INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

CLOSED-LOOP INSULIN DELIVERY
by

Jamie Andrew Guay @

A thesis submitted to the Faculty of Graduate Studies and Research in partal
fulfillment of the requirements for the degree of Master of Science

Control Systems

Department of Electrical and Computer Engineering

Edmonton, Alberta

Spring 2001

| §d |

National Library

of Canada du Canada

Acquisitions and Acquisitions et
Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4
Canada

395, rue Wellington
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60434-9

Canadi

Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your filg Votre référence

Our file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent £tre imprimés
ou autrement reproduits sans son
autorisation.

University of Alberta
Library Release Form

Name of Author: Jamie Andrew Guay

Title of Thesis: Closed-Loop Insulin Delivery
Degree: Master of Science

Year this Degree Granted: 2001

Permission is hereby granted to the University of Alberta Library to
reproduce single copies of this thesis to lend or sell such copies for private,
scholarly, or scientfic research purposes only.

The author reserves all other publicaton and other rights in association with
the copynght in the thesis, and except as hereinbefore provided, neither the
thesis nor any substantal pordon thereof may be printed or otherwise
reproduced in any material form whatever without the authot’s prior written

permission.
;2 — :7

13212 — 62 Street
Edmonton, Alberta, Canada

Wk, 2.9, 2001 T5A OV6

University of Alberta
Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Rescarch for acceptance, a thesis entded Closed-
Loop Insulin Delivery submitted by Jamie Andrew Guay in partal fulfillment
of the requirements for the degree of Master of Science in Control Systems.

[Wadoj. Marquez
7/_]/{ - M/MW
’ |

Martin P. Mintchev

o
%ck E. Snyder
e

Qing Zhao

/C}!/&d‘// 2o, 200L.

Abstract

CLOSED-LOOP INSULIN
DELIVERY

by Jamie Andrew Guay
Chairperson of the Supervisory Committee: Professor Horacio Marquez

Department of Electrical and Computer Engineering

The research undertaken during the course of this program was toward the

development of a closed-loop insulin delivery system.

Using an implantable glucose sensor as the feedback element, an insulin
fusion control system was created to continuously compensate for changing

levels of glucose concentraton in prospective diabetic patents.

The control system was tested 2z vi#ro and found to positively and consistently
react to changing glucose concentrations when adequate glucose sensors were

employed.

ACKNOWLEDGMENTS

Several individuals were instrumental in the initation and development of
this project. I would first like to give my sincere thanks to Dr. Horacio
Marquez for his leadership. I would also like to thank Dr. Chdsute
McDemott who provided me with a crash course in advanced chemistry.
Her patence was greatly appreciated in what would prove to be the most
challenging component of my research. I would also like to thank Dr. Jed
Harnson for furnishing me with a place in his lab and for his helpful advice

with regard to the sensor’s testing.

I also express my sincere thanks to Dr. Ray Rajotte who provided the means
for sensor testung and to Dr. Martn Mintchev for giving me the opportunity

to work in what contnues to be a vital and exciting field.

Special thanks also goes to my mother, who, as a dibetdc for many years, was
an inspiradonal encouragement. The support and encouragement of several

friends during the course of my research was also greatly appreciated.

TABLE OF CONTENTS

Chapter 1 - INTRODUCTION

Current Treatment of Diabetes......cccooocoveneeecireaeeeeeeeee
Open-Loop Control. ...t
Closed-Loop Techniques.........ccoocecccincieeinecete e
PC-Controlled Insulin Infusioncccoeeeeecieciieeineeeeceeeee
Competing APProachescccoirceececcee e

Chapter 2 - A CLOSED-LOOP CONTROL SYSTEM

INErOAUCHON ..ot
Implantable Glucose Sensors......ccocccvrrnnerecereereeeeeeee e
ElectrochemiStry. ..o
Glucose Sensor Fabrication........oo.ooveeeeoiieeceeeeeeeeeee.
Sensor Signal Detection ...
CoNNeCtng @ SEMSOL ..c.coiiiuiierieeeeceieereieiet et e eee et as e seenees
Analog-to-Digital Conversion..........ccocieecrcenncninccneeceeees
Sensor CaliBrationooviviieeeeeeeeeeeeeeeee e
PUMID ettt
The CONLOLIET ...ocueieeeeeeeeeeeee e
SOETWALE ..ot e e eeeeean
SALETY -ttt ettt
USEL INLELLACE v
A Glucose Level to Infusion Rate Algorithm ..cooooeeoiieeeeiniene

Chapter 3 - GLUCOSE SENSOR TESTING

IntrodUCON ...ttt
Open Loop TeStNG ...t eaeas
RESULES .ottt
Closed-Loop TeSHUNG ..ottt eeeste e

Chapter 4 - CONCLUSIONS

Insulin Infusion COnELOL ... e
Canine TeSHNZ ..ottt e e
FUtre RESEATCI ... e eeee e e e e e e e

Appendix A - ELECTRONIC DESIGN

A PONTENTOSTAL c.eeeieveeeieeieteee et e e reeet e aeeeeenneans
Voltage Amplfication.......coiiiieee e

Appendix B - SOFTWARE DESIGN

Design Approach ...

1

...................... 2

COAE STIUCTULE ... e e e e e e e e e e e e e e e s aee e e e e e e e e eee e e e e ean 78

Serial Interfacing with the IVAC 570 ..o 80
Parallel Interfacing with the LabMaster 20009.........ccconinnniincieeeene. 84
Process Control ...ttt e 86
Error ProteCtOMN ...t 88

LIST OF TABLES

Table Page
Table 2-1. Desirable characterstics for an implantable glucose sensor................. 14
Table 2-2. In VVitro Charactedstics of Needle-Type Glucose Sensor [17] 15
Table 2-3. Program command SUmMMALY. ... 38

Table 2-4 The sliding scale for determining the insulin infusion rate for a
given blood-glucose concentraton. This information provides the
basis for a computer alogorthm.ccccoriic e 45

Table 2-5 Excepdonal conditons to the insulin infusion rate algorthm. 46

Table B-1 Summary of the functons contained within the program modules
for the controller SOftWare. ..o 79

LIST OF FIGURES

Figure Page
Figure 1-1. Current approach to management of IDDM......ccccocoonirnnnnnnnnnnnnnne. 3
Figure 2-1. Generalized block diagram of a closed-loop insulin infusion
) 115 ¢ 2 F OSSOSO 11
Figure 2-2. Block diagram showing each major component of the closed-loop
insulin deliVery SYSTOIML.ottt 12
Figure 2-3. These graphs depict the body's natural and typical concentratons
of blood glucose and corresponding insulin production.ccccccueeueerer...... 12
Figure 2-4 A schematdc diagram of a glucose sensor showing the Nafion-
coated, working and reference electrodes.cccoooeuroeiiiiieniiiiee 19
Figure 2-5 A SEM micrograph of a glucose sensor.........cocooeeeeveeneeeeeeeee 20
Figure 2-6. A generalized block diagram of the glucose meter..........cccceevevnneeee. 21
Figure 2-7. Front and side views of the glucose meter/potentostat..................... 23
Figure 2-8. Sensor connection to glucose meter using modified jumper to
produce a solderless CONNECHON. ..o 24
Figure 2-9. (a) In witro calibration scheme. (b) I» vivo calibradon based on the 7
vitro and in vivo values of the calibration parameters.c.cccococeiveinnnnnnene. 27
Figure 2-10. The IVAC 570 Vanable Pressure Infusion Pump......cccccoeeieecnnnnnnn. 31
Figure 2-11. Screen capture of controller software prompting user for setup
INFOIMNATION. ...ttt et ae et 34
Figure 2-12. Captured screen of the controller software showing updated
blood glucose and pump infusion rates in real-time......cccocoovecvenenieeenne.. 37

Figure 2-13. Captured screen of the controller software indicating total hourly
amounts of insulin infused as well as the average infusion rate for the
PATIEIIE. ottt ettt s et ettt nene 40

Figure 2-14. General program flowchart for closed-loop control......................... 42

Figure 2-15. Flowchart representing the CIM unit’s wvalidity checking
algorithm for serial communications with the variable pressure pump. ...44

Figure 3-1. Glucose meter voltage readings for known concentrations of
glucose in 37 °C thermostated PBS, pH 7.4. A consistent correlaton in
sensor response was achievable from one measurement cycle to the
TIEXT. 77 Dottt ettt s e 51

Figure 3-2. Glucose meter voltage readings for known concentrations of
glucose in 37 °C themmostated PBS, pH 7.4. Inconsistent and

fluctuatng response due to imprecise control over fabricadon and

layer thickness. 7= 5. .ttt 52
Figure 3-3. Average responses from 12 sensors. Each sensor displayed
different linear charaCterISHCS.i et 53
Figure 3-4. Average responses for a sensor with readings taken two weeks
apart. (The lower curve shows the latter response.)cccoeeeevrennnceennenns 55
Figure 3-5. Typical z» vifro response characterstc for a sensor in five known
ZlUCOSE CONCENIIATONIS. «...eovoeeeeeeceiieeeireececete et sttt e s e s et ees s e sease s assananes 57
Figure 3-6. Typical closed-loop system response to a rapid increase in glucose
concentration introduced to the system after 150 seconds. ...c..cccecueuene.... 59
Figure 3-7. Typical closed-loop system response when two rapid increases in
glucose concentraion OCCUT IN SUCCESSIOMN.u.uuriorurureieeeeereeseeensesrnneaesseees 61
Figure A-1. A circuit for controlling the potental at point .4 independently of
the changes in the resistances R1 and R2. [12]..c.cccoooiiniiinniciee, 66

Figure A-2. An electrochemical cell model showing the electrode terminals.......67
Figure A-3. A simple potentiostat circuit for controlling the potendal at point
A independently of changes in the sensor's impedance Zg......ccccoeceveunenene 69
Figure A-4. A potentiostat with a zener referenced source and feedback,
which can be adjusted to produce the desired output volrage.................... 71
Figure A-5. Schematc diagram of the completed
potentostat/meter/ampPIIer.ooiiiiiiiiiiii e 75
Figure B-1 The process threads that execute in different combinatons
depending on the state of external hardware or user interacton. 87

Chapter 1

INTRODUCTION

It has been reported that diabetes is the seventh leading cause of death in
Canada, affecting 2.6% of the populaton [1]. The serousness of this disease
has dramatically spurred on research in the areas of its treatment and cure.
‘While there is yet no procedure that could be called a cure to diabetes,
approaches to the treatment of diabetes, partcularly insulin-dependent
diabetes mellitus (IDDM) or Type I diabetes, have changed radically during

the past ten years.

The American National Insttutes of Health Diabetic Control and
Complicatons Tral (DCCT) demonstrated that careful regulation of blood
glucose levels results in significant reduction of long-term negative affects of
diabetes mellitus [2]. A control scheme, which could deal with changing
blood-glucose levels dynamically, would be of great benefit in the treatment
of diabetes, particularly where circumstances warrant close and frequent

monitoring.

This kind of monitoring would require some sort of biosensor that could
continuously detect blood glucose concentration in the body. It would also
be desirable to automatically compensate for contnuously fluctuatng levels

of glucose in the blood by delivering the necessary amount of insulin in direct

1

response. This approach, in effect, would simulate the body’s natural function
for handling hyperglycemic or hypoglycemic situadons, thus forming the
basis for an artificial pancreas. Such a system could allow glucose levels to be
more closely tracked and treated, preventing potentally dangerous levels
occurring in the blood, and possibly promising an easier management
approach for diabetics. The long-term benefits are also conducive to this
approach, minimizing the adverse affects of diabetes patients often

expedence later in life.

This chapter contnues with a summary of current treatment methods and
proposed open- and closed-loop methods that have been employed. Chapter
2 contains descriptions of the main elements employed in constructing a
computer controlled, closed-loop insulin delivery system using a needle-type
sensor developed at the University of Alberta. Chapter 3 shows and explains
the results of open- and closed-loop testing using the completed systemn,
while Chapter 4 contains the conclusions and a summary of related research

you can expect to see in the future.

Current Treatment of Diabetes

Insulin-Dependent Diabetes Mellitus IDDM), or Type I diabetes (also
sometimes refered to as Juvenile Diabetes because its symptoms often
surface in adolescence.), is a disorder of the carbohydrate metabolism in
which sugars in the body are not oxidized to produce energy due to a lack of
the pancreatic hormone insulin. As a result, these sugars (glucose in
particular) accumulate in the blood (hyperglycemia), then in the urne;

symptoms include thirst, loss of weight, and the excessive production of

2

urine [3]. The use of fats as an alternate source of energy leads to
disturbances of the acid-base balance, and the resultant accumulaton of
ketones in the bloodstream (ketosis), and can eventually lead to convulsions
preceding a diabetic coma. Diabetes that begins in childhood or adolescence

is usually more severe than that beginning in middle or old age.

Treatmment of type I diabetes is based on a carefully controlled diet and is
commonly managed with regular injecdons of insulin. The most widely
accepted approach to the management of IDDM involves the process
depicted in the block diagram of Figure 1.1. The regimental process of blood
letting, such as prcking the finger, is followed by the actual glucose
determination using any number of external glucose monitors that are
commercially available. The BG (blood-glucose) concentradon may also be
determined manually, that is, by visual inspection of a test stdp. More and
more commonly, it is being reported by electronic means using a reflectance-
type glucose meter. After devices like this are used, the need for an injection
is determined and, if needed, a proper dosage is prescribed and administered

by the individual [4].

/ Patient 6\

Blood Insulin
Letting injection

Glucose interpretation of BG

Determinatio results; insulin dose
ation adjustment

Figure 1-1. Current approach to
management of IDDM.

3

Due to the nature of the disease and the dependence of blood glucose levels
on food intake and stress, IDDM must be closely monitored, requiring blood

sugar testing and charting at least four dmes a day [5].

The urgency in the development of a suitable method of treatment for
IDDM has been influenced mainly by the seriousness of its effects on the
body. Multple complications can adse from this metabolic disorder, several
of which appear as a diabetic gets older. Consequently, it is recommended
that optimal regulation of glucose levels should be achieved in the treatment
of diabetics who are at greater nsk of the microvascular complicatdons,
primanly in young and middle aged persons [6]. The ideal treatment method
then, would involve continuous monitorng and the compensatory
management of elevated gluocose levels in the blood with the atomatc

infusion of insulin, such as would be provided by a closed-loop system.

Open-Loop Control

Control systems which do not employ feedback are defined as open-loop
control systems. In the context of the management of IDDM, such a system
provides no means by which blood-glucose levels can be conunuously
monitored and compensated for in a manner that is consistent with the
body’s natural behavior. Feedback is the fundamental concept that separates
open-loop control from closed-loop control. All of the current treatment
methods already mentioned above, i.e., the use of test strps, and reflectance-
type glucose meters, are thus open-loop control methods, since glucose levels

cannot practically be determined on a continuous basis using these devices.

These approaches are rough estumation at best because they only provide the

necessary informaton at a few discrete tmes of the day.

Significant advances, however, have been made in the area of open-loop

control.

Closed-Loop Techniques

The key element to closing the loop is a reliable, robust, and minimally
invasive blood-glucose sensor. The combination of such a device with
additional components, such as a microcomputer to interpret the sensor’s
readings and make a determinaton of the necessary amount of insulin to
patient required, as well as an insulin infusion pump to provide the actual
delivery of insulin into the patdent, would be fundamental to the system.
These elements, in conjuncdon with the electronic infrastructure required to
connect them together, would form the basis for a closed-loop insulin
delivery system in which the patent received the proper dosage of insulin

based on direct input from his own blood system.

A short term intravenous sensor similar to a catheter could be used in
hospitalized patents for up to 3 days. This approach could be udlized to
diagnose glycemic stabilizadon, manage ketoacidosis, or monitor blood-
glucose levels during surgery or recovery. Other applicatdons include
monitoring glucose instabiliies in mothers during delivery, certain neonates

1n intensive care, and other similar situations.

It is also quite plausable to insert a sensor subcutaneously over the short term
in hospitalized or nonhospitalized patients for pedods of several days. Such
5

an application could be connected to an external data storage and display
device which could be a portable computer with a display screen next to the
bed of a hospitalized patient. For nonhospitalized patents, such a device
could take on the form of a compact belt-mounted unit, or possibly a

wrstwatch sized device.

PC-Controlled Insulin Infusion

This project addresses the need for a closed-loop insulin delivery system and
demonstrates how a personal computer can act as the controlling mechanism
for treating diabetic patents undergoing an islet transplant procedure, a
surgical procedure, or delivery. These three medical situations form the basis
for the necessary algorithms which must be in place to determine approprate
insulin infusion rates. The system employes a custom software design that
incorporates computer interfacing for an Analog-to-Digital (A/D) converter
as well as an IVAC infusion pump equipped with a Computer Interface
Module (CIM). These connections are necessary so that the unique Nafion
coated, needle-type glucose sensor, which was developed at the University of
Alberta, could be connected to a custom-built, portable potentiostat and
meter. This same device provided the necessary signal conditoning in order
to supply a sensitive enough voltage to the A/D converter, which in tn
provided a digitized value that is directly proportional to the glucose
concentration 1t measured. The sensor would serve as the feedback element
so that an accurate glucose level could be collected and a corresponding
insulin infusion rate determined. Using the computer’s interface to the CIM
equipped pump, elevated levels of glucose could be nominalized by infusing

insulin into the patient at the approprate rate. Since the process of sampling
6

glucose and compensatng for hyperglycemic levels with insulin is
contnuous, the system behaves in a manner much like the body’s own

pancreas would.

Competing Approaches

While the idea of controlling insulin infusion in a closed-loop is not new the
methods have been few and vared. The idea of electronically assisted
managment of diabetes has been revisited more frequently in the recent past
because of advances in miniaturizatdon and computer technology. However
most methods have implements an open-loop method. In 1974, Slama ez 4/.
showed that insulin delivered from a portable infusion pump could
significantly improve glycaemic control [7]. Since no suitable glucose sensors
has been developed to be reliable enough to withstand the physiology of the
human blood system and serve as the feedback element over the long term,
the approach to automating the treatment IDDM patents has remained

open-loop.

The Penject (Hypoguard) is a low-technology solution to insulin delivery and
is designed for greater convenience and accuracy compared to convention
injectdons. Taking the form of a pen, it attaches to a 1 ml insulin syrnge,
which the patent fills. A selection ring is rotated on the device to set the
desired number of units to infuse. It can store enough insulin for up to three

days of use and the user admunisters it when needed [8].

A more sophistcated device is the Pen Infuser (Markwell Medical), which is

worn by the patient continuously while delivering boluses of insulin from a 3

ml syringe into a subcutaneously implanted cannula. A knob on the end
adjusts a leadscrew which is connected to the syringe plunger. This device is
designed for the diabetic that requires an intesified regimin where several
infusions would be required throughout the day. At beume, however, the
short-acting insulin runs out and separate injections of long-acting insulin

must be used to prevent morning hyperglycaemia [9].

The compact design of the motor drven Nordisk Infuser (Nordisk,
Gentofte, Denmark) comes prefilled with insulin for up to 10 days use.
Instead of a motor driven leadscrew, which other bulkier devices have used,
the motor dnves a geared pinion attached directly to the syringe plunger

shaft. The device is battery powered and can be worn portably [10].

Both Siemens Promedos and Windsor Medical have prouced commercial
insulin infusers employing pesdstaltic pumps, whereby the rotary action of
rollers moving along a flexible tube. The Siemens device can accommodate
up to 30 ml of insulin offering a potenual one month usage pedod of
continuous operaton. Its performance has been shown to be useful for long-

term intravenous cannulaton use [11].

Yet other approaches have used surgically implanted insulin infusion pumps
that can be programmed remotely and refilled with a minute catheter [12, 13,
14]. The disadvantage lies in the invasivaess of the implantadon procedure.
Some close-loop experiments have also been done using the an ardficial
endocrine pancreas (AP) (STG-11A, Nikkiso Co., Ltd,, Japan). With this
device, small amounts of venous blood is extracted from the body on a

contdnuous basis, diluted, and checked with a glucose oxidase membrane.

8

The glucose is memonrzed and calculated, and insulin is then pumped into the
body automadcally. It was also shown to control hyperglycemia in diabetic

patents [15].

Even with a varety choices for the treatment to IDDM, there is stull new
ground to be broken in what methods are best suited to a particular case. The
project undertaken for this study was unique in its flexability and serves as an
excellent test bed for current or emerging implantable sensor designs. The
modular design of both the software and the hardware elemements of the
system means that one component can be easily exchanged for another for
research and experimental purposes. The closed-loop insulin delivery system
constructed for this research used a unique, Nafion coated, needle-type
sensor (developed at the University of Alberta), and demonstrated linearity
and sensitvity. However, the system could serve as a host to other devices,
including sensors, for expenmentation. This is possible since no particular
hardware component is dedicated to the overall system. Likewise, the
software’s modular design, means that any hardware component that does
require a unique drver, the new code for it could be easily linked into the

main applicaton.

Another advantage to the approach used in this experiment is the possibility
of networking multple IVAC insulin infusion pumps. together Several
patents could then be monitored from a central control area. Such a system
could be used in a hospital where a limited number of statf monitor the

blood glucose levels of multple patients simultaneously.

Chapter 2

A CLOSED-LOOP CONTROL SYSTEM

Introduction

Automatic control involves machines only, in other words, human
intervention would not be a part of normal operaton. As with a room-
temperature control, where the temperature is controlled by a furnace, it can
be controlled (turned on and off) according to a automatic thermostat
reading. The desired temperature is predetermined by the user and the
thermostat issues the approprate signal to the furnace to maintain that
temperature. Thus, in a more general sense, control can be thought of as the
process of causing a system variable to conform to some desired value, called

a reference or set-point value [16].

A closed-loop control system is one in which feedback is used to provide the
controller with an up-to-date report of the system varable's magnitude so
that 2 comparison can be made between that value and the reference value.
Once the comparison is made, the controller can then adjust its output as
needed. In this experiment, the reference is the range for normal glucose
levels in the blood system of a human being. A generalized depiction of the

overall system is represented by the block-diagram in Figure 2-1.

10

Microprocessor

oin : ller : .
Set Point « Error Detector Controlle i Insulin
Normal Glucose) i Infusion i
Range —:—+>@—> Algorithm R E— Patient
Feedback
Glucose Level Implanted Blood Glucose

Glucose Sensor

Figure 2-1. Generalized block diagram
of a closed-loop insulin infusion system.

Error detection involves making the actual compatson between the known
normal glucose value and the measured value determined from the sensor.
An unhealthy discrepancy will cause the controller to invoke the necessary
action based on an approprate algorithm, that is to increase, maintain, lower

or stop infusion of insulin into the patient.

A closed-loop insulin infusion control system must consist of two parts: a
glucose sensitive biosensor and a microprocessor-based controller. The
biosensor must be implantable and small enough to be readily replaced. For
general applicaton, the electronic controller must be small enough to be
wearable in normal daily life. For clinical application and prototype analysis,
the primary controlling components of this system are a desktop computer, a
potendostat, an analog-to-digital convertor, and a softwate controllable
infusion pump. The functions of the controller are muldple: controlling the
potential of the biosensor’s electrode, sampling, filtering, storing and
processing the current, and transforming the current generated by the sensor

into an estimadon of a glucose concentration.

11

Glucose
Sensor

Patient

Potentiostat

>

Current-to-
Voltage

INSULIN

GLUCOSE

{(pU/mi}

{mg/dl)

E CiM/
¢ Volumetric
: Pump
: 7'y
Glucose Meter
LCD ;
Display |
: v
Amplifier | ¢ [AD Computer Display
| Converter [P] Automatic
' Caontrol)
Manual
Controt

Figure 2-2. Block diagram showing each
major component of the closed-loop

insulin delivery system.

Breakliast

3

150

Lunch

INSULIN

GLUCOSE

Supper

TIME OF DAY

Figure 2-3. These graphs depict the
body's natural and typical concentratons

12

of blood glucose and corresponding
insulin production.

Implantable Glucose Sensors

Long-term maintenance of blood glucose at normal levels with a closed loop
control system is one of the ideals of diabetic treatment. For this purpose, a
continuous glucose-monitoring device is needed with accuracy of
measurement, high specificity to glucose, quick response, and negligible
blood loss as well as long life [17]. It is this element, a glucose sensitve
biosensor, that separates the proposed system from those that are
commercially available. The biosensor provides the necessary feedback to the
system's controller so that a real-ume, ‘intelligent’ decision can be made based

on the patient’s current condition, that is, in real tme.

The purpose of any sensor is to convert a physical measurand (the quandty or
property being measured) to an electric output. A glucose sensor must ideally
be able to accurately detect the concentradon of glucose (the measurand) in
the blood. Unfortunately, other factors are present which can interfer and
affect the outcome, such as ascorbate, urc acid, and acetaminophen [18].
However, the choice of dialysis membranes used can greatly enhance
selectivity, to thus screen out unwanted factors while allowing the highest

possible degree of permeation for glucose.

Several essential problems must be addressed in regards to the development
and practical use of implantable blood-glucose sensors. Accuracy, of course,

is one of the most important considerations. Obtaining accurate glucose

13

level readings have been achieved already with a number of different
implantable glucose sensors [9]. Thus far, the greatest challenge to be met is
with the sensor’s longevity [19]. A bio-compatble sensor, which can
funcdon reliably over a long period in the harsh environment of the body, is
desired if any provision for a better lifestyle in the diabetdc patent is to occur.
Sensor lifeimes may only number in days, limitng them to in-padent use,
during surgical procedures or special monitoring times such as delivery, or
islet transplant. Table 2-1 summarizes the desirable characterstcs for an

implantable glucose sensor for stable long-term use [20].

Table 2-1. Desirable characteristics for
an implantable glucose sensor.

Operational Range: 20-2000mg/dl or 1-100 mM if undiluted

Demands blood is to be measured (or lower by a factor
< 1 if measurement is performed in the
tssue).

Response time: < 10 minutes, the sensor does not
need to be very much faster than the rate of
appearance of the glucose in the blood

Accuracy

e Specific for glucose only (error due to interfering

compounds < 10%)

® Low base-line drft since direct zeroing 1is

impossible after implantation

® Low sensitvity drft. The slope of the

calibration curve should be sufficiently stable not
to increase the error above 10%. Weekly
calibration should be sufficient (daily calibraton
would negate the benefit of the lack of a daily
injection).

¢ Low temperature dependence of the signal of

about 5%/°C

Implantable Smiall size and a shape that will not harm or impede

14

Demands body fluids or incur long term side effects.

A onmne-year lifetime that can be guaranteed so as
not to be burdensome to the user.

Power consumption related to lifetime. Barttery
recharging should be non-invasive.

Comfort: The encapsulated and sterile sensor
system should be free of reagent additon
and exchanges of materdal in order to
eliminate the rsk of inflammation.

It has been shown that the subcutaneous glucose concentration detected by a

sensor closely follows that of blood glucose with a 5-minute tme lag [21, 22].

A unique needle-type glucose sensor employing a Nafion coating has been
extensively investigated both /7 »ifro and vivo in rats [23, 24], dogs [14, 25], and
human volunteers [26]. In all cases, it was shown that the sensor current
closely followed the plasma glucose levels. In the /7 zvo canine experiments a
delay of 3 minutes was recorded for a peak current to be registered, which is
the expected lag ume for a blood glucose concentraton to translate to
subcutaneous ussue [Error! Bookmark not defined.]. Table 2-2 shows
average sensitivities and background currents for the sensor employed for

open and closed-loop control system analysis.

Table 2-2. I» UVitro Characterstics of
Needle-Type Glucose Sensor [Error!
Bookmark not defined.]

Background current (nd) 20 £7 (»=19)
Sensitivity (n/mM) 25+ 10 (»=19)
Response time (s) 33 £ 13 (#=0)

15

The implantable glucose sensor developed by Moussey ¢# 4/, has been shown
to provide superior glucose selectivity, durability and rapid response time
compared to many other sensor designs. A shorter stabilizatdon pedod
following electrode polarization provides an additfonal advantage [9]. The
sensor itself employs layers of poly(o-phenylenediamine, or PPD)
undercoating with Nafion overcoating. The resultant combination provides
improved performance in a biological matrix compared to the use of either
layer by itself. For these reasons it is this sensor configuraton that was

chosen to serve as the feedback element.

Electrochemistry

Electroenzymtatic sensors depend on the enzymatic oxidaton of glucose by
oxygen (O,) to form gluconic acid and hydrogen peroxide (H,O,) in the
presence of the enzyme, glucoseoxidase (GOx). The chemical reaction is

represented by

Glucose + O., +H,0—39% ;, Gluconic Acid + H,0

2 (2-1)

This reaction is important because it allows the detection of the consumpton
of O, or the generation of either of the two substrates produced: gluconic
acid and hydrogen peroxide. The sensor is not directly sensitive to glucose,
so the detection of any of the other three molecules will provide an indirect
means of determining blood-glucose concentraton. The most commonly
used and simplest detection method to implement is that of hydrogen

peroxide production [27,28,29,30]. Hydrogen peroxide can be measured

16

electochemically at a potental of about +0.7 volts versus saturated calomel

electrode (SCE), as shown in equation (2.2) below.

H,0, —07Y ,0_ +oH" +2¢7 (2-2)

Glucose Sensor Fabrication

The supportng component of the needle-type sensor consisted of a
varnished copper wire (approximately 10 cm in length) with 0.5 mm
diameter. One milimeter of varnish was removed from one end of thee wire to
allow electrical contact with a platinum wire which was coiled 3 tmes around
the stripped region of the copper wire and then an additional 7 umes farther
along the wire. A silver wire 0.1 mm in diameter was coiled 15 tmes around
the copper wire 1 mm from the platinum coil. The trailing end of whe silver
wire was connected to another varnished copper wire 0.1 mm in diameter
that was also strpped 1 mm at one end. The sensor was then washed in 0.1
M HCI solution for 5 minutes and rinsed in double-distilled water. Regions
of exposed copper, where electrical connectons were made, weere then
insulated using insulatng varnish. The Pt-Cu connection was given two coats
of green GLTP insulating varnish and a final coat of red varnish. The Ag-Cu
connection was given two coats of Red varnish only. The sensor was dred in

air overnight. It was small enough to fit through a 20 gauge catheter.

The exposed remainder of the coiled platnum wire was anodized for 5

minutes at 1.9 V versus SCE in 0.5 M H,SO, to depurate the surface. The

platnum wire was then cycled between —0.26 and +1.1 V versus SCE for 5

minutes. During this procedure, a cyclic voltamigram (CV) plot was
17

produced to confirm a Pt signature curve and allow the cleanliness and
connections to be checked. Silver chlorde was then formed on the silver wire
by anodizing potentostatcally at +0.08 mA for 30 minutes in stirred 0.1 M

HCL

A small quantty of enzyme soluton was made by first preparing 1 mL of
glutaraldehyde acetate buffered soluton (5 mg/mL of glutaraldehyde) and
slowly dissolving 73.2 mg of bovine serum albumin (BSA) into this strred
buffer solution. Then, 200 mL of this solution was added to a 3.9 mg aliquot
of glucose oxidase (GOx). The enzyme was deposited on the sensor’s
working electrode (Pt coil) by passing it through the loop formed at the end
of a short length of wire that was previously dipped in the final enzyme

solution.

The sensor was air dded for one hour at room temperature. The sensor end
(both Pt and Ag/AgCl coils) was then sequendally dip coated with 0.5 wt%, 3
wt%, and four layers of 5 wt% Nafion. The sensor was allowed to dry for 30

minutes between each Nafion coating and was finally air-dried overnight.

The sensor’s Pt electrode was electropolymerzed with 1,3 phenylenediamine
(1,3 DAB) by adding 5 mM of 1,3 DAB to acetate-buffered (pH 5.5) soluton
and anodizing at +0.65 V versus SCE. The solution was degassed and
blanched by nitrogen. After being carefully nnsed in D.DD. water and allowed

to dry, the sensor was heat sterlized in an oven at 120 °C for 120 minutes.

18

varnish for insulation

WORKING ELECTRODE:
Coiled Platunum wire coated with
Enzyme and polymer films

REFERENCE ELECTRODE:
Coiled Ag/AgCl wire

- entire sensor coated with Nafion

TroTIONy

v
X
A

N

insulated copper wires

Figure 2-4 A schematic diagram of a
glucose sensor showing the Nafion-coated,
working and reference electrodes.

19

A

280867 18K\

Figure 2-5 A SEM micrograph of a glucose sensor.

20

Sensor Signal Detection

A glucose meter was specially designed for the needle-type glucose sensor to
act as a combined potentiostat, signal amplifier and monitoring device. It is
this device that must ultimately interface the implanted glucose sensor in the
host subject to the computer. It must reliably and consistently supply the
necessary potendal for the sensor and operate and report the occuring signal
from the sensor to the controller. A block diagram for this device is shown
below. Blocks outside the dashed box are externally connected to the glucose

meter with appropdate lead wires.

Glucose
Sensor
Glucose Meter

: LCD E
‘ Display E
E Potentiostat Current-to- :
: Yoltage :
E Amplifier E To A/D
H : Converter

Figure 2-6. A generalized block diagram
of the glucose meter.

In order for the sensor to functon, a voltage of 0.7 volts is required across
the sensor’s leads [5]. This potendal supplies the necessary catalyst for
producing a measurable current by the separation of hydrogen ions from
oxygen from the available source of hydrogen peroxide in the blood (see

Equations 1 and 2). This is handled by a potentiostat. The measure current is

21

transformed to a voltage and displayed on a liquid crystal display built into
the same device. The voltage is also amplified for connection to the
LabMaster’s Analog-to-Digital convertor for subsequent reading by the

computer’s controlling software.

The device uses two 9-volt batteries, one for the sensor circuitry and one for
the 3-1/2 digit LCD display (Novatron, N-128), since the voltmeter requires
an independant supply. A push button toggle switch turns the LCD display
on or off but does not affect the sensor circuitry. The sensor circuitry is on
as long as the battery is connected inside the battery compartment. The
meter’s hardware is contained inside a plasic PACTEC® box (K HML-ET-
9VB-000). Figure 2-9 shows front and side profile view of the glucose meter

device.

22

LCD displa
/ play

f 2 —
.:[f / LCD display
on/off
mﬁ (] @ . Sensor leads
[& Sensar output
]

Figure 2-7. Front and side views of the
glucose meter/potentostat.

A mini-phono jack is available so that the meter may be connected to a
chart recorder or A/D converter that in turn is connected to a PC (specially
constructed cables allow for this type of connection). The voltage at this
output may range from 0 to approximately 3 volts.

The twisted pair of sensor leads will connect to a glucose sensor using the
method described in the following section. The bias voltage may be calibrated
by adjusting the tmmmer potendometer using a small screwdriver. To
calibrate the sensor’s bias voltage, attach a volumeter to the sensor leads of
the meter, then insert a small screwdriver in the hole on the back of the meter
box. Adjust the trimmer pot undl the volmneter displays 0.7 volts. The unit

can also be equipped with a belt clip to facilitate portable use by the padent.

Connecting a Sensor
A needle-type glucose sensor may be connected to the meter by first

removing the modified circuit-board jumper from the two-pin connector at

23

the end of the long pair of leads coming from the meter. The jumper was
altered by removing the metal bridge, so that it does not short the two sensor
electrode together. Excess varnish and oxidation were scraped from the ends
of the sensor electrode using a small knife. The cleaned leads are then
inserted into the holes of the modified jumper, and it is then reconnected to

the two-pin connector, establishing a snug solderless contact.

Cluczse melar !

cclenticstal ——_

Heatl shrink
|
N

T oLuMEeer 12als

CMecifies junyer

sennecter Giusss2 sanser
P
/
S s

Figure 2-8. Sensor connecton to glucose
meter using modified jumper to produce
a solderless connecton.

Analog-to-Digital Conversion

Proper conditioning of the sensor's analog signal is needed before is can be
analyzed by the computer. This conditioning takes the form of analog-to-
digital (A/D) conversion. An analog, or continuous signal, when sampled

yields a signal related magnitude independent of the time at which it is

24

sampled. A digital, or discrete signal, on the other hand, is one which reflects
the signals magnitude only at regular instances in tme. Thus A/D
conversion involves taking periodic samples of an analog signal and assigning
discrete values at those moments which a digital controller or computer in

turn can receive as a binary value [31].

A LabMaster combination A/D-D/A convertor (model 20009, Scientdfic
Solutions Inc.)) was used to interface the sensor meter/potentiostat to the
computer. The physical device is composed of a mother board that internally
plugs into an available PC slot. The mother board is then cabled externally to
the LabMaster containing the daughter board, which performs the actual
conversion from analog data to digital data which in turn the computer can
use. The LabMaster is equipped with 16 separate input channels for A/D
conversion, each with its own addressable I/O port for computer access.
Four channels were simultaneously used to initially test interfacing and signal
detecton. Since the A/D circuit inside the LabMaster can only convert one
analog voltage to its digital equivalent at a time the LabMaster's internal
muldplexing capabilides make it possible for each channel (designated O
through 15) to be strobed for a value in succession. Thus the four channels
are each read, one at a ume, then the cycle is continuously repeated by

strobing the A/D through a software command.

The actual conversion process involves two steps. The analog multdplexer
circuit of the LabMaster is told by the computer (software controller) which
channel to switch along, the controler then samples it and holds that value in
an analog memory cell (using a sample and hold circuit) untl it is ready to be

converted. In this control system, the end of the first step is designed to
25

trgger the second. The second converts the value to a digital equivalent

which the computer can then process.

The standard A/D convertor on the LabMaster daughter board itself has a
maximum conversion rate of 30 kHz and user selectable input ranges of 0 to

+10 volts and -10 to +10 volts.

Sensor Calibration

The calibration of the glucose sensor is a necessary and cridcal process for
the subcutanesous implantaton of such devices, since the characterstic
behaviour of one sensor compared to another may differ. As a result, the
calibratdon process allows for an accurate estmation of the prevailing
subcutaneous glucose concentration from the sensor’s output. Calibration is
based on the comparison of two points of glucose concentration with their
concomitant points of sensor output. From these two values, it is possible to
calculate a sensidvity coefficient for the sensor, expressed as the rato
between the changes in the sensor output and those in glucose concentration

(AI/AC), and the background current (converted to and measured as a

voltage) that corresponds to 0 mol/l glucose (Figure 2-9(a)).

A In Vitro
< /
Egmv fg:gmv In Vivo
> >

V1 /

-~ - -”
Vo } - VA -
Cy [giu] C2 false true
Glucose (mol/l) Glucose (mol/)
(3 (b)

Figure 2-9. (a) I vitro calibradon scheme.
(b) I vivo calibradon based on the x vitro
and /z# wviwvo values of the calibradon
parameters.

Velho ef al have listed three strategies for calibratng a subcutaneously
implanted glucose sensor: an /» wifro, a one-point in vitro/ one-point zx vive, and
a wo-point iz wvvo calibraton procedure [32]. The /» witro calibradon
procedure involves placing the glucose sensor in a thermostated (35-37 °C),
stirred, phosphate buffered saline (PBS) soludon with a pH of 7.4 (to
simulate the environment expetienced by a subcutaneuouly implanted sensor
as closely as possible), during stepwise increases of glucose concentraton
from 0 to 20 mM/L. The resulting sensor’s linear characteristic can thus be
expressed in mV/mM /1 glucose and a calibration constant can be determined
from this rado, ie. the slope of the resulting characterisdc. This approach
assumes that both the measured voltage in the absence of glucose (V) and
the sensidvity of the sensor or idendcal under i# vzvo and in vitro condidons.
While Velho e# a/. points out that the calibration could indeed be based on 7

vitro values (on which this experimental control system is based), the sensor’s

27

response charactenstic could be quite different under z# vivo conditons.
Applying the sensitivity coefficient and background current parameters
obtaimned by /z wifro calibradon could result in a miscalculadon of the
subcutaneous glucose concentraton (Figure 2-9(b)). The one-point i
vitro/one-point iz vivo calibraton procedure makes the assumption that the
values of V; measured in the absence of glucose are the same and reladvely
small for both 7 wvitro and iz vive situadons and thus only a single Z# viwo
measurment at a know glucose concentration would be needed to define the
sensor’s characterstic. The assumptions made in these first two calibration
procedures can be avoided by using a two-point z# »wo calibration procedure
in which two sensor voltage measurements are recorded at two different
times when the blood glucose concentradons are known to be different, ie.
before and after an insulin injection or meal. Voltage readings made directy
from the sensor are related to blood glucose concentrations determined

through a conventonal method, such as with a glucose analyzer.

While a two-point /# #vo calibration would be required to best reflect the true
sensor response for subcutaneous applicatons [32]. The best sensor
calibration method for the z# witro collecion of glucose concentration data
and overall closed-loop control system analysis was chosen to be a two-point

¢n vitro calibradon procedure.

Using the slope equation a single value is obtained, uniquely describing the
sensor’s response characteristic as depicted in Equadon (2-7). The meter gain,

G, 1s included to account for the amplified signal supplied to the computer.

28

AGlucose Level (mM/L)

¢ = (2-3)
G,, x AMeter Voltage (mV)

The actual glucose concentration can now be calculated by interpoladng the
value using the sensor’s known characterstc. Equation (2-8) describes the
overall system equaton for determining the actual blood glucose

concentration based on the sensor's output.

v,
BG=KSxD’—‘" XP, +C, —KgxXGy Xx—— (2-4
L : 1000

where BG is the blood glucose level, D, ,, 1s the digital glucose value read
from the LabMaster, K is the sensor’s sensitivity constant, P, is the peak
voltage level of the LabMaster, R;,, is the digital resoluton of the A/D
convertor, C, is the known concentration of glucose in which the upper
voltage charactenistc of the sensor is measured, G,, is the meter gain of 15.3,
and 17, is the average upper voltage characteristic of the sensor. The last two

terms of Equaton (2-8) indicate the y-intercept of the previous graph, V.

To demonstrate, an example calculaton is shown here. The é# vifro calibraton
was performed in a thermostated (37 °C) phosphate buffer soluton (0.1
mol/1 NaCl, 10 mmol/l Na,HPO,, pH 7.4) containing known concentratons
of glucose. After repeated observations of a sensor's response in 3 mM/L
and 20 mM/L glucose/PBS solutions, average corresponding voltages from
the glucose meter were observed. Values of 12 mV and 156 mV were

observed in the low and high concentratons of glucose solutions

respectively. From Equation (2-7) above, the constant describing the sensor
charactersuc is

20—
K =(..O 3)ml\/I/L>< 1000mV/V

S =7.72 mM/L/V
15.3 (156 —12)mV

Itis now possible to determine a corresponding glucose concentration within
the sensor’s detection range using Equaton (2-8). To test its accuracy, the
glucose sensor was placed into other glucose solutdons of known
concentration, then the computer's report of the concentration was observed
and compared with the known value. When the sensor was placed in the
solution of 15 mM/L glucose, an average value of 112 mV on the glucose
meter was observed. This measurement when amplified by the meter, read
and digitally converted by the LabMaster corresponds to a discrete value of

352. It is this value that the computer in turn receives.

2
352 X110V +20mM/L - 7.72mM/L/V x 15.3XM
2047 1000mV/V

BG =7.72mM/L/V x

BG =14.85 mM/L

Pump

The component responsible for the actual delivery of insulin must be a pump
capable of digitally communicating with a typical personal computer. The
IVAC 570 Vanable Pressure Pump is equipped with a computer interface
module or CIM allowing standard serial communications to occur between a

PC and the pump.

30

Figure 2-10. The IVAC 570 Vanable
Pressure Infusion Pump

The Controller

The controller in this control system consisted of a 486 desktop compurer.
Except for the installed LabMaster 20009 daughterboard, the computer itself
required no distinctive components. Two modes of interfacing were required:
a standard sedal link connected the computer to the CIM unit of the
volumetric pump, and the LabMaster 20009 daughterboard was installed in
an available PC slot, which in turn was connected to the LabMaster
connector box containing the A/D converter. At the heart of the controller

is, of course, the governing software.

Software

Software was custom made to handle dming, hardware interfacing,
monitoring and display, and of course, the necessary algorithm to handle the
determination of the appropmiate insulin infusion rate based on the measured

glucose level.

31

The software was developed in the C language, and will execute on any
computer system running the MS DOS™ or Windows™ operating systems.
The sofrware was designed using modular procedure-orented programming
techniques and was developed and compiled with Borland®s Turbo C++
integrated development environment, version 3.0. The software can also be
modified and upgraded with additonal modules to accommodate algorithmic
changes or alternatves, different pumps, or to meet medical staff needs. The
software is also independent of the type of sensor that is used; other sensor
types could be easily substtuted. Refer to Appendix B for a summary of the

software development stage and a code listing of the pdmary control loop.

Safety

The most fundamental aspect in the design of a control system that must
interact with a human body’s function is that of safety. Software engineering
practice defines the software component of this system as primwary, safety-cretical
software, that is, software which is embedded as a controller in a system. As
such, if the software malfunctons, the hardware can behave unpredictably

and possibly result in human injury [33].

The current algorithm does, however, provide a suitable warning or alarm
when a test subject’s glucose level has significantly changed from one reading
to the next. The subject or medical staff can then make a judgement as to
whether the patient’s glucose level has actually changed dramatically or if the

sensor (or some other component) has failed.

Accidents are an inevitable part of complex system and software tends to
increase the complexity of a system, so software control may increase the
probability of a system malfunctdon. However, software controlled systems
can increase the overall system saftey, since they can keep track of a wider
range of conditons than electromechanical systems and they can be adapted
relatively easily. The computer hardware they employ is known to have a high
reliability and can also be designed to be portable. While software control
may introduce addidonal complexity and possible hazards, the benefits in the
hazards they can guard against often outweigh them. Appendix B outlines the
features of the software and IVAC pump for dealing with error protection.

User Interface

The user interface design was done after consultaton with doctors and
nurses at the University of Alberta Hospital. This was to make certain that
relevant informaton could be presented to medical staff in a clear way and

with minimal operadonal complexity.

When the program is executed, the user is required to enter correct values for
the date and time since accurate record keeping of a treatment session is
required. The padent’s name, weight, physician, and hospital number are then
entered. The file name for a data file must also be specified. This file will
store the patient information, measured glucose concentrations, and insulin

infusion rates (Figure 2-11).

Figure 2-11. Screen cdpture of controller
software promptung user for setup
informaton.

Three separate algorithms determine how blood glucose levels will be
handled depending on the medical procedure being implemented on the
patent: Islet Transplant, Surgery, or Delivery. A menu is displayed to allow
the user to select which procedure, and thus which glucose level-to-infusion
rate algorithm, will be used. Once chosen, a new screen is displayed showing
a menu allowing the user to choose one of three control modes: Manual
Control, Infusion Control, and Sensor plus Infusion Control. The “Manual
Control” option means that glucose concentradon values will be directy
inputed into the computer using the keyboard and will not be measured using
the glucose sensor. This control mode will not send instructons to the
variable pressure pump, but will instead report to the user what the pump
setting should be manually set to. “Infusion Control” is similar to manual

control in that glucose levels must be manually input, but instructions are

34

sent to the CIM unit of the pump via the computer’s serial connection to
cause it to infuse insulin at the necessary rate. The final control mode,
“Sensor plus Infusion Control”, samples signals from the glucose sensor via
the LabMaster and also send instructons to the pump. This opton is used
for both the open-loop and closed-loop tests. If this control method is
chosen, an additonal screen displays a sedes of prompts so that a two-point
calibration of the sensor can be performed using high and low measurements

of a glucose soluton of a known concentration.

The first two control modes represent open-loop control methods in which
the insulin infusion would be carred out by medical staff. The third mode is a
closed-loop method meaning that the software controls both the monitoring
of blood glucose levels via the glucose sensor and the infusion of insulin via
the external pump. Human intervention would ideally not be required when
the software is running in the third operting mode, but may be exercised if
necessary. These alternate operatng modes offer medical staff a choice as to
the level of control they wish to implement for a given situaton. They also

provide useful algorithmic and operatonal troubleshooung methods for

design purposes.

The following figure (Figure 2-12) shows a condensed-time simulaton of the
treatment of a diabetic patient. In this example, blood glucose concentratdons
were entered manually and plotted on the left. Corresponding insulin infusion
rates were calculated and displayed in the graph on the right. The screen
offers 2 number of keyboard commands to the user that are displayed along
the top in a menu bar. Since tming is important not only in data collection,

but in the scheduling of required insulin injections, the current time is
35

displayed in the upper dght-hand corner as well. The available keyboard
commmands are summarized in Table 2-3. Pressing the key indicated in bold

will inidate the command.

36

Enter glucose

Dextrose stopped: Ho Alarm: 1 hour Units Alt-Q quit

Blood Glucose (mmol-/L)

John Doe
[nfusion Started: Mon Jul 27 0&:538 PM
Total tnsulin tnfused = 0.4 untits
12 a8 SRy : Toein ; : &
N ‘ oy : ::‘:
i o rn T T
P
CLLL X = L
- ~
~
fays -
=1 E
o
=
]
'
£ c
2 X o
S awa i
o= g
oud
c
S
I3 E = E 3 3 £ &
. Q. [=% a a [=% a.
0 N N ® o (223 (2]
[+ 1 [1~] 0 10 1124 n
"3 0) 9o 0 -] 3

TR PO e g Ay
et 37 EX RECOS TR W e e 1
& 3 Gd R ES o D
RGN

Figure 2-12. Captured screen of the
controller software showing updated
blood glucose and pump infusion rates
in real-time.

Table 2-3. Program command summary.

Keyboard Command

Functon

Enter Glucose

This command allows the system operator
to manually enter a blood glucose
concentration after a tradidonal glucose
reading is taken from the padent. The
insulin infusion rate/concentration is then
determined. Pressing the ESC key will
abort an entry. This command is available
for manual system control or open-loop

pump control.

Dextrose

stopped/started

This command many be used for record
keeping to indicate when dextrose is either
being administered or has been stopped.
The approprate tme and message is

recorded in the patient's data file.

Alarm off/on [t{]

Actvated using the up or down arrow keys,
it controls a dmer that will sound an audible

alarm after a spedified amount of tme.

38

Average

This displays the average insulin units that
have been infused since the beginning of
the procedure in the blue message area at
the bottom of the screen. An addidonal
graph 1s displayed showing the hourly
insulin units delivered over the last 24 hours

along with the average rate/concentradon.

Unit

Intravenous units of insulin are defined as
10 mL by default, but these units may be re-
defined by using this command.

Alt-Q

Quits from the program after confirmation.
The command can be aborted by pressing

N or ESC.

Pressing the ‘A’ key will display a screen like the one shown in Figure 2-13.
This dynamic chart will indicate to the user the hourly amount of insulin
infused into the patent in ‘units’ where a single ‘unit’ represents 10 mL of
insulin by default. (Note that the ‘unit’ value may be explicitly defined during

program setup.) The overall average amount of insulin infused is also shown

as a solid line supenimposed over the bar chart.

39

nter glucose extrose sizriec Alarme verage nit quit 7:27 PN
. Y 1 Un:t = 10 mb

Cummulative [nsulin Units

Time (hours)
Aver age Ltnsulin infusion = 1.6 units/nr
INSULIN INFUSION RATE IS 10 mbLshr

Figure 2-13. Captured screen of the
controller software indicaung total
hourly amounts of insulin infused as
well as the average infusion rate for the
patent.

In the first operating mode (manual) blood glucose levels may be collected in
the usual way, i.e., using an external glucose monitor. The glucose level may
then be entered in mmol/L by pressing the ‘E’ key on the computer’s
keyboard. As soon as the value is entered, the approprate insulin pumping
rate is determined and both graphs are updated in real-ume. Medical staff can
then apply insulin as the specified rate by manual operation of the infusion
pump. The ‘infusion control’ operating mode also requires that the patent’s

blood glucose level be determined and entered manually as in the manual

40

operating mode, but in this case the software directly controls the pump and
automatically adjusts the infusion rate based on the entered glucose value.
The third operating mode does not rely on the manual input of glucose,
instead, medical staff may simply monitor a contnual diabetic’s treatment via
the graphic interface. Blood glucose concentraton is measured by the
subcutaneously implanted sensor, which provided the continuous feedback
signal to the software controller. Of course, should a problem occur a doctor

or nurse could intervene at any tme and revert to 2 different control mode.

The flowchart in Figure 2-14 outlines the general processes behind the
executon of the computer software. All areas that require user input also

include validity checking that is not necessarily shown.

41

Process

Confirm Date/Time

v

Collect/Record
Patient Info

v

Select Medical
Procedure &
Control Method

v

Sensor Calibration

Check for user
interaction at
keyboard

Strobe parallel port
for digitized sensor
signal from
LabMaster

Calculate Glucose
value & determine
corresponding
infusion rate

v

Display glucose
reading

v

Send instruction to
CIiM unit of pump to
change infusion
rate

v

Check for
connection or
instruction errors
from CIM unit

Check for

connection or
instruction

Alert

errors from CiM

Display insulin
infusion rate

Figure 2-14. General program flowchart
for closed-loop control.

When any command is issued to the computer interface module (CIM), it
must be subjected to vanous checks to make sure that it is in fact a valid
commmand. Proper validity checks prevent the chance of any random series
of characters, or the result of a communications error being misinterpreted as
a CIM command.. The first three decision blocks in the CIM flowchart of
Figure 2-15 represent these checks. If the command does not include an
initial "U" character, it is simply ignored, otherwise the CIM proceeds to the
next check. Subsequently, if a parnty error, framing error, or overrun error
occurs during the transmission of the command, the communications error is
reported to the controlling computer and the command is reissued. If the
actual command code is not one that is recognized by the CIM, the controller
is also informed with an acknowledgment so indicating otherwise the valid
command is determined to be one of either two types of commands: action
or non-acton. A non-action command is one which causes no change in the
pump’s current operation, but is designed to interrogate the pump for it's
current status or preprogrammed settings. (Refer to Appendix B for

examples of CIM command sytax.)

43

mrhas o
i eransd CommAro
s
TRANSINT & COM
res Cwmon
[ty
(An€lcri{It])
o TRANEMIT mevaLIC
COMMARD RESPONSE
(An?(er]{if])

TRAKSAMIT LOCAL
WOOE REIFPONSE

(Ant{erl{it])

]

TRANSHIT tn-ALARG
RESPONSE

{Anaferl(ir])

TRANSMIT INVALIQ
CONMMANG RESPONSE

An?fcri[it])
I g
(An...[er]{tD (AnOK{er[1])

Figure 2-15. Flowchart representing the CIM unit’s
validity checking algorithm for seral communications
with the varable pressure pump.

A Glucose Level to Infusion Rate Algorithm

Table 2-4 represents one algorthm that is implemented for diabetic padents

in hospitals.

Table 2-4 The sliding scale for determining the
insulin infusion rate for a given blood-glucose
concentration. This informaton provides the
basis for a computer alogorithm.

Inidal setup:

1. Calodes when the patent is NPO are provided in the form of D W, 100

ml/hr.

Insulin ddp is made up as follows: 50 units of human regular diluted in 500

ml of normal saline, i.e. 1 unit = 10 ml.

The insulin is started at an infusion rate of 20 ml/hr.

4+ The capillary blood glucose is checked hourly. After each LV. doe of
steroids and after each meal, the glucose is checked every 30 minutes for two
hours.

5. The insulin infusion rate is altered according to the following schedule with
each determinadon of the blood-glucose: ! means “decrease’ and T means

N}

[¥3)

‘increase’

Measured Glucose Level (mmol/L) Insulin Infusion Action
<3 Stop insulin infusion
311035 d 10 10 ml/hr
3.6t0 4.0 { by 10 ml/hr
4.1 to 6.0 Remain at current rate
6.1 10 6.5 Tby 5 ml/hr
6.6 0 7.0 Tby 10 ml/hr
71t07.5 Tby 15 ml/hr
7.6 to 8.0 T by 20 ml/hr
8.1 10 9.0 T by 30 mi/hs
9.1 o 10 T by 40 ml/hr
10.1 to 12 T by 50 ml/hr
1210 14 T by 60 mi/hr
> 14 T by 70 ml/hr

This sliding scale was provided by medical staff at the University of Alberta

hospital and is in current use there. By their request is was implemented to
45

accommodate an easler and more predictable transiton to the into the
software’s use and behaviour. Table 2-5 extends the previous algorithm by

accountng for situatons when the glucose level increases rapidly.

Table 2-5 Exceptional conditons to the
insulin infusion rate algorithm.

e If the infused glucose has been stopped for a period restart the insulin at
20 ml/hr.

e If the glucose drops =2 mmol/L between two consecutive readings to <
6 mmol/L, 4 to 15 mL/hr.

o If the glucose drops = 2 mmol/L between two consecutve readings to <
8 mmol/L, | to 20 mL/hr.

e If the glucose drops = 2 mmol/L between two consecutive readings to <

10 mmol/L, 4 to 30 mL/hr.

All of the data entered and generated by the program i1s dynamically recorded
into a text file while the program runs. The sample data below represents
actual (abbreviated) data produced by a closed-loop session. This data can be
easily extracted from the resuling file and imported from within a

spreadsheet program to accommodate graphical and statistical analysis.

46

Patient name: Joe Smith

Weight: 67 kg

Hospital number: 123456

Physician: Dr. Nonsuch

Procedure: Islet Transplant

Date: Wed Sep 16 04:51 PM

1 Unit = 10 mL

Sensor number: 27

3 & 20 mM/L Meter Readings: 10.0 180.0
Meter gain: 15.3

Glucose Blood Insulin Insulin Total Units

Measured Glucose Infused Infusion Rate Infused
1l Wed Sep 16 04:51 PM: 4.5 mmol/L 4:51pm: 15 mL/hr 0.0 units
2 04:51 PM: 4.8 mmol/L 4:51pm: 15 mL/hr 0.0 unicts
3 04:51 PM: 4.8 mmol/L 4:51pm: 15 mL/hr 0.0 units
4 04:51 PM: 4.8 mmol/L 4:51pm: 15 mL/hr 0.0 units
5 04:51 PM: 4.8 mmol/L 4:51pm: 15 mL/hr 0.0 units
6 04:51 PM: 4.8 mmol/L 4:51pm: 15 mL/hr 0.0 units
7 04:51 PM: 4.7 mmol/L 4:51pm: 15 mL/hr 0.0 units
102 04:59 PM: 4.6 mmol/L 4:59pm: 15 mL/hr 0.2 units
103 04:59 PM: 4.9 mmol/L 4:59pm: 15 mL/hr 0.2 units
104 05:00 PM: 5.1 mmol/L 5:00pm: 15 mL/hr 0.2 units
105 05:00 PM: 5.7 mmol/L 5:00pm: 15 mL/hr 0.2 units
106 05:00 PM: 6.2 mmol/L 5:00pm: 20 mL/hr 0.2 units
107 05:00 PM: 6.6 mmol/L 5:00pm: 30 mi./hr 0.2 units
108 05:00 PM: 6.7 mmol/L 5:00pm: 40 mL/hr 0.2 units
109 05:00 PM: 6.9 mmol/L 5:00pm: 50 mL/hr 0.2 units
110 05:00 PM: 6.9 mmol/L 5:00pm: 60 mL/hr 0.2 units
111 05:00 PM: 6.9 mmol/L 5:00pm: 70 mL/hr 0.2 units
112 05:00 PM: 6.9 mmol/L 5:00pm: 80 mL/hr 0.2 units
113 05:00 PM: 7 mmol/L 5S:00pm: 90 mL/hr 0.2 units
114 05:00 PM: 7 mmol/L 5:00pm: 100 mL/hr 0.2 units
115 05:01 PM: 7 mmol/L 5:01lpm: 110 miL/hr 0.4 units
116 05:01 PM: 7 mmol/L 5:01pm: 120 mL/hr 0.4 units
358 05:21 PM: 4.2 mmol/L 5:21pm: 0 mL/hr 15.8 units
359 05:21 PM: 4.2 mmol/L 5:21pm: 0 mL/hr 15.8 units
360 05:22 PM: 4.2 mmol/L 5:22pm: 0 mL/hr 15.8 units
361 05:22 PM: 4.2 mmol/L 5:22pm: 0 mL/hr 15.8 units
Wed Sep 16 05:22 PM: End 16.6 total units Average = 22.1 units/hr

47

Chapter 3

GLUCOSE SENSOR TESTING

Introduction

As mentoned previously, the Pt/PPD/GOx/Nafion sensor has been
extensivley tested on both dogs and humans and showed favorable results.
Clinical tests on human volunteers, showed the expected response after an
OGTT and that glucose concentratons obained by the sensor closely
matched the measured blood glucose levels, reaffirming that the sensors
could be used successfully in short-term subcutaneous glucose monitoring
[18]. Open-loop tests were performed to observe and record individual
sensor charactenistics for twenty sensors. The linear responses could be
examined for each sensor's defining sensidvity constant and background
current (translated to a voltage). Testing then proceeded with the endre setup
configured as a closed-loop system with the sensor providing the required
feedback signal to the conwuoller. Thus, every component of the model

system depicted in Figure 2-2 is incorporated into the final phase of testng.

Open Loop Testing

The sensors were tested i wifro to observe their individual response
charactenstics and to make a comparative study of the sensors as a whoie.
This phase would establish and confirm the linear operaton of the sensor
and help judge the suitability of the software controlling algorithm. This

48

would also allow individual sensor charactedstics to be comparuvely analysed
to determine how closely they correlated. This analysis defines what kind of
software calibraton, if any, is required before the sensor can be utilized for

gathering data that accurately reflects blood glucose concentraton.

Five separate glucose solutions of known concentration were prepared in
phosphate buffered saline (PBS) and placed in a water bath maintained at 37
°C. The sensors were then connected to the potentiostat-meters and
suspended, in turn, in each of the five solutions. Inidally, all of the sensors
were allowed to stabilize in the solution with the lowest concentraton of
glucose for 30 minutes (the maximum required stabilzaton period previously
observed [9]). Readings were then taken at 15-minute intervals as the sensors
were moved from one glucose solution to the next in increasing order of
concentragon. This cycle was repeated up to 20 dmes for each sensor. The
sensors were rinsed in D.D. water at the end of each cycle to remove any
residual glucose from the sensor’s up before being reimmersed in the

soluton of lowest glucose concentration.

Results

Figure 3-1 represents a typical glucose sensor's performance when submersed
within five known glucose concentrations of 3, 5, 10, 15, and 20 mM/L of
glucose in thermostated PBS at a pH of 7.4. These test conditions were
chosen to simulate the typical range of glucose settings a sensor would be
exposed to when subcutaneously implanted in a padent. Repeated cycles of
testing proved that consistent results could be achieved with most (12)

sensors. This is important because the sensor’s response characteristic must

49

be predictable if it is to be viable for prolonged use, as per the requirement

outlined in Table 2-1.

Five sensors, however, did not yeild consistent results as demonstrated in
Figure 3-2. This is most likely due to the imprecisions accociated with some
of the steps in the fabricaton procedure. Varations in Pt electrode area and
the thicknesses in the tn-layer coating could account for significant deviadons
in the sensor's response [16]. Damage to the sensor’s coating from prolonged

exposure to air or sharp surfaces could also account for unpredictable results.

60

50

H
(@]

Voltage (mV)
W
o

N
(@)

10

0 5 10 15 20
Glucose Concentration (mM/L)

50

Figure 3-1. Glucose meter voltage
readings for known concentratons of
glucose in 37 °C thermostated PBS, pH
7.4. A consistent correlation in sensor
response was achievable from one
measurement cycle to the next. # =5

51

Voltage (mV)

%

3

2

8

Figure 3-2. Glucose meter voltage
readings for known concentratons of
glucose in 37 °C thermostated PBS, pH
7.4. Inconsistent and fluctuatng
response due to imprecise control over
fabricadon and layer thickness. # = 5

52

The dozen sensor’s whose response charactedstucs demonstrated linear
response characteristics were tested 20 dmes in the five known
concentrations of glucose in thermostated PBS and an average behaviour was

established for each. The result of this test is shown in Figure 3-3.

3

g

Voltage (mV)
8
_l

3

Figure 3-3. Average responses from 12
sensors. Each sensor displayed different
linear characteristcs.

Although a consistent fabricadon procedure was followed for each sensor,
unique characteristics resulted for several sensors. Five sensors did however
have very similar characterstics. Figure 3-3 also reflects each sensor’s
sensitivity. A sensor whose charactedstic displays a steeper slope is more
sensitive to changes in blood glucose concentration. It is this range of

sensitivities that indicates the need for a preliminary calibradon procedure for

[9)]
(W9

individual sensors before any clinical application can take place. A calibration
procedure will inform the controller of the sensitivity of the sensor so that

accurate measurements can be made.

An additonal test was preformed to observe how a sensor’s response would
vary after a perod of dommantcy; that is, after not being used. The sensor’s
average characterisic was established using the five known glucose
concentradons of 3, 5, 10, 15, and 20 mM/L of glucose in thermostated PBS
at 2 pH of 7.4. The same sensor was then placed in a sterl bag and tested
again two weeks later. The results shown in Figure 3-4 clearly indicate that
the sensor’s characteristic had significantly changed, however it’s slope, and
thus its sensitivity, had depreciated by a lesser degree. A greater difference
exists in the voltage measurements made at higher glucose concentradons
than at lower concentrations. An even wider gap is predicted if a longer aging
period were allowed. Over time the sensor’s response becomes almost flat.
The paramount implication suggests a limited lifespan that is significanty
below the desired 1 year lifespan suggested in Table 2-1.

25

20

\

Voitage (mV)

—
(=]

0 5 10 15 20
Glucose Concentration (mM/L)

Figure 3-4. Average responses for a
sensor with readings taken two weeks
apart. (The lower curve shows the latter
response.)

After tesing the sensors’ charactersdcs, they where then tested in
conjunction with the software controller. Once again, using five known
glucose concentrations of 3, 5, 10, 15, and 20 mM/L of glucose in
thermostated PBS at a pH of 7.4, stable sensors produced equivalent
responses to that shown in Figure 3-5. Pdor to running a test, the sensor was
calibrated based on its established linear charactedstic. For the remaining
tests, the potentiostat/glucose meter was connected to a desktop computer

via an A/D port on the LabMaster 20009. The LabMaster’s parallel interface

55

with the computer provided the controlling program with the necessary
signal from which to calculate and display an actual glucose concentration
value. The open-loop experiment provided a means to test the sensor’s
interacion with the signal amplifier of the potentostate/meter and the
LabMaster interface with the computer. Open-loop testing proved to be
successful with the results clearly showing the relatonship between the
sensor’s characteristics and the final observed glucose concentrations now
readable from the user interface displayed by the program. With the sensor
submersed sequendally in each glucose solution the open-loop results of

Figure 3-5 were produced.

Each plateau in the graph of Figure 3-5 depicts the sensor’s submersion in a
different glucose solution. Samples were taken at a rate of one sample per
second, since the sensor’s response time is much faster than it is in living
dssue, changes could be observed more quickly. The side-effects of such a
fast sampling rate however are the spikes produced durng the sensor’s
transiton from one solution to the next; i.e., when it was physically removed
from one soluton and placed into the next one, and which can thus be

ignored.

56

AlIC Open-Loop Test
20
-y
= 15
=
E
e
c
'910
pre=—y dhy,
S Y
Yt
o
<4}
2
0
8 5
[+}]
n
o
(&}
2 O i T T T T T 1 T T T T T i T T ¥ T T T 1 T T T 13 T v T T 7
o - ~— - - - -~ r~— — -~ *~ - ~— — ¥ -— by — -
© NN O <« (o) © N © < O © N 0 < O @0 «
- — N ™ N T < 0 O O ~ N @ D o O
2
-5
Sensor Sample (1 sample/sec)

Figure 3-5. Typical iz wvitro response
characteristic for a sensor in five known
glucose concentratons.

It was observed that the sensor’s measurment became less accurate for the
highest concentraton of 20 mM/L, but overall demonstrated good
performance. This occurs because the operating characteristc of the sensor
becomes non-linear in extreme glucose concentratons, which in turn is most

likely due to reactionary saturaton at the sensor’s surface.

57

Closed-Loop Testing

The final step in testing the overall control system must involve closing the
loop. This means that the controller must now be permitted to compenstate
for elevated levels of glucose by infusing insulin into the patent. Closed-loop

testing now involves all of the components indicated in Figure 2-2.

A large beaker with 100 to 200 mL of PBS at a pH of 7.4 with a preliminary
glucose concentration of 5.5 mM/L was heated to body temperature and
stred at minimum speed using an automatic stirer. A calibrated sensor was
connected to the potentostat/glucose meter which in turn was connected to
the A/D port of the LabMaster. The sensor tp was then submersed in the
glucose solution. The CIM unit of the variable pressure pump was connected
to the seral port of the computer and the pump was equipped with a saline
bag with which to infuse the beaker containing the glucose solution. The
compensaton of elevated glucose would be handled by a method of dilution
to simulate the biological metabolization of glucose by insulin. With the
system now closed, tests were performed to observe how the human body
would react to a relatively sudden increase in glucose that one might
experience after a meal. In Figure 3-6 the algorithm’s inidal infusion rate of

20 ml/hr immediately causes a decline in glucose concentration.

58

Glucose Concentration (mM/L)

The sharp rse in Figure 3-6 indicates the point at which a small amount, 3 to
5 ml,, of another glucose soution was injected into the beaker. The sensor
immediately registers the change in glucose concentraton and the system in
turn increases the insulin (in this case saline) infusion rate in order to brng
the system back into an equilibrium where the concentradon of glucose is
brought back into the nominal range of about 4 to 6 mmol/L of glucose.
Because the glucose level is reduced gendy, it is reduced to the lower

concentration of 4.0 mmol/L before the infusion of saline is completely

65

eld
2]

(8]

3

»
n

35

Figure 3-6. Typical closed-loop system
response to a rapid increase in glucose
concentraton introduced to the system
after 150 seconds.

halted according to the given algorithm (Table 2-4).

59

M\IL\T“H_“ : %H A
il W |
: : + 100
A
VWU
: - 5C
i Nyere)
51 101 151 20 251 301 351 401
S ple (1 ple/5 sec)
{——Glucose Conc. ----- Infusion Rate |

Insulin Infusion Rate (mLMr)

When glucose concentration was once again reduced to 6.0 mmol/L the
speed of the pump was no longer increased as per the given algorithm. This is
indicated by the flat region in the infusion rate curve. Because of the one
second sampling rate of one sample per second the pump was allowed to
reach a pumping rate of 275 mL/hr where it leveled off. A slower sampling
rate, more in line with the body’s response time of about three minutes,
would not have permitted this since there would have been more tme
between samples for the glucose concentraton to change. Thus the pump’s

speed would be adjusted significantly less often.

The results of another experiment in which two incursions of glucose were
allowed to enter the system is shown in Figure 3-7. The inidal glucose
concentration was preset at 5 mmol/L. Once again, it was gradually lowered
by the inigal infusion of saline. At the 100 second mark and again at the 315
second mark, a small amount of concentrated glucose soluton was added to
the beaker. In both cases the infusion of saline diluted the concentradon of
glucose to within the nominal range before haltng. With the first incursion of
concentrated glucose, the glucose was lowered faster and thus the pump was
halted sooner; when the glucose level was restored to 5 mM/L. After the
second mtroduction of glucose, a more gradual decline in the glucose
concentration again caused the pump to cease when a level of 4 mM/L was

reached as per the given algorithm (Table 2-4).

60

10 1200
= — \\— T 1000
E - ! ; =
= 7 s — £
5. I\ NS
g ST /[\— T A -: \ &0 ;3
§ 4 : : S
2 -' =
Q
32 - } 200

1 ! . ! .

0- . L . . ‘ = ud

1 51 101 151 201 51 301 1 401
Sensar Saxrple (1 sarple’s sec)
f——GwcseOrn ------ IMfusion Rete

Figure 3-7. Typical closed-loop system
response when two rapid increases in
glucose concentration occur in
succession.

The varable pressure pump reached its maximum pumping rate in this case
because a glucose level of 6.0 mM/L was not obtained pdor to the pump
reaching its top speed of 1000 mL/hr, so incremental increases continued to
this point for both incursions of concentrated glucose. Again, a slower
sampling rate would mean far fewer incremental increases in the infusion

rate.

61

Chapter 4

CONCLUSIONS

Insulin Infusion Control

The overall closed-loop infusion delivery system was shown to be possible
and all components functioned within the prescribed specifications. Stable
sensors were shown to reflect and follow with great accuracy, actual glucose
concentrations. The closed-loop experments demonstrated that elevated
levels of glucose could be properly compenstated for by a controller that
resembles the human body’s natural response (Figure 2-3). Using the needle-
type, Nafion coated glucose sensor as the feedback element to close the loop

the feasibility of such a system was demonstrated.

Canine Testing

Preliminary work was done to conduct open-loop iz #ve tests on dogs, but
proved unsuccessful. On three spearate occations a sensor was implanted
into the sub-cutaneous tissue of the neck area of a diabetc dog. In each
instance no significant vardaton could be measured in the sensor’s signal
current as the when the dog was given an oral bolus of glucose. It is believed
that the sensors were either improperly placed or suffered damage upon
inserton into the dog’s tssue. Even a small nick or scratch could effectvly
render a sensor useless. As mentoned ealier, successful trials have been

conducted on rats, dogs, and human beings in separate clinical studies.

62

Future Research

Methods for the treatment of diabetes contnue to be diverse. The directions
that research has taken ranges from less invasive treatment techniques, such
as the insulin inhaler [34, 35] and the jet injector [36] to surgical techniques
such as islet transplantadon [37, 38, 39]. More exotic methods are also
gaining momentum, such as the promising research towards the development
of a diabetes vaccine underway at the University of Calgary [40], and tssue
engineering for the restoraton of damaged or destroyed organ tissue [41].
The methods that have had the most dramatc effect are those that have
offered a closed-loop for optimal therapy. One such approach is that of the

device-type artificial pancreatic control system discussed in this study.

In 1986, at the Applied Physics Laboratory at Johns Hopkins Hospital
University in Laurel, Md., the first programmable insulin-delivery system was
implanted in a patent. Some 20 patents since then have received the pumps,
which are embedded below the skin in the abdomen. The implanted pump
can hold about 2 %2 teaspoons of concentrated insulin [42]. But while the
need for daily insulin injectons is eliminated for a perod of up to three
months, the padent must stll manually check their glucose levels by
conventional means and then transmit the required perscripton to the device
before it will deliver the insulin. Research has shown that optimal therapy
means that the system ideally should respond around the clock as needed to

independantly manage blood sugars in real ame.

With the current implementaton of the automatic insulin infusion control
system, further development for its use in clinical environments where central

monitoring is employed could be useful. Because the system is computer
63

controlled, a network of systems connected to a central monitoring staton
would allow more than one patent to be monitored and treated at a tme.
The system also provides a useful testbed for alternative control algorithms,

glucose sensors, and delivery systems.

However, for portable use, the necessity for the miniaturizadon of the
glucose monitoring component of the system is apparent. MiniMed Inc.
(Sylmar, C4) is one company which has been a leader in the development of
devices for the treatment of diabetes. Recentdy (June, 1999), they have
received preliminary approval from the Food and Drug Administraton
(FDA) to commercially distribute a new glucose monitoring system device
[43]. Poitout ez 2/ have mentoned the architecture of the control unit could

be designed to allow for miniturization to the size of a wrist watch [44].

Finally, improvements in sensor life span are crucial for long-term clinical use
[10]. This would also help promote the development of a miniature, wearable
ardficial pancreas. This study should further support the feasibility for a

closed-loop control scheme.

64

Appendix A

ELECTRONIC DESIGN

In order to recetve the sensor’s signal into the computer a potentostat was
needed to provide a stable bias voltage to the sensor and thus provide the
means for a signal current to be produced as per Equation (2-2). For easier
open-loop testing the signal current is converted to a voltage and displayed
on a small voltage meter. This same voltage is also amplified to provide a
more sizable signal to the LabMaster Analog-to-Digital converter for
subsequent reading by the computer’s controlling software. This appendix
outlines the design theory and design steps to produce a portable device that
could accomplish all three of these tasks.

65

A Pontentiostat

A simple potentiostat circuit is llustrated in Figure A-1 below.

Y

Al
—] ("‘
]
s | K,
t

Figure A-1. A circuit for controlling the
potental at point A independenty of
the changes in the resistances R1 and
R2. [12]

The input voltage applied to the top terminal (the inverting input) of the
operational amplifier in Figure A-1 indicates a value of ¢, with respect to the
bottom terminal (the negatve end of the battery). Since the op-amp's
inverting input acts as a virtual ground, the lower terminal, and thus point A,
are at a potental of -¢ with respect to ground. In order to maintain this
conditon, the op-amp must adjust its output by contolling currents through
the resister network. As a result, this method provides an effective means for
controlling the voltage at a certain level, even when the resistances fluctuate

during the experiment, and forms the basis for a potentostat [45].

The current that passes through R, also passes through R,, and thus the total
output ¢, is £, (R, + R,). Since, by Ohm's Law, /, = -¢/R,,

66

R +R,

(A-1
R) (A-1)

e, =—¢,(

An electrochemical cell, in this case the glucose sensor, can be modelled as a

network of impedances like the one shown in Figure A-2 below.

——————
K ¥ K w
Ze —AAA— 0
l ®
Caunter Reference Yorking

(a3

O 0O
Counter Reference Yiorksny

bl

Figure A-2. An electrochemical cell
model showing the electrode terminals.

Z, and Z, in Figure A-2(a) represent the interfacial impedances at the
counter and the working electrodes, respectively, while R, and R, represent
the soluton resistances split into two fractions, depending on the position of
the reference electrode’s probe in the current path. This model is further
simplified by the network in Figure A-2(b). While many electrochemical cells
require a counter connecton, the two terminal configuration of the glucose
sensor employed in this control system does not and the network can be

further disulled down to a single impedance.

67

The glucose sensor incoporates working and reference electrodes and it is the
impedance between these two that fluctuates during glucose level
determination. The circuit, then, that demonstrates the potentiostat for this
system is represented in Figure A-3, where interfacial and soludon resistances

related to the sensor can be represented by the single impedance Z, and the

output voltage is just the negatve of the input supply, or ¢, = -¢.

68

Figure A-3. A simple potentostat circuit
for controlling the potendial at point .4
independently of changes in the sensor's
impedance Zj.

The required sensor bias voltage now depends on ¢, but must also be derived
from the circuit's 9 volt power supply. The source, represented merely as a
battery in Figure A-3, must supply a reference voltage of 0.7 volts. In order to
accomplish this a voltage regulator is in order. By definiton, the most
important requirment of any refernce voltage source is that it must maintain
an accurate and stable output voltage with varying conditions of input

voltage, time, temperature, and loading [46].

While the operatonal amplifier in Figure A-3 is key to the model for a
potentostat, it also bears responsibility for the dual role of a voltage reference
source because of its high input impedance and easily adjustable gain. It also
incorporates low output impedance and substandal output current capability
[47]. In partcular, the LM124 low power quad operational amplifier was
chosen for these reasons and because it is specifically designed to operate

69

from a single power supply [48]. Figure A-4 shows the final voltage

regulator/potendostat to provide the necessary sensor bias voltage.

70

r4

/W
. —e)
v, Z, __(/ + R
- Eo= - RF v
_T, |

Figure A-4. A potentostat with a zener
referenced source and feedback, which
can be adjusted to produce the desired
output voltage.

The loading conditon on the zener diode is constant and provides excellent
regulaton even while the input voltage, V, (a battery) begins to depreciate

over ume. The output voltage is given by

R
Eo =-——£ V ([\-2)
RI REF

The required potentostat voltage output, E_ again is 0.7 volts, to properly
bias the glucose sensor. Measured from the output terminal to ground in
Figure A-4, the output will be -0.7 volts since the circuit is configured in an
inverting mode of operation. A 3.3-Volt zener diode will act, in its common

role, as the voltage reference. Thus from Equation (A-2),

R
-07V=--£33v
R

1

and
71

= |$°
]
o
N
et
[(S]

A combination of resistances is needed to meet this ratio and the following
values were chosen: R = 500 @ vanable and R, = 1.8 kQ. Resistors with 5%
tolerances were satisfactory since the adjustable feedback resistor, Rp (a
trimmer potentiometer), would be used to calibrate the potendiometer output
to exactly 0.7 volts. The trimmer potentiometer also offers the advantage of
being able to adjust the bias voltage to different values to accomodate the
requirements of different kinds of sensors. With the partcular resistor
combinaton chosen this would allow for an effective range of 0 to 0.917

volts for a possible sensor bias voltage.

The reference voltage component is, for all practical purposes, isolated from

any load being driven. The effective output impedance can thus be detived as

Royr = A,OB (A-3)

72

where

R, is the open-loop output impedance of the operadonal amplifier and A is

its open-loop voltage gain. The load reguladon can thus be written as

R .
Regulation % = —2—x 100 (A-4)
Ap

L

Ideally, R, for any op-amp is assumed to be very small (zero for all intensive
purposes), but a typical value of 75 ohms is assumed for design purposes
[49]. The open-loop voltage gain is 100 dB, or 100 000 [15].

While the supplied bias voltage must remain constant, the sensor’s impedance
is allowed to fluctuate inverse-proportionally with the concentration of
hydrogen peroxide in the host's blood. Put another way, this fluctuating
impedance is reflected by the fluctuating current produced by the reaction of
Equation (A-2). It is this current that in turn reflects the concentradon of
glucose in the host’s blood. The glucose meter is equipped with an LCD
display to indicate a value that is propordonal to the glucose concentraton in
which the sensor is placed. The meter component itself is a voltmeter capable
of displaying a volrage in the range 0 to 200 mV. Thus, the current available
from the sensor must be converted to a voltage. This is done with a resistor
placed across the sensor's working electrode to ground. The voltage potenual
across this resistor is then measured and displayed. The maximum current the

sensor will practically produce is approximately 500nA (corresponding to a
73

high concentradon of blood sugar levels). Thus in order not to exceed the
200 mV range of the meter, a resistance of about 400 kQ is in order, by ohms
law. By design then, and from Equaton (A-4), the regulaton is limited to a

value smaller than 0.001 %, providing for a very stable potentdostat.

Voltage Amplification

In order to accomodate the computer interface, a degree of signal
amplification is needed to satisfy the sensitvity requirements of the
LabMaster analog-to-digital convertor. An output swing of 0 to 3 volts was
chosen as the desired range so as not to exceed power source limitations even
after the source has decayed. With the potental across the current-to-voltage
transforming resistance providing the input, a conventonal non-inverting
amplifier with a gain of 15.3 was employed. Thus the 200 mV peak across the
afore mentoned resistor would be amplified by the gain value to produce a
peak output value of just over three volts, meetng the LabMaster’s

requirement.

IFigure A-5 shows the schematc diagram of the completed
potentiostat/meter/amplifier. Though the possibility of electrical surges is
unlikely, an extra stage, such as an opto-coupler, could easily be included to
provide electrical isolaton between power sources associated with the
computer and the implanted sensor as a precaution before inifating human

clinical studies.

74

£

B 0 G]38 WAL 3id

_ __o:s__m_ - Sief

v

e U - 1 aug
IO 9s0on|n

e e, amL

Nior

[CTARYTR)Y]

ONOHd ININ ¢ _
a A

it

L1311eq 5w Suo) s (paserq) uo urewas jjjw sosuss sy mnoua sosuss
1IN H0U $30p 10q 10 1o o Leydsp 07)) 39901 |§ YIUMG

11 yf ouond yFnony 101131100 (1Y 10 1910031 [FUIAND UE 10] puw
FWSY T ~ NIVD it 1apt(dure Sujirasur-uou ¢ 51 a3ess priooos o
Luidstp (17 41 10) toIsI3A03 33110+ 0 1waLng o) saprsond oy

A L0 Sjpevs ot s3ejos
STIq 3105135) 2irq1eI 0) Past o ted bod 1oL MY,

10533 950003 Pa13auu0) S[jeulaind oyt tog afmijas seig A £
patinbos 3yt s3p1soad 1y Joreindat o3esjos 51 SRus sty oy}
SHLON

T A
vin

Nt

XK

T

HOSNAS HSOJTID

Schematic diagram of the completed

o
(D]
(S|
e |
i
~N
“
Y
1)
g
S
g
w)
8
e
& &
LA,

75

Appendix B

SOFTWARE DESIGN

The core of the closed-loop insulin infusion system is the controlling
software, or program. A program is an organized list of instructions that,
when executed, causes the computer to behave in a predetermined manner,
and in a way is like a recipe. It contains a list of ingredients (called vanables)
and a list of directions (called statements) that tell the computer what to do
with the vadables. The variables can represent numeric data, text, or graphical

mages.

While there are many languages in which a program may be written, C was
chosen because of its powerful and flexible control capabilides over a
computer’s hardware components including the serial and parallel ports. It
was also chosen because of its relatvely low developmental overhead and
application towards modular design. The advantage is a shorter development
period and a program with a quicker execution speed. A modular design
approach also allows for different program components, or modules, to be
replaced to accommodate different hardware components should those
components be replaced. For example, if a different infusion pump model
were to be used, a different code module could be developed without

disruption to the rest of the program code.

76

Design Approach

The software development process involved the following steps: problem
identdfication and analysis, user consultation, planning, coding, debugging,
testing, and implementation. As is usual in software development, several, if

not all of these steps, are repeated as necessary as a project evolves.

The original problem presented was that of providing a means by which a
computer program could sample glucose concentration levels via a needle-
type glucose sensor, determine an appropdate insulin infusion rate based on
that reading for one of three medical situations: islet transplant, a surgical
procedure, or delivery, and then instruct a pump to carry out the actual

infusion. In addition, all data would be recorded for future analysis and

displayed in real-ume to the user.

In order to solve this problem it was broken down into three separted stages
to simply the overall development. Each stage produced a different
operational mode for the control system. The first stage produced a program
for open-loop operaton in which glucose levels would be gathered manually
on a regular schedule and then entered into the computer using the keyboard.
The collected data (both glucose levels and corresponding insulin infusion
rates) was then displayed in a meaningful way on the computer’s monitor for
medical staff, who would then program a varable pressure pump to deliver
the insulin at an appropuate rate. This first implementation of the program
incorporated the required glucose level-to-infusion rate algorithm and
established the primary interface elements that would carry through to other
implementations. The second stage extended the capabilities of the first by

establishing a seral communications link with an IVAC 570 vanable pressure
77

pump equipped with a Computer Interface Module (CIM). Thus, the
program user would enter glucose levels manually, but insulin infusion would
be computer controlled. The third stage added the final component that
would form a closed-loop system — the glucose sensor. The current signal
from the sensor was conditioned using the potentostat/amplifier/meter
described in Appendix A, then sampled and digtized using the analog-to-
digital converter of the LabMaster 20009, which in turn was received by the

computer program via a parallel port.

At the end of each stage in the software’s development the steps previously
mentoned were conducted untl the application was ready for practcal use,
beginning with problem identficaton and analysis and ending with

implementation.

Code Structure

A modular, procedure-oriented, top-down programming approach was taken
to develop the actual code. The program was compiled using the Turbo C++
integrated development environment (version 3.0) made by Botland® and will

execute on any personal computer running the MS DOS™ or Windows™

operatng systems.

The modules contain the varous functons for controlling different aspects
of the program’s operation as well as the hardware elements that are infaced
with the computer. The table below summarizes the contents of each

program module.

78

Table B-1 Summary of the functons
contained within the program modules
for the controller software.

Program Module

Description

Cdme

Gio

Graphics

Infusion
Ivac

Labmastr

Menu

Misc

Process

Senial

Sound

Time related funcdons for entering and
displaying times and dates and keeping track of
countdowns

Functions for collectung data in a graphic display
mode as well as displaying prompts, menu
optons, error messages, and providing cursor
control

Functons for inidalizing the graphics display
mode and displaying the special prompts, and
warning messages

Contains the “main” function and the process
control loop that detects and executes all actions
Functions for constructing valid instructions to
send to the IVAC 570 varable pressure pump
Funcdons for initializing the LabMaster 20009
A/D converter, as well as functions for sending
and receiving informaton to and from it
respectively

Functons for handling user input fields and
menus In text mode

Addidonal funcdons for displaying input
prompts and messages and receiving user input
in a graphics mode and while in a loop where
other processes may be going on at the same
tdme.

Functdons which determine the approprate
insulin infusion rate for the three medical
situatons: islet transplant, surgery, or delivery
Functons for sending and receiving characters
through a senal port

Functons for handling the auditory warnings

79

Program Module Description

Store Functons for initializing, opening, and wrtng
to a text file to store patient information as well
as nmes, measured glucose levels and insulin
infusion rates

Terminal A custom terminal program for sending
instructions directly to the IVAC 570 pump

Title Displays an initial graphic ttle screen when the
program is run

User_in Functons for collecting the patent’s personal

information including name, weight, hospital,
physician, as well as a function for settng the
name of patent’s actual data file where the
information is stored

Serial Interfacing with the IVAC 570

The IVAC 570 infusion pump can be equipped with a Computer Interface
Module (CIM), which essendally acts as a modem by establishing the seral
communicatons link between the pump and a personal computer via a
standard seral cable. This allows software running on a separate device (a

computer in this case) to inialize the pump and set its infusion rate remotely.

When the CIM receives a properly formatted command, it returns an
acknowledgement to the computer. There are two types of command for
controlling the CIM: action and non-acion commands. Once a
communicatons link is established with the CIM, it must receive a Mode
Interrogation command (non-action command) within a specific tme-out
period, which can be configured to range from 20 to 120 seconds. If the CIM
does not receive this command withing the tim-out period, the pump will

invoke a an alarm message (both audible and textual using its own display)
80

and the communications link will be broken. Non-action commands do not

change the operating status of the pump, but merely report on it.

The command sent to the CIM must have the following format, otherwise its

acknowledgement response will indicate an error.
Xdddxxabed][cr][1f]

The command must begin with an upper case “X”. The string of characters,
“ddd”, denotes the ID number of the CIM, which must be a three-digit
number between 001 and 999. This is to account for the possibility that more
than one CIM could exist within a networked environment. In such a case
commands are sent to CIM units individually. The command code is denoted
by “xx”. The command code may be either one or two characters in length,
and specifies the precise actdon to be taken by the pump or the data to be
returned if it is a non-action (interrogatton) command. The string “abcd”
represents the operand field that appears in many (but not all) commands.
This field is used to specify a particular command-associated value, such as
the flow rate. Non-action commands rarely have operand fields, and are
usually followed by a question mark (?) to indicate that the command is a
request for informaton only. As indicated in the general command syntax
above, all properly formatted commands are terminated by an ASCII carriage
return [cr] and line feed [If]. The CIM will validate any commands it received
on its own. If a properly formatted command has been received, it will return

an aknowledgement to the computer with the following format:

Adddyyabcd|cr][1f]

81

The capital letter “A” and the “ddd” indicate an acknowledgment and the ID
of the CIM respectively. The string “yy” is the response code. Some non-
action commands display an operand field for the string “abcd”. Below is a
typical command that would be sent to the CIM to change its infusion rate

and the acknowledgement that would be returned.
XO001RPO700(ct][1f]
AO001OK[ct][1f]

The “RP” command sent to the CIM unit 001 will change the pump rate to
70.0 mL/hr. The CIM acknowledges the properly formatted command with
an OK message for the same unit. In order to detect a reliable seral
connection between the CIM and computer a Mode Interrogaton command
is sent every 20 seconds. After it is received an acknowledgement is returned

indicating the pump’s current operating status.
X001 M?[cr][1£]
AOO01IM17R[cr][1f]

In this case, CIM unit 001 reports a code of “17R”. The “1” means that the
pump is currenty in the “RUN” operating mode, the “7” indicates that the
pump’s display is showing units of “mL/hr”, and the “R” means that the
pump is being controlled remotely (as opposed to locally, without external
control). If the pump were experncing an alarm conditon a “5” would have
been returned instead of a “1” and the following character would indicate

which condition was causing the alarm. If this were the case, an appropuate

82

message would be displayed to the system user on the computer’s screen and
an audible alarm sounded so that the problem may be immediately dealt with

or corrected. Normal operaton could then resume afterwards.

The C-code function used two send instructions to the IVAC and receive

characters back from it is show below.

/* SOURCE: ivac.c */
/* These functions provide serial interfacing with
/* the IVAC 570 infusion pump. */

#include <stdlib.h> /* Contains itoa() */
#include <string.h> /* Contains str... () */
#include "ivac.h" /* Contains CR and LF */
#include "serial.h"

/*

** PROTOTYPE: void ivac570(int unit, char *command)

** PURPOSE: Send a command to an IVAC 570 Veraible Preassure Pump
** NOTE: unit must be in the range 1-999

*/
void ivac570(int unit, char *command, int value)

{

char ivac_command[20]; /* Stores the complete ivac command string */
char unit_str(5];

char *null_ptr; /* Points to the NULL at the end of a string */
char value_str(5];

int command_length, i, ch;

/* Convert unit number to three character string */
unit += 1000; /* Add 1000 to pad left side with zeros */
itoa(unit, unit_str, 10);/* Convert to string */

/* Build command string */

strcpy (ivac_command, "X");

strcat(ivac_command, unit_str+l); /* Add 1 to point to first digit =/
strcat(ivac_command, command) ; /* of IVAC unit number */

/* Check if command requires a value */

if (!strcmp("RP", command)) { /* Set Infusion Rate */
value = value * 10 + 10000;

itoa(value, value_str, 10);

strcat (ivac_command, value_str+l); /* Append value */

}

command _length = strlen(ivac_command)+2;/* Get length of command string */

/* Add 2 for the CR and LF */

83

/* Replace the NULL terminator with CR and LF */

null_ptr = strchr(ivac_command, NULL) ;
*null_ptr = CR;
null_ptr++;

*null_ptr = LF;

/* Send command to IVAC */
for (i=0; i<command_length; i++)
s_sendchar (* (ivac_command+i)) ;

/* Receive response from IVAC - check if character waiting */
while ((ch = s_rcvchar()) !'= -1) (
putch(ch) ; /* Display char received from DTE */

}
}

Parallel Interfacing with the LabMaster 20009

The LabMaster 20009 is a combination Analog-to-Digital/Digital-to-Analog

convertor. The daughter board of the devices is plugged directly into an IDE

slot of the computer whild a parllel cable connects it to the external

connector box. Custom functions were developed to send initalizaton

commands to the LabMaster as well as read digitzed values of the sensor’s

conditioned current signal. The code lisung below shows how this was

accomplished.

/* SOURCE: labmastr.c
* Functions to control I/0O for the LabMaster 20009
*/

#include <dos.h>

#include "labmastr.h"

int high, low:;
/* PROTOTYPE: void labmaster_init(int gain)
PURPOSE: Initialize the Lab Master

to set the gain of the Lab Master
NOTES: Bits 1 and 0 (GS1 and GSO0) of the control byte are

* 4 % o+ % %

software programmable gain, these bits are ignored.

84

PARAMETERS: gain: An integer of 1,10,100, or 500 that is used

used to set the gain. If the Lab Master is not equipped with

*/
void labmaster_init(int gain)
{

unsigned char control_byte;

control_byte = 0x80; // Disable auto-incrementing, external start
// conversions, and all interrupts

switch (gain) {
case 1:
control_byte |= 0x00; // gain
break;
case 10:
control_byte |= 0x01; // gain
break;
case 100:
control_byte |= 0x02; // gain
break;
case 500:
control_byte |[= 0x03; // gain
break;
default:
control_byte |[= 0x00; // set gain to 1 for invalid gain parameter
break:

}

outportb (LABMASTER+4, control_byte);

}

it
=

10

100

500

/* PROTOTYPE: void labmaster_out(int dac_port, int data)
* PURPOSE: Send data to the LABMASTER 20009
* NOTES: The parameter dac_port may be 0 or 1, the parameter data should
* be between -2048 and 2047 (signed 12-bit integer).
*/
void labmaster_out(int dac_port, int data)
{
high = data>>8§;
low = data & Ox0ff;
if (dac_port == 0) (
outportb (LABMASTER+1, high); // Send the upper 4-bits first
outportb (LABMASTER, low); // Send the lower 8-bits
}
else (
outportb (LABMASTER+3, high); // Send the upper 4-bits first
outportb (LABMASTER+2, low); // Send the lower 8-bits
}
}

PROTOTYPE: int labmaster_in({int adc)

PURPOSE: Sample from LABMASTER 20008
NOTES: The parameter adc is the ADC input channel to set the
multiplexor to before conversion. A function call will start a
conversion and then wait for the conversion done signal.

The value returned will be between -2048 and 2047 (signed

85

* o+ A X o *

* 12-bit integer).
*/
int labmaster_in(int adc)

{

int data;

outportb (LABMASTER+S5, adc); // Initialize adc channel in the analog

multiplexer
outportb (LABMASTER+6, 0x00); // Start a conversion

/* Wait until the highest bit in the register becomes 0,
* indicating the end of a conversion */

while (inportb(LABMASTER+4) < 0x80)
; // Do nothing

low
high

inportb (LABMASTER+5); // Read the 12-bit (8+4) data
inportb (LABMASTER+6) ;

/* Obtain the actual decimal magnitude */
data = high*256 + low;
return (data);

Process Control

The programs operation is broken down into processes. Since the software
must funcdon in a real-ime fashion, there can be no process which causes
the program to halt. The principle challenge of the program’s design was in
developing procedures that allowed for a flow-though approach. Thus, even
when a prompt requiring user input on the keyboard is displayed other
processes are stll receiving attenton constituing muldple #hreads in the
program’s execution. This means more than one thing are happening at a
given moment, such as updating the time, or the display, or the data file, all
while a user may be interacting with the system. The flowchart of Figure B-1

below summarizes the program’s various processes.

86

Get patient info
B1C D E A
¢ b A 4
Initialize display,
LabMaster, CIM, -
and time Determine and
o] display infusion
0 ¢ rate and send to 7
pump
Check for alarm
condition ¢
L | Get time and a
* Key pressed update data file
1 Get key pressed i
ESC twice * Redraw graphs if
» Glucose prompt | o horizental limit 9
2 promp reached
ESC once ¢
3 Get giucose level
¢ Change unit 10
value
4 Confirm glucose
level]
¢ \ 4
5 Display glucase | Confirm quit 11
level
¢ v
! d exit
6 Prompt to begin ¢ ea::)pg?:m et 12
infusion with new
glucose level

8YcYDYE é)

Figure B-1. The process threads that
execute in different combinations
depending on the state of external
hardware or user interacton.

The numbers next to the blocks correspond to the numbers used to direct
program flow using the “switch” statement shown in line 388 of the program
listing at the end of this appendix. Note that processes 1 to 4 are only
executed if the user is entering glucose levels manually using the computer’s

keyboard as opposed to obtaining a glucose measurment from the sensor.

87

Error Protection

Since the insulin delivery system is a safety-cdtical system, approprdate
features have been built into the software to sense and report when a
problem has occurred, and if necessary (and possible), to take acton to
prevent injury. Thus, a limited measure of fau/t-folerance 1s incorporated into
the system. Fault-tolerance is a system’s ability to react positively to its own
failure. However, due to the integrated nature of the system, overall reliability
depends on the reliability of every component, and no one can ever be
certain that any system will be 100% fault-free and fault-tolerant. A fault-
tolerant software system may not necessarily be safe. The sources for a
system malfunction in this case basically stems from three considerations.
Firstly, the specification for the system may be incomplete. Extreme or
unforeseen circumstances requiring special attention may arise not originally
specified. Secondly, hardware malfunctions may cause the system to behave
in an unpredictable way, presentng the software with an operadng
environment that was unforeseen. For example, the software, acting as the
controller by determining the necessary insulin infusion rate, will sull operate
reliably even when the characterstc of the glucose sensor has changed. The
controller would continue to operate using the inital report of the sensor’s
operating characteristic, resulting in incorrect infusion rates. This problem
would have to be overcome with a manual re-calibration or replacement of
the sensor. Theoretically, with a more sophistcated analysis of the data as it is
being received, the sensor’s charactedstic could be analyzed and compensated
for dynamically by the computer. Thirdly, the system operator may offer
input to the system that causes a malfunction. Unintentonally, the user may
perform an action that the software will obey, but may be inappropriate [50].

88

In this case, the user could start the infusion process before the IV needle 1s

propertly inserted into the patent.

A number of steps were taken during the development process to prevent
some of the afore mentoned problems from occuring. The first source for
malfuncton arnses out of a lack of information in developing the
specifications for how the system should operate. Because the system must
follow a strict medical protocol for handling high (or low) levels of blood
glucose levels, medical personnel were consulted on several occasions during
the development stage. The same instructons for determing the necessary
insulin delivery rates via an infusion pump were provided by trained staff at
the University of Alberta Hospital. It was this protocol upon which the
software algorithm was based in setung infusion rates. They were also
consulted on how patient information should be gathered and displayed by
the computer. The design of the software’s graphic user interface must be
simple enough to use without overwelming the user, while complex enough
to provide sufficient operability for provide practical care of a diabetc
padent. This would include everything from the software’s operation to its
abilitity to collect and record accurate information for later analysis. Any such
system, of course, must undergo scrudnous z# z#ro testing to make sure that
the specifications are indeed met to the satisfacion of medical staff, and

before any possibility of human trials could be considered.

The second problem of possible hardware malfunctdon is also dealt with.
Should a power failure occur, devices not connected to an uninterruptable
power supply (UPS) will cease to funcdon. The computer will not longer be

able to interrogate the CIM as a result of the broken communications link.
89

The pump, however, is equipped with a battery which will take over in such a
situation. The resulting loss of the computer’s connection will cause the
IVAC pump to display an error message and sound an audible alrarm to alert
the user or medical staff. Any error in the computer’s hardware, including the
internal LabMaster circuit board would result in a signal loss from the sensor
and would also generate an alarm conditon, since a glucose level is not
allowed to be zero. Should the sensor fail such that it produced erratic
readings, the computer would generate an alarm and halt the infusion pump,
thus preventing it from infusing incorrect amounts of insulin. The software
can detect such a conditon by comparing the current glucose reading with
the previous one. If the reading changes too rapidly, outside of a normal
change gradient for glucose, an alarm condition will be generated. Again, a
message is generated as well as an audible alarm. The software cannot detect
incorrect glucose readings from the sensor if they are inside nominal ranges

however.

The third possiblility for error arises from incorrect user input. The possibility
for accidental input for a glucose level is minimized, and practically
eliminated, since two levels of confirmaton must be accepted by the user
before it can be entered. Once again, if the user entered a glucose value the
was dramatically and unnaturally high an alarm conditdon would stll be

generated and the infusion pump halted.

Main Module Program Listing
A program listing for the most important module, “Infusion”, is shown as

the end of this section. The Infusion module initializes hardware, starts the

90

process of collecting information, and executes the main loop. The main loop
allows the program to branch from one process to another, executing
different sections of code depending on the user’s interaction with it or on

the status of a peripheral device.

Each line of code is preceded by a number and a colon (}) character for

reference purposes, but it is not part of the actual source code.

Lines 1-21 are preprocessor directives that are carried out before the source
code is actually compiled. These direcaves perform the tasks of incorporating
the contents of other files into the source file and replacing string patterns or
numbers with another substtutionary string. Lines 23-74 are global vanable
and functon declarations. “Declarations” state which variables and functdons
will be used in the program as well as the type of information they will store

or use. Two of the most important variables are specified on lines 31 and 32.

float glucose_level[ARRAYSIZE];
int insulin[ARRAYSIZE];

The first variable represents an array of floating point numbers. This array
stores the glucose levels read into the computer via the LabMaster. The
second variable is an array of integers, which stores the insulin infusion rate
that must be sent to the CIM unit of the IVAC pump. “ARRAYSIZE”
represents a number for the size of the arrays, or in other words, the number

of values it can store.

Lines 76-104 are local variables for the “main” function, which begins on line
75. Local varables are valid only inside the function in which they are

91

declared. The body of the “main” function extends from line 76 to line 997.
The remaining lines are for a global function which rounds off floating point
numbers to a precribed number of decimal palces. The main process loop

begins on line 185.

92

/***

*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
SOURCE: INFUSION.C - insulin infusion rate/concentration *
monitor for islet transplant, surgical operations and *
delivery. *
VERSION: 1.0 *
AUTHOR: Jamie Guay, (Department of Electrical and *
Computer Engineering, University of Alberta, *
Canada) *
DATE: May 2, 1995 *
PURPOSE: This program receives the current glucose level =*
measured from a patient and then outputs the proper *
insulin infusion rate. A data file is created and *
updated and includes the patient’s personal *
information as well as the current time, glucose, *
and insulin infusion rate at the beginning of each *
specified interval of time for the islet transplant *
procedure. *
Since time is an integral part of the program, *
the computer’s system time should be correct. The *
date and time are displayed and confirmed by the *
user at the beginning. *
USAGE: Enter the program name at the DOS prompt or *
click on the icon in Windows. *
COMPILER: Borland Turbo C/C++ Version 3.0 *
REFERENCES: Barkakati, Naba. The Waite Group‘’s Turbo C++ *
Bible, Indianapolis, IA: Sams Publishing, 1994 *
ERROR HANDLING: Graphic and text file calls will *
terminate the program if they fail and provide *
appropriate error messages. *
*
*******#**************k***********i**i***********************/
1l: #include <bios.h> /* Contains bioskey () *x/
2: #include <conio.h> /* Contains kbhit/() */
3: #include <ctype.h> /* Contains toupper () */
4: #include <dos.h> /* Contains delay() */
5: #include <graphics.h> /* Contains setcolor () */
6: #include <math.h> /* Contains fabs{() */
7: #include <mem.h> /* Contains memset () */
8: #include <stdlib.h> /* Contains exit() */
9: #include <string.h> /* Contains strcat() */
10: $#include <time.h> /* Contains time(), difftime() */
11i: #include "infusion.h"
12: #include "menu.h”
13: #include "myfields.h"
14: #include "ivac.h" /* Contains ivac570() */
15: #include "serial.h"
16: #include "labmastr.h® /* Functions for the LabMaster 20009 */
17: #define PORT 1 /* Comm port 2 */
18: #define LM_MAXNUM 2047 /* Maximum digital wvalue of the

LabMaster */

93

19: #define LM _MAXRNG 10.0 /* Maximum voltage range of the
LabMaster */

20: extern unsigned _stklen = 32768U; /* Increase Stack Size to
32k */

21: extern FieldList myfields; /* Defines user input fields */

22: [/***** Declare Global Variableg ****x/

23: TextData *patient_info;

24: char *menul_choices([] = {"Islet Translplant",
25: "Surgery",

26: "Delivery"};

27: char *menu2_choices(] = {"Manual Control",

28: "Infusion Control",

29: "Sensor + Infusion Control"};

30: 1int control_type: /* Computer control type */

31: float glucose_level [ARRAYSIZE] ;

32: int insulin[ARRAYSIZE]: /* Rate in mL/hr or Concentration
in units/500 mL */

33: char first_time_label([l1l5];

34: char glucose_time_label[ARRAYSIZE] [15];

35: char insulin_time_label[ARRAYSIZE] [15];

36: int glucose_barcount;
37: int insulin_barcount;
38: int hour_count; /* Elapsed hours, incremented con the hour */

39: int glucose_barwidtch[ARRAYSIZE]l; /* Width of bar graph bars */
40: int insulin_barwidth[ARRAYSIZE];
41: int yellow_barwidth[ARRAYSIZE];

42: int xinput, vinput; /* Coords for user input */

43: int xcoordl, xcoord2:

44 : int save_xcoordl, save_xcoord2; /* Last coord plotted before
Units Graph displayed */

45 : /* Pointer to stored image of graphs */

46: int xlimitl, xlimit2; /* Absolute horizontal graphing limits */

47: int ylimit; /* Absolute vertical graphing limit */

48: float scalel, scale2, scale3;/* Glucose, insulin, and total
units graphing scales */

49: char far *image_bufferl, *image_buffer2;

50: unsigned int image_bytesl, image_bytes2;

51: int prompt_color = WHITE;

52: double float_value;

53: int alarm_interval = 60; /* Initial alarm set at 60 minutes
*/

54: BOOL ALARM_ON FALSE;

55: BOOL NO_ALARM = FALSE; /* Set if alarm shut off with down
arrow key */

56: BOOL CHECK_ALARM = TRUE;

57: BOOL ENTRY_LINE_CLEARED = FALSE;

58: BOOL START_TIMEQUT = TRUE;

59: BOOL SHOW_UNITS = FALSE; /* True if 24 hr units graph
displayed */

60: BOOL TIMEOUT_S = FALSE; /* True if delaying audible alarm
for 5 min */

94

61: BOOL MODE_INT_SENT = FALSE; /* True if a Mode Interrogation
code sent to IVAC

62: in the last second */

63: BOOL:. SAMPL.E_ SENSOR = FALSE;

64: time_t current_seconds, timeout_start_seconds,
interval_start_seconds:;

65: int start_minute = 99;

66: int current_minute;

67: 1int current_hour:

68: struct tm *local_time;

69: £float units_per_hour(500]; /* Total hourly units */

70: float average_units; /* Average hourly insulin units */

71: struct tm *myclock:;

72: float sensork; /* Constant of proportionality from sensor
calibration */

73: // Function Prototypes

74: float round(float real, int places):

75: wvoid main(void)

76 : {

77 : /***** Declare Local Variables *****/

78: int 1, 3

79: int gmode: /* Graphics mode number */

80: char patient_name[26];

81: time_t start_seconds, last_update_seconds;

82: int last_minute = 99;

83: int last_hour;

84: time_t this_second, prev_second; // used to time Mode
Interrogation commands for pump

85: int current_second, last_second = 99; // FOR DEMO PURPOSES ONLY

86: int current_day, last_day = 99;

87: char time_str([50], time_msg[80], clock_str([1l0};

88: double time_difference;

89: int infusion_count; /* Total infusions */

90: int keypress;

91: int process;

92: float insulin_units = 0.0;

93: float total_insulin_units = 0.0;

94 : int total_bar_height;

95: char bar_label[5];

96: int display_ bars; /* The number of bars to display on
graphs */

97: int fillwidth = 0; /* Width of bars to restore when done
viewing

98: Units Graph */

99: int first_vellowbar _height = 0;

100: BOOL DONE; /* User input is done */

101: BOOL WARNING = FALSE:;

95

102: BOOL INIT_PUMP = TRUE; // initialize pump settings first
time only

103: BOOL IVAC_HOLD = FALSE; // true if the pump is holding

104 : int high, low:;

105: [***x*%* Tnitialize graphics ****=*/

106: init_graphics();

107: /¥*x*x** Title Screen ****x/

108: title() ;

109: /***** Confirm Correct System Date & Time ***x**/

110: gmode = getgraphmode(); /* Store the current graphics mode */
111: restorecrtmode() ; /* Switch to a text display */

112: datetime_check() ; /* Confirm system time */

113: /***** (Obtain Patient information + Medical Procedure +
Control Method *****/

114: get_patient_info();

115: control_type = get_control_type();

116: /****x* Calibrate Sensor for Automatic Control Method ***x*x/
117: sensorK = 1.0; /* sensor constant is unity unless automatic
control */

118: FIRST_INFUSION = TRUE;

119: if (control_type == 2) {

120: get_sensor_info() ;

121: sensorK = calibrate_sensor() ;

122: process = 0; /* The initial process for automatic glucose
sensing */

123: labmaster_init(l); /* initialize the LabMaster 20009 */
124: }

125: else {

126: process = 2; /* The initial process for manual glucose
entry */

127: }

128: /***** Create Data File and Record Patient Information
*****/

129: create_data_file(); /* Create a data file in current
directory of C drive */

130: store_patient_info(); /* Write patient’s personal

information to file */

131: setgraphmode (gmode) ; /* Restore the previous graphics mode */
132: /***** Graphic User Interface *****/

133: custom_display setup();

134: time(&interval_start_seconds):; /* Get the current time to
satisfy initial alarm check */

135: time(&last_update_seconds); /* ... and initial bar line

update check */

96

136:
137:

138:
139:
140:

141 :
142:
143:
144:
145:
*/

146:
*/

147 :
148:
149:
150:

151:

152:
153:
154:
155:

156:
157:
158:
159:

nmyclock = localtime (&interval_start_seconds);
last_hour = myclock->tm_hour;

/***** Digplay Patient Name As Title **x*x/
setcolor (LIGHTCYAN) ;
settextjustify (CENTER_TEXT, TOP_TEXT);

/* Add a null terminator after the last wvisible */

/* character so can center it on display */
strcpy (patient_name, (char *)myfields.fields[0].data.value);
for (i=strlen(patient_name); i>=0; i-~-) (
if (isgraph((int)patient_nameli])) { /* If visible char...
patient_name[i+l] = “\0’"; /* Place terminator after it
break;
1
}

gprintf (xmax/2, border_top, patient_name) ;
settextstyle (SMALL_FONT, HORIZ_DIR, 6);

/* Displayv the medical procedure */

setcolor (LIGHTRED) ;

settextjustify (LEFT_TEXT, TOP_TEXT) ;

gprintf (7, border_top, "%s". menul_choices([procedure]) ;

/* Display mL / Unit ratio */

setcolor (YELLOW) ;

settextjustify (RIGHT_TEXT, TOP_TEXT);

gprintf (xmax-5, border_top, "1 Unit = %d mL", *((int

*)myfields.fields([4] .data.value)) ;

160:
161:
162:

163:
164:
between
165:
166:
167:
168:

169:
170:
171:
172:
173:
174:

175:
176:

settextstyle (SMALL_FONT,HORIZ_DIR, 8);
settextjustifyv (LEFT_TEXT, TOP_TEXT) ;
setcolor (WHITE) ;

/***** Tnitialize Flags and Variables ***xx/
INTERVAL_START = TRUE; /* Beginning of time interval
infusions */

infusion_count = 0; /* Initialize infusion counter */
hour_count = 0; /* Initialize elapsed hours */
glucose_barcount = 0; /* Initialize displayed graph bar */

0; /* counters to zero */

insulin_barcount

/* Initialize barwidth arrays */

memset (glucose_barwidth, 0, sizeof(glucose_barwidth));
memset (insulin_barwidth, 0, sizeof(insulin_barwidth));
memset (yellow_barwidth, 0, sizeocf(yellow_barwidth)) ;
xcoordl = xoriginl+l;

xcoord2 = xorigin2+1;

/***%xx TYAC: Set Up Serial Poxrt ***x*x/
if (control_type==1 || control_type==2) {

97

177: s_setup (PORT, COM_PARAMS) :;

178: }

179: time (&prev_second); // init prev_s=cond for pump mode
interrogation

180: /***** Begin insulin infusion process loop ****x*x/

181: /* This section governs the execution of the program and */
182: /* facilitates a continuous flow through style. This */
183: /* technique allows for such things as flashing graphics */
184: /* and string input while other processes are checked or

updated. */

185: do (

186: time (¤t_seconds) ;

187: myclock = localtime(¤t_seconds) ;

188: if (control_type==1 || control_type==2) {

189: /****x% TYAC: Every 9 seconds do a Mode Interrogation
190: *x+*x*x of the pump (Mode interrogation is required

191: *xkkk*x ot Jeast once every 20 seconds.)

192: *****/

193: time(&this_second} ;

194: if (difftime(this_second, prev_second)>=9) {

195: prev_second = this_second;

196: ivac570(1, "M?", 0); // Send mode interrogation command
197: delay(2000) ;

198: }

199: }

200: /***** Update Screen Clock ***x*xx/

201: current_minute = myclock->tm_min;

202: current_hour = myclock->tm_hour;

203: if (current_minute != last_minute} {

204: last_minute = current_minute;

205: clock_box() ;

206: strftime(clock_str, 80, "%I:%M %p", myclock):;

207: if (strncmp (clock_str, "0", 1) == 0) /* Replace leading
zero */

208: strnset (clock str, * ‘', 1): /* with space */

209: settextstyle (SMALL_FONT, HORIZ_DIR, 0);

210: setusercharsize(7, 5, 2, 1);

211: settextjustify (RIGHT_TEXT, BOTTOM_TEXT) ;

212: setcolox (WHITE) ;

213: gprintf (xmax, border_top-5, "%$s", clock_str);

214: settextstyle (SMALL_FONT, HORIZ_DIR, 8):

215: settextjustify (LEFT_TEXT, TOP_TEXT):

216: /***** Eyery minute, calc the total amount of insulin
217: **xxxx% infused so far and display it

218: *****/

219: if (!'FIRST_INFUSION) {

220: if (procedure == 1) {/* Surgery */

221: /* NOTE: x units/500mL * const rate of 100 mL/hr = x/5

units/hr */

98

222:

insulin_units =

1.0/60.0*(float) insulin{insulin_barcount-1]/5.0;

223:
224 :
225:
226:
227:
228:

}

else {/* Islet Transplant or Delivery */

/* NOTE: Divide by the unit quantity (usually 10mL)
** per unit to get units

*/

insulin_units =

1.0/60.0*(float)insulin{insulin_barcount-1]/((float) *((int
*Imyfields.fields([4] .data.value));

229:

230:
231:
232:

233:
234:
235:
236:
237:

238:
239:

240:
241:
242 :

243 :
244 :
245
246:
247 :
units",
248:
249 :
250:
251:

252:
253:
254 ;

}

/

x** Record Total Hourly Insulin Unitsg *x/

units_per_hour[hour_count] += insulin_units;

t

i

}
}

if
F

/*

otal_insulin_units += insulin_units;
£ (current_hour != last_hour) {

last_hour = current_hour;
hour_count++;

(control_type == 2)
IRST_INFUSION = FALSE;

Clear previous units message */

setfillstyle (EMPTY_FILL, 0);
bar(xoriginl, ylimit-1, xlimit2, ylimit-18);

/*

Display new units message */

setcolor {(LIGHTMAGENTA) ;

se
se

gap

ttextstyle (SMALL_FONT, HORIZ_DIR, 6);
ttextjustify {CENTER_TEXT, BOTTOM_TEXT) ;
rintf (xmax/2, ylimit-4, "Total insulin infused = %.1f

total_insulin_units);

se

ttextstyle (SMALL FONT,HORIZ_DIR, 8);

settextjustify (LEFT_TEXT, TOP_TEXT);
setcolor (WHITE) ;

}

/**

*** Update Bar Graphs Every 5 Seconds *****/

current_second = myclock->tm_sec; // FOR DEMO PURPOSES ONLY

if

((difftime{current_seconds, last_update_seconds) >= 5.0)

&& !FIRST_INFUSION) {

255:
second
256:

/7

/7

i

The following demo line updates the graph once every

f ((current_second != last_second) && !FIRST_INFUSION)

{// FOR DEMO PURPOSES ONLY

257:
258:
259:

260:
261:

7/

last_second = current_second; // FOR DEMO PURPOSES ONLY

last_update_seconds = current_seconds;
SAMPLE_SENSOR = TRUE:;

/*
/*

Check if reached graphing limit on x-axis. If so
clear graphs and redisplay last 3 bars plus the one

99

*/
*/

262: /* currently being drawn (4 in total). If there are less */

263: /* than 5 bars displayed refresh the graph with fewer bars*/
264 : if (!SHOW_UNITS) {/* Don‘t plot if showing Units Graph */
265: if (xcoordl >= xlimitl) (

266: clear_graph(xoriginl, yorigin);

267 : clear_graph(xorigin2, yorigin);

268: /* Clear time labels */

269: setfillstyle (EMPTY_FILL, 0);

270: bar (xoriginl, yorigin+l, xlimitl+char_size, ymax-
3*char_size);

271: bar (xorigin2, yorigin+l, xlimit2+char_size, ymax-

3*char_size) ;

272: /***** Display the last few glucose readings and ****x/
273: [REFEK infusion rates with their time labels ke k Kk [/
274 : /* Set font style for x-axis time labels */

275: settextstyle (SMALL_FONT, VERT_DIR, 4);

276: settextjustify (CENTER_TEXT, TOP_TEXT) ;

277 : xcoordl = xoriginl+l; /* Reset plotting coords to origin */
278: xcoord2 = xorigin2+l;

279: if ((glucose_barcount > 1) && (insulin_barcount > 1)) (
280: /* If more than the current bar being displayed... */
281: display bars = 4;

282: if (glucose_barcount <= 6) /* If <= 6 bars displayed...*/
283: display_bars = glucose_barcount-2:;

284: if (glucose_barcount <= 3)/* If <= 3 bars displayed...*/
285: display_bars = glucose_barcount-1;

286: /* Redisplay the glucose bars and time labels */

287: for (i=0, glucose_barcount-=display_bars;
i<display_bars;: i++, glucose_barcount++) ({

288: add_bar (xcoordl, yorigin,

glucose_barwidth[glucose_barcount], glucose_level [glucose_barcount],
scalel, LIGHTBLUE);

289: /* Time labels */
290: gprintf (xcoordl, yorigin,
&glucose_time_label [glucose_barcountl [0]);

291: xcoordl+=glucose_barwidth{glucose_barcount];

292: }

293: /* Redisplay the insulin bars and time labels */

294: for (i=0, insulin_barcount-=display_bars;
i<display bars; i++, insulin_barcount++) (

295: add_bar (xcoord2, yorigin,
vyellow_barwidth{insulin_barcountl, (float)insulin[insulin_barcount-
1], scale2, YELLOW);

296: xcoord2+=yellow barwidth{insulin_barcount]+1;

100

297: add_bar (xcoord2, yorigin,
insulin_barwidth([insulin barcount],
(float)insulin{insulin_barcount], scale2, LIGHTRED) ;

298 : /* Time labels */

299: gprintf (xcoord2, yorigin,
&insulin_ time_labell[insulin_barcount] [(0]) ;

300: xcoord2+=insulin_barwidth{insulin_barcount];

301: }

302: xcoordl = xoriginl+l; /* Reset plotting coords to origin
303: xcoord2 = xorigin2+1l;

304: /* Save the magnitude of the first yellow bar in case */
305: /* graph is vertically re-scaled. */

306: firsc_vyellowbar_height = insulin{glucose_barcount-

display bars]:;

307: /* Display bar magnitude values */

308: for (i=0, glucose_barcount-=display_bars:
i<display_bars; i++, glucose_barcount++) {

309: if (control_type != 2) {

310: add_bar_label (xcoordl, vyorigin,
glucose_level [glucose_barcount], scalel):;

311: xcoord2+=yellow_barwidth{glucose_barcount];
312: add_bar_label (xcoord2, yorigin,

(float) insulin[glucose_barcount], scale2);

313: }

314: /* Transfer last few bar info to beginning of arrays */
315: glucose_level[i] = glucose_level{glucose_barcount];
316: insulin(i] = insulin[glucose_barcount];

317: glucose_barwidth{i] =
glucose_barwidth[glucose_barcount];

318: insulin_barwidth([i] =
insulin_barwidth[glucose_barcount];

319: vellow_barwidth[i] =
vellow_barwidth[glucose_barcount];

320: strcpy (&glucose_time_label [i] [0],
&glucose_time_label[glucose_barcount] [0]) ;

321: strcpy (&insulin_time_label [i] [0],

&insulin_time_label [glucose_barcount] {0]);

322: xcoordl+=glucose_barwidth[glucose_barcount];

323: xcoord2+=insulin_barwidth[glucose_barcount];

324: }

325: /* Initialize remaining portion of the array to zero */
326: for (i=display_bars; i<=glucose_barcount; i++) {

327: glucose_barwidth[i] = 0;

328: insulin_barwidth(i] = 0;

329: vellow_barwidth{il = 0;

330: }

101

*/

331: glucose_barcount = display bars;

332: insulin_barcount = display_bars:;

333: /* Return to normal font settings */

334: settextstyle(SMALIL_FONT, HORIZ_DIR, 8):

335: settextjustify (LEFT_TEXT, TOP_TEXT):;

336: }

337: else {/* Only a single bar is currently being displayed */
338: gprintf (xcoordl, yorigin,

&glucose_time_label [glucose_barcount] [0])

339: gprintf (xcoord2, yorigin,
&insulin_time_label [glucose_barcount] [0]) ;

340: add_first_barline(xoriginl, yorigin, glucose_level(0],
scalel, LIGHTBLUE);

341: add_first_barline(xorigin2, yorigin, (float)insulin[O0],
scale2, LIGHTRED);

342: glucose_barwidth[0] = 1; /* One line wide to start */
343: insulin_barwidth(0] = 1; /* One line wide to start */
344: }

345: }

346: else { /* Update the graphs with a new line */

347: add_barline(xcoordl, yorigin,
glucose_level [(glucose_barcount-1], scalel, LIGHTBLUE) ;

348: if (process == 6) {/* i.e. waiting at ‘ready’ prompt */
349: if (insulin_barcount < 1) /* Zero when program is first run */
350: add_barline(xcoord2, yorigin, 0.0, scale2, YELLOW);
351: else

352: add_barline(xcoord2, yorigin,
(float)insulin{insulin_barcount-1], scale2, YELLOW) ;

353: yvellow_barwidth{insulin_barcount] ++;

354: }

355: else {

356: if (insulin_barcount >= 1) {

357: add_barline (xcooxrd2, yorigin,
(float)insulin(insulin_barcount-1], scale2, LIGHTRED) :

358: insulin_barwidth{insulin_barcount-1]++;

3589: }

360: }

361: }

362: }

363: else /* Displaying the Units Graph */

364: fillwidth++; /* Count barlines to be restored */

365: glucose_barwidth{glucose_barcount-1]++;

366: xcoordl++;

367: xcoord2++;

368: }

369: [/ ***** Check If Alarm Time Reached ****x*/

370: if (CHECK_ALARM && !NO_ALARM) {

371: time_difference = difftime(current_seconds,
interval_start_seconds) ;

372: // if (time_difference >= alarm_interval*60) {

373: if (time_difference >= alarm_interval) {// FOR DEMO

PURPOSES ONLY
102

374: ALARM_ON = TRUE;

375: if (!'ENTRY_LINE_CLEARED) {(

376: entry_line box(); /* Clear data entry line */

377 : ENTRY_LINE_CLEARED = TRUE;

378: message_line_box(); /* Clear message line */

379: }

380: if (process != 9) { /* Bypass beep while screen being

*/

381: alert_border(200); /* redrawn (first beep is too long*/
382: beep () : /* otherwise) */

383: }

384: }

385: else

386: ALARM_ON = FALSE;

387: }

388: switch (process) {

389: case 0: /***** Handle Alarm + Get Sensor Data **x*xx/

390: /* The program will stay in process 0 unless:

391: * - The alarm time limit is reached

392: * - A key is pressed

393: * - Input is coming from the glucose sensor

394.: */

395: /***** SENSOR: Read glucose sensor voltage from LABMASTER ***x*xx/
396: //WITH THE CODE PLACED HERE, THE USER CAN STILL

397: // OVERRIDE WITH MANUAL INPUT

398: if (control_type==2) {

399: if (SAMPLE_SENSOR == TRUE) {/* Time to sample the sensor */
400: SAMPLE_SENSOR = FALSE;

401: glucose_level [glucose_barcount] = labmaster_in(l); //

use channel one

402: // setcolor(0);//TEMP - for testing purposes

403: 7/ bar(10,30,65,50) ;//TEMP

404: // setcolor(15) ; //TEMP

405: // gprintcf£ (10,25, "$5.1£f",
glucose_level [glucose_barcountl) ;//TEMP

406: /* Convert the digital value to a voltage reading */

407: /* sensorkK - Sensor's constant of proportionality */

408: /* LM_MAXNUM - The highest digital value returned from
the LabMaster */

409: /* LM_MAXRNG - The maximum voltage range of the
LabMaster V or mV */

410: /* 1000.0 - convert mV to V */

411: glucose_level [glucose_barcount] =

sensorK*glucose_level [glucose_barcountl / (LM_MAXNUM/LM_MAXRNG) + 3.0
- sensorK* (* ((double
)sensorfields.fields{3].data.value))(*((double
*)sensorfields.fields[1l].data.value))/1000.0;

103

412: // glucese_level[glucose_barcount] = 3.16+rand()%5; //
FOR DEMO PURPOSES ONLY

413: // round to 1 decimal place

414: glucose_level[glucose_barcount] =

round{(glucose_level [glucose_barcount], 1):

415: /* Display the current glucose level */

416: entry_line_box() ; /* Clear data entry line */
417 : settextjustify (CENTER_TEXT, TOP_TEXT)

418: gprintf (xmax/2, ymax-2*char_size-8, "Current glucose is
$.4g mmol/L", glucose_level [glucose_barcount]};

419: ENTRY_LINE_CLEARED = FALSE;

420: process = 5;

421 - }

422 }

423 : /* Handle Alarm */

424 - if (!kbhit () && ALARM_ON)

425 glucose_prompt () ; /* Flash glucose prompt */
426: else if (kbhit()) {

427 : CHECK_ALARM = FALSE;/* Pause alarm if on while
processing keyboard input */

428: if (!'ALARM_ON)

429: process = 1; /* Check for command key press */
430: else

431 : process = 2; /* Display normal glucose prompt */
432: }

433 : break;

434 case 1: /***** Handle Command Keypress **x*x*xx/

435: keypress = bioskey(0):; /* Get character from keyboard
buffer */

436: process = handle_keypress (keypress) ;

437 : break:;

438: case 2: /***** Display Normal Glucose Prompt ****x*/
439: /* Prepare the display for the next process */
440: if ('ENTRY_LINE_CLEARED) {

441 entry line_box(); /* Clear data entry line */

442 : ENTRY_LINE_CLEARED = TRUE;

443 message_line_box(); /* Clear message line */

444 . }

445 glucose_prompt(); /* Display glucose prompt */

446: xinput = getx(); /* Save current coordinates */
447 : yvinput = gety(); /* for inputting text */

448: if (getcolor () !'= WHITE)/* If prompt not white... */

449 glucose_prompt(); /* Re-display glucose prompt */

450: if (getpixel(0,ymax/2) == LIGHTRED)

451 : window_border (LIGHTCYAN) ;/* Reset border to original
color */

452 process = 3;

453 break;

104

454 ; case 3: [***x** Get Glucose Level ****x/

455: if (tkbhit()) (

456 : if (TIMEOUT_5) {

457 : if (timeout(300)) {/* Check for input timeout > 5 min
*/

458: CHECK_ALARM = TRUE;

459 ALARM ON = TRUE;

460: TIMEQOUT_S = FALSE;

461 : }

462 : }

463 : else {

464 : if (timeout(10)) (/* Check for input timeout > 10 seconds */
465: if (!ALARM_ON) ({

466 : glucose_prompt(); /* Flash glucose prompt */

467 : delay(200) ;

468: }

469 : else

470 : CHECK_ALARM = TRUE;

471 : }

472 : }

473 : }

474 : else {

475 : START_TIMEQUT = TRUE; /* Re-initialize for next usage */
476 nosound() ; /* Shut alarm off */

477 : if (getpixel(0,ymax/2) == LIGHTRED)

478 : window_border (LIGHTCYAN) ; /* Reset border to original
color */

479 : keypress = bioskey(0)&0xff; /* Get character from
keyboard buffer */

480: /* Move to input coordinates. This compensates for the
*/

481 : /* cursor being relocated when the clock is updated */
482: moveto (xinput, yinput);

483 : /* Build glucose value string and set INTERVAL_START
484 : /* flag when done */

485 : INTERVAL_START = get_gcfloat(keypress);

486: xinput = getx{(); /* Save current coordinates */

487 : vinput = gety():; /* for inputting text */

488: if (INTERVAL_START) (

489: if (TIMEQUT_S5)

490: TIMEOUT 5 = FALSE;

491 : INTERVAL_START = FALSE;

492: glucose_level[glucose_barcount] = flocat_value;

493 : /* Display warning message if diffence between

494 : ** last two glucose levels is high */

495 : settextjustify (LEFT_TEXT, TOP_TEXT);

105

496 : if (fabs({(glucose_level [glucose_barcount]-
glucose_level [glucose_barcount-1}1) >= 10.0) {

497 : if (infusion_count > 0) {

498 : warning_message(" Large change to %.4g mmol/L",
glucose_level [glucose_barcountl]) ;

499 : WARNING = TRUE;

500: }

501: else {

502: /* Display glucose confirmation message */

503: entry_1line_box() : /* Clear data entry line */

504: gprintf (0, ymax-2*char_size-8, " Is glucose $%.4g
mmol/L?", glucose_level[glucose_barcount]);

505: }

506: 1

507: else {

508: /* Display glucose confirmation message */

509: entry_line_box() ; /* Clear data entry line */

510: gprintf (0, ymax-2*char_size-8, " Is glucose %.4g
mmol/L?", glucose_level [glucose_barcountl]) ;

511: 1

512: process = 4;

513: }

514: /* Cancel input if ESCape key pressed */

515: if (keypress == ESC) {

516: if ('ALARM_ON) { /* If alarm off simply redisplay

517: * infusion data */

518: display_infusion_info():

519: process = 0;

520: }

521: else {

522: /* Temporarily silence alarm (5 minutes) .

523: ** pressing ESC a second time will cancel the

524: ** prompt altogether and return control to

525: ** the command line. */

526: CHECK_ALARM = TRUE:;

527: ALARM_ON = FALSE:;

528: NO_ALARM = FALSE;

529: TIMEOUT_S5 = TRUE;

530: time(&interval_start_seconds) ;

531: process = 2;

532: 1

533: }

534: }

535: break;

536: case 4: [***** Flash Confirmation Prompt ****=*/

537: if (tkbhit()) {

538: settextjustify (RIGHT_TEXT, TOP_TEXT):;

539: setcolor (prompt_color"8) ;

540: prompt_color = getcolor():

541 : gprintf (xmax, ymax-2*char_size-8, "Confirm (Y¥Y/N) ");

542: if (WARNING)

543: gprintf (xmax+l, ymax-2*char size-8, "Confirm (Y/N) ");

544: delay(200) ;

106

545: if (timeout(10)) { /* Check for timeout > 10 seconds */

546: if (!ALARM ON) ({/* If the alarm is off sound a short beep */
547: if (current_second%5 == 0)

548: beep2 () :

549: }

550: else (

551: alert_border(0);/* Flash border - the delay provided by */
552: beep () ; /* the flashing confirmation prompts */
553: }

554: }

555: 1

556: else { /***** Confirm Entered Glucose ***x*x/

557: START_TIMEOUT = TRUE:

558: nosound () ;

559: if (getpixel(0,ymax/2) == LIGHTRED)

560: window_border (LIGHTCYAN) ; /* Reset border to original color */
561: setcolor (WHITE) ;

562: if (WARNING) /* If warning message was displayed... */
563: WARNING = FALSE;

564: /* Get confirmation response */

565: keypress = toupper (bioskey(0)&0xff) ;

566: if (keypress == ‘Y’) {

567: /* Display the current glucose level */

568: entry_line_box{() ; /* Clear data entry line */

569: settextjustify (CENTER_TEXT, TOP_TEXT) ;

570: gprintf (xmax/2, ymax-2*char_size-8, "Current glucose is
$.4g mmol/L", glucose_level[glucose_barcountl]) ;

571: ENTRY_LINE_CLEARED = FALSE;

572: INTERVAL_START = TRUE;

573: process = 5;

574: }

575: else if (keypress == ‘N’} {

576: settextjustify (LEFT_TEXT, TOP_TEXT):;

577: ENTRY_LINE_CLEARED = FALSE;

578: process = 2;

579: }

580: }

581: break;

582: case 5: /***** Begin New Glucose Bar On Graph ****x/

583: /* Re-scale if glucose level beyond vertical graphing
limit */

584: /* The new peak becomes the scale maximum */

S585: settextstyle (SMALI, FONT, VERT_DIR, €);

586: total_bar_height =

glucose_level {glucose_barcount] *scalel+textwidth(gcvt(glucose_level(
glucose_barcount], 3, bar_label)):
587: if ((yorigin-total_bar_height) < ylimit) ¢

107

588: scalel = (yorigin - ylimit -
textwidth(gcvt (glucose_level [glucose_barcountl], 3,

bar_1label))) /glucose_level [glucose_barcount];

589: /* Re-display glucose bars with new scale */

590: clear_graph(xoriginl, yorigin);/* Clear the graphing area */

591: xcoordl = xoriginl+l;

592: for (i=0; i<=glucose_barcount; i++)

593: add_bar (xcoordl, yorigin, glucose_barwidth([i],
glucose_level[il, scalel, LIGHTBLUE) ;

594: xcoordl+=glucose_barwidth[i]+1;

595: }

596: xcoordl = xoriginl+l;

597: // add bar magnitude labels

598: for (i=0; i<=glucose_barcount; i++) {

599: if (control_type == 2 && ! {glucose_barcount%10)) {
600: add_bar_label (xcoordl, yorigin, glucose_levellil],
scalel);

601: }

602: xcoordl+=glucose_barwidth[i]+1;

603: }

604: xcoordl--;

605: }

606: if (INTERVAL_START) {

607: /* A new interval begins with each loop for full
automatic control */

608: /* Begin drawing a new bar on the Glucose graph */
609: add_first_barline(xcoordl, yorigin,
glucose_level [glucose_barcount], scalel, LIGHTBLUE):;

610: xcoordl++;

61l1: /***=x*x Tabel current time on horizontal axis ****x*/
612: if (control_type == 2) { /* If automatic control...*/
613: if (!(glucose_barcount%$10)) {/* ...only display time
every tenth reading from sensor */

614: strftime(&glucose_time_label[glucose_barcount] [0], 80,
"$I:%$M%p", myclock);

615: strlwr (&glucose_time_label [glucose_barcount] [0]1); /*
Convert AM/PM indicator to lower case */

616: if (strncmp(&glucose_time_label [glucose_barcount] (0],
"o", 1) == 0)

617: strnset (&glucose_time_label [glucose_barcount] [0], *
t. 1)

618: settextstyle(SMALL_FONT, VERT_DIR, 4);

619: settextjustify (CENTER_TEXT, TOP_TEXT):

620: gprintf (xcoordl, yorigin,
&glucose_time_label[glucose_barcount] [0]);

621: settextjustify (LEFT_TEXT, TOP_TEXT) ;

622 settextstyle(SMALL _FONT,HORIZ_DIR, 8);

623: }

624: }

625: else {

626: strftime(&glucose_time_label [glucose_barcount] (0], 80,

"$I:%M%p", myclock);
108

627: strlwr (&glucose_time_label [glucose_barcount] [0]); /*
Convert AM/PM indicator to lower case */

628: if (strncmp(&glucose_time_label{glucose_barcount] [0}, "0",
1)y == 0)

629: strnset (&glucose_time_label [glucose_barcount] (0}, * -,
1)

630: settextstyle (SMALL_FONT, VERT_DIR, 4);

631: settextjustify (CENTER_TEXT, TOP_TEXT);

632: gprintf (xcoordl, vorigin,

&glucose_time_label [glucose_barcount] [(0])

633: settextjustify (LEFT_TEXT, TOP_TEXT) ;

634: settextstyle (SMALL_FONT,HORIZ_DIR, 8);

635: }

636: /* Calculate and display insulin infusion rate */

637: // the insulin infusion rate is limited to a maximum of
$99 mL/hr

638: switch (procedure) {

639: case 0:

640: insulin([insulin_barcount] =
islet_transplant_insulin_ infusion_ rate(glucose_level [glucose_barcoun
tl);

641: break;

642: case 1:

643 : insulin{insulin_barcount] =

surgery_insulin_concentration(glucose_level[glucose_barcountl]) ;
644 : break;
645: case 2:
646 : insulin(insulin_barcount] =
delivery_insulin_infusion_rate(glucose_level[glucose_barcountl) ;
647 : break;

648: }

649: glucose_barcount++; /* Increment glucose bars displayed */

650: if (FIRST_INFUSION) ({

651: FIRST_INFUSION = FALSE;

652: start_minute = current_minute;

653: /* Save initial start time as a string */

654 : strftime(&first_time_label (0], 80, "$I:%M%p", myclock):

655: strlwr(&first_time_label[0]l); /* Convert AM/PM
indicator to lower case */

656: /* Strip leading 0 character from time string */

657: if (strncmp(&first_time_label([0], "0", 1) == 0)

658: strnset(&first_time_label{0]}, * ', 1);

659: }

660: if (control_type == 2) /* If automatic control with
sensor input...*/

661: process = 7;

662: else /* If input provided by user...*/

663: process = 6;

664: }

665: break;

109

666 : case 6: [***** Flash Ready Prompt ***xx*/

667 : if (!kbhit()) { /* Press key when ready to begin */

668: settextstyle (SMALL_FONT, HORIZ_DIR, 5):

669: settextjustify (RIGHT_TEXT, BOTTOM_TEXT) :;

670: setcolor(prompt_color~8) ;

671: prompt_color = getcolor():;

672: gprintf (xmax, ymax-textheight("H")-2, "Press a key ");

673: gprintf (xmax, ymax-2, "when ready ");

674: delay (200) ;

675: if (timeout(10)) { /* Check for timeout > 10 seconds */

676: if (!ALARM ON) {/* If the alarm is off sound a short beep */
677: if (current_second%5 == 0)

678: beep2 () ;

679 : }

680: else (

681: alert_border (0);/* Flash border - the delay provided by */
682: beep () : /* the flashing confirmation prompts */
683 : }

684: }

685: }

686: else { /* ...pressed a key */

687 : START_TIMEQOUT = TRUE;

688: nosound() ;

689 : if (getpixel(0,ymax/2) == LIGHTRED)

690: window_border (LIGHTCYAN) ; /* Reset border to original color */
691: settextstyle (SMALL_FONT, HORIZ_DIR, 8);

692: bioskey(0); /* Clear keyboard buffer */

693: process = 7;

694: }

695: break;

696: case 7: [/*****x Disgplay New Infusion Rate and Update Graph ***x*x/
697: /***** Determine if Warning Situation ***x*x/

698: settextjustify (CENTER_TEXT, TOP_TEXT):;

699: if (glucose_level{glucose_barcount-1] <= 1.5)

700: warning message ("Recommend checking or starting dextrose
Iv") ;

701: else if (glucose_barcount >= 2} (

702: if ((glucose_level [glucose_barcount-2] <= 3.0) &&
{glucose_level {glucose_barcount-1] <= 3.0))

703: warning_message ("Recommend checking or starting
dextrose IV");

704: else if ((glucose_level[glucose_barcount-2] >= 20.0) &&
705: (glucose_levellglucose_barcount-1] >=

glucose_level [glucose_barcount-2]))

706 : warning_message("Blood glucose not falling, check

insulin IV");

707 : }

708: if (control_type==1 || control_type==2) {

709: /***** TUYAC: Primary Mode Setup, only done first time ***xxx/

110

710: if (INIT_PUMP == TRUE) {// if first time, init pump
711: INIT_PUMP = FALSE;

712: // display standby message

713: warning_message("Standby, setting up pump");

714: if (procedure i= 1) (

715: // begin with mode interrogation to enable comm link

716: ivac570(UNIT1, "M?=, 0);

717: delay (1500);

718: // set initial primary rate

719: if (imsulin{insulin_ barcount] <= 0) (

720: // if the initial sample sets a rate of zero must
721: // change it to some value so initial setup can be

722: // completed. The pump will be placed on hold next time
723: ivac570 (UNIT1, "RP", 1);

724: }

725: else {

726: ivac570(UNIT1l, "RP", insulin{insulin_barcountl]);

727: }

728: delay(1500);

729: ivac570(UNIT1, "S", 0); // advance to next operating
mode

730: delay (1500) ;

731: // use prevously set primary volume-to-be-infused (VTBI)

732: ivac570(UNIT1, "S", 0); // advance to next operating mode

733: delay (1500);

734: // reset total volume infused to zero

735: ivac570(UNIT1, "vz", 0);

736: delay (1500} ;

737: ivac570(UNITL1, "S", 0); // advance to next operating mode

738: delay (1500);

739: // begin primary infusion

740: ivac570(UNITL1, "S", 0);

741 : delay (1500) ;

742 : }

743: /* Display the current glucose level */

744 : entry_line_box(); /* Clear data entry line */

745: settextjustify (CENTER_TEXT, TOP_TEXT);

746: setcolor (WHITE) ;

747 : gprintf (xmax/2, ymax-2*char_size-8, "Current glucose is
%.4g mmol/L", glucose_level [glucose_barcount-1]);

748: ENTRY_LINE_CLEARED = FALSE;

749 : }

750: else (

751: /****x* TVAC: Change Primary Infusion Rate *****/

752: if (procedure != 1) ({

753: // if infusion rate is zero, hold pump to avert

754: // an exteral alarm (EXT ALRM) condition.

755: if (insulinl[insulin_barcount] <= 0) {

111

756: if (IVAC_HOLD == FALSE) ({

757 : IVAC_HOLD = TRUE;

758: ivac570 (UNITL1, *s*, 0);

759: delay (1500) ;

760: }

761: }

762: // infusion rate no longer zero, run pump and set rate

763: else if (IVAC_HOLD == TRUE) {

764 : IVAC_HOLD = FALSE;

765: ivac570(UNIT1, "s", 0);

766: delay (1500) ;

767: ivac570(1, "RP", insulin[insulin_barcountl]) ;

768: delay(1500);

769: }

770: // set pump infusion rate to new value

771: else {

772: ivac570(1, "RP", insulin(insulin_barcount]):;

773: delay (1500} ;

774 : }

775: }

776 : }

777 : }

778 : /* Display current insulin infusion rate */

779: message_line_box(); /* Clear message line */

780: settextjustify (CENTER_TEXT, BOTTOM_TEXT) ;

781: setcolor (WHITE) ;

782: if (insulin{insulin_barcount] > 0)

783: if (procedure == 1) /* Surgery */

784 : gprintf (xmax/2, ymax-4, "INSULIN CONCENTRATION IS %d
units/500mL", insulin([insulin_barcount]);

785: else

786: gprintf (xmax/2, ymax-4, "INSULIN INFUSION RATE IS %d
mL/hr", insulin(insulin_barcount]) ;

787 : else

788 : gprintf (xmax/2, ymax-4, "INSULIN IV IS STOPPED") ;

789: /* Re-scale if infusion rate beyond vertical graphing
limit */

790: /* The new peak becomes the scale maximum */

791: settextstyle (SMALL_FONT, VERT_DIR, 6):;

792: total_bar_height =

insulin([insulin_barcount] *scale2+textwidth(itoa (insulin[insulin_barc
ount], bar_label, 10)):

793: if ((yorigin-total_bar_height) < ylimit) {

794 : scale2 = (yorigin - ylimit -
textwidth(itoa(insulin{insulin_barcount], bar_label,
10)))/(float)insulin{insulin_barcount];

795: /* Re-display insulin bars with new scale */

796: clear_graph(xorigin2, yorigin);/* Clear the graphing
area */

797 xcoord2 = xorigin2+l;

112

798 : if (yellow_barwidth[0] != 0) {

799: add_bar (xcoord2, yorigin, yellow_barwidth(0],
(float) first_yellowbar_height, scale2, YELLOW) ;

800: xcoord2+=yellow_barwidth[0]+1;

801: }

802: for (i=l; i<=insulin_barcount; i++) {

803: add_bar (xcoord2, yorigin, insulin_barwidth(i-11].,
(float)insulin{i-1], scale2, LIGHTRED);

804: xcoord2+=insulin_barwidth({i-11+1;

805: if (vellow_barwidth[i] !'= 0) (

806: add_bar(xcoord2, yorigin, yellow_barwidth{il].
(float)insulinli-1], scale2, YELLOW) ;

807: xcoord2+=yellow_barwidth({i]+1;

808: }

809: }

810: xcoord2 = xorigin2+l;

811: for (i=0; i<=insulin_barcount; i++) {

812: if (yellow_barwidth({i] !'= 0)

813: xcoord2+=yellow_barwidth[i]+1;

814: if (control_type == 2 && !(insulin_barcount%$10)) {
815: add_bar_label (xcoord2, yorigin, (float)insulinfi],
scale2);

816: }

817: xcoord2+=insulin_barwidth[i] +1;

818: }

819: xcoord2--;

820: }

821: if (INTERVAL_START) {

822: add_first_barline(xcoord2, yorigin,
(float)insulin{insulin_barcount], scale2, LIGHTRED) ;

823: xcoord2++;

824: }

825: process = 8;

826 : break;

827: case 8: /****x*x Begin New Interval **xx*x*/

828: /* Get the time for the beginning of the interval */
829: time (&interval_start_seconds) ;

830: local_time = localtime(&interval_start_seconds) ;

831: current_day = local_time->tm_mday;

832: /***** Tabel new infusion start time on horizontal axis ***x**/
833: strftime(&insulin_time_label{insulin_barcount] (0], 80,
"$I:%M3%p", local_time);

834: strilwr(&insulin_time_label(insulin_barcount] [0]); /*
Convert AM/PM indicator to lower case */

835: if (strncmp(&insulin_time_label{insulin_barcountl] {0},
"Q*, 1) == 0)

836: strnset(&insulin_time_label[insulin_barcount] [0}, * *, 1);
837: if (control_type == 2) { /* If automatic control...*/
838: if (!(insulin_barcount%10)) {/* ...only display time

every tenth reading from sensor */

113

839: settextstyle (SMALL_FONT, VERT_DIR, 4);

840: settextjustify (CENTER_TEXT, TOP_TEXT);

841: gprintf (xcoord2, yorigin,
&insulin_time_label(insulin_barcountl] [0]);

842: }

843: }

844: else (

845: settextstyle (SMALL_FONT, VERT_DIR, 4);

846: settextjustify (CENTER_TEXT, TOP_TEXT):;

847: gprintf (xcoord2, yorigin,
&insulin_time_label(insulin_barcount] {0]);

848: }

849: insulin_barcount++; /* Current number of insulin bars

being displayed */

850: /* Construct time string for infusion start time to print
to file

851: ** Only display the full date if it is a new day */

852: if (current_day != last_day) ({

853: strftime(time_str, 80, "%a %b %d %I:%M %p", local_time);
854: last_day = current_day;

855: }

856: else

857: strftime(time_str, 80, " $T:%M %p",

local_time) ;

858: /***** Update patient data file **x*x*x/

859: /* Write time, glucose level, infusion rate/conc, and
total units to file */

860: if (procedure == 1) /* Surgery */

861: store_data("%d %s: %$g mmol/L $s: $d units/500mL
$.1f units",

862: infusion_count+l, time_str,

glucose_level [glucose_barcount-17],
insulin_time_label[insulin_barcount-1], insulin{insulin barcount-1],
total_insulin_units);

863: else

864: store_data("%d %s: %g mmol/L $s: %$d mL/hr

$.1f units",

865: infusion_count+l, time_str,
glucose_level[glucose_barcount-1],
insulin_time_label[insulin_barcount-1], insulin[insulin_barcount-1i},

total_insulin_units);

866: /* Clear the old time from display */
867: setfillstyle(EMPTY FILL, 0);
868: bar (3, border_top+char_ size+7, xmax-3.

border_top+char_size+l7);

869: /* Display the new infusion start time */
870: setcolor (LIGHTGREEN) ;

871: settextstyle (SMALL_FONT, HORIZ_DIR, 6) ;
872: settextjustify (CENTER_TEXT, TOP_TEXT) ;

114

873:
874:
875:
876:
877:
878:
879:

880:

strcpy (time_msg, "Infusion Started: ");
strftime(time_str, 80, "%a %b %d %$I:%M %p", local_time);
strcat({time_msg, time_str):;

gprintf (xmax/2, border_top+char_size+2, "%s", time_msqg);
settextjustify (LEFT_TEXT, TOP_TEXT);

settextstyle (SMALL_FONT, HORIZ_DIR, 8):

setcolor (WHITE) ;

infusion_count++; /* NOTE: Must reset this variable when

done with patient */

881:
882:
883:
884 :
885:

886:
887:

888:
889:
890:

if (control_type==2)
INTERVAL_START = TRUE;
else

INTERVAL_START = FALSE;
CHECK_ALARM = TRUE;

process = 0;
break:

case 9: /***** Total Insulin Units Graph Displaved *****x/

/* Re-display current glucose reading */
if (kbhit() || ALARM ON) {/* Restore images if key

pressed or alarm sounds */

891:
892:
893:
894 :
895:
896:

if (kbhit()) ¢

bioskey(0) ; /* Clear keyboard buffer */
entry_line_box(); /* Clear data entry line */

setcolor (WHITE) ;

settextjustify (CENTER_TEXT, TOP_TEXT);

gprintf(xmax/2, ymax-2*char_size-8, "Current glucose is

%$.4g mmol/L", glucose_level [glucose_barcount-1]);

897:
898:

899:
300:
901:
902:
903:

904:
905:
906:
907:
908:

909:
910:
911:

912:
913:
914:

}
settextjustify (LEFT_TEXT, TOP_TEXT) ;

/* Erase upper right hand corner beyond graph
** to account for the average value being

** displayed at the top */

setfillstyle (EMPTY_FILL, O0);

bar(xlimit2+1, ylimit-8, xmax-3, ylimit-1);

/***** Restore Glucose & Infusion Graphs ****x/
putimage(2, ylimit, image_bufferl, COPY_PUT) ;
putimage(xmax/2+1, ylimit, image buffer2, COPY_PUT);
free((void *)image_bufferl); /* Release memory */
free((void *)image_buffer2); /* Release memory */

/* Check to see if max horizontal graphing limic
** reached before adding in missing barwidths =*/
if (xcoordl < x=1limitl) (

/* Add in missing area on glucose and insulin
** graphs while Units Graph was displayed */
add_bar (save_xcoordl, vyorigin, f£illwidth,

glucose_level[glucose_barcount-1], scalel, LIGHTBLUE);

115

915: add_bar (save_xcoord2, vyorigin, fillwidth,
(float)insulin(insulin_barcount-1], scale2, LIGHTRED);

916: }

917: fillwidth = 0;

918: SHOW_UNITS = FALSE; /* No longer showing units graph */

919: process = 0;

920: }

921: break;

922: case 10: /***** Define the Value of a Unit ***x*x*/

923: if(kbhit()) {

924 : keypress = bioskey(0)&0xff; /* Get character from
keyboard buffer */

925: /* Move to input coordinates. This compensates for the */

926: /* cursor being relocated when the clock is updated */

927: moveto(xinput, yinput):;

928: DONE = get_gcfloat (keypress):;

929: xinput = getx(); /* Save current coordinates */

930: yinput = gety(); /* for inputting text */

931: if (DONE)} (

932: DONE = FALSE:

8933: *((int *)myfields.fields (4] .data.value) =

(int) float_value;

934: display_infusion_info () ;

935: /* Erase old mlL / Unit ratio */

936: settextstyle (SMALL_FONT, HORIZ_DIR, 6);

937: setfillstyle (EMPTY_ FILL, 0);

938: bar (xmax-textwidth("----—-—-----———- "), border_top+4,

xmax-3, border_ top+textheight ("H")+3) ;

939: /* Display mL / Unit ratio on screen */

940: setcolor {YELLOW) ;

941: settextjustify (RIGHT_TEXT, TOP_TEXT) ;

942: gprintf (xmax-5, border_top, "1 Unit = %d mL", *((int
*)myfields.fields([4] .data.value)};

943 : settextstyle (SMALL_FONT, HCRIZ_DIR, 8);

944: settextjustify (LEFT_TEXT, TOP_TEXT) ;

945: setcolor (WHITE) ;

946: /* Write to file */

947: strftime(tcime_str, 80, "%a %$b %d %$I:%M %p". myclock):;
948: store_data(" %s: 1 Unit = %d mL", time_str, *((int
*)myfields.fields([4] .data.value)) ;

949: process = 0;

950: }

951: /* Cancel input if press ESCape key */

116

952:
953:
954:
955:
956 :
a57:
958:
959:
960:

961 :
962:
963 :
964 :
965:
966 :
967 :
968:

if (keypress == ESC) {

if ('ALARM ON) /* If alarm off simply redisplay info
display infusion_info():

else /* If alarm on must enter a new glucose */
CHECK_ALARM = TRUE;

process = 0;
}
}
break;
case 1l1l: /*x**x*x% Confirm Quit from Program *****/
if (tkbhitc()) (
entry_line_box(); /* Clear data entry line */
message_line_box() ; /* Clear message line */

settextjustify (CENTER_TEXT, TOP_TEXT):;
setcolor{prompt_color”8});

prompt_color = getcolor():;

gprintf(xmax/2, ymax-2*char_size-8, "Are you sure you

want to quit? (Y/N) ");

969 :
970:
971:
972:
973 :
974 :

units */

975:
976 :

delay (200) ;

}
else (

keypress = toupper(bioskey(0)&0x£ff);
if (keypress == 'Y’) { /* Quit */

/* Write end time to file and record final insulin

strftime(time_str, 80, "%a %b %d $I:%M %$p", myclock):;
store_data("\n %s: End %$.1f total units Average

$.1f units/hr",

977 :

time_str, total_insulin_units,

minute_average(units_per_hour)) ;

978:
$79:
980 :
981:
982:
983 :
984 :
985:
986 :
987 :
988:

989:
990:
991:
992:

993 :
994:
995:
996 :
997 :

}

process = 12;

continue; /* Go to beginning of do loop */
}

else if (keypress == ‘N’) { /* Don‘t Quit */
display_infusion_info();

CHECK_ALARM = TRUE;

process = 0;
}
/* Any other keypress returns to this process */
}
break;
default:
break:
} /* End of switch statement */
} while (process != 12);

/***x*x* program Shutdown ****x/

graphics_cleanup() ;
s_cleanup(); /* De-allocate resources for serial port */

exit (0);

117

*/

998: /***%** Extra Miscellaneous Functions **x**x/

999: // Round a float value to a specified number of decimal places.
1000: float round(float real, int places)
1001:

1002: int integer;

1003: real = real*(float)powlO (places):
1004 : integer = (int)real;

1005: real = real - integer:;

1006: if (real >= 0.5) (

1007 : ++integer;

1008: }

1009: real = (float)integer/powll(places):;
1010: return(real) ;

1011: 1}

118

BIBLIOGRAPHY

8]

(W]

. Statstcs Canada, Health Sratstcs Division, Selected leading causes of

death, by sex, Canada, 1995

. J- S. Naylor, A. S. Hodel, B. Moron, D. Schumacher, “Automatc Control

Issues in the Development of an Artificial Pancreas™, Proceedings of the

American Control Conference, pp. 771-775, June 1995

. Bantam Medical Dictonary, Rev. Ed., Bantom Books, p. 120, 1990
. W. J. Tze, “Insulin-Dependent Diabetes Mellitus, Current Concepts and

Approaches”, p. 274, 1991

. “Living With Diabetes, Third Ed., Diabetc and Metabolic Centre,”

Edmonton General Publisher, 41, 1992

. M B. Davidson, “Diabetes Mellitus Diagnosis and Treatment”, 3% Ed.,

Churchill Livingstone, p. 113, 1991

. G. Slama, M. Hautecouverture, R. Assan, and G. Tchobroutsky, “One to

five days of continuous intravenous insulin infusion on seven diabetic

patents”, Diabetes, p. 23, 1974

. J. S. Paton, M. Wilson, J. T. Ireland, and S. B. M. Reith, “Convenient

pocket insulin syringe”, Lancet, 1, 189-190, 1981

. J. C. Pickup, D. Rothwell, “Technology and the diabetc patent”, Medica/

& Biological E ngineering & Conputing, 386, 1984

10. D. Rothwell, I. A. Sutherland, J. C. Pickup, J. J. Bending, H. Keen, and J.

A. Parsons, “A new miniature, open-loop, extracorporeal insulin infusion

pump”, J. Biomed. Eng., 5, 178-184, 1983

119

11. R. M. Froesch, K. K. Perlman, A. Bahorx, and A. M. Albisser “Clinical
usefulness of short-term and long-term treatment of type I diabetcs with
an intravenous open-loop insulin-infuser”, In Arsficial systems for insulin
delzvery. Brunetd, P., Albert, K. G. M. M., Albisser, A. M., Hepp, K. D. and
M. Massi Benedeta (Eds.), Raven Press, New York, 155-160, 1983

12. P. J. Blackshear, F. D. Dormman, P. L. Blackshear, R. L. Varco, and H.
Buchwald, “The design and initial testing of an Implantable infusion
pump”, Surg. Gynrecol. Obstet., 134, 51-57, 1972

13. P. J. Blackshear, “Treatment of type II patents by means of a totally
Implantable insulin infusion pump”, Lancer, 1, 1233-1235, 1981

14. G. A. Carlson, R. E. Bair, J. I. Gaona, J. T. Love, H. E. Schildbrecht, R. S.
Urenda, W. J. Spencer, R. P. Eaton, and D. S. Schade, “An Implantable,
remotely programmable insulin infusion system”, Med. Progr. Thr.
Technology, 9, 17-25, 1982

15. T. Shinjyo, Y. Inoue, H. Ohashi, and Y. Hirata, “Trals of insulin infusion
therapy by the closed-loop and open-loop system in padents with
hyperglycemia and renal insufficiency”, In Current and future therapies with
insulin, Proceedings of the First International Symposium on Treatment of Diabetes
Mellitus (1983) Excerpta Medica, Amsterdam-Oxford-Princeton, 244, 241-
245, 1982

16. G. F. Franklin, J. D. Powell, A. Emami-Naeini, “Feedback Control of
Dynamic Systems”, 3* Ed., Addison-Wesley Pub., 1, 1994

17. M. Shichin, R. Kawamor, Y. Yamasaki, N. Hakui, H. Abe, “Wearable
Artficial Endocrine Pancreas with Needle-Type Glucose Sensor”, Lancet,
pp.- 1129-1131, 1982

120

18. M. Moussy, D. J. Harason, D. W. O’Bnan, R. V. Rajotte, “Performance
of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a
Novel Tulayer Coating”, Anal. Chem., 65, 2072-2077, 1993

19. D. A. Gough, J. C. Amour, “Development of the Implantable Glucose
Sensor, What Are the Prospects and Why is It Taking So Long?”, Dzabetes,
44, 1005-1009, 1995

20. K. Camman, “Implantable Electrochemical Glucose Sensors — State of
the Art”, Hormone and Metabolic Research Supplement, 20, 4-8, 1988

21. G. Velho, Ph. Froguel, D.R. Thévenot, G. Reach, Dzabetes Nutr. Metab.,
1988, 1, 227-234

22. G. Velho, Ph. Froguel, R. Sternberg, D.R. Thévenot, G. Reach, Dzabetes,
1989, 38, 227-234

23. R. F. B. Turner, D. J. Hargson, R. V. Rajotte, H.P. Galtes, “A
biocompatble enzyme electrode for continuous z# #ve glucose monitoring
in whole blood”, Sensors and Actuators, B1: 561-564, 1990

24. R. F. B. Tumer, D. J. Hardson, R. V. Rajotte, ‘“Preliminary in vivo
biocompaubility studies on perfluorosulfonic acid polymer membranes for
biosensors applicatons”, Buomaterials, 12: 361-368, 1991,

25. F. Moussy, D. J. Harrson, R. V. Rajotte, “A miniaturized Nafion-based
glucose sensor: ix vitro and in vive evaluaton in dogs, International Journal
of Aruficial Organs”, Vol. 17, no. 2, 88-94, 1994

26. C. Yu, “Human Trals of an Implantable Glucose Sensor”, M.Sc. Thesis,
University of Alberta, 1996

27. G. G. Guilbault, G. J. Lubrano, Anral Chem. Acta., 60, 254-255, 1972

28. G. G. Guilbault, G. J. Lubrano, Awal Chem. Acta., 64, 439-455, 1973

121

29. L. C. Clark, C. Duggan, Dzabetes Care, 5, 174-180, 1982

30. T. Yao, Anal. Chem. Acta., 148, 27-33, 1983

31. A. V. Oppenheim, A. S. Willsky, I. T. Young, Signals and Systems,
Prentice-Hall Inc., 11, 1983

32. G. Velho, Ph. Froguel, D.R. Thevenot, G. Reach, “Strategies for
Calibrating a Subcutaneous Glucose Sensor”, Biomed. Biochim. Acta., 48,
11/12,957-964, 1989

33. I. Sommervile, Software Engineering, 5% Ed., Addison-Wesley Pub., 420

34. Press Release, Insulin Inhaler (AERx™ System) clinical trial results
announced, About.com,

hetp://pharmacology.tgn.com/library /98news /bln0616a.htm, June, 1998

35. J. Walsh”, Inhaled insulin: will it really rake your breath away?”, The

Diabetes Mall, hup://www.diabetesnet.com/inhale ins.html, 1998

30. “Tet Injectors, Children with Diabetes™,

hop://www.childrenwithdiabetes.com/d 06 350.hun, 1999

37. “Islet Transplant Procedure Moves Closer to a Cure for Diabetes”,

hop://www.insulin-free.org/articles /heringada.htm, Insulin-Free World
Foundation, June, 1997

38. R. Alejandro, R. Lehmann, C. Ricordi, N. S. Kenyon, M. C. Angelico, G.
Burke, V. Eszuenazi, J. Nery, A. E. Betancourt, S. S. Kong, J. Miller, D. H.
Mintz, “Long-Term Functdon (6 years) of Islet Allografts in Type 1
Diabetes”, Diabetes, Vol. 46, 1983-1989, , 1997

39. C. Ricordi, “Human islet cell transplantation: new perspectives for an old

challenge”, Diabetes Reviews, Vol. 4, No. 3, 356-369, 1996

122

40. R. Walker, “Calgary researchers on road to diabetes wvaccine,”

hup://www.medicalpost.com/mdlink/engli
3520/02C.HTM, Vol. 35, No. 20, 1999
41. C. Holden, “Apollo Project for the Heart?”, Swence MNMagazne,
http://www.ibme.utoronto.ca/life/science hunl, Vol. 280 12, 1681, 1998
42. E. Corcoran, “Medical Electronics”, IEEE Spectrum, 66, Jan. 1988
43. Press Release, “MiniMed Inc. Announces Final FDA Approval for

Continuous Glucose Monitorng System to Treat Diabetes”,
http://www.minimed.com/files/pr_35.htm, June 1999
44. V. Poitout, D. Moatu-Sirat, G. Reach, Y. Zhang, G. S. Wilson, F.
Lemonnier, J. C. Klein, “A glucose monitoring system for on line
estimadon in man of blood glucose concentraton using a miniaturized
glucose sensor implanted in the subcutaneous tssue and a wearable
control unit”, Diabezologia, 36, 658-663, 1993
45. A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and
Applicatons, John Wiley & Sons, 1980, 562-563
46. W. G. Jung, IC Op-Amp Cookbook, Third Ed., Howard W. Sams & Co.,
169-171, 1986
47. G. E. Tobey, J. G. Graeme, L. P. Huelsman, Operational Amplifiers,
Design and Applicatons, McGraw-Hill Book Co., 229-231, 1971
48. Data sheet for LM 124, Natonal Semiconductor Corp., 1-213, 1999
49. D. A. Bell, Solid State Pulse Circuits, 4™ Ed., Prentice Hall Inc., 149, 1992
50. I. Sommervile, Software Engineering, 5% Ed, Addison-Wesley Pub.,
pp-421-422

123

