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Abstract

A Lagrangian incompressible fluid flow model is extended by including an im-
plicit surface tension term in order to analyze droplet dynamics. The Lagrangian
framework is adopted to model the fluid and track its boundary, and the im-
plicit surface tension term is used to introduce the appropriate forces at the
domain boundary. The introduction of the tangent matrix corresponding to
the surface tension force term ensures enhanced stability of the derived model.
Static, dynamic and sessile droplet examples are simulated to validate the model
and evaluate its performance. Numerical results are capable of reproducing the
pressure distribution in droplets, and the advancing and receding contact an-
gles evolution for droplets in varying substrates and inclined planes. The model
is stable even at time steps up to 20 times larger than previously reported in
literature and achieves first and second order convergence in time and space,
respectively. The present implicit surface tension implementation is applicable
to any model where the interface is represented by a moving boundary mesh.

Keywords: Finite element method, Droplet dynamics, Surface tension,
Implicit, Lagrangian

1. Introduction

Two-phase flows with strong surface tension effects are found both in nature
and engineering. Surface tension effects are dominant in fluids where Capil-
lary, Bond and Weber numbers are small. In this context, one can distinguish
two relevant cases: interaction of small liquid drops with air and motion of gas
bubbles in liquid. These are important in a wide range of applications such as
cavitation in pumps [1], icing in aircraft wings and wind turbines [2], condensa-
tion in heat exchangers [3], inkjet printing [4], and droplet shedding in fuel cell
channels [5].
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From a modeling perspective, all the above-mentioned phenomena pose two
key challenges: i) the detection of the interface between the different phases,
which (in the transient state) is continuously changing; and ii) the correct rep-
resentation of flow variable discontinuities across the interface. Fluids with
different viscosity result in velocity discontinuities in the direction tangential
to the interface. A discontinuous pressure gradient is obtained when there is a
density jump across the interface. Non-negligible surface tension leads to a dis-
continuity in the pressure field. Ultimately, modeling the surface tension force
itself is a complex task as the surface tension depends on (and, at the same time,
affects) the interface shape, leading to a strongly coupled non-linear problem.
Interface tracking and surface tension modeling approaches vary depending on
the kinematic framework used to model the problem.

Most commonly, two-phase problems are modeled using an Eulerian frame-
work on a fixed mesh. In this case, the interface is usually identified over
the fixed grid by a scalar function, i.e., a distance function in level set (LS)
methods [6] or a volume fraction in volume of fluid (VOF) methods [7]. The
interface, defined by the zero value of the scalar function, cuts the fixed grid
elements at arbitrary positions. Piecewise linear interface calculation (PLIC)
techniques [8, 9] are most commonly used for reconstructing the interface with
the VOF method and have been included in commercial codes [10]. In order to
represent the discontinuity in the flow variables across the cut elements, shape
function enrichment must be introduced [11].

Once the interface is identified, the surface tension is modeled in the vast
majority of existing commercial and academic codes, such as ANSYS Fluent [12],
GERRIS Flow solver (GFS) [13] or STAR-CCM [10, 14], using the so-called
continuum surface force (CSF) model [15], where surface tension is evaluated at
the historical time step of the transient problem. Such explicit implementation
of the surface tension term is simple: the force term evaluated on the basis
of the known interface configuration at the previous time step is added to the
residual of the linear momentum equation of the problem. Nearly all previous
work in literature stated that explicit formulations lead to a capillary time step
constraint due to the presence of surface tension effects [15, 16]. However,
Denner and van Wachem [17] recently suggested that the time step restriction
is related to the spatiotemporal sampling of capillary waves.

Few implicit models on fixed grids have also been developed. An implicit
formulation for surface tension dominated problems solved with the level set
method was developed by Hysing [18]. The formulation was implicit in space,
but semi-implicit in time. Using a fixed-grid approach, interface capturing can
be particularly challenging, especially in three dimensional examples and with
high order schemes. However, the mentioned model allowed using larger time
steps than those reported in previous work. An equation for the maximum time
step size depending on fluids’ properties and element size used was described by
Sussman and Ohta [16]. In their study, they relaxed this time step restriction
via a volume preserving mean curvature flow for the computation of the surface
tension boundary conditions. In general, a model can be fully implicit only if it is
able to accurately track the interface. The above-mentioned fixed mesh models
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can only be semi-implicit in time, and therefore they cannot be as efficient as
fully-implicit models for two-phase problems with surface tension effects. For
details regarding time step restrictions of semi-implicit schemes the reader is
referred to [18].

Mesh-moving Lagrangian and arbitrary Lagrangian Eulerian (ALE) two-
phase models have also been proposed. These methods have the advantage of
intrinsically tracking the interface as its position is defined by the mesh bound-
ary. The interface is represented by a set of elemental edges (2D) or faces (3D).
This allows for a precise representation of the interfacial discontinuities. In or-
der to represent the variable discontinuities at the interface nodes, degrees of
freedom are typically duplicated [19].

Several studies in literature proposed semi-implicit and implicit surface ten-
sion models using moving meshes. Slikkerveer et al. [20] introduced a two-
dimensional finite element (FEM)-based model with an implicit treatment of
the surface tension term. In this study, the authors observed that the max-
imum time step used still had to be reduced as the element size decreased.
An implicit variational formulation for the surface tension term was proposed
by Saksono and Perić [21]. However, the formulation relied on the assump-
tion of revolution symmetry of the problem. Thus, the developed methodology
could not be generalized. An enhanced version of the formulation to solve dy-
namic problems was presented in [22]. Due to accurate interface tracking, pure
Lagrangian formulations can be advantageous for implicit models. However,
domain movement may severely distort the interface mesh and therefore special
techniques must be developed in order to maintain its correct topology. A novel
semi-implicit approach was presented by Schroeder et al. [23] where the flow was
solved in a fixed mesh, and the interface was represented by a moving surface
mesh. The method was stable with a time step three times bigger than that for
an explicit scheme. Zheng et al. [24] recently extended the previous work with
an implicit model that used Lagrangian particles for the interface coupled with
a fixed mesh (i.e., Marker-And-Cell (MAC) grid). Results showed the stability
of the method even for a large time step of the order of 0.25 s.

Recently, a technique combining Lagrangian and Eulerian governing equa-
tions for the liquid and the gas phases, respectively, was proposed in refer-
ences [25] and [26]. The method was extended later for surface tension-dominated
problems in [5]. This approach, falling into the category of embedded or im-
mersed boundary methods, allows for accurate tracking of the material interface
and natural treatment of the interfacial discontinuities. An Eulerian formula-
tion for the gas phase is the most natural choice for describing vessel-filling
fluids (such as gas) with fixed external boundaries. On the other hand, repre-
senting the water domain using a moving mesh allows for tracking the air–water
interface exactly, without experiencing numerical diffusion and eliminating the
use of interface reconstruction methods [27]. The cost of re-meshing the La-
grangian domain is reduced when this domain represents a small fraction of the
total computational domain, which is the case of droplet dynamics simulations.
Thus, an embedded Eulerian–Lagrangian formulation for surface tension-driven
problems is particularly advantageous.
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In the present paper, an implicit surface tension model for moving meshes is
derived. The implementation of the proposed model in the existing Lagrangian
code is simple as it requires to add only an extra term to the elemental tangent
matrix (also known as Jacobian, which is the matrix of first-order partial deriva-
tives). The derivation originates from the idea of Hysing’s work [18], adapting
it to the moving-grid model and leading to a fully-implicit model. The surface
tension term is linearized leading to an interfacial Laplacian operator in the
tangent matrix of the governing system of equations ensuring stability of the
model, even when the time step is several orders of magnitude greater than the
one identified as critical for explicit schemes. The present model can be natu-
rally integrated into the embedded two-phase framework previously presented
in [5, 25, 28]. The main difference between the current model and state-of-the-
art implicit models, such as the model proposed by Zheng et al. [24], is that the
solution in the Lagrangian domain does not rely on a background fixed mesh,
but on the Lagrangian mesh itself.

In the following sections, the governing equations for the liquid with surface
tension effects are described and a finite element model is derived in the residual
form paying particular attention to the surface tension term. Then, a mesh-
based curvature computation algorithm is presented, the linearization of the
surface tension term is derived and corresponding tangent matrix specified. An
overall algorithm for the iterative solution of the non-linear problem is outlined.
Finally, the model is used to solve several benchmark problems in order to
demonstrate the validity of the formulation. The convergence rate of the method
is estimated.

2. Numerical model

Let us consider a spatial domain liquid, ΩL ⊂ Rn, where n ∈ {2, 3} (see
Fig. 1). The outer boundary of the fluid is designated as ΓI . In case that the
liquid domain is in contact with a solid substrate (e.g., sessile droplet), the part
of the boundary in contact with the substrate is denoted by ΓS .

Figure 1: Schematic representation of the considered single-phase system
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2.1. Governing equations

The governing equations for the fluid are the momentum and mass conser-
vation equations [29, 30]. Since the current work focuses on water droplets, and
considering water as an incompressible viscous Newtonian fluid, the governing
equations read [10, 31]:

ρ
∂v

∂t
+ ρ (c · ∇)v−∇ · (2µDv) +∇p = ρg on Ω (1)

∇ · v = 0 on Ω (2)

where ρ is the fluid density, v is velocity, t is time, µ is the fluid dynamic
viscosity, Dv = (∇v + ∇Tv)/2 is the strain rate tensor [31], p is pressure,
and g is the gravitational acceleration. The convective velocity c = v − vm,
where vm is the mesh velocity, is the relative velocity between the material and
the mesh. Selecting v = vm corresponds to the Lagrangian description (i.e.,
c = 0) [10, 31]:

ρ
∂v

∂t
−∇ · (2µDv) +∇p = ρg on Ω (3)

∇ · v = 0 on Ω (4)

2.2. Boundary conditions

In order to solve the problem at hand, governing equations (3) and (4) must
be complemented with boundary conditions. If not mentioned otherwise we
shall consider homogeneous Dirichlet boundary condition at ΓS :

v = 0 at ΓS (5)

At boundary ΓI , the following Neumann condition corresponding to the
surface tension is prescribed:

σ · n = γκn at ΓI (6)

where n is the unit normal to ΓI , γ is the surface tension coefficient and κ is
the boundary curvature.

Let us consider that the fluid Ω is surrounded by an external fluid in static
conditions with relative pressure pext = 0. Eq. (6) reads that the normal stress
across ΓI is balanced by surface tension. For an incompressible Newtonian fluid,
the Cauchy stress tensor is given by:

σ = −pI + µ
(
∇v +∇Tv

)
(7)

where I is the identity tensor. Projecting Eq. (6) onto normal and tangential
directions leads to the following conditions:

n · (σ · n) = γκ at ΓI (8)

t · (σ · n) = 0 at ΓI (9)
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Using (7) in the previous equation yields1:

p− µn ·
([
∇v + ∇Tv

]
· n
)

= γκ at ΓI (10)

For static drops, velocities are zero and the projection of viscous stresses onto
the normal direction can be neglected. Eq. (10) therefore becomes the Laplace-
Young equation:

p = γκ at ΓI (11)

The boundary conditions at the contact line (i.e., ∂Γ = ΓS∩ΓI) are discussed
in Section 2.4.4.

2.3. FEM discretization

Governing equations (3) and (4) are discretized in space using standard
mixed FEM with linear interpolation functions for velocity and pressure over
3-noded triangles or 4-noded tetrahedra. Time discretization is performed using
the second-order Newmark-Bossak scheme [27]. For the sake of simplicity, the
discretized equations are written using Backward Euler method. Neglecting the
transposed velocity gradient term leads to a componentwise Laplacian matrix
L. This assumption is used to simplify the governing equations. Limache et
al. [32] however showed that it is an acceptable assumption for low viscosity
fluids, such as water.

After discretizing the governing equations in space and time, the problem
can be stated as follows: Given v̄n and p̄n at tn, find v̄n+1 and p̄n+1 at tn+1 as
the solution of:

M
v̄n+1 − v̄n

∆t
+ µLv̄n+1 + Gp̄n+1 = F̄ + F̄st (12)

Dv̄n+1 = 0 (13)

where M is the mass matrix, L is the Laplacian matrix, G is the gradient matrix,
D is the divergence matrix, v̄ and p̄ are the velocity and pressure respectively, F̄
is the body force vector and F̄st is the surface tension force vector. The matrices

1In systems where there are surfactants or temperature changes, the surface tension co-
efficient is variable. However, surface tension gradients are not considered in the present
work.
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are assembled from the elemental contributions defined as:

Mab = ρ

∫
ΩX

NaN b dΩX = ρ

∫
Ω

NaN bJ(X) dΩ (14)

Lab =

∫
ΩX

∂Na

∂Xi

∂N b

∂Xi
ΩX =

∫
Ω

∂Na

∂xi

∂N b

∂xi
J(X) dΩ (15)

Gabi = −
∫

ΩX

∂Na

∂Xi
N bdΩX = −

∫
Ω

∂Na

∂xi
N bJ(X) dΩ (16)

Dab
i =

∫
ΩX

Na ∂N
b

∂Xi
dΩX =

∫
Ω

Na ∂N
b

∂xi
J(X) dΩ (17)

fai = ρ

∫
ΩX

NagidΩX = ρ

∫
Ω

NagiJ(X) dΩ (18)

fast,i = −
∫

ΓI,X

γκNanidΓX = −
∫

ΓI

γκNaniJΓ(X) dΓ (19)

where Na stands for the standard linear FE shape function at node a, and
index i refer to spatial components. ΩX is the element integration domain
corresponding to the updated configuration, Ω is the element integration do-
main corresponding to the reference configuration, and J(X) = dΩX/ dΩ and
JΓ(X) = dΓX/ dΓ are the Jacobians of the transformation between reference
and updated configurations. Note that due to the use of an updated Lagrangian
framework for the domain, the elemental integration domains in Eqs. (14)-(19)
must be recomputed according to the changing mesh configuration.

Discretized computational domain is shown schematically on Fig. 2(a) where
a moving mesh is used to represent the liquid domain. If one uses a fixed mesh,
an additional technique is required to track or reconstruct the outer boundary
ΓI . A possible representation of the droplet using a fixed mesh is displayed in
Fig. 2(b).

Figure 2: (a) Discretized domain using a moving mesh and (b) Possible discretization using a
fixed mesh
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The resulting system of equations can be solved using a monolithic scheme,
i.e., pressure and velocity are solved simultaneously [33], although any technique
not requiring inconsistent pressure boundary condition can be applied [25], [34].

The absence of pressure in Eq. (13) is the source of instabilities in the
solution for velocity-pressure interpolation pairs that do not fulfill the inf-sup
condition [31]. Linear velocity-pressure elements used here do not fulfill this
condition and thus must be stabilized. One option relies in relaxing the in-
compressible condition by adding an extra term that depends on pressure, as
shown in [27]. Another option is to add stabilization terms depending on mesh
size and time step. Different methods have been presented in literature, such
as Galerkin/least squares (GLS) [35], algebraic sub-grid scales (ASGS) [36], or-
thogonal sub-scales (OSS) [37] and finite increment calculus (FIC) [38]. In this
work, the ASGS stabilization technique is implemented because it is a symmetric
stabilization. The stabilized governing equations read:(

M
1

∆t
+ µL + SK

)
v̄n+1 + Gp̄n+1 = F̄ + F̄st + M

v̄n
∆t

(20)

(D + SD) v̄n+1 + SLp̄n+1 = F̄q (21)

where stabilization matrices are:

SabK =

∫
Ω

τ2
∂Na

∂xi

∂N b

∂xi
J(X) dΩ (22)

SabD =

∫
Ω

ρ

∆t
τ1
∂Na

∂xi
N bJ(X) dΩ (23)

SabL =

∫
Ω

τ1
∂Na

∂xi

∂N b

∂xi
J(X) dΩ (24)

faq =

∫
Ω

ρgi
∂Na

∂xi

( ρ

∆t
Na +Na

)
J(X) dΩ (25)

Note that matrix SL can be interpreted as a Laplacian term. The presence
of this term is particularly important for the computational efficiency of the
method [30].

Although the nonlinear convective term is absent in Eq. (20), the system of
governing equations is still nonlinear. This is caused by the definition of these
equations in terms of the unknown configuration Xn+1, defined as:

Xn+1 = Xn + ∆t vn+1 (26)

Therefore, the discrete operators defined by Eqs. (14)-(19), and (22)-(25) de-
pend on the unknown nodal position. An option often encountered in numerical
studies is to solve the nonlinear system of equations using a Newton-Raphson
method since it provides second-order convergence of the nonlinear iterative pro-
cedure. This can be achieved by expressing the governing equations in residual
form first:

r̄m = F̄ + F̄st −M
v̄n+1 − v̄n

∆t
− (µL + SK) v̄n+1 −Gp̄n+1 = 0 (27)

r̄c = F̄q − (D + SD) v̄n+1 − SLp̄n+1 = 0 (28)
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Then, expanding the residual using a Taylor series and neglecting terms of
second order and higher, the Newton-Raphson equation to solve is:

−

(
∂r̄m
∂v̄k

∂r̄m
∂p̄k

∂r̄c
∂v̄k

∂r̄c
∂p̄k

)(
dv̄
dp̄

)
=

(
r̄m
r̄c

)
(29)

where dv̄ = v̄k+1
n+1 − v̄kn+1 and dp̄ = p̄k+1

n+1 − p̄kn+1. Index k denotes the non-
linear iteration of the Newton-Raphson solution. Similarly to Eq. (26), the
unknown domain configuration at each nonlinear iteration k is computed as
Xk+1
n+1 = Xk

n+1 + ∆t dv. Derivatives of the residuals with respect to velocity
and pressure are easily obtained, and the system to solve reads:(

M 1
∆t + µL + SK + HST G

D + SD SL

)(
dv̄
dp̄

)
=

(
r̄m
(
v̄k, p̄k

)
r̄c
(
v̄k, p̄k

) ) (30)

The derivatives of the matrix operators at each nonlinear iteration are as-
sumed to be zero. Therefore, the current method can be classified as quasi-
Newton. Matrix HST is the result of linearizing the surface tension term with
respect to velocity. Including this term is necessary to overcome time step re-
strictions that appear in problems where surface tension effects are present2 [5,
15, 16, 18]. The derivation of this term is carried out next.

2.4. Surface tension term

The force term F̄st in Eq. (12) is the surface tension force, corresponding
to the projection of the Cauchy stress tensor onto the normal direction at the
domain boundary ΓI :

F̄st = −
∫

Γ

γκn ·w dΓ (31)

where γ is the surface tension coefficient, κ is the curvature of the boundary
and n is the unit normal vector to the boundary Γ. The negative sign in Eq.
(31) means that the surface tension force is a vector pointing inwards Ω when
ΓI is convex, and it points outwards Ω when the boundary is concave.

2.4.1. Curvature

To compute the surface tension, one must evaluate the curvature. In two di-
mensions, the curvature can be computed by a simple difference scheme (see [5]),
whereas in three dimensions, Meyer’s model [39] has been adopted here since it
is known to provide most accurate approximation in comparison with the other
available approaches [40]. According to Meyer’s model, the mean curvature
value, κ, of a given node is obtained using the following expression:

κ =
1

2
‖K(xa)‖ (32)

2Considering HST = 0 corresponds to methods where surface tension is integrated explic-
itly.
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where K(xa) is the mean curvature normal operator at node a:

K(xa) =
1

2AM

∑
b∈N1(a)

(
cotαab + cotβab

) (
xa − xb

)
(33)

where αab and βab are the two angles opposite to edge xaxb (Fig. 3), N1(a)
denotes the 1-ring neighborhood of node xa and AM is the Voronoi area associ-
ated to this node [39]. The normal vector n is simply obtained by normalizing
the vector K(xa) in Eq. (33). The sign of κ is determined by the direction of
vector n, being positive if the normal points outwards, and negative if it points
inwards.

Figure 3: 1-ring neighborhood of node xa with angles opposite to an edge, and Voronoi area
AM associated to this node

2.4.2. Implicit treatment of the surface tension term

Knowing the domain configuration at t = tn, and seeking the solution at
tn+1, an explicit treatment of the surface tension term implies that Eq. (31) is
obtained using the known domain configuration Xn

3. In this article, to avoid
excessive time step restrictions faced by explicit schemes [5], the surface ten-
sion term is treated implicitly by expressing it as a function of the unknown
configuration Xn+1:(

F̄st

)
n+1

= −
∫

Γn+1

γκn+1nn+1 ·w dΓ (34)

where κn+1 and nn+1 denote the curvature and normal vector obtained using
the unknown domain configuration Xn+1.

Let us define the identity map on an arbitrary surface Γ:

idΓ (x) = x ∀x ∈ Γ (35)

3For sake of clarity, the Jacobians of the transformations between x and X are omitted in
this section. However, this transformation is performed as shown in Eqs. (14)-(19).
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Then, the following properties can be defined [18, 41, 42]:

∇sidΓ = I− n⊗ n (36)

∆sidΓ = ∇s · (∇sidΓ) = −∇s · (n⊗ n) = κn (37)

where∇s is the surface gradient operator (i.e., the conventional gradient without
the component normal to the surface), and ∆s is the Laplace-Beltrami operator.

Using Eq. (37) in (34), yields:(
F̄st

)
n+1

= −
∫

Γn+1

γκn+1nn+1 ·w dΓ = −
∫

Γn+1

γ (∆sidΓ)n+1 ·w dΓ (38)

Integrating by parts and applying the surface divergence theorem [18, 20,
21, 22, 43], Eq. (38) reads:(

F̄st

)
n+1

= −
∫

Γn+1

γ (∆sidΓ)n+1 ·w dΓ

= −
∫
∂Γn+1

γmn+1 ·w d (∂Γ) +

∫
Γn+1

γ (∇sidΓ)n+1 · ∇w dΓ (39)

where ∂Γ is the boundary of Γ, and m is the normal of the boundary ∂Γ,
perpendicular to n and ds (unit vector tangent to ∂Γ), as shown in Fig. 4.

Figure 4: Interface domain, boundary and normal vector to the boundary

Note that Eq. (39) is evaluated over boundary Γn+1. A major drawback
of Eulerian formulations is that boundary Γ has to be explicitly found. This
task can be rather complex for high order time integration schemes, specially in
three dimensions, leading to significant errors [18]. The Lagrangian formulation
does not have this disadvantage since the position of the boundary is defined
by the deforming mesh.

Considering that the identity map is equal to the unknown configuration
Xk
n+1, it can be updated in every non-linear iteration (Eq. (29)) as follows:

(idΓ)
k+1
n+1 = (idΓ)

k
n+1 + ∆t dv̄ (40)
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This term depends on the variable of interest and can therefore be substi-
tuted in Eq. (39):∫

Γk+1
n+1

γ (∇sidΓ)
k+1
n+1 · ∇w dΓ =

∫
Γk
n+1

γ (∇sidΓ)
k
n+1 · ∇w dΓ+

+ ∆t

∫
Γk
n+1

γ∇s dv̄ · ∇w dΓ (41)

The second term on the right-hand side in Eq. (41) is a velocity Laplacian
that may be interpreted as a diffusion term added to the interfacial nodes in the
tangential direction. This term is responsible for stabilizing the surface tension
effects because it adds viscous dissipation at the interface. Note also that this
term is multiplied by the time step, and therefore it increases with step size.
Other surface tension models in literature, such as those of Slikkerveer et al. [20],
Hysing [18], Saksono and Peric [21, 22], Raessi et al. [44], and Sussman and
Ohta [16], also overcome the time step restriction using this term, as recently
shown by Denner et al. [45]. In this work, the Laplacian term is precisely
a consequence of the linearization of the surface tension term in the implicit
setting.

Since vector mn+1 also depends on the unknown configuration, the same
procedure is applied to the first term in Eq. (39) for its linearization, given
that:

mk+1
n+1 ≈mk

n+1 + ∆t dv̄ (42)

Note that Eqs. (40) and (42) are based on the same assumptions and there-
fore they are used to update the identity map and vector m at each nonlinear
iteration [18]. Thus, the first term in Eq. (39) yields:∫
∂Γk+1

n+1

γmk+1
n+1 ·w d (∂Γ) =

∫
∂Γk

n+1

γmk
n+1 ·w d (∂Γ)+∆t

∫
∂Γk

n+1

γ dv̄ ·w d (∂Γ)

(43)
Thus, the surface tension contribution that must be added to the left-hand

side (Hab
ST ) of the momentum equation (Eq. (29)) is given by the second terms

in Eqs. (41) and (43), respectively [42]:

Hab
ST = −∆t

∫
∂Γn+1

γNaN b d (∂Γ)+∆t

∫
Γn+1

γ
∂Na

∂xi
(δij − ninj)

∂N b

∂xj
dΓ (44)

The surface tension contribution in the right-hand side term (fast,i) is ob-
tained from the first term in Eqs. (41) and (43):

(
F̄st

)k
n+1

= −
∫
∂Γk

n+1

γmk
n+1 ·w d (∂Γ) +

∫
Γk
n+1

γ (∇sidΓ)
k
n+1 · ∇w dΓ (45)
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Using Eqs. (38) and (39), the right-hand term can be rewritten as follows:(
F̄st

)k
n+1

= −
∫
∂Γk

n+1

γmk
n+1 ·w d (∂Γ) +

∫
Γk
n+1

γ (∇sidΓ)
k
n+1 · ∇w dΓ

= −
∫

Γk
n+1

γ (∆sidΓ)
k
n+1 ·w dΓ

= −
∫

Γk
n+1

γκkn+1n
k
n+1 ·w dΓ (46)

or alternatively in index notation:

fast,i = −
∫

Γn+1

γκn+1N
ani dΓ (47)

Eq. (47) is the surface tension contribution term added on the right-hind side
of the momentum equation (Eq.(29)) in the present model.

2.4.3. Semi-implicit variant of the method

The current method allows for the semi-implicit treatment of surface tension
by simply removing the velocity Laplacian HST from the tangent matrix in
Eq. (29). Therefore, the only surface tension term added to the right-hand side
vector in Eq. (29) is the expression written in Eq. (47). In this case, all terms
depending on the unknown configuration (i.e., curvature, κ, and normal vector,
n) are only updated at the end of each nonlinear iteration.

2.4.4. Curvature at contact line and dynamic contact angle condition

According to Buscaglia and Ausas [42], the interfacial energy at ΓS (Fig. 1)
due to solid/fluid interaction is constant and therefore the surface tension term
in this region vanishes. The surface tension term along the contact line, ∂Γ
(Fig. 4), however is non-zero and requires special treatment. At the contact line,
the surface tension term must be applied using the normal vector corresponding
to the static equilibrium configuration, neq, instead of the actual normal vector
n [5], because at steady state both normals must coincide. The curvature at
the nodes that represent the contact line is computed using the average normal
vector4 at the contact line (n1 in Fig. 5(a)) and the normal vector at its nearest
neighbor node from ΓI (node 2 in Fig. 5(a)). The curvature at the contact line
(in 2D) is:

κ1 =

∥∥∥∥dnds
∥∥∥∥ =

‖n1 − n2‖
ds

(48)

4The normal vector at the contact line is computed as an average of its neighbor nodes:

n =

∑
i ni

N
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where ds is the distance between nodes 1 and 2. The same idea is applied for the
computation of the curvature in 3D. The computation of the curvature at the
nodes that belong to the contact line is obtained using Eq. (32). However, the
nodes that are in contact with the substrate and do not belong to the contact
line are excluded from the 1-ring neighborhood (see Fig. 5(b)).

Figure 5: (a) Normal vector at contact line node and its nearest neighbor to obtain the
curvature at contact line in 2D and (b) Voronoi area for a contact line node in 3D

For the special case of rough surfaces, the concept of static contact angle
cannot be used [46]. On rough surfaces, the contact line pins and the contact
angle changes from one equilibrium configuration to another. The present work
uses two threshold values, θmin and θmax, as contact angle conditions. The
contact line is fixed only within the range θ ∈ [θmin, θmax]. These maximum and
minimum values represent the measured contact angles for incipient motion
when the droplet is placed on a tilted plane of a given material [5]. Note also
that the contact angle might not correspond to that of the material due to
surface roughness as described by Wenzel and Cassie-Baxter models [47]. When
the dynamic contact angle is not fulfilled (i.e., θ < θmin or θ > θmax), the contact
line is allowed to move. In this case, instead of a no-slip boundary condition
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(Eq. (5)), a slip boundary condition is applied at the contact line nodes:

v · n = 0 (49)

where n is the unit normal vector of the substrate. More details on the dynamic
contact angle condition for rough surfaces can be found in [5].

2.5. Solution algorithm

The solution of the problem solved in the Lagrangian domain is summarized
next. Given the solution at tn, v̄n and p̄n, at the known configuration Xn, the
procedure to find the solution at time tn+1 is implemented in Algorithm 1.

Algorithm 1: Simulation of droplet dynamics using a Lagrangian formu-
lation

1 for t = tn+1 do
2 Identify the boundary of the Lagrangian mesh;

3 Current configuration is the known configuration: Xk
n+1 = Xn;

4 for nonlinear iteration k do

5 Obtain curvature at Xk
n+1;

6 Update discrete operators in Eqs. (14)-(18) and (22)-(25);
7 Compute fast,i using Eq. (47) and add to RHS in Eq. (29);

8 Compute Hab
ST using Eq. (44) and add to LHS in Eq. (29);

9 Solve Eq. (29) for dv̄ and dp̄;

10 Update velocity v̄k+1
n+1 = v̄kn+1 + dv̄ and pressure p̄k+1

n+1 = p̄kn+1 + dp̄;

11 Update configuration: Xk+1
n+1 = Xk

n+1 + ∆t · dv̄;
12 Remesh;

13 end
14 Xn+1 = Xn + ∆t · v̄n+1;

15 end

The process of remeshing may need to be performed since interior nodes
move according to equation Xk+1

n+1 = Xk
n+1 + ∆t · dv̄. A boundary-preserving

remeshing is implemented, which means that nodal connectivities are generally
not changed at the boundary. In case of boundary mesh stretching, local refine-
ment is applied. When considering the effects of the surrounding gas phase is
essential, the solution procedure is discussed in reference [25].

2.6. Implementation

The method was implemented within Kratos Multi-Physics, a C++ object
oriented FE framework [48]. The Newton-Rapshon method is used to solve
Eqs. (27) and (28). The resulting system of equations is solved using the bi-
conjugate gradient stabilized method (BICGSTAB). This method is known for
its ability to solve non-symmetric matrices with improved rate of convergence
and low computational cost when compared to other iterative methods, such as
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Table 1: Solver parameters used in the velocity and pressure solvers

Parameter Value
Newton solver max number of iterations 500

Velocity relative tolerance
(
‖dv̄‖
‖v̄n+1‖

)
10−4

Velocity absolute tolerance (Eq. (52)) 10−6

Pressure relative tolerance
(
‖dp̄‖
‖p̄n+1‖

)
10−4

Pressure absolute tolerance (Eq. (53)) 10−6

Linear solver iterative tolerance 10−8

Linear solver max number of iterations 5000

conjugate gradient squared (CGS), biconjugate gradient (Bi-CG) or generalized
minimum residual (GMRES) [49].

2.7. Input parameters

Table 1 shows the solver parameters used in the examples below, such as
absolute and relative tolerances for pressure and velocity and maximum number
of iterations.

Results were obtained using an Ubuntu 14.04 box with an Intel R© CoreTM

i7 CPU 4750HQ @ 2.0Ghz with 8 processors.

3. Results and discussion

3.1. Static droplet

The first example studies a static droplet in order to check that at steady
state: i) the pressure in the interior of the droplet is identical to the one provided
by the analytical solution, and ii) the steady configuration of the domain is
a sphere regardless of the initial domain shape. The analytical solution for
pressure is given by the Laplace-Young equation:

pL − pg = γ

(
1

R1
+

1

R2

)
= γ

(
1

R
+

1

R

)
=

2γ

R
(50)

where pL is the liquid pressure, i.e., pressure inside the droplet, pg is the gas
pressure outside the droplet (zero in this case), R1 and R2 are the principal radii
of curvature of the surface, and R = R1 = R2 is the radius of the sphere. Differ-
ent initial configurations are used: a) a spherical droplet with radius R = 0.25
m, b) a cubic domain of 0.5 m per side, where the boundary has either zero or
positive values for the curvature, and c) a step generated by removing a quarter
of the cubic domain is studied. The latter domain includes the challenging case
of having a corner where the curvature is negative.

The surface tension force is the only acting force and gravity is neglected
(g = 0). Fluid density, viscosity and surface tension coefficient are set to unity
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Table 2: Analytical solution for pressure at steady state (Eq. (50)), pressure at the interior of
the sphere and error between these two values.

Example 2γ/R [Pa] p [Pa] error [%]
Sphere 8 8.03 0.44
Cube 6.46 6.45 -0.15
Step 7.14 7.18 0.56

(ρ = 1 kg m−3, µ = 1 kg m−1 s−1, γ = 1 N m−1). Initial pressure in the liquid
is set to p0 = 0 Pa. The domain is meshed using triangular elements of size
h = 1/25 m and a time step size of 0.01 s is used. The predicted drop geometry
at several times during the simulation is shown in Fig. 6.

In all configurations, the steady state solution is achieved in less than 1 s
and the final geometry is a sphere. Computational time was less than 2 minutes.
Table 2 shows the value of 2γ/R, where R is the radius of the sphere obtained
at steady state, the average value of pressure in the domain and the relative
error between these two values. It can be observed that in all cases, the error
observed is less than 1%.

Volume conservation of the method has also been analyzed for the cube
geometry. Taking the initial volume, V0, as a reference, the evolution of relative
volume conservation error has been calculated as follows [50]:

EVi =
|Vi − V0|

V0
(51)

where Vi is the volume measured at time ti. The evolution of this magnitude
during the simulation is displayed in Fig. 7(d), showing values of relative con-
servation volume error of the order of 10−5. Previous models, such as that of
Denner and van Wachem [50], and Zheng et al. [24], reported values of EVi

between one and two orders of magnitude higher, indicating that the present
model has excellent volume conservation properties.

3.1.1. Convergence analysis

In order to study the effects of the surface tension term on the convergence,
the step geometry above is also solved for two additional cases:

• Case 1: Surface tension with semi-implicit formulation: the above exam-
ple but setting term HST in Eq. (29) to zero

• Case 2: Gravity dominated problem: the above example with gravity g
= 9.81 m s−2 and γ = 0, fixing the velocity of the lower boundary to 0,
as well as the normal component of the velocity of the lateral boundaries

The nonlinear procedure shown in Algorithm 1 is considered to converge
when both the norms of velocity, dv̄, and pressure increments, dp̄, are suffi-
ciently small. In order to check the convergence rate of the nonlinear iteration
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Figure 6: Domain evolution for the sphere (left column), cube (center column) and step (right
column) configurations
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Figure 7: (a) Velocity norm (Eq. (52)) and (b) pressure norm (Eq. (53)) evolution in the
nonlinear procedure, for case 1 (expl), case 2 (grav), and the proposed implicit model (impl).
(c) Velocity error dependence on mesh size for the implicit model (Eq. (54)), and (d) Evolution
of the conservation of volume error (Eq. (51)) for the step example

procedure, the following norms are computed:

vnorm =
‖dv̄‖
Nv

≤ εvel (52)

pnorm =
‖dp̄‖
Np

≤ εpress (53)

where dv̄ and dp̄ are the unknowns in the Newton-Raphson algorithm (Eq. (29)),
Nv and Np are the number of degrees of freedom for velocity and pressure,
and εvel and εpress are the tolerances for velocity and pressure, respectively.
Figs. 7(a) and 7(b) show the convergence rate for velocity and pressure for the
three considered cases at t = 0.05 s, using a time step size ∆t = 0.01 s.

Results show that both velocity and pressure converge quickly to the solution
(velocity (impl) and pressure (impl), respectively) for the implicit surface tension
case, with velocity and pressure reaching the desired tolerance of 10−6 in 5
iterations. The rate of convergence obtained is linear for both variables.

The explicit formulation (velocity (expl) and pressure (expl) in Fig. 7) also
shows a linear order of convergence, albeit with a smaller slope, for velocity
and pressure. The problem needs 7 iterations to converge. This indicates the
importance of including the tangent matrix corresponding to the surface ten-
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sion term for obtaining a correct linearization. Results in Figs. 7(a) and 7(b)
therefore show that the implicit variant of the method is more efficient than the
semi-implicit one.

The order of convergence for the gravity dominated problem remains linear.
Fig. 7(a) shows that the convergence of the velocity is very similar to that
from the implicit case. The pressure norm, however, converges at a slower rate
(Fig. 7(b)). Therefore, the order of convergence of the method is not affected
by the presence of surface tension.

The dependence of the accuracy of the method on the mesh size is also
measured. The fully implicit model is again considered, and the step geometry
is discretized with different mesh sizes, ranging from h = 0.1 to 0.04 m. A 1 s
simulation is performed, and the velocity of one node at the interface is compared
to the analytical solution (i.e., v = 0). The error in velocity is measured as the
L2-norm of the difference between the numerical solution, vh and the analytical
one:

εv = ‖vh − v‖L2 (54)

The error measured for each of the considered meshes is displayed in Fig. 7(c).
The lines corresponding to a linear and quadratic relationship between error and
mesh size are also plotted for reference. It can be observed that the error in
velocity has a quadratic relationship with the mesh size. Moreover, the fact
that the velocity error decreases with mesh refinement confirms the observa-
tions of Raessi et al. [44] and Denner et al. [45] that the extra viscous term
at the interface is proportional to the surface tension coefficient and the time
step, but inversely proportional to the mesh size. In the present method, this
viscous term is the above-mentioned velocity Laplacian term from Eq. (41), also
included in previous surface tension models [16, 18, 20, 44].

3.1.2. Effect of viscosity on stability

A parameter characterizing the ratio between viscous effects, and surface
tension and the inertial effects is the Ohnesorge number, defined as:

Oh =
µ√

2ργR
(55)

where µ is the dynamic viscosity, ρ is the density, γ is the surface tension
coefficient and R is a characteristic length, taken as the radius of the droplet
in this example. Settings chosen for the example in the previous sub-section
correspond to Oh ≈ 1.414. Therefore, viscous effects dominated over surface
tension and inertia. As the viscous effects are reduced, numerical stability is
more challenging. It is known that Oh < 0.01 define a challenging setting for
models accounting for surface tension typically leading to the spurious numerical
instabilities at the interface.

In this sub-section, the step geometry case in the previous section is solved
with different viscosity values in order to check the stability of the method.
Fig. 8 shows the evolution of velocity and pressure norms in the nonlinear pro-
cedure for different of Oh values.
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Figure 8: (a) Velocity norm and (b) Pressure norm evolution in the nonlinear procedure for
different values of the Ohnesorge number

The lowest Oh that can be simulated while maintaining the stability of the
solution is Oh = 0.002, which means that the method is stable even when surface
tension and inertial effects are dominant over viscous ones.

3.1.3. Time step analysis

A critical time step for solving surface tension dominated problems using a
fully explicit scheme was estimated by Sussman and Ohta [16]:

∆tcrit =

√
(ρL + ρG)h3

γ (2π)
3 (56)

where ρL is the density of the considered fluid, ρG is the density of the sur-
rounding fluid, γ is the surface tension coefficient between both fluids and h is
the mesh size. Using Eq. (56) with the properties described in Section 3.1, the
critical time step for the above-mentioned problem is 5 × 10−4 s. Although
other models consider viscosity effects on the time step restriction [17, 24, 51],
the current model focuses on the stability regarding the capillary time step
constraint.

The droplet example with the initial step geometry above is again reproduced
in order to: i) check the effect of time step size on convergence of the nonlinear
procedure, and ii) estimate the critical time step. The problem is solved for
several time steps, i.e., ∆t = 0.1, 0.01 and 0.001 s, and the maximum time step
is identified as the largest step in the set above that leads to convergence of the
Newton-Raphson problem at t = 0.5 s using the set tolerance for both velocity
and pressure norms in Table 1.

Effects of increasing ∆t on the performance of the nonlinear procedure are
shown in Figs. 9(a) and 9(b). For the three different time steps chosen, the rate
of convergence is similar. Results indicate that increasing the time step two
orders of magnitude (i.e., from 0.001 to 0.1 s) leads to one (for velocity norm)
and two (pressure norm) extra iterations for the convergence of the nonlinear
procedure. Therefore, such increase of the time step does not impoverish the
overall performance of the method.
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Figure 9: (a) Velocity norm and (b) pressure norm evolution in the nonlinear procedure for
several time steps, and (c) velocity error dependence on time step size
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Table 3: Maximum time step (∆tmax) in the simulations using the implicit (impl) and semi-
implicit (semi) formulations, and ratio between them (∆tmax (impl) / ∆tcrit (semi)).

Example ∆tmax (semi) [s] ∆tmax (impl) [s] Factor
Cube 0.01 0.1 10

Step (impl) 0.01 0.1 10

For the maximum time step size (i.e., 0.1 s), the nonlinear procedure con-
verges to the desired tolerance after 8 iterations. For ∆t = 0.001 s, the solution
is reached after 6 iterations, one more than the ∆t = 0.01 case. Although this
may seem counter-intuitive, the term HST in the tangent matrix, corresponding
to linearization of the surface tension term (Eq. (44)), is proportional to the
time step size, and therefore reducing the time step size leads to a decrease in
this term. Thus, an optimal time step size exists such that the initial solution
to the linear solver is appropriate and the step size is not too small.

The dependence of the accuracy of the method on the time step size has
also been measured. Different time step sizes, ranging from ∆t = 0.1 to 0.01 s
have been considered. A 1 s simulation has been performed, and the velocity
of one node at the interface is compared to the analytical solution (i.e., v = 0).
The error in velocity is measured as the L2-norm of the difference between the
numerical solution, vh and the analytical one (Eq. (54)). The error measured for
each of the considered meshes is displayed in Fig. 9(c). The lines corresponding
to a linear and quadratic relationship between error and mesh size have also
been plotted for reference. It can be observed that the error in velocity has a
linear relationship with the time step size.

Maximum time step has also been studied for step size = {0.01, 0.02, ..., 0.1}
for the step case considering both implicit and semi-implicit formulations5 (i.e.,
with and without the linearized surface tension term HST ). Table 3 shows
a comparison between the critical time step for the problem at hand for the
implicit and semi-implicit formulations. In both examples, the maximum time
step for the implicit formulation was 10 times higher than that for the semi-
implicit one. The critical time step for the latter case (i.e., ∆tsemi

max = 0.01 s) is
20 times higher than the critical time step resulting from Eq. (56) because the
formulation is semi-implicit.

Raessi et al. [44] reported that the time step restriction in their model could
be exceeded by a factor of 5 while maintaining the stability of the solution. In
the current formulation, this factor can be as high as 200. However, this value
is lower than the factor of almost 1000 reported by Zheng et al. [24].

5The sphere example does not have a limiting time step since the initial configuration of
the domain coincides with the steady state one. Thus, regardless the time step used for the
simulation, the solution always converges to the desired tolerance in a few iterations.
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Table 4: Comparison of the best VOF model in [52] and the present model.

Method 〈P 〉 /Pexact L2 L1 |umax,1| |umax,50|
PROST 1.0007 3.02×10−3 7.18×10−4 1.14×10−7 5.69×10−6

This work 1.0003 3.57×10−4 3.12×10−4 4.38×10−8 1.22×10−6

3.1.4. Comparison with VOF: pressure accuracy and parasitic currents

A simplified version of the static drop example in two dimensions is con-
sidered here. This example has been performed by many authors in literature
due to its simplicity. Gerlach et al. [52] performed a comparison between three
different VOF methods. For each of them, the average pressure, 〈P 〉, defined as
the sum of nodal pressures divided by the total number of nodes, as well as L1

and L2 error norms were computed. The error norms were defined as:

L1 =

∣∣∣∣∣
∑N
i Pi − Pexact

NPexact

∣∣∣∣∣ L2 =

[
(
∑N
i Pi − Pexact)

2

NP 2
exact

]0.5

(57)

where Pi was the nodal pressure at node i, Pexact was the analytical solution
for pressure (Eq. (11)), and N was the number of nodes.

A circular droplet of radius R = 0.02 m is considered, with the following
properties: ρ = 1000 kg m−3, µ = 10−5 kg m−1 s−1, γ = 0.02361 N m−1. The
droplet is surrounded by an external fluid, represented by a square domain of
L = 0.06 m per side, and ρG = 500 kg m−3. Both domains are discretized with
triangular elements of size h = 0.001 m. The time step size is 10−5 s, which is
the same value used in [52]. Average pressure and pressure errors between the
best VOF model reported by Gerlach et al. [52] and the model presented in this
work have been compared, and results are shown in Table 4. The ratio between
mean pressure and the exact value is closer to 1.0 for the present model, and
the L1 and L2 errors obtained are smaller as well.

The static drop example neglects all external forces, and therefore surface
tension should balance a constant pressure within the droplet at the interface.
It has been observed that spurious velocities, i.e., “parasitic currents”, appear
as a numerical artifact [23, 45, 52, 53]. Gerlach et al. [52] obtained the maxi-
mum velocity norm in the domain at the first time step, |umax,1|, and after 50
time steps, |umax,50|. These values are compared as well in Table 4, showing
that parasitic currents are smaller for the present model. Fig. 10(a) shows the
velocity field within the droplet, where parasitic currents appear close to the
interface. This observation has been reported by other state-of-the-art models,
such as the ones presented by Popinet [53], and Schroeder et al. [23].

Gerlach et al. [52] also performed a mesh-sensitivity analysis for the present
example, the only difference being the density of the surrounding fluid, i.e.,
ρG = 1 kg m−3. Mean pressure, pressure errors and maximum velocities were
measured for three different mesh sizes: h = 0.2, 0.1, and 0.05 m. Comparison
between the two models is shown in Table 5. Errors measured for the current
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Figure 10: Velocity fields for (a) the static droplet example at t = 50 × 10−5 s, and (b)-(d)
for the sessile droplet examples.

25



Table 5: Comparison of the best VOF model in [52] and the present model.

h [m] 〈P 〉 /Pexact L2 L1 |umax,1| |umax,50|
PROST

0.2 1.0048 4.83×10−3 4.81×10−3 7.82×10−8 3.91×10−6

0.1 1.0009 9.79×10−4 9.48×10−4 1.70×10−7 8.53×10−6

0.05 1.00007 5.25×10−4 7.04×10−5 4.34×10−7 2.17×10−5

This work
0.2 1.0012 1.25×10−3 1.25×10−4 6.08×10−9 4.09×10−7

0.1 1.0003 3.57×10−4 3.12×10−4 4.38×10−8 1.22×10−6

0.05 1.00007 3.65×10−4 7.85×10−5 4.26×10−7 3.55×10−6

model are lower than those obtained by Gerlach et al. [52].

3.2. Dynamic drop

The present model can be used to simulate the oscillations of a free droplet.
This phenomenon has been studied in literature by Lamb [54] and Prosperetti [55],
among others. Prosperetti [55] proposed a model for the temporal evolution of
the droplet interface. If a perturbation was introduced at the interface with an
initial amplitude An0, it was predicted that the amplitude of this perturbation
decayed exponentially:

An = An0 exp

(
− t

τn

)
(58)

where τn was a time constant for the decay that depended on the fluid proper-
ties [55]:

τn =
ρR2

µ (n− 1) (2n+ 1)
(59)

where R was the radius of the initially unperturbed free droplet, and n is the
oscillation mode.

A spherical droplet with radius R = 1 m, p0 = 0 Pa, γ = 1 N m−1, ρ = 1
kg m−3, and µ = 0.01 kg m−1 s−1 exposed to an initial perturbation on the
interface of amplitude An0 = 0.01 m is simulated to compare numerical and
analytical results. The domain is meshed using triangular elements of size h =
1/25 m and a time step size of 0.01 s is used. The temporal evolution of the
amplitude corresponding to mode 2 of oscillation is displayed as a black solid line
in Fig. 11(a). The solution is compared to the model proposed by Prosperetti
in reference [55], shown in Fig. 11(a) as a black dashed line. Figs. 11(b)- 11(d)
show the evolution of the domain shape through the simulation.

Two additional values for the viscosity have been considered: µ = 0.1 and
µ = 0.001 kg m−1 s−1. Results for the simulations and analytical solutions are
shown in green and blue lines in Fig. 11(a), respectively. The predicted solution
in all three cases has good agreement with the analytical one.
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Figure 11: (a) Temporal evolution of amplitude of oscillation of mode 2 according to the
present model (solid lines) and the analytical solution (dashed line) presented in [55], for
different viscosity values, and (b)-(d) shape evolution of the droplet during the simulation
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Figure 12: Computational domain for the capillary waves example. Both fluids are initially
at rest, with their interface shaped following a sinusoidal function with amplitude 0.01 m and
wavelength 1 m.

3.3. Capillary waves

Many surface tension models in literature have included the dispersion of
capillary waves benchmark study [45, 52, 56, 57], therefore this study is also
analyzed here. Two fluids, initially at rest, are considered with the following
properties6: ρ1 = 0.1 kg m−3, ρ2 = 1 kg m−3, µ1 = 1.6394×10−4 kg m−1 s−1,
µ2 = 1.6394×10−3 kg m−1 s−1, and γ = 0.25 π−3 N m−1. Gravity is neglected
and surface tension is the only acting force. The domain is represented by a
square of 1 m per side, where each fluid occupies half of the domain, as displayed
in Fig. 12.

A capillary wave is introduced at the interface by giving it the shape of a
sinusoidal curve with initial amplitude a0 = 0.01 m, and wavelength λ = 1 m.
The domain is discretized using three different meshes with elements of 1/16,
1/32, and 1/64 m in size, and the time step is ∆t = 0.001 s. A slip boundary
condition is applied to all boundaries of the domain, and the motion of the
interface between the fluids is given by surface tension. The analytical solution
for the temporal evolution of the amplitude of the capillary wave was given by
Prosperetti [58], and it is displayed in Fig. 13 (black solid line).

The effects of mesh size on the numerical solution are assessed first. Results
for the three different mesh sizes (i.e., h = 1/16, 1/32, and 1/64 m) considered
for the present case of study are shown in Fig. 13(a). The mesh quality clearly

6Although the case with density ratios ρ2/ρ1 = 10 is also analyzed in Prosperetti’s
study [58], most authors in literature choose the ratio ρ2/ρ1 = 1. The reason why a ra-
tio of 10 is chosen in this work is because for density ratios close to 1, the numerical solution
becomes unstable. This has been reported in literature as “Added-mass effect”[59, 60]. This
is the first example using the embedded formulation [25] where the effect has been manifested.
Why it appears in this case and not in other examples, and how to alleviate it will be the
subject of future studies.
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affects the frequency and amplitude of the solution. Whereas the meshes with
16 and 32 elements show higher frequency than the analytical solution (black
dotted line), the solution with the finest mesh (i.e., the one with h = 1/64
m) shows a frequency almost identical to the analytical one. However, this
solution also has more damping than the other two. This effect is probably
caused by the velocity Laplacian term. A mesh sensitivity study was performed
and shown that a mesh with 64 elements per side provides a grid independent
solution. Therefore, meshes with less elements result in an overprediction of the
vibration frequency, while further refinement yields the same solution.

In order to check the effects of the velocity Laplacian on the solution, the
same simulation has been performed using the semi-implicit variant of the
method. In this case, only the finest mesh (i.e., h = 1/64 m) is considered.
The corresponding result is depicted in Fig. 13(b) (orange dashed line). The
solution obtained has almost identical frequency and amplitude than the ana-
lytical one, indicating that the semi-implicit variant of the current method is
capable of reproducing the solution proposed by Prosperetti [58].

3.4. Sessile drop in different substrates

Sessile drop simulations are performed to validate the model capability of
representing wetting on solid substrates. The initial configuration for the do-
main is a cube of 1 mm in each side. The domain is discretized using tetrahedral
elements of h = 0.1 mm and a time step ∆t = 10−2 s. Three different substrates
are considered, characterized by a static contact angle of θS = 70, 90 and 135
deg, respectively. The only acting forces on the droplet are gravity and sur-
face tension. However, for the considered droplet size, surface tension effects
dominate over gravitational forces since the Bond number is less than 17.

The droplet domain evolution on the three considered substrates is displayed
in Fig. 14. At t = 0 s, the domain is not deformed. Immediately after starting
the simulation, the interface ΓI is deformed by the surface tension force and
the curvature is minimized (i.e., the corners vanish). Then, the contact line
starts to move until equilibrium is reached within 1 s. The computational time
required for each example was approximately 1h.

In order to measure the error in the simulations, the difference between the
modeled contact angle and the prescribed value for each substrate is computed.
The obtained contact angle and the difference between the theoretical static con-
tact angle and the angle observed in the simulation once equilibrium is reached
are shown in Table 6. The value of contact angle at steady state is in good
agreement with the prescribed contact angle, giving a maximum relative error
of 0.68%. Simulations were repeated for smaller mesh sizes (i.e. h = 0.05 and
0.01 mm), and results varied less than 3%.

7

Bo =
ρgd2

γ
=

1000 · 9.81 ·
(
10−3

)2
0.072

≈ 0.14 < 1 (60)
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Figure 13: Temporal evolution of the amplitude of the capillary wave (a) for different mesh
sizes, and (b) the numerical solutions the implicit and semi-implicit variants of the present
model compared to the analytical solution from Prosperetti [58].
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Figure 14: Evolution of droplet along time with (left column) θS = 70 deg (center column)
θS = 90 deg and (right column) θS = 135 deg

Table 6: Prescribed (θS) and obtained (θobs) contact angles, and relative error (εθ) between
these variables

θS = 70 deg θS = 90 deg θS = 135 deg
θobs [deg] 69.58 90.61 135.73
εθ [%] -0.6 0.68 0.54

31



For a similar simulation, Buscaglia and Ausas [42] used a time step of 2 ×
10−7 s, which is five orders of magnitude smaller than the one used in the
present study. Parasitic currents have also been observed in this example. Their
distribution is shown in Figs. 10(b)-10(d) for the three different substrates. A
similar distribution was obtained by Buscaglia and Ausas [42], although they
did not report their magnitude. In this work, the maximum velocity obtained
at steady state ranged between 10−6 and 10−5, being higher for the case with
θS = 70 deg. This value is in agreement with the results shown in Table 5.

3.5. Sessile drop on an inclined plane

On a recent publication [5], a two-dimensional version of the proposed model
was used to predict the deformation of a sessile droplet placed on a horizontal
substrate (SIGRACET 24BC, GDL side) that is then tilted at a constant rate
of 0.4 deg s−1. Results were compared to the experimental observations using 3
different droplet volumes. In this example, the same problem is solved in three
dimensions.

Fluid properties for air and water are the following: ρa = 1.2 kg m−3,
ρw = 1000 kg m−3, µa = 1.98×10−5 kg m−1 s−1, µw = 10−3 kg m−1 s−1, and
γ = 0.072 N m−1. These values are taken at a reference temperature T = 298 K
and pressure p = 1 atm. Gravity is also included in this example, with g = 9.81
m s−2. Mesh size in the three different cases depends on the droplet diameter,
so the ratio D/h = 20 elements, where D is the droplet diameter and h is the
mesh size, is used as the criteria to generate the mesh. Time step in all cases is
∆t = 0.01 s.

Fig. 15 shows the comparison between the results obtained with the current
three-dimensional model and experimental and numerical results reported in
reference [5]. The 3D model is able to capture the experimentally observed
nonlinear behavior whereas the 2D model showed a linear relationship between
contact angle and plate tilt angle.

There is good agreement between the numerical and experimental data for
the 10 and 30 µl-volume droplets (Fig. 15(a) and 15(c)). For the 20 µl-volume
droplet (Fig. 15(b)), the receding contact angle does not show the same agree-
ment. It can be observed that in this case, the receding contact angle has
a different behavior compared to the other two cases. This could be due to
non-uniform surface roughness or chemical heterogeneity of the substrate.

This example has the advantage that the droplet is initially at rest, and the
configuration coincides with the steady-state one. Moreover, air is in quiescent
conditions. Overall, the droplet does not undergo large deformations, which
means that the model reaches convergence in a few iterations. This can be
observed in Fig. 15(d), where the evolution of the velocity norm in the nonlinear
procedure is shown for the three droplet volumes. The norm of the velocity is
lower than 10−6 in just 4 iterations. Pressure norms had similar trends in the
three cases, but with values one order of magnitude higher. Therefore, choosing
an absolute tolerance of 10−6 for velocity and 10−5 for pressure is enough for
this particular problem.
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Figure 15: (a)-(c) Comparison between the measured contact angle from reference [5] (square
and diamond markers) and the results obtained with the 2D and 3D model, and (d) velocity
norm evolution during the iterative procedure at t = 10 s.
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4. Summary and conclusions

In this paper, a finite element model for incompressible flows with surface
tension effects has been presented and coupled to a Lagrangian fluid flow solver.

The use of a Lagrangian description for the liquid domain allows for the rep-
resentation of the boundary via a boundary mesh. Not only it allows to track
the evolving boundary without any additional technique, but it also facilitates
the computation of the curvature necessary for the surface tension evaluation.
Differential geometry has been used to derive the tangent matrix corresponding
to the surface tension. This term alleviates the time restrictions characteris-
tic of explicit surface tension models. The proposed model is relatively easy
to implement within an existing moving-mesh framework since only an extra
Laplacian-like term needs to be included in the tangent matrix in order to treat
the surface tension implicitly.

Steady state droplet geometry studies show that present model predictions
coincide with analytical ones for the examples considered. The maximum time
step obtained for the proposed method is 20 times higher than that reported
in reference [16]. Increasing step size is critical in order to perform simula-
tions of processes that might take several minutes such as in fuel cell droplet
shedding [28]. The method has second order accuracy in space and first order
accuracy in time. The dynamic droplet example shows that predicted temporal
decay of the perturbation matches the theoretical prediction shown in refer-
ence [55]. Volume conservation of the method has also been assessed, showing
errors of the order of 10−5, which is between one and two orders of magnitude
lower than state-of-the-art models [24, 50].

Pressure accuracy and parasitic current magnitude have also been compared
to VOF-based models [52], obtaining better results with the present model.
Parasitic currents have also been observed in the sessile droplet examples, where
it has been concluded that their magnitude increases for lower contact angle
values.

The validity of the model to study sessile droplets on different substrates
and on a tilting plate has been demonstrated by comparison to experimental
data. Results for droplets in a tilted plate show that the contact angle evolution
is nonlinear with respect to the tilt angle. This observation is consistent with
the experimental data obtained and can only be predicted by three-dimensional
simulations.
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