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Abstract

Exponential Random Graph Models (ERGMs) have been developed for

fitting social network data on both static and dynamic levels. However, the

lack of large sample asymptotic properties makes it inadequate in assessing

the goodness-of-fit of these ERGMs. Simulation-based goodness-of-fit plots

were proposed by Hunter et al (2006), comparing the structured statistics of

observed network with those of corresponding simulated networks. In this

research, we propose an improved approach to assess the goodness of fit of

ERGMs. Our method is shown to improve the existing graphical techniques.

We also propose a simulation based test statistic with which the model com-

parison can be easily achieved.

Keywords: Social Networks, Exponential Random Graph Models, Good-

ness of fit.
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Chapter 1

Introduction

A network is one of the most important forms of dependent data and is es-

pecially useful to describe social relationships. A social network is a social

structure among individuals according to its specific types of interdependency

such as friendship, kinship, and academic paper co-authorship. The applica-

tion of social network analysis has been emerged to many areas, to name a few,

the behavior of epidemics in public health, protein interactions in biological

science, and coalition formation dynamics in political science.

In early years of statistical network analysis, researchers mainly dealt with

the distribution of various network statistics. In the 1980’s, a series of liter-

atures about network modeling random networks allowed deeper exploration

in network structures and brought social network analysis into a new page.

The attention is mainly focused on statistical inferences on both static and

dynamic networks and assessing the goodness of fit of the models.

In 1981, Holland and Leinhardt applied a log-linear statistical model, which

is named the p1 model, to directed networks under dyadic independence as-

sumption, that is the dyads are independent of one another in random net-
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works. Three types of effects which can be evaluated by p1 model are sender

effect (popularity), receiver effect (expansiveness) and dyadic effect (recipro-

cation).

To extend the p1 model in terms of the dependency structure in net-

works, Frank and Strauss (1986) proposed exponential random graph mod-

els (ERGMs) under the Markov dependency assumption in random networks.

Markov dependence is a more realistic dependence structure in random net-

works. In Markov graph, two possible network ties are said to be condition-

ally dependent only when they are connected by a common node. Frank and

Strauss proved that the counts of various triangles and k-stars are sufficient

statistics for Markov graphs and regarded the count effects as parameters in

ERGMs. Modifications of ERGMs are discussed in Snijders (2004) and Hunter

(2005), which generalize the dependence assumption and include more struc-

ture statistics in ERGMs.

Since the calculation of maximum likelihood estimate involves maximiz-

ing the sum of log-likelihood for all possible networks, MLE method is not

applicable to large networks. Strauss and Ikeda (1990) introduced pseudo-

likelihood estimation for social network models. In their work, it was shown

that maximum pseudo-likelihood estimate (MPLE) is equal to MLE for inde-

pendent network models and MPLE provides a reasonable approximation for

estimating ERGMs in the form of logit models.

Due to the lack of good understanding of MPLE and the inefficiency of

MPLE in some known cases, MPLE is often used as a starting value in some

iterative procedures of estimation, such as Markov Chain Monte Carlo max-

imum likelihood estimation. Details can be found in Geyer and Thompson

(1992) and Snijders (2002).
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Since there is no standard large sample asymptotic theory for networks,

it is difficult to assess the goodness of fit of the models. Hunter (2006) pro-

posed simulation based goodness-of-fit plots for static ERGMs, comparing the

structured statistics of observed network with those of corresponding simu-

lated networks. The idea is that a fitted model should reproduce network

statistics similar to the observed one. The choice of the network statistics for

constructing these goodness-of-fit plots is made according to the interest of

the study.

Our work focuses on the extension of Hunter’s Goodness of fit test on

static ERGMs. Based on a simulated sample of networks generated from the

fitted ERGM, we approximate the distributions of the structure statistics in

the random network instead of the distribution of the random network itself.

Although the distributions have not been proved theoretically, we obtain the

approximate distribution for some of the structure statistics based on simula-

tion. The goodness of fit tests could be improved with this assumption of the

distribution.

In section 2 of this paper, we introduce the modeling, the estimation and

goodness of fit tests of the ERGMs. From section 3.1 to 3.3, we describe our

idea of using the approximate distributions of the network structure statistics

to improve the goodness of fit tests. Then, we employ the degree counts, a

common type of structure statistics of a random network defined in section 3.2,

to indicate the improvement of goodness of fit tests with two examples (section

3.4). The simulations are done in section 3.5 to check the Poisson assumption

of the distribution of the degree counts in random networks. Conclusions and

further discussions are made in section 4.
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Chapter 2

Literature Review

2.A Random graphs and ERGMs

A network consists of vertices and edges. In social networks, the number of

vertices is called the network size. The edges, which are also called ties, can

either be directed or undirected. A network with directed edges is called a

directed network or a directed graph. If a network contains only undirected

edges, it is an undirected network or an undirected graph.

To introduce the notation, consider a network with n vertices. Let N be

the index set of vertices {1,2,· · · ,n}. A network G on N is a subset of the set

of pairs of elements in N . In other words, G is the set of edges of a network.

For a random network with n vertices, the set of possible edges can be

denoted by G0 ⊆ N ×N . G is random and G ⊆ G0.

In order to study the feature of a social network, we tend to generalize it to

a random network with the same network size. A random network is obtained

by starting with n vertices and adding edges between them at random. Each

possible edge in the random network is a random variable, which has a value
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of 1 if the edge is present in G and 0 otherwise. For example, we can use

Yij to denote the possible edge between node i and node j, where i < j

for undirected networks and i 6= j for directed networks. Let Y denote the

sequence of the random variables. An instance of an undirected network is Y =

{Y12, Y13, · · · , Yn−1,n}, and y denote the observation of the random network.

Hence, both Y and G refer to a random network and we have y to denote

a realization of the random network in terms of an observation of Y .

2.A.1 Dependence structure

As mentioned before, networks are dependent data. This means that in a

general network Y , each variable Yij is related to the other variables in the

network. The modeling of networks is complicated and the computation is

burdensome. By defining a dependence structure in Y , it imposes some con-

straints on the dependence of the network and it simplifies the modeling. The

dependence structure of a network indicates which edges in the network are

conditionally dependent. Two edges are conditionally dependent if the con-

ditional probability that the edges both are present, given the other edges

in the network, does not equal to the product of their marginal conditional

probabilities.

Frank and Strauss (1986) proposed a dependence graph to describe the

dependence structure in a network. A dependence graph D on a random

network G is a fixed graph. The vertices of D are the possible edges in G, and

the edges of D are the pairs of edges in G that are conditionally dependent. A

clique of D is defined as a nonempty subset A of the possible edges of G such

that either A contains only one edge or each pair of edges in A are connected
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in D, that is, the pairs of edges in A are conditionally dependent.

Bernoulli networks

Bernoulli networks have the simplest dependence structure which is ob-

tained if all edge variables Yij are mutually independent and follow the Bernoulli(pij)

distributions.

Yij ∼ Bernoulli(pij), ∀i 6= j . (2.1)

The joint probability of the Bernoulli network is,

P (Y = y) =
∏
i 6=j

p
yij
ij (1− pij)1−yij . (2.2)

Under the Bernoulli dependence assumption, there does not exist any pairs

of edges which are conditionally dependent. The dependence graph D contains

a collection of isolated vertices, with each vertex corresponds to an edge in the

Bernoulli network. In other words, the clique A can only be a single edge in

G.

Markov networks

Markov dependence is a more realistic dependence assumption in random

networks. When Markov dependence is assumed, the networks are called

Markov networks. In Markov networks, two edges are conditionally depen-

dent if and only if they have a vertex in common. The dependence graph D

contains edges between a pair of vertices if the vertices denote two edges which

are conditionally dependent in G. This implies that the clique A can be either

triangles or k-stars in Markov networks.

triangles: A1 = {{i, j}, {j, k}, {i, k}} ,
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k-stars: A2 = {{i0, i1}, {i0, i2}, · · · , {i0, ik}} .

Note that the clique A can also be a single edge as a 1-star in the Markov

network.

More complex dependence assumptions

More complex ERGMs that go beyond Markov random graphs have been

developed in Pattison and Robins (2002), Schweinberger and Snijders (2003)

and Sniijders (2004). The motivation is that Markov dependence seems inef-

ficient for some social networks, especially for large networks.

2.A.2 Model construction

Frank and strauss (1986) presented the Exponential Random Graph Models

(ERGMs) applied to both undirected and directed networks.

The general form of ERGMs is as follows,

Pr(Y = y) = c−1exp
∑
A⊆G

θTAgA(y) , (2.3)

where,

c =
∑
G

exp
∑
A⊆G

θTAgA(y) ,

and A is the clique of the dependence graph; gA(y) is a vector of statistics of

G which describes the network structure statistics on A.

The ERGMs can be applied to any social network. A particular form of the

models is chosen according to the set of cliques, that is {A}, and the structure

statistics of interest.

The set of cliques in a network is determined by the dependence structure

proposed before the model construction. For example, if the network is consid-
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ered as a Bernoulli network, then independence is assumed among edges. The

set of cliques {A} contains only the single edges in the network. In another

case, if Markov dependence is proposed to be the structure assumption of the

network, then {A} contains triangles and k-stars, where k = 1, 2, · · · , n − 1.

With more general dependence assumption on the network, the ERGMs could

be more complex in which {A} contains more types of cliques.

Frank and Strauss proposed the ERGMs by starting from the most general

situation, and then extending the results to Markov networks. They showed

that for any network, the probability of a realization y has the form,

Pr(Y = y) = c−1exp
∑
A⊆G

θA , (2.4)

where,

c =
∑
G

exp
∑
A⊆G

θA ,

and θA is an arbitrary constant if A is a clique of D and θA = 0 otherwise. Each

of the terms in the exponential function in formula (4) is according to a clique

of the dependence graph D. The most general dependence hypothesis could

be an assumption that the dependence graph D is a complete graph. It means

that any two edges in the random network are conditionally dependent. For

this dependence structure, a clique A can be any single edges and any order

of combination of edges.

ERGMs for Bernoulli networks

For Bernoulli networks, the set of cliques {A} contains only single edges.
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According to (5), the ERGMs can be constructed as

Pr(Y = y) = c−1exp{
∑
{i,j}

θijyij} = c−1exp{
∑
{i,j}⊆G

θij} , (2.5)

where,

c =
∑
G

exp{
∑
{i,j}⊆G

θij} .

Under the independence assumption, the normalizing constant can be simpli-

fied to ,

c =
∑
G

exp{
∑
{i,j}⊆G

θij}

=
∑
G

∏
{i,j}⊆G

expθij

=
∏
i,j

(1 + expθij) (2.6)

Plugging (7) into (6), we get a simple form of likelihood function of a realization

network y. That is,

Pr(Y = y) =

∏
{i,j}∈G exp θij

∏
{i,j}/∈G exp(0)∏

i,j(1 + expθij)

=
∏
{i,j}∈G

exp θij
1 + exp θij

∏
{i,j}/∈G

1

1 + exp θij
. (2.7)

In (8), θij is the effect of the edge {i,j}. Compared with the equation (2), we

can see the effect of the edge is actually the log odds of the edge, which is

θij = log
pij

1−pij . When homogeneity assumption is imposed so that the effect

for each edge is identical, the model becomes,

Pr(Y = y) = c−1exp(θy++) , (2.8)
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where θ is the common effect for edges and y++ is the total number of edges

in graph G.

ERGMs for Markov networks

For Markov graphs, the set of cliques {A} contains triangles and k-stars.

The ERGMs under Markov assumption are,

Pr(Y = y) = c−1exp[
∑
u,v,w

τuvwyA1 +
n−1∑
k=1

∑
v0,··· ,vk

(σv0···vk/k!)yA2 ] , (2.9)

where yA1 = yuvyvwywu, yA2 = yv0yv1 · · · yvk , and u, v, w, v0, v1, · · · , vk are ver-

tices in the graph. With homogeneity assumed, the model can be simplified

to,

Pr(Y = y) = c−1exp[τt+
n−1∑
k=1

(σksk)] , (2.10)

where τ is the common triangle effect, σk is the common k-star effect, t and

sk are numbers of triangles and k-stars in the graph, respectively.

Frank and Strauss also introduced a model only consider the edge effect,

triangle effect and 2-star effect. It is called the ρστ model,

Pr(Y = y) = c−1exp(ρr + σs+ τt) , (2.11)

where ρ, σ, τ refer to the common effects of an edge, a 2-star and a triangle,

respectively, with r, s, t represent numbers of the corresponding cliques.

At last, let’s impose the homogeneity assumption to the general form of

the ERGMs (3). The homogeneous ERGMs are of the form,

Pr(Y = y) = c−1exp{θTg(y)} , (2.12)
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where,

c =
∑
y

exp{θTg(y)} .

2.B Estimation

Maximum likelihood estimation (MLE) is not feasible to ERGMs for relatively

large networks. Consider a network with n vertices. The random network has

2
n(n−1)

2 realizations. The log-likelihood of the model (13) is,

l(θ) = logL(θ) = log(c(θ)−1exp{θTg(y)})

= −log(c(θ)) + θTg(y) . (2.13)

Since the normalizing constant c is a summation of 2
n(n−1)

2 terms, the maxi-

mizing of the log-likelihood function is really burdensome. For example, when

n = 34, the number of terms is 7.55 ∗ 10168.

An approximation of the estimation was proposed by Strauss and Ikeda

(1990). They introduced maximum pseudo-likelihood estimation method for

estimating the parameters of ERGMs.

2.B.1 Maximum pseudo-likelihood estimation (MPLE)

As presented by Strauss and Ikeda in 1990, ERGMs is rewritten in its logit

form. First, the probability of Yij = 1 conditioning on the rest of the vari-

ables in the network can be expressed without the normalizing constant in the

following form,

Pr(Y = y) = c−1exp{
∑
A

θTAgA(y)} ,
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which implies,

Pr(Yij = 1|Y c
ij) =

Pr(Y = y1ij)

Pr(Y = y1ij) + Pr(Y = y0ij)

=
exp{θTg(y1ij)}

exp{θTg(y1ij)}+ exp{θTg(y0ij)}
.

Then, with the conditional probability, the log odds of an edge Yij can be

constructed, as,

Pr(Yij = 1|Y c
ij)

Pr(Yij = 0|Y c
ij)

=
exp{θTg(y1ij)}
exp{θTg(y0ij)}

= exp{θT [g(y1ij)− g(y0ij)]}

= exp{θT∆yij} ,

where,

∆yij = g(y1ij)− g(y0ij) .

We can interpret the parameters in the ERGMs as the effects of the statistic

changes on the log odds of an edge, when the edge variable is changed from 0

to 1.

The pseudolikelihood function is defined by,

PL(θ) =
∏
ij

Pr(yij|ycij) ,

and the Maximum Pseudolikelihood estimator is obtained by maximizing this

function.

Let Pij = Pr(yij = 1|ycij) and Qij = 1 − Pij. Then, to maximize the

12



Pseudolikelihood function, we need to solve,

∂

∂θ
logPL =

∑
ij

{ yij
Pij

∂Pij
∂θ

+
1− yij
Qij

(
− ∂Pij

∂θ

)}
= 0 , (2.14)

and it implies,

⇒
∑
ij

1

PijQij

(yij − Pij)
∂Pij
∂θ

= 0 . (2.15)

The parameters can be estimated by logistic regression.

2.B.2 Markov chain Monte Carlo maximum likelihood

estimation

Recently, some results have been reported about the inefficiency of MPLE in

ERGMs for some of the well known network data. Since various Monte Carlo

estimation techniques are now developed, the Markov chain Monte Carlo max-

imum likelihood estimation (MCMCMLE) has been proposed to be a better

approximation of the MLE. This approach has been presented and reviewed

by a number of authors (see Snijders,2002; Handcock et al., 2006; Wasserman

and Robins, 2005).

Simulation is the core method of Monte Carlo maximum likelihood esti-

mation. To obtain the MCMCMLE of an ERGM, a starting set of parameter

values would be assigned first. Then, based on the Monte Carlo Markov Chain

simulation, new data is sampled from the current ERGM and the parameters

are re-estimated. This process is repeated until the parameter estimates sta-

bilize.

The start point of the parameters is usually chosen as the MPLE. Simula-
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tion of the network distribution could be achieved by a number of algorithms,

such as the Metropolis algorithm.

Snijders et al. (2006) indicated that the MCMCMLE is inadequate in

ERGMs for some datasets, for example, in which the transitivity effects are

strong. The estimation process would not stabilize in this situation. This

implies that the ERGMs are inappropriate for the data.

2.C Goodness of fit for ERGMs

When we obtain the estimated ERGMs, it is important to evaluate how well

the models fit the observed networks. In this section, we introduce some of

the traditional methods and the goodness of fit diagnosis plots presented by

Hunter et al. (2008).

2.C.1 Traditional Methods (AIC, BIC)

Traditional methods such as AIC (Akaike, 1973) or BIC (Schwarz, 1978) have

been used to assess the goodness of fit of ERGMs.

In the general case, the AIC is,

AIC = 2k − 2 ln(L) ,

where k is the number of parameters in the statistical model, and L is the

maximized value of the likelihood function for the estimated model.

The BIC is,

BIC = k ln(n)− 2 ln(L) ,

where k and L are the same as those in the AIC and n is the effective sample
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size.

Both of the methods are appropriate when the observations are an independent

and identically distributed sample. However, this assumption is not valid for

network data since the variables in a random network are usually considered

to be dependent.

2.C.2 Goodness of fit plots

In Hunter et al. (2008), he proposed his approach of assessing the goodness

of fit tests of ERGMs. The idea is that a fitted model should, more or less,

reproduce network statistics seen in the original. In Hunter’s presentation

material in 2007, he explained the goodness of fit intuition with the following

figure.

Figure 2.1: Motivation of Hunter’s goodness of fit plots

In Figure 1, the observed network is denoted as yobs. We can try any

ERGM to fit yobs. After the estimation process, we obtain a fitted ERGM

which is denoted by exp{θ̂Tg(y)}. Hunter et al.(2008) indicates that in order

to evaluate how well the ERGM fits the data, the structural statistics of the

observed network should be compared with the corresponding statistics on

networks simulated from the fitted model, such as {ỹ1, ỹ2, . . . }. If the observed
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structure statistics can represent the simulated structure statistics, it implies

a good fit of the ERGM.

In order to compare the structure statistics between the observed and the

simulated, Hunter et al.(2008) presented the goodness of fit plots.

Figure 2.2: Hunter’s diagnostics plots

In Figure 2, the observed network is compared to the networks simulated

from the fitted ERGM in terms of the below structure statistics:

• Degree: the number of ties of a vertex;

• Edgewise shared partners: a vertex connecting both ends of a tie;

• Minimum geodesic distance: the minimum number of connected ties via

which two vertices are related.

The diagnosis is not necessarily achieved through these three structure

statistics. Any other structure statistics can be chosen to evaluate the goodness

of tests. The question of how many and what structure statistics should be

included in the tests are determined by the interests of the researchers.

Although there are various structure statistics that can be used in the

diagnostic plots, they are all based on the central approach: simulation of
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a sample of random networks from a fitted ERGM, and comparison of the

observed structure statistics and the simulated structure statistics summarized

from the sample of simulated networks.

The boxplots in Hunter’s goodness of fit plots represent the distributions of

the simulated structure statistics which depend on the ERGM. The connected

lines in the plots represent the structure statistics in the observed network.

The broken lines represent the 2.5% and 97.5% quantiles in the distribution

of the simulated structure statistics after removing the outliers. These 95%

confidence intervals are connected to form the boundaries of the reasonable

values of the structure statistics. Thus, if the connected lines are within the

boundaries, it implies the simulated sample of the structure statistics are well

represented by the observed structure statistics. This also has the implication

that the ERGM which the simulation is based on has a good fit.

Compared with the traditional methods, the goodness of fit plots provide

more information. The plots provide separate views of the goodness of fit of

the model according to each of the considered structure statistics.
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Chapter 3

A simulation based approach

applied to the goodness of fit

tests on ERGMs

3.A Instruction

Since network is a dependent data, it lacks of the properties of asymptotics.

Traditional methods of goodness of fit test, like AIC and BIC, are based on the

assumption of independent samples and thus are not appropriate for network

data. This makes it difficult to assess the goodness of fit tests and also raises

some questions.

Firstly, since MLE is not appropriate for ERGMs, the likelihood of the

network cannot be used to assess goodness of fit test. Even if we can calculate

the likelihood of the network with moderate size, the likelihood could be small

considering the large number of terms contained in the normalizing constant.

Secondly, there is no efficient way to compare two ERGMs. In Hunter’s plots,
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the fact that the observed statistics are within the boundaries implies a good

fit of the model. Otherwise, it implies a bad fit of the model. However, between

two good fits, it is hard to justify which one is better. Thirdly, without a good

answer for the second question, we do not have an approach to select the best

model from a class of ERGMs.

In this paper, we propose an approximating likelihood approach on network

structure statistics in order to solve the first two questions. In the discussion,

we will talk about the further work which can be done to answer the third

question.

Origin of the idea

Consider simulating a network from a certain ERGM. The result is regarded

as an observed network Gobs. Then we fit a new ERGM to Gobs. We hope the

fitted ERGM can be as close as possible to the original model. However, there

is often a discrepancy between the original model and the fitted model.

Is the discrepancy avoidable? Let us look at a special case. Assume the

original model is the independent model, Bernoulli(0.5) distribution, on a

n-vertex random network. Actually, with the original model, any realization

of the random network is generated with equal probability. This means the

observed network can be any n-vertex network, which might lead to any fitted

model among ERGMs.

The discrepancy itself is not the problem. The real question behind is

that without any constraints on the dependence assumptions of the network,

we are not able to even reject that any network comes from an independent

graph model, Bernoulli(0.5) distribution. In terms of the probability Pr(Y =

y), we may fail to reduce to a class of ERGMs which fit the observed data

well. To solve this problem, we consider some structure statistics and their
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distributions.

The reason why we can consider the likelihood of the network statistics

instead of the likelihood of the network is threefold. 1. Usually in a social

network, the order of the vertices is not important. Altering the index of the

vertices without moving any edges would not change the network, or to say the

pattern of connections. This explains why the homogeneity is often assumed.

In this situation, the likelihood of the observed structure statistics, which

define the pattern of connections, is equivalent to the likelihood of the network.

2. Generating from any ERGM, even the independent model Bernoulli(0.5),

the likelihood of the network structure statistics will not be equal. In other

words, there always exist more likely patterns and less likely patterns of the

network. The discrepancy for the structure statistics from the most common

patterns gives us a clue about the chance that the observed network comes

from a certain model. 3. The distribution of the structure statistics can be

approximated based on the simulation of the networks.

In Hunter’s goodness-of-fit plots, several structural statistics are employed

to build the plots. For each structural statistic, a good fit should reproduce

a number of networks which the statistic in the simulated networks can be

represented by the counterpart in the observed network.

In our work, we try to extend Hunter’s work by investigating the distribu-

tions of the structural statistics. In Figure 3, Hunter’s diagnostics plots are

built based on a sample of networks. For each structure statistic, a boxplot is

constructed according to the sample of simulated statistic counts. To find out

the distribution of the statistics, we take some of the boxplots as examples (in

the boxes) and show the histograms for the counts according to each boxplot.

It seems that the statistics have certain distributions. The closed form of the
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Figure 3.1: Exploring the distribution of the structure statistics

distributions cannot be proved. However, an approximated form of the dis-

tributions can be obtained based on the simulation. With this approximated

distribution, we can extend Hunter’s goodness of fit tests. In the following

sections, degree counts distribution showed in the left plot in Figure 3 is used

to demonstrate the idea.

3.B Degree count distribution of a network

From this section, the distribution about the degree counts in a random net-

work is discussed to illustrate our idea of extending the goodness of fit test.

First, we give the definition of this distribution. Then, we show the approach

to use the approximated distribution of degree counts to calculate the likeli-

hood of the statistics and the representativeness of the pattern of connection.

Finally, we explain how to use the representativeness to test the goodness of

fit.
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In the study of graphs and networks, the degree of a vertex in a network

is the number of edges it possesses. The degree distribution P (k) is the prob-

ability distribution of a vertex to have exact k degrees. Let us define the

distribution of the degree counts in a random network.

A degree count Dk is a random variable representing the number of vertices

in a random network which have exact k degrees.

The distribution of the degree count is referred to the distribution of Dk

in a random network generated from an ERGM.

In social networks, dependence is usually assumed among the variables.

Because of this dependency, the distribution of degree counts is very complex

and has not been fully discussed. But for independent random network, the

degree distribution and the distribution of degree counts have been studied.

Before we illustrate the idea of the goodness of fit test, we need to study the

distributions in both independent and dependent random networks.

Degree counts distribution for independent networks

Bollobas’s work in 1981 was the first detailed discussion about the degree

distribution of an independent random network. In the paper, it was shown

that the degree distribution is binomial distribution for independent networks.

For an independent random network (a Bernoulli network) in which any

two vertices are connected independently with a common probability p, we

know that the model is (9) and the common edge effect is θ = log p
1−p . The

probability of a vertex to have exact k degrees in this random network is

denoted by P (k), and it follows binomial(n− 1, p) distribution, i.e.,

P (k) =

(
n− 1

k

)
pk(1− p)n−1−k . (3.1)
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In our work, instead of considering the probability distribution of a vertex’s

degree, we focus on the distribution of the number of vertices having a certain

amount of degrees.

Let Deg = (D0, D1, · · · , Dn−1) be a sequence of the count numbers of these

degrees over a random network, that is, Dk denotes the number of vertices in

G which have exact k connections with other vertices.

Bollobas further discussed that the distribution of Dk approaches a Poisson

distribution,

Pr(Dk = j) =
e−λkλjk
j!

,

where λk = nP (k).

Degree distribution for dependent networks

Binomial degree distribution is only valid for independent random net-

works. For dependent networks, the degree distribution could be quite complex

and there is no complete form of the distribution according to the literatures.

In this paper, we do not make any assumptions on the degree distribution

of dependent random networks. However, we assume the distribution of Dk

can still be approximated by a Poisson distribution. We can not provide

a theoretical proof for this assumption; but in section 3.4, some simulation

results will be shown to illustrate its efficiency.

From a certain ERGM, we can produce a sample of networks. After sum-

marizing the degree counts in the sampled networks, we obtain a sample of

counts for each degree. Based on this simulation, we can check that the distri-

bution of the degree counts can still be approximated by a Poisson distribution.

The details are presented in section 3.5.
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3.C Goodness of fit test based on the approx-

imated distribution of degree counts

With Poisson distribution assumed for each variable dk, we can fit a Poisson

model from the sample of counts of dk and the estimated parameter is λ̂k,

Pr(Dk = j) =
e−λ̂k λ̂jk
j!

.

Then let dobsk be the count of vertices with k degrees in the observed net-

work, we calculate the likelihood of the observed count in the fitted Poisson

distribution. Equivalently, we can say that we obtain the likelihood of that

dobsk are generated from the certain ERGM. Let Lik be the likelihood of the

observed statistics in each Dk distribution.

Hunter’s goodness of fit tests can be improved in two ways:

One development is using p values of the observed degree counts in Dk dis-

tributions to test the goodness of fit of a certain ERGM. Similarly, in Hunter’s

plots, observed structure statistics are compared with the boundaries which

are constructed by the 2.5% and 97.5% quantiles of the sample of simula-

tions. Since we have the approximate distribution of the structure statistics,

we can construct the 95% confidence intervals based on the fitted Poisson dis-

tributions. Also, we can use a p value for each of the degree counts in the

corresponding distributions equivalently.

Another development is to construct a new measurement to evaluate the

discrepancy of the observed network from the simulated sample of networks

generated from the ERGM. Let Rep(k) be the measure of discrepancy of the
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observed count in the Dk distribution calculated by

Rep(k) =
Likelihood of Obsk in Dk distribution

Maximum Likelihood in Dk distribution
.

This measurement Rep(k) takes values between 0 and 1. The closer Rep(k)

is to 1, the less discrepancy there is between the observed count and the

most probable count in its distribution. When Rep(k) equals to 1, it implies

that dobsk reaches the maximum of the likelihood in Dk distribution. The

Hunter’s rule of goodness of fit tests is that a fitted model should reproduce

network statistics seen in the original. Another way around is to say that, the

simulated network structure statistics should be represented by the observed

network statistics. Similarly, the measurement of discrepancy Rep(k) gives us

a quantitative tool to check the representativeness of an observed count to the

corresponding sample of simulated counts. Define REP as the measurement

of the representativeness of an observed network to the sample of simulated

networks generated from a certain ERGM,

REP =
∏
k

Rep(k) ,

where k takes values of all the degrees presented in the observed network.

Although this REP is not well interpreted, it is a simple and useful criterion

to compare two ERGMs. Consider we have two ERGMs and generate two

samples of simulated networks, with which the REP can be calculated. Then,

it implies the ERGM with the larger REP is better, as it can generate a

sample of simulated networks which can be better represented by the observed

network.
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Figure 3.2: Marriage ties among Renaissance Florentine families

With these two developments on the goodness of fit tests, we can solve the

first two problems listed at the beginning of this section.

3.D Examples

We have introduced the two developments on the goodness of fit tests of

ERGMs. In this section, we use 2 examples to illustrate how these modi-

fications improve the goodness of fit tests and solve the first two problems

listed in the instruction of this section. For each example, we will first in-

troduce the network data. Then, with the assumption that the distribution

of degree counts is approximate Poisson, we will show the extended goodness

of fit tests. We check the validation of the assumption by simulation in next

section.

Example A

In this example, the network data is about the marriage ties among Re-

naissance Florentine families, see Figure 4.
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Data description: Breiger & Pattison (1986), in their discussion of local

role analysis, use a subset of data on the social relations among Renaissance

Florentine families (person aggregates) collected by John Padgett from his-

torical documents. In the network, edges indicate the marriage ties between

16 families. Families are presented by vertices with particular shape and size.

The number of sides of each vertex denote the degree of the vertex plus 3; and

the size of the vertex indicates the wealth of the family, see the left of Figure

4.

The goal of this example is to obtain a distribution-based 95% confidence

intervals for the D′ks. So, we do not consider the information of wealth. The

original network can be transformed to the right of Figure 4, a simple graph

which keeps the pattern of connections. In other words, the two networks have

the same network structure.

In this example, the ERGM that we use to fit the network data is

Model 1 : Pr(Y = y) = c−1exp{ρr + σs}.

The estimated parameters are ρ̂ = −1.664, σ̂ = 0.012. To assess the goodness

of fit test of Model 1, a sample of simulated networks need to be generated

from Model 1 by MCMC procedure. The Hunter’s goodness of fit plots and

our approach of goodness of fit test can be constructed based on the simulated

structure statistics in the sample of networks. In terms of the degree counts,

the Hunter’s diagnostic plot is in Figure 5. We study the distribution of Dk

for k ∈ {1, 2, · · · , 7} and fit each distribution with Poisson distribution. With

these approximated distribution, we can give the confidence intervals and p

values for each of these degree counts.
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Figure 3.3: Hunter’s diagnosis plot via degree

k 1 2 3 4 5 6 7

λ̂k 3.17 4.34 3.79 2.18 0.97 0.34 0.10
Obsk 4 2 6 2 0 1 0
CIk [0,7] [1,9] [1,8] [0,5] [0,3] [0,2] [0,1]
Pk 0.39 0.19 0.18 0.63 0.38 0.29 0.90

Table 3.1: Results in Example A

The results of Example A are recorded in Table 1. For k ∈ {1, 2, · · · , 7},

λk is the estimated Poisson parameter for the Dk distribution. Based on

the approximate distribution, Poisson(λk), 95% confidence interval can be

constructed as (2.5%quantile, 97.5%quantile). Since Poisson distribution is a

discrete variable distribution, the coverage of the confidence intervals may not

be exactly 95%. Equivalently, the P value of each of the observed degree counts

can be calculated. For k ∈ {1, 2, · · · , 7}, Pk = min{Pr(Dk ≥ Obsk), P r(Dk ≤

Obsk)}. A larger P value of an observed degree count means a bigger chance

of the observed coming from the corresponding Poisson distribution.

In this example, all the observed degree counts are included in the 95% con-

fidence intervals and all the P values are larger than 0.05. It implies a good
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fit of the ERGM. Based on Hunter’s plot, we can also construct the 95% con-

fidence intervals without the assumption of approximate Poisson distributions

of the degree counts. However, the distribution-based confidence intervals are

more reasonable when the assumption is valid and would show its advantage

especially when we want to identify and remove the outliers in the sample of

simulated degree counts.

Example B

Data description: This data set, formerly called ’fauxhigh’, represents an

in-school friendship network. The school community is in the rural western

US, with a student body that is largely Hispanic and Native American. In

the network, each vertex represents a student and each edge represents the

friendship between two students. See Figure 6, the shapes of nodes denote

sex: circles for female, squares for male, and triangles for unknown. Labels

denote the units digit of grade (7 through 12), or ′−′ for unknown. Therefore,

in this network data, there are two covariates, sex and grade.

In Hunter’s work of introducing the R package ’ergm’ in 2008, two different

models were used to fit the network. In R language, the two models can be

written as,

• Model 2.1: model = ergm(faux.mesa.high ∼ edges + nodematch(′Grade′,

diff = TRUE) + nodefactor(′Sex′))

• Model 2.2: model = ergm(faux.mesa.high∼ edges + nodematch(′Grade′)

+ gwesp(0.5, fixed=TRUE), verbose=TRUE)

In the two models, the terms following ∼ symbol represent the structure

statistics g(y) in the exponential function in ERGMs. The statistics concerned

in Model 2.1 include
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Figure 3.4: Mutual Friendships in Fauxhigh School 10
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• the number of edges in y [ergm code: edges];

• the number of edges between students of the same grade, counted sep-

arately for each possible grade [ergm code: nodematch(′Grade′, diff =

TRUE)];

• the number of edges involving males, with male-male edges counted twice

[ergm code: nodefactor(′Sex′)].

The statistics concerned in Model 2.2 include the first two in Model 2.1

and replace the third term with the number of geometrically weighted edgewise

shared partner [ergm code: gwesp(0.5, fixed=TRUE)].

Our goal in this example is to calculate and compare the measure of rep-

resentativeness ’REP’ for the two models and also to find the one that can

generate a sample of networks which is better represented by the original

data.

Hunter’s plots in Figure 7 show that both of the models fit well but are

not perfect. It is not easy to tell from the plots which one fits better.

In our approach, two samples of simulated networks are generated from

the two models, respectively. With the assumption of Poisson distribution of

the degree counts, the degree counts in the three samples can be fitted by

Poisson distributions. Then, we can calculate the likelihood of the observed

degree counts in the fitted Poisson distributions. As mentioned in section 3.3,

the measurement of discrepancy Rep(k) and the measurement of the represen-

tativeness REP can be constructed based on the likelihoods of the observed

degree counts and the fitted Poisson distributions. With the results in Table

2, we can compare the two models via representativeness.
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Figure 3.5: Hunter’s diagnosis plot via degree for a. Model 2.1 and b. Model
2.2

In the results, the Rep(k) for k = 0, 2, 9 takes very small values for both

models. It means that for degrees equal to 0,2 and 9, there is a large discrep-

ancy of the observed degree counts from the simulated sample, which can be

seen from the Hunter’s plots in Figure 7.

To compare the goodness of fit for the two models, we can compare the

Rep(k) separately for each k considered in the example. Also, we can compare

the REP instead. As both of the models do not fit perfectly, the REP for

the two models are very small. Albeit, the larger REP implies a better rep-

resentativeness of the model. Thus, in terms of the degree counts, Model 2.1

fits better since it can generate a sample of networks in which the simulated

degree counts can be better represented by the original degree counts. We can

take the log-transformation of the ratio of REP for the two models,

log(
REPModel2.1

REPModel2.2

) = 1.459 .
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Measure Model 2.1 Model 2.2
Rep(0) 0.0009 0.0006
Rep(1) 0.8359 0.8553
Rep(2) 0.0104 0.0086
Rep(3) 0.7041 0.5833
Rep(4) 0.9938 0.9822
Rep(5) 0.7833 0.7272
Rep(6) 0.8336 0.8849
Rep(7) 0.1007 0.0874
Rep(8) 0.4450 0.5500
Rep(9) 0.0102 0.0050
REP 1.686e-09 3.920e-10

Table 3.2: Measure of the discrepancy Rep(k) and the representativeness REP

If the new measure is larger than 0, then it implies the Model in the nominator

has a better fit than the Model in the denominator.

3.E Simulations

This section includes two parts of simulations. The first part is regarding

checking the assumption of degree counts distribution for Example A and B

in section 3.4. The second part is related to checking the assumption for a

general class of dependent ERGMs.

Simulation A

In this part, we check the Poisson assumption on the distribution of degree

counts in Examples A and B. The procedures are similar for the two example

and are listed as follows.

1. Generate N networks from Pr(y) = c−1exp(θg(y)) using MCMC proce-

dure. This can be implemented by running ’ergm’ Package in R.

2. Obtain a matrix of degree counts, i.e. Deg.matrix = {xij}, i = 1, 2, · · · , N ; j =
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1, 2, · · · , n, where xij is the number of vertices have j − 1 degrees in the

ith network.

3. Fit a Poisson model for each column of Deg.matrix, i.e. Poisson(λk)

for the kth column referring to the (k − 1)th degree counts. Estimate

the λ′ks. Use Pearson χ2 test to assess the goodness of fit of the Poisson

models.

4. Repeat the above steps for K replicates, calculate the mean p values and

the standard errors.

We only need to consider the degrees which show up at least in 1 simulated

network for all K replicates. Because for those degrees which are never present

in N simulated networks, the counts are all 0; even if the degrees are present in

other replicates, the counts would be highly suppressed to 0 and the Poisson

models would be good fittings anyway. For this reason, we consider degree

counts for the degree of {0, 1, 2, · · · , 7} in the Example A and {0, 1, 2, · · · , 9}

in Example B, respectively.

Simulation A.1

Simulation setup: N = 100, n = 16, K = 20,Model1 : model = ergm(flo ∼

edges+ kstar(2)).

k 0 1 2 3 4 5 6 7
p 0.91 0.88 0.65 0.79 0.93 0.84 0.94 0.95

se(p) 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.05

Table 3.3: P values of checking the Poisson assumption for Example A

The p values in Table 3 correspond to the Pearson χ2 tests of checking

Poisson assumption for each degree count distribution for Example A. The p
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values are quite large and imply the assumption is valid for the distribution of

degree counts.

Simulation A.2

Simulation setup: N = 100, n = 205, K = 20.

• Model 2.1: model = ergm(faux.mesa.high ∼ edges + nodematch(′Grade′,

diff = TRUE) + nodefactor(′Sex′))

• Model 2.2: model = ergm(faux.mesa.high∼ edges + nodematch(′Grade′)

+ gwesp(0.5, fixed=TRUE), verbose=TRUE)

k 0 1 2 3 4 5 6 7 8 9
pmodel2.1 1.00 1.00 1.00 1.00 1.00 1.00 0.79 1.00 1.00 1.00

se(p)model2.1 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00
pmodel2.2 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.95 1.00 1.00

se(p)model2.2 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.05 0.00 0.00

Table 3.4: P values of checking the Poisson assumption for Example B

The p values in Table 4 correspond to the Pearson χ2 tests of checking

Poisson assumption for each degree count distribution for Example B. The

results include p values for Model2.1 and Model2.2. Most of the p values are

close to 1, and the rest are also quite large. It indicates that the assumption

is valid for the distribution of degree counts for both of the models.

Simulation B

Simulation A checked the Poisson assumption for the models in examples.

Is this assumption valid for other models? In this part, we check the Poisson

assumption on the distribution of degree counts for general ERGMs defining

dependent random networks. We indicate it by using only one class of ERGMs

which is very common and representative. The class of ERGMs is the ρστ
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models,

Pr(Y = y) = c−1exp(ρr + σs+ τt) .

In R language, the model can be written as,

modelρστ = ergm(data ∼ edges+ kstar(2) + triangles) .

The ρστ models have coefficients for edges, 2 stars and triangles. With differ-

ent coefficients, we can specify different models. In this simulation, we check

the Poisson assumption for these models.

The procedure is as follows:

1. Generate a large number of networks from independent random network

model using MCMC procedure. This guarantees we have networks with

various network patterns.

2. Fit each of the networks with the ρστ models and record the coefficients.

Construct a coefficient space (3 dimensions for the ρστ models).

3. Check the Poisson assumption for the models with all the coefficient

setups in the space.

For independent random network model, we use Pr(yij) = Bernoulli(p),

where the density p takes values in {0.1, 0.3, 0.5, 0.7, 0.9}. 200 networks with

16 vertices are generated for each value of density.

Figure 8 shows the distributions for the three coefficients separately. For

each coefficient setup in this constructed space, we can obtain a model. After

generating a sample of networks from the model, we check the Poisson as-

sumption for the distribution of degree counts. The R code and part of the
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Figure 3.6: Coefficient space in Simulation B

result are shown in Appendix D.

The space consists of 500 coefficient setups. Appendix D only shows 20

results out of the 500. Each results have 19 columns. First three columns

are the coefficients according to edges, 2 stars and triangles, respectively. The

last 16 columns are the p values of checking the Poisson assumption for the

distributions of the degree counts. The p values are not always available for all

the degrees, because the degree counts may all be 0 in the simulated sample.

If this happens, the unavailable p values are replaced by ′NaN′ in the results.

For all the available p values in the 500 results in this simulation, 92% of

p values are larger than 0.5 and almost 70% of p values are larger than 0.8.

Therefore, the Poisson assumption is valid for a large scale of the coefficients

in this class of ERGMs. Further, the approach based on the Poisson assump-

tion on the distribution of degree counts could be generalized to many other

dependent ERGMs.
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Chapter 4

Conclusions and Further

discussions

The standard large sample asymptotics is missing for networks. Therefore,

the traditional tests to assess the goodness of fit of models like AIC, BIC are

not appropriate for the ERGMs. There is no standard criteria for assessing

goodness of fit of ERGMs and model selection.

So far, the best test we can do is the diagnostic plots by Hunter et al.

Hunter collected several network structure statistics of common interest, for

each of which he constructed the goodness of fit plots with original structure

statistics in the target network and those in the simulated networks that gen-

erated from the fitted ERGM. A good fit of the ERGM is indicated by that

the simulated structure statistics are represented by the original statistics.

In our work, we follow Hunter’s idea and try to investigate the distributions

of the network structure statistics. Based on a sample of simulated networks

from a certain ERGM, we can obtain a sample for each of the structure statis-

tics, based on which we tried several distributions to fit the statistics. In fact,
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some of the structure statistics have distributions that can be well approxi-

mated by Poisson distribution, such as the degree counts and the counts of

edge-wise shared partners. This approach can also be applied to other network

structure statistics if their distributions can be proven or well approximated

by simulation.

Two improvements have been done for the goodness of fit tests of the

ERGMs. With ′the marriage ties in florentine families′ example, we showed

that the 95% confidence intervals of the degree counts could be constructed

as distribution-based statistics. These intervals would be more precise when

the assumption of distribution is valid. With ′the friendships in high school′

example, the measure of discrepancy and the measure of representativeness

are regarded as the criterion of comparing two ERGMs. Based on the distri-

bution of the degree counts, Hunter’s diagnostic plots are quantified into these

measures, which could be easily used to compare different ERGMs.

Assessing goodness of fit tests of ERGMs is still at its early stage. Further

work should be focused on a number of aspects. Some of them are mentioned

below.

• Efforts should be made to find the closed form of distribution of network

structure statistics.

Our work is built on assuming the Poisson distribution of some of the

structure statistics in random networks. Other distributions we tried to

fit the distribution of degree counts were binomial distribution, multi-

nomial distribution and Poisson log-normal distribution. The Poisson

and binomial distributions gave the best fits. In the future work, the

closed form of the structure statistics distributions could be proved to
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make the approach more reliable. Otherwise, as an alternative, a better

approximation of the distribution could also improve the performance.

• A standard measure of the goodness of fit of ERGMs should be con-

structed.

There is no good interpretation of the measurements used in the example

B. Since the Rep′s and REP are constructed based on the likelihood of

the structure statistics, a modification can be made as an addition to the

Rep′s and REP of a measure of model complexity. Then, a standard

criterion could be constructed like AIC, BIC.

• Model selection might be available after the standard measure is devel-

oped.

If the standard criterion mentioned above is constructed, then we are not

only able to compare two different ERGMs conveniently, but also to use

the criterion in the procedure of model selection. Although the model

selection might not locate the best model within all of the ERGMs, it is

possible to find the best model within a certain class of ERGMs defined

by interests.
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Chapter 5

Appendix
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5.A R code

Appendix A: R Code for Example A

observed=c(4,2,6,2,0,1,0)

lambda=c(3.17,4.34,3.79,2.18,0.97,0.34,0.10)

CIP=function(observed,lambda)

{

m=length(observed)

CI=matrix(nrow=2,ncol=m)

p=c()

for (i in 1:m)

{

obs=observed[i]

lam=lambda[i]

CI[1,i]=qpois(0.025,lam)

CI[2,i]=qpois(0.975,lam)

if (obs==0) p[i]=dpois(0,lam) else p[i]=min(ppois(obs,lam),1-ppois(obs-1,lam))

}

list=list(CI=CI, pvecter=p)

return(list)

}

CIP(observed,lambda)

Appendix B: R Code for Example B

library(”ergm”)

data(”faux.mesa.high”)
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fx=faux.mesa.high

n=205

# begin{modeling}

model3 = ergm(faux.mesa.high ∼ edges + nodematch(”Grade”, diff = TRUE)

+ nodefactor(”Sex”))

summary(model3)

model4 = ergm(faux.mesa.high ∼ edges + nodematch(”Grade”) + gwesp(0.5,

fixed=TRUE), verbose=TRUE, seed = 789)

summary(model4)

# end{modeling}

# begin{goodness of fit plots}

# Model 2.1

m3gof = gof(model3, GOF = ∼ distance + espartners + degree + triadcensus,

verbose = TRUE, interval = 5e+4, seed=111)

par(mfrow = c(2,2))

plot(m3gof, cex.lab=1.6, cex.axis=1.6, plotlogodds = TRUE)

# Model 2.2

m4gof = gof(model4, GOF = ∼ distance + espartners + degree + triadcensus,

verbose = TRUE, interval = 5e+4, seed=111)

par(mfrow = c(2,2))

plot(m4gof, cex.lab=1.6, cex.axis=1.6, plotlogodds = TRUE) # end{goodness

of fit plots}

set.seed(333)

N=100

n=205
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K=20

pto2.pois=matrix(nrow=K,ncol=15)

p.pois=matrix(nrow=K,ncol=15)

for (k in 1:K)

{

# begin{network generation}

# for model 2.1

m3gof = gof(model3, GOF = ∼ distance + espartners + degree + triadcensus,

verbose = TRUE, interval = 5e+4)

deg=m3gof$sim.deg

# for model 2.2, use following 3 lines instead of the 3 lines above

#m4gof = gof(model4, GOF = ∼ distance + espartners + degree + triadcen-

sus, # verbose = TRUE, interval = 5e+4)

#deg=m4gof$sim.deg

# end{network generation}

# begin{REP}

for (j in 1:15)

{

a=deg[,j]

b=rep(0,(n+1))

c=c(0:n)

for (i in 1:(n+1))

{

b[i]=length(a[a==(i-1)])
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}

p.pois[k,j]=sum(a)/N

d.pois=dpois(c,p.pois[k,j])*N

xto2.pois=sum((b-d.pois)*(b-d.pois)/d.pois)

pto2.pois[k,j]=1-pchisq(xto2.pois,n)

}

}

round(pto2.pois,4)

pmatrix.pois=pto2.pois[,1:10]

result2=rbind(apply(pmatrix.pois,2,mean),apply(pmatrix.pois,2,sd)/sqrt(K))

round(result2,4)

p.mat=p.pois[,1:10]

result2.p=rbind(apply(p.mat,2,mean),apply(p.mat,2,sd)/sqrt(K))

round(result2.p,4)

pp=p.pois[,1:10]

ppp=apply(pp,2,mean)

degobs=m3gof$obs.deg[1:10]

rep=c()

for (i in 1:length(degobs))

{

rep[i]=dpois(degobs[i],ppp[i])/max(dpois(floor(ppp[i]),ppp[i]),dpois(floor(ppp[i])+1,ppp[i]))

}

rep

(prod(rep))

# end{REP}
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Appendix C: R Code for Simulation A

# Simulation 1.A library(”ergm”)

data(”florentine”)

flo=flomarriage

model=ergm(flo ∼ edges+kstar(2))

set.seed(321)

N=100

n=16

K=20

pto2.pois=matrix(nrow=K,ncol=n)

p.pois=matrix(nrow=K,ncol=n)

for (k in 1:K)

{

gof1=gof(model,nsim=N)

deg=gof1$sim.deg

for (j in 1:n)

{

a=deg[,j]

b=rep(0,(n+1))

c=c(0:n)

for (i in 1:(n+1))

{

b[i]=length(a[a==(i-1)])

}

p.pois[k,j]=sum(a)/N

d.pois=dpois(c,p.pois[k,j])*N
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xto2.pois=sum((b-d.pois)*(b-d.pois)/d.pois)

pto2.pois[k,j]=1-pchisq(xto2.pois,n)

}

}

round(pto2.pois,4)

pto2.mat=pto2.pois[,1:8]

result1.p=rbind(apply(pto2.mat,2,mean),apply(pto2.mat,2,sd)/sqrt(K))

lambda.mat=p.pois[,1:8]

result2.lambda=rbind(apply(lambda.mat,2,mean),apply(lambda.mat,2,sd)/sqrt(K))

round(result2.lambda,4)

# Simulation 1.B

library(”ergm”)

data(”faux.mesa.high”)

fx=faux.mesa.high

N=100

K=20

n=205

set.seed(321)

model2.1 = ergm(faux.mesa.high∼ edges + nodematch(”Grade”, diff = TRUE)

+ nodefactor(”Sex”))

model2.2 = ergm(faux.mesa.high∼ edges + nodematch(”Grade”) + gwesp(0.5,

fixed=TRUE), verbose=TRUE, seed = 789)

pto2.pois=matrix(nrow=K,ncol=10)

p.pois=matrix(nrow=K,ncol=10)

for (k in 1:K)
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{

gof2.1=gof(model2.1,nsim=N)

deg=gof2.1$sim.deg

# For model 2.2, use following 2 lines instead of above 2 lines

#gof2.2=gof(model2.2,nsim=N)

#deg=gof2.2$sim.deg

for (j in 1:10)

{

a=deg[,j]

b=rep(0,(n+1))

c=c(0:n)

for (i in 1:(n+1))

{

b[i]=length(a[a==(i-1)])

}

p.pois[k,j]=sum(a)/N

d.pois=dpois(c,p.pois[k,j])*N

stat.pois=c()

for (ii in 1:length(b))

{if (b[i]==0) stat.pois[ii]=0 else stat.pois[ii]=(b[i]-d.pois[i])*(b[i]-d.pois[i])/d.pois[i]}

xto2.pois=sum(stat.pois)

pto2.pois[k,j]=1-pchisq(xto2.pois,n)

if (j¿6)

{ a=deg[,j]

b=rep(0,11)

c=c(0:9)
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for (i in 1:10)

{

b[i]=length(a[a==(i-1)])

}

p.pois[k,j]=sum(a)/N

d.pois=dpois(c,p.pois[k,j])*N

stat.pois=c()

for (ii in 1:length(b))

if (b[i]==0) stat.pois[ii]=0 else stat.pois[ii]=(b[i]-d.pois[i])*(b[i]-d.pois[i])/d.pois[i]

xto2.pois=sum(stat.pois)

pto2.pois[k,j]=1-pchisq(xto2.pois,10)

}

}

}

round(pto2.pois,4)

pto2.mat=pto2.pois[,1:10]

result1.p=rbind(apply(pto2.mat,2,mean),apply(pto2.mat,2,sd)/sqrt(K))

result1.p

lambda.mat=p.pois[,1:10]

result2.lambda=rbind(apply(lambda.mat,2,mean),apply(lambda.mat,2,sd)/sqrt(K))

round(result2.lambda,4)

Appendix D: R Code for Simulation B

library(”ergm”)

n=16

set.seed(333)
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theta.mat=matrix(nrow=500,ncol=3)

test.p=c()

pset=c(0.1,0.3,0.5,0.7,0.9)

count=0

for (pi in 1:5)

{

p=pset[pi]

for (j in 1:100)

{

array=c(rbinom(16*15/2,1,p))

mat=matrix(0,nrow=n,ncol=n)

count1=0

for (irow in 1:(n-1))

{

for (icol in (irow+1):n)

{

count1=count1+1

mat[irow,icol]=array[count1]

}

}

net=network(mat)

net$gal$directed=F

model=ergm(net∼edges+kstar(2)+triangles)

count=count+1

theta.mat[count,]=model$coef

}
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}

# simulation B (continued)

set.seed(333)

result=matrix(nrow=1,ncol=19)

for (j in 1:length(theta.mat[,1]))

{

theta0=theta.mat[j,]

model=ergm(flo∼edges+kstar(2)+triangles)

theta.mat[test,]=model$coef

set.seed(321)

N=100

n=16

K=4

pto2=matrix(nrow=K,ncol=n)

pto2.pois=matrix(nrow=K,ncol=n)

p=matrix(nrow=K,ncol=n)

p.pois=matrix(nrow=K,ncol=n)

for (k in 1:K)

{

gofly3=gof(model,nsim=N,theta0=theta0)

deg=gofly3$sim.deg

for (j in 1:n)

{

a=deg[,j]

b=rep(0,(n+1))
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c=c(0:n)

for (i in 1:(n+1))

{

b[i]=length(a[a==(i-1)])

}

p.pois[k,j]=sum(a)/N

d.pois=dpois(c,p.pois[k,j])*N

xto2.pois=sum((b-d.pois)*(b-d.pois)/d.pois)

pto2.pois[k,j]=1-pchisq(xto2.pois,n)

}

}

ans=round(pto2.pois,4)

ans2=rbind(apply(ans,2,mean),apply(ans,2,sd)/sqrt(K))

setup=matrix(c(rep(c(theta0),c(2,2,2))),2,3)

ans3=cbind(setup,ans2)

result=rbind(result,ans3)

}
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# results for Simulation B

-1.03 -1.10 -13.07 0.94 0.00 0.94 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

-1.75 -0.19 -15.57 0.70 0.48 0.78 0.85 0.91 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

-2.34 0.02 -15.73 0.57 0.52 0.89 0.72 0.78 0.98 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

-3.20 0.29 -15.66 0.38 0.13 0.84 0.76 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

-0.90 0.03 -0.08 1.00 0.80 0.92 0.74 0.87 0.87 0.94 0.70 0.81 1.00 0.75 1.00 NaN NaN NaN NaN

-0.75 0.01 -0.33 1.00 1.00 0.97 0.96 0.82 0.82 0.93 0.98 1.00 1.00 NaN NaN NaN NaN NaN NaN

0.52 -0.25 0.41 NaN 1.00 0.99 0.80 0.70 0.78 0.96 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN

1.14 -0.32 0.04 1.00 1.00 0.96 0.23 0.91 0.80 1.00 1.00 1.00 NaN NaN NaN NaN NaN NaN NaN

-0.83 0.13 -0.20 NaN NaN NaN 1.00 0.78 1.00 0.97 0.97 0.94 0.86 0.67 0.98 0.80 1.00 1.00 NaN

0.17 -0.13 0.43 NaN 1.00 1.00 0.91 0.56 0.91 0.74 1.00 0.95 0.96 0.64 0.89 1.00 0.53 NaN NaN

-0.98 0.10 -0.08 NaN NaN 1.00 1.00 0.51 0.66 0.99 0.98 0.91 0.86 0.66 0.35 0.74 1.00 0.95 NaN

3.08 -0.14 -0.20 NaN NaN NaN NaN 1.00 0.93 1.00 0.86 0.60 0.87 0.99 0.99 1.00 NaN NaN NaN

5.99 -0.32 0.28 NaN NaN NaN NaN NaN NaN NaN 1.00 1.00 0.93 1.00 0.90 0.55 0.89 0.94 0.91

14.40 -0.75 0.29 NaN NaN NaN NaN NaN NaN NaN NaN 0.71 1.00 0.75 0.49 0.70 0.90 1.00 NaN

2.22 0.06 -0.41 NaN NaN NaN NaN NaN NaN 1.00 1.00 1.00 0.89 0.73 0.73 0.99 0.99 1.00 NaN

7.90 -0.57 0.56 NaN NaN NaN NaN NaN NaN 1.00 1.00 0.68 0.89 0.61 0.95 0.61 1.00 1.00 NaN

221.6 -15.99 16.40 NaN NaN NaN NaN NaN NaN NaN NaN 1.00 1.00 0.98 0.94 0.57 0.97 0.75 0.16

-5.25 0.48 -0.32 0.00 0.00 0.80 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

-5.34 0.63 -0.76 0.00 0.00 0.91 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

229.1 -16.03 15.81 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.00 1.00 0.84 0.89 0.54 0.73
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5.B Table of terminology

Terminology Description
A social network is a social structure made up of individuals (or organizations)

called ”nodes,” which are tied (connected) by one or more
specific types of interdependency, such as friendship, kinship,
common interest, financial exchange, dislike, sexual relation-
ships, or relationships of beliefs, knowledge or prestige.

Vertices or nodes are the fundamental units in networks, representing objects
which possibly have associations with each other.

Edges or ties are connections or associations between vertices. In social
networks, they represent relationships between objects.

Size of a network(n) is the number of vertices in a social network.
Density or network density is the proportion of ties in a network relative to the total

number of possible ties.
Structure statistics g(y) are a collection of statistics built on a network, representing

the structure of the network.
Clustering coefficient is a measure of the likelihood that two associates of a vertex

are associates themselves.
Edge variable(Yij) is a binary random variable of an edge being present or absent.
G denotes the set of edges in a social network. It is also used to

denote a network.
Y denotes the vector of edge variables in a random network.
y A realization of Y .
Dependence graph D is a fixed graph for a particular random network G. The

vertices in D are the possible edges in G, and the edges in D
are the pairs of edges in G that are conditionally dependent.

A is defined as a nonempty subset of the possible edges of G
such that either the subset represents a singe edge or the
subset contains edges that are conditionally dependent in G.

Y c
ij denotes the compliment of Yij in Y .

Y 1
ij or Y 0

ij denotes a network with Yij set to 1 or 0.

Table 5.1: Table of terminologies
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