,
r = r +

2 ar
for N  odd, (2.2.7)

r=r+

w ith r + being the location of the outer event horizon. The event horizon area A  
is given as

A  =  AN_ ir+a , (2.2.8)

in both even and odd dimensional cases. In the next section we w ill discuss con­
ditions for the existence of an event horizon, and how to locate them.

2.2.1 Singularities and Event Horizons in an Odd Number 
of Spatial Dimensions

Similar to the Kerr metric, the Myers-Perry metrics have curvature singularities. 
In an odd number of spatial dimensions it  is possible to demonstrate that these 
singularities w ill occur whenever the factor ar/ILL  diverges [7]. Suppose at least 
one of the a, vanish, then II  contains a factor of r 2 causing a singularity at r  —> 0. 
However, i f  a ll the spin parameters are non-vanishing then we must first note that
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 10

we may use the restriction on /j, and /i, to express L  as

(2.2.9)

So we may see that if  yu =  0, L  w ill contain a factor r 2 to give a singularity as 
r  —> 0. The singularity at r  =  0 , / j  =  0 is essentially similar to the ring singularity 
of the Kerr metric. In either case, we must expect an event horizon at r  =  r + >  0 
to avoid a naked singularity. The horizons are located where

II -  ar =  0, (2.2.10)

and since I I  is positive, a must be positive to prevent naked singularities.
I f  at least one spin parameter vanishes, then at r  =  0 we have I I  — a r  =  0 and 

d{n-/*rl — — Since at large r  we w ill have I I  grow at least quadratically, then 

there must be one r  > 0 that solves (2.2.10), and it  is a unique solution because 
8(m-ar) -g increasjng This is interesting because it  means you can have arb itra rily 

large angular momentum w ith a given amount of mass simply by having at least 
one spin parameter vanish.

I f  no spin parameters vanish then we need more conditions. F irst, note that 

I I  — a;r|r=o > 0, and both II  and are positive, increasing functions for r  >  0. 
To find how many solutions (2.2.10) can have, we must first consider how many 
extrema II  — ar  has. To find the extrema we consider 8 Ûdrar'> =  0, which is 
equivalent to

f )  =  2 r i ; n ( ’-2 +  «?) =  «• (2.2.11)
° r  i 3+i

^  is a monotonically increasing function w ith ^  =  0 at r  =  0, so this equation 
has a unique solution at r  =  r* > 0. So II — a r  has just 1 extremum, and this 
extremum must be a minimum because for large r, II w ill grow faster than ar.
The existence of the horizon depends on I I  — ar  at r  =  r*. We may summarize
this situation as

any a* =  0 one horizon 

I I  — ar\r > 0  no horizons

r  Pi 
’2 +  a2

+  /T
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 11

I I  — a r  |r =  0 one degenerate horizon

II  — a r |r < 0 two horizons.

(2.2.12)

In the four dimensional case we have a =  2M  and r* =  M  so II  — ar\r=Tt =  a2 — M 2

thus we get what we expect. Namely that a2 < M 2 gives two horizons, a2 — M 2
gives a degenerate horizon, and a2 > M 2 gives no horizons.

2.2.2 Singularities and Event Horizons in an Even Num ber 
of Spatial Dimensions

In an even number of spatial dimensions, the singularity and horizon conditions 
are somewhat more complicated. Singularities occur whenever a r2/H L  diverges 
[7], so if  at least two spin parameters vanish, then II  contains a factor r 4 to give a 
singularity as r  —>■ 0. I f  instead there is exactly one vanishing spin parameter then 
I I  contains a factor r 2, and expressing L  as

7*2 .,2

l  =  (2-2-13)i r 2 +  af

we can see that as long as the /x* corresponding to the vanishing a, is zero then 
there is a singularity as r  -» 0. So it  is a ring singularity sim ilar to the odd N  case. 
Finally, if  a ll a, are non-zero, then the spacetime is regular for a ll real values of r, 
w ith a coordinate singularity at r  =  0. We may remove this singularity w ith the 
coordinate transformation x — r 2, and then it is possible to extend the metric to 
negative values of x. Let us consider the value of the smallest spin parameter, call 
it  (Iq. I f  there are two or more spin parameters which share the value do, then II  
contains factors of (x +  dg) and so as x —> — ofi there w ill be a singularity. I f  instead 
the smallest spin parameter is unique dj =  do then II  has only one factor (x +  do) 
and this w ill be cancelled by the sim ilar factor in L  unless the corresponding /x* 
vanishes. Thus, we have a ring singularity in the subspace /x* =  0 as x —► —a .̂

We w ill consider event horizons located at positive values of x to prevent the 
appearance of a naked singularity. Later we w ill discuss possibilities for event 
horizons at negative x values. In terms of x, the equation for the location of the
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CHAPTER 2. HIGHER DIMENSIONAL BLACK HOLES 12

event horizon reads
II(x ) — ax — 0, (2.2.14)

note that the left side of (2.2.14) is nonnegative at x =  0, and is only zero if  at 
least one spin parameter vanishes. I f  a < T l j ^ i then the left side of (2.2.14) 
has a nonnegative derivative at x =  0 , and since both n(x) and are positive,
increasing functions for x >  0, and the left side of (2.2.14) is nonnegative at x =  0,
we w ill not have a solution to (2.2.14).

I f  we assume a >  n  j-ti ctf, then we have a negative derivative to the left side 
of (2.2.14) at x — 0. Setting the derivative of the left side of (2.2.14) equal to zero 
to find extrema, we get

§ !  =  «, (2.2.15)

which is equivalent to

E  IK*+  <>?)=“ • (2.2.16)
i j^ i

For positive x , a(nW~aaF). must be increasing, so we w ill get a unique minimum 

which w ill occur in the positive x domain if  a > J2i Ylj^i a'j> and this minimum 
w ill be given by (2.2.16).

Assume we have a minimum which occurs at x =  x* >  0. Since for positive x, 
II(x ) w ill grow at least quadratically, then if  the minimum of the function

n(z) -  a x U , , (2.2.17)

is a negative number, the dominance of II(x ) at large x guarantees a solution to 
(2.2.14), and the fact that II(x ) — a.x\x=o is positive if  no spin parameters vanish, 
we w ill have another solution. I f  (2.2.17) is a positive number, then there must be 
no solution to (2.2.14) at positive x, since the minimum value of the function is 
positive.

So to summarize this,

a < Y . i  l i& i  aj  no horizons

otherwise

II(x ) — a x |a > 0  no horizons
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II(x ) — a x |j. =  0 one degenerate horizon

n(x) — ax\x=Xt < 0 and at least one at ~  Q one horizon

H(x) — ax\x <  0 and no a* =  0 two horizons.

(2.2.18)

There can only be one, two, or zero horizons. However, in the case w ith an even 
number of spatial dimensions the vanishing of one spin parameter does not guar­

antee the existence of a horizon since it  is possible that a > Ylj^i aj  1S n° t 
satisfied. I f  two or more spin parameters vanish though, then there w ill be a hori­
zon, because a > Yli H j^ i f lj =  0 automatically, so II (x) — ax has a negative first 
derivative at the origin, and since n(x) — ax\x=G — 0 we w ill have one horizon at 
positive x.

In the case of all non-vanishing spin parameters, it  is possible to consider avoid­
ing a naked singularity by having an event horizon at a value of x between zero 
and —Oq, however if  the black hole has a positive mass this w ill not be the case, 
and the horizons we have found are the only ones that w ill hide the singularity. 
We may demonstrate this by simply noting that for values of x between zero and 
—Oq, both II(x ) and —ax  are positive for a black hole of positive mass. Thus there 
w ill be no solutions of (2.2.14) for values of x less than zero that w ill hide the 
singularity at — a^. It  is possible to have black holes of negative mass that have 
an event horizon that hides the singularity as well, however these black holes w ill 
contain causality violating regions outside of the event horizon (see [7] for further 
discussion).

Considering this analysis in the particular case of five dimensions, we have

a — a\ — a\

n(:r) — ax\x=Xt =  — - ( a  — a\ — a^)2 +  a\a\ , (2.2.19)

so we see that we must have {a — a\ — a2)2 >  4 a2 a2 to have an event horizon; i.e.

a  >  ( M  +  |a2|)2 . (2.2.20)
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We w ill have a naked singularity if  the inequality is not satisfied, one degenerate 
horizon if  both sides are equal, or one horizon if  or a2 vanishes, and we w ill have 
two horizons otherwise.

2.3 Gibbons-Lii-Page-Pope Black Holes

In this section, we w ill consider the metrics examined by Gibbons, L ii, Page, and 
Pope [23]. These metrics are a generalization of Myers-Perry metrics to include a 
cosmological constant term A. Similar to the Myers-Perry metric, the coordinates 
divide up spacetime into p planes of black hole rotation. Using Boyer-Lindquist 
coordinates, the metric in an even number of spatial dimensions is given as

d s 2 =  - W ( l -  Ar 2)dt2 +  — -----^ ------- A r 2 +  ^  (dt -  £  7^ 2# iV
v ’ 11(1 -  A r2) - a r 2 ILL \  1 +  A«1 J

+  | 5 i T A ^ [̂ 2+^ (^ ~ A M ^ 2] +  W(1 -  A r2) ( S l  +  A ^ ^ )  ’ (2‘3-1) 

and for an odd number of spatial dimensions we have

UL  ^ 2  , v -  a^ ids2 =  —W  (1—A r 2)dt2+ ——---- -t—z;--------dr2+ ^ ~  [d t — Y ]  ] + r 2dp2
v ' n(l -  A r2) -  ar  ILL \  1 + Aa? J

+ E  [ +Aaf + t  Ar2) (E  [ ++Aq2̂ ^  + r V/*) ,
(2.3.2)

In these metrics, we have defined

n  =  n ( ^  +  «?), L =  1 (2'3'3)i= l i= l ' ^  ai i=l 1 ^  i

I I  and L  having the same definitions as before. Also as before, the p are not 
independent but must obey the restriction p2 — l i n  an even number of 
spatial dimensions, and the restriction Y%= 1 p2 +  p2 — I  in odd N. These metrics
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solve the vacuum Einstein equations w ith cosmological constant

Rflu =  NAg^v , (2.3.4)

so A is not equal to the usual cosmological constant but is scaled by the dimensions 
(the usual cosmological constant is defined so that R^u =  Ag^v). Note that this 
metric is axisymmetric and stationary, giving rise to K illing vectors =  dt and 
tfdp =  8^  as before.

2.4 Other Higher Dimensional Black Holes

In a four dimensional spacetime, there are a number of well known uniqueness 
theorems that guarantee any vacuum, asymptotically flat, black hole solution w ill 
be uniquely characterized by its angular momentum and mass, and that the event 
horizon of such a black hole w ill have the topology of a sphere [29, 30, 31]. These 
theorems demonstrate that the Kerr solution is the only black hole solution we 
need if  we are interested in studying asymptotically flat vacuum solutions. These 
theorems were proved in four dimensional spacetime, and we have seen that the 
Myers-Perry metrics are uniquely characterized by their mass and angular mo­
mentum, though w ith additional angular momentum parameters. I t  is natural to 
ask if  these theorems w ill generalize to higher dimensions, that is to ask if  the 
Myers-Perry metrics are all we need to discuss properties of higher dimensional 
black holes.

It is the case that for static black holes, the Tangherlini-Schwarzschild solu­
tion is unique, in that it  is the only static vacuum black hole solution which is 
asymptotically fla t [32], Also, Cai and Galloway [33] have proved various theo­
rems restricting the topologies of such higher dimensional black holes, but it  is 
not so restrictive as to disallow all non-spherical topologies. Later, Emparan and 
Reall [34] demonstrated that there is no simple generalization to the uniqueness 
theorems by finding a five dimensional asymptotically flat, stationary solution to 
the vacuum Einstein equations that is not equivalent to a Myers-Perry solution. 
Their solution has a single angular momentum value J  and an event horizon w ith 
a topology of S2 x S'1, meaning this is toroidal shaped, a ‘black ring’. The angular
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momentum for the black ring is shown to obey a restriction of

meaning that the angular momentum of this five dimensional black hole has no 
upper bound, but it  has a lower bound. We have seen that in the Myers-Perry 
situation, the angular momentum for a five dimensional black hole w ith a single 
spin parameter is bounded from above by a > a2, so using (2.1.3) and (2.2.1), we 
get

_ _ 3tt 2
M  =  — a ,  J  =  -M a ,

J 2 32G(5> /n ,
M 3 < 27tt ’  ̂ ^

so we can even see that there are black hole and black ring solutions w ith the 
same mass and angular momentum, demonstrating that there is no obvious gen­
eralization to the black hole uniqueness theorems. In this thesis, we w ill focus on 
the Myers-Perry metrics, as their four and five dimensional versions are known 
to have K illing  tensors, although it is possible that other metrics have interesting 
properties sim ilar to the ones we w ill demonstrate for Myers-Perry metrics.
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Chapter 3

Topological D efects

3.1 Domain Walls

We w ill be interested in studying the configurations of strings in a Myers-Perry 
geometry, so now let us examine how topological defects occur and consider some 
of their properties. We w ill do this analysis in a spacetime w ith (3+1) dimensions, 
however it  is easy to see how these results would generalize to an arbitrary number 

of dimensions. Topological defects are discussed in detail in the book by Vilenkin 
and Shellard [35] (also see [36] for a review). For illustrative purposes, we w ill 
begin by examining two dimensional topological defects known as domain walls. 
Suppose we have a scalar field <p obeying a potential V  (</?) given as

for some given constants /3, 77. Note that this potential has a discrete —> — ip 
symmetry. V(ip) has two minima, at (p =  ± 77, so certainly cp(x) =  77 and ip(x) =  —77 

are ground state solutions to the classical equations of motion, distinguished by 
choice of boundary conditions. However, if  we choose <p(x) =  r) at x —> 0 0  and 
<p(x) — —rj at x —>■ —00, then we can find the solution to the equations of motion

v(v)  = j(<p2 - n 2)2 (3.1.1)

as

(3.1.2)
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CHAPTER 3. TOPOLOGICAL DEFECTS 18

So the field starts out in the minimum, p =  —rj, picks up out of the vacuum to 
p  =  0 at x =  0 and falls back into the other minimum at ip =  r). Physically, one 
might assume that such boundary conditions occur by having different regions of 
the universe that were not yet in causal contact when the universe cooled to a 
temperature at which the symmetry was broken.

The stress-energy tensor for the scalar field p  is given by

Tp, =  d^pdup  +  gp,C , (3.1.3)

where C is the Lagrangian density, C =  — ̂ d^pd^p — V(<p). So we may find the 
stress energy tensor is given by

T " -  = --------------------- . d i a g ( l , 0 , - l , - l ) .  (3.1.4)
2 cosh4 ( y  f ^ J

The interpretation is simple, a region of false vacuum is forced into existence by 
our boundary conditions, this region looks as a wall w ith thickness y j called a 
domain wall. The finite thickness is caused by a balance between the kinetic and 
potential terms, and the wall is stable due to continuity of the field <p.

These walls may occur whenever a discrete symmetry is broken, however, from 
a cosmological standpoint, domain walls probably don’t  exist. Since the energy 
density of walls is proportional to their area times the wall density, we expect the 
energy density of walls w ill drop as 77_1, w ith 7Z being the scale factor. Since 
the energy density of radiation drops like 7Z~4 and the energy density of matter 
drops as 7Z~~3, we would expect domain walls to quickly dominate over matter 
and radiation. Also domain walls would lead to large fluctuations in the cosmic 
microwave background radiation, in contradiction w ith observations unless rj is 
very small [37] [38].

3.2 Cosmic Strings

Just as domain walls arise when a discrete symmetry is broken, cosmic strings are 
a one dimensional topological defect that arise when a 1/ ( 1) symmetry is broken. 
Suppose we have a field A^ and a complex scalar field p w ith a Lagrangian density
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of the form

-  | ( ? V  -  I ’ )’ }  . (3.2.1)

w ith
FliV =  dpA,, -  d^A^ , Dpip =  d^tp -  ieAt„ip . (3.2.2)

Where, as before, f3 and rj are given constants, and e is a given coupling constant. 
This Lagrangian has the U (l)  gauge symmetry

p -¥ pexp(iZ ) , Ay, ->• A^ +  -^d^Z, (3.2.3)

for any function of spacetime Z. In the vacuum state \p\ =  rj the symmetry is 
broken, and there is a degenerate set of vacuums characterized by p — y exp(icj), 
for a constant uj.

A stationary solution was first found by Nielson and Olsen [39], it has an 
asymptotic form of

p  ~  r] e x p (iA /» , A^ ~  In ~  — 8* , (3.2.4)
^6 y Tj J 6

w ith (f) being the angular coordinate in the x-y plane, and Af being an arbitrary 
integer, the winding number.

Consider a circle at a large distance from the origin in a solution w ith a winding 
number of 1. This circle maps one to one onto the vacuum p =  r] exp(iw), but if  we 
contract this circle continuously to a point, continuity of p w ill demand that the 
solution pick up out of the vacuum somewhere. There w ill be a region of nonzero 
energy density, however it  vanishes far away because (3.2.4) implies that D^p —> 0 
and -> 0. This region of false vacuum w ill be a string lying along the 2-axis, 
this is our cosmic string.

3.2.1 Cosmic String Dynamics

To study the dynamics of cosmic strings, it  would be possible to analyze dynamics 
of the field theory; however it w ill make matters simpler if  we consider approxi­
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mating the cosmic string as an infin itely th in object and find an effective action 
for it. The effective action for a cosmic string is derived in [35]. We w ill highlight 
the steps of the derivation here. We begin w ith the action

S = J  Cd*x =  J  -  f2)2 J . (3.2.5)

Let us assume we have a string worldsheet xp( (A), parametrized by ( A (A =  (0,1)) 
as the worldsheet coordinates. The worldsheet has tangent vectors xMA and an 

induced worldsheet metric given as

G a b  =  91xuXixiAxub , (3.2.6)

and we assume that the metric G A b  has one spacelike and one timelike dimension. 
Next we introduce vectors normal to the string (R =  2,3) w ith nB ■ x )A =  0 and 
nR- ns — 5 rs • We also define the vectors to be complete, such that

g„v =  g a b x^aXub +  sRSn%nus . (3.2.7)

The fact that these vectors are complete allows us to express any point near that 
string worldsheet yp‘ using the coordinates ( A and gR as

/(N) = x“ ((A) + eX(C^), (3.2.8)

w ith =  ( (A, qr ). These coordinates are well defined only if  yp is closer to the 
string worldsheet than its curvature radius R. I f  we perform a coordinate change 
from yp to Ka, then v '11# transforms to

V ^ d e t  =  V - d e t M , (3.2.9)

where we have defined the new metric Map as

M <-« =  S r s )  +  O  ( | )  . (3.2.10)
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Defining M  =  detM  and G — detG, then to lowest order we have \J—M  =  \J—G. 
Also, to lowest order in q/ R  the fields ip and A are independent of ( A so that we 
may integrate the action as

s = I { - 5d <‘*’d 'V * “  \ F̂ F'“' ~ s e I V=G<f<;. (3.2.11)

The first integral over g may be performed to get the string energy density —/i*. 

Unfortunately, except in special cases, it is not possible to find a closed form value 
for //*, however it  w ill always be of order rj2. The inaccuracies of order (g/R) are 
cut off by the exponential fa ll in the field strength and are reduced to order (S/R) 
at large distances where 8 is the string width. The final form for the effective string 
action is

S =  -p *  J  V ^G d 2( .  (3.2.12)

The action functional (3.2.12) is called the Nambu-Goto action for a string. This 
action is generally covariant, and w ill apply in the context of general re la tiv ity in 
arbitrary dimensions. The stress-energy tensor is defined as

8S
y/= j jT ' iV =  -  2- ---- . (3.2.13)

OQiiv

Varying the string action (3.2.12) w ith respect to we get the stress-energy 
tensor for the string

y f ^ f r ^ i x )  =  -n *  I  d2(SiN+l){x -  x {Q )y/^G G ABxtlA x \ B , (3.2.14)

where x^{C,A) is the string configuration. Suppose we have a long string in fiat 
(■t ,x ,y ,z ) spacetime lying along the 2-axis w ith an embedding of (° =  t, C1 =  2 . 
The stress-energy of this string is given as

T»v =  n*8(x)8(y) d iag(l, 0,0, - 1 ) .  (3.2.15)

We can see that the string has a negative pressure equal in magnitude to its energy 
density.

Next, we w ill find the dynamical equations of string evolution. Variation of the
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action S w ith  respect to the string coordinates xT((A) gives one the Nambu-Goto 
equations of motion

□&*' +  Ga b Tvx„ x*ax°b =  0 , (3.2.16)

where we have defined

□ /  =  - 7L = d A(V ^G G ABdBx1') (3.2.17)
y/—G

as the D ’Alembertian operator on the induced string worldsheet metric G a b , and 
r " A(T are the Christoffel symbols for the bulk metric g^u

3.2.2 Cosmic Strings as a Gravitational Source

In  linearized gravity, if  we have a static distribution of matter w ith a stress-energy 
tensor

T /iI' =  diag(p, Px, Py, Pz) , (3.2.18)

the Newtonian gravitational potential V created by this matter w ill obey the Pois- 
son equation

V 2V =  4trG<4>(p +  Px +  Py +  Pz) . (3.2.19)

Consider a cosmic string lying in a straight line along the 2-axis. Using (3.2.15) to 
be a source of gravity, we see that the Newtonian potential obeys V 2V =  0, so we 
would expect no Newtonian gravitational field.

The exact solution for the metric near such a cosmic string w ith fin ite thickness
has been found and analyzed by Gott [40], the solution inside the string is given
as

ds2 =  —dt2 +  r^(d92 +  sin2 9d<j>2) -fi dz2 . (3.2.20)

The coordinates t and 2 take on any real values, 0 is an angle bounded from 0 to 
2n and 9 is an angle ranging from 0 to a maximum 9m  <  tt. The constant r0 is 
defined by 27rsin0MCo being the string circumference. The spacetime outside of 
the string looks as

ds2 =  —dt2 H ---- 1- r 2d(j)2 +  dz2 , (3.2.21)
cos  ̂9 m
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Figure 3.1: Embedding of metric (3.2.23) in flat 3-space

w ith t, z, and 0  being the same coordinates as the interior ones, and r  being a 
radial coordinate bounded below by r 0 sin 0M (at which point you enter the string 
in terior).

The non-zero components of the stress energy tensor needed to generate this 
spacetime can be found by use of the field equations to be

inside, and zero everywhere outside. We can see that we have p =  —Pz, just as we 

expect. One can perform a coordinate transformation r ' — cô 9m , <f>' =  (f) cos 9m  to 
bring this metric into a locally flat form, as one might expect from the Newtonian 
potential. However, the locally flat angle coordinate $  runs from 0 to 2n cos 9m , 
corresponding to an angle deficit of 27r(l — cos 6 m )-

To examine how an embedding of this spacetime would look, let us consider 
slices of constant t and z, so the metric takes the form

The inside metric is a part of a sphere w ith radius r0, extending from 9 — 0 to 
9 =  9m , while the outside metric is a cone tilted  at an angle 9m - These two metrics 
match up at the border of the string exterior.

ds2 — r%(d92 +  sin2 9d(j)2) (inside),

(outside). (3.2.23)
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The angle 9 m  is related to the mass per unit length of the string /i* as

cos 9 m  =  1 — 4 G(V .  (3.2.24)

I f  9m  is greater that | ,  then the cone of (3.2.23) turns back on itself and r  is 
bounded from above by ro sin 9m  instead of below. I f  we assume that the external 
universe to the string is to be large, then we must have G ^ fT  < which is the 
same as //* < 3.37xlO_26Kg/m . However, we w ill see that the cosmic microwave 
background gives a much stricter bound on the value of fx* for a string.

3.2.3 Cosmic Strings as Cosmological Objects

Unlike domain walls, strings are not “bad” from a cosmological point of view. The 
energy density of long strings scales as IZ~4. the same as radiation. We have noted 
that the spacetime around a cosmic string is locally flat, but w ith an angle deficit 
of 8kG ^ ij,*. This angle deficit allows cosmic strings to act as gravitational lenses, 
and cosmic strings moving w ith velocity v w ill result in a small Doppler shift of 
the cosmic microwave background radiation of

Y  =  8ttG (4)/x*u. (3.2.25)

So, based on observation, we may say that any strings that exist today must have 
< 1(T6 ( / /  <  1.42xl0-32 Kg/m ) [41].

Although a cosmic string w ill have no gravitational effect on matter that is 
stationary relative to it, as a cosmic string moves past a distribution of matter it 
results in a ‘string wake’, disrupting the matter around it. There has been much 
analysis of such models of galaxy formation, for example see [42]-[44].

Analysis of the cosmic microwave background anisotropy has excluded some 
proposed scenarios in which cosmic strings are the main source of anisotropy, 
in favor of the models where inflation is the main source. However, there have 
been models proposed where a mixture of cosmic strings and inflation provide the 
anisotropy (see [45]-[47]).

We w ill also note that in addition to domain walls and cosmic strings, there 
are also zero dimensional topological defects known as ‘monopoles’, due to the
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fact that they act as magnetic monopoles in the gauge field. There are also three 
dimensional topological defects referred to as textures. Textures are not localized 
in space but get their energy density from field gradients rather than a core of 
false vacuum. In higher dimensional spacetimes there exist general M-dimensional 
topological defects. Collectively, topological defects are known as branes.

There has been much interest on motion of cosmic strings and other topolog­
ical defects near non-rotating gravitating bodies [48]-[53]. As well there has been 
analysis done on scattering and capture of cosmic strings moving near a rotating 
black hole [54, 55]. We w ill study the interactions of stationary cosmic strings 
w ith higher dimensional rotating black holes. This is a rare situation in which 
there are extended strongly gravitating bodies interacting where the geometrical 
symmetries of the system allow for a quite complete analysis. In our analysis of sta­
tionary strings interacting w ith higher dimensional rotating black holes we discover 
a number of interesting properties. We find separability of the string equations in 
the five dimensional case, and the existence of principal K illing  string solutions.
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Chapter 4 

Strings in a Five Dim ensional 
Spacetim e

4.1 Stationary Strings in Stationary Spacetimes

In this chapter, we w ill examine stationary strings in a Myers-Perry metric, so first 
we w ill consider general properties of stationary metrics. Stationary spacetimes 
have a K illing  vector field =  dt that is timelike somewhere, usually at infinity. 
A general metric of a stationary spacetime M can be w ritten in the form

ds2 =  dx^dx” — —F(dt +  Aadxa)2 + Hai,dxadxb, (4-1.1)

w ith F  =  — £2, Aa, and Hab being functions of the spatial coordinates xa (a, b =  
1 ... A ). We assume that the spacetime is a foliation of K illing  trajectories and de­
note M  =  M/ G ias the factor space, where G\ is the symmetry group representing 
time translation along £. We can define a tensor

=  9 , ,  +  , (4.1.2)

and this tensor w ill be a projector onto the factor space M  w ith  the metric H ab. 
Any tensor T  which is stationary (£^T =  0, where C is the Lie derivative) can be
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projected onto this factor space by use of the projector operator H as follows,

2 ? ::/ =  . (4.1.3)

It  has also been shown by Geroch [56] that we may consistently define the covariant 
derivative in the metric H as

t'*::.* = (4.1.4)

Finally, i f  we have a stationary K illing  tensor of rank i in the spacetime given as 
obeying K illin g ’s equation (1.4), then its projection K ai...ai w ill be a K illing  

tensor in the metric H, meaning

= 0. (4-1.5)

Let us define H ab to be the m atrix inverse of Hab, so that

HabH bc =  6 ca , (4.1.6)

then we have the contravariant components of the metric g given by

gtt =  _ F - i  +  F - 2H abZaZb, gta =  F~l H ab£b, gab =  H ab. (4.1.7)

We call a two dimensional surface E a stationary surface if  £ is tangent to it. A 
stationary surface is formed by a one dimensional fam ily of the K illing  trajectories 
for the field £. Suppose we have a string w ith a configuration given by xa(a) in the 
factor space M. and that this string is stationary. Its worldsheet E w ill be given 
by propagation of xa(a) forward in time along £. Let us choose coordinates ( A 
(A =  0,1) on E w ith £° =  t being the affine parameter along K illing  trajectories 

and let î 1 =  a. The induced metric Gab  on E is

dr/ 2 =  GABd(A d(B =  - F  {dt +  A d a ) 2 +  U d a 2 , (4.1.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. STRINGS IN A FIVE DIMENSIONAL SPACETIME 28

where A  and H  are defined as

i dxa TT dxa dxb /, *A  =  Aa— , % =  Hab —— —-. 4.1.9
da da da

We w ill consider the string w ith mass density n* to be a test object in the external 
black hole metric, the black hole having a mass M . Certainly such an assumption 
w ill be good for timescales much less than r  =  M j\ i * . The equation of motion for 
a test string worldsheet can be found as an extremum of the Nambu-Goto action
(3.2.12). For a stationary string (4.1.8) tells us that the action reduces to

S — —I A t , (4.1.10)

w ith

I  =  fi * h ab =  F H ab. (4.1.11)

Extremizing the action S is equivalent to extremizing the value of I ,  telling us 
that the line xa(a) representing the stationary string is a geodesic in the metric 
hab =  F H ab. This means that an equilibrium string configuration has extremized 
its length in the metric h, which is different from the spatial projection metric by 
a redshift factor F.

4.2 Properties of Five Dimensional Myers-Perry 
Geometry

We w ill be considering stationary string configurations in a five dimensional Myers- 
Perry spacetime. The metric as given by (2.2.2) is

d s 2 = —d t2 + (r2 + a \ ) { d ^ i \  +  d<j>\) +  (r2 + a \ ) { d ^ i \ + /J ^ d ^ l)

TT T, n r 2
+ =  ^ d r 2 +  r = y { d t  +  a i / / 2# i  +  a 2^ 2 # 2 ) 2 , ( 4 -2 .1)

II — arz n  L

W it h  2 2 2 2

n = (r2+a2)(r2 + i,2). 1 = 1 - - ^ - ^ .  (4.2.2)r  + af r  + fl2
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To sim plify the future equations, we w ill replace the coordinate r  by the coordinate 
x =  r 2. We w ill also transform from the dependent values to the independent 9 
coordinates. The pPs must obey the condition

Mi +  lA — 1 > 0 <  ̂  <  1, (4.2.3)

so this w ill be satisfied if  we let 9 be an angle from 0 to 7r /2 , w ith the definition

Hi =  sin#, H2 =  cos9. (4.2.4)

Further, for simplicity, we w ill make the defintions

a =  a i , b =  a2 , <f> =  0 i , tp =  <j)2,

p2 =  x +  a2 cos2 9 +  b2 sin2 9 , A  =  (a: +  a2)(x +  b2) — x a . (4.2.5)

So the metric takes the form

o2
4A '

ds2 — —dt2 +  (x +  a2) sin2 9d<p2 +  (x +  b2) cos2 0d02 +  -j-rdx2 +  p2d92

+  ̂ 2 [dt +  a sin2 9d(p +  b cos2 9d'ip (4.2.6)

The infin ite red-shift surface of the black hole is defined by the equation £2 =  0, 
which is given as x =  a — a2 cos2 9 — b2 sin2 9, equivalent to p2 =  a. The event 
horizon of the black hole is located at x =  x+ where

1
X± ~  2

a — a2 — 62 ±  yj{a — a2 — b2)2 — 4a?b2 (4.2.7)

so we may see that in order for an event horizon to exist, the parameters of the 
black hole w ill have to obey the restriction a >  (|o| +  |6|)2, consistent w ith what 
we demonstrated previously (2.2.20). The surface gravity k (2.2.7) is given in the 
five dimensional case as

k =  ^ 4  ■ (4.2.8)ay/x
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As well as the principal K illing  vector £ =  dt , the metric has additional K illing  
vectors by axial symmetry of the planes of rotation. These K illing  vectors can be 
expressed as £  ̂=  8 $ and ^  — 8 ^. It has also been shown that the five dimensional 
Myers-Perry metric has a second rank K illing  tensor K [17]

Finally, i f  we consider the degenerate case a =  b the metric has increased symmetry, 
we may understand this symmetry by considering ‘cartesianised’ coordinates on 
the planes of black hole rotation, defined as

direct calculations show that these vectors J  are not K illing  vectors, so in this 
sense the black hole spacetime does not have tota l rotational symmetry, however 
the vectors £(i) — J\ +  J4 and £(2) =  J2 — J3 are K illing vectors. These vectors 
represent a symmetry of rotating the planes of rotation into each other. In Boyer- 
Lindquist coordinates, these vectors take the form

£(i)̂ a» =  — cos(0 — +  cot0sin(0 — 0)<9  ̂+  tan#sin(0 — ip)d$ > (4.2.12)

tfadp =  sin(0 — ip)d$ +  cot 0 cos(0 — ip) 8$ +  tan0cos(0 — ip)d$, (4.2.13)

equivalent to the K illing  vectors previously found by [18].
One can check that in this degenerate case, the K illing tensor obeys the rela-

K » v =  - ( a2 cos2 9 +  b2 sin2 6)(gfv +  <S^) +
sin2 9 cos2 9

XV Xv
+  W  . (4.2.9)

x — r  sin 9 cos <p y =  r  sin 9 sin 0

z =  r  cos 9 cos ip w =  r  cos 9 sin ip . (4.2.10)

I f  we then define ‘rotation vectors’ as

=  x dz -  z dx ~  xd w - w d x

Jv9fj. =  V dz -  2 dy J£dll =  ydw - w d y , (4.2.11)

and
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tionship

* • '" ' =  #  a + c  a  -  2 ?? + % « ( . ) + %  -  e* r  -  < r , (4 .2 .14)

demonstrating that the K illing  tensor is reducible in the a =  b case. This property 
is related to the enlarged symmetry in the degenerate case1.

4.3 Stationary Strings Near a Five Dimensional 
Black Hole

Expressing the metric (4.2.6) in the form (4.1.1), we can find

A^ —

F  =  - £

a a sin2 9 
a — p2

2 p - a

A,1, =

Hxx — 1 Hgg p ,

a b cos2 9
9  ?a — p1

a ab sin2 9 cos2 9

(4.3.1)

(4.3.2)

p2 — a

H.</><!> x +  a +
aa sin 9

p2 — a
sin20 , H^  =  h r +  b2 +

ab cos 9
a

cos2 9 ,

(4.3.3)
w ith all other Hab and Aa zero. Letting hab be defined as the m atrix inverse of hab 
(defined in 
of hab are
(defined in (4.1.11), so that hab =  j H ab, we find that the non-zero components

h ' =
1 1 (a2 — b2)(x +  b2) +  b2a

p* — a 

1
p2 — a

sin2 9 A

1 (a2 — b2)(x +  a2) — a2 a
cos2 9

(4.3.4)

aba
hxx =  4 hee =

(p2 — a) A  ’ p* — a p* — a

We have seen that stationary string configurations w ill be geodesic in the metric h, 
so we w ill use Hamilton-Jacobi methods to find these geodesics (see for example,

1The author would like to thank D. N. Page for this point.
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[25]). The Hamilton-Jacobi equation is

i  +  5 fc“ s ^  =  ° - (4'3'5)

By analogy w ith particles in geodesic motion, we may consider the ‘momentum’ 
of the stationary string to be given as

p- = i ? -  <4-3-6>

Note that we raise and lower the index of P  w ith the metric h, we also have 

P a — dxa/dcr. The existence of the K illing  vectors 1^8a =  8 $, Q 8 a =  8 ^ guarantees 
that P^ — I  and P^ =  8 ^ 1  are constants, we w ill denote them by $  and d', 
respectively. We w ill show that in the metric h (4.3.4) the equation (4.3.5) allows 
separation of variables of the form

I  =  -  im V  +  $0  +  ^  +  I e +  I x , (4.3.7)
z

w ith Ig and I x being functions of 9 and x respectively. The constant m 2 =  habPaPb 
depends on the choice of the length parameter a. A fter derivation of the equations 
for a stationary string configuration we put m =  1 and use a proper length in the 
metric h as a. Substituting this expression of the action into (4.3.5) and separating 
variables, one obtains

~ rn2 (a2 cos2 0 +  b2 sin2 9 )+  ^ \ - $ 2 +  — — '& 2 =  K ,  (4.3.8)
\d 9  J sin 9 cos2 9

and

—K  =  4A m2(a ~~ x) ~~ A _1a (a ^ +  6<f>)2

+ A _1(a2 — 62) ^ 2(x +  a2) — $ 2(x +  ft2) . (4.3.9)

Here AT is a separation constant. These equations are similar to the the separated 
equations for particle motion in a five dimensional Myers-Perry metric [17], w ith 
three differences. First, the energy E  has been set to zero, second the mass squared
m 2 has been changed to — m? and third, there is an extra term of m2a in the x-
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equation. The extra term of m2a is due to the redshift factor \ f F  appearing in 
equation (4.1.11).

The fact that separation of variables works in the metric h is connected w ith 
the existence of a rank two K illing  tensor K ab in the metric. Assuming that the 
separation constant K  is the conserved quantity connected w ith this K illing  tensor, 
we may examine (4.3.8) to see that K ab must take the form

K ab =  626$ -  hab(a2 cos2 9 +  b2 sin2 9) +  , (4.3.10)
sin 9 cos19

then the existence of a constant K  =  K ab PaPb w ill be guaranteed. Direct calcu­
lations show that K ab is a K illing  tensor in the metric hab.

Rearranging the separated equations (4.3.8-4.3.9), we get

die /TT d lx y/x (A Q 11 \
W = « V §  =  2A ’ (4'3'U )

w ith 0  and x  given as

<i>2 q>2
0  =  K  +  m 2 (a2 cos2 9 +  b2 sin2 9 ) -------5— ------- —  , (4.3.12)

sm 9 cos2 9

X — A  m2(x — a) — K  +  a(b$ +  a ^ )2 +  (a2 — b2) 4>2(a; +  b2) — ^ 2(x +  a2)j .
(4.3.13)

The two sign functions =  ±1 and qx =  ±1 in the equations can be chosen 
independently. In each equation the change of sign occurs when the expression on 
the right hand side vanishes.

We can now write the Hamilton-Jacobi action as

1 =  - I m2cr +  §<j) +  ^  +  ft /  V®d9 +  qx J  & dx . (4.3.14)

By setting the derivatives of I  w ith respect to K , m2, <h, T equal to zero, we get 
integral equations for stationary string configurations
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<T

r dO f  dx .  ̂ \

/ * V l  = / ** v r  ( }

[ so~]=(a2cos26 +  b2 sin2 9)d9 +  f  sxX ^ d x , (4.3.16)
J V 0  J 2VX

r 4* r <3?[(a2 — 62)(:r + 62) + a&2] + aaM> /, o -o
■ — d * ’  ( 4 - 3 ' 1 7 )

I  ^  I  ^ [(62 — a2) hr +  a2) +  aa2] +  aab$> .
* - h ^ §  —  z a J x  — * ■  ( 4 - 3 - 1 8 )

By differentiating these equations w ith respect to cr, it is possible to write these 
equations in a first order differential form

(p2 -  a) x =  SxZy/X, (4.3.19)

( f ? - a ) d  =  <*Ve, (4.3.20)

(„2 _ a ) i=  + *[(* -  «2)(* + * )  -  a*} -  , (4.3.2!)

(p> _ a) j, = J» + + i (4.3.22)
cos^ a A

w ith a dot denoting differentiation w ith respect to a. Now that we have the
configuration equations, m is no longer needed. We now set m =  1, so that a is
the proper length in the metric h.

The normalization condition habPaPb =  habXaxb — 1 and the integrals of
motion <f>, 'H, and K  suffice to determine the 4 in itia l data for xa. So K ,  <h, \k, and
the in itia l data a?a(0) uniquely specify a string configuration. The axial symmetry
of the problem means that two of these quantities 0(0) and 0(0) are cyclic. Thus
a stationary string is completely determined by 4>, T. and K  and :r(0) and 0(0).
Unfortunately, it  is not likely that there w ill exist closed form solutions for the
string equations (4.3.19-4.3.22) in the most general case, however we have found

some specific solutions in appendix A.
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4.4 Properties of String Equations

4.4.1 Radial Equation and Asym ptotic Behavior

We discuss first properties of the radial equation (4.3.19). Consider x  given by
(4.3.13) as a function of x for given values of other parameters. The allowed 
configurations must only occur where x  > 0, y  =  0 gives radial turning points. In 
the lim it of large x, x  has a leading term x3, so it  is possible for configurations to 
extend to infin ity. Examining (4.3.19) in the region x —>■ oo, we get

So we may say that in the region of large x, we have \ fx  — r  ~  a. Considering 6 
to be expanded in powers of 1/r  as 0 =  90 +  8 \/ r  +  0 ( l / r 2), we have for (4.3.20)

and these equations may be integrated simply. So we may say that in the lim it of 
x —» oo, string configurations which extend to in fin ity look like

x ~  2\ fx  . (4.4.1)

(4.4.2)

Thus, we have 8 ~  60 — _ The iast equations (4.3.21)-(4.3.22) become

(4.4.3)

(4.4.4)

r

$  # (4.4.5)
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4.4.2 Properties of the 6  Equation

Similar to the x equation, configurations are only allowable where 0  >  0 and
turning points in the 9 equation occur when 0  =  0. Since 0  has negative definite
terms of the form (<f>2/  sin2 9) and (’S'2/  cos2 9) we see that the string can extend 
into the subspace 9 =  0 only if  $  =  0, and can reach the subspace 9 =  |  only if  

=  0.

Consider a special type of configuration when the string is aligned so that 9 
remains constant 9 =  9q. This configuration can occur when

e w  =  ^ f t ) = « .  (4.4.6)

This is equivalent to

$ 2 \J r2

K  +  a2 cos2 0O +  b2 sin2 90 — r y -  =  (4-4.7)
sm 9q c o s2 9q

<h2 4>2 „
-  (a2 -  b2) =  0. (4.4.8)

sin4 90 cos4 90

The configuration w ill be entirely in the 9 =  |  plane only if  T  =  0 and K  =  4>2 — b2. 
Similarly, it  is entirely in the 9 =  0 plane if  =  0 and K  =  4/2 — a2.

4.4.3 No Stable Bounded Configurations

Let us consider strings that lie in any bounded configuration outside of the event 
horizon at x =  x+, possibly a circular configuration or one that appears as an 
ellipse. Radial turning points are met at x  =  0, and so any such configuration 
must occur in a region where x  is positive and bounded at either end by points of 
X =  0. Let us represent these two points as x =  Xi and x =  x-2, w ith X\ < x2. For 
the configuration to be bounded, we must have that x  be positive in the region 
between these turning points. Note from (4.3.13) that x is a cubic in x which grows 
to positive in fin ity  in the lim it x —» oo. I f  we use the value of x+ from (4.2.7) in
(4.3.13) for x, we get a value of

2 ( a ®  b f̂ V  An.
* ( i+ )= x + Q  • ( 4 - 4 - 9 )
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demonstrating a positive definite value. Thus for a bounded configuration to exist, 
X must be positive at x+, zero at xi, positive for x in the range X\ < x < x%, 
zero at x^, and positive at large x. Therefore x ix ) must have at least four zeros. 
However, x  is cmly a th ird  order polynomial in x , and so it has at most three 
zeros. Thus, there are no stable bounded configurations. Note that in principle a 
circular solution to the configuration equations could exist at a value of x obeying 
the relations

solves this, the configuration would not be stable.

4.4.4 A String in the Brane

In a brane world model we have a (3+l)-dimensional universe that exists on a 
brane in  a bulk spacetime w ith large extra dimensions. The usual matter of the 
theory (fermions, bosons, and gauge fields) is confined to exist on the brane, while 
gravity is allowed to propagate into the bulk. Cosmic strings which are composed 
of the matter fields must be confined to the brane as well. Let us discuss the 
properties of such strings.

In the presence of a (3+l)-brane a stationary black hole can have only one 
parameter of the rotation, due to a friction effect [22]. We let b — 0 and let the 
brane equation be described as ip =const. Since the string must be confined to 
the brane, we must have ip =  0, so equation (4.3.22) tells us this means =  0. 
Using the radial coordinate r  =  \ fx  again, the remaining string equations (4.3.19)-
(4.3.21) become

(r2 +  a2 cos2 9 — a)r  =  qx\J( r2 — K  — a )(r2 +  a2 — a) +  a2<3>2 , (4.4.11)

To sim plify these equations for analysis, we w ill assume that we have a string lying

however, since x  would be positive for values of x on either side of the x value that

(4.4.12)

(4.4.13)
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Figure 4.1: Plot of (4.4.16) using normalized units a — 1 w ith a — 0.75 and $  =  1, 
displayed in ‘cartesianised’ coordinates x =  r  cos </>, y — r  sin <f>. Also plotted are

in an equatorial configuration 0 — 7r/2. We have seen in the previous subsections 
that such a configuration demands K  — <f>2, so we are left w ith

We see that we have dr/dcf) =  0 at r 2 =  a — a2 +  <f>2, and at r 2 =  a — a2. The first 
one of these is a turning point where the string has minimal distance to the black 
hole, while the second one occurs at the event horizon on the black hole, this is 
not a radial turning point but an occurrence of infinite winding of the string at the 
event horizon, related w ith the failure of Boyer-Lindquist coordinates at the event 
horizon. This equation also has a singular point at r 2 =  a, where the string would 
cross the infin ite red-shift surface. I f  we have a string configuration w ith 4>2 > a2, 
then the string encounters its turning point at r 2 =  a +  <h2 — a2 outside of r 2 =  a

the event horizon at r  =  1 — a2 and the infinite red-shift surface at r  =  1.

(4.4.14)

r 2 — a +  a2
Meaning that the r-(j) relation for this configuration must satisfy

(4.4.15)

(4.4.16)
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and the infin ite red-shift surface is never encountered. In the case $ 2 < a2, then 
for the region between r 2 =  a and r 2 =  a — a2 +  4>2, the right side of equation
(4.4.16) becomes complex, and we w ill see later that such solutions give unphysical 
results. Finally, in the special case <E>2 =  a2, (4.4.16) has no singularities anywhere 
outside of the event horizon.

To further examine properties of these string configurations, let us consider 
the geometry of the string worldsheet of these cosmic string solutions. Using the 
conditions 6 =  0, 0 =  7t/2, ip =const, and (4.4.16), we can find the induced metric 
on the string worldsheet to be

ds =
r2i 2 — a $ 2a2 

l2(l -  $ 2)
dr -  dt2 +

a
dt T

a<3> a
$2 dr (4.4.17)

where we have defined t =  r 2 — a +  a2 for brevity. The determinant of this metric 

is found to be

9 =  ~  (r2 +  a2 -  a -  4>2) ’ (4.4.18)

and the curvature scalar for this string worldsheet metric is

R =
2a

r 4(r2 — a):
J3(r2 — a)2 +  (4r2 — 3a)(a2 — <h2) (4.4.19)

We can see that this metric can have curvature singularities only at r 2 =  a and 
r  =  0.

Examining our three cases from before, we saw that for the case 4>2 > a2, the 
string has its turning point outside of r 2 =  a, so this string is regular everywhere. 
The case of 4>2 <  a2 has its turning point located at a value of r 2 less than a, so 
this string worldsheet has a singularity at r 2 =  a. Also we note that the metric 
determinant given by (4.4.18) changes sign at this singularity, indicating that the 
metric has changed from having one spacelike and one timelike dimension to being 
to ta lly spacelike. We can say that such a to ta lly spacelike string is an unphysical 
solution. The final special case 4>2 =  a2 has a metric determinant of g =  — 1 and a 
curvature given simply as R =  6 a /r4. This metric has a singularity only at r  =  0, 
the black hole singularity.

The uniqueness of the a2 — 4>2 solution, being the only solution to cross the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. STRINGS IN  A FIVE DIMENSIONAL SPACETIME 40

infin ite red-shift surface w ithout singularity, is a general feature. I t  is demonstrated 
in appendix B that the only minimal surface to cross the infin ite red-shift surface

4.5 Principal Killing Surfaces

4.5.1 Principal Null Congruences

In the Kerr metric, it has been shown that the only stationary string that can cross 
the infin ite red-shift surface into the ergosphere and remain regular is a string which 
has a worldsheet generated by the principal null vector and the timelike K illing  
vector [57]. Such a surface is called a principal K illing surface. We w ill begin 
this section w ith a discussion of the principal null vectors in a five dimensional 
Myers-Perry spacetime.

The principal null vectors are defined as solutions of the equation

w ith CpySe is the Weyl tensor. In the five dimensional Myers-Perry metric, l± takes 
the form [7, 17]

These vectors obey the equation l±l±.^ =  0 meaning that the integral lines of 
the principal null vectors are geodesic in our metric. By analogy w ith sim ilar 
congruences in the four dimensional Kerr geometry, we call the congruences gen­
erated by l± principal null congruences. It is interesting to note that in the four 
dimensional case the principal null congruence was shear-free, guaranteed by the 
Goldberg-Sachs theorem (demonstrated in [58]), however, it  has been found that 
the congruence generated by these vectors has a non-vanishing shear in five dimen­
sions [17].

It is possible to define a convenient basis by accompanying the two null vectors

and remain regular there is a special class of solutions called principal K illing  
strings.

l±\„C' — 0'±[cW/3] 7<Sê ±̂± (4.5.1)

— ± 2  V i  a, .  (4.5.2)
x  +  tr
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l+ and L  by the vectors to, to and k defined as

1 f \  i  sin 9 cos 9
vnT 8^ =  — ;= \ d0 +

pV2 \  V a2 cos2 9 +  b2 sin2 0
(62 -  a2)dt +  - ^ - 3 ,

a
sin 9 cos2 6

dj,
}■

(4 .5.3)

(4.5.4)W dp =  , I  , 2 ■."2 A (abdt -  bd<l> ~  ad^ )  ,
yjxVa, cos2 9 +  b1 sin 9

and to denotes complex conjugation of to. The primary motivation for choosing 
vectors like this is that takes the form

A F x 2W a2 cos2 9 +  b2 sin2 ^(1 — F) _ , .
— ~~ p2y/x \ p2 TÔ TOjy] , (4.5.5)

w ith F  =  —̂ 2 the red-shift factor as before. Further, the vectors obey the condi­
tions

(to • to) =  (to • to) =  0, (to • to) =  1, (Z± • to) =  0,

(k ■ k) =  1, (k ■ m) — (k ■ fh) — (k ■ l±) =  0 ,

(l+ - L )  =  -2 xp 2/ A ,  (Z±-0 =  - 1- (4-5.6)

We also have
^ ^  =  ± v ^ F aZ±M, (4.5.7)

one can confirm this either by direct calculation, or by comparison w ith equation 
(4.5.5). Due to the property of being an eigenvector of the first derivative of
the principal K illing  vector, we call l± Killing null vectors of the five dimensional
Myers-Perry metric. We can see that in the five dimensional case, the K illing  null 
vectors and the principal null vectors are equivalent.

4.5.2 Principal Killing Surfaces

Next we w ill examine stationary surfaces generated by the K illing  null vector and 
the principal K illing  vector £. Our goal is to demonstrate that such surfaces are 
stationary solutions to the Nambu-Goto equations. For definiteness, we w ill use 
the ingoing null vector, which is linearly independent from £ at the future event
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horizon and denote it  1 =  1-. The time symmetry implies that

£ ;/ =  [?.<] =  0, (4.5.8)

where £  is a Lie derivative. In general the Frobenius theorem states that given 
two vectors u and v which satisfy the condition

[u,v] — g(x>i) v , (4.5.9)

w ith /  and g being any functions of spacetime, then there w ill exist a surface xM(() 
which has tangent vectors u and v (for example see [59]). Further in the special 

case f  — g =  0, there is a choice of embedding coordinates ( A(A =  0,1), such 
that we have a^0 =  and =  v^. Thus (4.5.8) gives us that there exists a 
two dimensional surface E given by xM =  xTiQ. ( (A =  (w, A)) such that x>lw — 
xtlx =  —IA. We call such a surface, generated by I and £, a principal Killing surface. 
The coordinate w is the same as the time as defined by the K illing  vector £, and 
A is an affine parameter along the principal null geodesic.

The metric on E is of the form

d'y2 =  GABd(Ad(B =  £2dw2 -  2(£ • l)dwd\ +  l2d \2 . (4.5.10)

Using the metric, one may calculate

e  =  - F  =  - 2 -  1, K -0  =  - l ,  I2 =  0, (4.5.11)
p

so that the metric and inverse metric induced on E are given by

GABd(Ad(B =  —Fdw2 +  2dwd\ , GABdAdB =  2dwdx +  F d \ , (4.5.12)

w ith F  =  1 — a Ip 2. We introduce vectors normal to the principal K illing  surface, 
denoted as (R — 2,3,4). These vectors obey the conditions

9/j.vnRng =  SRS, gv-vxT^A =  0, (4.5.13)
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and these five vectors are complete, in the sense that

< r = c - , y 4/ ,  +  f >st . K .  (4.5.14)

The principal K illing  surface is minimal. Using the equations of embedding in 
coordinate form it  is possible to directly verify that it satisfies the Nambu-Goto 
equations. We w ill prove that it  is minimal by making calculations in a covariant 

form. This w ill be useful in establishing the uniqueness theorem in appendix B. 
First we write the Nambu-Goto equations (3.2.16) as

G AB < a ,b ~  G a b 1 Ca b < c  +  G A B =  0 , (4.5.15)

where 7CAB is the connection associated w ith the metric Ga b ■ Contracting this 
equation w ith nRm and using the fact that nR ■ x tc =  0 (4.5.13), we have

GABnR„ x % A +  =  0. (4.5.16)

Next, we may replace w ith the directional derivative form xuAdl,x^B, we get 

GABnRfl(x"Adl/x%  +  < * )  =  0 ’

GABnRllxvA {x>MB).v =  0, (4.5.17)

g a b d r ab  =  0 ,

where we have used the second fundamental form, defined on E as

Or a b  =  9npnRxl,,A(xlX,B ■ (4.5.18)

Thus, E is a minimal surface when the trace of the second fundamental form 
f lR =  Ga b QRab  vanishes. We w ill define the vector 2 as

z^ =  Ga b xaa (x",b ) ; I., (4.5.19)
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Then we may express Or as

Or =  Ga b ORab  — (a r • z) • (4.5.20)

Using the indiced metric, z has the form

(4.5.21)

The last term in this equation vanishes because the principal null congruences are 
geodesic, while we may use the relation [£, I] =  0 to get

Since we have defined the vectors n to be orthogonal to I, this means that z - u r  =  0 
and thus 0 R =  0. Thus, we have shown that the trace of the fundamental form 
vanishes, therefore £  is a minimal surface. In appendix A we give the explicit 
solution to the principal K illing  surface. In appendix B, we show that this £  is the 
only stationary surface to cross the infinite red-shift surface w ithout singularity.

4.5.3 The Principal Killing String as a Two Dim ensional 
Black Hole

Up un til now we have been working in Boyer-Lindquist coordinates, however, for 
the purpose of analyzing principal K illing  string surfaces we w ill now transform 
into ingoing Eddington-Finkelstein coordinates, which are regular at the future 
event horizon. The coordinate transformation is given by

(4.5.22)

The fact that I is an eigenvalue of (4.5.7) allows us to express z as

(4.5.23)

dv — dt +
(x +  a2) (:r +  b2) ^

(4.5.24)
x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. STRINGS IN A FIVE DIMENSIONAL SPACETIME 45

r  Y 2Ny/x 

In these coordinates, our metric takes the form

ds2 =  -d v 2 +  p2d6 2 +  (r2 +  a2) sin2 Odcj) 2 +  (r2 +  b2) cos2 ddip2

+ ~ 2  (dv +  osin2 Qd(j> +  bcos2 Qdipj +2dr {dv +  asin2 9d<f> +  6cos2 SdipJ . (4.5.25)

Note that we have reintroduced the radial coordinate r  instead of x =  r 2. Another 
convenience of choosing these coordinates is that the ingoing principal null vector 
I =  I -  now takes the simple form =  —dr . The original K illing  vectors dt , d# 
and djf, take the form dv, and respectively.

The principal K illing  string, constructed from the vectors £ and I has a simple 
form in these coordinates

9 =  0O , 4> =  4>o, =  4>o , (4.5.26)

all as constants. We use coordinates of (°  =  v and ( ! =  r  as coordinates on S.
The induced metric in these coordinates is

d72 =  - F d v 2 +  2 drdv , F  =  1 -   2h , ui "■ 2 a ■ (4.5.27)r z +  a2 cosJ 80 +  b2 sin 9q

This is a metric of a two dimensional black hole w ith an event horizon located at

r 2 +  a2 cos2 9q +  b2 sin2 90 =  a . (4.5.28)

The surface gravity for this two dimensional black hole is «(2) =  \ F r evaluated at 
the horizon F  =  0. We get

\J a - a 2 cos2 0 O -  b2 sin2 8 0
K(2) =  1 ----------------------------------- . (4.5.29)

a

For comparison, we restate the five dimensional surface gravity «(5) from (4.2.8) in 
an explicit form

r- V C 2 -  4a2b2
ft(5) —............... - ............... = =  , (4.5.30)

oisjc +  yJC2 -  4a2b2
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where
C =  a - a 2 - b 2 . (4.5.31)

Next we w ill demonstrate that the surface gravity of the two dimensional string 
hole «(2) is always at least as large as the surface gravity «(5) of the bulk black 
hole. Begin by defining

9 r2 — C
f ( r )  =  — —  , (4.5.32)

ar
and since C >  0 is a necessary condition for the existence of an event horizon, /  
is a monotonically increasing function. /  is defined such that

«(5) =  f ( r + ) , (4.5.33)

where r + is the location of the event horizon, given as

=  I(C  +  V C 2 - 4 a 2b2). (4.5.34)

Since r + < C 1̂ 2 one has

C V 2
K(5) =  f ( r+ )  <  f ( C l/2) =  —  < K(2) . (4.5.35)

This relation means that the surface gravity of the two dimensional string black
hole is always at least as large as the surface gravity of the five dimensional black
hole. The equality of «(2) w ith k,(5) only occurs when

a2 sin2 #o +  b2 cos2 90 =  0. (4.5.36)

This means that for «(2) =  K(5), we must have either a =  b =  0 so that the black
hole is non-rotating, or one of the rotation parameters, say 5, vanishes and the
string is in the 6 =  0 plane, orthogonal to the plane w ith a non-zero rotation 
parameter. Finally, we note that for

a2 cos2 #o +  b2 sin2 60 >  0, (4.5.37)

the metric of the two dimensional black hole remains regular at r  =  0 .
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Chapter 5 

R esults in Higher Dim ensions

5.1 Principal Killing Strings in Higher Dim en­
sional Myers-Perry Metrics

5.1.1 M yers-Perry M etrics in Ingoing Coordinates

Some of the results we have found can be generalized to Myers-Perry metrics 
in an arbitrary number of dimensions. We w ill restate the metrics for higher 
dimensional Myers-Perry metrics here for convenience. For an even number of 
spatial dimensions (N) we have p =  N/2  planes of rotation and a metric

and for an odd number of spatial dimensions there are p =  (N  — l ) / 2  separate 
planes and a metric

(5.1.1)

(5.1.2)
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where II  and L  given by

n = n ( r 2+a?) ,  L =  1 - ± A ^ .  (5.1.3)
i= l »= 1 1 Ui

These metrics have a principal K illing  vector =  dt as well as axial K illing  
vectors .

Let us define /± in these metrics as

/(ta„ =  s  (5.1.4)

where
E =  —-------- , for odd N,

I I  — ar

E =  - ——t  , for even N.  (5.1.5)
II  — a r 2

We w ill demonstrate that l± are the K illing  null vectors for the Myers-Perry metrics
and that the integral lines of Z± are geodesic. To demonstrate this we w ill introduce
ingoing (—) and outgoing (+ ) Eddington-Finkelstein coordinates as

d v ± = d t ^ E d r ,  (5.1.6)

dd>±i =  dd>i ±  --- - -  „ dr . (5.1.7)
r2 -f a f

One can use either the upper or the lower sign, but once chosen must be consistently 
used throughout the next sections. In these coordinates l± has components

-  ±d r , li^dx*1 -  

For odd N  the metric takes the form

dv± + ] [> 2 ai d<t>±i
1 = 1

(5.1.8)

P  ̂ O/V
ds2 =  —dv% + jZ (r2 + a2)(d [i2 + i f i d ^ )  + —  (^ d x * * )2 ± 2dr(l±fJ,dxfl) + r 2dfj,2 . 

i=1 i i L
(5.1.9)

For even N  we have a similar metric, simply by removing the term r 2dfi2 and 
replacing a r  —>• a r2 we get the metric for even N. The principal K illing  vector f
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and the axial K illing  vectors & are now given as =  dv±,

5.1.2 Properties of Killing Null Vectors in Higher Dim en­
sions

Now we w ill demonstrate that the vectors given by (5.1.8) are geodesic. To show 
this we must examine

m . ^  = i K,„ + rV £ 4 - (5.1.10)
Using (5.1.8), we see that the only component of l± is given as /± =  ±8p, so we 
have

= r „  = 1^(2gr!<r -  g„,s) . (5.1.11)
By examining of the metric (5.1.9) we can see that grr =  0 and gr s,r — 0. So we 
have that l±l± ;fi =  0, thus the integral lines of l± are geodesic.

Next we w ill demonstrate the l± are the K illing  null vectors of the Myers-Perry 
metric. We begin by considering the product £n-,J±

= U,X± -  r v «  ■ (5.1.12)

In the Eddington-Finkelstein coordinates we have =  ±8" and ^  =  8%, so this 
reduces to

— -l-P/xi) ,r -F 7^9rv,ii T  9/J.v ,r 9rfi,v) • (5.1.13)

The time symmetry guarantees that gr ^,v =  0, and examining the metric (5.1.9) 
gives us gTVilJ, — 0. The remaining term reads

W ±  =  ± ^ W -  (5-1-14)

Finally, we note that gtI „ <r has only one contribution from the metric, the term in 
the metric proportional to (i±MdxM)2, and l±u is independent of r. Since l±v =  — 1, 
we may write that

9fiv,r 9vv,r^±fi- (5.1.15)
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This gives us the result finishing the proof,

(5.1.16)

where F  =  - g vv - - £ 2.
Note that the time symmetry of the system guarantees the relationship [£, l±\ =  

0, so it  is possible to consider K illing  surfaces generated by the vectors £ and l±.

5.1.3 Principal Killing Strings

Consider a principal K illing  surface, defined in a manner analogous to previously, 
as a surface spanned by the principal K illing  vector £ and the K illing  null vector 
l± (we w ill consider strings generated by either of the K illing  null vectors in the 
analysis here). The equation for the worldsheet configuration is given as

w ith a ll the angular coordinates fa and 9t as constants. This means that our 
tangent vectors to the string are given as x^v =  £** and x^r =  ±.l±, as expected. 
The Nambu-Goto equations (3.2.16), contracted w ith g^y for convenience, are

x° =  v, x1 =  r  , (5.1.17)

(5.1.18)

w ith

□ s" =  ~ ^ = d A( ^ G ABdBx n .
V-C r

□ar" (5.1.19)

The induced metric on the string worldsheet is given as

GABdAdB =  Fd2r p 2 d rdv , \f^ G  — 1. (5.1.20)

The first term in this equation reads as

g^.u^x1' =  g^y [dr (Fdrx1') =f 2drdvxv) =  ±g(irdrF , (5.1.21)
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and the second term reads

= g ^ ,  [F z jz fr T 2a;>J] =  9„„ ( F I * , ,  -  2V\ , ) ,
(5.1.22)

C r  a/3 % ,A X ,B =  2^  (2 9fir ,r 9rr ,fi) ~ {9fir ,v T  9fiv,r 9vr ,fi) (5.1.23)

The metric given as (5.1.9) implies that

9  f i r  ,r  —  9 r r  —  9 f i  r  ,v —  9 v r  ,fi =  0  . (5.1.24)

So, we have

gjJiVnx'' +  GABglluYvapxclAxpB =  ±gfir drF  -  . (5.1.25)

Equation (5.1.15) tells us the second term is equal to —gvv,r l±fi =  drF l± ^  while 
the form of l± tells us that — ±gMr- Thus we have that (5.1.25) vanishes and 
so this string worldsheet is a solution to the Nambu-Goto equations of motion.

5.1.4 Strings in Higher Dimensions as Two Dim ensional 
Black Holes

In Eddington-Finkelstein coordinates, the worldsheet configuration of a principal 
K illing  string is given as

Hi =  const, =  const. (5.1.26)

We w ill examine ingoing principal K illing  strings, w ith I — F .  Using coordinates
£° =  v and =  r  for coordinates on the principal K illing  surface defined such
that x^v — and xTr =  —F, we have an induced surface metric of

d72 =  -F d v 2 +  2drdv . (5.1.27)
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This is a metric of a two dimensional black hole w ith an event horizon at F  =  0, 
the infin ite red-shift surface of the bulk black hole. For odd N  one has

F  =  - £ 2 =  - g vv =  1 -
ar
nZ (5.1.28)

So, in the case of odd IV, the surface gravity for this two dimensional black hole is 
given as

1
«(2) =  o QrF

dr (H L )a r — a H L dr (HL) — a
F=o _  2n2L 2 U.L=ar 2ar n L=ar

(5.1.29)

I f  we have an odd number of spatial dimensions, the surface gravity of the bulk 
n-dimensional black hole is given by (2.2.7)

drJI — a 
K{n) =  2 ar

n=ar

For even N,  we instead have

F  — I
ar
n Z  ’

(5.1.30)

(5.1.31)

and the surface gravity for the two dimensional black hole is given as

«(2) =  2drF
dr (HL)a r 2 — 2ar TIL

f=o 2n2L2
dr (HL) — 2 a r

IIL=ar2 2 a r2 n L=ar2
(5.1.32)

In an even number of spatial dimensions, the bulk n-dimensional black hole has a 
surface gravity given as (2.2.7)

cLII — 2 ar
K^  2ar2

(5.1.33)
n=ar2

In both cases L  is given by

£ =  i - £
i =1

P ^2 .,2ai K
t t r *  +  a r

(5.1.34)
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so we can see that in the case of either N  even or odd, if  the strings angular 
position satisfies the conditions

//?a? =  0, (5.1.35)

for each i, then L  is identically equal to one, and so /C(2) =  K(n) for this string.

5.2 Friction Effect of a String with a Black Hole

The general analysis of [22] shows that there exists a friction effect between a black 
hole and a brane attached to it  that may cause the black hole to lose some bulk 
components of its rotation. The analysis done there was for general branes and in 
the lim it that the black hole has slow rotation. In this section we w ill analyze the 
friction effect between a string and a higher dimensional black hole w ith arbitrary 
rotation. We w ill do the calculations for one string segment attached to the black 
hole, but for the final result we w ill assume that we have two such string segments, 
the second one being an inverse image of the first one (0 —> 0 +  7r and additionally 

l i  —> —fi if  N  is odd). We assume such a configuration to guarantee that the black 
hole w ill remain at rest during the process.

In this section, we use the angular coordinates mentioned earlier in chapter 
two. We w ill replace the dependent coordinates /i, and // w ith the independent 
coordinates 0*, and let u)m represent the tota l set of angular coordinates (6£, (p/).

Suppose there exists a distribution of matter outside the black hole, w ith a
stress-energy tensor TM„. The fluxes of energy and angular momenta of this matter
through a surface r  =const are given as

A E = - j T / e ^ ,  &Ji = f T / t f d w u, (5.2.1)

where £ and £; are the K illing  vectors of time translation and rotational symmetry. 
The infinitesimal element of surface area dmM is

dmn =  r tfly /^g dv dwN~l , (5.2.2)

w ith
N

dwN~l — f [  du>i. (5.2.3)
i=2
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For a stationary configuration the rate of energy and angular momentum fluxes 
through the matter distribution w ill be constant, and given by

E = ^  = - 1 4 / '-1 V ^ T /  ev,„ , (5.2.4)

Ji 2 ^  = I  y/=gTS&r,. (5.2.5)

We w ill assume that we have a situation w ith an ingoing principal K illing  string
captured in the black hole event horizon and calculate the energy and angular
momenta transfer through the string. The stress-energy tensor of a string w ith a 
configuration given by xM =  x^((A) is given by equation (3.2.14)

= -//* I  d2(6^N+l\ x  -  x(0) ,

P *  =  GABx% xutB , (5.2.6)

w ith  fi* being the tension of the string. Using the ingoing principal K illing  string 
generated by £ and I =  we have

t?v =  F  PP -  P£" -  £*T . (5.2.7)

We have in particular

ye  = m z ■ o -  e« ■ o -  n? ) , 

y e  = ■ o -  rte. • o -  nz •«• (5.2.8)
We also have

£ - i =  - 1 , e  =  - F ,  I =  - £ < * ,  £ .£ i =  ( l-F ) /x ? a i, (5.2.9)

which may be used to find that

y e = r , y e =<w?te - n • (5.2.10)
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Using these relationships for our original integrals (5.2.4-5.2.5), we get

£7 =  0, Ji =  - f j f o i t f . (5.2.11)

We note that the flux is independent of r, agreeing w ith conservation of energy
and angular momentum. The loss of angular momentum by the black hole is the
negative of the flux of angular momentum through the string,

=  (5.2.12)

Using our original definition of the spin parameters a* (2.2.1), and taking into 
account the previous assumption that there would be two string segments attached 
to the black hole, we get the relationship for the loss of angular momentum from 
the black hole;

j f «  =  - t f ( N  -  ■ (5.2.13)

This result agrees w ith the special four dimensional case of the Kerr black hole 
obtained in [22].

Note that this is a first-order effect on the rotation parameters and mass of the 
black hole. A fter the rotation parameter has changed by an apprecable amount, the 
shape of the string w ill be different due to the modified rotation parameters. For 
small fj,*r+/M  this process w ill be slow. One can describe it  as quasistationary, that 
is as a slow change from one stationary configuration into another. Dynamics of 
this process can be considered as an evolution in the space of rotation parameters. 
The friction effect between the string and the black hole w ill continue un til a 
stationary configuration is reached w ith J f H — 0 for each plane of rotation i.

(5.2.13) shows that for J f H — 0, we must have either j f H — 0, or /i; — 0, meaning 
that there w ill be a slowing of the black holes rotation parameters un til the strings 
angular position is ‘orthogonal’ to any planes of black hole rotation which have a 
non-zero rotation parameter. That is, the final equilibrium state must be one which 
has =  0 for each i. Comparing to (5.1.35) we see that the final equilibrium 
state w ill be one which balances the surface gravity of the n-dimensional black 
hole w ith the surface gravity of the two dimensional string black hole. Thus, we 
may interpret this as the friction effect tends to a thermal equilibrium of the black
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hole-string system.
To estimate the timescale of this interaction we w ill consider a special case 

which allows a complete analytical solution. Consider that we have a black hole 
w ith only one nonzero rotation parameter a and the cosmic string lies in the plane 

corresponding to this parameter, that is fa =  1 for that i  and fa — 0 for all 
other planes. This is analogous to the string lying in the equatorial plane in the 
Kerr case. The symmetry of the problem guarantees that fa w ill remain constant 
so we do not have to consider dynamical changing of the strings angular position. 
Assuming that /.T is small compared to M /r+  so that we may assume the process is 
quasistationary and adiabatic, the surface area A  of the black hole w ill be constant. 
The surface area is given from (2.2.8) as

w ith the black hole event horizon r+ given for a black hole w ith one nonvanishing 
spin parameter by (2.2.10) or (2.2.14)

Using the dynamical equation for J  (5.2.13), the fact that area is constant (5.2.14), 
and the definition for the spin parameter (2 .2 .1), we can get the equation for the 
rate at which the horizon radius changes

We can see that r + w ill increase while J  and a decrease, un til the process stops 
when J  and a vanish. Constant black hole area and increasing r + also implies that 
the black hole mass M  w ill decrease. We w ill define the dimensionless parameter 

j3 =  a2/ r +i we may write (5.2.15) w ith (5.2.14) as

A  =  Ajv-ir+O! =
16tt G(jv+1>

(5.2.14)

oc — r (5.2.15)

. 32?r G ^ + V
+ (N  -  1)Ajv_i r (r+ 4- a2)2

(5.2.16)

(5.2.17)
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We can see that r + w ill increase monotically un til reaching the final value of

/  Ar, =  , (5 .2 ,8 )

at which point (3 =  0 and the process stops. A t this point, the mass of the black 
hole w ill reach its final value

=  <5 A 1 9 >

Differentiating (5.2.17) and using (5.2.16), we can find that f3 evolves as

a 2(N  -  !)/.• 0
P M ,  (1 + d jV '.v -i) ■ (5.2.20)

We can solve this equation analytically, the solution is given as

+  PF  ( [ l ,  1, f e j ]  . [2. 2], - e )  =  +  c , (5.2.21)

w ith C  as an integration constant. The hypergeometric function is for our purposes 
given as

1, 1,
N -  2
N -  1. ’ I ’ 1’ 0 )  (JV_ i ) r (a=2) £  (k +  i )< ( k + i )  ■ <5- • )

In the lim it of t  -» oo, we have /5 —> 0 and so the logarithm is the leading term on 
the left. Therefore, asymptotically we have

0 ~  a2 ~  e x p (-2 t/T ), (5.2.23)

w ith T  =  M f  / ((TV — 1)//*) as the characteristic time. We can see that the timescale 
T  is the same as what one would expect from simply examining equation (5.2.13).
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5.3 Separability of String Equations in Gibbons- 
Lii-Page-Pope Spacetimes

A recent paper [24] demonstrated that the Gibbons-Lii-Page-Pope metrics men­
tioned earlier have a separation of variables in the even-spatial-dimension case w ith 
all rotation parameters equal, a* =  a. For this special case the Hamilton-Jacobi 
equations for a particle in free-fall and the massive Klein-Gordon equations un­
dergo a separation of variables (we state the results in appendix D). Here we w ill 
demonstrate that the Hamilton-Jacobi equations for a stationary string also have 
a sim ilar separation in that special case.

Since separation has only been demonstrated for a Gibbons-Lii-Page-Pope 
spacetime w ith an even number of spatial dimensions, we w ill restate only that 
metric here

* 2 =  -W  (1 -  Ar2) * 2 + + HE ( *  - 1  i f ^ )

+  g f r ^ [̂ + /‘? W ‘ ~ W t) 2 l +  iy ( l  -  A r2) ’ (5'3' 1)

where, as before,

n n ( r 2 +  a2) , £  =  ( 5 ' 3 '2 )i= l i= l i i=\ 1 ^  i

One may examine the metric to see some difficulties that may occur in an attempt 
to separate the Hamilton-Jacobi action for a string. First of all, the coefficient W  
appears in some inconvenient places from a separation perspective. In the A =  0 
case, W  =  1, so this was not a problem. The other major difficulty is that there 
is a new term at the end of expression (5.3.1) which vanishes in the A =  0 case. 
However, if  we assume that all the spin parameters of the black hole are the same 
cii =  a, then the final term simply becomes proportional to Yn^iPidHi- I f  we 
differentiate the restriction A — I  then we get Y?i=\ Pidfii =  0. So we may
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see that the metric simplifies to

2 1 — A r2 2 I I  r 2 2
=  ~ 1 +  Aa2 +  ( r2 +  a2) ( I I ( l — A r2) — a r2)

a i r 2 +  a2) /  a A  , r 2 +  a2 2 i r
+ — j j —  ^  - 1  + "VY f l 2  5 Z  ^  <tyi  J  +  -j - v - ^ 2  ( # <  ~  A a c ^ )  1 •

(5.3.3)
In order to get the equations for stationary string configurations, we first need the 

inverse metric hab =  H ab/F .  For the metric (5.3.3), we have

1 — A r2 — (r2 +  a2)A2a2 a ( r2 +  a2)
F  =  - i "  = ------------ r n w ---------------------—  ■ (5-34)

and equation (4.1.7) gives us that to find the components J7ab, we need only find
the inverse metric gMl/. The components of the inverse metric that we need are
given as

rr _  (11(1 -  A r2) -  a r2)( r2 +  a2)
9 ~  i P  ’

1 +  A ° 2 , 6‘ i  +  Q, =  1 + l a(  , 2 (5.3.5)
(r2 +  a2)i i i  ( r2 +  a2) n U n sm

where the Hi are defined in terms of the 6( as before (2.2.5)

p—i
Hi — cos 0p- i+1 sin Qj , (5.3.6)

i =i

keeping in mind the earlier definition 6P =  0 and that we use the convention that 
in any product which has an upper lim it smaller than the lower lim it then the 
product equals one. We have also defined

_  2a2r 2a2( l +  Aa2) ( l +  A r2 +  Aa2) aa2( l +  A r2 +  2Aa2)
11(1 — A r2)2( I I ( l — A r2) — a r2)( r2 +  a2) f l( r 2 +  a2) ( l — A r2)

To find stationary string configurations we must find geodesics in the metric h.
We begin as before w ith the Hamilton-Jacobi equation

d l  1 , „ h d l  d l  , .
Tr- +  - / ia6— — - 0 .  (5.3.8)
da 2 dxa dxb
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This metric allows a separation of variables in the action of the form

/  =  _ I mV  +  £  $ .0 . +  £  I e M  +  / r ( r ) , (5.3.9)
 ̂ i =l ;=i

where we have defined as the conserved quantities associated w ith the K illing
vectors & =  d^. Using our metric (5.3.5) in the Hamilton-Jacobi equation, we find
a separation of the form

f (V + ° 2 W  ( dI' \  ( r2 +  a2)Q y .  $  $  =
^1 +  Aa2/  r 2(r 2 _|_ a2)p-2( f _|_ Aq2) y dr  J 1 +  A a2 1 J ’

£  5  +  £  ( ^ ) 2 =  K X. (5.3.10)
j=l P i  i=l llfc=l sm V /

We have called the separation constant K \  in anticipation of a series of separation 
constants that happen when the 0* coordinates are separated. The explicit sepa­
ration of the Igi functions is performed in Appendix C, but the result that we get 
is

I r =  Sr J V R d r , I e. - ^  J \[O ld9l ,
r 2(r 2 _|_ a2)p -i /  2 P 1 +  Aa2 \  . i -i \

— 11(1 — A r2) — a r2 (  _  r 2 +  a2 1J ’ ( ^

O _  TS ^ P - i +1 „■ _  1 „ 1— K i  . 2/3 ’ * U •••)£* 1 -cos2 0j sm

We have p — 1 separation constants K i >  0 and we denote K p — <h2 as the final 
constant, so that we don’t  have to write out the equation for 0 P_! separately. Also 
we have defined the sign functions q. and q?, to be all independently ± 1.

Next we wish to get the equations of configuration from the action

I  =  ~ \ r n 2a +  [  \[®id9i +  [  VRdr . (5.3.12)
z *=i t=i J J

We begin as before by setting the derivatives of I  w ith respect to the parameters
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m2, and K i equal to zero to get

F  dr
a =  S r f  ’ (5.3.13)

sin2ft.ivC r =i>‘ I w , ’ , = 2' - 'P _1 ' <5-3'15)

< 5 3 - i 6 )

p

f t .

j. _ f  d@p—i+ l , f  /-> ^ ^
*  ^  J  COS2 « p _ i+ 1  + ^ J  i s M

i  =  2

(5.3.17)
where we have defined

_ /II(1  — A r2) — a r2\ 2 / r o m x
TZ — I — — rr— — I 72. (5.3.18)

\  r 2(r2 +  a2)P~1 /  v ’

We may differentate these equations and combine them to get the first order equa­
tions of motion

F f  — qry/lZ^ (5.3.19)

1 +  Aa2 \  \/@ i

+- °2 /  n i= \ sin

r 2 +  a2 J JZ

Note that in the final equation we use the /ij notation instead of the 9 coordinates.

=  ( 5 ' 3 ' 2 0 )

; /  1 Ad2 \  r—V
F * = ( - ^ 5 - J ^ + < ? E '* i .  < = !.-.?• (5-3.21)
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Chapter 6 

Discussion

In this thesis, we have examined properties of stationary string configurations in 
higher dimensional black hole spacetimes, in particular Myers-Perry black holes 
and their generalization w ith a cosmological constant. We have demonstrated 
that the configurations for an equilibrium string in such a stationary geometry 
obey the geodesic equations in a metric conformal to the spatial projection of the 
bulk metric, w ith a conformal factor — £2. For the five dimensional Myers-Perry 
metric we have found that the Hamilton-Jacobi equations allow a separation of 
variables. The first order equations of possible stationary string configurations 
have been found, and some particular solutions are demonstrated. It has been 

shown that there is a set of special solutions, referred to as the principal K illing  
strings, which share a particular property. The property of uniqueness that these 
string solutions share is that they are the only stationary string solutions which 
can cross the infin ite red-shift surface of the black hole, w ithout developing any 
singularity. These solutions pass through the ergosphere and cross into the black 
hole event horizon remaining timelike and regular.

It  is likely that the ‘miracle’ of separation of variables is something unique 
to the four and five dimensional Myers-Perry cases. Examining the metric for 
the six dimensional case, one encounters a problem w ith off-diagonal terms in the 
metric. In four and five dimensions all off diagonal components of the metric 
were connected w ith cyclic coordinates, so that they did not get in the way of 
separation of variables. In the six dimensional case, the existence of two angular 9 
coordinates leads to off diagonal components of the metric which are not connected
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w ith a K illing  vector. However, it  has been demonstrated that the special case 

of a Myers-Perry metric w ith  only one non-vanishing spin parameter does allow 
separation of the massless scalar field equations, in any number of dimensions [60]. 
Also, the possibility has been demonstrated that the Hamilton-Jacobi equations 
for free test particle motion and the Klein-Gordon equation may separate in the 
special case of a set of spin parameters equal and the rest zero [61]. This was found 
in any number of dimensions and it  would be interesting to see if  the stationary 
string equations also separate in these cases. However even though separation of 
variables might not work in the most general case, we have found that some of 
the results we have do generalize to the higher dimensional Myers-Perry cases. 
In particular we have demonstrated that the principal K illing  strings, generated 
by the principal null vector and the principal K illing  vector, are solutions to the 
Nambu-Goto equations of motion in any number of dimensions.

We studied the worldsheet for a principal K illing string, and examined the 
induced geometry on such a worldsheet. We have seen that the induced geometry 
on a principal K illing  surface is that of a two dimensional black hole w ith  an event 
horizon located where the surface crosses the infin ite red-shift surface. Further, 
it  has been demonstrated in five dimensions that the surface gravity of the two 
dimensional black hole is always at least as large as the surface gravity of the 
bulk five dimensional black hole. It  may be possible to argue that the stability 
of the principal K illing  string is connected w ith the stability of the induced black 
hole. In the case of the Kerr-Newman black hole, it  has been shown that the two 
dimensional black hole in the induced string geometry can be obtained as solutions 
of two dimensional dilaton gravity [57]. A possible future project would be to see 
if  such an analysis is possible in the five dimensional and higher cases.

It  has been demonstrated in [22] that, in general, there is a friction effect be­
tween rotating black holes and branes attached to them. This effect slows the 
rotation of the black hole in any planes of rotation that do not preserve the sym­
metry of the brane under rotation of that plane. We have demonstrated this effect 
for the particular case of principal K illing  strings attached to the black hole, and 
have found that the friction effect w ill slow the rotation of the black hole in any 
planes of rotation that the string is not orthogonal to. This is consistent w ith the 
result of [22] in the four dimensional case. The friction effect occurs on a timescale
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proportional to r  =  M /fP ,  so for light test strings this w ill be a long time period. 
On timescales of the order of r , the black hole’s rotation parameters w ill have 
changed by an apprecable amount, and then we w ill have to take into account dy­
namical effects of the string. Certainly in the future an analysis of this effect might 
be interesting. However, we may s till comment on the possible final configurations 
of the string. I t  is reasonable to assume that the state of the system after a long 
period of time would be stationary, and that such a final configuration would have 
reached a state such that J f H — 0 for all of the black hole planes of rotation. In 
such a case, a principal K illing  string w ill be orthogonal to all of the black hole 
planes of rotation that have a non-zero rotation parameter and a principal K illing  
string w ill cross the event horizon at a location where the event horizon coincides 
w ith the infin ite red-shift surface. In this case, the surface gravity of the rotating 
black hole w ill be equal to the surface gravity of the two dimensional black hole 
induced on the string worldsheet. So it  is possible to consider that the friction 
effect between the rotating black hole and the two dimensional black hole is a 
‘thermalization’ process, reaching equilibrium when the two black holes are at the 
same temperature.

Finally, we have demonstrated separation of variables in the Gibbons-Lii-Page- 
Pope metrics. The Hamilton-Jacobi equation for geodesic motion of a particle 
and the Klein-Gordon equation separated in a special case of an even number of 

spatial dimensions w ith a ll spin parameters equal. We also demonstrated that 
the Hamilton-Jacobi equation for stationary string configurations separates in this 
special case. One may consider that there might exist a coordinate transformation 
to find a separation in a more general case, but it may also be possible that the 
spacetime lacks sufficient symmetry to allow separation in more general cases. 
We have also found first order stationary string configuration equations for the 
special case. In the future, one may examine these equations and determine some 
properties, however lack of time has prevented such an analysis here.
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A ppendix A  

String Solutions in Five 
Dim ensions

A .l Equal Rotation Myers-Perry Case

Consider the degenerate case a — b. In this case, due to the enlarged symmetry 
we have additional K illing  vectors in the metric h, taking the same form as those 
of the bulk five dimensional metric (4.2.12)

£“i)da =  -  cos(0  -  ip)dg +  cot(0) sin(0 -  0 )d^ +  tan(0) sin(0  -  ip)dj, ,

^(2)da =  sin(0 — ijj)dg +  cot(0) cos(0 — ip)d ,̂ +  tan(0) cos(0 — 0 ) ^  . (A .1.1)

Also, as w ith the bulk metric, the K illing  tensor K  (4.3.10) in the metric h is now 
reducible

K ‘ b =  555J + -  2 5? 5? + 5 5 , 5 5 , + 5 5 , 5 5 ,  -  r 4 . (A.1.2)

In this degenerate case, the string configuration equations now take the simpler 
form

(x +  a2 — a) x =  <rx2yjA(x — a — K ) +  aa2($  +  4/ ) 2 , (A .1.3)

/ <E>2 \I/ 2
(x +  a -  a) 6 =  <&JK +  a2 -   > (A.1.4)

V sin 0 cos2 0
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/ , 2 w  $  a a 2($  +  $)(x +  a — a) (f) =  -T -y- -  -- -- - -   , (A .1.5)sin 0 (a; + a2)2 — xa

2 • ^  a a 2($  +  $)
(^ +  0 - 0!)^  =  — aa ~ / , 2\2---------• (A .1.6)cos2 8 (x +  a2)2 — xa

Note that there is no 9 dependence in the x equation, so that this equation is a 
separable one

! d o E - t  , (s +  g’ - o f r f r  (A 1 7 )
•' ^ J y { x  +  a2)2(x — a — K ) — a(x2 — xa — x K  +  a2($ +  'I ')2)

I f  we denote p i, P2, and pz as the roots of the denominator, so that

(a; +  a2)2{x — a — K ) — a(x2 — xa — x K  +  a2(<E> +  'I ')2)

=  (x -  p i)(x  -  p2)(x -  p3) , (A .1.8)

then we may integrate the equation explicitly

*  =  arcsin U Z X *  ) J h X *
\  \ \ I P 2 - p iJ  V P s -P i,

+P 3+£z^ ( , m f R E M  , IEEE) , (A.1.9)
Vp s - pi  \  \ y P 2 - P i j  y p z - p i )

where the e llip tic functions are defined in the notation of [62] as

E(<p, k ) =  f 4, \ / 1 - k 2 sin2 z dz, F(</>, A:) =  [ *  -= = £ = = = =  . (A .I.10)
Jo Jo v  1 — k2 sin z

Next, we may divide (4.3.19) by (4.3.20) and separate to get

[ * L = [ « L .  (A.i.n)J 2̂ x J Ve
The left hand side can be integrated to get

r dx F  farcsinj  ax _  \_____ W  P2-pi/  ’ V P3 p i )  ( ^

J 2y/X VP3 -  Pi
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w ith pi, P2 , and p3 the same roots defined in (A. 1.8). For the right hand side, the 
substitution y — tan2 9 changes this integral to

[  M  _  [  dV ( A 1 1 3 )
J Ve J 2(1 + v  + (K + a2 -  -  ^2)y -  ’

so we may integrate this equation directly to find

VPs ~ Pi

tan __________ ( J f + a 2)(sin2 0 -c o s 2 g ) + » 2- $ 2__________

2 ^ /K + a 2-^/(K + a 2) sin2 0cos2 0—$ 2 cos2 0—\&2 sin2 9 ,
 _____  . (A .I.14)

Now we have im plic it solutions for x(a ) and 9(a). To get information on (p and ip 
into this, we can make use of our K illing  vector £(2)

£(2) • P  =  sin (<f) — ip)Po +  cot 9 cos(<p — ip)P4> +  tan#cos(0 — ip)P,(/, =  Q , (A .1.15)

w ith Q =  £(2) • P  being a constant associated w ith the K illing  vector. We can see 
the components of the momentum vector as defined in (4.3.6) are

Pa =  $  Pi, =  T

d i r -  $ 2
p» =  75 =  ' / e  =  tM ' +  “ 2 - ^ n ; --------------------------- A 'L16)39 V sin 9 cos2 9

We may set the value of Q by considering an in itia l point <p =  ip, 9 — 90

/ $2 ij/2
sin(0 — ip)\ K  +  a2  x—  — +  cos(6 — tp)($co t9 +  4 /tan0)

V sin2 9 cos2 9

=  cot $  +  tan If  • (A .1.17)

(A .1.9) gives us the relationship between x and a, (A .1.14) gives us a relationship 
for 9 as a function of x, and (A .1.17) gives us how <p and ip vary w ith 9. Note that 
since (p and ip are s till coupled in the form (p — ip, this is not a complete solution. 
One would have to integrate (A. 1.5) and (A. 1.6) to get a fu ll solution, but since
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the solutions for x involve e llip tic functions integrating these equations would most 
likely prove difficult.

A .2 6 -x  Relationship for String Configurations

It  is always possible to divide (4.3.19) by (4.3.20) to get

/ £ - / &
which, upon letting u =  tan2 6, we can see that

r d B _ ^  l r  du

J V e  2 J yj(u +  i)w (u )

where we have defined the polynomial W  (u) as 

W{u) =  V  +  (K  +  b2 -  2$ 2 -  $ 2)u2 +  (K  +  a2 -  -  2$ 2)u -  $ 2 . (A.2.3)

I f  we allow <zi, q2, and 53 to be the roots of W, such that

W(u) =  - V 2(u -  qx){u -  q2)(u -  q3) , (A.2.4)

and we denote pi, p2, and p^ to be roots of y, as

X =  (x -  p i){x  -  p2)(x -  p3) , (A.2.5)

sim ilar to (A .1.8), then it  is possible in the general case to integrate (A.2 .1) to get

\ / te  +  l)(9 i -  9a)*2 VP3 - P 1
(A.2.6)
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A .3 Solution for the Principal Killing Surface

Consider a principal K illing  string in the five dimensional Myers-Perry case. The 
form of the principal null vectors (4.5.2) tells us

p =  (■x +  a2)(x +  b2) t
A  ̂ J (A.3.1)

is a spacelike vector tangent to the string’s worldsheet, and further that

xa =  Pa . (A.3.2)

Reading this equation off in components, we then get for the string configuration 
equations

x -  zf2 i/x  , 9 =  0,

a(x +  b2) b(x +  a2)
(A.3.3)

A  A
We may say that 9 =  90, a constant, and comparing these equations w ith (4.3.19)- 
(4.3.22) we may see that the constants 4>, $  and K  take the form

$ =  a sin2 9q, =  6 cos2 90, K  =  (a2 — &2)(sin2 9q — cos2 9q) . (A .3.4)

By integrating the equations (A.3.3), we can get

<f> =

xp =

a
2 (r + — r 2 ) 

b
2 (r2 -  r 2 )

x =  r  =  a ,

r \  +  b2  ̂ ( r  — r + \  r 2 +  b2 ^ r  — r_

. r + 

r i  +  a2
In

r  +  t+/ 

' r  — r + '

r_

r 2 +  a2
r_

r  +  r_

In

(A.3.5)

+  4>o , (A .3.6)

+  ^o , (A.3.7)r + \ r  +  r + J r_ y r +  r_

w ith (j)o and xpo being in itia l data for the string, and r± being the horizon locations, 
defined in (4.2.7). We see that for a ^  0, the value of <f) diverges in the lim it 
r  -> r +, meaning that there is an infinite amount of string winding in this plane 
as it  approaches the event horizon. For b ^  0, there is a sim ilar effect in the xp 
plane. These effects are connected w ith the failure of Boyer-Lindquist coordinates 
near the event horizon, this was discussed to explain the singularity in (4.4.16).
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A ppendix B 

Uniqueness property

In this section, we w ill demonstrate the uniqueness property of principal K illing  
string solutions in the five dimensional Myers-Perry case. That is, these solutions 
are the only stationary string solutions to cross the infinite red-shift surface and 
remain regular.

We begin by considering that we have a stationary surface, w ith coordinates 
C,A — (v, A) on its surface. The strings worldsheet in spacetime is given by 
We w ill define v to coincide w ith the K illing  time, so that dx^/dv =  £M. We s till 
have the freedom v —> v +  /(A ) for any function / ,  and this freedom does not 
effect dx^/dv. Let us use this freedom so that =  —dx^/dX is a null vector. The 
metric takes the form

d j2 =  £2du2 — 2(£ • L)dvdX. (B .l)

We s till have scaling freedom in A as A —> g(X)1 which w ill not effect L  being null. 
Since £ • L  can only depend on A, we can use this freedom to set £ • L  =  — 1. So we 
have for the metric

d72 =  -F d v 2 +  2dvdX, F  =  - £ 2 , (B.2)

and an inverse metric
GA BdAdB =  2dvdr +  F d2 . (B .3)

Let us denote the set of vectors normal to the surface as nR. We have the rela­
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tionship for the trace of the second fundamental form (4.5.20),

0 R =  nR - z, zp =  GabxP'A (xpb ) .p , (B.4)

^  =  - 2L p̂ . p +  F L pL p.p . (B.5)

Antisymmetry of £m;i/ and the fact that L 2 =  0 guarantees that L • z =  0. I f  we 
assume that our stationary surface is a minimal surface, it  means that we have

^  =  =  (B.6)

Q2 =  5rsQrQs =  $RS(nR zti){ns zu) =  5RSnRnvs(zIJtzu) =  0. (B.7)

The completeness relation (4.5.14) gives us

n 2 =  ( g ^  -  G ABxPA x \ B)ZpZv =  0 . (B.8)

Using the form of (B.3), we get for the second term

GAB^ , Ax \Bz„zv =  [2« - z) (L- z)  +  F (L  ■ z f \ , (B.9)

which vanishes since L  • z =  0. Thus if  our surface is to be a minimal one, z must 
be null, gpvZ^z'' — 0. z being null and orthogonal to L, which is also null, implies 
that z and L  are parallel, that being

z* =  - 2 L p̂ . p +  F  LpLp.p =  q U  . (B.10)

To find q, we w ill m ultip ly this relationship by to get

q =  2ZpLpe ]p - F Z tiL pL p.iP, (B .ll)

dF
1 =  Lp((2),P - F V ( t  ■ L \ „  +  F L »L "£ „;p =  —  . (B .12)

Using this value of q in (B.10), we see

dF
2^  Lp =  F  LPLP -  — Lp . (B.13)

’ 1 (LA
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Examining this relation at the infinite red-shift surface F  =  0, we can see that 
L  is a real eigenvector of £m;„. Comparison w ith (4.5.5) shows that this means it  
must be the case that L =  l+ or L  =  /_ at F  =  0. For definiteness, we w ill assume 

L — /_ at the infinite red-shift surface. Next, if  we consider regions close to the 
infin ite red-shift surface, then we have

L  =  (1 +  X)l- +  pm +  fim  +  v k ,

where we w ill consider A, /i, and v to be terms much smaller than 1, and thus w ill 
drop any m ultiple of these two in this analysis. The term proportional to l+ does 
not appear since L  • L — 0. The forms of the vectors m and k (4.5.3-4.5.4), gives 
us the following

is in #  cos#

(*■ «

p\pi\Ja2 cos2 # +  b2 sin2 6 

ab

(a2 -  b2) ,

rV a2 cos2 9 +  b2 sin2 9 

We also have L  • £ =  —1. Using L  in (B.14), we obtain

A
i(a2 — b2) sin#cos# , . ab

 W *-----------V  a2 cos2 9 +  b2 sin2 #

Contracting (B.13) w ith mM, we may use the relationships

i/z (l — F )V a2 cos2 # +  b2 sin2 #

P*
=  (j,,

mflLpI/ ' .p =  1-P,p — - j  (2 i\ /a2 cos2 # +  b2 sin2 # +

to get

where we have defined

2vJ a2 cos2 0 + ft2 sin2 0 +  rF  dF  
(i1 dr

(B-15)

(B.16)

(B.17)

(B-18)

(B.19)

(B.20)

(B-21)
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We w ill define the tortoise coordinate r* as

t  = <a 2 2 >

so that the infin ite red-shift surface lies at r* —>■ — oo, then we can solve for /i as

fi =  f,Qenr\  (B.23)

However, R e ( f i)  is negative definite in a region near the infin ite red-shift surface, 

so we must have fj,Q =  0 to get a solution which is regular at the infin ite red-shift 
surface.

Now, if  we contract (B.13) instead w ith kM, we may use the relationships

=  o, =  */, (B.24)

=  +  (B.25)

F l p_up =  - F ^  =  -  T v ,  (B.26)

dF F
T =  -  -  . (B.27)

dr r
Using the tortoise coordinate (B.22) again, we may solve this as

v =  is0 e r r * .  (B.28)

Just as before, R e ( T) is negative definite in a region near the infin ite red-shift
surface, so we must have Vq =  0 so that our solution is regular at the infin ite
red-shift surface.

Thus, we have shown that fi and v in (B.14) must vanish identically in some 
finite region about the infinite red-shift surface. By analytic continuation, L  must 

be equivalent to Z_ everywhere else as well, so the only regular m inimal stationary 
surface which crosses the infinite red-shift surface is a principal K illing  surface.

to get

where we have defined
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A ppendix C 

Angular Equation Separation for 
a String

Here we demonstrate the separation of the 1$ part in the Gibbons-Lu-Page-Pope 
metric explicitly (5.3.10). Begin w ith the equation to separate w ritten out w ith 9 
dependence explicit,

£  c o s ^ l l ^  + i ‘ ( t ) 2 = *  ■ (ai>

Note that this equation guarantees that K \  > 0. Next, to make the separation 
simpler, we renumber the index on the first sum as i —> p — i +  1, keeping the sum 
running from 1 to p

Jg  ^p -i+ i | 1 f d I o j \  _  ts fC 21
U  cos2 et n j - i  sin2 Oj +  h  n l= \ sin2 ek V do J  1 * 1 • j

Now we are ready to begin separation, first by peeling off the bottom term from 
both sums,

. ( d h X  A  *»-,+> i  ( d i . y+ E n,-, =^-(c.3)cos2 6*i \d 8 i  J cos2 9i ]T =i sin 0j  n*.=i sin 0*, \  dQl
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Note that every term in the sums now has sin2 9\ in its denominator. Next, m ultip ly 
across by sin2 9\ and rearrange terms to get

K  sin2 9 -  ( sin2 9 -  ^Psin ^   i_ V '' {dlei /d9i )2
1 1 \  d6i )  1 cos2 6\ f^2 cos2 9i n }=2sin2 dj n r i sin2

(C.4)
Here we see that the left hand side is a function of 0\ only, while the right hand 
side is not a function of 9\ anywhere. So we may state that both sides are equal 
to a constant we w ill call jK2. We now have

( d l9l\ 2 K 2 <h2
— K i  r

\  d9\ )  sin2 9\ cos2 9\ ’

y  ^p -i+ i_______ y  1 ( d l9i\  _  . .
cos2 °i n j=2 sin2 9j f^2 n r= 2sin2 h \ d 9 i )  2 ■

The second equation has the same form as (C.2), thus we may see that this sepa­
ration w ill continue w ith an inductive form of

( dl$k \  ,y- _  Kk +1 _  ^p-fc+l
J ~  k sin2 9k c o s ’ [ ' }

f  * 2-m  ^  1 (d ie , )2 (C7)
cos2 9i n ;=U i sin2 9j n }=l +i sin2 93 V d9t j  +1 ’

w ith all K i  > 0 and this pattern is valid for all A; =  (1, ...,p — 2). For the final step 
k =  p — 2 in equation (C.7), we may finish expanding the sums to get

( d h P- X  K  $1
\  d9p- 1 )  p 1 sin2 9p-x cos2 0p_i '

We see that if  we use the notation K p =  $ 2, then all steps have the same form of 
(C.6). This finishes the proof of separation.
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A ppendix D  

Gibbons-Lii-Page-Pope 
Separability

D .l Hamilton-Jacobi Equation

Here we w ill discuss the separability of the Hamilton-Jacobi equation for particles 
in geodesic motion and the separability of the Klein-Gordon equation for a scalar 
field in the Gibbons-Lii-Page-Pope spacetime (see also [24]).

The Hamilton-Jacobi equation to find geodesics for a free-falling particle is 
given by

_as i as_ as
d \  2 d x r d x "  '

where S is the action associated w ith the particle and A is an affine parameter 
along the worldline of the particle. The nonzero components of the inverse metric 
in an even number of spatial dimensions when all rotation parameters are equal 
are given as

v  a2r 2(r2 +  a2)

g*** =  AaV

n ( l -  A r2)2(n ( l -  A r2) -  a r2) ’ 

a2ar2( l +  Aa2) aa
H ( 1  -  A r2)2(n ( l + Aa2) -  a r2) n ( l  -  Ar2) ’ 

(n ( l — Ar2) — a r2)(r2 +  a2)
9rr = H r2
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1 +  Aa2 -a . si o o-S J +  Q, g l }
1 +  A a2

^ (r2 +  a2)/U2

where V  and Q are defined to be

(r2 +  a2) n *= i sin2
5i j , (D.1.2)

1 +  A a2 a (r2 +  a2)
1 -  A r2 n(l -  A r2)2 ’

2a2r 2a2( l +  Ao2) ( l +  A r2 +  Aa2) aa2( l +  A r2 +  2Aa2)
^  n ( l -  A r2)2(n ( l -  A r2) -  a r2)(r2 +  a2) I I ( r 2 +  a2) ( l — A r2)

and I I  =  (r2 +  a2)p, as before.
This metric allows separation of variables. Let

5 =  \ m 2A - E t  +  i t  +  Sr (r) +  £  SeM  •
^ i= l i= l

. (D.1.3)

(D.1.4)

t  and <fii are cyclic coordinates, so their conjugate momenta are conserved. The 
conserved quantity associated w ith time translation is the energy E, and the con­
served quantities associated w ith rotation in the 0 ,- planes are the corresponding 
angular momenta

Using this form of the action, the Hamilton-Jacobi equation separates as

—K 2( 1 +  Aa2) =  m2(r2 +  a2) +  V  (r2 +  a2) E - A a j ^ ^

a2r 2
( r2 +  a2)p_2( l — A r2)2(n ( l — A r2) — a r2)

2 a2E 2r 2

a (l +  Aa2) JL
r z +  az i= l

( r2 +  a2)p- 2( l -  A r2) (n ( l -  A r2) -  a r2) +  ^  +  °  ^  ̂

2 aaE n(l — A r2) — a r2 dSr
dr( r2 +  a2)p_1( l — A r2) r 2(r2 +  a2)p~2

where K 2 is a positive separation constant, and we get for the 6 dependence

2

= £
i= 1 _ (rifeJisin2 6k) COS2 6p- i+i

p- i -i
+  £  r r i- i o^2 ,

dS,9i
n L i sin 6k \  dOi

(D.1.6)
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To show complete separation of the Hamilton-Jacobi equation we must finish 
separation of the 9 equation. The separation is essentially equivalent to that 
done in appendix C for stationary string equations, having the inductive form 
for k =  1, ...,p — 2:

K l  W ek -  _  sin2 =  K 2
cos2 9k

K l+1 =  £
^p-l+ l

p-1 

+ £

d9k

1

fc+i >

'dS*

i=k+i (n }= l+ i sin2 9j) cos2 9i i=k+i HS=Ui sin2 9j \  d9% 

and the final step of

(D.1.7)

K 2A p-1
$2 ( i S , ^

i “ . 2  ̂ ' (D.1.8)
cos2 9P-1 sin2 i \  d9p^x 

Next, to derive equations of motion, we w ill use the action in its separated form

1 p r /---------  P_1
m2A -  E t +  Y  +  Sr /  y  R(r )dr +

i= l J i=1

w ith K 2 *2
e* = -k * -  ^ 4 5 - - - c r r . * = (d .i .io)sin 9k cos2

2 (1 +  Aa2)(r2 + a2)p~2r 2 (r2 + a2)p-1r 2 V r n2

S =  - m  
2 !X -  E t +  £  $i<t>i + f r  J \ fR (r)d r  +  £  * ,  /  (D.1.9)

i= l i=1

i? =  - K i

-m

n(l — A r2) — a r2 n(l — A r2) — a r2

2 (r2 +  a2)p_1 r 2 2ar2aE

£ - A a ] T $ ,
i=1

£ * <n(l — A r2) — a r2 (n(l — A r2) — a r2) ( r2 +  a2) ^

2 a2r*E 2 W  +  £  ( a L n )
(1 — Ar2)(n ( l — Ar2) — a r2)2 (n ( l — Ar2) — a r2) i~ 1

a2r 4 a (l +  Aa2) p n2
r 2 +  a2(1 — Ar2)2(n ( l — Ar2) — a r2)2

w ith Q and V  defined in (D.1.3). We also denote K 2 =  $ 2 so that the inductive 
definition given above applies for ©p_i.

To obtain the equations of motion, we differentiate S w ith respect to the param-
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eters m2, E , $ i , K 2 and set these derivatives to zero, giving us integral equations 
as before. We can then arrive at first order equations by the usual procedure, in 
particular for the r  and 9i equations, we get

. _ (n(l -  A r2) -  a r2)VR  
**r ( r2 +  a2)p-1r 2

9 =  c (1 +  Aa2) \ /5 i m  j  12n
1 ^  (r2 +  a2) n ;-1! sin2 9, ' ( • ■ )

Allowed orbits may only exist where R >  0, and radial turning points occur where
R =  0. Analyzing the A =  0 case for r  -4 oo, R has an asymptotic form of E 2 — m2.
Thus we can say that for E 2 < m2, we cannot have unbounded orbits, whereas
for E 2 > m2, such orbits are possible, exactly as one would expect. In the generic

2
case A ^  0, R  asymptotically behaves as Thus, for A < 0 only bound orbits 
are possible, but if  A > 0 then unbounded orbits may be possible.

D.2 The Scalar Field Equation

Next we w ill demonstrate the the Klein-Gordon scalar field equation also has a 
separation of variables in the Gibbons-Lii-Page-Pope metrics when we assume an 
even number of spatial dimensions w ith all a* =  a. We begin w ith the Klein-Gordon 
equation

1 dlx(V~99>1Ud ^ )  =  m V  (D.2.1)

For the metric determinant, we have

S = - B A ’ B  =  VX + X ^ 2 ' A ^  coe* f l , . (D.2.2)

The metric allows a m ultiplicative separation for tp as

=  e-iEtei ^ i<t>ipr {r)pe{9k) . (D.2.3)
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Then the r-9 part of the Klein-Gordon equation separates as

1 d /  /-n(l — A r2 — a r2) dtpr
m2ipr

2aaE JA l a i r=r\
n ( l -  A r2) §  V I *  I (r2 +  o?)p~l r 2 dr

a2r 2(r2 +  a2)
n(l -  Ar2)2( I I ( l -  A r2) -  a r2) 

2 a2r 2E 2(r2 +  a2)

E  +  jr  1
r 2 +  a2 2 = 1

, 1 +  Aa2 Ts .„
Pr A 2 i 1 iPr r 2 +  a2

n(l -  A r2)2( I I ( l -  A r2) -  a r2) Vr ® ^  ^ jCPr V

p
E - A a J 2 $  

2 =  1
<Pr, 

(D.2.4)

+ H  W a 8*  ( v /S i'* '‘’' w )  ’ (D -2-5)

where the constant to separate 9 from r  is K\ .  The 9 part w ill also completely 
separate as

p - i

Pe =  n <Pok(Pk) ■

1 p 

* !  =  - £  
VbU.

<5?

(D.2.6)
fc=i

The 9 separation then steps down inductively as

fc_1 K k
K l  ~ '5 2 C i+  T-rfc—1 - 2 Q >

i=1 11 Jl=1 Sln “ j
k = (D.2.7)

where

Ci =
d

<p9i cos 9i sin2p 2l 1 9i ITfcJi sin2 9k d9t
cos 9i sin2p 2% 16 dpei

dOi
(D.2.8)

$ 2 -0.1 ^p-i+i
cos2 9i I l j =i sin2 9j 

Then we have the complete separation of the 9i dependence as

R  _  Kk+x _  * p-fc+i
$2

+
sin2 6k cos2 9k (p9k cos 9k sin2p 2k 1 9k d9k

d ^cos9ksm9k^ ^ - (D.2.9)

Here there is a set of constants K{ separating out the 9 equations. Finally, we 
use the convention Kp =  —<J>2. This completes separation of the Klein-Gordon 
equation.
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