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Abstract 

In this research, the relationship between microscopic car-following models and 

macroscopic models has been explored and it was found that, based on the 

traditional assumption that traffic density equals to the inverse of space headway 

under steady state homogeneous traffic conditions, most of the existing 

macroscopic speed-density relations can be derived from microscopic 

car-following models. The traditional assumption does not hold under 

non-homogeneous traffic, in which a different headway-density relationship has to 

be formulated and a class of macroscopic traffic models can be derived from the 

new formulation. 

For model application, first, the compatibility between the macroscopic and 

microscopic simulation was investigated. The microscopic simulation model, 

VISSIM, was calibrated and validated on Whitemud Drive, an urban freeway in the 

city of Edmonton, Alberta. The VISSIM outputs were compared with the predicted 

traffic speed, density and flow from the second-order macroscopic model, 

METANET. Three levels of traffic demands and seven different time step lengths 

in macroscopic simulation were applied to evaluate the compatibility of the two 

models. It was concluded that, in macroscopic simulation, there exists an 

optimum time step length. Under moderate to heavy traffic demands, the 

predicted traffic states from the macroscopic simulation are consistent with the 

outputs from the microscopic simulation, and under stop-and-go traffic states, a 

significant difference exists between the two models. 
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In addition, the impact of merging and weaving from freeway ramps on the 

performance of macroscopic simulation models was experimentally investigated. 

Several merging and weaving formulations in speed dynamics were evaluated and 

their contributions to the predicted traffic speed were quantitatively analyzed. 

Analysis of variances were carried out on the prediction errors from different 

models and it was concluded that, for the given formulation, the impact of merging 

and weaving terms on the prediction accuracy was not statistically significant. 

Based on these findings, merging and weaving terms can be omitted in macroscopic 

simulation models. This will improve model computation efficiency and simplify 

model calibration. 

Finally, several improvements on the macroscopic simulation models were 

proposed, including boundary conditions on density dynamics and various 

modifications on speed dynamics. The improved models were applied to two 

freeways and compared with outputs from the original model, using both 

simulation data as well as field measured data from Whitemud Drive and Berkeley 

Highway Laboratory system in California. Based on the simulation results, it was 

concluded that the models with the proposed improvements have obviously better 

performance than the original model, especially in congested traffic conditions. 

The improved models can catch most of the significant sudden speed drops 

resulting from traffic congestion. 
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Chapter 1 Introduction 

 

1.1 Introduction 

Traffic congestion is one of the major problems in modern society. The 

ever-increasing number of vehicles and travel demands on roadways leads to traffic 

jams that not only cause tremendous time losses but also compromise road safety and 

increase air pollution. The areas that most suffer from these problems are large cities 

and freeways. Recurrent congestion occurs regularly during peak hours at freeway 

bottlenecks, on-ramp and off-ramps. Non-recurrent congestion often takes place as a 

result of traffic incidents, road construction, maintenance as well as inclement 

weather conditions. Congestion causes inefficient operation of freeways and 

increased user costs. Expanding road infrastructure is one of the solutions, but is 

often constrained by the available right-of-way and capital investments. A more 

efficient use of existing road networks is a promising solution that transportation 

practitioners have been seeking. Active Traffic Management (ATM), such as ramp 

metering (RM), variable speed limits (VSL) and route guidance (RG), are 

state-of-the-art methods in Intelligent Transportation Systems (ITS), which aim to 

improve the efficiency of the existing roadways.  
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RM is an on-ramp control measure to reduce or eliminate recurrent traffic jams 

on freeways by restricting the number of vehicles allowed access to the mainline 

freeway from on-ramps, so as to achieve and maintain capacity flow and avoid 

congestion on the freeway near the ramps. This is achieved by placing traffic control 

signals at the freeway on-ramps. The traffic signals regulate the number of vehicles 

allowed to enter the freeway, depending on the traffic states on the mainline freeway. 

As RM will increase the waiting time of vehicles at the on-ramps, a trade-off 

exists between reducing congestion on the freeway and keeping the queue length at 

the on-ramp to an acceptable level, because if the queues at the on-ramps are too 

long, it may block the roadway network connected to the on-ramps. With proper 

control settings, the total delay for the freeway and the on-ramps can be reduced. 

According to its principle, RM can only affect the section immediately 

downstream of the controlled ramps. It has no control of the behaviour of vehicles 

already on the freeway and, thus cannot mitigate traffic congestion caused by 

disturbances on the freeway itself. Traffic breakdowns may happen at weaving or 

lane-drop sections (Persaud et al. 1998, Chung et al. 2007, Şahin and Altun 2008) or 

locations with geometric constraints, such as sharp curves and steep upgrades. Other 

control measures, such as VSL and RG, need to be used to deal with those situations. 

Unlike ramp metering, VSL can only control traffic flow on the mainline 

freeway. It does not have direct control of vehicles entering from on-ramps. The 
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main purpose of VSL is to increase the traffic flow on the mainline freeway by 

reducing or eliminating the effects of traffic shock waves, which can lead to 

congestion. The use of VSL along freeway mainlines is in an effort to control 

collective driver behaviour, so as to reduce the speed differences between vehicles. 

This will make traffic flow more stable, smooth and have a higher flow rate. In 

addition, VSL systems can reduce the risk of collision due to the reduced speed 

differences and provide warning to drivers about hazardous roadway conditions. It 

can also postpone or prevent congestion and reduce emissions and fuel consumption. 

Benefits, such as improved traffic flow rates, lower travel times, smooth speed and 

density distribution and possibly lower pollution, have been discussed in literatures 

and in some cases analyzed using mainly macroscopic traffic flow models (Bertini et 

al. 2006; Hoogen and Smulders 1994, Abdel-Aty et al. 2006a; Abdel-Aty et al. 

2006b; Lee et al. 2006; Lee et al. 2004; Lee et al. 2003; Piao and McDonald 2008). 

A route guidance system suggests alternate routes for particular destinations; 

these alternate routes may have better traffic conditions. The systems typically 

display traffic information on variable message signs (VMSs) that point out the 

alternative routes or provide information about the delay, queue length or travel time 

on the alternative routes (Heutinck at el. 2006, Kotsialos at el. 1999). Route guidance 

attempts to provide the information available to drivers in regards to their route 

choice decisions. By directing some traffic flows to alternate roadways, the RG 
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system can reduce the non-recurrent congestion on freeways. RG is helpful mostly in 

the case of a non-recurrent event that makes the traffic conditions unpredictable 

(Wang et al. 2006). It can be implemented with the existing infrastructure and only 

limited investments are required. The network level benefit of the RG system has 

been studied by many researchers (Koutsopoulos and Lotan 1989, Mahmassani and 

Jayakrishnan 1991, Al-Deek and Kanafani 1993, Emmerink et al. 1995, and Hall 

1996). It has been shown that the total travel time can be reduced by using the RG 

system compared to the situations without the RG system. 

Independent applications of RM, VSL and RG have been in existence for many 

years. Combined applications are limited due to complexity of control and 

coordination of all measures. To systematically implement those traffic control 

systems, complex model predictive control (MPC) has to be applied. MPC (Camacho 

and Bordons 1995, Maciejowski 2002) of traffic flow is an online control technique 

used for optimal control of ramp metering, VSL or a combination of several control 

measures. It uses traffic models to predict the future traffic state evolution for a given 

traffic demand. This approach utilizes traffic models to design the traffic control 

measures in such a way that the desired control objectives are achieved (such as to 

reduce the total travel time, or to maximize the flow number, etc.). MPC is 

preferable because it operates in a closed loop (Gartner 1984), in which the traffic 

states and the current demands are regularly fed back to the controller. 



  

5 

To effectively manage and control traffic flow and improve mobility, traffic 

state variables need to be accurately predicted in real-time. These will rely on 

appropriate traffic flow models to simulate and forecast traffic flow states. The first 

attempts to develop a mathematical theory for traffic flow dated back to the 1930s 

(Greenshields 1935, Adams 1936), but even until today, we do not have a 

satisfactory and general mathematical theory to describe various real-world traffic 

flow conditions. This is because traffic phenomena are complex and nonlinear, 

depending on the interactions of a large number of vehicles. Moreover, vehicles do 

not interact simply by following the laws of physics but are also influenced by the 

psychological reactions of human drivers. As a result, we observe chaotic 

phenomena, such as cluster formation and backward propagating shockwaves of 

vehicle speed/density (Bose et al. 2000), that are difficult, if possible, to be 

accurately described with mathematical models. Because of this, in traffic control, 

simulation models are often applied. Simulation models can be broadly categorized 

into microscopic models, mesoscopic models and macroscopic models, each of 

which has its respective focus of applications. Macroscopic simulation models are 

suitable for real-time traffic control due to the low computational complexity and 

relative ease of calibration. However, macroscopic models may overlook detailed 

local variation of traffic state conditions, such as local traffic disturbance, which may 

lead to traffic breakdown. 
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Microscopic simulation can describe the detailed operation on merging, 

diverging and weaving sections. However, due to the high demand of computation, it 

is difficult to use them for online control of large-scale networks. In many situations, 

macroscopic and microscopic models can be used on the same project to their 

respective advantages. For example, prior to the field implementation of a traffic 

control strategy, the effects of the control strategy are often evaluated using 

microscopic simulations to check whether the control strategy will have the expected 

performance. This can be carried out off-line and usually there is not much of a time 

limitation to calibrate and adjust the microscopic simulation model. Once the 

microscopic simulation shows that the traffic control strategy is appropriate, it can be 

implemented in the field using macroscopic models for online traffic state prediction 

and control. There is an important question that needs to be answered: can the 

outputs from the microscopic simulation represent the outputs from the macroscopic 

simulation under varying traffic conditions? There are still many issues on the 

applications that need to be further studied. 

1.2 Statement of Problems  

Macroscopic traffic models are often used to predict future traffic states for MPC 

purposes. In practice, traffic models need to be transformed into discrete form with 

respect to time and space. Time is discretized into short time slots (time intervals or 
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time steps) and space (roadway) is discretized into short segments. Traffic states are 

predicted at each time step and appropriate control values are exercised based on the 

predicted traffic states in the near future. This requires high accuracy of models to 

predict traffic states under a wide range of traffic conditions. Several elements affect 

model performance, but have not been clearly studied. These are discussed in the 

subsequent sections. 

1.2.1 Relationship between Microscopic and Macroscopic Models 

One of the fundamental differences between microscopic and macroscopic traffic 

flow models is the scale of variables. Microscopic models track the behaviour of 

each individual vehicle in relation to the roadway and other vehicles in the flow. 

Microscopic characteristics (individual vehicle speed, time or distance headway, 

acceleration/deceleration, vehicle properties, etc.) pertain to an individual vehicle 

and may be significantly different than the other vehicles in front or behind it. 

Macroscopic models describe traffic flow in terms of the macroscopic 

characteristics, such as flow, speed (time-mean speed or space-mean speed) and 

density. They are average properties of the traffic flow as a whole for a particular 

location (at a cross section or on a section of roadway) at a time instant or within a 

time interval. 

Microscopic traffic models and macroscopic traffic models are derived from 

different perspectives to describe the same physical phenomenon of traffic flow. 
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There are some studies on the relationship between microscopic and macroscopic 

models. However, most of them were established based on steady state, 

homogeneous conditions with the assumption that density equals to the inverse of the 

space headway (Gazis 1959, May 1990) or researchers derived a macroscopic model 

from a specific microscopic model without the headway-density relationship, as in 

the gas-kinetic model (Pregogine and Herman 1971). It will be shown that the 

assumption that density is the reciprocal of headway is questionable under 

non-homogeneous traffic conditions and, therefore, it is worthwhile to further 

explore the relationship when the assumption is changed. 

1.2.2 Compatibility between Microscopic and Macroscopic Simulation Models 

Both microscopic and macroscopic simulations are widely used in transportation 

studies. Microscopic simulation can explicitly capture interactions among individual 

drivers and represent the driver’s response to traffic control devices at the individual 

vehicle level. However, this type of application is usually off-line and lacks 

predictive control functions. On the other hand, the application of macroscopic 

simulation models is aimed at large-scale roadway networks (Kotsialos  et al. 2002, 

Carlson et al. 2010) or online (real time) traffic control to reduce congestion and 

improve mobility (Lu et al. 2010, Hegyi et al. 2005a, 2005b). 

Due to traffic operation safety and cost constraints, it is not practical, sometimes 

even impossible, to carry out experiments of various control measures on freeways. 
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Traffic simulation is often used for experimental investigation purposes. The effects 

of a control strategy are often evaluated prior to the field implementation of online 

traffic control using microscopic simulations to determine whether the control 

strategy will have the expected performance. In this way, the optimal control policy 

for various traffic conditions can be determined based on several experimental 

settings and then used in actual field traffic control. 

There are several technical issues that need to be studied before we use the 

results from microscopic simulation to evaluate online control with macroscopic 

models. Do both macroscopic and microscopic models provide similar traffic state 

results under all traffic conditions, including light traffic, moderate traffic and 

heavily congested traffic? From the previous study carried out by Cremer et al. 

(1981), we know that simulation time step plays an important role in macroscopic 

simulation. In previous studies on macroscopic simulation, various time steps were 

used on different highways (Shladover et al. 2010, Papageorgious et al. 1989, Lamon 

2008 and Wu 2002). There has not been a systematic study as to how to set the 

appropriate time step and whether there is an optimal time step for a particular 

roadway. If there is an optimal value, does it vary with traffic demand? These issues 

are addressed in the present thesis. 
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1.2.3 Impact of Ramp and Weaving on Macroscopic Simulation Models 

Freeways have on-ramps and off-ramps. An independent on-ramp may end as a lane 

drop and form a merge area. If an on-ramp is immediately followed by an off-ramp, 

a weaving section is formed. Traffic operation near merge areas or on weaving 

sections is different from that on normal sections. At the individual vehicle level, 

both merging and weaving involves lane-changing behaviour and drivers need adjust 

their own speed as well as find and wait for suitable gaps on the target lane and then 

make the appropriate maneuver. As a result of this process, their speed changes, and 

so does the distance between vehicles. On the macroscopic level, aside from free 

flow traffic conditions, a weaving section usually has a lower speed and capacity 

than sections without merging and weaving. The speed of the traffic flow is affected 

by vehicles merging, diverging or weaving. Furthermore, the impact of on-ramp 

flows is important in the formation of traffic jams near the on-ramp area. This 

congested traffic state indicates the complex phenomena caused by merging vehicles 

from on-ramps. 

Most of the macroscopic modelling efforts on freeway traffic have mainly 

concentrated on describing uninterrupted traffic flow on freeway sections without 

ramps. The investigation of interrupted traffic flow due to on-ramps, off-ramps and 

weaving sections is far from completion. In many studies on freeway macroscopic 

simulation, the impact of on-ramps, off-ramps and weaving sections had been either 
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subjectively conjectured (Papageorgious et al. 1989, Ngodgy 2006) or omitted due to 

the lack of data from ramps (Shladover et al. 2010). How they affect the performance 

of macroscopic simulation has not yet been systematically studied. 

1.2.4 Improvement of Macroscopic Simulation Models 

The core of model predictive control (MPC) is the macroscopic traffic models for 

traffic state prediction. The accuracy of traffic state prediction not only affects the 

control decisions that will be assigned by the controller, but it will also affect the 

model calibration and validation process, which is often based on the optimization of 

traffic flow, in which both the modeled outputs and field measured data are used. 

Most of the second-order macroscopic models have similar structures to the 

METANET model (Messmer and Papageorgious 1990), which has been used for 

many freeway online traffic controls, ramp metering controls and traffic state 

predictions due to its model structure, discrete form and the fact that it contains both 

speed and density dynamics. Previous studies (Lu el al. 2011, Lamon 2008) showed 

that there are some problems regarding speed and density dynamics in macroscopic 

simulation models. The speed dynamics used in the previous studies do not catch 

quick and significant changes in congested traffic conditions (Lu et al. 2011). Under 

stop-and-go traffic states, considerable prediction errors exist between the measured 

data and the model-predicted traffic states. In addition, boundary constraints were 

not appropriately considered in some models, which will also affect the prediction 
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accuracy. From the field studies (Lu et al. 2011), under congested traffic or at 

locations where the roadway and speed limits change rapidly, the predicted traffic 

states from the original METANET model did not well-match the measured data. 

Traffic jams often involve a situation where the traffic state changes rapidly over a 

short distance. To model this phenomenon, traffic models need to be sensitive 

enough to catch these details. Therefore, this problem should be investigated to 

improve model performance under various traffic conditions. 

1.3 Research Objectives and Scope 

This research is part of a larger research project on the implementation of VSL 

control on an urban freeway (Whitemud Drive) in the city of Edmonton, Canada. 

This freeway was also selected as a test bed for Connected Vehicle-related research 

by the Transportation Association of Canada (TAC). Based on this road, various 

ITS-related studies and research have been carried out. 

The present research intends to provide fundamental support for the macroscopic 

modelling and real-time control of traffic flow on freeways and solve several 

technical issues related to the models. The overall objective of the research is to 

investigate macroscopic traffic modelling to improve traffic state prediction. This 

can be broken down into several specific sub-objectives: 
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(a) Explore the relationship between microscopic and macroscopic traffic flow 

models and their underlying links. This will help us to better understand the 

difference between the two kinds of traffic models, their intrinsic properties 

and their application for the purposes of traffic control and cross-validation. 

(b) Study the compatibility of microscopic and macroscopic simulation models 

under various traffic conditions. This can be achieved by comparing the 

performance of a microscopic simulation model, VISSIM (PTV 2010), and a 

macroscopic simulation model, METANET (Messmer and Papageorgious 

1990), under various traffic conditions, to evaluate how the time-step length 

and traffic demand impacts the macroscopic simulation performance and to 

determine the most appropriate time-step length that will be used in VSL 

control on the studied urban freeway. 

(c) Investigate the impact of ramp and weaving sections on macroscopic model 

performance and provide experimental evidence as to whether explicit 

merging and weaving terms should be included in the speed dynamics of 

macroscopic traffic simulation models. If merging and weaving terms have 

significant impact on the model predicted results, they should be included in 

the model to improve prediction accuracy. Otherwise, they may be omitted to 

simplify model calibration and improve computation efficiency. 
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(d) Modify, improve and extend macroscopic models to improve the accuracy of 

traffic state prediction so as to provide a realistic representation of traffic 

dynamics, in particular, for congested traffic flow operations. This can be 

achieved through investigating different speed dynamics and applying 

appropriate boundary conditions on density dynamics to improve prediction 

accuracy of the second-order macroscopic models.  

As indicated previously, this research intends to provide fundamental support of 

macroscopic traffic modelling. The research was focused on non-controlled traffic 

operations. The scope of this research is restricted to freeways, including on-ramps 

and off-ramps as well as weaving sections. Arterial roads with signal controls were 

not included in the study. However, the methodologies and principles used in this 

study can be extended and applied to other types of roadways. The research was 

carried out using both simulations and field data obtained from the studied freeways. 

The main study site is illustrated in Figure 1.1 and the research flow chart is shown 

in Figure 1.2, respectively. 

1.4 Research Contributions 

The work presented in this dissertation explored several fundamental aspects of 

microscopic and macroscopic traffic models and the link between them. Important 

factors that affect macroscopic traffic simulation, such as time steps, traffic demand, 
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merging and weaving, were experimentally investigated. These factors are directly 

related to the application of model predictive control and online traffic state 

predictions. There are several major contributions of this research to the 

state-of-the-art knowledge in transportation fields: 

(1) Identified the impact of headway-density relationship on the derivation of 

macroscopic traffic models. 

The relationship between various microscopic car-following models and 

macroscopic speed-density models has been studied for several decades. It was 

found that almost all existing macroscopic speed-density relationships can be derived 

from the stimulus-response type of microscopic models based on the equilibrium, 

homogeneous traffic assumption that traffic density equals to the inverse of space 

headway. In this research, using the same assumption, a generalized macroscopic 

speed-density relationship was derived from a generalized microscopic car-following 

model. The research showed that this assumption does not hold for 

non-homogeneous traffic, and slightly changing the headway-density relationship 

will result in different macroscopic models. Using a mathematical definition of 

density and a new headway-density approximation, a macroscopic model that 

includes relaxation, convection, anticipation and diffusion (or viscosity) components 

was derived from a microscopic model corresponding to the delayed response of 

drivers. 
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(2) Identified the compatibility between microscopic and macroscopic simulation 

models and determined the optimum time step for macroscopic simulation. 

Two important factors that impact macroscopic simulation, namely time step and 

traffic demand, have been systematically studied and their effect on the performance 

of macroscopic simulation models was determined. It was found that in macroscopic 

simulation models there exists an optimum time-step length at which the 

macroscopic models have the best prediction accuracy. Under moderate to heavy 

traffic demands, the predicted traffic states from the macroscopic simulation are 

consistent with the outputs from the microscopic simulation, and under stop-and-go 

traffic states, significant differences exist between the two models. This finding can 

serve as a practical guideline for macroscopic simulation and online traffic control 

and can improve prediction accuracy by using the optimal time intervals. With this 

knowledge, any macroscopic online control strategy can be pre-tested and evaluated 

with microscopic simulation for different scenarios, so that the most effective control 

strategy can be implemented.  

(3) Quantified impact of merging and weaving terms on macroscopic simulation 

model performance, and concluded that merging and weaving terms do not 

have significant impact and can be omitted in macroscopic simulations. 

The impact of merging and weaving due to ramps on the performance of 

macroscopic simulation models was experimentally investigated. Several merging 
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and weaving configurations in speed dynamics were evaluated and their 

contributions to the predicted traffic speed were calculated. Analysis of variances 

were carried out on the performance of both the base model (without merging or 

weaving terms) and the models with explicit merging and weaving terms. It was 

found that, although merging and weaving impacts prediction accuracy, these 

impacts are not statistically significant. Based on these findings, merging and 

weaving terms can be omitted in macroscopic simulation models. This will simplify 

model calibration, increase computation efficiency and does not significantly impact 

prediction accuracy. 

(4) Quantitatively analyzed each component of density and speed dynamics in 

macroscopic simulation models. 

A program code was developed in the Matlab (2010) environment, which can 

evaluate each component of the density and speed dynamics of the macroscopic 

simulation models. The value of each component of the density dynamics and speed 

dynamics of macroscopic simulation models were quantitatively analyzed for both 

average values during the full simulation time period and at a specific time step. This 

allows researchers to quantify the impact of relaxation, convection and anticipation 

in the speed dynamics and help with the adjustment of models to improve model 

performance. 
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(5) Proposed methods to improve macroscopic simulation models to provide 

better prediction accuracy. 

This research proposed several methods to improve the performance of macroscopic 

simulation models. These include adding boundary conditions to the density 

dynamics, modifying the convection and anticipation terms of the speed dynamics as 

well as using various factors in speed dynamics. The modified models were applied 

to two freeways and compared with the outputs from the original model as well as 

the field-measured data. According to the modelling results, the models with the 

proposed improvements have an obviously better performance than the original 

model, especially for congested traffic conditions. The improved models can catch 

most of the significant sudden speed drops resulting from traffic congestion. 

1.5 Organization of the Dissertation 

As shown in Figure 1.2, the focus of this research is the macroscopic traffic 

simulation modelling. Four major areas of studies related to the research focus were 

carried out: The relationship between microscopic and macroscopic traffic models 

(Chapter 3); the compatibility between microscopic and macroscopic traffic 

simulation (Chapter 4); merging and weaving impacts on macroscopic traffic 

simulation modelling (Chapter 5) and the improvements of macroscopic traffic 

simulation models (Chapter 6). These four subtopics, together with a comprehensive 
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review of traffic flow models (Chapter 2) as well as research conclusions and 

recommendations (Chapter 7) form the whole dissertation. 

A flow chart describing the main components of the thesis is shown in Figure 1.3. 

There are seven chapters in this dissertation: 

Chapter 1 gives an introduction of the relevant research background, statement 

of problems as well as the objectives and scope of this research. The main 

contributions of this research are also summarized in this chapter. 

Chapter 2 presents a comprehensive literature review on traffic flow models 

with a special focus on microscopic car-following models as well as first-order and 

second-order macroscopic models. The traffic models are reviewed with respect to 

their categories in terms of level of detail, scale of independent variables and nature 

of independent variables. Various microscopic car-following models are presented. 

On the macroscopic level, both first-order and second-order models and their 

respective advantages and disadvantages are discussed. Various modelling 

approaches for traffic congestion are also discussed in this chapter.  

Chapter 3 explores the relationship between microscopic and macroscopic traffic 

models. The derivations of macroscopic speed-density relations from various 

car-following models are presented. Detailed discussions on how the assumptions of 

the headway-density relationship impact the model derivation are provided. 
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Chapter 4 studies the compatibility between microscopic and macroscopic 

simulation models. The predicted flow, density and speed from a macroscopic 

simulation model are compared with those from a microscopic simulation model, 

using METANET and VISSIM respectively, on a section of urban freeway. Three 

levels of traffic demands and seven different time-step lengths in macroscopic 

simulation were applied to evaluate the compatibility of the two models, based on 

which, the optimal time step in macroscopic simulation is determined. 

Chapter 5 experimentally investigates the impact of freeway merging and 

weaving impacts on the performance of macroscopic simulation models. Several 

configurations of merging and weaving terms are evaluated and compared with the 

base model with respect to accumulated prediction errors. Data from both 

microscopic simulation and field loop detectors are used in the model performance 

evaluation. Based on these data, all relevant model parameters are estimated using an 

optimization technique (model calibration). Each macroscopic simulation model is 

independently calibrated and then used to simulate traffic operations on the studied 

freeway. Analysis of Variances (ANOVA) are carried out to evaluate the variation of 

prediction errors of different models, based on which, the statistical significance of 

merging and weaving impacts on macroscopic model performances are discussed. 

Chapter 6 investigates different methods to improve the accuracy of traffic state 

prediction. Boundary conditions are proposed for density dynamics. Several potential 
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speed dynamics are proposed and applied in a modified simulation model. Both 

original and modified models are calibrated and validated with the data from two 

freeways. The simulation results from both the original model and the improved ones 

are compared with the measured data.  

Chapter 7 summarizes the main conclusions of this research and discusses 

recommendations for future research works related to macroscopic traffic flow 

models and simulation. 
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Figure 1.1 The 9-km study site between west of 111 Street and west of 159 Street (Courtesy: city of Edmonton) 
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Figure 1.2 Research flow chart
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Figure 1.3 Flow chart of the main content of the thesis 
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Chapter 2 Overview of Traffic Flow Models 

 

Traffic flow models have been studied for over half a century, from simple one-regime 

linear speed-density relationships to multi-regime, multi-class, nonlinear models. In 

this chapter, an overview of those models, from their historical evolution to their 

nature, is provided. 

2.1 Historical Review of Traffic Models 

Since the mid-1950s, each decade has been dominated by a certain modelling 

approach (Helbing, 2001). In the fifties, the propagation of shock waves was 

described by fluid-dynamic models for kinematic waves (Lighthill and Whitham 

1955, Richards 1956). In the sixties, the investigations concentrated on microscopic 

car-following models (Chandler et al. 1958, Gazis et al. 1961). During the seventies, 

gas-kinetic models (Prigogin and Herman 1971) for the spatio-temporal change of 

the speed distribution were flourishing. The simulation of macroscopic models 

(Payne 1979, Cremer and Papageorgiou 1981) began in the late seventies and early 

eighties. In the nineties, discrete cellular automata models (Nagal 1996, 1998) of 

vehicle traffic and the cell transmission model (CTM) were developed (Daganzo 

1994a, 1994b). Hybrid simulation began sometimes around the end of the last 

century (Nökel and Schmidt 2002, Bourrel and Lesort 2003, Burghout et al 2005). At 

present, the research focus is on the systematic investigation of the dynamic 

solutions of models, and the application of ITS on freeway corridors and networks. 
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2.2 Category of Traffic Models 

Traffic models can be classified based on different perspectives, such as the level of 

detail represented in the model, the scale of independent variables, the nature of 

variables used in modelling, etc. These classifications are summarized in Table 2.1. 

So far, the majority of the applications of traffic models are microscopic and 

macroscopic, which are discussed in more detail later in this chapter. 

2.2.1 Level of Detail 

According to the level of detail, traffic models can be classified as sub-microscopic, 

microscopic, mesoscopic and macroscopic models:  

(a) Sub-microscopic models are highly detailed descriptions of vehicle motions 

and interactions, where even the behaviour of specific vehicle sub-units, such 

as shift of transmission, is considered in the model (Hoogendorn, 2001].  

(b) Microscopic models take each individual vehicle as a unit and its motion and 

interaction with adjacent vehicles are incorporated in the model. They track 

the motion of each vehicle and operate based on the properties of each 

vehicle and on a set of rules. Typical examples of this kind of model are the 

car-following models for longitudinal movement and the lane-changing 

models for lateral movement on multi-lane roadways, on-ramps and 

off-ramps. In the car-following models, each vehicle is considered separately 

and its behaviour is modeled as it reacts to and anticipates vehicles in front 

by a dynamic equation. 

(c) Mesoscopic models are medium-detailed models where small groups of 

interacting vehicles are traced, instead of individual vehicle units (Barcelo 
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2010). Furthermore, behavioural information can be incorporated by means 

of probabilistic terms.  

(d) Macroscopic models are low-detailed representations of traffic states using 

aggregated variables, such as flow, average speed and density. They describe 

the collective effect of many vehicles. Individual vehicle motions and 

interactions are completely neglected. This type of model is often based on 

hydrodynamic analogies and is also called a continuum model. 

2.2.2 Scale of Independent Variables 

According to the scale of independent variables, traffic models can be classified as 

continuous models and discrete models: 

(a) The independent variables of continuous models are changing continuously 

and instantaneously both in time and space; i.e., the domain of the temporal 

and spatial variables are t ∈ [0, ∞), and x ∈ [0, ∞), respectively. These 

models are often formulated as differential equations in which time and space 

are treated as continuous variables over the study domain. Most of the 

car-following models are examples of this approach and so are 

hydro-dynamic macroscopic models. 

(b) Discrete models assume discontinuous changes in both time and space. 

Accordingly, traffic states are described temporally and spatially at discrete 

steps along the roadway. For example, the cellular automata model (CA) 

(Nagel 1996, 1998) uses integer variables to describe the dynamic state of the 

system, in which the time is discretized into steps and the roadway is divided 

into short sections (cells) that can be either occupied by a vehicle or empty. 
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The CTM is another example of a discrete model in a macroscopic scale, in 

which the roadway is divided into a distance that vehicles travel in one time 

step in free flow traffic conditions. 

2.2.3 Nature of Independent Variables 

According to the nature of independent variables, deterministic and stochastic 

models are distinguished according to the representation of the traffic states. 

Deterministic models assume exact relationships without randomized model 

components. Stochastic model descriptions use random variables and a probabilistic 

approach to describe traffic states. 

2.3 Microscopic Traffic Models 

Microscopic traffic models describe longitudinal car-following and lateral 

lane-changing behaviour of individual vehicles. They model the behaviour of 

individual vehicles in relation to the roadway and other vehicles in the traffic flow. 

Microscopic models are often used in the form of microscopic simulation, in which 

vehicles are tracked through the network over small time intervals (usually less than 

one second). Traffic states can then be aggregated to compare with measured data. 

Car-following models are a major part of the microscopic model category. They 

describe the processes by which drivers follow each other in the traffic stream. 

Car-following models are commonly divided into classes or types depending on the 

utilized logic. There are three main types of car-following mechanisms: safe distance 

models, stimulus-response models and psycho-spacing models. An extensive review 

of car-following models was provided in Brackstone and McDonald (2000) and 

Rothery (1999). 
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2.3.1 Safety Distance/Collision Avoidance Model 

In safety distance or collision avoidance models, the driver of the following vehicle 

is assumed to always keep a safe distance from the vehicle in front, so that a collision 

will never happen. The safe distance can be specified following Newton’s equations 

of motion, and is calculated as the distance that is necessary to avoid a collision if the 

front vehicle decelerates suddenly. 

Pipes (1953) developed a microscopic car-following model by relating the 

velocity of a vehicle to the minimum headway that the driver usually keeps with the 

vehicle in front of it for safety purposes. In the model, the minimum safe distance 

between the leader and the following vehicle was assumed to be a function of the 

speed of the following vehicle (in miles per hour [mph]) and the length of the vehicle 

(in feet [ft]) in front, as indicated in Equation (2.1). This equation indicates that the 

minimum safe distance between two vehicles corresponds to one car length at a 

minimum, and that it increases by one car length for every 10-mile increment in the 

speed of the following vehicle. 

           (2.1) 

 

Where, ln is the length of vehicle in feet (ft), (xn+1)' is the speed of the following 

vehicle (mph). The 1.47 is a conversion factor to convert from mph to ft/s. Pipe’s 

model is a simple linear car-following model. 

There is another safe distance model based on the minimum time headway 

between two vehicles. This model, developed by Forbes et al. (1958), assumed that 

the minimal time headway was equal to the class-specific reaction time and the time 
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required for the vehicle to travel a distance equal to its length. This formulation is 

very similar to Pipe’s theory. 

A more complicated formulation of the safe distance model was provided by 

Kometani and Sasaki (1959): 

           (2.2) 

Where τ is the reaction time, α, β, γ and b0 are constants (model parameters) that 

need to be determined in model calibration. This model is a nonlinear regression 

model with parameters related to the speed of the pair of vehicles. 

2.3.2 Stimulus-Response Model 

The majority of car-following models fall in the class of stimulus-response models. 

The basic formula to describe the stimulus-response behaviour is: 

Response (t+τ) = Sensitivity x Stimulus (t)            (2.3) 

A stimulus at time t together with the driver’s sensitivity causes a driver reaction 

after a reaction time τ. The stimulus is usually represented by the relative velocity 

(speed difference) of the leading and the following vehicle or the spacing between 

the two vehicles. The response is represented by the acceleration of the following 

vehicle.  

(a) First GM car-following model 

Typical stimulus-response models were studied by a group of researchers at General 

Motors (GM) (May 1990). The first GM model (Chandler et al. 1958) assumed that 

the sensitivity term was a constant and the response was in the form of: 

           (2.4) 

Where, α is the sensitivity of the following vehicle that needs to be determined in 
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experiments or model calibration. This model is a linear model with speed difference 

as the stimulus. During the model calibration, a wide range of sensitivity values were 

observed (May 1990). 

(b) Second GM car-following model 

Realizing that the sensitivity may be different in acceleration and deceleration, the 

researchers proposed the second GM car-following model using different sensitivity 

factors for acceleration and deceleration, respectively: 

           (2.5) 

 

This is still a linear car-following model with different sensitivity values: α1 and α2. 

The second GM model can be symmetrical or unsymmetrical. A symmetrical model 

uses the same parameter values in both acceleration and deceleration situations, 

whereas an unsymmetrical model uses different parameter values in acceleration and 

deceleration situations. The asymmetric car-following theory was based on an 

extension of this idea by Herman and Rothery (1965) and Newell (1965). 

(c) Third GM car-following model 

In the process of improving car-following models, GM researchers developed the 

third model: 

           (2.6) 

 

Where, α0 is a constant. This is a nonlinear car-following model with the sensitivity 

inversely proportional to the distance between the two vehicles. 

(d) Fourth GM car-following model: 
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The fourth GM car-following model was proposed with the purpose of further 

improving the sensitivity term by including the speed of the following vehicle in the 

sensitivity: 

           (2.7) 

 

Again, it is a nonlinear car-following model with more consideration to the 

sensitivity term. 

(e) Generalized GM car-following model 

The family of GM’s car-following models has evolved with the attempt to improve 

the description of the sensitivity of the following vehicle. This includes introducing 

the distance between two vehicles (as in the third model) and the speed of the 

following vehicle (as in the fourth model) and considering exponents of both speed 

and distance as in the general form. The general form of stimulus-response model is 

described below and widely referred to as the Gazis-Herman-Rothery (GHR) model 

(Gazis et al. 1961). 

 

           (2.8) 

Where,       represents position and speed of the leading vehicle, respectively, 

and            represents position, speed and acceleration of the following 

vehicle, respectively. m is the speed exponent and l is the distance headway exponent. 

By assuming different values of m and l, several special cases of car-following 

models can be obtained. In Chapter 3, we will show that, under steady state traffic 

conditions, the generalized GM car-following model is mathematically related to 
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several macroscopic speed-density relationships. 

The GHR models assume that the follower reacts to small changes in the relative 

speed. The models also assume that the follower reacts to the actions of the leader, 

even though the distance to the leader is very large, and that the follower’s response 

disappears as soon as the relative speed is zero. This is obviously different from 

real-world traffic. These shortcomings can be corrected by either extending the 

GHR-model with additional regimes, e.g., free driving, emergency deceleration, etc., 

or by using a psycho-physical model or fuzzy logic-based models. 

2.3.3 Intelligent Drive Model 

The intelligent drive model (IDM) was developed in the late 1990s (Treiber et al. 

1999). It is a microscopic model expressed as a vehicle’s acceleration in a nonlinear 

differential equation: 

           (2.9) 

 

Where, a is a model parameter that gives the maximum possible acceleration value. δ 

is a model parameter. v and v0 are vehicle speed and desired speed, respectively. s 

and s* are distance and desired distance to the leading vehicle, respectively. △v is the 

speed difference of the pair of vehicles. 

The acceleration Equation (2.9) is a superposition of two parts: the acceleration 

under free flow a⋅[s*(v,△v)/s]
2
 and a deceleration due to braking a⋅[1-(v/v*)

δ
]. The 

deceleration term depends on the ratio of the desired gap s* and the actual gap s. The 

desired gap is given by (Treiber et al.1999): 

                  (2.10) 
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Where, T is safe time headway, s0 is the jam distance, s1 is a distance parameter that 

can be specified for the model (e.g., s1=10m). s1 is also allowed to be set to zero. b is 

a constant representing a comfortable deceleration value. 

The four terms on the right hand side (RHS) of Equation (2.10) are 

corresponding to the minimum distance, comfortable distance, safe time headway 

and anticipation, respectively (van der Horst 2011). The desired gap dynamically 

varies with the speed and the speed difference, representing intelligent driving 

behaviour. 

2.3.4 Optimum Velocity Model 

The optimum velocity model (OV) was proposed by Bando and Hasebe (1995) and 

was based on the idea that each vehicle has its ideal velocity, which depends on the 

distance from its leading vehicle. The response of the follower is not directly coupled 

with the speed of the leader, but rather it depends on the deviation with respect to the 

speed that fits best to the actual following distance. The follower adapts its speed to a 

certain optimal value (the “optimal velocity”). It was shown that, under certain 

conditions, small perturbations can be amplified and grow into traffic jams, which 

can be used to study stop-and-go traffic patterns (Bando and Hasebe 1995). The 

model is: 

          (2.11) 

Where, a is a constant representing driver sensitivity, △xn is the space headway 

between two vehicles and V(△xn) is the optimal velocity function (desired speed), 

which is dependent on the headway. In essence, this model still belongs to the 
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stimulus-response category. 

2.3.5 Psycho-Physical/Action Point Models 

Another approach to the car-following modelling is based on behavioural thresholds 

referred to as action points and was first proposed by Michaels (1963). The idea is 

that it is possible to identify space-time thresholds that trigger different acceleration 

profile characterizations of a driver. Drivers will react to changes in speed difference 

or spacing only when these thresholds are reached (Leutzbach, 1988). The evolution 

of such a concept led to the definition of the psycho-physical models. 

Psycho-physical models apply to a bi-dimensional space, with axes representing the 

distance Δxi and speed difference Δvi of a vehicle i with respect to the vehicle in front. 

Such space is divided into several areas, demarcated by the aforementioned action 

points, corresponding to different driver reactions. 

The microscopic simulation package, VISSIM (PTV 2012), uses the 

psycho-physical driver behaviour model proposed by Wiedemann (1974). This 

car-following model utilizes a number of boundaries and regimes to describe the 

longitudinal motion of individual vehicles, as shown in Figure 2.1.  

The main concept of this car-following model is that the follower starts to adjust 

its speed by applying continuous deceleration as it reaches its own perception 

threshold to a slower lead vehicle. However, the follower cannot exactly determine 

the speed of the lead vehicle. So, the follower’s speed will drop below the lead 

vehicle’s speed until the follower applies slight acceleration after reaching another 

perception threshold. This will result in an iterative process of acceleration and 
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deceleration (see the loop in Figure 2.1). There are four different stages of following 

a lead vehicle (PTV 2012):  

(a) Free driving: In this mode, there is no influence of the lead vehicle. The 

follower travels at its desired speed.  

(b) Approaching: In this mode, the follower tries to adapt to the lead vehicle's 

speed. The follower applies a continuous deceleration so that the speed 

difference between them is zero when it reaches its desired safety distance.  

(c) Following: In this mode, two close vehicles maintain a safe distance, and 

their relative speed fluctuates around zero. The follower maintains its speed 

close to the lead vehicle without any conscious acceleration or deceleration.  

(d) Braking: In this mode, the relative distance between vehicles falls below a 

safe distance. This could be a result of a sudden deceleration of the lead 

vehicle, a third vehicle merges in front of the follower, etc. 

2.3.6 Fuzzy Logic-Based Models 

Fuzzy-logic-based car-following models (Kikuchi and Chakroborty, 1992) use fuzzy 

sets as conditions (logic condition sets) that trigger certain driver actions. These sets 

can then be used in logical rules, such as “the distance is too close,” and “use 

emergency deceleration,” etc.  

In fuzzy-logic models, drivers usually do not know exactly what the relative 

speed or the spacing is. Instead, they are assumed only to be able to conclude a 

category of those trigger conditions in the fuzzy sets. The fuzzy sets may overlap one 

another and in such cases, a probabilistic density function must be used to deduce 

how the drivers observe the current variables that trigger a certain action. Usually the 



  

37 

logic condition sets are linked to fuzzy output sets via logical operators (such as, 

“IF,” “THEN,” “AND,” “OR,” etc.) 

In essence, fuzzy-logic-based models can fall in either the stimulus-response 

category or the action points class, or even a combination of different models. The 

advantage of fuzzy-logic-based models is that they can more accurately describe 

driver behaviour due to the flexibility of option sets. In addition, the assumption that 

drivers do not know exactly the relative speed or spacing is more realistic to the 

real-world situation. 

2.3.7 Lane-Changing Model 

Lane changing refers to the lateral movements of vehicles from one lane to another. 

It may happen mandatorily at merge and diverge areas, or voluntarily at multi-lane 

roadways. Near on-ramp or lane-drop areas, merging manoeuvres are one of the 

direct causes for the overloading of certain lanes and may lead to traffic breakdown 

(Cassidy and Bertini, 1999). In addition, voluntary lane changing can be the origin of 

perturbations that may lead to jams in dense and unstable traffic. Although 

lane-changing models are not as widely studied as car-following models, it is 

essential to incorporate this mechanism in traffic flow models. 

A famous lane-change model is the one by Wiedemann (1974), the principle of 

which is that drivers try to avoid discomfort in their own lane (for example, the 

vehicle in front is too slow compared with their desired speed) and seek the speed 

advantage of other lanes. This desire for lane change leads to a lane change 

manoeuvre, if the gap in the target lane is sufficient to perform a safe manoeuvre. 

Different from car-following, in the lane-changing model, the drivers’ behaviour 
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in the presence of interacting vehicular flows cannot be described as a function of the 

state of the leading vehicle, but must also take into account the distance and speed of 

the back and front vehicles on the target lane. Considering lane changing in 

microscopic models allows for the realization of necessary (mandatory) lane changes 

at on-ramps or lane closures as well as discretionary lane changes in preparation for 

passing slower vehicles. 

In VISSIM simulation, a rule-based logic was adopted to model the 

lane-changing behaviour of a driver for lateral movement. VISSIM simulates two 

types of lane change (PTV 2012):  

(a) Necessary lane change that results from route choice,  

(b) Free lane change to get more room from the front vehicle and maintain a 

higher speed.  

For both the free and necessary lane changes, when a driver tries to change lanes, the 

first step that VISSIM checks is the availability of a suitable gap in the target lane. 

2.4 Macroscopic Traffic Models 

Macroscopic traffic models represent traffic flow in terms of aggregate variables as a 

function of location (x) and time (t). They describe the dynamics of traffic density 

ρ(x, t), mean speed v(x, t) and/or flow rate q(x, t).  

Two basic equations always hold in all of the macroscopic traffic flow models. 

One is the conservation equation, which states that the change in number of vehicles 

on the roadway segment (x, x + dx) during time interval (t, t+dt) is equal to the 

number of vehicles flowing into that segment minus the number of vehicles flowing 

out of that segment. That is, vehicles are neither automatically generated nor taken 
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away on an enclosed section of roadway. This is expressed as a partial differential 

equation (Gartner el al. 2001): 

                (2.12) 

 Or as in an integration form: 

          (2.13) 

 

Where, q stands for flow, ρ for density and v for space-mean-speed. g is the 

generation rate within the road segment (from on-ramps and off-ramps), x and t 

stands for space and time, respectively. 

Another equation is the basic traffic flow equation, namely, flow equals to the 

density times the space-mean-speed. 

          (2.14) 

Equations (2.12) and (2.14) form a system of two independent equations with three 

unknown variables ρ, v and q. To solve this system, another independent equation is 

required. The different formulations of the third equation resulted in a series of 

macroscopic models. In this section, we discuss the two major types of macroscopic 

traffic models, namely, the first-order traffic models and the second-order traffic 

models. 

First-order traffic models contain a conservation equation: flow equals to the 

speed multiplied by density and a steady-state speed-density relation. Second-order 

traffic models have an independent speed dynamics in addition to the first-order 

models. There are even higher order models than the second-order models, such as 

conservation of momentum, etc.; however, they are out of the scope of this research 
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and, therefore, are not discussed here. 

2.4.1 First-Order Macroscopic Traffic Models 

The most widely used first-order macroscopic traffic model was developed by 

Lighthill and Whitham (1955), and Richards (1956) independently (LWR model), 

which is a continuous macroscopic representation of traffic variables. In the LWR 

model, the speed and/or flow rate are considered as a function of density: 

          (2.15) 

Then,  

           (2.16) 

Where, Ve denotes the equilibrium speed. It is a monotonically decreasing function 

of density. The relationship between density ρ(x, t) and flow q(x, t) is called the 

fundamental diagram (FD). The flow function is convex with a downward concavity 

(LeVeque 1992). Since Equation (2.16) does not specify the functional form of the 

FD, many specific functions have been proposed either from fitting the measured 

data or from analytical deliberations, or a combination of both. 

The solution of the nonlinear Equation (2.12), (2.14) and (2.15) is of the general 

form as in Equation (2.17) (Gazis 1967), which means that all points are on a straight 

line with slope v having the same density: 

            (2.17) 

Where, F is an arbitrary function. Equation (2.17) implies that inhomogeneity, such 

as changes in density of vehicles, propagates along a stream of traffic at a constant 

speed Vw=∂q/∂ρ, which is positive or negative with respect to a stationary observer, 

depending on whether the density is below or above the optimum density 
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corresponding to maximum q (Figure 2.2). The shockwave speed is expressed in 

Equation (2.18) and shown in Figure 2.2. 

            (2.18) 

 

Within the category of first-order traffic models, it is worthwhile to mention the cell 

transmission model (CTM), which is widely used in macroscopic simulation. 

CTM is a first-order discrete macroscopic model developed by Daganzo (1994a, 

1994b). In this model, the roadway is discretized into small segments (cells) of 

uniform length. One cell may have at most one on-ramp and one off-ramp. The 

length of cells is set equivalent to the distance vehicles travel in one clock tick (time 

interval or time step) in light traffic (free flow). Under light traffic, all vehicles in a 

cell can be assumed to advance to the next cell in each time interval. The model 

functions based on the law of vehicle conservation: the number of vehicles in cell i at 

the next time step (k+1) equals to the number of vehicles currently in cell i, plus the 

inflow from the upstream cell (i-1) to cell i and minus the outflow to the downstream 

from cell i to cell (i+1) between the time indexes k and (k+1). That is: 

          (2.19) 

Where, i is the cell index and k is the time index. ni(k) is the number of vehicles in 

cell i at time index k. yi(k) is the number of vehicles flowing out from cell i. ri(k) is 

the number of vehicles flowing into cell i from the on-ramp. si(k) is the number of 

vehicles flowing out from cell i at the off-ramp.  

The number of vehicles from one cell advancing to the next cell is controlled by 

boundary conditions, which guarantee the number of vehicles that can flow to 
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downstream cells. CTM has three boundary conditions: at the upstream of the first 

cell, an adequate number of vehicles can flow into the first cell. Downstream of the 

last cell has sufficient capacity to allow vehicles to move away from the last cell. 

Between any pair of adjacent cells, the number of vehicles can flow to the next cell 

subject to the constraint: 

          (2.20) 

Where, vf is the free flow speed, ρc , ρmax is the critical and jam density, respectively. 

wi+1 is the shockwave speed in the immediate downstream cell. 

The average speed is determined by a steady-state speed-density relationship, 

assuming all traffic speeds abide by this relationship at all traffic states. This is the 

exact the same assumption as in the LWR model. In fact, it was shown that the CTM 

model is a discrete approximation to the LWR model (Daganzo 1994). Originally, 

the FD corresponding to the speed-density relationship in CTM was assumed to be a 

trapezoidal shape, but it was further adapted to accommodate any continuous, 

piecewise differentiable FDs, such as a triangular fundamental diagram. 

If we divide Equation (2.19) by the length of the cell, we obtain the density of 

the cells on both sides of the equation. Therefore, CTM is essentially a density 

dynamics model that evolves with boundary conditions. 

CTM is often used for real-time traffic control purposes. For example, it was 

used for arterial traffic signal control (Lo 2001; Almasri and Friedrich 2005) and for 

freeways with ramp metering control (Gomes et al. 2008; Zhang and Levinson 2010; 

Gomes and Horowitz 2006). Very low computational effort is required to predict 

traffic variables in real-time with the CTM (Gomes et al. 2008). 
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First-order traffic models, such as LWR, can capture most of the important 

traffic flow characteristics, such as formation and dissipation of shock waves. 

However, they have several deficiencies (Gartner et al. 2001). In first-order models, 

it is assumed that traffic flow will instantly adapt to the flow-density relationship. 

The shocks in the model have no transition region. In reality, drivers always need 

some reaction time to adjust to traffic conditions. Another serious shortcoming of the 

model is its inability to model traffic instability (Zhang 1998). In LWR model, 

drivers can always manage to change speeds in the right amount of time and with the 

right magnitude that traffic disturbances can be absorbed completely. In reality, 

drivers respond to traffic events with a time delay. As a result, some disturbances in 

traffic may become magnified as they propagate through the traffic stream and cause 

traffic breakdowns. To address these deficiencies, several methods have been 

proposed (Zhang 2001). One common approach of improvement is to adopt 

multi-branches of the FD (may be discontinuous) for different traffic conditions, 

such as free flow, acceleration flow and deceleration flow. Another key approach is 

to adopt additional dynamics to form higher-order models, especially second-order 

models, which are more and more widely used in both theoretical analysis and 

simulation. 

2.4.2 Second-Order Macroscopic Traffic Models 

The first-order macroscopic traffic models are characterized by a single dynamical 

partial differential equation for flow and density. The speed of these models does not 

possess any independent dynamics, since they solely rely on a static speed-density 

relationship. Such models can describe traffic breakdowns at bottlenecks due to 
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insufficient capacity and the propagation of shockwaves due to traffic state changes. 

From a microscopic point of view, the instantaneous vehicle speed adaptations imply 

unbounded acceleration, which is unrealistic and masks traffic phenomena that 

results from driver behaviour, such as delayed response to traffic conditions, because 

any disturbance can be absorbed by infinite speed adaptation. In reality, finite speed 

reaction and adaptation are the main factors leading to growing traffic waves, 

capacity-drop phenomena and to traffic flow instabilities. Consequently, LWR 

models cannot describe these observations.  

Due to the shortcomings of first-order models, many efforts were made to 

extend the LWR theory to capture instabilities in practical traffic flow. One direction 

leads to higher order traffic models by coupling the conservation of flow with an 

independent acceleration equation that provides speed dynamics of traffic flow. Such 

a speed dynamics describes the local acceleration as a function of speed and/or 

density as well as other possible exogenous factors. 

As early as the mid-1950s, Lighthill and Whitham (1955), in their seminal work 

on kinematic waves, suggested that higher order terms be added to account for some 

traffic properties, such as inertia and anticipation, and they proposed a general form 

of a motion equation: 

          (2.21) 

 

Where, c is the traffic wave speed, T is the inertia time constant for adjustment of 

speed, D is the coefficient of diffusion. The authors did not provide an independent 

speed dynamics for this model. 
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Payne (1971) recognized that delayed response and anticipation behaviour of 

drivers are fundamental in macroscopic traffic flow models if one wishes to account 

for traffic instability. Payne approximated individual driver behaviour: 

            (2.22) 

This equation expresses that the speed of an individual vehicle after a reaction time τ 

is equal to the equilibrium speed corresponding to the density some distance Δx 

downstream. After repeatedly applying linear Taylor approximations to Equation 

(2.22) and using the density at the midway of two vehicles to represent the space 

headway, the following dynamic equation for the average speed was obtained (Payne 

1971): 

            (2.23) 

 

  

(2.24) 

Where co is the anticipation factor. A similar model was also proposed independently 

by Whitham (1974). Therefore, the above model is also referred to as the PW model. 

The left-hand side of Equation (2.23) is the total time derivative of the average 

speed, that is, the time evolution of the average speed as it would be seen by an 

observer travelling with equilibrium speed Ve. There are three different terms in the 

equation: 

 Convection: The convection term accounts for the change in average speed at 

a location due to vehicles leaving or arriving with different speeds. It is the 

transportation of speed along with the flow. 
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 Relaxation: The relaxation term describes the adaptation of drivers to the 

density-dependent equilibrium speed, which corresponds to the homogeneous 

steady state in the flow. It is assumed that an equilibrium speed Ve(ρ) exists, 

but the traffic state can deviate from the equilibrium. When other influences 

(reflected by the convection and anticipation terms) are small, traffic tends to 

relax to the equilibrium speed.  

 Anticipation: The anticipation term accounts for the fact that traffic 

approaching a spatial change of traffic conditions (reflected by the spatial 

variation of density) adapts its speed to these conditions. 

Based on Equation (2.23), Payne (1979) developed a macroscopic model in discrete 

form; this model is widely used in freeway simulations. The speed dynamics of the 

well-known macroscopic simulation model, METANET (Messmer and 

Papageorgiou 1990) is also based on Equation (2.23). We will discuss the 

METANET model in Chapter 4 of this dissertation. 

Payne’s modelling approach solves two drawbacks of the LWR model. Firstly, 

the relaxation term allows traffic to deviate from the equilibrium speed when the 

spatial conditions are not homogeneous. When driving into or out of congestion, this 

mechanism results in average speeds (and also flow rates) that deviate substantially 

from the equilibrium state. Secondly, the anticipation term reflects the reaction of 

drivers to the traffic conditions in front of them. As a result, the second-order models 

avoid the zero reaction time as in LWR model and the acceleration or deceleration of 

traffic need not be instantaneous. Since drivers tend to react to the spatial variation of 

density, discontinuous behaviour is avoided. 
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With explicit speed dynamics, it is possible to adjust the speed for more complex 

traffic conditions and not be restricted by the FD, which represents the static 

equilibrium condition. Higher order models built on the behavioural assumptions of 

car-following models are more suitable for traffic modelling and simulation because 

first-order models rely only on the FD to describe speed evolution, which does not 

have the flexibility to adjust to complex traffic conditions, such as stop-and-go 

traffic, traffic hysteresis, dual capacity phenomenon, etc. 

Payne-type models were criticized by Daganzo (1995) mainly for not being 

anisotropic and because they may predict negative flow and speed under some 

circumstances. In reaction to this criticism, Aw and Rascle (2000), Zhang (1998, 

2002) and Liu et al. (1998) proposed variant models or improvements that avoid the 

identified flaws. Because of the ability to describe uniform flow and stop-and-go 

waves without discontinuities (Orosz et al. 2010), the second-order models are 

widely used in traffic state prediction and macroscopic simulation. 

In addition to the PW model, there are other second-order models not subject to 

all of the criticisms. From different approaches, Prigogine and Herman (1971) as 

well as Phillips (1979) proposed traffic models in which the continuity equation for 

the density and the acceleration equation were derived from kinetic principles. Since 

the density equation is also based on conservation law, it is the same as in the 

first-order models. The acceleration equation is expressed as (Phillips 1979): 

          (2.25) 

 

Where, Pe is the “traffic pressure.” This term was adopted from gas-kinetic 
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considerations where the pressure term describes a purely kinematic (statistical) 

effect of speed variance without a single vehicle accelerating or braking. In traffic 

flow models, the pressure term is also referred to as the anticipation, which reflects 

the driver’s anticipation to downstream traffic conditions and can be expressed as: 

            (2.26) 

Where, Θe is the density dependent speed variance and Θ0 is a positive constant 

(model parameter) that needs to be estimated. 

Kerner and Konhauser (1993) introduced a viscous term into the acceleration 

equation for the purpose of smoothing discontinuous traffic, while at the same time 

considering the speed variance as a positive constant Θ0. The model read as: 

          (2.27) 

 

η0 is the viscosity coefficient. A similar model, but with a density-dependent 

viscosity coefficient was proposed by Lee el al. (1998), which has similar model 

properties as Kerner and Konhauser (1993). 

The viscosity term is also called diffusion in macroscopic models (i.e., the 

second-order derivatives with respect to space). The intention of using this term is to 

smooth sharp transitions and shocks. From a statistical physics perspective, “a 

diffusion term in the continuity or acceleration equation is a consequence of erratic 

microscopic motion components (random motion of particles described by their 

velocity variance which is proportional to the temperature of physical systems)” 

(Treiber and Kesting 2013). 

Aw and Rascle (2000) derived a second-order model to avoid the negative speed 
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of PW model, as criticized by Daganzo (1995), which also includes a 

density-dependent traffic pressure coefficient. The model can be written as: 

          (2.28) 

 

Where, p(ρ) is the density-dependent traffic pressure coefficient. 

Zhang (1998, 1999, 2000, 2001 and 2002) derived several acceleration equations 

with different properties. The Zhang (2002) model can be written as: 

                      (2.29) 

 

Where, [ρV'(ρ)]
2
 is the traffic sound speed. In this model, the traffic sound speed will 

never be faster than the actual traffic speed and, thus, avoids the back traveling 

problem, as in Payne’s model, as criticized by Daganzo (1995). 

In another study, Zhang (2003) derived a full viscous model from a 

car-following model: 

          (2.30) 

 

Where, β is a parameter. μ is the viscosity coefficient. c is the traffic sound speed. 

This model not only includes relaxation, convection and anticipation components, 

but it also has a traffic diffusion term and viscous properties. 

All above models share similar properties. They all account for the driver’s 

delayed response (relaxation) and convection. The difference lies in the functional 

form of anticipation or traffic pressure and the viscous term (higher order derivative 

of speed or density with respect to space). The models can be generalized as: 
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          (2.31) 

 

An example of this model framework is provided by Treiber and Kesting (2013), as 

Equation (2.32): 

          (2.32) 

 

2.5 On-Ramp and Off-Ramp Modelling 

Compared to the modelling of traffic flow on road sections, there are much fewer 

theoretical modelling studies done on freeway ramps. To study the effects of 

lane-drops and on-ramps on freeway traffic flow, traffic simulation has been carried 

out by Munjal et al. (1971) as well as Munjal and Pipes (1971). From the law of 

conservation of vehicles, ramps are modeled by adding a source term into the 

continuum equations, as in Equation (2.12). The generation term represents the 

number of vehicles from on-ramps and/or to off-ramps on the mainline roadway. To 

model speed dynamics, some authors, such as Cremer and Ludwig (1986), 

Papageorgiou et al. (1989), Michalopoulos et al. (1993), Liu et al. (1996) and 

Bellemans (2003), introduced a traffic friction term into the speed dynamics of 

Payne’s (1971) model to account for the impact of the merging and/or diverging flow 

as well as weaving on the speed of the mainline traffic flow. The acceleration 

equation for the interrupted traffic flow by ramps is described below: 

          (2.33) 

 

In above equation, F(x, t) is the traffic friction. So far, there is no conclusion as to 
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what functional form can most accurately represent the ramp impact on the speed 

dynamics. Different formulations of the traffic friction have resulted in various 

models (Cremer and Ludwig 1986, Papageorgiou et al. 1989, Michalopoulos et al. 

1993, Liu et al. 1996 and Bellemans, 2003).  

2.6 Traffic Jam Modelling 

In the literature, traffic congestion and breakdown may appear as different names, 

such as traffic jam, stop-and-go traffic state, stop-and-go wave (SGW), or wide 

moving jam (Kerner 2009). These terms are often used interchangeably even though 

differences exists between their definitions. Based on the frequency, traffic 

congestion can be classified into two types: recurrent or non-recurrent. Recurrent 

congestion happens regularly during peak hours in specific locations along roadways. 

Recurrent congestion may be caused by high traffic demand that comes close to or 

exceeds freeway capacity, or it may be caused by road geometry constraints that 

reduce freeway operation speed and capacity, such as merge and diverge areas, 

weaving sections, lane drops, work zones with lower speed limits and change of 

roadway geometry with steep grade and/or sharp curves with reduced operation speed. 

Non-recurrent congestion is unpredictable and can be caused by different incidents, 

such as traffic accidents, disabled vehicles, slow moving trucks, adverse weather 

conditions and possibly roadway or roadside debris that disrupts smooth traffic flow 

states.  

Traffic breakdown does not occur in free flow conditions. One of the premises 

for its occurrence is that the traffic density is sufficiently high so that an internal or 

external disturbance will be amplified and propagate backwards to upstream. 
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Understanding the mechanism of traffic breakdown, the formation, evolution and 

propagation processes, can help researchers to develop traffic models for efficient 

traffic control and application of ITS to mitigate traffic congestion. 

2.6.1 Modelling Approaches 

There are several different explanations on the generation and evolution of 

stop-and-go traffic conditions. Treiterer and Taylor (1966) evaluated vehicle 

trajectories based on aerial photographs and clearly identified the stop-and-go traffic 

states from the space-time diagram. However, since they did not find a reason for the 

formation of stop-and-go traffic, they refer to it as a “phantom traffic jam,” (Helbing 

2001, Flynn et al. 2009) which is formed spontaneously. Other researchers tried to 

explain the phenomenon using both microscopic and macroscopic approaches. 

According to Daganzo (2002a) and Ahn et al. (2007), traffic breakdown can be 

attributable to a lane change on a roadway with high density, and there are physical 

reasons for the formation of traffic jams. Cassidy et al. (2001) and Daganzo (2002b) 

suggested that due to a “pumping effect” at on-ramps, small traffic oscillations may 

grow in amplitude. Polus et al. (2002) and Daganzo et al. (1999) claimed that, under 

high traffic densities combined with lane/speed changes, traffic breakdown can occur 

spontaneously. Yeo et al. (2009) used the asymmetric microscopic driving behaviour 

theory to explain the generation and evolution of the stop-and-go traffic phenomenon. 

All of these explanations are driving behaviour-related at the microscopic level.  

Banks (2002) suggested that traffic breakdown can be explained by either 

microscopic flow instability or macroscopic flow instability. The former may occur in 

the car-following process, while the latter occurs if the fluctuation of traffic density is 
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large enough to cause significant and irreversible decreases in speed. On the 

macroscopic level, stop-and-go wave is an observable phenomenon that consists of a 

sequence of traffic jams separated by small groups of free or less congested traffic. 

SGWs propagate upstream with a speed around 15 to 20 km/h (Orosz et al. 2010). 

Kerner (2009) established the three-phase traffic theory, namely free flow, 

synchronized flow and wide moving jams. Traffic breakdown can emerge 

spontaneously in a synchronized flow phase from growing, narrow moving jams. 

Various mathematical models were developed to describe the formation and evolution 

of traffic jams on a macroscopic level (Berthelin et al. 2008, Laval and Leclercq 

2010). However, the direct application of complicated mathematical models on 

freeway traffic control is not straightforward. In a later part of this dissertation, efforts 

on applying macroscopic simulation to re-produce traffic jams is presented and 

discussed. The macroscopic simulation model can be used for online ramp metering 

(RM), variable speed limit (VSL) control and active traffic management (ATM) on 

freeways. 

Although there are several different explanations on stop-and-go traffic states, 

mathematical modelling is far more complicated than a heuristic explanation. This is 

due to the fact that on a microscopic level, individual drivers have different driving 

behaviours with different reaction and action times. On a macroscopic level, the 

aggregation and averaging of vehicle characteristics may mask some fundamental 

causes for the traffic jam phenomenon, especially for jams that do not happen at a 

very high density. A summary of both approaches on traffic modelling are provided in 

Table 2.2 and discussed in the following sub-sections. 
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2.6.2 Traditional Car-Following Models 

Microscopic traffic models describe longitudinal car-following and lateral 

lane-changing behaviour of individual vehicles. They model the behaviour of 

individual vehicles in relation to the roadway and other vehicles in the traffic flow. 

As the traffic flow increases, the distance between vehicles becomes short and the 

interaction between a follower and its leader becomes strong. Stop-and-go traffic is 

an unstable traffic state caused by the strong interaction of a leading vehicle and its 

followers. Herman et al. (1959) analyzed two types of stability in the car-following 

mechanism: local stability, which is concerned with the car-following behaviour of 

two vehicles, and asymptotic stability, which is regarding a line of vehicles 

consisting of one leading vehicle and an infinite number of following vehicles. The 

product (C) of the reaction time (Δt) and sensitivity value (α) was used as a 

parameter corresponding to traffic stability (Herman et al. 1959).  

          (2.34) 

Based on the C value, local stability was divided into three regions (Herman et al. 

1959): non-oscillatory, damped oscillatory and increased oscillatory. Asymptotic 

stability was divided into two regions: damped oscillatory and increased oscillatory. 

Traffic stability in relation to the value of C is summarized in Table 2.3. 

If the C value is high, traffic oscillation will increase and may theoretically lead 

to rear-end collisions. The following drivers may increase braking to avoid colliding 

with the vehicle immediately in front of them. This action will amplify the oscillation, 

which propagates backwards causing stop-and-go waves, or a full stop of vehicles. If 

the wave meets a region of low traffic density, the oscillation may be absorbed and 
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the traffic may recover to normal operation conditions, if the density is sufficiently 

low.  

2.6.3 Asymmetric Traffic Theory 

The fact that drivers have different behaviours leads to asymmetry in deceleration and 

acceleration, as proposed by Newell (1965) that in a congested traffic regime, 

vehicles’ deceleration and acceleration will follow different curves. In another study, 

Yeo and Skabardonis (2009). used two curves, an acceleration curve (A-curve) and a 

deceleration curve (D-curve), to define different traffic states, namely, free flow, 

acceleration, stationary, coasting and deceleration, as shown in Figure 2.3 and Figure 

2.4. Quasi-stationary and coasting states exist between A and D curves. The 

difference between quasi-stationary and coasting states is that in the quasi-stationary 

state, both traffic speed and spacing are close to constant with only minor adjustments, 

which leads to minor local oscillation. In the coasting state, vehicles have an almost 

constant speed, but vehicle spacing fluctuates based on the acceleration and 

deceleration of the consecutive vehicles. For any reason, if the traffic states deviate 

from the stationary or coasting regions enveloped by D and A curves, the following 

vehicles will either accelerate or decelerate until they return to the stationary or 

coasting states. 

In car-following, the following drivers may not be able to accurately judge the 

speed of the leaders. In addition, different drivers have different habits. These lead 

them to either under-react or overreact to the speed and spacing change of the leaders.  

Stop-and-go traffic states often happen in a deceleration state, in which the 

spacing (s) between vehicles are short and the under-reaction or overreaction can 
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generate a disturbance to traffic flow. There are several consequences of 

under-reaction and overreaction of a follower: when the leading vehicle (1
st
 vehicle) 

starts to decelerate, under-reaction of the following vehicle (2
nd

 vehicle) means that 

the 2
nd

 vehicle does not decelerate enough, resulting in a higher speed than the 1
st
 

vehicle and the spacing becomes shorter. The 2
nd

 vehicle needs additional 

deceleration to resume appropriate spacing. This additional braking usually results in 

a lower speed than the 1
st
 vehicle and causes a backward propagating shockwave. 

Similar shockwaves can be generated by the consecutive following vehicles and the 

effect can be amplified, resulting in stop-and-go traffic conditions. On the other hand, 

overreaction of the 2
nd

 vehicle means that the 2
nd

 vehicle over decelerates, causing a 

sharp speed reduction and a backwards propagating shockwave. In congested traffic, 

the shockwave may trigger stop-and-go traffic conditions. The backward propagating 

stop-and-go wave may dissipate only if it meets traffic states with large spacing, 

which can absorb the stop-and-go wave. 

Both traditional car-following models and the asymmetry theory can reasonably 

explain the generation of a traffic breakdown mechanism. However, they do not 

provide a numerical property of SGW, such as wave speed, length of congestion, etc., 

as these are macroscopic concept of traffic states. 

2.6.4 Traffic Disturbance Model 

Nagal et al. (2003) studied traffic jam stability by separating the density into two parts: 

a constant and some disturbances. This is similar to a stochastic macroscopic model. 

Nagal’s theory is summarized below (Nagel et al 2003). Assuming: 

(2.35) ),(~),( txtx  
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Then, the conservation Equation (2.12) becomes: 

          (2.36) 

After omitting terms with a higher order of  , the above equation reduces to: 

           (2.37) 

If we consider the disturbance as a wave,   

           (2.38) 

Then, a wave solution can be obtained: 

          (2.39) 

Where,  

Equation (2.39) means that a disturbance in traffic density is superimposed on 

homogeneous constant density of p  and travels with the speed of                   

If    is high and the disturbance is large enough, the density wave may grow and 

cause traffic breakdown or stop-and-go traffic states. 

2.6.5 Phase Transition Model 

In both the LWR and Payne models, the assumption that the average speed be 

uniquely determined by traffic density is reasonable in free flow traffic conditions, 

but it may be inadequate to describe congested flows. In congested traffic, density (ρ) 

no longer uniquely determines the speed (v), or equivalently the flow (q), of the 

vehicles. Scattered data points on flow-density plots are very common in congested 

traffic. Figure 2.5 shows the flow-density plot from a loop detector on I-80 freeway in 

California, which shows that in a congested traffic regime, there may be several 

possible ρ values corresponding to a q value. In addition, a capacity drop can also be 

identified from the plot. 
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Colombo (2002 a, b) proposed a two-regime model, free flow and congested flow, 

respectively, to account for the scattering of the density-flow relationship. In the free 

flow regime, the model was composed of a conservation law with a speed-density 

relationship exactly the same as in the LWR model. In a congested flow regime, the 

density ρ and the flow q are treated as two independent variables and the model is 

composed of a conservation law, which is an equation expressing that the speed is a 

function of both density and flow, and an evolution equation of flow. 

Free-to-congested flow phase transitions are defined based on speed, density and flow 

values. Colombo’s phase transition model is expressed as (Colombo 2002a): 

For free flow: 

{
        (  )   
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                        (2.40) 

For congested flow: 
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Where ρmax is jam density. The parameter q* > 0 is introduced to account for the 

change of flow due to shockwaves. In Colombo’s model, both the two-regime 

phenomenon and the impact of the shockwave on flow are explicitly represented. 

However, there are no explicit speed dynamics, and driver’s delayed response is not 

included in the model. 

2.6.6 Macroscopic Simulation of Traffic Jams 

As discussed in previous sections, first-order macroscopic models can describe the 

formation and dissipation of shock waves. The shockwaves will be formed at each 

interface of different traffic states and propagate backward or forward depending on 
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the traffic states at both sides of the interface. For stop-and-go traffic, multiple 

shockwaves will be formed and interact during the propagation. However, the 

first-order macroscopic models do not have a closed form of equation to describe the 

speed change due to the interaction of shockwaves, because the first-order models do 

not have independent speed dynamics. 

 In the second-order macroscopic models, independent speed dynamics can 

adjust the speed depending on the local traffic conditions and, thus can describe 

stop-and-go traffic. This can be applied in simulation with the second-order 

macroscopic models as well. In macroscopic simulation, the roadway is divided into 

discrete segments, and the time is discretized into short time intervals (time step). 

Each road segment is a homogeneous unit, in which the number of lanes remains 

unchanged. On- and off-ramps are always located at the beginning and end of the 

segments, respectively. The concept of road segment index (i) and state variables, 

density (ρ), speed (v) and flow (q), are illustrated in Figure 2.6. The aggregated 

traffic flow variables are defined for each segment and updated each time step. Based 

on spatial and temporal discretization, the traffic state variables (speed, density and 

flow) are calculated at each time step k for each segment i.  

 It should be noted that to simulate traffic jams, an independent and appropriate 

speed dynamics is required to catch the sudden change of traffic states. A distinct 

advantage of macroscopic simulation over analytical models is its flexibility of model 

representation. Analytical models use one or several closed form equations to 

represent traffic state evolution over time and space, but they have difficulty to 

describe the transition between different traffic states. Simulation models can not only 
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use the same model representations as in analytical models, but they can also combine 

other models in simulation. For example, they can add fuzzy logic in the model or use 

multiple conditions and choices in the model, so that an appropriate set of equations 

can be chosen to calculate traffic states for a particular traffic condition. 

2.7 Summary 

This chapter provided an overview on the state-of-the-art of traffic flow models with 

a special focus on microscopic car-following models and second-order macroscopic 

models. The traffic models were reviewed with respect to their categories in terms of 

level of detail, scale of independent variables, nature of independent variables and 

model representations. Various microscopic car-following model formulations, 

ideologies and properties were discussed. On the macroscopic level, both first- and 

second-order models and their respective advantages and disadvantages were 

presented. Even though higher order macroscopic traffic models have been 

established from different perspectives, they share many similar properties, such as 

delayed response of drivers and their anticipation of downstream traffic conditions. 

While microscopic traffic models track each individual vehicle movement and its 

relation with other vehicles during all time horizons, macroscopic traffic models 

consider the average value of the aggregated traffic flow properties and ignore the 

interaction between individual vehicles. Therefore, microscopic traffic models are 

ideally suited for off-line simulation to evaluate detailed local traffic operations, 

while macroscopic traffic models are more suited for large-scale, network-wide 

operation and online control purposes. These reviews provide comprehensive 

background information for establishing the relationship between microscopic 
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car-following models and macroscopic traffic models, which will be presented in 

Chapter 3, as well as model extension, modification and improvements discussed in 

the following chapters. 

Chapter 2 also discussed various theories and methods on traffic jam 

(stop-and-go traffic) modelling from both a microscopic and macroscopic approach. 

These include traditional microscopic car-following models, asymmetric traffic 

theory, traffic disturbance model, phase transition model as well as first-order and 

second-order macroscopic models. The mechanisms of stop-and-go waves, causes, 

generation, propagation, and absorption were discussed. It can be concluded that the 

stop-and-go traffic state is formed by three conditions: high traffic demand, 

insufficient road capacity and traffic disturbance. When traffic density is sufficiently 

high, a small disturbance in the traffic flow can be amplified, causing a stop-and-go 

wave propagating backwards, and the disturbance can be explained by microscopic 

car-following and lane-changing behaviour.  
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Table 2.1 Category of traffic models 

Criteria Model categories 

Level of detail Sub-microscopic, microscopic, mesoscopic 

and macroscopic models 

Scale of independent variables Discrete, continuous models 

Nature of independent variables Deterministic, stochastic models 

Model representation Analytical, simulation models 

 

 

Table 2.2 Summary of traffic jam modelling techniques 

Traffic Models Traffic Jam Modelling Principles 

Car-following Local and asymptotic stability 

Asymmetric traffic theory 
Different behaviour of acceleration,  

deceleration and speed adjustment 

Traffic disturbance 
Disturbance causing backward 

propagating density wave 

Phase transition Two traffic flow regimes 

First-order macroscopic Shockwave 

Second-order macroscopic  
Speed dynamics considering  

driver reaction and anticipation, etc. 

Macroscopic simulation May combine different models 

  

Table 2.3 C value vs local and asymptotic stability (Herman et al. 1959) 

C Value 0 ~ 0.37 0.37 ~ 1.57 1.57 ~ 2.0 

Local Stability 

 

Non-Oscillatory 

 

Damped 

Oscillatory 

Increased 

Oscillatory 

C Value 0 ~ 0.50 0.50 ~ 2.0 

Asymptotic 

Stability 

Damped 

Oscillatory 

Increased 

Oscillatory 
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Figure 2.1 Psycho-physical car-following model (Wiedemann 1974 and PTV 2012) 

 

 

Figure 2.2 Shock wave formations resulting from the solution of the conservation 

equation 
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  Figure 2.3 Acceleration and deceleration curves (Newell 1965)  

 

 

Figure 2.4 Traffic States diagram (Yeo and Skabardonis 2009) 
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Figure 2.5 Flow-density recorded on I-80 freeway  

 

 

Figure 2.6 Discretization of a roadway section  
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Chapter 3 Relationship between Microscopic and 

Macroscopic Traffic Models 

 

3.1 Introduction 

Early macroscopic traffic models were developed without any link to microscopic 

models. Instead, they were formulated either by fitting observed flow-speed data 

(Greenshields 1935, Adams 1936, Greenberg 1959, Underwood 1961, Gartner et al. 

2001) or by analogy to fluid mechanics (Lighthill and Whitham 1955, Richards 1956). 

Deriving macroscopic traffic models from microscopic traffic models and establishing 

the links between them has been realized since the late 1950s (Gazis et al.1959, 

Newell 1961). Gazis et al (1959, 1961) showed that, under steady-state traffic 

conditions, some car-following models can be related to a particular shape of the 

equilibrium flow-density relationships. This phenomenon was further studied by 

many other researchers (May and Keller 1967, May 1990, Ni 2013). Some of the 

studies considered driver behaviour (Gazis et al 1961, Payne 1971, Zhang 2002, 

Zhang 2003, Treiber and Helbing 2003), such as delayed response, from which more 

complex macroscopic models can be developed. 

There are also microscopic car-following models derived from macroscopic 

models (Castillo 1996, Aw et al 2002). Most of these studies were based on a long 

single-lane section of roadway traffic. As a different approach, there is a branch of 

traffic flow theory on macroscopic models based on the statistical description of 

individual vehicle’s behaviour, represented by the work of Prigogine and Herman 
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(1971). More recently, some models have tried to combine several approaches (hybrid 

models), for instance by embedding a microscopic model into a macroscopic one 

(Tampère et al 2003). 

With further studies, it was found that the relationships between the various model 

classes are more complex than it appears due to several reasons. First, microscopic 

traffic flow models are strictly empirical, with a weak connection to experimental 

reality if traffic conditions are changed. The parameters used in microscopic models 

vary widely even from very similar test settings. This means that there might be 

several different microscopic formulations to describe the same traffic flow pattern. 

Second, actual traffic is non-homogeneous and traffic conditions vary along a section 

of roadway. It is difficult to use one microscopic differential equation to describe 

various traffic flow patterns along a section of roadway. Furthermore, most 

microscopic-macroscopic links are made under the assumption of steady-state traffic 

conditions and may be no longer valid under dynamic traffic states. Derivations of 

macroscopic models from microscopic ones, or vice versa, include additional 

assumptions or simplifications, which generally make the final model quite different 

from the initial one. 

Even with these difficulties, more understanding of the relationship between 

microscopic and macroscopic models is beneficial in several ways. For one thing, 

some microscopic models can be used to study the impact of disturbance on traffic 

stream, traffic instability and the stop-and-go traffic phenomenon (Bando and Hasebe 

1995, Berg 2000). On the other hand, many observed traffic patterns can be explained 

from individual driver behaviour’s perspective (Kim 2002). 
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The objective of this chapter is to further explore the relationship between 

microscopic car-following models and macroscopic models to provide insight on 

traffic modelling. 

3.2 From Microscopic to Macroscopic Models 

Most of the studies on microscopic modelling are focused on car-following models. 

These studies modeled traffic flows at the individual vehicle level, tracking each 

driver’s interaction with the leader. The models are often formulated as a differential 

equation for each vehicle’s movement with time and location as their variables. 

Macroscopic models study the aggregated behaviour of many vehicles. They are often 

formulated as continuum equations with traffic speed, density and flow rate as 

variables with respect to location and time. As both types of the models describe the 

motion of vehicles on the roadway and have common variables (even though some of 

the variables may be on different scales), mathematical relationships may be 

established through the manipulation of closely related variables. 

There are several ways to derive macroscopic models from microscopic ones: 

(1) The first approach is by integrating microscopic traffic models (Gazis et al.1959, 

Shladover et al. 2010).  

Most of the microscopic car-following models are in the form of the acceleration 

of a follower in relation to the leader(s). On a macroscopic level, flow is often 

characterized by a steady-state, speed-density relationship. This leads to the 

consideration of integrating a microscopic acceleration equation to obtain a 

macroscopic speed function. This extends the study range from two (or a couple 

more vehicles, if considering several vehicles ahead) to a long section of road.  
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The integration of a set of dynamic equations must follow a set of rules: the 

boundary conditions of the microscopic models (for example, maximum 

acceleration and deceleration, absolute minimum headway, etc.) should 

correspond to the macroscopic model (such as free flow speed, maximum 

density, etc.), based on which the constants emerging from the integration 

process can be identified. Opposite to the integrating process, microscopic traffic 

models can be obtained by taking derivatives of macroscopic traffic models. 

There is no constant that needs to be specified when taking derivatives. In this 

way, derivation can be taken on any macroscopic speed-density relationship. 

From mathematics, we know that taking derivatives is much easier than 

integration, as by integrating a function, a class of functions with extra constants 

needs to be identified and many complicated functions cannot be integrated. On 

the other hand, taking derivatives will result in the disappearance of some 

constants. 

(2) Models can also be derived based on an intuitive understanding of traffic 

behaviour, such as delayed response of drivers to the traffic conditions ahead. 

Representative works in this direction are the models by Payne (1971) and 

Zhang (2003). Through taking the total derivation of speed with respect to time 

and using Taylor series expansion with respect to time and space, a separate 

speed dynamics (acceleration equation) can be obtained. Each component of the 

acceleration can be linked to the physical explanation of driver behaviour, such 

as relaxation, anticipation and speed convection, between fast and slow drivers. 

Some of the derived macroscopic models may have viscous components (Zhang 
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2003) and diffusion terms (Kerner and Konhauser 1993). Due to this 

independent acceleration equation, traffic speed is allowed to deviate from the 

equilibrium speed and those models can describe more complex traffic 

conditions (Zhang 1998).  

(3) Models can be derived from a gas-kinetic approach (Prigogine and Herman 1971, 

Paveri-Fontana, 1975, Helbing, 1996, Wagner el at. 1996). This approach 

assumes that the individual vehicle is similar to gas particles and, therefore, can 

be modeled from gas-kinetic principles. Instead of modelling each vehicle with 

an independent differential equation, kinetic models are based on the 

construction of a distribution of individual behaviour laws (such as speed 

distribution function) to obtain the probability of finding a vehicle with a certain 

velocity in a given position on the road at time t. The averages over the 

distribution function are represented by macroscopic variables (such as speed, 

density and flow). Therefore, we can obtain macroscopic models from a kinetic 

equation by means of an average procedure. 

In the following sections, we discuss several macroscopic models derived from 

popular car-following models. 

3.2.1 Safe Distance Model 

Pipe’s (1953) safe distance model, presented in Chapter 2, is probably one of the 

earliest and simplest car-following models. We can re-write the model as:  

           (3.1) 

 

It is a linear car-following model with the speed of the leading vehicle as its argument. 

]1[)
1047.1

( 1
1


 


 nnnn
n xlll

x
h 






  

71 

Under steady-state uniform traffic conditions, all vehicles have the same length and 

properties: ln=l, and individual vehicle speed is the same as traffic flow speed v. 

Assuming density ρ is the reciprocal of headway, then:  

          (3.2) 

 

Solving for the speed, we have the steady-state speed-density relationship 

corresponding to Pipe’s model: 

          (3.3) 

 

Where ρmax=1/l is the maximum density (bumper to bumper). This model has several 

properties: ρ→ρmax, v→0 and ρ→0, v→∞. These properties are similar to the 

properties that the Greenshields (1935) model has. Boundary conditions have to be 

specified as density ρ→0 to make the model meaningful for light traffic. 

3.2.2 Intelligent Drive Model (IDM) 

The IDM is the interpolation of two opposite driver actions: acceleration and 

deceleration. Direct integration in the model is difficult because it includes irrational 

part in the formula. However, the model can be simplified under the assumption of an 

equilibrium traffic state, at which the IDM can be solved analytically. Under 

equilibrium, both speed difference and individual vehicle acceleration are zero. All 

drivers intend to keep a speed-dependent equilibrium space to the front vehicle. This 

equilibrium space is given by Treiber et al. (1999, 2000): 

          (3.4) 
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For some special cases, s0=s1=0 and δ=1, the equilibrium speed of traffic flow can be 

solved from Equation (3.4) (Treiber et al. 1999): 

          (3.5) 

 

Where, T is safe time headway, v0 is the desired speed, s is the distance between 

vehicles under equilibrium traffic states. 

3.2.3 Generic Car-Following Model 

The derivation of macroscopic models from microscopic ones, or vice versa, relies 

heavily on the speed-density relationships, as shown in the safe distance model. There 

are also other studies establishing macroscopic traffic models from the specification of 

microscopic models for individual driving behaviour. Zhang (2003) derived a 

macroscopic model from a generic microscopic one: 

          (3.6) 

Where, τ is the adaptation time of the following vehicle. F
* 

is a function of headway, 

which increases with the distance between the n
th

 vehicle and its leader, the (n-1)
th

 

vehicle. G
*
 is a function of the speed difference between the two vehicles. It is a 

monotonically increasing function. 

The function F
*
 is related to the equilibrium speed Ve, which is a function of 

headway or density with the assumption that density equals to the inverse of the 

headway. That is: 

          (3.7) 

The function G
* is assumed to be related to the strength of traffic viscosity. After using 

Taylor expansion on both sides of Equation (3.6), Zhang (2003) obtained a 
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macroscopic model: 

          (3.8) 

 

Where, β is a constant parameter, μ(ρ) is the viscosity coefficient, which depends on 

traffic density, c(ρ) is the traffic sound speed, which also depends on traffic density. 

Equation (3.8) is a viscous model, which is the general form of almost all well-known 

continuum models (Zhang 2003). 

3.2.4 Stimulus-Response Models 

Stimulus-response models are most widely used in theoretical analysis, among which 

the GM family models had been studied for more than half a century. 

(a) First and second GM car-following models 

The first and the second GM model (Chandler et al. 1958) are both linear 

car-following models and can be expressed as: 

          (3.9) 

The only difference between them is that in the second GM model, different sensitivity 

was used for acceleration and deceleration, respectively. 

Integrating both sides, we have: 

          (3.10) 

Using boundary conditions ρ→ρmax, v→0, we get the constant C=-α0/ρmax. 

So, the corresponding macroscopic model is: 

          (3.11) 
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distance model. This is understandable as both of them are simple linear car-following 

models. The model has the property: ρ→ρmax, v→0 and ρ→0, v→∞. This means that it 

does not apply to light traffic, or traffic speed has to be defined for very light traffic 

conditions. 

(b) Third GM car-following model 

The third GM model (Gazis et al. 1961) is a nonlinear car-following model: 

          (3.12) 

 

Integrating both sides with respect to t, we have: 

          (3.13) 

That is: 

          (3.14) 

With boundary conditions and with mathematical substitution: ρ→ρmax, v→0 and 

ρ→0, v→vf, we obtain the corresponding macroscopic speed-density equation: 

          (3.15) 

This is the Greenberg (1959) model describing the macroscopic relationship between 

speed and density of the field observed data. 

The above equation can also be derived through a different approach. A nonlinear 

car-following model can be expressed as (Gazis 1959): 

          (3.16) 

 

Where, M is the mass of the vehicle and λ1 is a sensitivity coefficient. Integrating both 

sides with respect to t, we get: 
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          (3.17) 

Where, L is the length of each vehicle measured from the bumper of the leading 

vehicle to the bumper of the following vehicle. For a steady state traffic, the time lag τ 

disappears and individual vehicle speed can be replaced by traffic flow speed, 

yielding: 

          (3.18) 

 

Which is the same as Equation (3.15). In equation (3.18), vf=λ1/M is the free flow 

speed, ρmax=L
-1 

is the jam density and ρ=(xn-xn+1)
-1 

is the traffic density.  

Conversely, differentiate Equation (3.18) with respect to t with the use of the 

relationship ρ=(xn-xn+1)
-1

 and the assumption of  τ =0 leads immediately to Equation 

(3.16).  

(c) Fourth GM car-following model 

The fourth GM car-following model was proposed with the purpose of improving the 

sensitivity term by including the speed of the following vehicle in the sensitivity. The 

model reads: 

          (3.19) 

 

Again, it is a nonlinear car-following model. 

Following similar integration procedures, we can obtain the corresponding 

macroscopic speed-density relation as: 

          (3.20) 
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Where, C is an integration constant that cannot be determined from boundary 

conditions for this specific case. 

Most of the macroscopic speed-density relations v=f(ρ) are based on field data 

observations, such as Greenshields (1935) and Greenberg (1959). It is noted that none 

of the models fit from field data correspond to the fourth GM model. 

(d) Fifth GM car-following model 

The fifth GM model is a generalized car-following model. It is regarded as the general 

form of a stimulus-response model, described as (Gazis et al. 1961): 

          (3.21) 

 

Where,        represents position and speed of the leading vehicle, respectively    

          represents position, speed and acceleration of the following vehicle, 

respectively. m is the speed exponent and l is the distance headway exponent. By 

assuming different values of m and l, several special cases of stimulus-response 

car-following models can be obtained, as shown in Table 3.1 (May 1990, Brackstone 

and McDonald 1999, Ni 2013). 

The generalized speed-density equation proposed by May (1990) does not include 

the case (either m or l=1), and the range of l, and m is l>1 and 0≤m<1. We shall discuss 

these cases to complete the mathematical derivations. 

Case 1, m=1, l≠1: 

Under this case, the corresponding car-following model is: 

          (3.22) 
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Under steady-state and uniform traffic flow conditions, the model can be simplified: 

the time lag τ can be dropped, the individual vehicle speed can be replaced by traffic 

flow speed v and the relationship that headway equals to the inverse of density applies. 

Integrating both sides with respect to t, and with a boundary condition that when 

ρ=0, v=vf, the integration constant can be determined. We can obtain the 

speed-density equation: 

          (3.23) 

 

With similar procedures and assumptions, we can obtain the speed-density equation 

for the case m≠1, l=1, and m=1, l=1 respectively. 

Case 2, m≠1, l=1: 

The speed-density equation is: 

          (3.24) 

 

Case 3, m=1, l=1: 

The speed-density equation is: 

          (3.25) 

 

This is exactly the same speed-density function obtained from the fourth GM 

car-following model. The constant C cannot be determined from boundary conditions 

for this specific case. 

To the best of the author’s knowledge, no speed-density functions have been 

tested by field observed data for the three cases discussed above. 
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With the special cases of m and l values discussed, we can now derive the general 

macroscopic speed-density equation from the generalized GM car-following model 

(Equation 3.21). 

For the case l≠1, m≠1, let  

          (3.26) 

The generalized GM car-following model becomes: 

          (3.27) 

 

Under steady-state uniform flow, the time lag τ can be dropped, the individual vehicle 

speed can be replaced by traffic flow speed v, and the relationship that headway equals 

to the inverse of density applies. 

Integrating the car-following equation with respect to time t, we get: 

          (3.28) 

 

C1 and C2 are integration constants. Applying the boundary conditions, ρ=0, v→vf and 

ρ=ρm, v→0, we get 

 (3.29) 

 

This is the general macroscopic speed-density equation proposed by May (1990). 

From the derivation, we also get the sensitivity equation in the generalized GM 

car-following model presented in Equation (3.26). 

In fact, there is an alternative way to derive the generalized macroscopic 

speed-density function from Equation (3.21), as discussed by Bryne (1980). 
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Under steady-state traffic conditions, Equation (3.21) can be re-arranged as: 

          (3.30) 

 

Where s is the spacing from bumper to bumper: s=xn(t)-xn+1(t). 

The solution to Equation (3.30) is given by Gazis et al. (1961) in a general form: 

          (3.31) 

Where a and b are constants, while m and l are model parameters. 

Equation (3.31) is a macroscopic model describing the relationship between v and 

ρ. Left hand side (LHS) Fm is a function of speed with speed exponent m, while right 

hand side (RHS) Gl is a function of density, with parameters a and b as well as distance 

exponent l. Many well-known macroscopic speed density relations fall into this 

formula, as listed in Table 3.2. 

As can be seen from Table 3.2, free flow speed, optimum (or critical) density and 

maximum density are common parameters used in the speed functions. The traffic 

flow speed is modeled as a monotonous decreasing function of traffic density. 

3.2.5 Discussion on the Relationship between Microscopic and Macroscopic 

Models 

Most of the above-discussed microscopic-macroscopic relationships and derivations 

are based on the assumption that density equals to the inverse of headway: ρ=1/h. 

However, this relationship between the headway and density is debatable from a 

microscopic perspective, especially for non-homogeneous traffic. In strict 

mathematical terms, this relationship may be subject to more detailed scrutiny. An 

example was provided by Berg et al. (2000) under the situation that vehicles are 
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placed at non-equal distances. For example, suppose a set of identical cars are 

positioned along a section of road at x=1,2,4,8, . . ., 2
n-1

. The n
th

 car is placed at the 

position y. Then, the headway of the car placed at position x is h=x. Now we 

calculate the total number of vehicles on the section [1~y]. 

First, we consider the discrete case, for n cars, the total distance headway is: 

          (3.32) 

Which equals to the interval length (y-1), i.e.: 

          (3.33) 

Solving the equation, we get the number of cars placed in the interval [1,y]:  

          (3.34) 

However, using the relationship that density equals to the inverse of headway, we 

extend the density to a continuous domain. The number of vehicles (m) placed in the 

interval [1~y] is: 

          (3.35) 

Obviously, n>m. 

It also shows that as y→∞, m→n. This means that, for a very long section of 

road and homogeneous vehicles, the approximation of density by reversing the 

distance headway is appropriate. 

In fact, for an arbitrary length of road, density can be defined as: 

          (3.36) 

The headway is h=xi+1-xi, and the mathematical relationship between distance 

headway and density is (Berg et al 2000): 

          (3.37) 
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Berg et al (2000) expanded the second integral in powers of y and integrated it to 

obtain the asymptotic series: 

          (3.38) 

 

Solving for headway h, we have: 

          (3.39) 

 

Berg et al (2000) assumed that on the RHS of each term is of a smaller order of 

magnitude than the one preceding it, which is equivalent to the assumption that 

changes in traffic density occur over the distance of several vehicle lengths. 

The first term on the RHS of Equation (3.39) represents the often-used 

relationship between headway and density. The second term is similar to the 

anticipation terms in Payne’s (1971) model as it contains the change of density along 

the roadway. It is also similar to the pressure term in the gas-kinetic model. The third 

term is the diffusion term, which is the second-order derivative of density with 

respect to space. 

We can use this approximation in a car-following model similar to the optimum 

velocity model: 

          (3.40) 

 

Where, τ is the reaction time, h is the space headway and V(h) is the 

headway-dependent desired speed. 
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Use three terms of the RHS of Equation (3.39), the desired speed can be expressed 

as: 

          (3.41) 

 

Using Taylor expansion to the RHS and taking [-ρx/(2ρ
3
)-ρxx/(6ρ

4
)] as a small 

headway increment, we have: 

          (3.42) 

Let us set:  

          (3.43) 

Then, 

          (3.44) 

 

Taking full derivatives of the LHS of Equation (3.40) and combining it with Equation 

(3.42), (3.43) and (3.44), we obtain the acceleration equation in the second-order 

model: 

 

          (3.45) 

This is a second-order macroscopic model that is very similar to Kerner and 

Konhauser model (1993). The RHS of this model can be interpreted as relaxation, 

anticipation and diffusion or viscosity term. 

If we use two terms of the RHS of Equation (3.39), and the same procedures 

presented above, we can directly obtain Payne’s model (1971), as shown in Equation 

(3.46). It was also found that Payne’s assumption that headway equals to the 
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reciprocal of the density at a location midway between two vehicles is equivalent to 

using the two terms of the RHS of Equation (3.39). 

          (3.46) 

 

If we directly use the relationship that headway equals to the inverse of the 

density in Equation (3.40), we can obtain the acceleration equation: 

          (3.47) 

 

This model contains only relaxation and convection components. This means, 

slightly changing the headway-density relationship will result in different 

macroscopic models. 

Let us turn to Payne’s model (1971) as it is closely related to the macroscopic 

simulation models used in this research. Payne derived four acceleration equations 

from two different car-following models: a linear car-following model and a delayed 

response car-following model. 

(1) The first way Payne derived an acceleration equation was from a linear 

car-following model with the minimum distance d: 

          (3.48) 

After the reaction time T, the vehicle is at the location [x+T⋅v(x,t)] with the speed: 

          (3.49) 

Through Taylor’s expansion on the LHS in T, we have: 

          (3.50) 
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Omitting the higher order value O(T
2
) and using the full derivative, we get: 

          (3.51) 

 

Combing Equations (3.48) and (3.51) and using the relationship that density equals to 

the inverse of headway, we get the acceleration equation corresponding to the linear 

car-following model (3.48): 

          (3.52) 

 

This model includes 𝛌 and d and it is not often used in the application. 

(2) The second acceleration equation Payne derived was from a linear 

car-following model without the minimum distance d: 

          (3.53) 

Instead of using the relationship that density equals to the inverse of headway, Payne 

used the inverse of the density at a location midway between two vehicles to 

approximate the headway, i.e.: 

          (3.54) 

Following the same procedures as above, we get:  
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terms from the RHS of Equation (3.39): 

          (3.57) 

Putting Equation (3.57) into (3.53), we get exactly the same model as (3.55).  

If we use,  

            (3.58) 

The resulting model will be: 

          (3.59) 

 

If we use the first three terms of the headway-density relationship in Equation (3.39), 

then the acceleration equation is: 

          (3.60) 

 

This model contains the traffic diffusion term. This means that, using different 

headway-density relationships will generate different acceleration equations. The 

more components used from a headway-density approximation, the more terms will 

be in the acceleration equation. 

(3) The third way Payne (1971) derived the acceleration equation is from a 

car-following model expressed as: 

          (3.61) 
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          (3.62) 

 

Combined with the full derivative of speed [(dv/dt)=vt+v⋅vx], we get: 

          (3.63) 

 

This is the widely used form of the second-order model with relaxation, convection 

and anticipation terms. Note that the structure of Equation (3.63) is the same as 

Equation (3.46).  

(4) The fourth way Payne derived acceleration was from a more general form of 

the car-following model to derive a speed dynamics: 

          (3.64) 

 

Using the full derivatives of speed for the LHS, the speed dynamics becomes: 

          (3.65) 

 

Applying finite difference method to both sides, we get:  

          (3.66) 

 

Note that in this fourth way, Payne did not provide a specific function form for the 

density gradient term. 

A direct application of the relationship between microscopic and macroscopic 

models is a derivation of the second-order macroscopic model in discrete form from a 

linear car-following model. The speed dynamics is (Payne 1971, 1979): 
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(3.67) 

This speed dynamics is used in many freeway simulation and online traffic controls 

(Messmer and Papageorgious 1990, Kotsialos et al. 2002, Hegyi et al. 2005a,b, 

Carlson et al. 2010). ). It is noted that Equation (3.67) was derived with forward finite 

difference method for density derivative, backward finite difference method for speed 

derivative, assuming density and speed were continuous functions. The function form 

may change if other finite difference methods are used. 

3.3 From Gas-Kinetic Theory  

Kinetic models are based on the construction of a distribution of individual behaviour 

laws, such as a speed or density distribution function (f) to obtain the probability of 

finding a vehicle with a certain velocity (u) in a given position (x) on the road at time 

(t). The averages over the distribution function are represented by macroscopic 

variables (such as speed, density, and flow). Therefore, we can obtain macroscopic 

models from a kinetic equation by means of an average procedure. 

The number of vehicles in the system is obtained by integrating the distribution 

function (f) over a section of road: 

(3.68) 

The relation between the microscopic measure of the distribution function (f) and 

macroscopic measure of traffic density (ρ) is established through the integration of the 

distribution function: 

(3.69) 
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The flow and speed are obtained by 

 (3.70) 

 

(3.71) 

where v is the average speed. 

Due to the paired interaction of vehicles, the evolution of the distribution function with 

respect to time and space abides by the balance principle (Piccoli and Tosin 2011). 

That is 

(3.72) 

 

where J[f] is an operator acting on the distribution function f, describing the 

interactions and their effects on the states of the vehicles. Different specification of 

J[f] will result in different models. 

Integrating Equation (3.72), and then combining with Equation (3.69), (3.70), and 

(3.71), we can obtain the macroscopic mode expressed as the following (Piccoli and 

Tosin 2011): 

(3.73) 

 

3.4 From Macroscopic to Microscopic Models  

As previously discussed, if we take derivatives of a macroscopic speed-density 

relationship, we can get an average acceleration of an individual vehicle. 

Macroscopic traffic models describe the collective behaviour of drivers, the speed of 

which is often expressed as a function of traffic density. Microscopic models 
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describe individual vehicle movement, which is often expressed as differential 

equations. Take the Drake (1967) model as an example, the macroscopic 

speed-density model is: 

            (3.74) 

 

Where, ρ0 is the optimum density. Equation (3.74) is equivalent to: 

            (3.75) 

 

For steady-state traffic, each vehicle has the same properties. Taking derivatives on 

both sides and using the relationship h=1/ρ, we have 

            (3.76) 

 

Which is a nonlinear car-following model that is very similar to the GM family of 

car-following models. 

Following similar procedures and assumptions, we can derive the generalized 

GM car-following model from May’s (1990) generalized speed-density relationship: 

 

            (3.77) 

 

 

Where, l≠1 and m≠1, as discussed previously.  

3.5 Summary and Conclusions  

This chapter explored the relationship between microscopic and macroscopic traffic 

flow models. Almost all of the existing well-known macroscopic speed-density 
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relationships can be derived from microscopic car-following models. This is 

achieved by integrating microscopic car-following models and applying proper 

assumptions on traffic conditions and headway-density approximations as well as 

boundary conditions. On the other hand, taking derivatives of macroscopic 

speed-density relationships will result in microscopic traffic models (acceleration 

equations) and the process is easier than integration. 

Most of the microscopic-macroscopic derivation was based on the assumptions 

of steady-state and homogeneous traffic conditions and that headway equals to the 

inverse of the density. Therefore, these models apply only for steady state traffic 

conditions. Under these assumptions, a generalized macroscopic speed-density 

relationship was derived from the generalized stimulus-response microscopic 

car-following model, which includes a speed exponent parameter m and distance 

headway exponent parameter l. With different combination of m and l values, almost 

all of the well-known macroscopic speed-density models can be derived from this 

generalized car-following model.  

It was found that the relationship between headway and density has important 

implications on model derivation. The traditional headway-density assumption does 

not hold for non-homogeneous traffic and the research showed that slightly changing 

the headway-density relationship will result in different macroscopic models. Using 

a mathematical definition of density and a new headway-density approximation, a 

macroscopic model that includes relaxation, convection, anticipation and diffusion 

(or viscosity) components was derived from a microscopic model corresponding to 

the delayed response of drivers.  
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Table 3.1 Car-following models and macroscopic models in m and l matrix 

m l Microscopic Models Macroscopic Models  

0 0 GM 1, GM 2, Pipe (1953), Forbes and Simpson (1968 ) 

0 1 GM3 Greenberg (1959) 

0 2 ― Greenshields (1935) 

1 1 GM 4 ― 

1 0 ― ― 

1 2 ― Underwood (1961) 

1 3 ― Drake (1967) 

m l GM5 Generalized v-ρ equation (May 1990) 

 

Table 3.2 Speed-density relationships in general form  

Model F(v) G(p) a b 

Greenshields (1935):  v=vf-vf(ρ/ρm) v (ρ/ρm) -vf vf 

Greenberg (1959): v=vf⋅ln(ρm/ρ) v ln(ρm/ρ) vf 0 

Underwood (1961): v=vf⋅e
(-ρ/ρ

0
)
 v e

(-ρ/ρ
0

)
 vf 0 

Drake (1967): v=vf⋅e
-½⋅(ρ/ρ

0
)2

 v e
-½⋅(ρ/ρ

0
)2

 vf 0 

Drew (1965):  v=vf-vf(ρ/ρm)
(n+½)

 v (ρ/ρm)
(n+½)

 -vf vf 

Pipes-Munjal (1967, 1971):  v=vf-vf(ρ/ρm)
n
 v (ρ/ρm)

n
 -vf vf 

General Model (May 1990):  

v
(1-m)

 =vf
(1-m)

[1-(ρ/ρm)
(l-1)

] 
v

(1-m)
 -(ρ/ρm)

(l-1)
 vf

(1-m)
 vf

(1-m)
 

 

ρ, ρ0, ρm are traffic density, optimum density and maximum density, respectively, vf is 

the free flow speed. 
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Chapter 4 Compatibility Analysis of Macroscopic and 

Microscopic Traffic Simulation Modelling
1
 

 

4.1 Introduction 

Microscopic traffic models were established in the 1950s and represented by 

car-following models (Brackstone el at. 1999, Olstam el at. 2004). Over the past 

several decades, many studies have been carried out on the related theories and their 

applications. Due to model mechanisms, microscopic simulation models are often 

used in evaluating detailed local operations, such as congested intersections (Messer 

1998), freeway bottlenecks (Halkias  et al. 2007), weaving sections (Stewart et al. 

1996), merging and lane changing (Hidas 2002), transportation corridor operations 

(Gomes et al. 2004), etc. They can also be used to analyze control scenarios, such as 

ramp control (Hasan et al. 2002, Beegala et al. 2005) and intelligent transportation 

strategies (Chu et al. 2004). Hasan et al. (2002) evaluated four kinds of control 

measures: access control, route guidance, lane management and integrated control, 

with a microscopic traffic flow simulator (MITSIM Lab) and demonstrated the 

capability of microscopic simulation to explicitly capture interactions among 

individual drivers and represent the driver’s response to control devices at the 

                                                 
1
 A version of this chapter has been published. Yin, D. and Qiu, Z.T. (2013). 

Compatibility analysis of macroscopic and microscopic traffic simulation modeling. 

Canadian Journal of Civil Engineering. 40(7), pp.613-622. 
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individual level. However, this type of application is mainly off-line and lacks the 

predictive control functions. Instead, microscopic simulation is an effective tool to 

evaluate the performance of control measures before their implementation. 

On the other hand, the application of macroscopic simulation models is aimed at 

large-scale roadway networks (Kotsialos et al. 2002, Carlson et al. 2010) or online 

(real-time) traffic control to reduce congestion and improve mobility (Lu et al. 2010, 

Hegyi et al. 2005a, Hegyi et al. 2005b). In Hegyi et al.’s (2005b) study, the authors 

used a macroscopic traffic flow model, METANET, as the state prediction model for 

optimal coordination of variable speed limits and ramp metering in a freeway 

network and found that the coordinated control can result in a higher outflow and a 

significantly lower total travel time in the road network.  

The formulation of macroscopic simulation models varies depending on whether 

merging, weaving or other factors are considered in the model (Shladover et al. 

2010). Papageorgious et al. (1989) modeled an arterial street in Paris. The effects of 

several components of the speed dynamics equation were studied and it was 

concluded that dropping the merge term had no evident impact on model accuracy 

(on the studied roadway), but will evidently increase simulation speed.  

There are only limited studies on the comparison of macroscopic and 

microscopic model performances. Cluitmans et al. (2006) compared a macroscopic 

model and a microscopic simulation model on a freeway in the Netherlands and 

concluded that both models used in their study were not able to simulate well when 

traffic demand was very high. Lamon (2008) used METANET and PARAMICS 

simulation on a freeway for a short peak period. Both good agreements and wide 
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discrepancies were observed between the outputs from the two models. Wu (2002) 

applied a macroscopic model, NETCELL, and a microscopic simulation model, 

VISSIM, for a congested freeway and found that NETCELL can reproduce the 

congested traffic condition much better than VISSIM, while the latter can represent 

the real-world traffic conditions better in free-flow. Ishak et al. (2006) evaluated the 

performance of a macroscopic model, CTM, and a microscopic simulation model, 

CORSIM, on a congested freeway and showed that performances of both simulation 

models are comparable in terms of link density and total network travel time. 

The studies by Shladover et al. (2010), Papageorgious et al. (1989), Lamon 

(2008) and Wu (2002) used only one time step length in each macroscopic 

simulation, and it varied from 2.5 seconds (s) in Papageorgious et al. (1989) to 60s in 

Shladover et al. (2010). In those studies, whether the time step length impacted the 

model performance was not evaluated. Cremer et al. (1981) studied the time step 

length effects on the differences (total errors) of the macroscopic simulation and 

found that the optimal value is related to the segment length. However, whether the 

optimal time step length varies with traffic demand was not studied. 

Previous studies showed mixed results as to whether microscopic and 

macroscopic simulations have similar performances. There is no systematic study on 

the combined effects of traffic demand and time step length used in macroscopic 

simulation on the model performance. For a particular application of active traffic 

management (ATM), a systematic comparative study on microscopic and 

macroscopic models under varied traffic demand is required to calibrate and adjust 

the macroscopic models that will be used for online traffic control purposes. 
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The objectives of this study are to compare the performance of a microscopic 

simulation model, VISSIM (PTV 2010), and a macroscopic simulation model, 

METANET (Messmer and Papageorgious 1990), under various traffic conditions, to 

evaluate how the time step length (time interval) impacts the macroscopic simulation 

performance and to determine the most appropriate time step length that will be used 

in VSL and RM control on the studied urban freeway. This chapter is organized into 

sections: after this introduction, the methodology and simulation models used in this 

study are presented. An experimental design is discussed, according to which data is 

compared and analyzed. Conclusions are presented after detailed discussions. 

4.2 Methodology 

In this portion of the study, the compatibility between a macroscopic and a 

microscopic simulation model was analyzed on a section of urban freeway with 

relatively low speed limits and a lane drop in a construction zone. The microscopic 

simulation model, VISSIM, was calibrated and validated using field measured traffic 

volume and speed data. A macroscopic simulation model, METANET, was modified 

and used for the same section of freeway. The study considered two critical factors, 

traffic demand and time step length, and their effect on macroscopic simulation and 

on the compatibility of the macroscopic and microscopic simulation models. The 

macroscopic simulation model was run with different traffic demands and time step 

lengths and compared with the outputs from the microscopic simulation with the 

same initial traffic states. The prediction errors from the macroscopic model were 

used as measures of effectiveness (MOE) and were evaluated with respect to time 
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step length and traffic demand. The conclusions were obtained from the comparative 

analysis. Figure 4.1 shows the flowchart of this study. 

4.2.1 Studied Freeway Corridor 

The site selected for the study was a section of the westbound direction of Whitemud 

Drive, which is an urban freeway in the city of Edmonton, Alberta, Canada. It runs 

from east of 122 Street to west of 159 Street. This 8.5 km long freeway section has 

five on-ramps and six off-ramps. At the time this study was carried out, there was a 

construction zone in the middle of this freeway section with a posted speed limit of 

50 km/h. The remaining sections have a posted speed limit of 80 km/h. The number 

of through lanes varies from two lanes in the construction zone to four lanes near the 

end of the freeway section and three lanes for the majority of the freeway. Figure 4.2 

shows the characteristics of the studied freeway corridor. This freeway experiences 

recurrent heavy congestion during the morning and afternoon commute peak hours 

due to the construction zone and several bottlenecks. Coordinated RM and VSL 

controls are under study and will be implemented in the near future to address 

increased traffic demand, which is expected after completion of the construction. At 

the time of the study, loop detectors were installed at seven cross-sections of the 

mainline freeway and video cameras were installed at the ramps.  

4.2.2 Microscopic Simulation Model 

Microscopic simulation models simulate the movement of individual vehicles based 

on car-following and lane-changing theories. They describe the behaviour of 

individual vehicles in relation to the roadway and other vehicles in the flow. Vehicles 

are tracked through the network over small time intervals (usually less than one 
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second) and then vehicle performances are aggregated to assess the traffic 

performance on the roadway. A microscopic simulation package, VISSIM, was used 

in this study. VISSIM uses a link-and-connector approach to represent roadway 

sections and merge/diverge points. Links are used to build the roadway sections. A 

number of attributes can be assigned to links, including number of lanes, lane widths, 

road gradient, lane restrictions as well as car-following and lane-changing behaviours. 

Connectors are used to connect links to build road networks. All of the turning 

movements at intersections and roadway merging/diverging points need to be joined 

by connectors. Roadway characteristics were represented in detail, including turning 

radius, the exact location of on-ramps and off-ramps, auxiliary lane and tapers length, 

configuration of weaving sections and exact location of traffic control measures. 

In the VISSIM model, vehicles were loaded into the roadway according to a 

predefined distribution based on total traffic demand. The traffic data was obtained 

from two sources: dual loop detector-measured data on each lane of the mainline at 

seven cross-sections (in Segment 4, 7, 9, 10, 12, 14 and 20 of Figure 4.2) and video 

traffic data at on- and off-ramps. The origin-destination (OD) matrix was estimated 

using TFlowFuzzy procedure in VISUM (PTV 2010). The Whitemud Drive corridor 

connectivity matrix was considered as a seed matrix and the OD was estimated to 

match the field traffic counts. This estimated OD from VISUM was then converted to 

a routing matrix to establish the vehicle routing input in VISSIM. During simulation, 

virtual detectors were placed on each lane at the middle of each segment as well as at 

the on- and off-ramps to measure flow and speed. The VISSIM outputs (flow and 
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speed) were aggregated according to the required time intervals and used as initial 

inputs for the macroscopic simulation model. 

4.2.3 Macroscopic Simulation Model 

Macroscopic simulation models are based on the deterministic relationships of the 

flow, speed and density of the traffic stream along a section of roadway. They 

describe the traffic flow on an aggregated basis rather than by tracking individual 

vehicles. Therefore, macroscopic simulation is much faster than microscopic 

simulation. However, they do not have the ability to analyze detailed local 

characteristics, such as merging points, in as much detail as the microscopic models.  

A macroscopic simulation model, METANET, was used in this study. A detailed 

description of METANET is well documented in literature (Kotsialos et al. 2002, 

Carlson et al. 2010, Messmer and Papageorgious 1990) and is not repeated here. 

Modifications were made to account for local conditions. 

In macroscopic simulation, the roadway was subdivided into a number of 

segments and the time was discretized into short time intervals (denoted by T). The 

aggregated traffic state variables were defined for each segment and updated each 

time step. The freeway for this study was divided into 20 segments based on the 

distances and number of lanes between on-ramps and off-ramps (Figure 4.2b). The 

segment length varied from 285m to 500m. The construction zone was from segment 

8 to segment 15. Each segment was a homogeneous unit, in which the number of 

lanes must remain unchanged. Usually short acceleration/deceleration lanes, 

merging/diverging tapers at lane adding/dropping or at ramps cannot be modeled as a 

lane, because the short length does not satisfy minimum segment length 
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requirements. Geometric details of the roadway, such as curvature, grade and lane 

width cannot be represented directly in the model. On- and off-ramps were always 

located at the beginning and end of the segments, respectively, and traffic control 

measures were located at the beginning of segments.  

Based on spatial and temporal discretization, traffic state variables were 

calculated for each segment i at each time step k by the following equations (Carlson 

et al. 2010): 

                                      (4.1) 

            

                                       (4.2) 

 

          (4.3) 

  

The symbols and notations used in the model are listed below: 

k - simulation time step index, which indicates the time instant t=kT, k = 0, 1, 2…, K. 

K - the total simulation time steps. 

T - simulation time step length;  

Li - length of segment i; 

ρi(k) - density (veh/km/lane) in segment i; 

vi(k) - speed (km/h) in segment i; 

vi-1(k) - speed (km/h) in segment i-1; 

ri(k) - on-ramp flow in segment i at time index k; 

si(k) - off-ramp flow in segment i at time index k; 

Vi(k) - desired speed in segment i vehicles trying to reach; 

ρcr - critical density (the traffic density at which the traffic flow reaches the 

capacity); 

α - a model parameter for the fundamental diagram; 

vf - free-flow speed (km/h). 
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τ, η, κ are model parameters that need to be identified in model calibration 

process. τ is the time delay for the driver’s response to the perception of traffic states. 

η is a sensitivity factor and κ is a density constant. For each designed T value (a 

pre-determined constant), all segments will use the same set of model parameters, 

which are obtained in the model calibration process. Different T values will have 

different sets of parameters and result in different macroscopic models. 

Equation (4.1) is based on the conservations of vehicles that results directly from 

the definition of the traffic variables. Equation (4.3) is an empirical equation 

describing the static speed-density relationship corresponding to the FD. Equation 

(4.2) is the speed dynamics, which is derived from a car-following mechanism 

(Payne 1971). The meaning of each term has been explained in Kotsialos et al. 

(2002), Carlson et al. (2010) and Cremer et al. (1981). 

In some research (Papageorgious et al. 1989, Papageorgious et al. 1990, Sanwal 

et al. 1996 and Bellemans 2003), the speed dynamics Equation (4.2) was extended 

by including additional terms to directly account for the impacts from on-ramps, lane 

drops or the blocking of lanes due to incidents. These terms may appear in different 

forms. For example, a merge term can be expressed in the following form: 

          (4.4) 

 

Where, δm is a tuning parameter for the merging term and κm is a model constant. vi(k) 

and vr(k) are vehicle speeds on segment i and an on-ramp, respectively. ni is the 

number of merging lanes and qon is the flow from an on-ramp. A similar structure to 

Equation (4.4) can also be included in Equation (4.2) to represent lane-drop effects. 
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However, the disadvantage of including more terms is that they will bring more 

model parameters and add complexity in model calibration, as model parameters 

may have interactive effects. On the other hand, not including merge and lane-drop 

terms does not necessarily mean that those impacts have not been considered in the 

model. In fact, they are reflected indirectly. For on-ramps or lane drops, the merging 

of additional traffic volume may increase the density of the corresponding freeway 

sections. Density, in its turn, influences mean speed through the speed-density 

relationship. In addition, entering vehicles from on-ramps usually have a lower speed 

than vehicles on the through lanes and this low speed is included in the model 

calculation.  

The merge and lane-drop terms are not included in this study for two reasons: 

First, field observations of peak hour traffic operations under existing road 

configuration indicated that vehicles from on-ramps often wait at the painted tip of 

the on-ramps when traffic density on the main road was high. This is similar to a 

yield sign control at the on-ramps, rather than a real merge. Second, while most of 

the studies on macroscopic simulation excluded the on-ramp or lane-drop terms 

(Cremer 1981, Calson et al. 2010, Kotsialos et al. 2002), some research that did 

include on-ramp or lane-drop terms (Papageorgious et al. 1989, Papageorgious, 1990) 

reported that including the on-ramp term in the model “did not lead to any visible 

amelioration” and “the importance of lane drop coefficient is moderate.” 

Nevertheless, the possible merging and weaving impacts are investigated in a later 

part of this dissertation. 
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Different from regular freeways, the studied urban freeway has several speed 

limit signs with a relatively low value. The free-flow speed on this freeway is 

different from a conventional freeway concept. By definition, the free-flow speed is 

the mean speed when the drivers are not restricted by any other vehicles on the 

freeway. Based on field observations, the freeway flow speed is approximately 1.1 

times of the posted speed limits when the posted speed value is less than 90 km/h. 

Therefore, the desired speed Equation (4.3) is replaced by Equation (4.5) in 

simulation. The flow in segment i was calculated by Equation (4.6). 
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          (4.6) 

Where, Vcontrol,i is the posted speed limit in segment i, qi(k) is the predicted flow 

(veh/hr/lane) in segment i during time step k. 

4.2.4 Initial States and Boundary Conditions 

In a comparative analysis of different models, the initial traffic state at each segment 

should be set the same so that traffic dynamics can be compared over the temporal 

and spatial evolvement. At the beginning of the macroscopic simulation, the initial 

traffic state in each segment (density and space mean speed) is the same as in the 

VISSIM simulation. This was achieved by aggregating the VISSIM outputs (flow, 

speed and calculated density) in the corresponding time intervals used in 

macroscopic simulation. 

In microscopic simulation, boundary conditions are the traffic demands at the 

upstream and on-ramps. They are given as direct input data. The speed is not 

required, since it will be calculated based on the car-following mechanism imbedded 

)()()( kvkkq iii  
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in the model. Macroscopic simulation models need more boundary conditions than 

are required for microscopic simulation models. To run the METANET model, 

traffic states (flow and speed) upstream of the first modeled segment and 

downstream of the last modeled segment of the main roadway as well as all 

on-ramps are required.  There are three ways to obtain the speed information as 

inputs to the METANET model. The first method is based on the available or 

assumed FD. Vehicle speeds were obtained by knowing flow states of the traffic 

demand. The second method is using continuously measured, real-time field data. 

Using a third approach in this study, the traffic demand and speed were obtained 

from VISSIM by aggregating VISSIM data according to the adopted time intervals 

to guarantee the same boundary conditions as in VISSIM. 

4.3 Model Calibration and Performance Measures 

Two separate sets of data were prepared for VISSIM calibration and validation, 

respectively: dual loop detector data on the mainline at seven cross-sections and video 

traffic data at on- and off-ramps for two hours (4:00 p.m. – 6:00 p.m.). The calibration 

of VISSIM was carried out in a preceding study (Wang et al. 2012), which includes 

two stages: qualitative and quantitative calibration. In the first stage, VISSIM was run 

starting with model default parameters and driver behaviour was observed at on-ramps, 

merge sections and bottlenecks. Vehicle characteristics and performance data, 

including vehicle length, maximum speed and maximum acceleration/deceleration 

rates, were adjusted to match local traffic conditions. The driver behaviour parameter 

sets were adjusted to change the aggressiveness of drivers at merge locations. The 

safety distance reduction factor was changed from the default value of 0.6 to 0.1, 0.2, 
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and 0.05. Headway time (CC1 parameter) was set to 1.20, 1.30 and 1.40 for the 

weaving section, lane drop and construction zone, respectively. Visibility parameters 

(emergency stop and lane change) were also adjusted at each link connector. These 

parameters were adjusted with a trial and error method and numerous iterations until 

the simulation reasonably represents the observed field traffic operation, especially at 

merge points and bottlenecks. 

 In the second stage, quantitative calibration was carried out by comparing the 

modeled results (capacity, volume and travel time) with field-measured data. The 

parameters were adjusted iteratively until the modeled results fell within the 

acceptable range of pre-determined criteria for five simulation runs, with each run at 

two hours with a different seed value: simulated capacity was within 10% of the field 

measurements using the macroscopic FD method. For more than 85% of the cases, 

the simulated link volumes were within 5% when measured volumes were <500 

vphpl; within 10% when measured volumes were between 500~1500 vphpl; and 

within 15% when measured volumes were >1500 vphpl. The summation of the 

simulated link volumes was kept within 5% of total measured volume. Simulated 

average travel time was within 10% for the measured mainline segments. For 

validation, the same criteria as in calibration were used and another five simulation 

runs were performed to compare the modeled results. 

 Since the purpose of this study was to analyze the compatibility of the 

microscopic and macroscopic approach, the METANET model was calibrated to 

VISSIM output data, rather than the field-measured data based on two considerations. 

First, the VISSIM model was calibrated and validated with the field data and, thus 
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the output from VISSIM can be taken as the ground truth in the comparative analysis. 

Second, there are 20 segments in the METANET model, but loop detectors were 

only installed at seven cross-sections. It is more appropriate to calibrate the 

METANET model with VISSIM outputs recorded at each segment. 

 In calibrating the METANET model, the nonlinear optimization method was 

used to estimate the model parameters. The objective function was the function that 

calculates the total relative difference (total error) between the outputs from VISSIM 

and METANET simulation for all segments and in all time steps. In particular, the 

total error in this study is defined as the sum of squares of relative errors, which is 

calculated by Equation (4.7): 
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Where, Nsteps is the total number of simulation time steps, Iall is the total number of 

the segments of the freeway, )(ˆ),(ˆ kvkq ii are flow and speed from VISSIM in 

segment i at time step k, respectively, and )(~),(~ kvkq ii are flow and speed from 

METANET in segment i at time step k, respectively. 

The model parameters (τ, η, κ, α, ρcr and ρmax ) can be identified by minimizing 

the total error. The MATLAB Optimization Toolbox (The MathWorks 2010) was 

used to solve this nonlinear optimization problem. For each T value, a set of model 

parameters were obtained to constitute one macroscopic model. A different T value 

will have a different set of model parameters. For example, corresponding to the time 

interval T=20s, the set of model parameters for this freeway was τ=0.03hr, η = 50 

km
2
/h, κ= 47 veh/km/lane, α=2.32, ρcr = 48 veh/km/lane and ρmax = 110 veh/km/lane. 
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It should be noted that there will be a minor change in the model parameter values if 

the upper and/or lower bounds are changed in the optimization processes. 

Different from the application of traffic control with VSL or RM, in which the 

total travel time (TTT) and total travel distance (TTD) are often used as the measure 

of effectiveness (MOE) to evaluate the performance with/without control models, 

this study evaluated the prediction accuracy between the macroscopic model and 

microscopic simulation. Therefore, the prediction error (difference, D) was used as 

the performance measure, which is, at each time step and in each segment, defined 

below:  

 
2/)( OutputVISSIMOutputMETANET

OutputVISSIMOutputMETANET
D




           (4.8)

  

4.4 Experimental Design 

To evaluate the compatibility of microscopic and macroscopic simulation models, a 

range of traffic demand should be tested to compare model performance under varied 

traffic conditions. In addition, the simulation time interval in the macroscopic model 

should also be evaluated because it is a fundamental constituent in macroscopic 

simulation. 

Segment length plays an important role in macroscopic simulation and it is 

determined by the physical configuration of the freeway, such as distance between 

on-ramps and off-ramps. In an urban environment, the distance is usually short and 

there is not much flexibility to adjust the segment length. The basic assumption of 

the model configuration is that within each segment, speed and density are 

homogeneous and vehicles in the upstream segment can only move within the 
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current or to the immediate downstream segment in one time step. Due to physical 

constraints of the urban roadway, the impact of segment length on the model 

performance was not evaluated in this study. 

 Traffic demand should cover the practical range of operations in typical traffic 

flow control applications. In very light traffic demands, traffic management and 

control measures are not required. In this study, three traffic demand levels were 

used to run the microscopic and macroscopic simulations: moderate demand 

(approximately 933 to 1167 veh/h/lane at the mainline origin), heavy demand (1167 

to 1433 veh/h/lane) and excessive demand (1333 to 1667 veh/h/lane). Moderate and 

heavy traffic demand levels were determined based on field-measured traffic data, 

with heavy traffic demand corresponding to the actual peak hour (around 4:30 p.m. 

to 5:30 p.m.) and the moderate demand level corresponding to the half hour prior to 

and half hour after the actual peak hour. Excessive traffic demand level on the 

mainline was determined by artificially increasing the mainline volume from the 

heavy traffic demand to create a long-lasting traffic jam in the construction zone. For 

the excessive traffic demand level, demand at on-ramps and the proportion of 

vehicles that exit from off-ramps were kept the same as in the heavy traffic demand 

level. Within each traffic demand level, flow varied between low and high values 

during the simulation time period.  

The time interval in macroscopic simulation should be neither too short nor too 

long. If it is too short, sometimes the detector-counted vehicle numbers in VISSIM 

simulation (or measured by field loop detectors) in one time step could be zero in a 

segment. This will be exaggerated when converting the vehicle counts in one time 
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step to the hourly flow rates and, thus generate zero hourly flow rates. On the other 

hand, if the time interval is too long, the constitutive condition of macroscopic model 

L≥ T•Vf may be violated, causing the model to be unstable with inaccurate and 

sometimes erroneous outputs. Also, it is possible that some vehicles may completely 

skip one segment because in one time step they may have travelled a distance larger 

than the length of the immediate downstream segment. This “jumping” will result in 

incorrect predictions. Based on the above considerations, time intervals of 5s, 10s, 

15s, 20s, 25s, 30s and 33/35/40s were used in this study. Some erroneous outputs 

were observed during the macroscopic simulation when time interval was longer 

than 33s. 

4.5 Data Analysis and Discussion 

For each traffic demand level, VISSIM was run for a little over 1.5 hours. Excluding 

warm-up time, a maximum of one hour and 20 minutes of usable data was obtained 

for the study. The output from VISSIM was aggregated to different data sets 

depending on the design time step length to run the METANET model.  

In the following data analysis, the outputs from VISSIM were taken as the 

ground truth and the outputs from the METANET model were compared with the 

outputs from the VISSIM model, based on which, the time step and traffic demand 

effects are evaluated. 

4.5.1 Time Step Length Effects on Simulation Performance 

The total errors for a fixed 120 steps of simulation (K=120, when T is 40s, one hour 

20 minutes of data can be aggregated to 120 time steps), as previously defined and 

calculated by Equation (4.7), between the outputs from the VISSIM and METANET 
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models for different time interval T in macroscopic simulation are depicted in Figure 

4.3a. The total errors go down quickly as T increases from 5s to 10s, remain at a 

relatively low value as T varies from 15s to 25s, and go up after T is longer than 30s. 

Figure 4.3b shows the average error per time step from one-hour simulation (a 

different data set from Figure 4.3a). As can be seen, the average error in one time 

step is lowest when T is between 15s and 30s. For a given roadway configuration, 

there exists optimum time intervals in macroscopic simulation. In this study, the 

optimal time interval was centered around 20s.  

Figure 4.3a and 4.3b also confirm that both a too short and a too long time 

interval may lead to a large prediction error, as explained in the Experimental Design 

section. 

4.5.2 Traffic Demand Effects on Simulation Performance 

The traffic demand effects on simulation performance are shown in Figure 4.3 as 

well. When in moderate to heavy traffic demands, as defined in the Experimental 

Design section, both the total and average errors were similar for an appropriate time 

interval T. When demand was excessively high, errors were much higher than that in 

the moderate and heavy traffic demand. This indicates that at the moderate and 

heavy traffic demand level and with a reasonable time interval, there is no dramatic 

change in the model prediction performance. However, as the traffic demand is 

extremely high (stop-and-go traffic state), large differences exist between the outputs 

from the two models.  
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Figure 4.3 also shows that, at a particular traffic demand, errors remain 

relatively low when the time interval varies from 15s to 25s. Thus, it is 

recommended to use a T value between 15s and 25s for VSL control on this freeway. 

As the optimum time interval is centred around 20s, the following comparisons 

between the outputs from the two models are based on a fixed T of 20s with heavy 

traffic demand, corresponding to the peak hour of 180 time steps in macroscopic 

simulation. 

4.5.3 Comparison of VISSIM and METANET Outputs in Different Segments 

The flow, speed and density outputs from both the VISSIM and METANET models 

for all segments at particular time instants (time index k=40 and 120, respectively) 

are illustrated in Figure 4.4. Except a few segments (8, 9, 16, as discussed below in 

this section and the section that follows), the outputs from METANET and VISSIM 

have the same trends along the modeled roadway. The outputs from METANET are 

spatially consistent with the outputs from VISSIM. 

The flow data (Figure 4.4a and 4.4b) from the VISSIM model remarkably 

fluctuates from segment to segment. This is partially due to the inflow and outflow 

from on- and off-ramps, and partially due to the stochastic nature of microscopic 

simulation, in which traffic demands are generated following predetermined 

distribution and change with time quickly. In METANET, the flow has less 

fluctuation than that in VISSIM. 

In segments 8 and 9, a considerable difference in speed and density exist at time 

index k=120 (Figure 4.4c and 4.4d), because of the construction zone lane drop at 

segment 8 and an on-ramp at segment 9. During peak traffic demand periods (after 
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120 time steps), the real-world traffic flow is chaotic at this location and a 

stop-and-go traffic state exists on the freeway. VISSIM represented this traffic state 

clearly, while METANET did not. In Figure 4.4c, VISSIM indicated a speed of 25 

km/h at segment 9, which is much lower than the posted speed limit of 50 km/h. This 

low speed was caused by the extremely high density due to the lane drop at segment 

8 and the on-ramp at segment 9. While METANET captured this increased density 

and reduced speed, it had a “smooth effect,” changing gradually from one segment to 

the next.  

4.5.4 Comparison of VISSIM and METANET Outputs during All Simulation 

Time 

The density, speed and flow outputs from both the VISSIM and METANET models 

for the selected segments during one-hour simulation time (180 time steps with 20s 

time interval) are illustrated in Figure 4.5, Figure 4.6 and Figure 4.7, respectively.  

Generally, the density, speed and flow from both models are temporally 

consistent. The outputs from VISSIM fluctuate frequently with the time index, while 

the outputs from METANET are smooth with approximately the average value of 

VISSIM in most of the segments. The fluctuation of VISSIM outputs is due to the 

stochastic nature of microscopic simulation model, in which vehicles randomly enter 

the roadway and individual vehicle’s speed changes in reaction to the leading 

vehicles. In METANET simulation, however, the outputs are the average values of a 

segment at each time step. These values change gradually from one time step to the 

next. 
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Figure 4.5 shows the comparison of density from the VISSIM and METANET 

models in the selected segments (segment 5, 9, 12, 16). The simulated densities from 

both models match in most of the segments (20 segments in total; most of the 

well-matched segments were not selected for the figures). An obvious difference 

exists near segment 9. In segment 9, starting from time step 120, traffic density 

increases suddenly due to increased traffic inflow from on-ramp #2 (ramp inflows 

are not shown in the figures), causing a decrease in speed on the freeway, while the 

total flow on the freeway does not increase significantly. VISSIM depicts this traffic 

state change clearly, but METANET does not show the dramatic increase in density. 

In segment 16, the construction zone ends and the number of through lanes increased 

to three. The posted speed limit increases from 50 km/h to 80 km/h at the beginning 

of segment 16. In VISSIM simulation, vehicles accelerate in response to this 

condition immediately, forming a sudden decrease in traffic density due to an instant 

increase in speed. In METANET simulation, however, this sudden increase in speed 

is not well caught. 

Figure 4.6 shows the comparison of speed from the VISSIM and METANET 

models in the same selected segments as in density comparison. The predicted 

speeds from both models match in most of the segments. However, considerable 

differences exist in segment 9 and 16. In segment 9, after time step 120, traffic 

density on the freeway increased suddenly due to inflow from the on-ramp, causing a 

decrease in speed and stop-and-go conditions on the freeway. This is represented 

clearly in VISSIM, but not so prominently in METANET. In segment 16, the 

roadway is in a free-flow condition after the construction zone. Vehicles in the 
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VISSIM simulation adjusted to the new speed limit and free-flow condition 

immediately from segment 16 to the downstream. In the METANET simulation, the 

predicted speed increased gradually from segment 16 to downstream. The speed 

dynamics in the METANET model did not react quickly to the sudden change of 

traffic conditions. 

Figure 4.7 shows the comparison of flow from the VISSIM and METANET 

simulations in the same selected segments. The simulated flow from both models 

match very well in all segments. According to the model mechanism, the output flow 

from VISSIM was counted during the simulation, while in METANET, the flow was 

calculated from the predicted speed and density. Even though differences between 

the predicted speed and density existed in some segments, the product of speed and 

density from METANET model well-matched the counted flow from the VISSIM 

model. 

The average prediction errors, in percentage, as calculated with Equation (4.8), 

for each segment during all simulation time steps, are shown in Table 4.1. As shown 

in the table, compared with VISSIM outputs, on average, 10-20% of the prediction 

error can be expected from METANET on this freeway. It should be noted that the 

errors in Table 4.1 are all in absolute percentages for every time step. In field control, 

a model may over-predict traffic states in a previous time step and under-predict in 

the next time step. After the offset of the positive and negative errors, the average 

prediction error was much lower (less than 5% in this study) than the values in Table 

4.1. A control strategy was given based on the average prediction of several time 

steps. 
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4.6 Summary and Conclusions 

This section compared the performance of a macroscopic simulation model, 

METANET, with a microscopic simulation model, VISSIM, under different traffic 

levels and simulation time steps. Based on the performance of the two models and 

the comparison analysis presented above, the following main conclusions were 

found: 

 The prediction of traffic states from METANET model is generally 

consistent with that from VISSIM simulation. The simulated speed, density 

and flow from VISSIM model fluctuate with time frequently, while those 

from the METANET model are approximately the average value of that from 

VISSIM. 

 In macroscopic simulation model, there exist optimum time step lengths 

corresponding to a particular roadway configuration and free-flow speed. The 

optimum time step lengths do not change significantly with traffic demand. 

For the studied freeway, the recommended time step length for VSL control 

is approximately 20s. 

 When traffic demand is at moderate to heavy level, the predicted traffic states 

from the macroscopic simulation are consistent with those from the 

microscopic simulation. Under excessive traffic demand (stop-and-go traffic 

conditions), significant differences exist between the simulated speed and 

density from the two models evaluated. There are some limitations for 

macroscopic model used in this study to accurately predict traffic states under 

stop-and-go traffic conditions. 
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 In VISSIM simulation, the change of speed limits can be captured 

immediately at the location of the speed limit. In METANET model, the 

model could not catch the sudden and significant change of traffic speed. 
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Table 4.1 Average prediction errors in each segment (in absolute value) 

Segment No. 1 2 3 4 5 6 7 8 9 10 

Average 

of All 

Segments 

 

Density (%) 18 16 17 16 17 25 30 28 31 24 

Speed (%) 5 3 2 2 4 13 20 25 33 20 

Flow (%) 12 15 15 15 15 22 21 27 20 12 

Segment No. 11 12 13 14 15 16 17 18 19 20 

Density (%) 21 22 11 14 26 29 24 26 23 24 22 

Speed (%) 20 22 9 15 23 23 25 16 10 9 15 

Flow (%) 10 9 9 9 18 20 28 21 20 23 17 
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Figure 4.1 Comparative study flowchart 
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Figure 4.2 Studied freeway corridor
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Figure 4.3 Errors with respect to simulation time interval and traffic demand 

 

 

Figure 4.4 Predicted flows, density and speed along freeway 
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Figure 4.5 Comparison of density from VISSIM and METANET models 
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Figure 4.6 Comparison of speed from VISSIM and METANET models 
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Figure 4.7 Comparison of flow from VISSIM and METANET models  
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Chapter 5 Experimental Investigation of Merging and 

Weaving Impacts on Macroscopic Traffic Simulation 

Models 

 

5.1 Introduction 

Many intelligent transportation system (ITS) applications, such as ramp metering 

(RM), variable speed limits (VSL) and active traffic management (ATM) share a 

common feature: they all rely on traffic models to predict future traffic states (speed, 

density and flow) on the roadways, so that appropriate control measures can be 

adopted for the corresponding traffic conditions to reduce congestion or improve 

traffic efficiency. These model based traffic controls are referred to as model 

predictive control (MPC). Macroscopic traffic models are often served for this 

purpose. 

In terms of model components, macroscopic traffic models can be classified into 

first-order, second-order and third or higher-order models. Due to the mathematical 

complexity and no proven advantages in application, higher-order models are not 

used in actually traffic control as often as first-order and second-order models. 

First-order traffic models are essentially a conservation law coupled with the 

assumption that there exists an equilibrium speed-density relationship within the 
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density domain, or equivalently, a flow-density relationship (fundamental diagram, 

FD). No explicit speed dynamics is required as it is assumed that the speed does not 

deviate from the speed-density relationship. First-order traffic models can explain 

major important qualitative features of traffic flow, such as the dissipation of traffic 

jams at bottlenecks, propagation of disturbance in traffic stream (Zhang 1998). 

However, it does not allow for a dynamic generation of traffic instabilities. It is 

impossible to describe correctly the traffic flow under non-equilibrium states, such as 

phantom traffic jams, stop-and-go waves or forward propagation of disturbance in 

heavy traffic. 

In the second-order traffic models, an explicit speed dynamics is included in 

addition to the first-order model equations. This allows for speed deviation from the 

equilibrium speed-density relationship. The speed dynamics describes the evolution 

of speed in relation to not only traffic density, but also driver’s delayed response to 

the traffic conditions, such as traffic density at the downstream and traffic flow speed. 

The well-known speed dynamics developed by Payne (1971) can be expressed as an 

additive function of relaxation, convection and anticipation components. Some other 

speed dynamics also include diffusion (or viscosity) part depending on how the 

speed dynamics is derived. Even though the equilibrium speed (or desired speed) is 

still present in the speed dynamics, the actual traffic speed can deviate from it. This 

is more flexible to describe traffic speed evolution than the first-order models.  
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As we know, the speed dynamics are often derived for uninterrupted traffic on a 

section of roadway without ramps. It is a function of traffic states (speed, density, 

etc.) without any ingredient of the impact from ramps. In reality, on-ramps and 

off-ramps can form merge, diverge and weavings depending on roadway 

configurations. Both merging and weaving may impact the speed on the main road as 

can be observed in the field or in microscopic simulation. Other than flow and 

density change, the impact due to the inflow and outflow from ramps on the speed 

dynamics were not clearly expressed in mathematical models. This limitation was 

intended to be overcome in macroscopic simulation by adding additional terms in 

speed dynamics to account for those impacts. However, the disadvantage of 

including more terms is that they will bring more model parameters and add 

complexity in model calibration, as model parameters may have interactive effects. 

In addition, it is still not clear whether the added terms can significantly improve the 

performance of the macroscopic simulation models, because macroscopic models 

aggregate traffic behaviour and may overlook local variations. The local disturbances 

due to the merge, diverge or weaving may or may not be accurately accounted for by 

the model. For example, Papageorgious et al. (1989) modeled an arterial street in 

Paris. Effects of several components of the speed dynamics equation was studied and 

concluded that dropping the merge term will have no evident impact on model 

accuracy on the studied roadway but will evidently increase simulation speed. This is 
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only one case and may not be taken as a general conclusion as there is very limited 

study on this subject. It is necessary to evaluate the impact of merging and weaving 

terms on the model performance under different flow conditions. 

The objective of this study is to systematically investigate the merging and 

weaving impacts on the speed dynamics of macroscopic simulation models and 

provide experimental evidence as to whether explicit merging and weaving terms 

should be include in the speed dynamics of macroscopic simulation models to 

predict traffic states more accurately. The importance of this study is that if the 

merging and weaving impact on speed dynamics is significant, it should be included 

in the model to improve prediction accuracy. Otherwise, they can be omitted to 

simplify model calibration and improve computation efficiency in macroscopic 

simulation and traffic control. 

5.2 Methodology 

The general methodology of this study consists of the following key tasks: 

 Selection of study site; 

 Development of macroscopic simulation models; 

 Experimental design; 

 Collection of data; 

 Model calibration and 

 Data analysis. 

These key tasks are described in the following sections. 
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5.3 Studied Freeway Corridor 

The site selected for the study is a section of the westbound direction of Whitemud 

Drive (WMD), which is an urban freeway in the city of Edmonton, Alberta, Canada, 

from the west of 111
th

 Street to west of 159
th

 Street (shown in Figure 1.1). This 

8.6-km long freeway section has five on-ramps and six off-ramps, which form five 

merges, six diverges and four weaving sections.  

Some road improvements were constructed on this freeway during the years 

between 2010 and 2013, including the extension of acceleration lanes and added 

lanes on the bridge crossing North Saskatchewan River. The number of through 

lanes varies from 3 lanes to 4 lanes in different segments. This test section has a 

posted speed limit of 80 km/h and an average annual daily traffic (AADT) of about 

100,000 vehicles both directions in total. Nine loop detector stations were installed 

on the mainline, each consisting of dual-loop detector groups on each travel lane. 

Each of the on-ramps and off-ramps are equipped with loop detectors as well, in 

addition to those mainline detectors. Furthermore, there are seven traffic cameras 

along the mainline, which were used for observing vehicle maneuvers resulting from 

driver behaviour, including lane-changing aggressiveness in different freeway 

segments, time of congestion formation and congestion duration. Due to the 

existence of several bottlenecks, this section of roadway experiences recurrent heavy 

congestions from 7:00 to 9:00 of morning peak hours and 4:00 to 6:00 of afternoon 
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peak hours, respectively. To reduce traffic congestion, coordinated ramp metering 

and variable speed limits have been under study and will be implemented in the 

future to address increased traffic demand. 

In macroscopic simulation, the roadway is subdivided into a number of segments 

and the time is discretized into short time intervals (denoted by T). The aggregated 

traffic state variables (speed, density and flow) are defined for each segment and 

updated for each time step. The freeway for this study was divided into segments 

based on the distances and number of lanes between on-ramps and off-ramps. The 

discretization of the roadway and the location of ramps are shown in Figure 5.1. It 

should be noted that the discretization of the roadway for the studies described in this 

chapter is different from that in Chapter 4, in which some parts of the roadway were 

under construction (extended some acceleration lanes, added a lane on the bridge 

crossing the North Saskatchewan River, etc.) and the posted speed limits were 

different as well due to construction zones. The construction was completed in late 

2013 and the study in this chapter is based on the roadway configuration after the 

construction.  

As shown in Figure 5.1, the corridor is discretized into thirteen segments with 

the lengths vary from 279m to 1140m. Each segment is a homogeneous unit in which 

the number of lanes remains unchanged. Usually short acceleration/deceleration 

lanes, merging/diverging tapers at lane adding/dropping or at ramps cannot be 
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modeled as a lane because the short length which does not satisfy minimum segment 

length requirements. Geometric details of the roadway, such as curvature, grade and 

lane width cannot be represented directly in the model. On-ramps and off-ramps are 

always located at the beginning and end of the segments respectively and traffic 

control measures are located at the beginning of segments. Five on-ramps are located 

at segment 3, 6, 7, 9 and 11, and six off-ramps are located at segment 3, 4, 5, 7, 9 and 

11, respectively. Four weaving sections are formed on segment 3, 7, 9 and 11. 

5.4 Macroscopic Simulation Models 

As discussed in Chapter 2, the formulation of macroscopic simulation models varies 

depending on whether merging, weaving or other components, such as diffusion, are 

considered in the model. This study starts from a basic second-order macroscopic 

simulation model developed by Payne (1971, 1979). The impact of merge and/or 

weaving due to on-ramps and off-ramps were represented by adding corresponding 

terms to the speed dynamics, which forms different models. The models are then 

evaluated based on their performances on traffic state predictions. 

5.4.1 Base Model 

The base model used in this study is very similar to that used in Chapter 4. It consists 

of four equations: a density dynamics, a speed dynamics, an equilibrium 
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speed-density relationship and a basic equation that flow equals to the multiplication 

of speed and density. The model equations are as follows (Carlson et al. 2010): 

          (5.1) 

 

          (5.2) 

          (5.3) 

          (5.4) 

The symbols and notations used in this model are the same as in Chapter 4 and are 

not repeated here.  

5.4.2 Modelling Impact of On-Ramps 

Ramps are essential components of freeway systems and they may impact freeway 

operation depending on their geometric configuration and also on the traffic volume 

on both the through lanes and ramps. There are three possible configurations of 

ramps: isolated on-ramps, isolated off-ramps and an on-ramp immediately followed 

by an off-ramp. While the impacts of ramp inflow/outflow on the density of road 

segments can be calculated based on the conservation law, the impacts on speed 

depends on the traffic conditions of the road segment and the configuration of ramps. 

This requires a more detailed discussion. 

An isolated off-ramp usually has very limited impact on the speed of the through 

movement, because at freeway off-ramps most exiting vehicles start to decelerate in 
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deceleration lanes. As long as there is no backup queue of vehicles from the 

downstream of the off-ramps, the exiting vehicles have a negligible impact on the 

through movement on the mainline. Therefore, an isolated off-ramp does not need 

additional consideration on the speed dynamics of the simulation model for the 

mainline freeway. 

Different from isolated off-ramps, isolated on-ramps impact the traffic 

operations on the mainline due to the inflow from the ramps. An isolated on-ramp is 

shown in Figure 5.2.  

On-ramp vehicles influence the traffic model in two ways. First, the merging of 

additional traffic volume from on-ramps will increase the density of the 

corresponding freeway sections. Density, in its turn, influences the mean speed by 

means of the speed-density relationship. Second, entering vehicles usually have 

lower speeds than the vehicles on the through lanes. When on-ramp vehicles merge 

into the through lane, vehicles on the through lane may have to reduce the speed or 

change to the adjacent lane, which may also affect the speed on the adjacent lane. 

This seems particularly important in cases of a high entering rate from on-ramps.  

As described in Chapter 2, the impact of the merging and/or diverging flow on 

the speed of the mainline traffic flow can be modeled by adding a traffic friction 

term into the speed dynamics of Payne’s (1971) model. This principle is carried over 

to macroscopic simulation models. The speed dynamics Equation (5.2) was extended 
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by including additional terms to directly account for the impacts from on-ramps, or a 

sudden blocking of lanes due to incidents (Papageorgious et al. 1989, Papageorgious 

et al. 1990, Sanwal et al. 1996 and Bellemans 2003), because the often-observed 

slow-down of traffic in the vicinity of an on-ramp cannot be explained by the 

increased traffic density in the segment fed by the on-ramp alone. A merge term in 

the speed dynamics accounts for the additional decrease of average speed due to the 

disturbances caused by the merging traffic from on-ramps and lane-changing 

vehicles on the mainline. The merging term can be expressed in the following form 

(Papageorgious et al. 1990, Sanwal el at. 1996, Belleman 2003): 

          (5.5) 

 

Where, δm is a tuning parameter for the merging term. ni is the number of through 

lanes at the merge section and κm is a density constant to avoid abnormal model 

performance, such as zero at the denominator. qon(k) is the inflow from an on-ramp 

at time step k. vi(k) is the speed on the mainline freeway.  

According to Equation (5.5), the decrease in average speed in the segment i due 

to the merging traffic is proportional to the inflow qon(k) from the on-ramp. Since the 

merging of on-ramp traffic becomes more difficult as the speed on the freeway 

increases, the impact of the merging vehicles (which usually have a slower speed) on 

the average speed in the freeway segment becomes larger as the speed of the through 
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movement increases. The merging term in Equation (5.5) is also inversely 

proportional to the traffic density ρi(k) in the segment i. The higher the density on the 

through lanes, the lower the speed they have and the smaller the impact due to 

on-ramp merging.  

There can be other forms of merge terms based on the factors that impact the 

traffic speed of the through lanes. For example, to incorporate the speed of the 

on-ramps, a merge term can be formulated as Equation (5.6) as well: 

          (5.6) 

 

Where, vi(k) and vr(k) are vehicle speeds on segment i and an on-ramp, respectively. 

The other symbols are the same as in Equation (5.5). Equation (5.6) shows that the 

higher the speed differences between the mainline and the on-ramp, the larger the 

impact on the speed of the mainline. 

For the purpose of consistency, Equation (5.5) was used in this study, so that the 

study conclusions can be compared with other studies using the same equation, such 

as the studies by Papageorgious et al. (1990), Sanwal el at. (1996) and Belleman 

(2003). 

It should be noted that a lane drop will also cause a merge on the through lane. 

However, it is different from an on-ramp in two ways. First, the speed on the lane 

that will be terminated is similar to other through lanes at that section, while the 
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speed of vehicles coming from on-ramps is usually much lower and, thus will have a 

larger impact on the speed of the through lanes. Second, depending on driver 

population and traffic demand, vehicles on the dropping lane can merge into the 

adjacent through lane far before the termination point, while vehicles from on-ramps 

have no such choice. As a result, on-ramps may have a much larger impact on the 

speed dynamics and, thus an additional term is required in speed dynamics, while no 

additional term is necessary for the merging due to a lane drop. 

5.4.3 Modelling Impact of Weaving 

Weaving is defined as the crossing of several traffic streams moving on the freeway 

in the same direction (TRB, 2010). A weaving section is composed of an on-ramp 

immediately followed by an off-ramp, as shown in Figure 5.3.  

Entering and exiting vehicles may cause weaving, which will influence mainline 

vehicle operation. For an entering vehicle, there are two constraints on its speed: the 

existing decelerating vehicle in front of the entering vehicle and a vehicle on the 

adjacent through lane parallel to or at the rear back of the entering vehicle. The 

entering vehicle needs to adjust its speed and look for a gap to merge into the 

through lane. For an exit vehicle, it needs also to adjust its speed to change into the 

weaving lane. Due to the complexity of traffic interactions in a weaving area, the 

traffic operation is deteriorated. As a result, the freeway capacity and speed at the 

weaving sections are often reduced significantly. 
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The exchanges of vehicles within freeway weaving sections due to on-ramps and 

off-ramps are often modeled based on microscopic driving principles. That is, drivers 

who enter or exit the freeway will change lanes when they find adequate gaps in the 

target lane. In macroscopic modelling, however, merging and diverging driver 

behaviour are not considered at the individual vehicle level. Instead, the additional 

impact on the through lane speed due to weaving operation can be modeled by 

adding a weaving term to the speed dynamics as in Equation (5.7) to account for the 

aggregated impact: 

          (5.7) 

 

Where, δw is a tuning parameter. qon(k) is the inflow from an on-ramp at the time step 

k. ni is the number of through lanes at the weaving section and κw is a density 

constant to avoid abnormal model performance. The other symbols are the same as 

in Equation (5.5).  

The impact of weaving on the average speed of the through lane is proportional 

to the entering traffic volume, as well as the speed on through lanes. It is inversely 

proportional to the density on the through lane.  

Equation (5.7) is very similar to the weaving term proposed by Belleman (2003), 

in which the critical density ρcr was used in the denominator, instead of the density 

on the segment. Belleman’s (2003) weaving term can be re-written as: 
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          (5.8) 

 

Neither Equation (5.7) nor Equation (5.8) includes the volume of exiting traffic. In 

fact, weaving includes both entering and exiting traffic, and the higher the entering 

and exiting volume, the larger impact on the speed. Therefore, another form of 

weaving term can be formulated as: 

          (5.9) 

 

Where, qoff(k) is the exit flow to an off-ramp at the time step k. Both Equations (5.8) 

and (5.9) were used in the study, which are listed in the experimental design section 

of this chapter. 

5.5 Experimental design 

A true experimental design is a study of a process or system in which certain input 

variables are manipulated, their effects on the output response is determined and the 

values of those input variables are randomly assigned to the experimental units. 

However, sometimes it is not practical to assign some variables to the experimental 

units at random; rather, it may be possible to assign groups of units to various levels 

of independent variables at random. This is called a quasi-experiment (Hicks et al. 

1999) and this method was used in this study. 
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5.5.1 Factors in Experimental Design 

Two factors that impact the performance of traffic models are investigated in this 

study: traffic demand and different configuration of merging and weaving terms in 

macroscopic simulation models. To systematically evaluate the merging and 

weaving impact on model performance, a range of traffic demands were tested to 

compare model performance under various traffic conditions. In addition, different 

combinations of merging and weaving terms were compared in the model to identify 

which term in speed dynamics significantly impacted model performance. 

Traffic demand should cover the practical range of operations in typical traffic 

flow control applications. In very light traffic demands, traffic management and 

control measures are not required. In the study, three traffic demand levels were used 

to run microscopic and macroscopic simulation: moderate demand (approximately 

950 to 1200 veh/h/lane at the mainline origin), heavy demand (1200 to 1500 

veh/h/lane) and excessive demand (1300 to 1650 veh/h/lane). Moderate and heavy 

traffic demand levels were determined based on field-measured traffic, with heavy 

traffic demand corresponding to the actual peak hours (around 4:30 p.m. to 5:30 p.m.) 

and moderate demand levels correspond to the half hour prior to and half hour after 

the actual peak hours. Excessive traffic demand levels on the mainline were 

determined by artificially increasing the mainline volume from the heavy traffic 

demand by approximately 5% to create a long-lasting traffic jam. The intention of 



  

138 

this increase was to test model performance under increased traffic demand in the 

future once VSL is implemented on the freeway. For excessive traffic, traffic 

demand at on-ramps and the proportion of vehicles that exit from off-ramps were 

maintained the same as in the heavy traffic demand level. Within each traffic 

demand level, traffic flow varied between low and high values during the simulation 

time period.  

The time interval in macroscopic simulation was 20s based on the studies 

presented in Chapter 4 as to what simulation time interval is most appropriate in the 

model. 

Traffic models including merge and weave components have been discussed in 

previous sections. There are six different models investigated in this experimental 

design. They differ only in their speed dynamics. 

 Model A: base model with neither merging nor weaving terms, Equation 

(5.2); 

 Model B: base model plus a merging term, Equation (5.2) + Equation (5.5); 

 Model C: base model plus a weaving term, Equation (5.2) + Equation (5.8); 

 Model D: base model plus a merging term and a weaving term, Equation (5.2) 

+ Equation (5.5) + Equation (5.8); 

 Model E: base model plus a different weaving term, Equation (5.2) + 

Equation (5.9); 

 Model F: base model plus a merging term and a different weaving term, 

Equation (5.2) + Equation (5.5) + Equation (5.9). 
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5.5.2 Choice of Experimental Design 

The three basic principles of experimental design are replication, randomization and 

blocking. By replication, we can obtain an estimate of the experimental error, which 

is a basic unit of measurement of determining whether the observed differences in 

the data are really statistically different. Randomization is the corner-stone 

underlying the use of the statistical methods in the experimental design 

(Montgomery 1997). Statistical methods require that the observations (or errors) be 

independently distributed random variables. Randomization usually makes this 

assumption valid. Blocking is a technique used to increase the precision of an 

experiment. A block is a portion of the experiment material that should be more 

homogeneous than the entire set of material. Blocking involves making comparisons 

among the conditions of interest in the experiment within each block (Montgomery 

1997). Blocking design can remove some confounding effects from the error 

variation. However, there is a restriction in the blocking design. That is, the 

randomization is only within each block. 

Choice of design involves the consideration of sample size, the selection of a 

suitable run order for the experiment trials and the determination of whether 

blocking or other restrictions should be involved. In this experimental study, a 
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completely randomized design was adopted. There is no restriction on the run order. 

Therefore, blocking was not adopted in this experiment. 

5.5.3 Sample Size 

Selection of an appropriate sample size is one of the most important aspects of any 

experimental design. The sample size and the probability of a type II error (β, that is, 

failed to reject a null hypothesis when it is false) are closely related. The β error is a 

function of sample size. Generally, for a given null hypothesis and a determined 

difference to be tested, the β error decreases as the sample size increases. This can be 

depicted by an operating characteristic curve, as shown in many literatures on 

statistics (Montgomery 1997, Hicks and Turner 1999). 

As the sample size gets larger, the probability of a type II error gets smaller for a 

given difference to be tested with a pre-determined type I error (α, reject a null 

hypothesis when it is true). 

The total number of combinations is determined by the number of factors to be 

investigated and their levels. In determining the sample size, we need to decide the 

replication for each level of factor combination. Replication is the observation of two 

or more samples under identical experimental conditions. In this study, it is the 

number of simulation runs. It enables us to estimate error effects and obtain a more 

precise estimate of treatment effects. Replication has two very important properties. 

First, replication allows us to calculate an estimate of the experimental error, which 
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is necessary to determine if differences in the data are statistically different. Second, 

when the sample mean is used to estimate the effect of a factor in the experiment, 

replication provides better accuracy in estimating this effect. Theoretically, the more 

replication, the more accurate the test will be. However, we should also consider the 

nature of the problem as well as the time, cost and available resources. If the sample 

size is too small, we cannot get enough data to effectively judge whether the results 

are reliable or are precise enough to draw valid conclusions. If the sample size is 

larger than necessary, the experiment will waste a lot of resources or take too much 

time.  

For microscopic simulation, usually the required number of runs (with different 

seed number) can be determined by statistical method depending on the desired 

confidence level, standard deviation of the statistic and error tolerance of the sample 

mean. The required number of runs is calculated by Equation (5.10): 

                                             (5.10) 

 

Where n is the required simulation runs; Z is the coefficient corresponding to the 

confidence level. For 95% confidence level, Z is 1.96; σ is the standard deviation of 

the mean for selected MOE; R is the tolerance for the sample mean, which is the 95% 

confidence interval of the mean in this study. 
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Since the purpose of multi-simulation run of the microscopic model in this study 

is not to obtain an average output of traffic states from the microscopic simulation 

model, but to generate different data sets as input for macroscopic simulation, the 

number of simulation runs can also be determined based on the nature of the problem 

and past experience on microscopic traffic simulation (Tian et al 2002, Yin and Qiu 

2011), as well as the observed variability of the model outputs during trial simulation 

runs. For this study, seven replications in each level of factor combination were 

determined and the total number of samples was 126 (3×6×7=126).  

5.5.4 Experimental Design Matrix 

For each combination of traffic demand and speed dynamics (macroscopic model), 

seven different data sets were replicated for evaluation. Table 5.1 summarizes the 

combinations of the different model components and traffic demand levels. 

The experimental design matrix in Table 5.1 shows a factorial design with two 

factors: traffic demand (with three levels) and macroscopic models (with six levels). 

This design allows us to analyze different treatment effects for each of the factors as 

well as the combined effects. However, our focus is on the comparison of different 

macroscopic models at the same traffic level. 

5.5.5 Model Performance Measures 

Since the purpose of this study was to evaluate the impact of different merging and 

weaving terms on model prediction performance, it is natural to select the model 
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prediction error as the performance measure, or measure of effectiveness (MOE). 

The total prediction error (total error, E) is defined as the sum of squares of the 

relative differences between the model predicted traffic states and the ground truth 

traffic states. In the experimental analysis, the VISSIM outputs are taken as ground 

truth data. In the comparison with field measured traffic states, the field measured 

data are taken as ground truth. 

The total error between the outputs from VISSIM (or field data) and from 

macroscopic simulation models for all segments and in all time steps are calculated 

from the equation: 

 

         (5.11) 

Where, Nsteps is the total number of simulation time steps, Iall is the total number of 

the segments of the freeway, 
)(ˆ),(ˆ kvkq ii are flow and speed from VISSIM (or 

field-measured data) in segment i at time step k, respectively and 
)(~),(~ kvkq ii are 

flow and speed from the macroscopic models in segment i at time step k, 

respectively. 

It should be noted that there are other forms of objective functions that can be 

used as MOE. For example, root mean relative square error (RMRSE) is also an 

often-used objective function in comparison of simulation data and measured data. 

RMRSE is expressed as: 
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                                             (5.12) 

 

Equation (5.12) has different scales from Equation (5.11) due to the square root and 

the division of the number of total segments. In this study, Equation (5.11) is used as 

MOE for prediction errors. 

5.6 Data Sources 

There were two kinds of data for this study: data from microscopic simulation and 

field-measured data. As discussed in the experimental design, several replications 

were required for each combination of traffic demand levels and speed dynamics 

(macroscopic models). Data from the output of the microscopic simulation model, 

VISSIM (PTV 2012) were used for this purpose. For the comparison of 

model-predicted traffic states (speed, density and flow), both VISSIM data and 

field-measured data were used in the analysis. 

5.6.1 Microscopic Simulation  

The VISSIM model for WMD was re-constructed based on the completed 

construction improvements on the freeway. Virtual detectors were coded in the 

VISSIM model on each lane of each segment, as well as on each on-ramp and 

off-ramp to measure flow and speed during simulation. This data was used to 

calibrate and validate the re-constructed VISSIM model against the field data from 
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loop detectors, following the same procedures described in Chapter 4. After the 

calibration and validation, VISSIM model was used to generate microscopic 

simulation data based on the experimental design. Three traffic demand levels were 

input to the VISSIM model.  

Due to the stochastic nature of simulation, the output varies in different runs, 

because many parameters used in each simulation run will be generated according to 

specified distributions. The number of simulation runs can be determined based on 

either statistical principles or past experience, considering the variability of output 

data and precision requirements. In this study, ten runs with randomly selected seed 

numbers were performed for each traffic demand level. Two sets of simulation data 

were used to calibrate and validate different macroscopic simulation models (one set 

of data was used as a spare set in case any abnormal data was generated), and the 

remaining seven sets of data were used as ground truth for macroscopic simulation 

runs in the experimental data analysis (replica). 

5.6.2 Field Measured Traffic Data 

After the roadway improvement construction, field loop detectors were checked and 

used to record field traffic data (flow, occupant time, etc.). The dual loop detector 

data was integrated into 20s intervals. The loop detector data recorded during 

afternoon peak hours (4:00 – 6:00) on October 17
th

 and 31
th

 of 2013 was used to 

compare with the model-predicted traffic states. For the loop detector data, there 
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were some intervals at some locations at which the field data was not recorded by 

some loop detectors, resulting in abnormal records, such as zero occupancy or zero 

flow during peak hours, while the previous time interval and next time interval 

recorded normal data. Abnormal and missing data was treated either by averaging 

the previous time interval and next time interval on the same segment, or by 

averaging the immediate upstream and downstream segment data at the same time 

interval. 

5.7 Calibration of Macroscopic Models 

As previously discussed, the purpose of this study is to analyze the merging and 

weaving impact on the performance of macroscopic simulation models. Each 

macroscopic model (Models A to F) was calibrated with the ground truth data, either 

from VISSIM outputs in experimental analysis, or from the field-measured data in 

the comparison of the model-predicted traffic states. 

Two data sets from VISSIM simulation at each traffic demand level were 

randomly selected. These total six data sets were taken as the ground truth for 

calibrating each of the six macroscopic models; therefore, six groups of model 

parameters were obtained for each model. Then, for each model, these six groups of 

parameters were averaged, adjusted and determined to get one set of parameters for 

each macroscopic model. These final parameters for each model were different from 
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the parameters obtained for each individual model calibration. In this way, the data 

sets used in calibration can still be used for model runs (but not used for 

experimental analysis) to see how the total errors change with different parameters. 

In the comparison of model-predicted traffic states with field-measured data, 

two separate field data sets were prepared: one for calibration and the other for 

comparison. 

In model calibration, the nonlinear optimization method was used to estimate 

model parameters. The objective function was the function that calculates the total 

relative difference (total error) between the outputs from macroscopic simulation and 

the ground truth data for all segments and in all time steps, as shown in Equation 

(5.11).   

The model parameters (α, τ, η, κ, ρcr, ρmax , δmerge, δweave and κm) can be identified 

by minimizing the total error. The MATLAB Optimization Toolbox (The 

MathWorks 2010) was used to solve this nonlinear optimization problem. Each of 

the macroscopic models (Models A to F) had a separate set of model parameters. For 

example, the set of model parameters used for the model with both merging and 

weaving terms was α=1.6, τ=0.01hr, η=8.4 km2/h, κ= 10.0 veh/km/lane, ρcr= 50 

veh/km/lane, ρmax =100 veh/km/lane, δmerge= 0.15, δweave= 0.20 and κm= 11.2 

veh/km/lane. The model parameters for Model A to F, calibrated from the simulation 
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data sets, field measured data sets and used in model runs are listed in Table 5.2 and 

Table 5.3, respectively. 

5.8 Data Analysis 

5.8.1 Comparison of Total Errors of Different Models 

The total errors, as previously defined and calculated by Equation (5.11), between 

the outputs from VISSIM and macroscopic simulation models for a two-hour (360 

time steps) simulation of three levels of traffic demand for different models, namely 

Model A (base model), Model B (merge model), Model C (weave model with 

Equation [5.8]), and Model D (merge and weave model with Equation [5.5] and 

[5.8]), are shown in Figures 5.4a, b, c and d, respectively, for 10 simulation data sets 

at each traffic demand level. The plotted curves have very similar fluctuations at 

each traffic demand level. Within each model, total errors vary with different data 

sets. In general, the total error was higher with higher traffic demands. But this does 

not hold for all the cases. For example, for data sets 3 and 5, the total errors for 

moderate traffic demand were higher than that of heavy traffic demand. For data sets 

1 and 10, the total errors for excessive traffic demand were lower than that of heavy 

traffic demand. 

Figures 5.5a, b and c show the comparison of the total errors from the six 

different models (Model A, B, C, D, E and F) for each traffic demand level and the 
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10 data sets, respectively. As can be seen, for a particular data set at a certain traffic 

demand, the total errors were very close from the six different models. At a moderate 

traffic demand, all six lines almost overlap. At a heavy traffic demand, all six lines 

almost overlap, except for data sets 8 and 9, where the total error of Model F is a 

little lower than the other five models. The difference in the total errors among the 

six models is larger for excessive traffic demands, as shown in Figure 5.5c. 

Figure 5.5d shows the average total errors of the 10 data sets from the six 

models at each traffic demand level. The average total errors from each of the six 

models were very similar at the same traffic demand level. It can be clearly observed 

that the total error was larger at a higher traffic demand level than that at a lower 

traffic demand level. 

5.8.2 Comparison of Predicted Traffic States from Different Models 

The density, speed and flow outputs from both VISSIM and the six different 

macroscopic simulation models (Models A to F) for the selected segments during 

two-hour simulation (360 time steps with 20s time interval) for data set 5 at a heavy 

traffic demand level are illustrated in Figure 5.6, Figure 5.7 and Figure 5.8, 

respectively. From the three figures, it can be clearly observed that the predicted 

density, speed and flow from different models was temporally consistent. The 

outputs from VISSIM fluctuated frequently with the time index, while the outputs 

from macroscopic simulation models were smooth with approximately the average 
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value of VISSIM at most of the time steps. The fluctuation of VISSIM outputs was 

due to the stochastic nature of the microscopic simulation model in which vehicles 

randomly enter the roadway and individual vehicle speed changes in reaction to the 

leading vehicles. In macroscopic simulation, however, the outputs are the average 

values of a segment at each time step. These values change gradually from one time 

step to the next. 

Figure 5.6 shows the comparison of density from VISSIM and the six 

macroscopic simulation models in the selected segments (segments 3, 4, 6 and 11, in 

which segments 3 and 11 are weaving sections, segment 6 has an on-ramp and 

segment 4 has an off-ramp). The simulated densities from both VISSIM and the 

macroscopic models match in most of the time steps. Obvious differences between 

VISSIM and all of the macroscopic models exist in segment 6 at some time steps. In 

segment 6, starting from time step 70, traffic density increased suddenly due to 

increased traffic inflow from on-ramp #2 (ramp inflows are not shown in the figures), 

causing a large decrease in speed on the freeway, while the total flow on the freeway 

did not increase significantly. VISSIM depicted this traffic state change clearly, but 

none of the six macroscopic models showed the drastic increase in density. As far as 

the six macroscopic models are concerned, all of the models predicted very similar 

density. The plotted lines in Figure 5.6 almost overlap at almost all of the time steps, 
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except in segment 11 from time step 40 to 100, at which some minor differences 

exist among some of the macroscopic models. 

Figure 5.7 shows the comparison of speed from VISSIM and six macroscopic 

simulation models in the same selected segments as in the density comparison, 

shown in Figure 5.6. When the road was not congested (showing a high speed in 

VISSIM data), the predicted speeds from VISSIM and macroscopic models matched 

in most of the segments. However, there are obvious differences in the predicted 

speed from the macroscopic models compared to the speed in VISSIM when the road 

was very congested. For example, considerable differences exist in segment 6 after 

time step 70, when traffic density on the freeway increased suddenly due to inflow 

from the on-ramp, causing a large decrease of speed and stop-and-go conditions on 

the freeway. This is represented clearly in VISSIM, but not so prominently in all of 

the macroscopic simulation models. The speed dynamics in all of the macroscopic 

models did not react quickly to the sudden change of traffic conditions. However, 

when the macroscopic models were compared, all of them predicted similar speeds at 

all time steps. If we take a close look at the predicted speed from the six macroscopic 

models, we can observe that the value of the predicted speed, from high to low order 

is Model A, E, C, B, F, D. Model E and C include the weaving term only, while 

Model B, F and D have the merging term. This means that, for the given formulation 

of merging and weaving terms compared in this study, the merging term has a larger 
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impact on the predicted speed than the weaving term. This observation is consistent 

in all segments. The formulation of the weaving term does not have a critical impact 

on the speed prediction, because the tuning parameter in the weaving term can 

provide the adjustment for different formulations. In addition, the speed predicted 

from models with both merging and weaving terms (Models D and F) was lower 

than that from models that have only a merging or weaving term (Models C and E). 

Figure 5.7 also shows that adding merging and/or weaving terms will decrease the 

predicted speed compared to the base model (Model A). However, this may or may 

not improve the model prediction accuracy depending on whether the ground truth 

speed was higher or lower than the predicted speed. 

Figure 5.8 shows the comparison of flow from VISSIM and the six macroscopic 

simulation models in the same selected segments as shown in Figure 5.6 and 5.7. The 

simulated flow from both VISSIM and the six macroscopic models match very well 

in segments 4, 6 and 11 during almost all simulation time, but some differences exist 

in segment 3. According to the model mechanism, the output flow from VISSIM was 

counted during the simulation, while in macroscopic simulation the flow was 

calculated from the predicted speed and density. Even though differences between 

the predicted speed and density exist in segments 4, 6 and 11 at some time steps, the 

product of speed and density from all six macroscopic simulation models 

well-matches the counted flow from VISSIM model in those segments. The 
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difference in segment 3 is due to the merge traffic from the on-ramp, causing 

stop-and-go conditions on the freeway, as shown in the VISSIM speed data. All of 

the macroscopic models over-predicted the speed, resulting in higher flow than the 

flow recorded in VISSIM. Once again, all six macroscopic models predicted similar 

traffic flows in all segments during all time steps.  

5.8.3 Comparison of Predicted Traffic States with Field-measured Data 

Figures 5.9 to 5.11 show the comparison of the predicted density, speed and flow 

from the six macroscopic simulation models with the field-measured data. In Figure 

5.9, even though some differences exist between the predicted density and the 

measured density (calculated from occupancy) at some time steps, especially when 

the measure density was above 40 veh/km/lane, the predicted density from the six 

models is very similar. As shown in Figure 5.10, all six macroscopic simulation 

models over-predicted traffic speed in segment 3, while under-predicted speed in 

segment 6. However, the six macroscopic simulation models match very well in all 

segments and all time steps. Figure 5.11 also shows that the six simulation models 

predicted very similar flow in all segments. 

5.8.4 Analysis of Variance  

The total error from the six macroscopic models can be assessed by an Analysis of 

Variance (ANOVA), in which the total error from each model is taken as a group. 

The total error variability from a certain model is defined as within group variability. 
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The difference of total error between different models is defined as between group 

variability and can be assessed by ANOVA. Since the within group variability is 

taken as a basis for comparison in ANOVA, it should be constructed as small as 

possible to maximize the effectiveness of ANOVA. Therefore, only the total errors at 

the same traffic demand level were used in this study, because, as it is shown in 

Figure 5.5d, the total errors at different traffic demand levels are obviously different. 

The results from one-way ANOVA of total errors from the six macroscopic models 

(Model A to F) for moderate, heavy and excessive traffic demand is given in Table 

5.4, 5.5 and 5.6, respectively. The p-value of 1.000 in the three tables indicate that 

there is no significant difference (at a 95% confidence level) in the total error from 

the six macroscopic simulation models at each traffic demand level. A two-way 

ANOVA for the pooled data is given in Table 5.7. Similar to the one-way ANOVA, 

the p-value of 1.000 for the models indicates that there is no significant difference in 

the total error from the six macroscopic simulation models. The p-value of 0.000 for 

the traffic indicates that the total prediction errors from the six macroscopic 

simulation models are significantly different at the different traffic demand levels. 

ANOVA is based on the assumption of equal variance and independence 

between each group and each individual value. It is necessary to test whether this 

basic assumption is reasonable based on the data. A plot of residuals versus normal 

probability can serve this purpose and is given in Figure 5.12. From the figure, it can 
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be seen that the normality plot is approximately a straight line, indicating that there is 

no serious violation of the normality assumption. Thus, the results from ANOVA can 

be justified. 

5.8.5 Value of Merge and/or Weave Terms 

As presented in the previous section, ANOVA showed that the impact of merging 

and/or weaving terms on overall model performance is not statistically significant. 

Now, we analyze the value of the merging and weaving term and compare the 

predicted speed from models with and without the merging and weaving terms. Use 

Model D (with both merging and weaving terms) and field-measured data as an 

example. The average values of the predicted speed from models with and without 

merging and weaving terms in a two-hour simulation are given in Table 5.8. 

Table 5.8 shows the average values of the merging and weaving terms as well as 

the sum of merging and weaving terms on the corresponding segments during the 

two-hour simulation, using the field-measured data. On average, the value of the 

merging term varied from -4.09 km/h to -0.19 km/h on different segments, which 

represents -5.03% to -0.22% of the predicted speed. The value of the weaving term 

varied from -0.66 km/h to -0.3 km/h on different segments, representing -0.82% to 

-0.36% of the predicted speed. The value of the sum of the merging and weaving 

terms varied from -4.75 km/h to -0.49 km/h, which is equivalent to -5.85% to -0.58% 

of the predicted speed. During the two-hour simulation, the largest absolute value of 
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the merge term was 16.16 km/h, which represents 19.9% of the predicted speed. The 

largest absolute value of the weave term was 0.92 km/h, which is much smaller than 

that of the merge term. This seems counterintuitive, but understandable from the 

formulation of the merge and weave terms. In the macroscopic simulation model, 

merging traffic will cause an increase of density on the segment, while in weaving 

there are both inflow and outflow, which may or may not increase the density 

depending on the net inflow of traffic, and the net increase of density in the weaving 

segment is much smaller than the net increase of density in the merging segment.  

Table 5.9 shows the values of the merging and weaving term as well as the sum 

of merging and weaving terms on the corresponding segments at time step 50 (k=50). 

The value of the merging term varied from -7.76 km/h to 0 km/h on different 

segments, which represents -10.0% to 0.0% of the predicted speed at time step 50 on 

different segments. The value of the weaving term varied from -0.61 km/h to -0.31 

km/h, representing -0.79% to -0.36% of the predicted speed at time step 50 on 

different segments. The value of the sum of the merge and weave terms varied from 

-8.37 km/h to -0.31 km/h, which is equivalent to -10.8% to -0.36% of the predicted 

speed at time step 50 on different segments. 

It should be noted that the final predicted speed does not necessarily decrease by 

the value of the merging and/or weaving terms. There are other terms in speed 

dynamics (relaxation, convection and anticipation) and model parameters, all of 
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which impact the final predicted speed. The parameters for the model with or 

without those terms are different because they are different models. As shown in 

Table 5.9, there is not much difference between the predicted speed between the 

model without the merging and/or weaving terms and the model with those terms. It 

should also be noted that due to the structure of a convection term, adding merge 

and/or weave terms in speed dynamics will not only affect the predicted speed of the 

segment having merging and/or weaving terms, it will also affect the prediction on 

the downstream segments. 

5.9 Discussions 

The fact that merging and weaving affect traffic speed on the through movement is 

often observed in the field. All of the macroscopic models used in this study can 

catch the speed drop that is due to the on-ramps to some degree; but not as 

prominently as VISSIM does. However, when the macroscopic models are compared, 

merging and/or weaving terms in the speed dynamics do not make a significant 

difference. Including merging and/or weaving terms neither obviously improves nor 

deteriorates the performance of the macroscopic simulation models. This seems 

counterintuitive; however, if we exam the macroscopic models closely, it is 

understandable. 
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In fact, macroscopic simulation models take the whole segment of roadway as a 

unit (including several through lanes and possibly an on-ramp and an off-ramp) and 

aggregate the traffic states for that segment. The speed and density difference 

between the merge/weave lane and other through lanes is averaged across the whole 

segment. Therefore, the speed and density difference is scaled down from the actual 

difference between the merge/weave lane and the adjacent through lane. In addition, 

the speed dynamics of macroscopic simulation models has several components 

(relaxation, convection, anticipation and possibly merging and/or weaving terms). 

The value of different components may offset one another, making the combined 

effect similar to the models without merging and/or weaving terms. Furthermore, in 

model calibration, a group of model parameters were obtained for each model 

through the minimization of the objective function. These parameters also affect the 

final model outputs.  

It should be noted that not including merging and/or weaving lane-drop terms 

does not necessarily mean that those impacts have not been considered in the model. 

In fact, they are reflected indirectly. For on-ramps/lane drops, the merging of 

additional traffic volume may increase the density of the corresponding freeway 

segments. Density, in its turn, influences the desired speed by means of the 

speed-density relationship, which is part of the macroscopic models. In addition, 

entering vehicles from on-ramps usually have a lower speed than vehicles on the 
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through lanes, and this low speed is included in the calculation of the average speed 

for a segment. 

5.10 Summary and Conclusions 

This chapter systematically investigated the impact of merging and weaving terms in 

speed dynamics on the performance of macroscopic simulation models. Several 

merging and weaving formulas were evaluated and compared with the base model 

(without merging and/or weaving terms) with respect to the predicted speed, density 

and flow. Data from both microscopic simulation and field loop detectors were used 

in the model performance evaluation. Based on these data, all relevant model 

parameters were estimated in model calibration, using an optimization technique. 

Each macroscopic simulation model was independently calibrated and then used to 

simulate traffic operations on the studied freeway. The values of the merging and/or 

weaving terms was calculated and compared with the total predicted speed from the 

model.  

ANOVA was performed to evaluate the variation of prediction errors of different 

models. Based on which, the statistical significance of merging and weaving impacts 

on the performance of macroscopic models was evaluated. There conclusions can be 

summarized as follows: 
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 The predicted traffic states from the models without merging and/or weaving 

terms is very similar to the models with merging and/or weaving terms. 

Merge and weave terms have no significant impact on the performance of 

macroscopic simulation models. 

 Based on the formulation of the merge and/or weave terms that appeared in 

the literature and were evaluated in this research, the value of the merge or 

weave term varied from -6% to 0% of the predicted speed, with the average 

being approximately -2%. 

 Adding merging and/or weaving terms does not necessarily mean better 

accuracy in traffic prediction with macroscopic simulation models. There is 

no obvious improvement of traffic state prediction. However, the models 

with merging and/or weaving terms are not inferior to the original model 

either. 

 Macroscopic simulation model performance is sensitive to traffic demand. 

The higher the traffic demand, the higher the prediction errors. 

 Based on this study, merging and/or weaving terms can be omitted in 

macroscopic simulation. This can reduce model parameters that need to be 

calibrated in the multi-parameter optimization process. 
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Table 5.1 Experimental design matrix 

Models Speed Dynamics 

Traffic 

Demand 

Base Model Merge Only Weave Only Merge & Weave 

Model A Model B Model C Model D 

    Model E Model F 

Excessive 7 Replica 7 Replica 7 Replica 7 Replica 

Heavy 7 Replica 7 Replica 7 Replica 7 Replica 

Moderate 7 Replica 7 Replica 7 Replica 7 Replica 

 

Table 5.2 Model parameters calibrated from simulation data 

Parameters α τ η κ ρcr ρmax δmerge δweave κm 

Model A 1.6 0.020 7.0 9.0 45.0 100.0 ― ― ― 

Model B 1.7 0.014 6.1 10.0 46.1 100.0 0.05 ― 8.3 

Model C 1.7 0.010 6.2 10.0 50.0 100.0 ― 0.04 ― 

Model D 1.6 0.010 9.9 9.1 50.0 100.0 0.35 0.10 7.1 

Model E 1.5 0.012 9.9 4.8 49.0 100.0 ― 0.10 ― 

Model F 1.6 0.010 8.4 10.0 50.0 100.0 0.15 0.20 11.2 

 

Table 5.3 Model parameters calibrated from field measured data 

Parameters α τ η κ ρcr ρmax δmerge δweave κm 

Model A 2.2 0.020 3.8 6.8 49.2 100.0 ― ― ― 

Model B 3.0 0.010 3.8 10.0 38.5 100.0 0.01 ― 7.4 

Model C 3.0 0.020 2.0 10.0 50.0 100.0 ― 0.01 ― 

Model D 3.0 0.020 2.0 10.0 50.0 100.0 0.14 0.10 6.5 

Model E 2.3 0.020 2.0 3.1 50.0 100.0 ― 0.10 ― 

Model F 3.0 0.020 2.0 10.0 50.0 100.0 0.09 0.01 7.5 
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Table 5.4 One-way ANOVA at moderate traffic versus model 

Source  DF SS MS F P 

Model  5 12 2 0.000 1.000 

Error 36 132291 3675     

Total 41 132302       

S = 60.62   R-Sq = 0.01%   R-Sq(adj) = 0.00% 

 

Table 5.5 One-way ANOVA at heavy traffic versus model 

Source  DF SS MS F P 

Model  5 59 12 0.000 1.000 

Error 36 554817 15412     

Total 41 554876       

S = 124.1   R-Sq = 0.01%   R-Sq(adj) = 0.00% 

 

Table 5.6 One-way ANOVA at excessive traffic versus Model 

Source  DF SS MS F P 

Model  5 583 117 0.020 1.000 

Error 36 225918 6276     

Total 41 226501       

S = 79.22   R-Sq = 0.26%   R-Sq(adj) = 0.00% 

 

Table 5.7 Two-way ANOVA of traffic demand and model 

Source  DF SS MS F P 

Models  5 128 26 0.000 1.000 

Traffic 2 575953 287977 34.060 0.000 

Interaction 10 526 53 0.010 1.000 

Error 108 913026 8454     

Total 125 1489633       

S = 91.95   R-Sq = 38.71%   R-Sq(adj) = 29.06% 

 

Note: DF is the degree of freedom; SS is the sum of square errors;  

MS is the mean square errors; F and P are statistical values.
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Table 5.8 Average value of merging and weaving terms 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

v(k+1)noM&W (1)   Ave 70.76 74.65 77.67 79.55 82.14 82.25 81.50 81.81 82.05 82.62 80.08 81.58 84.61 

v(k+1) M&W (2)   Ave 70.76 75.17 77.26 80.07 82.29 81.65 81.67 83.22 83.78 84.94 81.28 83.13 84.61 

Merge 

(3)   Ave     -0.79     -2.13 -1.19   -0.19   -4.09     

(4) (3) /(2) %     -1.03     -2.61 -1.46   -0.22   -5.03     

(5)   Min     -4.21     -9.48 -5.62   -1.44   -16.16     

(6)   Max     0.00     0.00 0.00   0.00   0.00     

Weave 

(7)   Ave     -0.41       -0.42   -0.30   -0.66     

(8) (7) /(2) %     -0.52       -0.51   -0.36   -0.82     

(9)   Min     -0.54       -0.60   -0.40   -0.92     

(10)   Max     -0.23       -0.21   -0.19   -0.29     

Merge and  

Weave 

(11)   Ave     -1.20       -1.61   -0.49   -4.75     

(12) (11) /(2) %     -1.55       -1.97   -0.58   -5.85     

(13)   Min     -4.63       -6.01   -1.74   -16.70     

(14)   Max     -0.26       -0.21   -0.19   -0.52     

                 

Notes: v(k+1)noM&W: predicted speed at time step (k+1) without merge and/or weave term, km/h 

 
v(k+1) M&W: predicted speed at time step (k+1) with merge and weave term, km/h 

 
Ave: Average value during 360 time steps, km/h 

 
%: Average percentage of the average value to v(k+1) during 360 time steps 

 
Min: Minimum value during 360 time steps, km/h 

 
Max: Maximum value during 360 time steps, km/h 
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Table 5.9 Value of merging and weaving terms at a time step (k=50) 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

v(k+1)noM&W (1)     73.50 79.25 80.58 80.83 82.78 82.55 81.50 81.50 82.06 82.99 80.90 82.11 80.33 

v(k+1) M&W (2)   Value 73.50 79.90 81.53 82.59 83.63 82.75 82.58 83.42 84.33 85.04 77.51 85.37 80.33 

Merge 
(3)   Value     -1.01     -2.02 -1.45   0.00   -7.76     

(4) (3) /(2) %     -1.24     -2.44 -1.75   0.00   -10.01     

Weave 
(5)   Value     -0.42       -0.40   -0.31   -0.61     

(6) (5) /(2) %     -0.51       -0.49   -0.36   -0.79     

Merge and 

Weave 

(7)   Value     -1.43       -1.85   -0.31   -8.37     

(8) (7) /(2) %     -1.76       -2.24   -0.36   -10.80     

                 

Notes: v(k+1)noM&W: predicted speed at time step (k+1) without merge and/or weave term, km/h 

 
v(k+1)M&W: predicted speed at time step (k+1) with merge and weave term, km/h 

 
Value: value of the term at the time step (k=50), km/h 

 
%: percentage of the term value to v(k+1) at the time step (k=50) 
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Figure 5.1 The studied freeway corridor WMD. The corridor is discretized into 13 links. (Note: not to scale) 
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Figure 5.2 An isolated on-ramp  

 

 

Figure 5.3 Weaving section due to ramps  
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Figure 5.4 Total errors with respect to traffic demands 
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Figure 5.5 Total errors with respect to models 
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Figure 5.6 Comparison of density from different models with simulation data 
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Figure 5.7 Comparison of speed from different models with simulation data 

 

  

0

10

20

30

40

50

60

70

80

90

0 60 120 180 240 300 360

S
p

ee
d

 (
k

m
/h

) 

Time Steps 

Speed in Segment 3 

VISM Model A
Model B Model C
Model D Model E
Model F

(a) 

0

10

20

30

40

50

60

70

80

90

0 60 120 180 240 300 360

S
p

ee
d

 (
k

m
/h

) 

Time Steps 

Speed in Segment 4 

VISM Model A

Model B Model C

Model D Model E

Model F

(b) 

0

10

20

30

40

50

60

70

80

90

0 60 120 180 240 300 360

S
p

ee
d

 (
k

m
/h

) 

Time Steps 

Speed in Segment 6 

VISM Model A

Model B Model C

Model D Model E

Model F

(c) 

0

10

20

30

40

50

60

70

80

90

0 60 120 180 240 300 360

S
p

ee
d

 (
k

m
/h

) 

Time Steps 

Speed in Segment 11 

VISM Model A

Model B Model C

Model D Model E

Model F

(d) 



  

171 

  

  

Figure 5.8 Comparison of flow from different models with simulation data 
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Figure 5.9 Comparison of density from different models with field data 
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Figure 5.10 Comparison of speed from different models with field data 
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Figure 5.11Comparison of flow from different models with field data 
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Figure 5.12 Residuals versus normal probability plot 
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Chapter 6 Improvement of Macroscopic Traffic Simulation 

Models 

 

6.1 Introduction 

Macroscopic traffic simulation models play a crucial role in model predictive control 

(MPC), such as coordinated ramp metering (RM) and variable speed limit (VSL), of 

traffic operations. In most of the online traffic control applications, discrete forms of 

macroscopic simulation models are often used for computer control purposes. 

Roadways are discretized into segments and time is discretized into time steps. 

Traffic states (flow, speed and density) are updated for each segment at each time 

step. 

Traffic simulation models based on first-order macroscopic traffic models, such 

as the cell transition model (CTM), are essentially a density dynamics that evolves 

with boundary conditions at the cell ends, coupled with a static, equilibrium 

speed-density relationship. The density is calculated for each cell based on the 

conservation of vehicles within each cell. The speed is solely dependent on the 

speed-density relationship and it is assumed that drivers can instantaneously adjust 

their speed based on the traffic density. Therefore, it lacks the flexibility of catching 

some traffic phenomena caused by driver behaviour, such as delayed response to the 

traffic conditions. 

Second-order macroscopic traffic models have an explicit, independent speed 

dynamics, which can be discomposed into several components to incorporate 
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driver’s reaction and delayed response in the speed dynamics, such as relaxation, 

convection and anticipation. The speed is not only dependent on traffic density, it 

can also be adjusted based on anticipated traffic conditions. 

Payne (1971, 1979) derived a speed dynamics equation from a microscopic 

car-following mechanism in discrete form. Each part of the speed dynamics is linked 

with physical explanations, namely, relaxation, convection and anticipation to 

describe how the desired speed, the speed on the upstream segment and the density 

on the downstream segment impact the speed on the current segment in a time step. 

Payne’s (1979) speed dynamics has been used in many macroscopic simulation 

models (Cremer et al. 1981, Messmer and Papageorgiou 1990, Kotsialos et al. 2002, 

Lamon 2008) with mixed results regarding traffic state prediction accuracy. Cremer 

et al. (1981) pointed out that adding a factor of the ratio between the density on the 

upstream and the current segment to the convection term of the speed dynamics 

equation may avoid difficulties in modelling congested traffic conditions. No details 

about this approach were provided in Cremer et al.’s study.  

The formulation of speed dynamics also varies depending on whether merging, 

weaving or other factors are considered in the model (Shladover et al. 2010). 

Papageorgious et al. (1989) modeled an arterial street in Paris and concluded that 

dropping the merge term will have no evident impact on model accuracy on the 

studied roadway, but will evidently increase the simulation speed. The investigation 

presented in Chapter 5 of this dissertation confirmed that adding merge and/or weave 

terms in the speed dynamics has no significant impact on model prediction accuracy. 

Speed dynamics was also modified to avoid the requirement of the fundamental 
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diagram (FD), because the assumption and calibration of the FD often leads to large 

errors (Lu et al. 2010). The intended control speed was used to replace the 

equilibrium speed in the original model. The modified model was applied in 

combining VSL with RM for freeway traffic control, and a noticeable improvement 

of traffic flow was achieved. 

In Hegyi’s studies (2005a, 2005b), the METANET model (Messmer and 

Papageorgiou 1990) was extended to model dynamic speed limits and main stream 

metering as opposed to on-ramp control. Speed limits were incorporated in the model 

and act as a potential upper boundary of the desired speed. The original speed 

dynamics equation was not modified. The speed dynamics of the METANET model 

was further studied by Lu et al. (2011) as well as Yin and Qiu (2012), in which 

several forms of convection terms, considering the convection effect from the further 

upstream segment, were used to replace the convection term in the original model. 

Better prediction results were obtained by the modified speed dynamics compared to 

the original METANET model. The studies also showed that a quicker response to 

traffic dynamics is required to model congested traffic. 

Most of the previous studies on speed dynamics mainly focused on the speed 

limits, FD and speed convection from upstream. The impact of the speed on the 

downstream segment was not considered in the model. In addition, the value of the 

density gradient term in the original Payne’s (1979) model was not further studied, 

which may have considerable impacts on speed predictions. The objective of this 

study is to investigate different ways to improve the prediction accuracy of the 

macroscopic simulation models. The remaining part of this chapter is organized as 
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follows: the two studied corridors and data sources are described after this 

introduction. Then, the value of each component of the density and speed dynamics 

are analyzed followed by discussions on various model improvement considerations. 

The prediction results from both the original and improved macroscopic simulation 

models are compared with field-measured data as well as with the results of the 

microscopic simulation, based on which, conclusions from this study are presented. 

6.2 Studied Freeway Corridors and Data Sources 

Two freeway corridors were selected for this study. The first one is the westbound 

direction of an urban freeway, Whitemud Drive (WMD), in the city of Edmonton, 

which is the same location as presented in Chapter 5 and shown in Figure 1.1 and 

Figure 5.1, respectively. The second corridor for this study was the Berkeley 

Highway Laboratory (BHL) system, which is a test site that covers 4.3 km of I-80 

eastbound/northbound freeway immediately east of the San Francisco-Oakland Bay 

Bridge in California, USA (Figure 6.1). 

There are two kinds of data for WMD: data from the output of microscopic 

simulation model, VISSIM (PTV 2012), and data from the field loop detectors. Road 

construction was carried out on WMD during the years 2010 to 2013. The VISSIM 

model for WMD was re-constructed based on the completed construction 

improvements. Virtual detectors were coded in VISSIM on each lane of each 

segment, as well as on each on-ramp and off-ramp to measure flow and speed during 

simulation. This data was used to calibrate and validate the re-constructed VISSIM 

model, following the same procedures described in Chapter 4. After the calibration 
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and validation, the model was used to generate microscopic simulation data for 

various studies and analyses.  

After construction completion, field loop detectors were checked and additional 

ones installed at the added lanes and used to record field traffic data (flow, occupant 

time, etc.). This dual loop detector data was integrated into 20s intervals. The loop 

detector data, recorded during afternoon peak hours on October 17 and 31 of 2013, 

was used to compare with the model-predicted traffic states. Some data processing 

and treatments were made at some locations at which the field data was not recorded 

by some loop detectors, resulting in abnormal records, such as zero occupancy or 

zero flow during peak hours, while the previous time interval and next time interval 

recorded normal data. Abnormal and missing data was treated either by averaging 

the previous time interval and the next time interval on the same segment or by 

averaging the immediate upstream and downstream segment data at the same time 

interval. 

On the second freeway corridor (BHL), there are five through lanes in each 

direction and on- and off-ramps at the interchanges. Recurrent traffic congestion 

occurs during peak hours due to high traffic demand. On each lane of the BHL, 

detectors are installed at eight cross-sections. Each detector station is a dual loop 

with 1s update rate and 60 Hz loop on/off information on individual vehicle 

actuations. Data was processed by cleaning, imputation and correction, and then 

averaged across all lanes and aggregated into 20s and 60s traffic state variables in 

space mean speed, density and flow (Lu et al. 2010). This data was then used for 

model calibration. On- and off-ramp flows were ignored since the measurements 
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were not available (Lu et al. 2010). The reason for selecting this site was that the 

field data was available and various macroscopic simulation studies were carried out 

on this freeway. The data covered 10 hours of traffic operation with various traffic 

conditions: from free flow to heavy congestion, at which the average traffic speed 

drops down to approximately 20 km/h. This stop-and-go traffic can be used to test 

the effect of the model improvements in this study. 

6.3 Debriefing of the Macroscopic Simulation Model 

To improve macroscopic models, it is essential to understand how different 

components of the density and speed dynamics affect the predicted traffic states. 

This debriefing is discussed in this section before the model improvements are 

discussed. 

6.3.1 Original Macroscopic Simulation Model 

The original macroscopic simulation model used in this study is the same as the base 

model described in Chapter 5. It has a density dynamics, a speed dynamics, an 

equilibrium speed-density relationship and a basic equation that flow equals to the 

multiplication of speed and density. The model equations are as follows (Carlson et 

al. 2010): 

(6.1) 

(6.2) 
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Symbols and notations used in the model are the same as in Chapter 5 and will not be 

repeated here. 

The first term on the right-hand-side (RHS) of Equation (6.2) is generally 

interpreted as a relaxation term (the average speed in a segment tends to evolve 

towards the density-dependent equilibrium speed). Relaxation is proportional to the 

difference between the actual average speed and the equilibrium speed (desired 

average speed) in segment i. By observing the density, drivers tend to accelerate or 

decelerate towards the desired speed. The larger the difference between the actual 

speed and the desired speed, the greater speed adaptation. The impact of the 

relaxation is also dependent on the drivers’ reaction time, which is expressed as τ in 

the formulation. The shorter the reaction time, the faster the drivers will respond to 

the speed difference and the greater impact of the relaxation on the speed dynamics. 

The second term on the RHS of Equation (6.2) is a convection term, which 

represents the fact that traffic flow from the upstream segment to the current segment 

will cause speed changes in the current segment due to the speed difference. 

Vehicles flowing from an upstream segment to a downstream segment do not 

instantaneously change the speed. It has a convection effect similar to water flow in a 

channel, where high speed merges into slow speed over some distance. Convection is 

proportional to the speed difference between the two segments (i-1) and i. The higher 

the speed difference, the longer time the vehicles in segment (i-1) will need to 

accelerate or decelerate while entering segment i, and the greater the impact on the 

speed adjustment in segment i. Convection is also proportional to the average speed 

in segment i. The higher the speed, the longer time the vehicles will need to adapt 
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their speed, and the greater the impacts on the speed adjustment in segment i. The 

impact of convection is inversely proportional to the length of segment i. The longer 

the segment, the more vehicles can drive at their desired speeds and, thus the lower 

the impacts on the average speed in segment i. 

Anticipation (also called density gradient) accounts for the fact that drivers are 

looking ahead and respond to the traffic density downstream accordingly. 

Anticipation is affected by the relative difference of the density in the downstream 

segment (i+1) and the current segment (i). If drivers observe higher traffic density 

ahead, they tend to slow down. Otherwise, if the traffic density ahead is lower than 

the density on the current segment, drivers will accelerate. Anticipation is 

proportional to the coefficient η, which has the meaning of traffic pressure, resulting 

from speed variance. The higher the speed variance, the greater the impact of the 

density differences on the speed adjustment in segment i. In addition, anticipation is 

inversely proportional to the length of segment i, because drivers can only start to 

adjust their speed towards the equilibrium speed of the downstream segment near the 

end of the current segment. The longer the current segment, the longer the vehicles 

travel on the current segment without the influence of the density on the downstream 

segment. 

There may be other terms in the speed dynamics, such as a diffusion term and/or 

a ramp term, depending how the speed dynamics is derived. As indicated in Chapter 

5, merging and weaving terms are not statistically significant in terms of their 

contribution to the overall model performance; therefore, they can be omitted to 

simplify the model and increase computational efficiency.  
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6.3.2 Speed-Density Relationships 

The equilibrium speed-density relationship plays an important role in the speed 

dynamics of macroscopic simulation models. It is the major part of the relaxation 

term, providing the target equilibrium speed (desired speed) based on traffic density. 

The generalized speed-density relationship (May 1990) was used in many 

macroscopic models (Papageorgious 1990, Kotsialos et al. 2002, Hegyi 2005a,b). 

The original formula can be written as: 

          (6.5) 

 

As Equation (6.5) contains parameters l and m, which are difficult to calibrate, a 

more widely used form was proposed by Papageorgious (1990). Assuming α=l-1, we 

have: 

          (6.6) 

As m→1 and using the special limit: 
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We obtain: 
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limits. Critical density is also called optimum density, at which a roadway has the 

maximum flow rate. It is related to road properties and speed limit. α is a parameter 

that affects the shape of the speed-density curve. Understanding how the three 

parameters affect the shape of the speed-density curve can help determine the range 

of parameters in model calibration. 

Figure 6.2a and 6.2b show the plot of speed (v) versus density with the free flow 

speed of 90km/h for the critical density of 30 veh/km/lane and 50 veh/km/lane and 

with a different α values, respectively. It shows that with an increase of the α value, 

the speed drops slowly at both very small and very large density (ρ), but drops 

quickly near the critical density (ρc) area. At a small α value, speed drops quickly at 

small density, but slower near critical density than larger α values. The plot also 

shows that when ρ<ρc, speed drops slowly with the increasing of density. The larger 

the ρc value, the larger the range of density in which traffic can maintain relatively 

high speed. For a small ρc value, the speed is more sensitive to density, but not 

sensitive to the α value. For a large ρc value, the speed is sensitive to both density 

and α value. 

6.3.3 Analysis of Density Dynamics 

In all of the macroscopic models, the density dynamics is based on conservation of 

vehicles. In discrete simulation, the density on a segment is updated every time step. 

The density of next time step ρi(k+1) is composed of the sum of two parts: the first 

part is the density on the segment in the current time step ρi(k), and the second part is 

the density change caused by the inflow and outflow of vehicles in the segment 

during one time step. Table 6.1 shows the average values, minimum value and 
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maximum value of the two parts of the density dynamics calculated from a density 

dynamics in each segment during a two-hour simulation (360 time steps with each 

time step of 20s). The input data (extracted from the VISSIM simulation and taken as 

the ground truth in this research) is one of the VISSIM outputs under heavy traffic 

demands, as defined in Chapter 5. 

As can be seen from Table 6.1, on average, the first part of the density dynamics 

is always positive and it consists of over 99.8% of the total predicted density. Part 

two consists of less than 0.2% of the total density. The average value of the second 

part is very small due to the fact that the value can be either positive or negative. 

They are partially offset for the whole simulation time steps. Table 6.1 also shows 

the minimum and maximum value of the part two during 360 time steps. The value 

ranges from -3.86 veh/km/ln to 4.16 veh/km/ln on different segments. 

Table 6.2 illustrates the predicted density at time step 50 (k=50). The proportion 

of the first part varies from 96.49% to 102.49% of the total density across all 13 

segments. The proportion of the second part varies from -2.49% to 3.51% of the total 

density across all 13 segments. From the study it was also found that even through 

the absolute value of the second part of the density dynamics is small, it is still very 

important to the final predicted density, as the value accumulates with the simulation 

time. 

Figure 6.3 shows the plot of density in selected segments (segment 2, 4, 6 and 11) 

at each time step for 2 hours simulation. In the figure, VSIM is the density measured 

in VISSIM simulation, which is taken as ground truth. ρtot is the predicted density 

from macroscopic simulation. ρ(k), and ρ2 are two parts in the density dynamics. As 
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can be seen from the figure, the first part of the density dynamics ρi(k) is very close 

to the total predicted density ρi(k+1), during each time step. The second part of 

density dynamics ρ2 fluctuate around zero during the two-hour simulation, no matter 

the total density in a segment is high or low. Figure 6.3 also shows that there is some 

difference between the predicted density and the density measured from VISSIM 

when the density on a road segment is very high (such as in segment 6), or when the 

density fluctuate quickly (such as in segment 11), even though the density dynamics 

is strictly based on the conversation of vehicles (as opposed to the speed dynamics 

which includes assumptions and empirical conjectures in model derivation).  

6.3.4 Analysis Speed Dynamics 

The speed dynamics used in macroscopic simulation models has several components. 

The speed of the next time step vi(k+1) is the sum of four parts: the speed on the 

segment in current time step vi(k), relaxation, convection and anticipation (density 

gradient). In order to diagnose the possible reasons leading to the discrepancy 

between the model predicted traffic states and measured data, we need to analyze the 

values of each component in the speed dynamics. 

Table 6.3 shows the average values of each component of the speed dynamics on 

each segment during the 2 hours simulation, using the same data set as in the 

analysis of density dynamics discussed in the previous section. On average, the first 

part of speed dynamics vi(k) consists of over 99% of the predicted speed v(k+1). The 

value of other three components, namely relaxation, convection and anticipation, can 

be positive or negative depending on the relative speed and the desired speed 

(determined strictly by the speed-density relationship), relative speed between the 
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current segment and the immediate upstream segment as well as the relative density 

between the current segment and the immediate downstream segment. The 

proportion of the relaxation value varies from -0.27% to 1.25% of the predicted 

speed during all time steps and across all segments. The proportion of the convection 

value varies from -1.54% to 2.28% of the predicted speed during all time steps and 

the proportion of the anticipation value varies from -3.57% to 1.75% of the predicted 

speed during all time steps and across all segments. As expected, the values of 

relaxation, convection and anticipation can offset during each time step. The average 

combined value of these three terms varies from -0.04 km/h to 0.008 km/h, or -0.069% 

to 0.01% of the predicted speed. 

Table 6.4 gives the values of each component of the speed dynamics in each 

segment at the time step 50 (k=50). The proportion of the relaxation value varies 

from -1.64% to 4.94% of the predicted speed at this time step and across all 

segments. The proportion of the convection value varies from -2.79% to 5.10% of 

the predicted speed at this time step and the proportion of the anticipation value 

varies from -11.50% to 3.17% of the predicted speed at this time step and across all 

segments. The average combined value of these three terms varies from -1.29 km/h 

to 1.12 km/h, or -1.99% to 1.65% of the predicted speed. This is smaller than the 

impact of each individual part of the speed dynamics and it is understandable 

because the values of relaxation, convection and anticipation can offset during each 

time step. 

Figure 6.4 plots each component of the speed dynamics, the predicted speed as 

well as the measured in VISSIM at the selected segments (segment 2, 4, 6 and 11) at 
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each time step for 2 hours simulation. Similar to the density analysis, the first part of 

the speed dynamics is very close to the predicted speed in each segment at each time 

step. All other three parts of the speed dynamics can be positive or negative.  

Figure 6.5 is an enlarged plot of each component of the speed dynamics, the 

predicted speed as well as the measured speed from VISSIM simulation in segment 7 

at each time step for 2-hour simulation. As can be seen, for the most of the time, the 

values of relaxation and convection have the same sign (positive or negative), and 

the anticipation has opposite sign to the relaxation term. The largest relaxation, 

convection and anticipation values (absolute value) happened near time step 120 

(they are not at the same time step) when the speed on the segment changes rapidly. 

6.4 Model Improvement Considerations 

6.4.1 Improvement of Density Dynamics 

As indicated in Figure 6.3, even though the density dynamics is strictly based on the 

vehicle conservation law, there is some discrepancy between the model predicted 

density and the measured density. This may be due to the macroscopic aggregation 

and assumptions used in macroscopic simulation models. 

In the density dynamics of the original macroscopic model Equation (6.1), the 

implicit assumption is that the outflow of vehicles [ρi(k)•vi(k)] from the current 

segment i, can always flow into the downstream segment in the current time step. 

That means, there is always enough room in the downstream segment to accept the 

flow from the upstream segment. In real-life traffic, this condition may not hold if 

the downstream is over congested, such as stop-and-go traffic conditions, in which 

the traffic speed will decrease suddenly and only part of the flow on the current 
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segment can proceed into the downstream segment. Similarly, it is possible that not 

all the outflow from the immediate upstream segment can flow into the current 

segment due to congestion of the current segment. In addition, the traffic demand 

from an on-ramp located at the beginning of a segment may be as high as over 1500 

veh/h in one lane at some time steps. This amount of traffic will cause local 

congestion on the through lane adjacent to the on-ramp and merge area. If the 

segment is congested, only part of the vehicles from the on-ramp can actually flow 

into the segment. However, if the ramp inflow amount is averaged to several through 

lanes of the merge area, the impact might look not as prominent as it actually is. This 

will mask the local congestion near the merge area. To represent these constraints on 

the flow from upstream segment or on-ramps, boundary conditions should be applied 

to the density dynamics. Therefore, the density dynamics should be modified as 

follows to consider those constraints: 

(6.9) 

In which: 

  

(6.10) 

 

           (6.11) 

Where qi-1(k), qi(k) are the outflow of the segment (i-1) and i at time step k, 

respectively. Qi and Qi+1 are lane capacity of the segment (i-1) and i, respectively. 

ri(k) is the on-ramp flow in segment i at time index k; si(k) is the off-ramp flow in 
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segment i at time index k; ρi(k) is the density (veh/km/lane) in segment i; vi(k) is the 

speed (km/h) in segment i and ρmax is the maximum density. 

Equation (6.9) is still strictly based on the law of vehicle conservations and 

holds for all traffic conditions. 

6.4.2 Improvement of Speed Dynamics 

Compared to density dynamics, which is based on conservation of vehicles and has 

only two terms with only one parameter (maximum density ρmax), the speed 

dynamics in macroscopic simulation models is much more complicated. Not only 

has it more terms, but also the different components have interaction effect. In 

addition, it has several parameters that need to be calibrated (at least τ, η and κ). 

Furthermore, the equilibrium speed-density relationship is an empirical equation and 

has two parameters (α and the critical density ρcr) that need to be calibrated. The 

equilibrium speed-density equation might not be accurate under congested traffic 

conditions. 

The study in Chapter 5 showed that adding merging and/or weaving terms to the 

speed dynamics does not have significant impact on the model prediction accuracy. 

Other approaches have to be investigated to improve model performance, especially 

under congested traffic conditions. As indicated in the study by Lu et al. (2011) and 

can be observed from the speed plots over time evolution in many other studies 

(Cremer et al. 1981, Papageorgious et al. 1989, Kotsialos et al. 2002, Lamon 2008), 

the speed dynamics used in macroscopic simulation models, such as (original 

METANET model) does not catch the significant changes in traffic dynamics 
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properly. Modification and improvements on the speed dynamics are desirable in 

order for the model to predict traffic states more accurately. 

6.4.2.1 Improvement of convection term 

Several methods to improve the convection term of the speed dynamics had been 

studied by Lu et al. (2011) as well as Yin and Qiu (2012), in which several forms of 

convection terms, considering the convection effect from the further upstream 

segment, were used to replace the convection term in the original speed dynamics. 

Better prediction results were obtained by the modified speed dynamics compared to 

the original METANET model. For example, if we use the geometric average speed 

of the current and upstream segment to replace the upstream speed, the convection 

term becomes (Lu et al. 2011): 

   (6.12) 

From field observations, the speed on the current segment is not only related to the 

speed on the upstream segment, which inflow to the current segment, but also to the 

speed on the downstream segment. If vehicles near the end of the current segment 

observe the higher speed at the downstream segment, they will accelerate to catch up 

to the higher speed vehicles downstream, vice versa. This is similar to the 

“car-following” mechanism but in macroscopic perspective, taking a road segment as 

one unit. Drivers on the current segment cannot perceive the density on the 

downstream segment directly. However, they can perceive the speed directly ahead 

and react to the distance gap resulted from the speed difference. If we consider the 

impact of the speeds at upstream, current and downstream segment in the convection 

term, geometric average (or weighted average) of the speed on the three segments 
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can be used to replace the upstream speed in the convection term. As a result, 

alternative convection terms can be formed as: 

      (6.13) 

Of the three additional terms in the speed dynamics, both relaxation and anticipation 

terms have model parameters that have physical explanation and can be identified in 

model calibration. These model parameters allow the model to adjust the predicted 

traffic states to match the field measured data as much as possible. It is considered to 

add a factor to the convection term to account for the fact that convection may only 

occurs at the segment ends, instead of the full segment. With a factor δc, the 

convection term can be expressed as: 

(6.14) 

6.4.2.2 Improvement of anticipation term 

The anticipation term in the original macroscopic model proposed by Payne (1971) 

does not have a specific function form for macroscopic simulation. It only states that 

the anticipation is a function of density gradient. In Payne’s (1979) simulation model, 

he used the density [ρi(k)] of the current segment in the denominator. Based on the 

equation, the smaller the density on the current segment, the larger the absolute value 

of the anticipation term. This is not reasonable if the densities on both current and 

downstream segment are low, because the anticipation takes effect only when the 

density exceeds certain threshold, for example, larger than the critical density. To 

address this deficiency, a density parameter κ is added to the denominator as in some 

simulation models (Messmer and Papageorgious 1990, Carlson et al 2010). Another 

way is to use the critical density in the denominator, as in Equation (6.15).   
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(6.15) 

 

By analyzing the values of the anticipation term in the original speed dynamics 

equation, it was found that for a fixed set of model parameters, the value of the 

density gradient term sometimes was very small, even though the downstream 

density is obviously larger than that of the current segment. This means, the speed 

dynamics did not appropriately catch the impact from the density difference between 

the current and downstream segments. For example, assuming at a given time step 

the speed on the upstream and current segment are the same as the desired speed 

with constant density (in this case the values of the relaxation and convection terms 

are zero), then the speed on the current segment for the next time step becomes a 

linear function of the density on the downstream segment at the current time step, 

based on the speed dynamics. This may underestimate the impact of the downstream 

density on the speed of the current segment because the speed-density relationship is 

usually not linear, as shown in Figure 6.2. To address this problem, a dynamic factor 

(F) is added to the anticipation term showing as:   

              (6.16) 

F can be in different forms, such as: 

           (6.17) 

Equation (6.17) means that the larger the density of the downstream segment, the 

larger impact on the speed of the current segment. If the density on the downstream 

segment is well below the critical density, the value of the anticipation term should 

be very small. There can be other forms of the factor, such as a factor considering the 
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speed and density on the current and downstream segment at the same time step. The 

intension of using a factor is to scale up or down the impact of anticipation term on 

the speed dynamics, so that it has a quicker response to the downstream traffic 

density. 

Based on above discussions, the macroscopic simulation model can be 

composed of a density dynamics with boundary conditions as in Equation (6.9) to 

(6.11), a speed dynamics with different combination of improvement considerations, 

and a basic equation that flow equals to the multiplication of speed and density. The 

simulation results from the combination of different modifications will be discussed 

after model calibration. 

6.5 Objection Function and Model Calibration 

6.5.1 Objection Function 

Before a traffic model can be used to predict the evolution of the traffic states, it 

needs to be calibrated and validated. The purpose of model calibration is to find the 

value of the model parameters so that the model predicted traffic states can be 

reasonably close to actual traffic states in the prediction horizon. Optimization 

method is often used in model calibration, in which an objective function is 

constituted to calculate the difference between the ground truth data and the model 

predicted data. There can be a single objective function or multiple objective 

functions in optimization process. The calibration is an optimization procedure that 

minimizes the value of the objective function(s). 

The formulation of objective functions depends on the purpose of calibration. 

For example, in traffic control the main purpose is to improve network performance. 
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The most frequently used objective function is to minimize the total time that all 

vehicles spend (TTS), or total travel time (TTT) in the network (Ghods et al. 2010, 

Hadiuzzaman et al. 2013), because it is directly related to the average travel time for 

all vehicles and minimizing the total travel time is equivalent to the most efficient 

system. For the case of model improvement as in this study, the purpose is to 

evaluate the prediction accuracy between the original and the improved (modified) 

macroscopic simulation models. Relative prediction error can be used as 

performance measure for model calibration and evaluation. The main objective is to 

minimize the difference between the model predicted traffic states (speed, density 

and flow) and the measured traffic states (ground truth data). The objective function 

can be formulated as the sum of a combination of different relative error terms. For 

example, the total error of the sum of the flow and speed errors is: 
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Where Nsteps is the total number of simulation time steps, Iall is the total number of 

the segments of the freeway, are flow and speed from VISSIM (or field 

measured data) in segment i at time step k respectively and are flow and 

speed from macroscopic models in segment i at time step k respectively. There can 

be other form of the objective function, such as the sum of flow and density, the sum 

of speed and density or the sum of flow, speed and density. They have similar 

functions, but with a little different emphasis on the predicted traffic states. 

In some other studies (Kotsialos et al 2002, Lu et al 2011, Samwal et al 1996) 

the objective function is formulated as the sum of direct difference between the 
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model predicted traffic states and the measured traffic states. In those cases, some 

weights have to be assigned to different components, so that the values of each error 

term are on the same order of magnitude. The weighting factor is not necessary if the 

relative differences are used in the objective function. 

6.5.2 Model Calibration 

Three groups of data were prepared for model calibration and comparison of the 

original macroscopic simulation model with the improved ones, namely, data from 

VISSIM simulate on Whitemud Drive (WMD), field measured data from WMD and 

field measured data from Berkeley Highway Laboratory (BHL). For each group of 

data, two separate data sets were prepared: one for the calibration of different models 

and the other for model results comparison. 

In model calibration, nonlinear optimization method was used to estimate model 

parameters. The objective function is the function that calculates the total relative 

difference (total error) between the ground truth data (measured on WMD, BHL and 

VISSIM) and macroscopic simulation for all segments and in all time steps, as 

expressed in Equation (6.18). 

The model parameters can be identified by minimizing the total error. This is a 

nonlinear optimization problem and can be solved by many mathematical tools. 

MATLAB Optimization Toolbox (The MathWorks 2010) was used in this study. 

Different models were obtained from the calibration using different data sets. This 

means, the model from the measured data sets is different from the model calibrated 

from simulation data. Model parameters for BHL are also different from that on 

WMD due to different nature of roadways. For example, one set of model parameters 



  

198 

calibrated from field measured data on WMD is α=2.6, ρcr = 27.0 veh/km/lane, 

τ=0.006hr, η = 10.5 km
2
/h, κ= 29.6 veh/km/lane, and ρmax = 90.0 veh/km/lane. The 

model parameters calibrated from one set of the simulation data on WMD, one set of 

the field measured data on WMD and one set of the field measured data on BHL are 

summarized in Table 6.5, 6.6 and 6.7, respectively. These tables show examples as to 

how the model parameters vary with different data sets. 

6.6 Simulation Results 

Based on the model improvement considerations discussed previously, various 

modifications on the density and speed dynamics were incorporated into the model. 

Each of the modified models was calibrated with various data sets from both 

VISSIM simulation data and field measured data. After numerous model runs on 

different combination of improvement options with different data sets, the results can 

be summarized as follows: 

(1) Adding boundary conditions in the density dynamics, as Equation (6.9) to 

(6.11) can improve model performance in very congested traffic states, 

especially when both the density on the mainline freeway and traffic demand 

at on-ramps are high. Adding boundary conditions can restrict excessive 

inflow from on-ramps (vehicles actually proceed slowly on the ramps waiting 

for gaps to flow into the freeway) and prevent the situation that total traffic 

flow on a segment is higher than the road capacity. 

(2) Using the geometric mean speed of the current and upstream segment to 

replace the upstream speed in the convection term of the speed dynamics, as 

in Equation (6.12), can obviously improve the model performance. Using the 
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geometric mean speed of the current segment, upstream and downstream 

segment to replace the upstream speed in the convection term has similar 

effect to that of using geometric mean speed of the current and upstream 

segment.  The predicted traffic states can better match the measured traffic 

states under most of the cases. 

(3) Adding a factor to the convection term (δc, which is a model parameter with 

the range between 0 and 1, and can be identified in model calibration) also 

has obvious improvement on the overall prediction accuracy. The effect is 

comparable to that of using the geometric mean speed of the current and 

upstream segment to replace the upstream speed in the convection term. 

(4) Using a dynamic factor (ρi+1/ρcr) in anticipation term has a mixed effect on 

the model performance. It has some improvement on certain data sets (traffic 

conditions), but not on other data sets. This means that the effect of using the 

dynamic factor in anticipation term cannot be determined.  This is because 

the anticipation term has three parameters already (τ, η, κ). More factors will 

bring complicated interaction effect during model calibration and as a result, 

the model does not necessarily have better performance.  

(5) Other dynamic factors, such as [vi(k)/vi(k-1)], [(ρi+1(k)/ρi(k)] (including a 

small constant in denominator to prevent dividing by zero) has also been used, 

but found that the model was unstable. 

(6) Using critical density (ρcr) to replace the denominator in anticipation term has 

similar effect to that of adding a dynamic factor (ρi+1/ρcr) in anticipation term. 

(7) Using the geometric mean speed of the current and upstream segment to 
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replace the upstream speed in the convection term, and simultaneously 

adding a dynamic factor (ρi+1/ρcr) in anticipation term does not necessarily 

have better model performance than the original model. 

(8) Using the geometric mean speed of the current and upstream segment to 

replace the upstream speed in the convection term and simultaneously adding 

a constant factor (δd, which is a model parameter) in anticipation term has 

slightly better performance than the original model. 

(9) Adding a factor (δc) in convection term and simultaneously adding a dynamic 

factor (ρi+1/ρcr) in anticipation term has similar improvement to that using the 

geometric mean speed of the current and upstream segment to replace the 

upstream speed in the convection term. 

Three data sets were selected to test the model improvement options, namely 

VISSIM simulation data with heavy traffic demand on WMD for 2 hours, field 

measured data during 2-hour afternoon peak hours on WMD and field measured data 

on BHL freeway for 10 hours. There are four macroscopic simulation models tested 

on each of the data sets and compared with the ground truth data, namely: 

 Model 1: Base (original) model without any improvements; 

 Model 2: Using the geometric mean speed of the current, upstream and 

downstream segments to replace the upstream speed in the convection term; 

 Model 3: Adding a constant factor (δc) to the convection term; 

 Model 4: Adding a constant factor (δc) to the convection term and 

simultaneously adding a dynamic factor (ρi+1/ρcr) in anticipation term. 

Boundary conditions in the density dynamics were included in all of the improved 
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models (Model 2, 3 and 4). 

Figure 6.6, 6.7 and 6.8 show the predicted traffic speed, density and flow on 

WMD, respectively, on the selected segments for all the four models and compared 

with the measured data from VISSIM simulation (taken as ground truth in these 

figures). It can be observed that each of the improved models has better performance 

than the original model in most of the cases. 

In Figure 6.6c and 6.6d on segment 6 and 7, when the traffic speed in VISSIM 

simulation is very low (20 to 30 km/h), all the improved models can catch this 

congested traffic states, but the original model failed to catch this significant speed 

drop. On segment 3 (Figure 6.6a), the prediction error from all four models is 

obvious compared with the ground truth data (from VISSIM). This section is a 

two-sided weaving (TRB 2010) and many vehicles flow into the freeway from the 

on-ramp located on the right side of segment 3 and flow out the freeway on the left 

side of the same segment. They cross weave three through lanes on this section. 

When traffic demand is high, this cross weaving causes significant decrease of speed 

on this segment. In VISSIM simulation, drivers cautiously select appropriate speed 

in this section and resulted significant speed drop. However, in macroscopic 

simulation, no special consideration was given to this special type of cross weaving. 

As a result, all the four models did not catch the large speed drop. It can also be 

observed that the improved models have slightly better performance than the original 

model on this segment as well. 

For density prediction as shown in Figure 6.7, the original model did not catch 

the very congested traffic states on segment 6 and 7 (Figure 6.7c, 6.7d). The three 
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improved models caught this high density reasonably well. On all other segments, all 

four models have comparable performance with the improved models slightly better 

than the original model in most of the cases. 

In terms of predicted flow as shown in Figure 6.8, all the four models have very 

similar performances. Noticeable difference exists between the model predicted flow 

and measured flow from VISSIM on segment 3, on which all the four macroscopic 

models predicted much higher speed and a little lower density than the measured 

data from VISSIM. As a result, the predicted flows from all the four macroscopic 

simulation models are higher than measured flows from VISSIM. 

Figure 6.9, 6.10 and 6.11 show the predicted traffic speed, density and flow on 

the selected segments from all the four macroscopic simulation models and 

compared with the field measured data on WMD freeway. For speed prediction 

shown in Figure 6.9, each of the improved models has better performance than the 

original model on most of the segments except on segment 3, on which the original 

model performs slightly better. In terms of density as in Figure 6.10, it can be 

observed that all the three improved models perform better than the original model. 

It is difficult to differentiate the performance of the three improved models. For flow 

prediction, all the four models matched the measured data reasonably well, except in 

segment 4, on which all four models over predicted flow. 

The predicted traffic speed, density and flow from the four models as well as the 

measured data on BHL freeway are provided in Figure 6.12, 6.13 and 6.14, 

respectively. In Figure 6.12, overall the predicted traffic speed from the four models 

matches the measured speed reasonably well, with the three improved models 
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performing better than the original model on all segments under both free flow and 

congested traffic states. 

For density prediction as shown in Figure 6.13, each of the improved models has 

better performance than the original model on all segments. It is observed from 

Figure 6.13 that in congested traffic (from approximately 600 to 900 time steps), 

some differences exist between the predicted density from all of the four models and 

the measured density. Also shown in the figures, the three improved model have very 

similar performances. It is difficult to differentiate from the figures as to which 

improved model is the best. 

For flow prediction, even though some minor difference exists between the 

predicted flow from the four models and the measured data on segment 3, 4 and 5, 

all the four macroscopic simulation models have very similar performance and the 

predicted flows are reasonably close to the measured data. 

The average prediction errors from the four models as well as the prediction 

improvements of Model 2, 3 and 4 compared to Model 1 were calculated and 

summarized in Table 6.8. The prediction error (difference, D) is defined as in 

Equation (6.19) 

     (6.19)  

 

As indicated in Table 6.8, the improved models (Model 2, 3 and 4) have better 

prediction performance in most of the cases, except the density predicted by Model 4 

on WMD and the flow predicted by Model 4 on BHL in which the prediction errors 

from Model 4 are higher than that from the original model (Model 1). Among the 
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three improved models, Model 2 has the best prediction performance. It can achieve 

over 10% improvement on speed prediction, over 5% improvement on density 

prediction, as well as improved flow prediction on both freeways. 

6.7 Summary and Conclusions  

In this chapter, the value of each component of the density dynamics and speed 

dynamics of macroscopic simulation models were quantitatively analyzed for both 

average values during the full simulation time period and at a specific time step. 

Various options to improve model prediction accuracy had been discussed. For 

density dynamics, boundary conditions on each segment were incorporated into the 

models. For speed dynamics, several improvements on the speed dynamics of the 

original macroscopic simulation model were proposed and implemented in the 

macroscopic simulation models. These include: (a) considering the convection effect 

at both upstream and downstream of the current segment; (b) adding a constant 

factor to the convection term; (c) adding a dynamic factor to the anticipation term 

and (d) various combinations of different factors and formulations. The modified 

simulation models were applied to two freeways and compared with outputs from the 

original model, using both VISSIM simulation data and field measured data, 

respectively. Based on the modelling results, it shows that the models with the 

suggested improvements have obviously better prediction accuracy than the original 

model, especially for the congested traffic conditions. The improved models can 

catch most of the significant sudden speed drop resulted from traffic congestions. 

Based on the study, it can be concluded that: 
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 In macroscopic simulation, the predicted density on a segment at a time step 

is mainly composed of the density on the segment in previous time step (on 

average over 99% of the total predicted density). The impact of inflow and 

outflow on the density dynamics of a segment in one time step is very small. 

Their values vary from -2.5% to 3.5% of the predicted density; 

 The predicted speed on a segment at a time step is dictated by the speed on 

the segment in previous time step (on average over 99% of the total predicted 

speed). The value of relaxation, convection and anticipation terms are small 

(on average less than ±4% of the total predicted density) and they can 

partially offset each other. Their combined contribution to the speed 

dynamics (on average less than ±0.1% of the total predicted density)  is 

smaller than the value of each individual term; 

 Boundary conditions should be incorporated in the density dynamics of the 

macroscopic simulation models to represent the constraints in actual traffic 

flow on road segments as well as at on-ramps; 

 Using the geometric mean speed of the current and upstream segment, or 

using the geometric mean speed of the current segment, upstream and 

downstream segment to replace the upstream speed in the convection term 

can obviously improve the model performance. It can help the model to catch 

the significant speed drop under congested traffic conditions; 

 Adding a factor to the convection term can also improve the overall 

prediction accuracy. The effect is comparable to that of using the geometric 

mean speed of the current and upstream segment to replace the upstream 
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speed in the convection term; 

 Adding a factor to the convection term and simultaneously adding a dynamic 

factor to the anticipation term has similar improvement to that using the 

geometric mean speed of the current and upstream segment to replace the 

upstream speed in the convection term. 

 By using the geometric mean speed of the current segment, upstream and 

downstream segment to replace the upstream speed in the convection term, it 

can achieve over 10% improvements on speed prediction, over 5% 

improvements on density prediction, as well as obvious improvements on 

flow prediction. 
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Table 6.1 Debrief of average density components for 2-hour simulation 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

ρ(k+1) 

(1)   Ave 15.488 14.613 16.104 12.296 11.558 13.685 18.191 21.321 19.799 13.786 11.929 13.914 11.432 

(2)   Min 6.300 6.695 8.230 5.966 5.301 5.459 7.081 9.071 9.991 4.877 5.809 0.618 0.900 

(3)   Max 33.300 26.192 27.972 20.165 28.140 46.379 56.562 54.920 39.703 25.548 21.919 24.941 21.600 

ρ(k) 

(4)   Ave 15.488 14.608 16.106 12.300 11.566 13.683 18.203 21.318 19.789 13.769 11.910 13.890 11.432 

(5) (4) /(1) ρ(k)/ρ(k+1) 1.000 1.000 1.000 1.000 1.001 1.000 1.001 1.000 0.999 0.999 0.998 0.998 1.000 

(6)   Min 6.300 6.695 8.230 5.966 5.301 5.459 7.081 9.071 9.200 4.300 1.700 0.618 0.900 

(7)   Max 33.300 26.192 27.972 20.165 28.140 46.379 56.562 54.920 39.703 25.548 21.919 24.941 21.600 

ρ(in-out) 

(8)   Ave 0.000 0.004 -0.002 -0.005 -0.008 0.002 -0.012 0.003 0.010 0.016 0.019 0.024 0.000 

(9) (8) /(1) % 0.000 0.028 -0.010 -0.037 -0.067 0.014 -0.064 0.014 0.051 0.120 0.155 0.172 0.000 

(10)   Min 0.000 -3.856 -2.551 -1.702 -3.001 -3.322 -3.413 -2.338 -1.123 -0.933 -0.901 -1.882 0.000 

(11)   Max 0.000 3.089 2.390 1.650 2.108 4.163 3.350 3.261 2.375 2.205 4.109 3.428 0.000 

                 
Notes: ρ(k+1): predicted density at time step (k+1), veh/km/lane 

ρ(k): density at time step k, veh/km/lane. It is part 1 of the predicted density 

ρ(in-out): density change due to inflow and outflow in a segment, veh/km/lane. It is part 2 of the predicted density 

Ave: Average value during 360 time steps, veh/km/lane 

%: Average percentage of the average value to ρ(k+1) during 360 time steps 

Min: Minimum value during 360 time steps, veh/km/lane 

Max: Maximum value during 360 time steps, veh/km/lane  
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Table 6.2 Debrief of density components at k=50 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

ρ(k+1) (1)   Value 18.500 22.910 26.241 18.298 17.029 24.401 37.213 40.738 36.124 24.288 20.833 23.375 17.900 

ρ(k) 
(2)   Value 18.500 22.362 25.321 18.316 17.452 24.688 36.459 39.856 35.878 24.414 21.124 23.408 17.900 

(3) (2) /(1) % 100.00 97.61 96.49 100.10 102.49 101.18 97.97 97.84 99.32 100.52 101.40 100.14 100.00 

ρ(in-out) 
(4)   Value 0.000 0.548 0.920 -0.018 -0.424 -0.287 0.754 0.882 0.246 -0.126 -0.291 -0.033 0.000 

(5) (4) /(1) % 0.000 2.390 3.507 -0.100 -2.487 -1.175 2.027 2.164 0.680 -0.519 -1.396 -0.142 0.000 

                 
Notes: ρ(k+1): predicted density at time step (k+1), veh/km/lane 

 
ρ(k): density at time step k, veh/km/lane. It is part 1 of the predicted density 

ρ(in-out): density change due to inflow and outflow in a segment, veh/km/lane. It is part 2 of the predicted density 

Value: value of the term at time step (k=50), veh/km/lane 
 

%: percentage of the term value to ρ(k+1) at time step (k=50) 
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Table 6.3 Debrief of speed components for 2-hour simulation 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

v(k+1) (1)   Ave 77.121 75.510 76.829 77.917 74.934 67.078 63.171 65.379 71.718 75.016 72.522 75.960 79.826 

v(k) 
(2)   Ave 77.121 75.516 76.824 77.909 74.934 67.099 63.214 65.408 71.726 75.013 72.529 75.974 79.826 

(3) (2) /(1) v(k)/v(k+1) 1.000 1.000 1.000 1.000 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 

Relaxation 

(4)   Ave 0.000 0.133 -0.160 0.002 0.331 0.841 0.680 0.131 -0.195 0.167 0.574 0.071 0.000 

(5) (4) /(1) % 0.00 0.18 -0.21 0.00 0.44 1.25 1.08 0.20 -0.27 0.22 0.79 0.09 0.00 

(6)   Min 0.000 -0.687 -1.382 -0.772 -0.655 -0.186 -1.469 -1.928 -1.705 -0.759 -0.647 -1.009 0.000 

(7)   Max 0.000 0.875 0.588 1.514 3.670 4.041 3.242 1.675 0.799 1.525 1.601 0.748 0.000 

Convection 

(8)   Ave 0.000 0.372 -1.182 -0.260 0.777 1.532 1.346 -0.371 -1.052 -0.995 0.911 -1.235 0.000 

(9) (8) /(1) % 0.000 0.493 -1.538 -0.333 1.036 2.284 2.131 -0.568 -1.467 -1.326 1.256 -1.626 0.000 

(10)   Min 0.000 -3.630 -2.634 -1.272 -1.565 -1.770 -2.150 -1.906 -2.104 -2.670 -2.530 -3.299 0.000 

(11)   Max 0.000 2.054 0.267 1.613 5.639 5.165 4.838 0.933 -0.104 0.820 2.201 2.466 0.000 

Anticipation 

(12)   Ave 0.000 -0.511 1.346 0.266 -1.107 -2.394 -2.069 0.211 1.239 0.831 -1.491 1.150 0.000 

(13) (12) /(1) % 0.000 -0.676 1.752 0.341 -1.477 -3.569 -3.275 0.323 1.728 1.107 -2.056 1.514 0.000 

(14)   Min 0.000 -3.079 0.006 -2.834 -10.774 -6.893 -6.233 -0.996 0.478 -0.743 -3.077 -2.744 0.000 

(15)   Max 0.000 1.271 2.833 1.204 2.556 0.070 2.037 2.522 2.200 1.691 4.890 5.001 0.000 

Σ(Rel, Cov, 

 Ant) 

(16)   Value 0.000 -0.006 0.005 0.008 0.001 -0.021 -0.043 -0.030 -0.008 0.002 -0.007 -0.014 0.000 

(17) (16) /(1) % 0.000 -0.008 0.006 0.010 0.001 -0.031 -0.069 -0.045 -0.011 0.003 -0.010 -0.018 0.000 

 

Notes: v(k+1): predicted speed at time step (k+1), km/h,  v(k): speed at time step k, km/h 

  

Ave: Average value during 360 time steps, km/h 
  

%: Average percentage of the average value to v(k+1) during 360 time steps 

Min: Minimum value during 360 time steps, km/h , Max: Maximum value during 360 time steps, km/h 
  

Σ(Rel, Cov, Ant): Sum of relaxation, convection and anticipation. 
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Table 6.4 Debrief of speed components at k=50 

Component Index Formula Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 

v(k+1) (1)   Value 77.500 70.996 67.744 70.551 64.629 46.971 41.843 45.974 58.096 64.479 65.517 71.076 79.700 

v(k) 
(2)   Value 77.500 70.046 66.625 70.654 65.915 47.658 42.313 46.309 58.290 64.638 65.741 71.392 79.700 

(3) (2) /(1) v(k)/v(k+1) 1.000 0.987 0.983 1.001 1.020 1.015 1.011 1.007 1.003 1.002 1.003 1.004 1.000 

Relaxation 
(4)   Value 0.000 0.140 0.119 0.494 1.092 2.319 0.697 -0.512 -0.950 0.471 0.763 -0.143 0.000 

(5) (4) /(1) % 0.000 0.197 0.175 0.700 1.689 4.936 1.666 -1.113 -1.635 0.730 1.164 -0.201 0.000 

Convection 
(6)   Value 0.000 1.665 -1.059 -0.839 1.795 2.394 0.230 -0.599 -1.087 -1.796 0.359 -1.939 0.000 

(7) (6) /(1) % 0.000 2.345 -1.563 -1.189 2.778 5.097 0.549 -1.304 -1.871 -2.785 0.548 -2.728 0.000 

Anticipation 
(8)   Value 0.000 -0.854 2.060 0.242 -4.173 -5.399 -1.397 0.776 1.843 1.166 -1.346 1.764 0.000 

(9) (8) /(1) % 0.000 -1.204 3.041 0.343 -6.456 -11.495 -3.340 1.688 3.172 1.809 -2.055 2.482 0.000 

Σ(Rel, Cov,  

Ant) 

(10)   Value 0.000 0.950 1.119 -0.103 -1.285 -0.687 -0.471 -0.335 -0.194 -0.159 -0.225 -0.317 0.000 

(11) (10) /(1) % 0.000 1.339 1.652 -0.146 -1.989 -1.462 -1.125 -0.729 -0.334 -0.246 -0.343 -0.446 0.000 

Notes: v(k+1): predicted speed at time step (k+1), km/h 

  

v(k): speed at time step k, km/h 
    

Value: value of the term at the time step (k=50), km/h 
 

%: percentage of the term value to v(k+1) at the time step (k=50) 

Σ(Rel, Cov, Ant): Sum of relaxation, convection and anticipation. 
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Table 6.5 Model parameters calibrated from simulation data on WMD 

Parameters α τ η κ ρcr ρmax δc 

Model 1 1.4 0.020 50.0 49.6 50.0 130.0 ― 

Model 2 3.6 0.020 37.8 20.0 29.1 98.5 ― 

Model 3 2.6 0.020 48.9 20.0 31.8 81.1 0.56 

Model 4 1.8 0.019 44.4 31.0 37.3 88.2 0.07 

 

Table 6.6 Model parameters calibrated from field measured data on WMD 

Parameters α τ η κ ρcr ρmax δc 

Model 1 2.6 0.006 10.5 29.6 27.0 90.0 ― 

Model 2 1.6 0.019 4.1 20.0 48.4 90.5 ― 

Model 3 2.9 0.0053 5.6 31.3 26.4 90.0 0.67 

Model 4 3.2 0.005 9.3 29.9 26.0 90.0 0.32 

 

Table 6.7 Model parameters calibrated from field measured data on BHL 

Parameters α τ η κ ρcr ρmax δc 

Model 1 1.0 0.030 14.6 37.6 29.3 120.0 ― 

Model 2 1.3 0.020 29.9 10.3 26.2 109.9 ― 

Model 3 1.0 0.030 29.6 23.5 28.8 120.0 1.00 

Model 4 1.0 0.030 9.0 22.5 30.3 120.0 1.00 

 

Table 6.8 Average prediction errors (in absolute value) and improvements 

Data Models Speed 
Speed 

Improve 
Density 

Density 

Improve 
Flow 

Flow 

Improve 

WMD 

Model 1 12.7% ― 23.2% ― 17.8% ― 

Model 2 9.8% 22.8% 21.4% 7.8% 16.9% 5.1% 

Model 3 11.2% 11.8% 22.6% 2.6% 16.8% 5.6% 

Model 4 11.2% 11.8% 24.4% -5.2% 16.9% 5.1% 

BHL 

Model 1 14.5% ― 19.8% ― 9.3% ― 

Model 2 12.8% 11.7% 18.4% 7.1% 9.3% 0.0% 

Model 3 13.4% 7.6% 19.6% 1.0% 9.2% 1.1% 

Model 4 11.1% 23.4% 17.1% 13.6% 9.8% -5.4% 
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Figure 6.1 Studied freeway corridors in California (Lu et al. 2010, Google Earth) 

  

 

 Figure 6.2 Speed-density relationship with respect to ρcr and α  
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 Figure 6.3 Debrief density dynamics on selected segments   
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Figure 6.4 Debrief speed dynamics on selected segments 
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Figure 6.5 Debrief speed dynamics on segment 7 
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Figure 6.6 Model predicted and VISSIM simulated speed on WMD 
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Figure 6.7 Model predicted and VISSIM simulated density on WMD 
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Figure 6.8 Model predicted and VISSIM simulated flow on WMD 
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Figure 6.9 Model predicted and measure speed on WMD 
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Figure 6.10 Model predicted measured density on WMD 
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Figure 6.11 Model predicted and measured flow on WMD 
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Figure 6.12 Model predicted and measure speed on BHL 
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Figure 6.13 Model predicted and measured density on BHL 
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Figure 6.14 Model predicted and measured flow on BHL 
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Chapter 7 Conclusions and Recommendations 

 

7.1 Conclusions 

This research investigated several important issues in freeway traffic flow modelling 

and simulation. They include the relationship between microscopic car-following 

models and macroscopic speed-density models, the compatibility of microscopic and 

macroscopic traffic simulation on freeways, the impact of merging, weaving terms 

on the macroscopic simulation modelling. The research has also proposed several 

methods to improve macroscopic simulation models for the prediction of the traffic 

states, especially under congested traffic conditions. Main conclusions from this 

research for the chapters are summarized below. 

Chapter 2 provided an overview on the state-of-the-art of traffic flow models 

with a special focus on microscopic car-following models and second-order 

macroscopic models. The traffic models were reviewed with respect to their 

categories in terms of level of detail, scale of independent variables, nature of 

independent variables and model representations. Various microscopic car-following 

model formulations, ideologies and properties were discussed. On the macroscopic 

level, both first- and second-order models and their respective advantages and 

disadvantages were presented. Even though higher-order macroscopic traffic models 

have been established from different perspectives, they share many similar properties, 

such as delayed response of drivers and their anticipation of downstream traffic 

conditions. While microscopic traffic models track each individual vehicle 
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movement and its relations with other vehicles during all time horizons, macroscopic 

traffic models consider the average value of the aggregated traffic flow properties 

and ignore the interaction between individual vehicles. Therefore, microscopic traffic 

models are ideally suited for off-line simulation to evaluate detailed local traffic 

operations, while macroscopic traffic models are more suited for large-scale, 

network-wide operation and online control purposes. These reviews provide 

comprehensive background information for establishing the relationship between 

microscopic car-following models and macroscopic traffic models.  

Chapter 2 also discussed various theories and methods on traffic jam 

(stop-and-go traffic) modelling from both microscopic and macroscopic approaches. 

These include traditional microscopic car-following models, asymmetric traffic 

theory, traffic disturbance model, phase transition model as well as first-order and 

second-order macroscopic models. The mechanisms of stop-and-go waves, causes, 

generation, propagation, and absorption were discussed. It can be concluded that the 

stop-and-go traffic state is formed due to three conditions: high traffic demand, 

insufficient road capacity and traffic disturbance. When traffic density is sufficiently 

high, a small disturbance in the traffic flow can be amplified, causing a stop-and-go 

wave propagating backwards and the disturbance can be explained by microscopic 

car-following and lane-changing behaviour. 

Chapter 3 explored the relationship between microscopic and macroscopic 

traffic flow models. Almost all of the existing well-known macroscopic 

speed-density relationships can be derived from microscopic car-following models. 

This is achieved by integrating microscopic car-following models and applying 
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proper assumptions on traffic conditions and headway-density approximations as 

well as boundary conditions. On the other hand, taking derivatives of macroscopic 

speed-density relationships will result in microscopic traffic models (acceleration 

equations) and the process is easier than integration.  

Most of the microscopic-macroscopic derivation was based on the assumptions 

of steady-state and homogeneous traffic conditions and that headway equals to the 

inverse of the density. Therefore, these models apply only for steady-state traffic 

conditions. Under these assumptions, a generalized macroscopic speed density 

relationship was derived from the generalized stimulus-response microscopic 

car-following model, which includes a speed exponent parameter m and distance 

headway exponent parameter l. With different combination of m and l values, almost 

all of the well-known macroscopic speed-density models can be derived from this 

generalized car-following model.  

It was found that the relationship between headway and density has important 

implications on model derivation. The research showed that the traditional 

headway-density assumption does not hold for non-homogeneous traffic and slightly 

changing the headway-density relationship will result in different macroscopic 

models. Using a mathematical definition of density and a new headway-density 

approximation, a macroscopic model that includes relaxation, convection, 

anticipation and diffusion (or viscosity) components was derived from a microscopic 

model corresponding to the delayed response of drivers. 

Chapter 4 investigated the compatibility between microscopic and macroscopic 

simulation models. Several important factors, such as simulation time step, traffic 
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demand that have essential impact on the model performance were analyzed. The 

predicted flow, density and speed from a macroscopic simulation model were 

compared with those from a microscopic simulation model, using METANET and 

VISSIM respectively, on a section of urban freeway. Three levels of traffic demands 

and seven different time step lengths in macroscopic simulation were applied to 

evaluate the compatibility of the two models. Based on the performance of the two 

models and comparison analysis, the following main conclusions were found: 

 The prediction of traffic states from METANET model is generally 

consistent with that from VISSIM simulation. The simulated speed, density 

and flow from VISSIM model fluctuate with time frequently, while those 

from the METANET model are approximately the average value of that from 

VISSIM. 

 In macroscopic simulation model, there exist optimum time step lengths 

corresponding to a particular roadway configuration and free-flow speed. The 

optimum time step lengths do not change significantly with traffic demand. 

For the studied freeway, the recommended time step length for VSL control 

is approximately 20s. 

 When traffic demand is at moderate to heavy level, the predicted traffic states 

from the macroscopic simulation are consistent with those from the 

microscopic simulation. Under excessive traffic demand (stop-and-go traffic 

conditions), significant differences exist between the simulated speed and 

density from the two models evaluated. There are some limitations for 
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macroscopic model used in this study to accurately predict traffic states under 

stop-and-go traffic conditions. 

 In VISSIM simulation, the change of speed limits can be captured 

immediately at the location of the speed limit. In METANET model, the 

model could not catch the sudden and significant change of traffic speed. 

Chapter 5 systematically investigated the impact of merging and weaving terms in 

speed dynamics on the performance of macroscopic simulation models. Several 

merging and weaving formulas were evaluated and compared with the base model 

(without merging and/or weaving terms) with respect to the predicted speed, density 

and flow. Data from both microscopic simulation and field loop detectors were used 

in the model performance evaluation. Based on these data, all relevant model 

parameters were estimated in model calibration, using an optimization technique. 

Each macroscopic simulation model was independently calibrated and then used to 

simulate traffic operations on the studied freeway. The values of merging and/or 

weaving terms was calculated and compared with the total predicted speed from the 

model.  

ANOVA was performed to evaluate the variation of prediction errors of different 

models. Based on which, the statistical significance of merging and weaving impacts 

on the performance of macroscopic models was evaluated. It was concluded that: 

 The predicted traffic states from the models without merging and/or weaving 

terms is very similar to the models with merging and/or weaving terms. 

Merging and weaving terms have no significant impact on the performance of 

macroscopic simulation models. 
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 Based on the formulation of the merge and/or weave terms that appeared in 

the literature and were evaluated in this research, the value of the merge or 

weave term varied from -6% to 0% of the predicted speed, with the average 

being approximately -2%. 

 Adding merging and/or weaving terms does not necessarily mean better 

accuracy in traffic prediction with macroscopic simulation models. There is 

no obvious improvement of traffic state prediction. However, the models 

with merging and/or weaving terms are not inferior to the original model 

either. 

 Macroscopic simulation model performance is sensitive to traffic demand. 

The higher the traffic demand, the higher the prediction errors. 

 Based on this study, merging and/or weaving terms can be omitted in 

macroscopic simulation. This can reduce model parameters that need to be 

calibrated in the multi-parameter optimization process. 

In Chapter 6, the value of each component of the density dynamics and speed 

dynamics of macroscopic simulation models were quantitatively analyzed for both 

average values during the full simulation time period and at a specific time step. 

Various options to improve model prediction accuracy had been discussed. For 

density dynamics, boundary conditions on each segment were incorporated into the 

models. For speed dynamics, several improvements on the speed dynamics of the 

original macroscopic simulation model were proposed and implemented in the 

macroscopic simulation models. These include: (a) considering the convection effect 

at both upstream and downstream of the current segment; (b) adding a constant 
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factor to the convection term; (c) adding a dynamic factor to the anticipation term 

and (d) various combinations of different factors and formulations. The modified 

simulation models were applied to two freeways and compared with outputs from the 

original model, using both VISSIM simulation data and field measured data, 

respectively. Based on the modelling results, it shows that the models with the 

suggested improvements have obviously better prediction accuracy than the original 

model, especially for the congested traffic conditions. The improved models can 

catch most of the significant sudden speed drop resulted from traffic congestions. 

Based on the study, it was concluded that: 

 In macroscopic simulation, the predicted density on a segment at a time step 

is mainly composed of the density on the segment in previous time step (on 

average over 99% of the total predicted density). The impact of inflow and 

outflow on the density dynamics of a segment in one time step is very small. 

Their values vary from -2.5% to 3.5% of the predicted density; 

 The predicted speed on a segment at a time step is dictated by the speed on 

the segment in previous time step (on average over 99% of the total predicted 

speed). The value of relaxation, convection and anticipation terms are small 

(on average less than ±4% of the total predicted density) and they can 

partially offset each other. Their combined contribution to the speed 

dynamics (on average less than ±0.1% of the total predicted density)  is 

smaller than the value of each individual term; 
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 Boundary conditions should be incorporated in the density dynamics of the 

macroscopic simulation models to represent the constraints in actual traffic 

flow on road segments as well as at on-ramps; 

 Using the geometric mean speed of the current and upstream segment, or 

using the geometric mean speed of the current segment, upstream and 

downstream segment to replace the upstream speed in the convection term 

can obviously improve the model performance. It can help the model to catch 

the significant speed drop under congested traffic conditions; 

 Adding a factor to the convection term can also improve the overall 

prediction accuracy. The effect is comparable to that of using the geometric 

mean speed of the current and upstream segment to replace the upstream 

speed in the convection term; 

 Adding a factor to the convection term and simultaneously adding a dynamic 

factor to the anticipation term has similar improvement to that using the 

geometric mean speed of the current and upstream segment to replace the 

upstream speed in the convection term.  

 By using the geometric mean speed of the current segment, upstream and 

downstream segment to replace the upstream speed in the convection term, it 

can achieve over 10% improvements on speed prediction, over 5% 

improvements on density prediction as well as obvious improvements on 

flow prediction. 
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7.2 Recommendations for Future Research 

Traffic flow models have been studied for more than half a century. Due to the 

complexity of traffic and wide variations of driver population, vehicle components 

and environment, there is not a single traffic model that applies to all traffic 

situations. Further research to explore other forms of the traffic flow models for 

better representation of traffic state evolution and traffic control is desirable in both 

theoretical analysis and field applications. In this section we provide some 

recommendations for future research following the studies carried out in this 

dissertation. These recommendations are categorized into several topics, including 

traffic flow modelling, comparison with other traffic models, model improvements, 

fundamental diagram, model extension / application as well as model calibration and 

validation. 

7.2.1 Traffic Flow Modelling 

In the area of traffic flow theory, theoretical improvements are possible and 

desirable, especially in building models with increased insight into congestion 

formation, propagation, dissipation as well as on different congestion patterns. 

As presented in Chapter 2 and Chapter 3, a class of macroscopic models can be 

derived from microscopic models. This research showed that the representation of 

headway-density relationship has a dominant role in model derivation. There may be 

other forms of formulation for the headway-density relationship, such as a traditional 

headway-density relationship plus a fluctuation term, as described in disturbance 

model for congesting modelling. These stochastic models may be more close to 

actual traffic because in traffic flow there are many random elements in both driver 
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behaviour and traffic conditions. Future studies can be carried out to further explore 

new modelling approaches, from which we may be able to find more appropriate 

models, especially for traffic congestion modelling. 

7.2.2 Comparison with Other Models 

This research is focused on the application of the second-order macroscopic 

simulation models to predict traffic states. Other macroscopic models based on the 

first-order model principles, such as CTM, has also been used in many studies. 

Based on the theoretical representation, the second-order models have more 

flexibility to describe complicated traffic states due to their explicit and adjustable 

speed dynamics. There are also debates as to which type of models is more accurate 

in field application. Therefore, a systematically comparative study between the 

first-order and second-order macroscopic simulation models under various traffic 

conditions is recommended to identify which model is more appropriate for certain 

traffic conditions. In addition, further cross-comparisons of the improved models 

with other forms of models (such as microscopic models, hybrid models and other 

macroscopic models) can be carried out in terms of accuracy and computational 

efforts.  

7.2.3 Model Improvements 

Chapter 5 of this dissertation showed that adding merging and weaving terms in the 

speed dynamics as formulated in the existing literatures does not have significant 

impact on the model performance. It was also showed that based on existing 

formulation, the value of weaving term is smaller than that of the merging term. This 

is not consistent with field observations. Other forms of weaving term may be 
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investigated to confirm whether this phenomenon is due to the configuration of 

weaving term or the nature of macroscopic simulation, or due to the parameters in 

model calibration. In future studies, special considerations should be given to the 

cross weaving (two-sided weaving) because it may have more impact on freeway 

operations than that of one-sided weaving. 

It was showed in Chapter 6 that several improved models have obviously better 

performance than the original model. However, even the improved models did not 

catch the stop-and-go traffic conditions under all traffic condition and on all 

segments. It is suggested that other type of improvements be explored and compared 

with the approaches used in this study. 

7.2.4 Fundamental Diagram  

As discussed in Chapter 6, the speed dynamics of macroscopic simulation models 

rely on the speed-density relationship, or fundamental diagram (FD), to provide the 

desired speed in relaxation term. Calibration of FD may lead to errors. In addition, 

one speed-density relationship may not apply to various traffic states. It is 

recommended in future research and field applications that other forms of 

fundamental diagram be investigated. Alternatively, multi-region fundamental 

diagrams can also be applied for different ranges of traffic density. 

7.2.5 Model Extension and Application 

This study is focused on the fundamental aspects of macroscopic simulation under 

non-controlled situation. Although the approach and methodologies are applicable to 

the controlled case as well, the model improvement suggestions and conclusions 

should be tested for controlled cases by incorporating the improvement measures 
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into controlled modelling, such as RM and VSL, so that they can be implemented for 

field traffic control. 

 In addition, this study used data from two freeway corridors. In future research, 

more diverse field data are desirable to test the robustness and reliability of the 

macroscopic simulation models under different traffic and environment conditions. 

Another relevant topic for future research is the study of large networks, such as 

regional freeways network system where different section of freeways may have 

different characteristics.  

7.2.6 Model Calibration and Validation 

The existing calibration process use optimization of a performance function. The 

parameters obtained represent a compromise among a group of parameters. In future 

studies it is recommended that the following directions be investigated to find 

whether better parameters or more efficient calibration methods exist: 

 Using different objective functions to investigate if the result is robust.  

 Using multiple objective functions to obtain better parameters.  

 Using other optimization algorithms to investigate how the optimal set of 

parameters depends on the choice of the algorithm. 

 The sensitivity of parameters on the model performance should also be 

studied. 

 If field traffic states change dramatically over a very short time period, online 

calibration may be applied to adjust the models for such traffic conditions. 

 

  



  

237 

References 

 

Abdel-Aty, M., Dilmore, J., and Dhindsa, A. (2006a). Evaluation of variable speed 

limits for real-time freeway safety improvement. Accident Analysis and 

Prevention, 38(2), pp.335-345. 

Abdel-Aty, M., Dilmore, J., and Hsia, L. (2006b). Applying variable speed limits and 

the potential for crash migration. Transportation Research Record, No.1953, pp. 

21-30. 

Adams, W.F. (1936), Road traffic considered as a random series. Journal of the 

Institution of Civil Engineers, 4, UK. pp. 121-130. 

Ahn, S. and Cassidy, M., (2007). Freeway traffic oscillations and vehicle 

lane-change maneuvers. International Symposium of Traffic and Transportation 

Theory (R. Alsop, M. Bell and B. Heydecker, Eds.) Elsevier, Amsterdam, pp. 

691-710. 

Al-Deek, H., Kanafani, A. (1993). Modelling the benefits of advanced traveler 

information systems in corridors with incidents. Transportation Research C 1 (4), 

303–324. 

Aw, A., Klar, A., Materne, T. and Rascle, M. (2002). Derivation of continuum traffic 

flow models from microscopic follow-the-leader models. SIAM Journal on 

Applied Mathematics, vol. 63, No.1, pp. 259-278. 

Aw, A. and Rascle, M. (2000). Resurrection of second-order models of traffic flow. 

SIAM Journal of Applied Mathematics, 60, pp.916-938. 

Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y. (1995). 

Dynamical model of traffic congestion and numerical simulation. Physical 

Review E, 51, pp. 1035–1042. 



  

238 

Banks, J. H. (2002). Review of empirical research on congested freeway flow. 

Transportation Research Record, vol. 1802, pp. 225–232.  

Barcelo, J. (2010). Fundamentals of traffic simulation. International Series in 

Operations Research & Management Science, Vol 145. Springer-Verlag. 

Beegala, A., Hourdakis, J. and Michalopoulos. P.G. (2005). Methodology for 

performance optimization of ramp control strategies through micro-simulation. 

Transportation Research Record: Journal of the Transportation Research 

Board, No.1925, TRB, National Academies, Washington, D.C., pp. 87–98. 

Bellemans, Tom. (2003). Traffic control on motorways. PhD dissertation. Katholieke 

Universiteit Leuven, Belgium. 

Berg, P., Mason, A. and Woods, A. W. (2000). Continuum approach to car-following 

models. Physical Review E, 61, pp 1056-1066. 

Berthelin, F., Degond, P.  Delitala, M. and Rascle, M. (2008). Model for the 

formation and evolution of traffic jams. Archive for Rational Mechanics and 

Analysis. Vol. 187, Issue 2,  pp.185-220. 

Bertini, R. L., Boice, S., and Bogenberger, K. (2006). Dynamics of variable speed 

limit system surrounding bottleneck on German autobahn. Transportation 

Research Record, No.1978, pp. 149-159. 

Bose, A. and Ioannou, P. (2000). Shock waves in mixed traffic flow. 9th IFAC 

Symposium on Control in Transportation Systems.  June 13-15, Braunschweig, 

Germany.  

Bourrel, E. and Lesort, J.-B. (2003). Mixing micro and macro representations of 

traffic flow: a hybrid model based on the LWR theory. Transportation Research 

Board, CD-ROM. Washington DC. 

Brackstone, M., McDonald, M. (1999). Car-following: A historical review. 

Transportation Research, Part F 2, pp. 181-196. 



  

239 

Bryne, B.F. (1980). Some errors in macroscopic traffic models based on car-following 

models, Transportation Research, Part B, Vol. 14B, pp.241-242. 

Burghout, W., Koutsopoulos, H. and Andreasson, I. (2005). Hybrid 

mesoscopic-microscopic traffic simulation. Transportation Research Record, 

Vol. 1934, pp. 218–225, 2005. 

Camacho, E.F. and Bordons, C. (1995). Model predictive control in the process 

industry. Berlin, Germany, Springer-Verlag. 

Carlson, R.C., Papamichail, I., Papageorgiou, M. and Messmer, A. (2010). Optimal 

mainstream traffic flow control of large-scale motorway networks. 

Transportation Research, Part C 18, pp. 193–212. 

Cassidy, M.J. and Mauch, M. (2001). An observed traffic pattern in long freeway 

queues. Transportation Research A, vol. 35, pp. 143-156. 

Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics: studies in 

car following. Operations Research, 6, pp.165-184. 

Chu, L., Liu, H.X. and Recker, W. (2004). Using microscopic simulation to evaluate 

potential intelligent transportation system strategies under nonrecurrent 

congestion. Transportation Research Record: Journal of the Transportation 

Research Board, No.1886, TRB, National Research Council, Washington, D.C., 

pp. 76–84. 

Chung, K., Rudjanakanoknad, J., and Cassidy, M. J. (2007). Relation between traffic 

density and capacity drop at three freeway bottlenecks. Transportation Research 

Part B: Methodological, 41(1), pp. 82-95. 

Cluitmans, M., Griez, T., Jacobs, K., Krieger, T. and Mehlkop, B. (2006). 

Comparison of a microscopic and a macroscopic model for the simulation of 

traffic flow phenomena. Maastricht University, The Netherlands. 

http://matthijs.cluitmans.net/simulation.pdf, Accessed on March 6, 2011. 

http://matthijs.cluitmans.net/simulation.pdf


  

240 

Colombo, R. M. (2002a). Hyperbolic phase transitions in traffic flow. Society for 

industrial and applied mathematics. SIAM Journal of Applied Mathematics, 63(2), 

pp.708–721. 

Colombo, R. M. (2002b). A 2x2 hyperbolic traffic flow model. Mathematical and 

Computer Modelling, vol. 35(5–6), pp. 683–688 

Cremer, M. and Papageorgiou, M. (1981). Parameter identification for a traffic flow 

model. Automatica, 17(6), pp.837–843. 

Cremer, M. and Ludwig, J. (1986). A fast simulation model for traffic flow on basic 

of boolean operations. Mathematics and Computers in Simulation. Vol. 28, Issue 

4, pp. 297-303. 

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of 

highway traffic consistent with the hydrodynamic theory. Transportation 

Research, Part B, Vol. 28B, No. 4, pp. 269-287. 

Daganzo C.F. (1995a). Requiem for second-order fluid approximation of traffic 

flow. Transportation Research, Part B, Vol. 29. pp. 277-286. 

Daganzo, C.F. (1995b). The cell transmission model, part II: Network traffic. 

Transportation Research Part B: Methodological, vol. 29, no. 2, pp. 79–93.  

Daganzo, C.F (1995c). A finite difference approximation of the kinematic wave 

model of traffic flow. Transportation Research Part B: Methodological, vol. 29, 

No. 4,  pp. 261–276.  

Daganzo, C. F. (1999). Remarks on traffic flow modelling and its applications in 

traffic and mobility. Proceedings of the Traffic and Mobility Simulation, 

Economics and Environment Conference, pp. 105-115. 

Daganzo, C. F. (2002a). A behavioural theory of multi-lane traffic flow. I: Long 

homogeneous freeway sections, Transportation Research B, 36, pp. 131-158. 



  

241 

Daganzo, C. F. (2002b). A behavioural theory of multi-lane traffic flow. II: Merges 

and the onset of congestion. Transportation Research B, 36, pp.159-169. 

Del Castillo, J.M. (1996). A car-following model based on the Lighthill-Whitham 

theory. In J. B. Lesort editor, Transportation and Traffic Theory, proceedings of 

the 13
th

 ISTTT, Oxford: Pergamon, pp. 517-538. 

Drake, J.S., Schofer, J.L. and May, A.D. (1967). A statistical analysis of speed density 

hypotheses. Highway Research Record, No. 154, pp.53-87. 

Drew, D.R. (1965). Deterministic aspects of freeway operations and control. Highway 

Research Record, No. 99, pp.48-58. 

Edie, L.C. and Foote, R.S. (1958). Traffic flow in tunnels. Proceedings of Highway 

Research Board, 37. USA. p334-344. 

Emmerink, R., Axhausen, K.W., Nijkamp, P., Rietveld, P. (1995). The potential of 

information provision in a simulated road transport network with non-recurrent 

congestion. Transportation Research C 3 (5), pp. 293-309. 

Flynn, M.R., Kasimov, A.R., Nave, J.-C., Rosales, R. R. and Seibold, B. (2009). 

Self-sustained nonlinear waves in traffic flow. Physical Review E, Vol. 79, Issue 

5, 056113. 

Forbes, T.W. and Simpson, M.E. (1968). Driver and vehicle response in freeway 

deceleration waves. Transportation Science, Vol. 2(1), pp.77-104. 

Gartner, N.H. (1984). Development of demand-responsive strategies for urban traffic 

control. in Proceedings of the 11th IFIP Conference on System Modelling and 

Optimization. (Edited by P. Thoft-Christensen, P.), Springer-Verlag New York. 

pp. 166-174. 

Gartner, N.H., Messer, C.J. and Rathi, A. (2001). Traffic flow theory. The 

state-of-the art report, Technical report, Transportation Research Board, USA. 



  

242 

Gazis, D. C., Herman, R., and Potts, R.B. (1959). Car-follow theory of steady-state 

traffic flow. Operations Research, Vol. 7, pp. 499–505. 

Gazis, D. C., Herman, R., and Rothery, R.W. (1961). Nonlinear follow-the-leader 

models of traffic flow. Operations Research, Vol. 9, pp. 545–567. 

Gazis, D. C. (1967). Mathematical theory of automobile traffic. Science, New series, 

Vol. 157, No. 3786, pp. 273–281. 

Ghods, A.H., Fu, L. and Rahimi-Kian, A. (2010). An efficient optimization approach 

to real-time coordinated and integrated freeway traffic control. IEEE 

Transactions on Intelligent Transportation Systems, Vol. 11, No. 4, pp.873-884. 

Gomes, G., May, A. and Horowitz, R. (2004). Congested freeway micro simulation 

model using VISSIM. Transportation Research Record: Journal of the 

Transportation Research Board, No.1876, TRB, National Research Council, 

Washington, D.C., pp. 71–81. 

Greenberg, H. (1959). An analysis of traffic flow. Operations Research, 7, No.l, pp. 

79-85. 

Greenshields, B.D. (1935). A study in highway capacity. Highway Research Board, 

Proceedings, Vol. 14, p. 458. 

Hadiuzzaman, M., Qiu, T.Z. and Bhowmick, A. (2010). Simulation study for active 

traffic management implementation in Edmonton. University of Alberta 

(unpublished).  

Hadiuzzaman, M., Qiu, T. Z., and Lu, X. Y. (2013). Variable speed limit control 

design for relieving congestion caused by active bottleneck. Journal of 

Transportation Engineering, 139(4), pp. 358-370. 

Halkias, B., Kopelias, P., Papandreou, K., Politou, A., Prevedouros, P. and 

Skabardonis, A. (2007). Freeway bottleneck simulation, implementation, and 

evaluation. Transportation Research Record: Journal of the Transportation 



  

243 

Research Board, No.2012, Transportation Research Board of the National 

Academies, Washington, D.C., pp. 84–93. 

Hall, R.W. (1996). Route choice and advanced traveler information systems on a 

capacitated and dynamic network. Transportation Research C 4 (5), pp. 289–306. 

Hasan, M., Jha, M. and Ben-Akiva, M. (2002). Evaluation of ramp control 

algorithms using microscopic traffic simulation. Transportation Research Part 

C 10, pp. 229–256. 

Hegyi, A., De Schutter, B. and Hellendoorn, J. (2005a). Optimal coordination of 

variable speed limits to suppress shock waves. IEEE Transactions on Intelligent 

Transportation Systems 6 (1), pp. 102–112. 

Hegyi, A., De Schutter, B. and Hellendoorn, H. (2005b). Model predictive control 

for optimal coordination of ramp metering and variable speed limits. 

Transportation Research Part C 13, pp. 185–209. 

Helbing, D. (1996). Gas-kinetic derivation of Navier-Stokes-like traffic equations. 

Physical Review E Vol. 53(3), pp. 2266-2381. 

Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of 

Modern Physics, Vol. 73, pp. 1067-1141. 

Helbing, D., Hennecke, A., Shvetsov, V. and Treiber, M. (2002). Micro- and 

macro-simulation of freeway traffic. Mathematical and Computer Modelling 35, 

pp. 517-547. 

Helbing, D., Hennecke, A. and Treiber, M. (1999). Phase diagram of traffic states in 

the presence of inhomogeneities. Physical Review Letters, 82, pp. 4360-4363. 

Herman, R., Montroll, E.W., Potts, R.B. and Rothery, R.W. (1959). Traffic 

dynamics: Analysis of stability in car-following. Operations Research, 7. pp. 

86-106. 



  

244 

Heutinck, B.H., van den Berg, M., Hellendoorn, J. and Immers, L.H. (2006). Dynamic 

route guidance during maintenance works, a case study. 11th IFAC Symposium 

on Control in Transportation Systems, Volume No.11 Part 1.  

Hicks, C.R and Turner, K.V. (1999). Fundamental concepts in the design of 

experiments, Fifth Edition, New York. Oxford University Press. 

Hidas, P. (2002). Modelling lane-changing and merging in microscopic traffic 

simulation. Transportation Research Part C 10, pp. 351–371. 

Hoogen, V. E., and Smulders, S. (1994). Control by variable speed sign: results of the 

Dutch experiment. In Proceedings of 7th Internal Conference on Traffic 

Monitoring and Control, London, England, April 26-28, no. 391, pp.145-149. 

Hoogendorn, S.P. and Bovy, P.H.L. (2001). State-of-the-art of vehicular traffic flow 

modelling. Proceedings of the Institution of Mechanical Engineers, Part I. 

Journal of Systems and Control Engineering. June 1, pp. 283-303, 

Ishak, S., Alecsandru, C. and Seedah, D. (2006). Improvement and evaluation of 

cell-transmission model for operational analysis of traffic networks, freeway 

case study. Transportation Research Record: Journal of the Transportation 

Research Board, No. 1965, Transportation Research Board of the National 

Academies, Washington, D.C., pp. 171–182. 

Jiang, R., Wu, Q. and Zhu, Z. (2001). Full velocity difference model for a car 

following theory. Physical Review E, 64, 017101. 

Kerner, B. S. (2009). Introduction to modern traffic flow theory and control, the long 

road to three-phase traffic theory. Springer-Verlag Berlin Heidelberg. 

Kerner, B. S., and Konhauser, P. (1993). Cluster effect in initially homogeneous 

traffic flow. Physical Review E, 48, R2335-R2338. 



  

245 

Kerner, B.S. and Rehborn, H. (1998). Messungen des Verkehrsflusses: 

Charakteristische Eigenschaften von Staus auf Autobahnen. Internationales 

Verkehrswesen 50, pp.196-203. 

Kikuchi, C., and Chakroborty, P. (1992). Car-following model based on a fuzzy 

inference system. Transportation Research Record, No. 1365, pp. 82-91. 

Kim, Youngho. (2002). Online traffic flow model applying dynamic flow-density. 

PhD dissertation, Technischen Universität München, Germany. 

Kotsialos, A., Papageorgiou, M., Diakaki, C., Pavlis, Y. and Middelham, F. (2002). 

Traffic flow modelling of large-scale motorway networks using the macroscopic 

modelling tool METANET. IEEE Transactions on Intelligent Transportation 

Systems. 3 (4), pp. 282-292. 

Kotsialos, A., Papageorgiou, M. and Messmer, A. (1999). Integrated optimal control 

of motorway traffic networks. In 18th American Control Conference, pp. 2183–

2187. 

Koutsopoulos, H.N., Lotan, T. (1989). Effectiveness of motorist information systems 

in reducing traffic congestion. In proceedings of the Conference on Vehicle 

Navigation and Information Systems (VNIS), Toronto, Canada, pp. 275–281. 

Lamon, F. (2008).  Freeway traffic modelling and calibration for the Eindhoven 

network. MSc. thesis, Delft University of Technology, The Netherlands. 

Laval, J. A. and Leclercq, L. (2010). A mechanism to describe the formation and 

propagation of stop-and-go waves in congested freeway traffic.  Philosophical 

Transactions of the Royal Society, A 368, pp. 4519-4541. 

Lee, C., Hellinga, B., and Saccomanno, F. (2003). Proactive freeway crash prevention 

using real-time traffic control. Canadian Journal of Civil Engineering, 30(6), pp. 

1034-1041. 



  

246 

Lee, C., Hellinga, B., and Saccomanno, F. (2004). Assessing safety benefits of 

variable speed limits. Transportation Research Record,  Vol. 1897, 183-190. 

Lee, C., Hellinga, B., and Saccomanno, F. (2006). Evaluation of variable speed limits 

to improve traffic safety. Transportation Research Part C: Emerging 

Technologies, 14(3), pp. 213-228. 

Lee, H.Y., Lee, H.-W. and Kim, D. (1998). Origin of synchronized traffic flow on 

highways and its dynamic phase transitions. Physical Review Letter 81, pp.1130. 

Leutzbach, Wilhelm. (1988). Introduction to the theory of traffic flow. Springer. 

Lighthill, M. J., and Whitham, J. B. (1955). On kinematic waves. I. Flow movement 

in long rivers. II. A theory of traffic flow on long crowded roads. In Proceedings 

of the Royal Society, London: Ser. A, vol 229(1178), pp. 281-345. 

Liu, G., Lyrintzis, A. S. and Michalopoulos, P. G. (1996). Modelling of freeway 

merging and diverging flow dynamics. Applied Mathematic Modelling, Vol. 20, 

Issue 6, pp. 459-469. 

Liu, G., Lyrintzis, A.S. and Michalopoulos, P.G. (1998). Improved higher-order 

model for freeway traffic flow. Transportation Research Record, Vol.1644, 

pp.37-46. 

LeVeque, R. J. (1992). Numerical methods for conservation laws. second edition, 

Birkhauser Verlag, Berlin. 

Lu, X.Y., Qiu, T.Z., Horowitz, R., Chow, A., Shladover, S. (2011). METANET 

model improvement for traffic control. 14th International IEEE Conference on 

Intelligent Transportation Systems, Washington, DC, USA. October 5-7. 

Lu, X.Y., Qiu, T.Z., Varaiya, P.P., Horowitz, R. and Shladover, S.E. (2010). 

Combining variable speed limits with ramp metering for freeway traffic control. 

American Control Conference (ACC), Baltimore, MD, June 30-July 2. 



  

247 

Maciejowski, J.M. (2002). Predictive control: with constraints. Harlow, England: 

Prentice Hall. 

Mahmassani, H., Jayakrishnan, R. (1991). System performance and user response 

under real-time information in a congested traffic corridor. Transportation 

Research A 25 (5), pp. 293–307. 

May, A.D. (1990). Traffic flow fundamentals. Prentice Hall, Englewood Cliffs, New 

Jersey. 

May A. D. and Keller, H. M. (1967). Non integer Car-Following Models. Highway 

Research Record, Vol. 199, pp. 19-32. 

Messmer, A. and Papageorgiou, M. (1990). METANET: A macroscopic simulation 

program for motorway networks. Traffic Engineering and Control, 31, pp.466–

470. 

Messer, C.J. (1998). Simulation studies of traffic operations at oversaturated, closely 

spaced signalized intersections. Transportation Research Record: Journal of the 

Transportation Research Board, Vol.1646, pp.115-123. 

Michalopoulos, P. G., Yi, P., and Lynrintzis, A. S. (1993). Continuum modeling of 

traffic dynamics for congested freeways. Transportation Research B, Vol. 27, 

Issue 4, pp.315-332. 

Michaels, R.M. (1963). Perceptual factors in car-following. In International 

Symposium on Theory of Road Traffic Flow, Paris, France, pp. 44–59. 

Mika, H.S., Kreer, J.B. and Yuan, L.S. (1969). Dual mode behaviour of freeway 

traffic. Highway Research Record, Vol. 279, pp.1-13. 

Minitab, Inc. (2010). Minitab 16. 

Montgomery, Douglas C. (1997). Design and Analysis of Experiments. Forth Edition, 

Wiley. 



  

248 

Munjal, P., Hsu, Y. S. and Lawrence, R. L. (1971). Analysis and validation of 

lane-drop effects on multilane freeways. Transportation Research, Vol. 5, Issue 

4, pp. 257-266. 

Munjal, P. and Pipes, L. A. (1971). Propagation of on-ramp density perturbations on 

unidirectional two and three-lane freeways. Transportation Research, Vol. 5, 

Issue 4, pp. 241-255. 

Nagel, K. (1996). Particle hopping models and traffic flow theory. Physical Review E 

53, pp. 4655-4672. 

Nagel, K. (1998). From particle hopping models to traffic flow theory. Transportation 

Research Record, Vol. 1644, pp. 1-9. 

Nagel, K. and Nelson, P. (2005). A critical comparison of the kinematic wave model 

with observational data. Proceedings of the 16th International Symposium on 

Transportation and Traffic Theory, pp. 145-163.  

Nagel, K., Wagner, P. and Woesler, R. (2003). Still Flowing: approaches to traffic 

flow and traffic jam modelling. Operations Research, Vol. 51, No. 5, pp. 

681-710. 

Newell, G.F. (1961). Nonlinear effects in the dynamics of car following. Operations 

Research, Vol. 9, pp. 209-229. 

Newell, G. F. (1965). Instability in dense highway traffic, a review. In proceedings of 

the Second International Symposium on Transportation and Traffic Theory, 

London, pp.73-83. 

Ni, Daiheng (2013). A unified perspective on traffic flow theory, Part II: The unified 

diagram. Applied Mathematical Sciences, Vol. 7, 2013, no. 40, 1947 – 1963. 

Nökel, K. and Schmidt, M. (2002). Parallel DYNEMO: Meso-scopic traffic flow 

simulation on large networks. Networks and Spatial Economics, Vol. 2, pp. 387–

403. 



  

249 

Olstam, J.J., Tapani, A. (2004). Comparison of car-following models. Swedish 

National Road and Transport Research Institute. Publication Number: VTI 

Meddelande 960A. http://ftp.vti.se/EPiBrowser/Publikationer/M960A.pdf,  

Accessed on June 3, 2011. 

Orosz, G, Wilson, R.E. Stepan, G. (2010). Traffic jams: dynamics and control. 

Philosophical Transactions of the Royal Society. A 368, pp. 4455-4479. 

Papageorgious, M. (1990). Modelling and real-time control of traffic flow on the south 

part of Boulevard Peripherique in Paris: Part I: Modelling. Transportation 

Research Part A, Vol 24A, pp.345-359. 

Papageorgious, M., Blosseville, J.M. and Hadj-Salem, H. (1989). Macroscopic 

modelling of traffic flow on the Boulevard Peripherique in Paris. Transportation 

Research Part B, 23, pp.29-47. 

Paveri-Fontana, S.L. (1975). On Boltzmann-like treatments for traffic flow: A critical 

review of the basic model and an alternative proposal for dilute traffic analysis. 

Transportation Research 9, pp.225–235. 

Payne, H.J. (1971). Models of freeway traffic and control. Mathematical Models of 

Public Systems (Simulation Council Proceedings), 1, pp.51–61. 

Payne, H.J. (1979). FREFLO: A macroscopic simulation model of freeway traffic. 

Transportation Research Record, Vol. 722, pp. 68-77. 

Persaud, B., Yagar, S., and Brownlee, R. (1998). Exploration of the breakdown 

phenomenon in freeway traffic. Transportation Research Record, Vol.1634, pp. 

64-69. 

Phillips, W.F. (1979). A kinetic model for traffic flow with continuum implications, 

Transportation Planning and Technology, Vol. 5, pp 131–138. 

http://ftp.vti.se/EPiBrowser/Publikationer/M960A.pdf


  

250 

Piao, J. and McDonald, M. (2008). Safety impacts of variable speed limits - A 

simulation research. IEEE Conference on Intelligent Transportation Systems, 

Proceedings, ITSC, pp. 833-837. 

Piccoli, B., and A. Tosin, A. (2011). Vehicular Traffic: A Review of Continuum 

Mathematical Models. Mathematics of Complexity and Dynamical Systems. pp. 

1748-1770. 

Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of Applied 

Physics, 24. pp.274-281. 

Pipes. L.A. (1967). Car following models and fundamental diagram of road traffic. 

Transportation Research, Vol.1, Issue 1, pp. 21-29. 

Prigogine, I. and Herman, R. (1971). Kinetic theory of vehicular traffic. Elsevier. 

PTV Planung Transport Verkehr AG. (2010, 2012). VISSIM 5.3, 5.40 user manual. 

Karlsruhe, Germany.  

Richards, P. I. (1956). Shockwaves on the highway. Operation Research, 4(1), pp. 

42-51. 

Rothery, R.W. (1999), Car-following models. In Traffic Flow Theory. Transportation 

Research Board, USA. 

Şahin, I., and Altun, I. (2008). Empirical research of behavioural theory of traffic 

flow: Analysis of recurrent bottleneck. Transportation Research Record, Vol. 

2088, pp. 109-116. 

Samwal, K.K., Petty, K., Walrand, J. and Fawaz, Y. (1996). An extended macroscopic 

model for traffic flow. Transportation Research Part B, Vol 30, Issue1, pp.1-9. 

Shladover, S.E., Lu, X.Y., Cody, D., Nowakowski, C., Qiu, Z.T., Chow, A., 

O’Connell, J., Nienhuis, J. and Su, D. (2010). Development and evaluation of 



  

251 

selected mobility applications for VII. University Of California, Berkeley 

Research Report. UCB-ITS-PRR-2010-25. 

Stewart, J., Baker, M. and Van Aerde, M. (1996). Evaluating weaving section 

designs using INTEGRATION. Transportation Research Record: Journal of the 

Transportation Research Board, Vol.1555, pp.33-41. 

Tampère, C.M.J., Van Arem, B., and Hoogendoorn, S.P. (2003). Gas kinetic traffic 

flow modelling including continuous driver behaviour models. In proceedings of 

the 82nd Annual Meeting of the Transportation Research Board, Washington, 

U.S.A.. 

The MathWorks, Inc. (2010). Optimization Tool Box User’s Guide. 

Tian, Z.Z., Urbanik II, T., Engelbrecht, R. and Balke, K. (2002). Variations in 

capacity and delay estimates from microscopic traffic simulation models.  

Transportation Research Record: Journal of the Transportation Research 

Board, Vol. 1802, pp. 23-31. 

TRB. (2010). Highway capacity manual. Transportation Research Board, National 

Academy of. Sciences, Washington, D.C. 

Treiber, M. and Helbing, D. (1999). Explanation of observed features of 

self-organization in traffic flow. arXiv:cond-mat/9901239v1. 

http://arxiv.org/abs/cond-mat/9901239, Accessed on April 12, 2013. 

Treiber, M. and Helbing, D. (2003). Memory effects in microscopic traffic models and 

wide scattering in flow-density data. Physical Review E, 68, pp. 046119. 

Treiber, M., Hennecke, A. and Helbing, D. (1999). Microscopic simulation of 

congested traffic. In Traffic and Granular Flow, pp. 365–376. 

Treiber, M., Hennecke, A., and Helbing, D. (1999). Derivation, properties, and 

simulation of a gas-kinetic-based, non-local traffic model. Physical Review E, 59, 

pp. 239–253. 

http://arxiv.org/abs/cond-mat/9901239


  

252 

Treiber, M., Hennecke, A. and Helbing, D. (2000). Congested traffic states in 

empirical observations and microscopic simulations. Physical Review E, 62, pp. 

1805–1824. 

Treiterer, J. and Taylor, J. I. (1966). Traffic flow investigations by photogrammetric 

techniques. Highway Research Record, Vol.142, pp.1-12. 

Underwood, R.T. (1961). Speed, volume, and density relationships: Quality and 

theory of traffic flow. Yale Bureau of Highway Traffic, pp. 141-188. 

Van der Horst, A.D. (2011). Calibration of the IDM and METANET traffic flow 

models. MSc. thesis. Delft University of Technology, The Netherlands. 

Wagner, C., Hoffmann, C., Sollacher, R., Wagenhuber, J., and Schurmann, B. (1996) 

Second-order continuum traffic model. Physical Review E 54, pp.5073–5085 

Wang, X., Hadiuzzaman, M. and Qiu, T.Z. (2012). Analyzing sensitivity of freeway 

capacity at a complex weaving segment. Annual Conference of Canadian Society 

for Civil Engineering (CSCE), 9th International Transportation Specialty 

Conference, Edmonton, Canada, June 2012. 

Wang, Y., Papageorgiou, M., Sarros, G. and Knibbe, W. J. (2006). Feedback route 

guidance applied to a large-scale express ring road. Transportation Research 

Record, Vol.1965, pp. 79-88. 

Wiedemann, R. (1974). Simulation des Strassenverkehrsflusses. University 

Karlsruhe, Germany. 

Wu, N. (2002). Application and verification of macroscopic and microscopic 

simulation models – case study for NETCELL and VISSIM on congested 

freeway. In Proceedings of the International Conference on Traffic and 

Transportation Studies, Beijing, China. 



  

253 

Yeo, H. and Skabardonis, A. (2009). Understanding stop-and-go traffic in view of 

asymmetric traffic theory. In Proceedings of 18
th

 International Symposium on 

Transportation and Traffic Theory (ISTTT), Hong Kong.  

Yin, D. and Qiu, Z.T. (2011). Comparison of macroscopic and microscopic 

simulation models in modern roundabout analysis. Transportation Research 

Record: Journal of the Transportation Research Board, USA. No.2265, pp. 

244-252. 

Yin, D. and Qiu, T.Z. (2012). Improvement of traffic speed dynamics in METANET 

model. In proceedings of the 9th International Transportation Specialty 

Conference, Edmonton, Alberta. June 6-9. 

Yin, D. and Qiu, Z.T. (2013). Compatibility analysis of macroscopic and microscopic 

traffic simulation modeling. Canadian Journal of Civil Engineering. 40(7), 

pp.613-622. 

Zhang, H.M. (1998). A theory of nonequilibrium traffic flow. Transportation 

Research, Part B, Vol. 32, No. 7, pp.485-498. 

Zhang, H.M. (2001). New perspectives on continuum traffic flow models. Networks 

and Spatial Economics, Vol. 1, Issue 1-2, pp.9-33. 

Zhang, H.M. (2002). A non-equilibrium traffic model devoid of gas-like behaviour. 

Transportation Research, Part B, Vol. 36, No. 3, pp.275-290. 

Zhang, H.M. (2003). Driver memory, traffic viscosity and a viscous vehicular traffic 

flow model. Transportation Research, Part B, Vol. 37, pp.27-41. 

Zhang, H.M. (2009). Comment on “On the controversy around Daganzo’s requiem for 

and Aw-Rascle’s resurrection of second-order traffic flow models” by D. Helbing 

and A.F. Johansson. The European Physical Journal B, Vol. 69, pp. 563-568. 

 


