
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

1

Hybrid Parallel-in-Time-and-Space Transient
Stability Simulation of Large-Scale AC/DC Grids

Tianshi Cheng, Graduate Student Member, IEEE, Ning Lin, Member, IEEE, and Venkata Dinavahi, Fellow, IEEE

Abstract—The increasing complexity of modern AC/DC power
systems poses a significant challenge to a fast solution of large-
scale transient stability simulation problems. This paper pro-
poses the hybrid parallel-in-time-and-space (PiT+PiS) transient
simulation on the CPU-GPU platform to thoroughly exploit the
parallelism from time and spatial perspectives, thereby fully
utilizing parallel processing hardware. The respective electrome-
chanical and electromagnetic aspects of the AC and DC grids
demand a combination of transient stability (TS) simulation
and electromagnetic transient (EMT) simulation to reflect both
system-level and equipment-level transients. The TS simulation
is performed on GPUs in the co-simulation, while the Parareal
parallel-in-time (PiT) scheduling and EMT simulation are con-
ducted on CPUs. Therefore, the heterogeneous CPU-GPU scheme
can utilize asynchronous computing features to offset the data
transfer latency between different processors. Higher scalability
and extensibility than GPU-only dynamic parallelism design is
achieved by utilizing concurrent GPU streams for coarse-grid and
fine-grid computation. A synthetic AC/DC grid based on IEEE-
118 Bus and CIGRÉ DCS2 systems showed a good accuracy
compared to commercial TSAT software, and a speedup of 165
is achieved with 48 IEEE-118 Bus systems and 192 201-Level
detail-modeled MMCs. Furthermore, the proposed method is also
applicable to multi-GPU implementation where it demonstrates
decent efficacy.

Index Terms—Electromagnetic transients, graphical proces-
sors, high-voltage direct current, multi-core processors, multi-
terminal DC grid, parallel-in-space, parallel-in-time, parallel
processing, synchronous generator, transient stability.

NOMENCLATURE

CPU Central Processing Unit
GPU Graphical Processing Unit
DAE Differential Algebraic Equation
EMT Electromagnetic Transient
HBSM Half Bridge Sub-Module
HVDC High Voltage Direct Current
IGBT Insulated Gate Bipolar Transistor
IVP Initial Value Problem
ODE Ordinary Differential Equation
PiT Parallel-in-Time
PiS Parallel-in-Space
TLM transmission line models
TS Transient Stability
MTDC Multi-Terminal Direct Current
MMC Modular Multilevel Converter
RMS Root Mean Square
SIMT Single Instruction Multiple Threads

SM Streaming Multiprocessor

This work is supported by the Natural Science and Engineering Research
Council of Canada (NSERC).

The authors are with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada. Email:
tcheng1@ualberta.ca, ning3@ualberta.ca, dinavahi@ualberta.ca.

I. INTRODUCTION

Modern power systems are increasingly complex due to the
continuous integration of power electronic facilities such as the
high voltage direct current (HVDC) links into transmission and
distribution networks. Many HVDC projects are constructed or
planned worldwide to integrate more clean energy from wind
farms and PV stations, such as Changji-GuQuan UHVDC
project in China [1], Dolwin 5 project in Europe [2], and
TransWest project in the USA [3]. Using a typical step size of
a few milliseconds, the transient stability (TS) analysis plays
an important role in the planning, design, and operation of a
modern power grid from a system point of view. It, however,
is a positive-sequence-based analytical method that naturally
falls short of complicated electromagnetic transient (EMT)
details of power electronic devices in the microsecond-level
or below. The TS-EMT co-simulation methodology which
properly features both system-level and equipment-level power
system phenomena is favored in hybrid AC/DC grid study.
A consequently incurred rise of computational burden may
extend the simulation duration, especially considering that a
dramatic expansion of a future AC/DC power system as a
result of incorporating more components is expected.

To handle the increasing scale and complexities, new accel-
eration techniques for TS and EMT simulation programs are
desired. TS acceleration methods based on parallel processing
algorithms for multi-core CPUs and many-core GPUs have
shown a decent efficiency and have been well investigated
in AC power grid studies [4]–[7] , and heterogeneous CPU-
GPU computing architecture for AC-DC grid TS-EMT co-
simulation has recently been proposed [8]–[10], while the
threads concurrency of these methods is dominantly con-
tributed by parallel-in-space (PiS) strategies. The parallel-
in-time (PiT) solutions were also investigated from a differ-
ent perspective of parallel processing [11]. The very early
version of PiT for solving TS problems was mainly based
on Jacobi-decomposition [12], [13], which aimed to solve
multiple continuous steps iteratively so that the parallelism
was achieved by assigning a single step to parallel threads. In
the 1990s, most results were obtained from the virtual parallel
machine because of a scarcity of multi-core CPUs, which
limited further explorations in this area. The Parareal algorithm
has emerged in many research areas [14], [15] where it ex-
hibited efficacy [16]. It was introduced to solve TS simulation
problems by decomposing the initial value problem into many
sub-intervals [17], and has a better efficiency compared to its
predecessors. These works mainly focused on PiT algorithms
and potential comprehensive parallelism by considering PiS

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

2

methods simultaneously is yet to be carried out. For example,
a four times speedup was obtained in computing the IEEE
39-bus system [17] with 470 cores, and even a huge number
of cores were used to solve a large-scale power system, the
parallel efficiency was below 20% [18], which is still not as
satisfactory as PiS methods.

This paper proposes a hybrid parallel-in-time-and-space
(PiT+PiS) AC/DC TS-EMT co-simulation method which thor-
oughly exploits parallelism to expedite the simulation of
modern power systems on many-core GPUs. It demonstrates:
(1) High level of parallelism: PiT+PiS can achieve a higher
speedup and efficiency than PiS or PiT-only methods; (2)
Efficient CPU-GPU communication implementation: utiliz-
ing asynchronous unified CUDA® memory to offset CPU-
GPU communication overheads; (3) High scalability: using
asynchronous multi-stream design to handle subsystems and
schedule the workload on multiple GPUs/CPUs; (4) Multi-
fold hybrid co-simulation: using applying the PiT+PiS method
to TS-EMT co-simulation on CPU and GPU, the impacts of
AC/DC system can be analyzed in a fast and accurate way.

This paper is organized as follows: Section II introduces the
multi-mass synchronous machine model, MMC model, and
theoretical speedup analysis of PiT and PiT+PiS methods;
Section III introduces the implementations of hybrid CPU-
GPU PiT+PiS algorithm for AC/DC co-simulation; Section IV
presents the case studies and performance comparison; Section
V is the Conclusion.

II. SYSTEM MODELING AND PARALLEL-IN-TIME
SIMULATION

A. Multi-Mass Torsional Shaft Generator Model

The generator equations comprise of three components, i.e.,
the synchronous machine, the mechanical multi-mass torsional
shaft, and the control system, which together form a 17th-order
model.

As shown in Fig. 1, the synchronous machine includes two
windings on d-axis and two damping windings on q-axis,
which is classified as Model 2.2 in IEEE Std 1110-2019 [19].
The machine model can be expressed by differential equations
as [20]:

Ψ̇fd(t) = ωR · [efd(t)−Rfdifd(t)]

Ψ̇1d(t) = −ωR ·R1di1d(t)

Ψ̇1q(t) = −ωR ·R1qi1q(t)

Ψ̇2q(t) = −ωR ·R2qi2q(t),

(1)

where Ψfd and efd are flux linkage and field voltage of the
field winding, Ψ1d, Ψ1q , Ψ2q are the flux linkages of direct and
quadrature axis windings; R1d, R1q and R2q are the resistance
of direct and quadrature axis windings; ωR is the rated rotating
speed. All the quantities are using the per unit system defined
in [20] except the time t since the time domain simulation use
seconds for the time unit. The currents in the dq frame are
coupled with external power system equations as the stator
currents must be obtained. To simplify the computation, an
iterative method is used to handle the coupling [6].

Axis of

phase-a

d-axis
q-axis

ΨaΨa

ΨbΨb

ΨcΨc

efdefdi2qi2q

i1qi1q

i1di1d

i fdi fd

vava

Rotor Stator

vbvb

vcvc

iaia

ibib

icic

ω rω r elec. rad/s

eaea

ebeb

ecec

Fig. 1: Rotor and stator circuits of a Model 2.2 synchronous
machine.

45
K K K K

δ 5δ 5

ω 5ω 5 ω
4

ω
4

δ 4δ 4

ω 4ω 4 ω 3ω 3
δ 3δ 3

ω 3ω 3 ω 2ω 2
δ 2δ 2

ω 2ω 2 ω 1ω 1

δ 1δ 1

ω 1ω 1 ω 0ω 0

M ,D
High

Pressure

Turbine

Low

Pressure

Turbine C

Low

Pressure

Turbine B

Low

Pressure

Turbine A

Generator

M ,D M ,D M ,D M ,D
4, 5 3, 4 2, 3 1, 2

5 5 4 4 3 3 2 2 1 1

T4T4 T3T3 T2T2
T5T5 T1T1 TeTe

Fig. 2: Multi-mass model for mechanical side of the generator.

The mechanical shaft, on the other hand, provides basic
rotor equations for the machine:

δ̇(t) = ωR ·∆ω(t),

∆ω̇(t) =
1

2H
[Tm(t)− Te(t)−D ·∆ω(t)] .

(2)

Since the synchronous generator is connected to the turbine,
the four-mass-turbine shaft model is used, as shown in Fig. 2,
where δn means the relative rotor angle of each turbine,
and specifically, δ1 is the generator rotor angle. The stiffness
coefficient between two neighboring masses is represented by
parameter K, e.g., K4,5 represents the coefficient between
Mass5 and Mass4. Tn, Dn and Hn refer to the torque,
damping factor and inertia constant of each torsional shaft,
respectively, as given by:

∆ω̇n(t) =
[Tn+Kn+1

n (δn+1(t)−δn(t))−Kn
n−1(δn(t)−δn−1(t))−Dn∆ωn(t)]

2Hn
,

δ̇n(t) = ωR ·∆ωn(t), n = 2, 3, 4, 5.
(3)

The control system includes PSS, excitation, and AVR
systems, which is classified as ST1A model in [21]:

v̇1(t) =
1

τR
· [|vdq| − v1(t)]

v̇2(t) = Kstab ·∆ω̇(t)− 1

τω
v2(t)

v̇3(t) =
1

τ2
· [τ1v̇2(t) + v2(t)− v3(t)] ,

(4)

where τR, τω , τ1, τ2, and Kstab are constants, v1, v2, v3
are state variables. The generator equations and power system

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

3

-

Start

k = 0

Solve for dx

Jdx = -f(x_i,u_k)

Compute

Jacobian matrix J

Solve for v_k

Yv_k = i_k

Convert to

dq-axis variables

Obtain u_k

k = k+1

error < tol

End

N

i = 0

Start

error < tol

End

Y

N

i = i +1

x_(i+1)=x_i+dx

Convert generator

solution x to

i_(k+1)

(b) Generator

N-R iteration

(a) Main

Circuit

iteration

Solve generator

equations

Y

Fig. 3: Transient stability simulation process: (a) loop for
solving voltages in main circuit; (b) loop for solving generater
state variables.

network equations constitute the differential-algebraic equa-
tions (DAEs) of transient stability simulation, which can be
expressed as

ẋ = f(x,u), g(x,u) = 0,

x0 = x (t0) , i0 = i (t0) ,
(5)

where x = {Ψfd,Ψ1d,Ψ1q,Ψ2q, δ1,∆ω1, δ2,∆ω2, δ3,∆ω3,
δ4,∆ω4, δ5,∆ω5, v1, v2, v3} is the generator state vector , u =
{i1d, i1q, i2q, efd, ifd,vdq} is the vector of system inputs; f
is the vector function of equations (1)-(4); g is the algebraic
equation to solve the input vector u.

In addition, the stator equations [20], [22] are necessary
to solve the interface voltages and currents along with the
external grid, making the simulation a DAE problem. The gen-
erator’s variables are in d- and q-axis so Park transformation is
involved in solving the DAE [23], which makes it a nonlinear
problem. As shown in Fig. 2, a partitioned iterative method
[6] is used to solve the DAE, which decomposes generators
from the main circuits.

With implicit Trapezoidal rule, an individual generator has
the following discretized equation

xn+1 = xn +
1

2
h(f(xn+1,un+1) + f(xn,un)), (6)

where n indicates the number of discrete steps, h indicates
the time-step. Since solving such an implicit equation requires

fn+1 at xn+1 and un+1, implicit methods requires the Jaco-
bian matrix J = ∂f

∂x . The generator equation can be expressed
by a state-space form:

f(x,u) = Ax+Bu, (7)

where A and B are coefficient matrices of Equation (1-4).
Then The equation to solve xn+1 can be expressed by

(E − h

2
A)xn+1 − (E +

h

2
A)xn +

h

2
hBun+1 = 0 (8)

where (E − h
2A) is the Jacobian matrix. If fn+1 is nonlinear,

A is no longer constant so that the Newton-Raphson iteration
is required. Otherwise, it can be solved without local itera-
tion [24].

B. MMC Model

To model the DC power systems, an equivalent-circuit-
based MMC model for EMT simulation is adopted in this
work. For the concurrent implementation of the half-bridge
submodules (HBSMs), an artificial delay is assumed between
the submodules and the main circuit to decouple each sub-
module and significantly reduce the number of circuit nodes
while details are still preserved, as shown in Fig. 4 (a). The
ON and OFF states of IGBTs and diodes are represented by
low- and high-impedance.

Each submodule is solved independently, whichindicates
that the MMC computation is transformed into solving a
number of 2x2 matrix equations for vsm and vc of each SM.
At an arbitrary time instant n, represented by the capacitor
voltage vc and submodule port voltage vsm, the 2 unknown
nodes can be solved by the following discretized equations:[

gsw1 + gsw2 −gsw1

−gsw1 gsw2

] [
vc(n)
vsm(n)

]
=

[
iceq(n)

iarm(n− 1)

]
,

iceq(n) = vc(n− 1)Gceq + ic(n− 1),

(9)

where Gceq , iceq denote the capacitor equivalent admittance
and the companion current, gsw1,2 denote the equivalent
admittance of the IGBT/diode pair, and ic is the capacitor
current. The gsw1 and gsw2 are determined by

gsw = vgGon + (1− vg)Goff , vg ∈ {0, 1} (10)

where the gate signal vg has been converted into a binary
value in the simulation, Gon and Goff are the turn-on con-
ductance and turn-off conductance. The SM circuit can also
use more detailed device-level IGBT models instead of ideal
two-state switches. Since the equivalent circuit MMC model
preserves individual submodule, equipment-level transients
such as switching harmonics and capacitor energy balancing
can be studied in EMT simulation [25].

Since the HBSM topologies under different switching states
are known according to the submodule port current and control
signals, the inverted SM admittance matrices are cached to
speed up the computation. After solving vsm of each SM, all
SMs can be lumped into a voltage source and it can be further
simplified to a reduced Norton equivalent circuit by merging
the arm-choke inductor as shown in Fig. 4 (b).

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

4

(a)

Submodule

vsm

vsm

S1

S2

S1

S2

Arm

 varm

GLiL

ieq

(b)

v1

v2

v3

v1

v3

GL

(c)

va
vb
vc

iLarm

iLarm

vdc

vdc

Arm Equivalent Reduced Model

p

n

hist

hist

p

n
N

1

i (n-1)

vsm

Node 1

Node 2

Node

3,4,5

arm

Fig. 4: Three-phase MMC model: (a) the MMC arm submod-
ule branches are equivalent to a series of voltage sources; (b)
the choke inductor can be merged to omit one internal node;
(c) the final MMC equivalent circuit in the main circuit.

The nearest level modulation (NLM) is used as the MMC
internal controller to maintain stable submodule capacitor volt-
ages. The number of inserted submodules nins is determined
by:

nins = round(
nsmvref + nsm

2
) (11)

where nsm is the SM number in one arm, vref is the reference
voltage in per unit. After the nins is obtained, the lower-level
voltage balancing controller will use it to generate gate signals
for each SM and the voltage balancing is based on a widely
used sorting strategy [26].

The MMC main circuit under nodal analysis is shown in
Fig. 4(c). Compared with the submodules, it has a minimum
of 5 nodes even after converting each arm to its Norton
equivalent circuit form. Noticing that instant solution as it is
with the submodules is not readily available, which causes
an artificial delay between main circuit and submodules. The
KLU method [27] is adopted to solve the main circuit matrix
equation.

C. Parareal Algorithm

The Parareal algorithm decomposes a large time interval
into many small sub-intervals and solves the corresponding
differential equations in parallel, and therefore, it is considered
as an iterative multi-shooting approach [28]. As the differential
equations present an initial value problem (IVP), initialization
is mandatory for the solution process, and a fast serial predic-
tor is used to provide the initial conditions, which divides the
problem into a serial coarse-grid and a parallel fine-grid.

The Parareal algorithm for an overall N intervals can be
the expressed by following nonlinear system of equation:

E(U) :=


U1 − F

(
T1, T0,U0) = 0,

U2 − F
(
T2, T1,U1) = 0,

...
UN − F (TN , TN−1,UN−1) = 0,

(12)

where U0 is a vector containing the known initial values,
Uj(j = {1, 2..., N}) are the final solution produced by a fine
solution operator F (Tj , Tj−1,Uj−1); Tj is the time instant of
the N sub-intervals. By applying Newton’s method,

(U (k) −U (k−1))
d

dU
E(U (k−1)) = E(U (k−1)), (13)

the following iterative equation for each Uj is obtained:

U
(k)
j = F

(
Tj , Tj−1,U

(k−1)
j−1

)
+

∂F
(
Tj , Tj−1,U

(k−1)
j−1

)
∂U

(k−1)
j−1

(
U

(k)
j−1 −U

(k−1)
j−1

)
,

(14)

where ∂F
∂U is the derivative of operator function F , written in

a discrete form as:

∂F

∂U
=

F (k) − F (k−1)

U (k) −U (k−1)
. (15)

If F is used to obtain F (k), it is identical to the nor-
mal sequential solution with F . However, the Quasi-Newton
method can be used to approximate the Jacobian, which can
be naturally done by an operator G with a larger time-step, so
that the derivative can be generated to make the PiT computing
feasible:

F
(
Tj , Tj−1,U

(k)
j−1

)
≈ G

(
Tj , Tj−1,U

(k)
j−1

)
F

(
Tj , Tj−1,U

(k−1)
j−1

)
≈ G

(
Tj , Tj−1,U

(k−1)
j−1

)
.

(16)

The discrete sparse time points processed by G at
{T1, T2, ..., TN} constitute the coarse-grid; The discrete time
points processed by F in [T1, TN] constitute the fine-grid.
Since the serial G produced the approximations for each
[Tj−1, Tj] sub-interval, F can execute them in parallel.

G can also be a faster integration method like Euler and
backward Euler method while F is a more time-consuming
method such as Trapezoidal and Runge-Kutta method. In this
work, the Trapezoidal integration method is used, which gives

F k = xk
n +

1

2
hF (f(x

k
n+1,u

k
n+1) + f(xk

n,u
k
n)),

Gk = xk
n +

1

2
hG(f(x

k
n+1,u

k
n+1) + f(xk

n,u
k
n)), hF < hG,

(17)
where f refers to aforementioned equations (1)-(4), hF and
hG are the fine-grid time-step and coarse-grid time-step re-
spectively. The only difference between F and G is the size
of time-steps and they are the same Trapezoidal method. Sub-
stituting ∂F

∂U with the approximation, the following equation
is obtained to conduct the predict-correct iteration between
coarse and fine grids:

U
(k)
j = F

(
Tj , Tj−1,U

(k−1)
j−1

)
+G

(
Tj , Tj−1,U

(k)
j−1

)
−G

(
Tj , Tj−1,U

(k−1)
j−1

),
(18)

which was proven to be a Quasi-Newton method in [29].
As shown in Fig. 5, the Parareal algorithm has four major

progressions: (a) Initialization: the initial guess is generated

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

5

Coarse-grid

prediction

 Fine-grid Parallel

Operation

U0

(0)
U0

(0)

T0T0

U1

(0)
U1

(0)
U2

(0)
U2

(0)
U3

(0)
U3

(0)
U4

(0)
U4

(0)

T1T1 T2T2 T3T3 T4T4

U0
(k-1)

U0
(k-1)

U1
(k-1)

U1
(k-1)

U2
(k-1)

U2
(k-1)

U3
(k-1)

U3
(k-1)

U4
(k-1)

U4
(k-1)

T0T0 T1T1 T2T2 T3T3 T4T4

T0T0 T1T1 T2T2 T3T3 T4T4

U0
(k)

U0
(k)

U1
(k)

U1
(k) U2

(k)
U2

(k) U3
(k)

U3
(k)

U4
(k)

U4
(k)

t

δ t

F 1
(k)

F 1
(k)

F 2
(k)

F 2
(k)

F 3
(k)

F 3
(k)

F 4
(k)

F 4
(k)

G1
(k)

G1
(k)

G1
(k-1)

G1
(k-1)

- G2
(k)

G2
(k)

G2
(k-1)

G2
(k-1)

- G3
(k)

G3
(k)

G3
(k-1)

G3
(k-1)

- G4
(k)

G4
(k)

G4
(k-1)

G4
(k-1)

-

+
+

+
+

+
+ +

+
+
+

+
+

+
+

+
+

+
+

=0

(d)

T0T0 T1T1 T2T2 T3T3 T4T4

(a) (b)

Y

N
Final solutions

(c) Solution Refinement
Finalization

Thread 1 Thread 2 Thread 3 Thread 4

Error

checking

Coarse-grid
Fine-grid

Fig. 5: Sequence of operations in the Parareal algorithm: (a) Initialize U
(0)
j which equals to G

(0)
j ; (b) Produce fine-grid solution

F k
j ; (c) Refine U

(k)
j with U

(k)
j = G

(k)
j + F k

j −G
(k−1)
j , then continue (b) to start a new iteration.

from the coarse operator; (b) Fine-grid Parallel Operation: the
fine-grid workers produce the fine-grid solutions concurrently
from the initial values of coarse-grid; (c) Solution Refinement:
the coarse-grid operator produces new predictions and correct
the solutions at Tj using (18); (d) Finalization: If the error is
smaller than tolerance, the fine-grid workers generate the final
converged solutions. Otherwise, it continues to step (b) and
continue the Parareal iterations.

D. Theoretical Speedup Analysis

Assuming a system with a fixed workload of n · w, where
n indicates the total fine-grid time-steps of the simulation
and w is the single-step execution time of the DAE solution,
and the same integration method for the fine-grid and coarse-
grid, according to Amdahl’s law [30], the speedup of the PiT
algorithm can be expressed by

Spit(p) =
n · w

((I + 1) · p · w + I ·m · w)
=

1

((I + 1)/m+ I/p)
,

(19)
where Spit is the speedup of Parareal, m is the steps of
fine-grid sub-intervals, I is the iteration number and p is the
number of PiT processors, n = mp. The number of parallel
processors is related to the sizes of time-steps and time-
windows, which means more processors will add difficulties
to convergence, resulting in degraded speedup, the theoretical
speedup limit is bounded to min{ m

I+1 ,
p
I }, which creates a

tradeoff between convergence and parallelism [31].
The parallel efficiency Epit of Parareal algorithm is

Epit(p) =
Spit

p
=

1
(I+1)p

m + I
<

1

I
, (20)

which indicates that the maximum parallel efficiency is smaller
than 50% due to the fact that I ≥ 2.

In practice, m must be a large number to compensate
overheads caused by coarse-grid and synchronizations. When
(I + 1)/ >> I/p the theoretical speedup upper limit can be
seen as p

I , while this limit is still significantly constrained by
convergence. An alternative is to use a limited p (10 in this

work) and a small time-window (10ms × 10 = 0.1s in this
work).

The PiT+PiS method can retain spatial parallelism in each
solution step of the PiT algorithm to improve the maximum
parallel efficiency achieved by either method. The speedup of
PiT+PiS is given by

Spit+pis(p1, p2) =
Spis(p1) · p2 ·m · wpis

(I + 1) · p2 · wpis + I ·m · wpis

= Spis(p1)Spit(p2),

(21)

where wpis is the execution time with spatial parallel methods,
p1 is number of parallel processors for PiS, and p2 is the
number of parallel processors for PiT. (21) indicates that com-
pared to PiT-only or PiS-only method, the PiT+PiS method can
utilize more parallel processors to solve a problem with a fixed
size. The parallel efficiency for PiT+PiS is expressed by

Epit+pis(p1, p2) = Epis(p1)Epit(p2) <
Epis(p1)

Ipit(p2)
. (22)

where E is the parallel efficiency for each parallel method.
In practice, I(p2) < I(p1p2) is very common, and therefore,
Epit+pis(p1, p2) > Epit(p1p2). Also, it is possible to achieve
Epit+pis(p1, p2) > Epis(p1p2) when the PiS thread is satu-
rated at p1.

Assuming a system with 8 partitions. The parallel efficiency
of a PiS method for this system workload is determined by

Epis(p) =

{
−2
35 p+

−37
35 p <= 8

0.6× 8/p p > 8
(23)

which indicates that the system can utilize at most 8 threads
for parallel computing.

The PiT method is assumed to have m = 100, p = 10 , and
I(p) = 2 + int(p/10) which means that the iteration number
increases by 1 when adding every 10 threads. Substituting
these parameters with p1 = {1, 2, ..., 200} into (19-22) will
gives the results shown in Fig. 6. Clearly, the PiT+PiS can
achieve better performance compared to PiT-only and PiS-only
methods. Also, the PiT+PiS method requires more threads so
it may be suitable for GPUs with thousands of CUDA® cores.

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

6

PiT+PiS max 14x

speedup when

p1=8, p2=10

PiS 4.8x max

Speedup with

p1=8

PiT+PiS has higher

efficiency

Thread number (p)Thread number (p)

 Efficiency Speedup

50% cap for

Parareal
Declining speedup

due to more

iterations

PiS
PiT

PiT+PiS

PiS
PiT

PiT+PiS

40

0

4

0

2

6

8

10

12

14

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

20

60

80

100

Fig. 6: Theoretical performance comparisons of PiS, PiT
and PiT+PiS methods: (a) theoretical parallel efficiency; (b)
theoretical speedup.

III. AC/DC GRID PARALLEL-IN-TIME-AND-SPACE
CO-SIMULATION

To establish an AC/DC PiT+PiS co-simulation program, a
software hierarchy shown in Fig. 7 is proposed. Generally,
the AC TS system solver and HVDC EMT system solver
are developed independently and connected together via an
interface.

A. GPU PiT+PiS Programming

The thousands of CUDA® cores of an NVIDIA® GPU
are affiliated to dozens of streaming multiprocessors (SMs),
which are responsible for scheduling instructions, as shown
in Fig. 8. The frequency of GPU cores is much lower than
many prevalent CPUs and hence the instruction cycle is
accordingly longer. Considering that the GPU is designed for
a large throughput and massively parallel computation, the
TS system should be parallelized to achieve a comparable
performance to their counterparts on CPU. Therefore, the TS
simulation implementation on GPU in this work becomes a
unified PiT+PiS scheme.

The pure-GPU computing architecture has been utilized
in [6], [7]. However, the pure-GPU Parareal algorithm re-
quires dynamic parallelism and inefficient complex stream
synchronizations. For example, the parent coarse-grid under
dynamic parallelism will lock GPU resources when launching
child grids, and this severely limits the scalability. It is also
very slow to perform complex condition checks and loops
on GPUs. To avoid degradations, a multi-stream CPU-GPU
hybrid PiT+PiS scheme shown in Fig. 9 (a) is proposed, which
not only utilizes more resources of a single GPU but also
enables a multi-GPU architecture. The general pseudocode is
attached in Appendix B.

The streams are pre-defined in the initialization stage, and
the kernel launching is performed on the CPU. In Fig. 9 (a)
the coarse-grid stream is labeled as G stream and fine-grid
streams are labeled as F streams. For the xth coarse-grid
step, its prediction will be used by (x + 1)th fine-grid kernel
function, so that the xth coarse-grid and xth fine-grid kernels
can be launched at the same time. To maximize concurrency,
the refinement of state variables U is integrated into the loop
so it can overlap with fine-grid kernel executions. Since U
is used in the current iteration to launch the (x + 1)th fine-
grid kernel function, the operation in coarse-grid must be

TS System Solver

TS-EMT
Interface

PiT Launching
Scheduler

TLM Connectors
(Bergeron

Model)

Static
Components

KLU Solver

Subsystem solver

TS-EMT
Interface

EMT System Solver

CPU 2
CPU 1

GPU

Coarse-grid
streams

Fine-grid
streams

Subsystem
solver

CPU 3

TLM
Sending

End

CPU 4

…
...

Transient
Components

TS
system

EMT
System

V θV θ

P+jQLoad

V-source

TS-EMT

Interface

TLM Connectors

TLM
Receiving

End

TLM
Sending

End

TLM
Receiving

End

ZeroMQ req/
rep

TLM Message

Bus

Subsystem
solver

(a) (b)

(d)(c)

TS System Host Vectors

TS System
Device
Vectors

(HVDC simulation)(AC simulation)

Fig. 7: TS-EMT PiT+PiS simulation program hierarchy: (a)
TS system solver CPU-GPU hybrid structure based on Thrust
vectors and concurrent GPU multi-streams; (b) PiS CPU multi-
thread EMT system solver structure; (c) TS-EMT interface to
connect the TS and EMT solvers; (d) ZeroMQ network to
connect TLMs within the EMT system solver.

Global Memory

Shared L2 Cache

DriverHost

Block Scheduler

TPC: Texture Processing ClusterSM: Streaming Multiprocessor

Nvidia® Tesla® V100 Architecture

...

80 SMs

FP64 Cores: 32/SM

System Memory

Warp Scheduler

SM Architecture

L1 Instruction Cache

L1 Data Cache &

Shared Memory

Tensor Cores: 8/SM

Int32 Cores: 64/SM

FP32 Cores: 64/SM

GPU

TPC

SM SM

TPC

SM SM

TPC

SM SM

Fig. 8: General architecture of NVIDIA® Volta GPUs.

synchronized before (x + 1)th loop iteration begins, while
fine-grid F streams are fully concurrent to each other and G
stream. After all coarse operations are finished, the algorithm
performs a device-wide synchronization to obtain all fine-
grid results which are required in the next iteration. Due to
the multi-stream architecture, multi-GPU execution becomes
easier since the streams can be assigned to single or multiple
GPUs. The memory mitigation problem can be solved by
CUDA® unified memory implicitly. The GPU multi-stream
execution graph of proposed algorithm implementation is
shown in Fig. 9 (b).

The memory resources allocation and management are
also moved to CPU, which is much easier with the Thrust
library [32]. The Thrust library is a GPU-accelerated library of
C++ parallel algorithms and data structures; it provides a host-

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

7

G Stream

F Stream 1

F Stream 2

GPU 2

GPU 1G1 G2 G3 G4

F1 F3

F2 F4

G4

Coarse-grid kernel

Fine-grid kernel Synchronization

Thread 1:

EMT Task
V θV θV θ

EMT_Solver

TS_Solver

P,Q

EMT Results
EMT System

Data

TS

System Data

P,Q

Waveform

from the last

iteration

Waveform

for the next

iteration

TS Results

V θV θV θ
CUDA unified

memory

CUDA unified

memory

Host Memory

GPU Memory

Thread 2:

TS Task

xth Coarse

Kernel

Refine

xth U
Init

Sync

(x-1)th Fine

Kernel 1

G Stream

Sync G

Stream

F Streams

 Sync Device

x>Nc

N

Y

GPU PiT kernel lanuching in one Parareal iteration

x = x+1

 F Streams are

concurrent

(a)

(b)

(c)

TS-EMT CPU-GPU

co-simulation

x = 1

GPU stream view

Fig. 9: Algorithm implementations of the PiT+PiS hybrid
CPU-GPU TS-EMT co-simulation: (a) GPU PiT kernel
launching within one Parareal iteration; (b) kernel execution
graph in multi-stream/multi-GPU scenarios; (c) PiT+PiS TS-
EMT co-simulation on hybrid CPU-GPU platform.

vector class and device vector class as a drop-in replacement
for C++ std::vector class, which can easily allocate, resize, and
transfer memory data between CPUs and NVIDIA® GPUs; it
also provides a set of C++ std style functions to perform par-
allel operations on both CPU threads and NVIDIA® CUDA®

cores.
In this work, vector classes are used to manage the memory

of the PiT+PiS program, and other operations are performed
by passing vector device data pointer to the hand-written
CUDA® global functions, which execute the simulation step
in Fig. 3. The host-vector object can be transferred to a GPU
device vector object with simple a = b; statements; moreover,
the vector classes can take an allocator template argument
which allocates the vector data memory on unified/managed
CUDA® memory, pinned memory, and device global memory
without explicit CUDA® function calls. The hierarchy of the
TS system solver is shown in Fig. 7 (a).

B. CPU-Based PiS EMT HVDC Simulation

For the EMT solver in Fig. 7 (b), static components are
time-invariant power system components such as resistors,
transient components are time-variant components such as
capacitors, inductors, power sources, and MMCs. Due to the
asynchronous nature of CPU-GPU hybrid execution and the
multi-core parallel computing capability of the CPU, threads
running EMT simulation can be concurrent to the TS problem

solution on GPU. The granularity of EMT parallel computing
is designed to be system-level, which means one thread is
responsible for one or more HVDC systems. This can be
achieved by OpenMP® task or simple parallel for loop con-
struct. As shown in Fig. 7 (d), the decoupling and connections
between EMT systems are based on the propagation delay
of traveling wave transmission line models (TLMs) such as
the Bergeron Line Model. All TLMs have a sending end
and a receiving end, which are connected via a message bus
implemented by ZeroMQ req/rep mode; the sending ends are
clients to send data requests to the receiving ends, while the
receiving ends are servers to accept requests and replies with
their data. The rep/req mode of ZeroMQ is synchronous and
thread-safe.

C. AC/DC Co-Simulation Interface

The AC/DC co-simulation method is based on [8] with
modifications for PiT purposes, which is shown in Fig. 7 (c)
and Fig. 9 (c). The general idea is that the EMT system is rep-
resented as a power source in the TS solution, while the RMS
values of the bus voltages in the AC system are transformed
into a time-domain instantaneous three-phase voltage source
in the EMT simulation. The simulation time-step of EMT
simulation is around 50µs while the time-step for TS is 100µs-
10ms. Since the TS system only produces voltages and power
flows in the frequency domain, the data exchange frequency
can be larger than the EMT time-step. However, when using
Parareal, the communication between TS and EMT system
bring new challenges. The TS PiT simulation consisting of
coarse-grid and fine-grid requires the information from the
EMT side. If the time-window is small enough such as 1ms
or 10ms, the data can be exchanged per window without any
iterations. If the time-window is large, it requires restarting
the EMT simulation during each typical PiT iteration. The
CPU-GPU asynchronous computing architecture enables the
EMT simulation to be executed on the CPU while the GPU
is solving the large-scale TS problem, so the EMT simulation
can be considered as acquired by free: virtually no additional
executing time adds to the original TS solving process.

To avoid frequent data copies and synchronizations, the
waveforms of interfacing variables are exchanged per-time
window; each waveform contains sampled values at the in-
terval of coarse-grid’s time-step, which is usually 1-10ms.
This method can be considered a combination of Parareal
and the waveform relaxation method on AC/DC TS-EMT co-
simulation. The two systems exchange the information at each
TS Parareal time window as shown in Fig. 9. For most steady-
state cases, the voltages, and power flow change little so the
iteration can converge quickly. For sharp changes such as short
circuits faults, the performance only degrades within several
time-windows, but the accuracy can be guaranteed since
Parareal can fall back to the sequential execution eventually.

The interface data are stored in CUDA® unified memory
vectors [33]. The unified memory has a single virtual memory
address for CPUs and GPUs. The data mitigation can be
triggered by page faults and it is natively supported by the
page mitigation engine inside NVIDIA® GPUs later than

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

8

MMC MMC

MMC

IEEE

118-Bus

MMC

MMC

MMCMMC

IEEE

118-Bus MMC
IEEE

118-Bus

MMC MMC

MMC
IEEE

118-Bus

IEEE

118-Bus
MMC

MMC

MMCMMC

IEEE

118-Bus MMC

IEEE

118-Bus

IEEE

118-Bus

IEEE

118-Bus

IEEE

118-Bus

IEEE

118-Bus

...

...

...

Scale x1
4 MMCs, 4 IEEE 118-Bus systems

 CIGRÉ

DC System 2
Bm-F1Bm-F1Bm-B3Bm-B3

Bm-E1Bm-E1

200 km
200 km

200 km

+/-200 kV

Cm-B3
Cm-F1

Cm-E1

200 km

Cm-B2
Bm-B2Bm-B2

Interface to

IEEE-118

Bus 82
Bus 82

Bus 82 Bus 82

F

TL-1

TL-2

TL-3

TL-4

GG

GG

GG

GG

GG

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

IEEE

118-Bus

Bus 23

Bus 82
Case 1: Three-phase

short circuit fault

Case 2: MMC

power step change GPU execution CPU execution

Net-1

Net-4

Net-2

Net-3

Net-1Net-2

Net-3 Net-4

Bus 118

IEEE

118-Bus

IEEE

118-Bus

IEEE

118-Bus

IEEE

118-Bus

Bus 24

Gen 10

IEEE 118-Bus System

Bus 80

AC-AC Connected

at Bus 80

AC-DC Connected

at Bus 82

Fig. 10: Synthetic system for case studies and performance evaluations.

Maxwell® architecture. The memory can be accessed by CPU
and GPUs simultaneously which is suitable for sharing data
between multiple GPUs. It also enables asynchronous memory
copy with cudaMemPrefetchAsync function [34], so that the
pinned memory is not required for this task. It saves a lot of
complicated memory management works for CPU-GPU and
multi-GPU communications and the code can be written as
the same as normal multi-thread programs on CPU.

IV. DYNAMIC RESULTS AND PERFORMANCE EVALUATION

The performance is evaluated based on the test cases shown
in Fig. 10. The four IEEE 118-Bus systems and a modified
CIGRÉ DCS 2 MTDC system form up the Scale x1 base
test system, which is used for producing results for study
Case 1 and Case 2. Then the AC/DC system is expanded
vertically and horizontally as shown in Fig. 10 (a) to evaluate
the scalability and computational efficiency of the hybrid CPU-
GPU PiS+PiT simulation method. The 4 AC power grids in
the Scale x1 system are labeled as Net-1, Net-2, Net-3, and
Net-4 respectively in Fig. 10.

The Scale 2x-12x systems are only used for performance
evaluation purposes. Bus 82 is chosen for the connections be-
tween HVDC grids and AC systems. For AC-AC connections,
the Bus 80 of AC systems are connected. The Scale x1 system
contains 4 × 118 = 472 TS nodes and 216 generators with
four 201-level three-phase EMT modeled MMCs. The TS fine-
grid simulation time-step is 100µs and coarse-grid time-step
is 10ms; the EMT simulation time-step is 10µs.

A. Verifications of PiT and AC/DC Simulation

Case 1: A short circuit with a duration of 200ms happens at
Bus 23. The fault resistance is 1Ω; the generator 10 is chosen
as a reference for rotor angle. The main focus of this case
study is to verify the results compared to the commercial

Dash Lines: Parareal

Solid Lines: TSAT

Fault at Bus 23

(a) (b)

(c) (d)

Error<0.1%

Error

<0.1%

 Bus 24

T: 5.062s

Vt: 0.71989 p.u.

 Bus 23 fault

point

T: 5.0s

Vt: 0.167 p.u.

 Bus 24

T: 5.2s

f: 59.7085Hz

Rotor Angle (°) Generator Terminal Voltages (p.u.)

Frequency (Hz) Bus Voltages (p.u.)

Fig. 11: Waveform of Case 1 test system: (a) generator rotor
angles; (b) terminal voltages of all generators; (c) frequencies
of all generators.

DSAToolsTM TSAT. The results shown in Fig. 11 of the
Parareal algorithm meet the TSAT results very well and the
relative error is smaller than 1%. After the fault, the generator
transients last for two seconds then return to the normal at
10-12s since the fault is cleared. Fig. 11 (a)-(c) shows the
generator rotor angles, terminal voltages, and frequencies of
generators, respectively. Bus 24, which is the closest generator
bus to the fault location, has the largest voltage (-0.3 p.u.) and
frequency (-0.3Hz) deviations. Fig. 11 (d) shows the voltage of
non-generator buses, where Bus 23 has the bus lowest voltage
but not zero, which is because the fault resistance is 1Ω, not
0.

Case 2: it presents the results of PiT+PiS AC/DC co-

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

9

(a) (b) (c)

(d) (e) (f)

At 4s:

600MW load added

to Net-1 Bus 118

At 10s:

MMC injects

600MW

At 4s:

Connect

MMCs to TS

Systems

At 10s:

real power

drained to

MMC

After MMC

injection

At 10.5s:

620MW is injected to

Net-2 Bus 118

After MMC

injection
Steady-

state

(M
W

)
(k

V
)

At 10s:

transmit

real power

CM-E1:600MW

BM-B2:-648MW

At 10s :

Transmit real

power
CM-

E1:0MW

BM-B2:

16MW

CM-B2:

400kV

Cm-F1

Cm-B3

Cm-E1

Cm-B2

CM-E1:

388kV

4s

Fig. 12: Waveforms of Study Case 2: (a) Frequencies of the generators in Net-1; (b) Terminal Voltages of the generators in
Net-1; (c) Real power of 4 MMCs; (d) Frequencies of the generators in Net-2; (e) Terminal Voltages of the generators in
Net-2; (f) DC Voltages of four MMC terminals.

Time (s) Speedup

System Scale

Fig. 13: Performance comparison of hybrid PiT+PiS and GPU
PiS under various system scales.

simulation of an overload and recovery scenario. The MTDC
system is used to support AC power systems when an overload
occurs in Net-1; the Cm-B2 is working under the DC voltage
control model to maintain constant DC voltages and the other
MMCs are working under power control mode. This scenarios
has three stages: (1) a 600MW load is added to the Bus 118
at 4s in Net-1, which causes drops in voltages and frequencies
as shown in Fig. 12 (a), (b) respectively; (2) at 10s the MMC
Cm-E1 is ordered to drain 600MW from HVDC buses as
shown in Fig. 12 (c), thus the voltages and frequencies of Net-
1 start to recover. On the other side, Cm-B2 provides the real
power of 648MW to maintain DC voltages, and it has to drain

Time (s) Speedup

System Scale

Fig. 14: Performance of the multi-GPU implementations.

real power from Net-2 so that Net-2’s voltages and frequencies
start to decline as shown in Fig. 12 (d), (e) respectively; (3)
a 620MW real power is injected at 10.5s to Bus 118 in Net-2
so that Net-2 can maintain the stability.

B. Performance Comparison

Fig. 13 shows the performance comparison between CPU
serial AC/DC co-simulation, CPU-GPU PiT+PiS AC/DC co-
simulation, and the GPU PiS co-simulation with a single
NVIDIA® Tesla® V100. The execution time of the CPU serial
program for large-scale cases is too long so only the speedup
against the serial program is presented in the plot. The speedup
and execution time increases almost linearly for both PiT+PiS

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

10

and the traditional PiS parallel computing method. When the
system scale is 12x, GPU PiS only achieved 98.7x speedup
compared to the sequential program; meanwhile, the GPU
PiT+PiS method achieved 165.6x speedup which is 1.67x
faster than GPU PiS.

Fig. 14 shows the performance of PiT+PiS method with 2x
NVIDIA® Tesla® V100 GPU. When the system scale is 1x
and 2x, the speedup is obvious, especially when the system
scale is 2x, which has 8 IEEE-118 Bus systems, the parallel-
efficiency is near 100%. However, when the system scale
is larger, the speedup declines to near 1.0x which indicates
the GPU concurrency stops increasing under the multi-GPU
situation, despite the single GPU implementation having linear
speedup growth. It is due to the size of GPU kernels since
the streams in Fig. 9 are not guaranteed to be concurrent. The
large-size kernel amplified the load imbalance between GPU-1
and GPU-2. Because the serial coarse-grid prediction is critical
to performance and it should not be delayed or disrupted,
all fine-grid kernels were launched to GPU-2 while GPU-1
only handles coarse-grid tasks. As the problem size grows,
coarse-grid workloads become much smaller than fine-grid
workloads, so the multi-GPU results become closer to single
GPU execution. The more advanced solution is to launch some
of the fine-grid kernels to GPU-1 when it is idle so that
the computationally intensive fine-grid tasks can make use of
multiple GPUs.

V. CONCLUSION

A hybrid CPU-GPU parallel-in-time-and-space transient sta-
bility simulation method is proposed based on the Parareal
algorithm. The Parareal algorithm is implemented on GPU
along with the traditional PiS algorithm to achieve maximum
parallelism. The CPU-GPU design performs PiT scheduling
and launches GPU kernel functions to streams on the CPU,
which brings better scalability and extensibility to GPU-only
design. Meanwhile, the CPU can perform the EMT simula-
tion asynchronously when the GPU is running the transient
stability simulation, which can be perfectly integrated with
the proposed AC/DC co-simulation scheme and bring better
performance and parallel efficiency. The study case shows
good results both in accuracy and computational performance.
The speedup for the PiT+PiS method to the PiS method is
around 2x and can achieve 165.6x compared to sequential
CPU programs for a large-scale system. The method can
utilize multiple GPUs and can achieve near-maximum parallel
efficiency with a system scale of 2x. Further investigations and
benchmarks are planned to find the bottleneck and optimize
the PiT+PiS algorithm on multi-GPUs. The proposed hybrid
PiT+PiS method shows good potential for the solution of
large-scale AC/DC power system transient stability simulation
problems.

APPENDIX
A

Test Environment: Parallel computing node of Compute
Canada Cedar cluster; Two Intel® Xeon® Silver 4216 Cas-
cade Lake processors (16 Cores, Base frequency: 2.1GHz,

max turbo frequency 3.2GHz, cache L3: 22MB, cache L2:
16MB). Software configuration: Operating System: CentOS
7.7, CUDA® 11.0, Linux 3.10 kernel; Compiler: GCC/G++
9.3, OpenMP 4.5.

APPENDIX
B

Top level code of CPU-GPU asynchronous program

1 len = 10000, coarse_len = 10, fine_len = 100
2 tol = 1e-4
3 # objects for coarse and fine-grid workers
4 coarse_network = create_coarse_network()
5 fine_networks = create_fine_networks()
6 # coarse_network is initalized with larger dt
7

8 # solution vectors for Parareal
9 Gk, Gk_1, Fk, Uk = create_parareal_vectors()

10

11

12 # TS-EMT data exchange vector, unified memory
13 PQ, Vtheta = create_TSEMT_vectors()
14 iter = 0
15 maxit = 10
16 converged = False
17 Gstream, Fstreams = create_streams()
18 for i in range(0, len):
19 while not converged and iter < maxit:
20 # Thread 1: # EMT simulation Task
21 Prepare_emt_sim()
22 EMT_solve()
23 PrefetchDataToGPU(PQ)
24 # Thread 2: # TS simulation Task
25 # set intial values
26 Gk[0] = Uk[0]
27 coarse_network = Uk[0]
28 fine_networks[0] = Uk[0]
29 # 10 intervals has 11 coarse points
30 for x in range(1, coarse_len+1):
31 # PiS GPU functions are called in
32 # the solve function
33 TS_coarse_solve(
34 coarse_network, Gk[x]
35 PQ, Vtheta, Gstream)
36

37 if iter == 0:
38 # (a) coarse prediction
39 # copy functions are aync kernel functions
40 # the stream is assigned at runtime
41 copy_from_to(Gk[x], Uk[x], Gstream)
42 else:
43 # (c) solution refinement
44 err = Gk[x] - Gk_1[x]
45 converged = converged & check_error(err, tol)
46 Uk[x] = Fk[x * fine_len] + err
47 copy_from_to(Uk[x], coarse_network, Gstream)
48

49 copy_from_to(Uk[x], finenet[x], Gstream)
50 # (b) Fine-grid parallel operation
51 for xt in range(0, fine_len):
52 TS_fine_solve(
53 fine_networks[x-1],
54 PQ, Vtheta, Fstreams[x-1])
55 Fk_idx = x*fine_len+xt+1
56 copy_from_to(
57 fine_networks[x-1],
58 Fk[Fk_idx], Fstreams[x-1])
59 # ensure results before next serial operation
60 cudaStreamSynchronize(Gstream)
61

62 copy_from_to(Gk, Gk_1, Gstream)
63 # device only synchronize once in 1 iteration
64 # since fine-grids kernels are concurrent
65 cudaDeviceSynchronize()
66 PrefetchDataToCPU(Vtheta)
67 # (d) the final solution of a window is there

REFERENCES

[1] “Changji-Guquan UHVDC transmission project,” 2015.
[Online]. Available: http://www.nsenergybusiness.com/projects/
changji-guquan-uhvdc-transmission-project/, [Accessed: 13-Feb-2022].

Rea
d O

nly

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3153450, IEEE
Transactions on Power Systems

11

[2] “Dolwin 5 HVDC project.” [Online]. Available: https://www.
hitachiabb-powergrids.com/ca/en/references/hvdc/dolwin-5, [Accessed:
13-Feb-2022].

[3] “Critical grid infrastructure to connect the west.” [Online]. Available:
http://www.transwestexpress.net/, [Accessed: 13-Feb-2022].

[4] M. La Scala, M. Brucoli, F. Torelli, and M. Trovato, “A gauss-jacobi-
block-newton method for parallel transient stability analysis (of power
systems),” IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1168–1177, Nov
1990.

[5] S. Xia, S. Bu, J. Hu, B. Hong, Z. Guo, and D. Zhang, “Efficient
transient stability analysis of electrical power system based on a spatially
paralleled hybrid approach,” IEEE Trans. Ind. Informat., vol. 15, no. 3,
pp. 1460–1473, 2019.

[6] V. Jalili-Marandi and V. Dinavahi, “SIMD-based large-scale transient
stability simulation on the graphics processing unit,” IEEE Trans. Power
Syst., vol. 25, no. 3, pp. 1589–1599, 2010.

[7] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, “Large-scale transient
stability simulation of electrical power systems on parallel gpus,” IEEE
Trans. Parallel Distrib. Syst., vol. 23, no. 7, pp. 1255–1266, 2012.

[8] N. Lin, S. Cao, and V. Dinavahi, “Comprehensive modeling of large
photovoltaic systems for heterogeneous parallel transient simulation of
integrated ac/dc grid,” IEEE Trans. Energy Convers., vol. 35, no. 2, pp.
917–927, June 2020.

[9] ——, “Adaptive heterogeneous transient analysis of wind farm in-
tegrated comprehensive ac/dc grids,” IEEE Trans. Energy Convers.,
vol. 36, no. 3, pp. 2370–2379, 2021.

[10] V. Dinavahi and N. Lin, Parallel Dynamic and Transient Simulation of
Large-scale Power Systems, Springer Nature Switzerland AG, Cham,
Switzerland, 2022.

[11] T. Carraro, M. Geiger, S. Rorkel, and R. Rannacher, Multiple Shooting
and Time Domain Decomposition Methods. Springer, New York, 2015.

[12] M. La Scala, R. Sbrizzai, and F. Torelli, “A pipelined-in-time parallel
algorithm for transient stability analysis (power systems),” IEEE Trans.
Power Syst., vol. 6, no. 2, pp. 715–722, May 1991.

[13] M. La Scala, G. Sblendorio, and R. Sbrizzai, “Parallel-in-time imple-
mentation of transient stability simulations on a transputer network,”
IEEE Trans. Power Syst., vol. 9, no. 2, pp. 1117–1125, May 1994.

[14] Y. Takahashi, K. Fujiwara, T. Iwashita, and H. Nakashima, “Parallel
finite-element method based on space–time domain decomposition for
magnetic field analysis of electric machines,” IEEE Trans. Magn.,
vol. 55, no. 6, pp. 1–4, June 2019.

[15] S. Schöps, I. Niyonzima, and M. Clemens, “Parallel-in-time simulation
of eddy current problems using parareal,” IEEE Trans. Magn., vol. 54,
no. 3, pp. 1–4, Mar. 2018.

[16] B. Park, K. Sun, A. Dimitrovski, Y. Liu, and S. Simunovic, “Examination
of semi-analytical solution methods in the coarse operator of parareal
algorithm for power system simulation,” IEEE Trans. Power Syst., pp.
1–1, 2021.

[17] G. Gurrala, A. Dimitrovski, S. Pannala, S. Simunovic, and M. Starke,
“Parareal in time for fast power system dynamic simulations,” IEEE
Trans. Power Syst., vol. 31, no. 3, pp. 1820–1830, May 2016.

[18] D. Osipov, N. Duan, S. Allu, S. Simunovic, A. Dimitrovski, and K. Sun,
“Distributed parareal in time with adaptive coarse solver for large scale
power system simulations,” 2019 IEEE Power Energy Society General
Meeting (PESGM), pp. 1–5, 2019.

[19] “IEEE Guide for Synchronous Generator Modeling Practices and Param-
eter Verification with Applications in Power System Stability Analyses”,
in IEEE Std 1110-2019 (Revision of IEEE Std 1110-2002) , vol., no.,
pp.1-92, 2 March 2020.

[20] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control. McGraw-Hill New York, 1994.

[21] “IEEE recommended practice for excitation system models for power
system stability studies,” IEEE Std 421.5-2005 (Revision of IEEE Std
421.5-1992), pp. 1–93, 2006.

[22] V. Vittal, J. D. McCalley, P. M. Anderson, and A. Fouad, Power system
control and stability. John Wiley & Sons, Hoboken, New Jersey, 2019.

[23] W. Janischewskyj and P. Kundur, “Simulation of the non-linear dynamic
response of interconnected synchronous machines part i-machine mod-
elling and machine-network interconnection equations,” IEEE Trans.
Power App. Syst., vol. PAS-91, no. 5, pp. 2064–2069, 1972.

[24] B. Stott, “Power system dynamic response calculations,” Proceedings of
the IEEE, vol. 67, no. 2, pp. 219–241, 1979.

[25] V. Dinavahi and N. Lin, Real-time electromagnetic transient simulation
of AC-DC networks, Wiley-IEEE Press, Hoboken, New Jersey, 2021.

[26] Q. Tu and Z. Xu, “Impact of sampling frequency on harmonic distortion
for modular multilevel converter,” IEEE Trans. Power Del., vol. 26,
no. 1, pp. 298–306, 2011.

[27] T. A. Davis and E. P. Natarajan, “Algorithm 907: KLU, A direct
sparse solver for circuit simulation problems,” ACM Trans. Math. Softw.,
vol. 37, no. 3, pp. 36:1–36:17, 2010.

[28] M. J. Gander and S. Vandewalle, “Analysis of the parareal time-
parallel time-integration method,” SIAM Journal on Scientific Comput-
ing, vol. 29, no. 2, pp. 556–578, 2007.

[29] M. J. Gander and E. Hairer, “Nonlinear convergence analysis for the
parareal algorithm,” in Domain decomposition methods in science and
engineering XVII. Springer, New York, 2008, pp. 45–56.

[30] J. L. Gustafson, Encyclopedia of Parallel Computing. Boston, MA:
Springer US, 2011, pp. 53–60.

[31] M. Minion, “A hybrid parareal spectral deferred corrections method,”
Commun. Appl. Math. Comput. Sci., vol. 5, no. 2, pp. 265 – 301, 2010.

[32] “Thrust: Code at the speed of light.” [Online]. Available: https:
//github.com/NVIDIA/thrust, [Accessed: 13-Feb-2022].

[33] “Unified memory for cuda beginners,” June 2017. [Online]. Avail-
able: https://developer.nvidia.com/blog/unified-memory-cuda-beginners,
[Accessed: 13-Feb-2022].

[34] “Maximizing unified memory performance in cuda,” Nov
2017. [Online]. Available: https://developer.nvidia.com/blog/
maximizing-unified-memory-performance-cuda, [Accessed: 13-Feb-
2022].

Tianshi Cheng (S’19) received the B.Eng. degree in
electrical engineering and automation from South-
east University, China, in 2017. From 2017 to 2018,
he was a substation automation engineer of NARI
Group Corporation (State Grid Electric Power Re-
search Institute), China. He is currently pursuing the
Ph.D. degree in electrical and computer engineering
with the University of Alberta, Canada. His research
interests include electromagnetic transient simula-
tion, transient stability analysis, real-time simulation,
parallel processing, microgrid and power electronics.

Ning Lin (S’17-M’19) received the B.Sc. and M.Sc.
degrees in Electrical Engineering from Zhejiang
University, China, in 2008 and 2011, respectively,
and the Ph.D. degree in Electrical and Computer En-
gineering from the University of Alberta, Edmonton,
AB, Canada, in 2018. From 2011 to 2014, he was
an engineer on a flexible AC transmission system
(FACTS) and high-voltage direct current (HVDC)
transmission. His research interests include elec-
tromagnetic transient simulation, transient stability
analysis, real-time simulation, device-level model-

ing, integrated AC/DC grids, massively parallel processing, heterogeneous
high-performance computing of power systems, and power electronics.

Venkata Dinavahi (Fellow, IEEE) received the
B.Eng. degree in electrical engineering from Visves-
varaya National Institute of Technology (VNIT),
Nagpur, India, in 1993, the M.Tech. degree in
electrical engineering from the Indian Institute of
Technology (IIT) Kanpur, India, in 1996, and the
Ph.D. degree in electrical and computer engineering
from the University of Toronto, Ontario, Canada,
in 2000. He is currently a Professor with the De-
partment of Electrical and Computer Engineering,
University of Alberta, Edmonton, Alberta, Canada.

He is a Fellow of the Engineering Institute of Canada. His research interests
include real-time simulation of power systems and power electronic systems,
electromagnetic transients, devicelevel modeling, large-scale systems, and
parallel and distributed computing.

Rea
d O

nly

