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Abstract

We study the problem of Table Union Search (TUS) in the presence of pref-

erences. Two tables are unionable if their column values are drawn from the

same domains. This notion of unionability is too coarse to be effective in

down-stream tasks. The result of a table search for unionability is often less

relevant to the needs of users, and selecting top few is subjective and depends

on the follow-up operations.

This thesis introduces preferences for table unionability, as a way to reduce

the search space and focus on rows and columns that are important for the

follow-up operations. But, adding preferences introduces a few challenges to

the process. Firstly, one may need extra information such as the relationship

between webtables which TUS does not consider. Secondly, there is usually ad-

ditional overload, which can be costly when searching a large set of webtables.

We study a few approaches to address these challenges.

We evaluate the efficiency and effectiveness of preferences on three down-

stream tasks, showing that adding preferences significantly improves the per-

formance of these tasks.
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Preface

We intend to publish this thesis as a full paper. We have the draft version of

the paper ready and it is under our review right now.
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I Wonder... What If? Let’s Try!

– Sesame Street TV Series
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Chapter 1

Introduction

The web contains a vast corpus of relational tables. Those tables are a great

source of structural information and can be a valuable resource in many use

cases and applications (e.g. table augmentation [22], [86], [89], knowledge

base population [64], [90] and question answering [53], [67]). Table Union

Search (TUS) is an operation where one wants to find webtables that can be

unioned with a query table. The notion of unionability in relational databases

is defined as follows: Two tables are considered unionable if their column val-

ues are drawn from the same domains. However, in the context of the web,

the domains of columns are not known or fixed, unlike relational databases

where the domains are well-defined. For the same reason, existing approaches

for TUS often rely on value overlap to find columns with the same domains.

Following this idea, we may have columns with different levels of overlap with

query columns, leading to webtables with varying degrees of unionability. Also,

webtables may have different subsets of columns with value overlap with query

columns. Using all this information, TUS ranks webtables according to their

unionability, with the most unionable table to the query ranked the highest.

However, using this generic notion of unionability in down-stream tasks or

with other operations can be challenging.

First, the value overlap is not always a good measure for unionability. Con-

sider, for instance, two columns containing country names, one for Asia and

one for America. There is no overlap between the two columns, but they are

both drawn from the same domains, countries. Existing approaches use other
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unionability measures such as the cosine similarity between word embedding

representations of the two columns’ values or the overlap between the corre-

sponding entity types of columns’ values extracted from a knowledge graph

[52]. Second, the output size of TUS is usually large, leaving the user with

many unionable webtables and making it difficult to extract the information

they need. Some works try to address this issue by focusing on returning a

top-k list of most unionable webtables in response to a given query table [52]

which brings us to the next challenge. As the third challenge, no matter what

the user prefers to see in the results and what follow-up operation will be ap-

plied on the query table, TUS returns the same list of webtables in response

to a specific query table. Ranking the webtables or selecting the top few is

a subjective task, and depending on the user’s needs, it may be better to re-

turn a different ranked list (i.e. it could be the same list, but in a different

order). Finally, TUS is also limited in its ability to identify and exploit com-

plex relationships between webtables and columns. Different webtables and

different columns of the same table are often regarded as independent entities,

and this results in not only missing valuable information but also returning

near-duplicate webtables that add no new information to the query table.

In this thesis, we extend TUS with preferences to address the above-

mentioned issues. Each preference addresses some of the aforementioned prob-

lems and helps the follow-up operations. We also study the problem of effi-

ciently evaluating TUS under preferences.

1.1 Motivating Example

Consider the query table Q and webtables C1−C3, all containing information

about countries crawled from the web, as shown in Table 1.1. The query table

lists a few countries with their populations while missing the population of

Iran. C1 is a duplicate of Q with the exception that it has no missing value.

C2 has one of the records in Q and one new record. It also has a new column

called ‘area’. C3 contains one of the records of Q and two other new records.

All these tables can be considered union compatible to Q, since they all offer
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Table 1.1: Motivating example: query tableQ and candidate webtables C1−C3

columns with the same name and domain as those of Q.

Consider a user who wants to use Q as the train data for a machine learning

model that is highly sensitive to missing values. The user decides to use TUS

to find the missing value in Q since the table has missing information. TUS

would fulfill the user’s request if it favors C1 over other tables since it contains

the missing value of Q, i.e. the population of Iran. Consider another user who

wants to train a machine learning model using records of Q, but due to the

small size of the training data, the model cannot capture the underlying trend

and suffers from underfitting. To get unionable webtables with extra records

for Q, the user executes TUS over Q. Returning C3 offers more new records

for Q in this case. In a completely different scenario, the user may need more

features for Q with the goal of training a more accurate machine learning

model. This time, extending Q horizontally and adding more columns would

be the reason behind executing TUS. Consequently, C2 by offering another

feature, ‘area’ column, is the best choice to return to the user.

1.2 Problem Statement

Without knowing the end user’s goal or the next follow-up operation, the

TUS operation must return all tables that are unionable with the query table.

However, returning a large output size makes it hard for the user to process

all the returned unionable webtables and extract the desired information. An
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approach that is adopted is to return only the top most unionable webtables.

We argue that, returning the same list of top most unionable webtables in

response to different follow-up operations is not beneficial for the user. More

precisely, there is no one-size-fits-all definition for TUS since it is a subjective

operation. The purpose of this research is to introduce preferences to TUS in

order to efficiently and effectively return the top unionable webtables with the

highest benefit in response to different follow-up operations.

1.3 Challenges

Preferences have been studied in different domains such as databases [71] and

web search [62] to prevent returning either empty or excessively large results

to user queries. They are soft constraints that are provided by the user and

describe how the results are computed or the properties that the results should

possess. In this work we investigate if the notion of preferences is meaningful

for TUS operation or not. In particular, we explore those preferences that

have the potential to add benefits to TUS operation. As the ultimate goal is

to meet the expectations of a user who wants to utilize the output of TUS

for different follow-up operations, we delve into the details of how different

preferences can be added to TUS. In this process, we identify some useful

preferences and explore the challenges of adding them to TUS.

Although each preference has its unique set of challenges, there are some

general challenges that need to be explored before adding any preference to

TUS. The first challenge is that the existing treatment of preferences in the

literature may not be directly applicable to webtables. One may need to

transform webtables to a specific format or structure [42], [73]. This can be

challenging if the transformation operation needs to be efficient without losing

any valuable information in order to be applicable in real-time environments.

For instance, Skyline [17], [36] usually works with data points represented

as vectors with numeric elements. There is a challenge in representing each

webtable with various levels of unionability with the query table in a single

vector, or multiple vectors, without losing information.
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The second challenge is that preferences may need to materialize large in-

termediate results, e.g. by computing the relationship between webtables and

columns and maintaining those relationships in an efficient data structure such

as B+-tree [76]. Although these intermediate results can help later in efficiently

ranking the results, they add another layer of computation which may have a

negative impact on the efficiency of the whole approach. Additionally, some

preferences require searching over a large range of webtables and columns, even

those with low unionability. An instance of this is when the preference is the

diversity of the webtables that are returned[12]. Since high unionable tables

are likely to be from the same domain as the query table, a low unionability

may be preferred. This can make the use of preferences less scalable and less

efficient, which may not be desirable for a real-time environment.

The third challenge relates to the information that may not be preserved

under unionability about query table or candidate webtables. For example,

TUS does not capture the relationships between different columns of a table or

the relationships between different candidate webtables, and it assumes they

are independent entities. This makes preferences that rely on such dependen-

cies inapplicable [51], [52]. An example preference might search for candidate

webtables that have the same combination of values over a subset of query

columns. As a result, the user is guaranteed that the returned webtables are

both unionable with the query table and have common records. When the

columns are considered independent as they are in TUS, it is not possible to

apply this preference.

In this thesis, we investigate these challenges and propose a few well-defined

preferences to TUS.

1.4 Overview of Our Approach

The approach we present in our research aims to rank a corpus of candidate

webtables based on their unionability with a query table. This process involves

taking both the query table and candidate webtables as input, and then using

the preferences to determine the best matches. Preferences can be incorpo-
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Figure 1.1: Overview of the approach

rated in various ways, including as a pre-processing step, a post-processing

step, or interleaved with the table union search operation. Figure 1.1 provides

an overview of our approach, which outlines the different steps involved in the

process. The main advantage of our approach is that it allows users to quickly

find the most relevant webtables that match their query, saving them time and

effort. Additionally, by incorporating preferences, users can tailor the search

to their specific needs, ensuring that the results are both relevant and useful.

In this thesis, we first present the notion of unionability, starting with

column unionability and building upon it the table unionability. To address

the limitations of TUS, as discussed above, we propose some major preferences.

For each preference, we investigate whether specific data mappings are needed

or additional information needs to be maintained for these preferences to be

included in TUS. Finally, to efficiently incorporate preferences, we employ

multiple strategies including i) pre-computing some information such as the

relationships between webtables in the dataset (Section 3.4.2), ii) exploiting

the WAND [9] approach and working with posting lists of query columns in

order to prune webtables early in the process (Section 3.2), iii) developing

greedy algorithms to optimize the search (Section 3.4), and iv) partitioning

the input dataset into smaller chunks and processing them in parallel (Section

3.4.1).
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1.5 Research Contributions

Our aim is to incorporate preferences into the TUS operation and to return

top unionable webtables for various follow-up operations. The contributions

of this thesis are as follows:

• We introduce four major preferences to the TUS operation: skyline, nov-

elty, diversity and dependent set. The first three have been introduced

in the literature but not specifically over the TUS operation. The last

one, dependent set, is a novel preference proposed by this work.

• We develop two different algorithms for evaluating TUS with our pro-

posed preferences. One approach uses the past work on TUS[52] but

utilizes the WAND approach [9] to prune many webtables without fully

examining them, and the other approach adds filters such as ‘candidate

webtable should have an alignment over a key of the query table’ to the

first approach.

• We introduce two benchmark datasets for unionable webtables, con-

structed from Web Data Commons - English-Language Relational Web

Tables 2015 (WDC) dataset [48] andWikiTables dataset [5]. This is done

by performing selection and projection operations on webtables followed

by randomly masking some values. The candidate webtables are gener-

ated so that they also cover rows and columns not selected for the query

webtables. This guarantees the existence of new rows and columns for

the query webtables in the datasets, which are important for evaluating

TUS and preferences on webtables.

• We propose efficient approaches for evaluating each preference. Our ex-

perimental evaluation shows that using preferences leads to higher qual-

ity results compared to the two implementations of TUS over different

down-stream tasks.
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1.6 Thesis Organization

In Chapter 2, we discuss the related work in the areas of table union search

and preference queries. In Chapter 3, we introduce TUS, discuss the detail of

an evaluation strategy, introduce our preferences, and discuss how they can be

efficiently evaluated. In Chapter 4, we present our evaluation on two widely

used datasets and over three down-stream tasks. Finally, in Chapter 5, we

conclude the thesis and discuss the future directions.

8



Chapter 2

Related Works

As this research resides in the intersection area between table search and prefer-

ences, our coverage of the related works is broken down into these two topics.

Table search works focus on finding unionable tables for a given query and

preferences help with returning customized results based on user’s interests.

2.1 Table Search

Table search belongs to a wider area of research, under data discovery and

data integration, which includes relevant topics such as table stitching, table

augmentation, table extraction, etc. The search for unionable tables may be

done for a table (table-based search) or a list of keywords (keyword-based

search) as the search query. In both cases, the result is a ranked list of tables

based on their similarity/relevance/unionability with the search query. Table

search is an important task of data discovery and may be used in other tasks

such as table augmentation [22], [49], [86], [88], knowledge base augmentation

[6], [64] and question answering [58], [72].

2.1.1 Keyword-Based Search

Works in this area can be broken into two categories of document-based and

feature-based approaches. The document-based methods represent each can-

didate table as a document and exploit information retrieval methods to find

the most relevant tables. For example, Pimplikar et al. [60] uses information

such as the content and the column headers of a candidate table as part of its
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corresponding document representation.

However, most of the works are feature-based approaches which represent

both the search query and candidate tables as sets of features and use tradi-

tional approaches like machine learning models to calculate their unionability.

Cafarella et al. [11] introduces a keyword-based table search on top of an exist-

ing web search engine to extract the top-k tables from the returned webpages.

Their ranking method uses table-structure-aware features such as the num-

ber of query terms in table’s header and body and query-independent table

coherence score. Later, they extend their method with a stronger re-ranking

mechanism, SCPRank, introduced within OCTOPUS [10]. SCPRank calcu-

lates the correlation between each query term and each cell of the table using

a symmetric conditional probability.

Pimplikar et al. [60] designs a structured search engine called WWT which

takes as input multiple sets of column keywords each describing one column of

the desired candidate tables. They first use all the column keywords to get the

first group of candidate tables with the best hits of keywords in their content,

context or column headers. Then, candidate tables with a value overlap with

the first group will be added to the candidate list as potential candidates.

Finally, they make a single table out of all the returned candidate tables by

merging all their relevant columns and rows.

Zhang et al. [87] represents search query and candidate tables in various

semantic spaces such as continuous embedding dense vectors and discrete bag-

of-concepts sparse vectors. They use features such as the page title, the table

caption and the table body for candidate tables and the number of terms and

the IDF score of each term for the search query. Then, they exploit different

similarity measures like early fusion and late fusion to calculate the similarity

of search query and candidate tables. Finally, they use different combinations

of semantic spaces and similarity measures as features of a supervised learning

model and show a significant improvements over the state-of-the-art baselines.

Deng et al. [25] employs the skip-gram model of Word2Vec and proposes

a method for generating neural embeddings for tables that can be used for

both populating and retrieving information. The authors introduce two types
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of embeddings, namely Word2Vec embeddings and Entity2Vec embeddings,

which are trained on the table data to capture semantic similarities between

words and entities. The embeddings are then used to generate a representation

of each table, which can be used for tasks such as table completion and query

answering.

Zhiyu et al. [15] proposes a deep contextualized language model based

approach to return a ranked list of candidate tables in response to a keyword

query. To achieve this, they leverage a pre-trained BERT model to embed both

the query and table into a shared semantic space. As BERT has a limitation

of 512 tokens on the size of input sequences, they use three content selectors

to rank the terms of candidate tables and choose the best ones for the input.

The model is fine-tuned on a large dataset of tables and queries, where each

query is paired with the table that it best matches. During training, the

model minimizes a ranking loss function that encourages the relevant table to

be ranked higher than irrelevant tables. At query time, the user’s query is

encoded using the same pre-trained BERT model used during training, and

the resulting query embedding is compared to the embeddings of all the tables

in the dataset. The similarity between the query embedding and each table

embedding is computed using cosine similarity, and the tables are ranked by

their similarity scores.

Bogatu et al. [7] proposes a method for facilitating dataset discovery in

data lakes as they argue that data lakes can be difficult to navigate and explore.

Their proposed method leverages machine learning techniques to help users

identify relevant datasets based on their search queries. The authors propose

a two-stage approach for dataset discovery. In the first stage, the method

uses a combination of keyword-based search and data profiling to identify

datasets that are potentially relevant to the user’s query. The authors use a

keyword-based search approach to identify datasets that contain specific terms

or phrases that match the user’s search query. They also use data profiling

techniques to analyze the metadata associated with each dataset, such as its

schema, format, and size, to further refine the search results. In the second

stage, the method uses machine learning techniques to rank the search results
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based on their relevance to the user’s query. Specifically, the authors use a

combination of supervised and unsupervised learning techniques to build a

relevance model that takes into account various features of the datasets, such

as their metadata, content, and usage patterns. The relevance model is trained

on a labeled dataset of queries and their corresponding relevant datasets, and

is then used to rank the search results for new queries.

2.1.2 Table-Based Search

Before going into the details of existing works, it is worth to notice that many

of them are using some form of a matcher to find columns that have been

drawn from the same domain. Koutras et al. [43] identifies different types of

matchers and categorizes them into 6 classes.

1. Attribute Overlap Matcher : it match columns with similar names, e.g.

by using Leveneshtein Distance, and chooses those with similarity over

a specific threshold as matches.

2. Value Overlap Matcher : two columns are drawn from the same domain if

they have overlap in their values, e.g. measured using Jaccard Similarity.

Those columns with similarity over a specific threshold are considered

as matches.

3. Semantic Overlap Matcher : two columns are considered relevant if they

have overlap in the set of entities they represent, for example after map-

ping their values to their entity types using a knowledge graph or a

knowledge base.

4. Data Type Matcher : this matcher marks (ir)relevant columns based on

their column types. For example, an integer column is irrelevant to a

string column.

5. Distribution Matcher : it matches two columns if they have similar dis-

tributions for their values, e.g. by using Jensen-Shannon Divergence.

6. Embeddings Matcher : two columns with similar or same embedding rep-

resentations of their values are considered relevant.
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In many of the existing work, the first step is to extract features from ele-

ments of tables. These features may be extracted from table content, such as

cell values, table schema like column headers and types, table context which

includes the content around the table or the information on the webpage con-

taining the table, statistics of the table such as cardinality and degree, and so

on.

Vector-Based Approaches

In this thread of works, each table is represented as a vector by aggregating over

vector representations of different elements of the table, and the relatedness

or similarity of two tables is detected using functions over their vectors, e.g.

dot product of vectors.

Das Sarma et al. [22] formalizes entity complement and schema comple-

ment as two concepts for finding related tables that augment an input query

table by adding rows and columns respectively. For entity complement, they

follow two different approaches. In one approach, they represent each entity

of a table as a vector and consider the relatedness of two entities as the dot

product of their vectors. Building on this, they define the relatedness of two

tables as the average relatedness of their entity sets. In another approach,

they directly represent the entities of each table as a single vector and define

the relatedness of two tables as the dot product of their vectors. For adding

columns, under schema complement, they use three different matchers to find

tables related to a query table based on the overlap of their entity sets.

Fernandez et al. [27] proposes SemProp for automatically linking datasets

by leveraging word embeddings. To apply this method to datasets, the au-

thors first generate embeddings for each dataset in a given repository using the

names and schemas of the datasets. They then construct a DAG where each

dataset is represented as a node and edges between nodes represent the seman-

tic similarity between the corresponding datasets. To calculate the similarity

between two datasets, the authors propose a similarity measure based on the

cosine similarity between their respective embeddings. When a user enters a

search query, the method identifies the most relevant datasets by computing
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the semantic similarity between the query and each dataset in the repository.

The authors use a modified version of the TF-IDF algorithm to weigh the

query terms and compute their similarity to each dataset. The most similar

datasets are then ranked and presented to the user as potential matches.

In another work, Zhang et al. [89] uses hand-crafted features such as

column headers and column-to-column and table-to-table similarity measures

from InfoGather [82] and transfer all these features into three different se-

mantic vector space representations: i) word-based embeddings, ii) graph-

based embeddings and iii) entity-based embeddings. Finally, they propose an

element-oriented table matching framework, based on the similarity between

elements of the query table and candidate tables using their vector representa-

tions. For measuring element-wise similarity, they exploit different strategies

such as cosine similarity between al pairs of semantic vectors.

ML-Based Approaches

Another group of methods, feed table features into a machine learning-based

model such as classification models to determine if the table is related to the

search query. Yakout et al. [82] proposes InfoGather, a holistic matching ap-

proach, to augment an input table with more rows and columns or to support

the discovery of important columns of the input table using a corpus of webta-

bles. It focuses on string columns and besides the traditional features such as

columns headers and values used as bags of words for table-to-table similarity,

they extract four more novel features from each webtable: i) context similar-

ity, ii) table-to-context similarity, iii) URL similarity and iv) tuples similarity.

Later they feed all features into a machine learning classification model to help

calculating the matching level of each webtable to the input table.

Zhang et al. [85], extends InfoGather [82] and introduces InfoGather+ to

support numeric and time-varying columns as well. Handling these columns

is challenging because they may have different units, scales or timestamps

and this information is usually missing from column headers. They build a

semantic graph by employing probabilistic undirected graphical models (i.e.

Markov networks) to discover above mentioned information by searching for
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semantically matching webtables. They rank these webtables based on their

relevance to the input table and use them to do the entity augmentation task,

i.e. adding rows. They exploit different indexes over both the semantic graph

and the corpus of webtables to improve on efficiency.

Ahmadov et al. [2] does the table imputation task which is to fill the missing

values of a table using lookup of webtables, training machine learning models

over webtables or a combination of both. They create different inverted indexes

over traditional features like column headers and use Lucene search engine to

make the lookup operation efficient. They also train machine learning models

like RandomForest, J48, SimpleCart and SMO over 27 extracted features of

webtables and show that RandomForest yields the best results.

Zhang et al. [91] implements an interactive framework which incorporates

specialized relevance-ranking criteria to support four different types of tasks:

augmenting data, linking data, extracting ML features and data cleaning.

Their framework combines different measures of table relatedness and exploits

pruning and approximation strategies to return the top-k related tables to a

given query table. The measures used include: i) table overlap in terms of

rows and columns value or domain overlaps, ii) new information in terms of

new rows and columns and iii) provenance similarity which capture semantic

relatedness. They finally propose some novel indexes to make the search for

top-k related tables efficient.

Cong et al. [21] proposes a method for semantic table union search. The

authors argue that existing approaches for semantic table union search have

limitations in terms of scalability, robustness, and generalization. They pro-

pose a new approach, PYthonic table union search with Contrastive Repre-

sentatiON learning (Pylon), that leverages contrastive representation learning

to generate high-quality embeddings for the tables and their attributes. The

method consists of two stages: representation learning and table union search.

In the representation learning stage, the method uses a contrastive learning

approach to learn embeddings for the tables and their attributes. The authors

use a siamese network architecture to encode the tables and their attributes

into vector representations, and they use a contrastive loss function to encour-
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age the embeddings of similar tables to be closer in the embedding space. In

the table union search stage, the method performs the table union by identi-

fying potential matches between the tables based on their embeddings. The

authors use a similarity measure that takes into account the embeddings of

the tables and their attributes, as well as their structural compatibility, to

identify the best matches. The authors evaluate their method on several real-

world datasets and show that it outperforms existing approaches for semantic

table union search in terms of accuracy and efficiency. They also show that

their method is robust to noisy data and can generalize to unseen data sources.

Overall, the proposed method leverages contrastive representation learning to

generate high-quality embeddings for the tables and their attributes, which

can improve the accuracy and efficiency of the semantic table union search.

Optimization-Based Approaches

Defining the table search task as an optimization problem is another approach

in the literature. Nguyen et al. [54] introduces diversified table selection prob-

lem as selecting a diverse ranked list of tables and structured table summariza-

tion problem as summarizing the content of the returned tables meaningfully

and concisely. Diversified table selection is defined as an optimization problem

over the goodness score of the results which is obtained by using the relevance

and similarity scores of webtables. This problem is known to be NP-Complete,

hence they propose a greedy approach for it. For the structured table sum-

marization problem, they tend to minimize the information loss by selecting

a good set of representative tuples. Since this problem is also NP-Complete,

they use a heuristic approach which makes different clusters for each group of

similar tuples and returns representative tuples for each cluster to ensure di-

versity. They use schema matching methods to find tables with similar column

headers and data similarity methods to find tables with similar cell values.

Probability-Based Approaches

Formulating the table search task as a probabilistic framework is another

thread of research. Nargesian et al. [52] formalizes three matchers set do-
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mains, semantic domains, and natural language domains to find unionable

columns. under a set domains matcher it is checked if two columns have over-

lap in their set of values. For semantic domains, column values are mapped

to knowledge base entities. Lastly, a matching based on natural language do-

mains takes into account columns with natural language text as their values

and uses word embeddings trained based on Wikipedia documents and cosine

similarity to calculate their unionability. Having unionable columns at hand,

they introduce a probabilistic framework to find candidate tables with a one-

to-one mapping of columns to the query table. To find the best alignment

between a candidate table and the query table, they reduce the problem to a

weighted bipartite graph matching problem and try to find matchings of spe-

cific size. They also use inverted indexes to make the search efficient, showing

their work can efficiently find the top-k candidate tables.

Matcher-Based Approaches

Some works rely purely on existing matchers to find related columns and

build on them using similarity measures such as Jaccard to find related ta-

bles. Lehmberg et al. [49] introduces Mannheim Search Join Engine (MSJ

Engine) with the goal of adding more columns describing entities of a given

table in three main steps: i) table indexing, ii) table search and iii) data con-

solidation. For the indexing phase, they first find the main column of the

corpus tables and then build two Lucene indexes, one over main columns val-

ues and the other over all column headers. For the searching step, they use two

different methods on the main column of the input table: i) exact search over

main column values and ii) similarity search over main column values using

FastJoin matcher which extends the Jaccard similarity to allow fuzzy match-

ing of tokens. Finally, they retrieve the top-k joinable tables and consolidate

the input table using schema matching and data fusion techniques.

In another work, Sarabchi et al. [66] proposes a framework for augmenting

a query table with new columns, a.k.a. table extension. The first step of

their framework is to apply the table search task over a dataset of candidate

webtables to get those webtables with at least one column characterizing a
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query column. In order to find such columns, they use value overlap measure

and choose those columns with a score over a threshold as of the same concept.

In order to make the search efficient, they utilized an inverted index on the

values of columns in the corpus.

Kassenov et al. [39] introduces an approach to augment a query table

with more rows, a.k.a. table expansion. As the schema for webtables is not

usually known, they focus on the content of the tables. They first split ta-

bles, both query table and candidate webtables, into entity-attribute binary

relations using projection operation. Each entity-attribute relation is a set

of key-value pairs with key being the primary key of tables and value being

the value of another non-primary key column of the table. Then, they utilize

co-occurrence statistics to retrieve best candidate relations and combine them

into full candidate rows for the query table.

Other Table-Based Search Approaches

Zhu et al. [93] proposes a system called JOining Search using Intersection

Estimation (JOSIE) for efficiently finding joinable tables in data lakes. JOSIE

uses a novel algorithm called Overlap Set Similarity Search (OSSS) to compare

the column names and values in different tables and identify potential join

candidates. So, they reduce the problem of finding top-k joinable tables to the

task of overlap set similarity. JOSIE utilizes a cost model which minimizes

the number of set reads and inverted index probes and adapts to the data

distribution which makes the search efficient.

Lehmberg et al. [47] shows that if table stitching is employed to combine

small candidate tables into wider candidate tables, the table union search

can be done more easily and more accurately. They first show that current

matching tools, such as T2K which matches webtables to a knowledge base and

COMA which is a schema matching system, both fail to produce acceptable

results on datasets with small webtables. This is a real issue since the majority

of webtables are small in size. To address this problem, they propose to

combine webtables from the same webpage using schema matching methods

(a.k.a. table stitching) to make a larger table for any further data discovery
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task. They use three different matching approaches for the evaluation: i)

label-based matcher, ii) value-based matcher and iii) duplicate-based matcher

to stitch small webtables and show that stitching tables can have a strong

effect on the performance of matching tasks.

Khatiwada et al. [40] proposes a novel method for semantic table union

search. The authors argue that existing approaches for semantic table union

search rely on column-level matchers and do not take into account the seman-

tics and relationships of columns. The authors propose a new approach that

leverages the relationships between tables in terms of semantic relationships

between pairs of columns to identify potential matches and perform the ta-

ble union. They call their approach SANTOS, which stands for “SemANtic

Table UniOn Search.” The method identifies column semantics by annotating

each column to a set of entities in a KB or if there is no KB available, by

putting attributes with similar semantics in the same group. It also assigns

each pair of columns to a set of annotations by mapping subsets of columns

values to a KB. Building on this two notions of column semantics and relation-

ship semantics they build a semantic graph with columns as nodes and edges

between two columns and their relationship semantics. Finally, they define

top-k table union search as finding a subtree of the generated graph. Gener-

ally, the method consists of two stages: candidate generation and candidate

selection. In the candidate generation stage, the method identifies potential

matches between tables by leveraging their semantic attributes and their re-

lationships with other tables. The authors use semantic embeddings after

mapping columns to KB entities to represent the tables and their attributes,

and they use graph-based algorithms to identify tables that are semantically

related to each other. In the candidate selection stage, the method selects the

best matches among the generated candidates by taking into account various

factors, such as the semantic similarity between the tables and their struc-

tural compatibility. The authors use a ranking algorithm that combines these

factors to score the candidate matches and select the best ones. The authors

evaluate their method on several real-world datasets and show that it outper-

forms existing approaches for semantic table union search. They also compare
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their method to other graph-based approaches and show that it achieves bet-

ter precision and recall. Overall, SANTOS leverages semantic embeddings

and graph-based algorithms to identify potential matches between tables and

perform the table union by considering the relationships between tables.

2.1.3 Connection to Our Work

Our work is a hybrid approach utilizing the concepts of matcher-based and

probability-based approaches. It takes as input a query table a corpus of

candidate webtables and returns the most unionable webtables for the query.

It is highly similar to Nargesian’s work [52] in identifying unionable columns

and tables. However, we apply preferences to the table search task which

differentiates our work From theirs.

Only a few existing studies explore special cases of preferences. For in-

stance, Khatiwada et al. [40] investigated the semantics and relationships of

columns to identify unionable webtables more accurately. At first glance, their

approach may seem similar to our work on dependent set preference. How-

ever, in dependent set preference, we aim to consider different combinations

of column values for two unionable candidate webtables while they try to find

more semantically relevant webtables. Thus, their approach can be regarded

as a new preference in the context of our work.

2.2 Preferences

The other focus of this research is on preferences which is a different area

than table search. Preferences are useful in the sense that they give some

control over the search process to the user. This study discusses three popular

preferences in the literature, skyline, diversity, and novelty, as well as a novel

preference, dependent set. Although our work may apply to other preferences,

we don’t cover other preferences in the thesis to keep it focused.

Preferences have been widely studied in the literature as a solution to avoid

returning empty or flooded results in response to a user query [41], [71]. Each

preference is a soft-constraint, provided by the user, describing the way the
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Figure 2.1: Base preference constructors proposed by [41]

results are computed or the properties that the results should follow. Kießling

[41] proposes a hierarchy of base preference constructors for numerical and

categorical data (Figure 2.1), based on which one can build more complex

preferences. For example, SCOREd uses a scoring function and prefers the

data with the higher (or lower) scoring function over the others. Building

on this constructor, BETWEENd prefers a numeric data in a specific range

over another one out of the range. In this section we are going to talk about

more complex preference queries in the literature. These preferences favor

data that are more useful for the needs of users, but their implementations

may be challenging, requiring efficient strategies.

2.2.1 Skyline

Skyline is a well-known preference extensively studied in the literature [17],

[36]. It is commonly defined over data points of the same dimensionality and

the aim is to find those data points which are not dominated by any other

data point. A data point Di dominates a data point Dj if it has as good as or

better values on all dimensions and a better value on at least one dimension

[16]. Kalyvas et al. [36] categorizes the works on Skyline into two groups: i)

index-based methods and ii) non index-based methods.

Index-based methods

These methods [16], [42], [46], [56], [73] rely on pre-computed indexes on data

to achieve a desired performance but with limited applicability to various
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situations and suffering from the curse of dimensionality when the data points

and consequently indexes are multi-dimensional.

Tan et al. [73] proposes Bitmap and Index algorithms to progressively find

the skyline data points. In the Bitmap algorithm, which is a non-blocking ap-

proach, they encode and represent all the information of a data point required

to check if it is skyline or not, as an m-bit vector. Then they exploit a bitmap

structure to do the search over all data points using efficient bitwise and and

or operations. The Index approach is a B+-tree-based algorithm which trans-

forms d-dimensional data points into a single dimensional space and partitions

the dataset into d ordered lists. It then exploits a B+-tree index with the ac-

tual data points as the leaves to return skyline points in batches. It is worth

mentioning that in order to get all the skyline points, the algorithms should

do a full scan of the dataset. They show that both algorithms have a quick

initial response time and outperform the existing methods in total response

time.

Kossmann et al. [42] introduces Nearest Neighbor (NN), an online progres-

sive algorithm which is useful specifically for interactive environments where

the user needs to get some results early in the process or wants to modify

the process by changing the distance function, for example. It uses R*-tree

for indexing data points in order to prune many dominated points as early as

possible. At the first step, NN will identify the data point with the minimum

(or maximum) distance using a monotone distance function such as l1-norm.

If we consider data points as 2-dimensional vectors, a skyline point divides

the whole space into four partitions. All the data points in the top right (or

bottom left) partition are being dominated by this point and can be removed

safely. The bottom left (or top right) partition is empty based on the definition

and so, the other two partitions will be added to the to-do list and the NN

algorithm will be run over them recursively. However, the high number of IO

access and the large size of to-do list are challenges of using this algorithm.

To address the issues with NN, Papadias et al. [56] proposes Branch and

Bound Skyline which is a progressive approach supporting user preferences

during its process. The approach offers an IO optimal solution by accessing
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only those partitions with potential skyline points. It also needs a limited

main memory to operate and can be used on any subset of dimensions with-

out the necessity to pre-compute anything other than the R-tree index. The

authors also introduce some new variants of skyline query such as constrained

skyline, k-dominating skyline and approximate skyline. The authors show that

their approach is applicable to diverse scenarios with less limitations while

outperforming them in terms of the IO cost.

Lee et al. [46] presents the Z-SKY framework which computes skyline

based on Z-order curves. They exploit a ZBtree index structure by combining

Z-order curve index structure with a B+-tree data structure. The Z-order

curves, as a monotonic dimension reduction technique, clusters data points

based on their position on Z-ordering, transforming data points into a one-

dimensional space. Their results show effectiveness of Z-SKY compared to

BBS [56] method.

A big issue with existing methods is that as the number of dimensions

increases or the dataset gets bigger, the indices do not perform well and the

overall performance drastically decreases. Choi et al. [16] introduces Hash

Index-based Skyline (HI-Sky) approach to solve this issue by exploiting the

fusion of a hash index and a grid partitioning ,HashGrid, over dataset to

efficiently perform the skyline computations. They assign grid location address

(GLAD) to each grid partition and perform partition-wise comparisons to

prune dominated partitions without even accessing their whole data points to

compute the skyline. They show that their approach beats Z-SKY and BBS

[56] by generating the index structure faster and executing skyline queries

more efficiently over high dimensionality datasets.

Non Index-based methods

These methods [4], [8], [18], [30] are more generic since they are not limited

to the existence of any specific index structure. Although their performance

is not as good as index-based methods, they are not suffering from the curse

of dimensionality and can be applied in many situations.

Borzsony et al. [8] proposes two algorithms Block Nested Loops (BNL)

23



and Divide and Conquer (D & C) to find skyline points in a large dataset.

BNL allocates a buffer of limited size in main memory for keeping skyline

data points in a self-organizing list. It iterates over all the data points and

compares them against current skyline data points in the buffer. A data point

Di will be pruned if it is dominated by at least one skyline data point in the

buffer; otherwise, any skyline data point dominated by Di will be removed

from the buffer and Di will be added to the list as a newly discovered skyline

point. A temporary overflow disk is used when the buffer is full and a new

non-dominated point is found. After reading all data points, it is guaranteed

that those in the buffer are in fact skyline data points, but such a claim

cannot be made for those data points in the temporary disk. They consider the

temporary disk as a new dataset and do the process over it again and so on and

so forth until there is no data point in the temporary disk. The performance

of BNL is sensitive to the number of skyline data points, the dimensionality

of data points and the underlying distribution of data points. They show

that it works well for data points with a uniform distribution and less than

5 dimensions. The D & C algorithm takes another approach and based on

α-quintiles of the dataset along a specific dimension, recursively divides the

dataset into m partitions each expected to be fit in the memory. The skyline

data points of each partition are extracted using traditional comparison of

data points and all the partitions’ skyline data points are merged at the end by

eliminating the dominated ones. These algorithms are not progressive meaning

that they do not return any skyline data point unless the whole search process

is done completely. D & C does not suffer from the curse of dimensionality

and it is not as sensitive to data points distribution as the BNL.

To improve BNL and reduce CPU-boundedness, Chomicki et al. [18] in-

troduces Sort-Filter-Skyline (SFS) algorithm which pre-sorts the data points

based on a monotone scoring function in an ascending order. The monotone

function might be the sum of each data point over all the dimensions. Based

on this order, if a data point dominates another data point, it will be ranked

higher in the sorted list and will be visited first. SFS uses a buffer similar to

BNL’s buffer to keep skyline data points which will be gathered by iterating
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over the sorted list of data points and identifying those that are not dominated

by any other skyline data point in the buffer. Following this approach, they

might find skyline points progressively and efficiently by reducing the number

of dominance checks.

Godfrey et al. [30] applies some optimizations on the SFS [18] algorithm to

improve its performance. Their algorithm, Linear Elimination Sort for Skyline

(LESS), is a generic maximal-vector external algorithm which sorts the data

points based on a monotone scoring function and uses a Skyline Filter(SF)

window just like SFS to find the skyline data points. LESS presents improve-

ments to the SFS algorithm, such as the use of a heap data structure to speed

up the sorting process and the application of randomized sampling techniques

to reduce the computational complexity. They show that the average perfor-

mance of LESS is linear in the number of data points and it improves the

existing algorithms significantly.

Bartolini et al. [4] proposes Sort and Limit Skyline algorithm (SaLSa) as

an improvement over SFS [18] and LESS [30] by avoiding scanning all the

data points in the dataset in order to get skyline points. Like the base SFS

and LESS algorithms, SaLSa does not use any pre-computed index structure

over data points and it sorts the dataset based on a monotone scoring function.

For sorting, they exploit the sorting machinery of a relational engine to order

data points in a way that only a subset of them need to be examined to get to

skyline data points. In other words, the novelty of their work is that they do

not perform dominance checks over all the data points of the dataset although

they need to iterate over all data points to sort them. Their experiments show

that their approach is effective in the action.

2.2.2 Diversity

A search query can be a set of keywords or a table, and both may be ambiguous

with more than one interpretation [62], [92]. Also, some interpretations may

be more important than others. For example, ‘Apple’ may refer to a fruit or

the Apple company. Returning results all about one interpretation may lead to

user dissatisfaction as another interpretation of the query may be of interest.
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Even if the search query has no ambiguity, e.g. ‘BMW’, returning results all

about same entities may not be interesting for a user who searches for new

entities. For example, instead of returning results all about one specific model

of ‘BMW’ vehicles, it may be more interesting to return results from different

models [92]. The idea behind diversity preference is to return results from

different interpretations or about different entities of the search query in order

to satisfy a wider range of users.

Zheng et al. [92] proposes the general steps it takes for an approach on

diversification of results to return the diverse list of k results as follows. Given

a search query, the first step is to find all the relevant results and rank them

based on their relevancy to the query. The next step is to diversify the ranked

list of relevant results and return the top-k ones to the user. The early works

[81] on returning top-k diverse candidates from a large dataset, retrieve c× k

top relevant candidates, where c is a constant greater than 1, and search over

this smaller dataset for the top-k diverse candidates. Others, execute multiple

queries with different constraints to get diverse candidates. Another thread of

works, exploit sampling techniques to retrieve a smaller representative version

of the large dataset and return the top-k diverse results of the smaller dataset

[62]. Clustering techniques are another option that some works apply to get a

diverse list of candidates by choosing them from different clusters [75].

Zhang et al. [92] has a survey on query diversification methods which

groups them into three categories: i) Content-Based Diversification, a.k.a.

similarity-based diversification, ii) Intent-Based Diversification, a.k.a. coverage-

based diversification, and iii) Novelty-Based Diversification. The third cate-

gory is considered as a separate preference in the literature, known as novelty,

and so we are talking about it in the next section (Section 2.2.3).

Content-Based Diversification methods

This group of methods [1], [34], [75], [76], [78], [84] assume that the search

query has no ambiguity, and they choose candidates that are as dissimilar as

possible to each other while they all are relevant to the search query. The

general idea is to first define a diversity scoring function over the list of top-k
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results. Usually, maximizing or minimizing this function is computationally

hard [1], [78] which leads to using greedy algorithms for finding an optimal

solution.

Yu et al. [84] selects the top-k relevant candidates as the initial list and

exploits two ideas to go forward. The first idea, Swap method, is to iterate over

the rest of candidates and try to swap any unselected one with a candidate

in the top-k list if it makes an improvement in the objective function. This

process continues until no other candidate remains unchecked. The other idea,

BSwap method, is to choose the candidate that makes the biggest improvement

on the objective function in each step until there is none.

Van Leuken et al. [75] proposes a clustering technique which first divides

all candidates into k clusters based on k-medoid algorithm and then choose

one candidate from each cluster to build the top-k diverse results.

Vee et al. [76] exploits inverted lists and a B+-tree to skip similar answers

and propose two algorithms, one-pass and probing. In the one-pass algorithm,

which the WAND approach is used to iterate over the lists, only one iteration

over data is allowed to get the top-k diverse results. In the probing algorithm,

they have the option to go over data for a few times. Their experiments show

that both algorithms are scalable and efficient.

Agrawal et al. [1] proposes a probabilistic submodular objective function

for finding top-k diverse results, taking into account not only their diversity

but also their relevance. They show that finding the exact results to maximize

the objective function is an NP-Hard problem. So, they use a greedy approach,

IA-SELECT, to find an optimal set of results. Their greedy algorithm retrieves

the top-k results of some classical ranking algorithm and reorder them in a way

that maximizes the objective function. Their evaluations show the effectiveness

of their greedy approach on different metrics.

In a similar work, Vieira et al. [78] presents DivDB which is a probabilis-

tic framework that considers relevancy and diversity of data items in order

to get a k-similar diversification set. In particular, it accepts any distance

and similarity function in the formulation, which makes it applicable in many

situations by adjusting those two functions. Hurley et al. [34] models the two
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objective functions diversity and relevancy as a binary optimization problem.

Intent-Based Diversification methods

This group of works [12], [20], [62], [65] focus on the ambiguity of the search

query and look for candidates from different facets of the search query. The

general idea is on covering all the different interpretations of the search query.

Some works take one step further and try to choose candidates in a weighted

fashion. The idea is that each facet of the search query has a level of impor-

tance different from others. This importance can be represented as a weight

which results in choosing more candidates from facets with higher weights.

Radlinski et al. [62] introduces a framework based on query-query reformu-

lation, which is the process of modifying the original query or generating new

queries based on the user’s input or feedback, and presents three methods over

this framework to increase the diversity of the top-k results of a web search

query. They first generate a set M(q) of k queries that are related to search

query but at the same time different from it using query logs of a common

web search engine. These queries are intended to cover all the facets of the

search query. The first method, Most Frequent, defines M(q) as the set of

queries that are observed the most after the search query. The second one,

Maximum Result Variety, follows a greedy approach and uses the same steps

as the first method but at each step tries to select a frequent query that is

different from the selected ones so far. Finally, the Most Satisfied builds M(q)

by choosing queries that are rarely followed by the search query using some

thresholds. Their evaluations show a promising improvement on the diversity

of the results.

Clark et al. [20] addresses the issue of ambiguity that may happen in infor-

mation retrieval question answering. They focus on an evaluation framework

which treats questions and answers as ‘information nuggets’. Based on their

framework, it is better to have distinct results representing different concepts

to cover all interpretations and to return more results about the concepts which

are more interesting than others.

Rafiei et al. [63] views search diversification as a means of risk minimization
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and models the problem as an expectation maximization task. The authors

develop a weight vector, W, to assign weights to search results, with the sum

of all weights adding up to one. They also introduce the concept of portfolio

variance, defined as W TCW , where C represents the covariance matrix of

the result set. Their goal is to minimize portfolio variance while maintaining

a fixed level of expected relevance. The authors find that their proposed

algorithm yield more diverse search results than Google. In a test with 156

random queries, their algorithm retrieves between 14% to 38% more relevant

results in the top five, while still maintaining a precision that is comparable

to Google’s.

Santos et al. [65] introduces eXplicit Query Aspect Diversification (xQuAD)

which is a probabilistic framework for result diversification of web search

queries. It ranks documents in a way that the rank of documents with cover-

age of uncovered facets of the search query are boosted. The goal is to cover

as many facets as possible with a trade-off between relevance and diversity.

They exploit query reformulations, which is the process of modifying a user’s

initial search query in order to retrieve a more relevant set of search results,

provided by existing search engines to uncover different facets of the search

query.

Capannini et al. [12] proposes OptSelect, which follows three steps to re-

rank the original results of a search query. In the first step, it checks if there are

different facets of the search query. For the second step, it retrieves documents

related to different facets by mining specializations from query logs. Lastly,

in the third step, it uses a probabilistic framework to maximize an objective

function and get the most diverse list of results. They show that their work is

effective, efficient and outperforms IS-SELECT [1] and xQuAD [65].

2.2.3 Novelty

This line of work is related to the work of diversification with a focus on getting

results with novel information for the search query, compared to those previ-

ously retrieved. Having duplicate information in the results is not delightful

for the user. Novelty is the preference which takes care of this situation and
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returns diverse information to the user. The novelty of a document refers to

how different it is from the previously seen documents [13]. Based on a survey

done by Ghosal et al. [28], we categorize novelty studies into three classes: i)

sentence-level novelty, ii) document-level novelty and iii) diversity-based nov-

elty.

Sentence-Level Novelty

Early works focus on sentence-level novelty detection [45], [68], [69]. For a

given topic and an input list of relevant documents, the goal of these tech-

niques is to find sentences that are both relevant to the topic and carry new

information about it. They usually exploit language and vector space models

alongside cosine similarity to find the novel relevant sentences.

Document-Level Novelty

This thread of work takes one step further and concentrates on document-level

novelty detection. Yang et al. [83] first uses a supervised learning algorithm to

put online document streams in pre-defined topic categories and then exploits

Named Entities to detect the novelty of documents in each topic. Tsai et

al. [74] proposes a document-to-sentence (D2S) framework which segments a

document into sentences, determines the novelty of each sentence and finally

computes the novelty of each document by aggregating the novelty of it’s

sentences.

Karkali et al. [38] exploits IDF scoring function to score documents based

on their novelty. They rely on documents statistics to avoid computing the sim-

ilarity or distance of a document with the rest in order to compute its novelty.

Dasgupta et al. [23] apply information theoretic measures and term-domain

relevance to automatically compute innovativeness score of a document with

respect to a collection of documents. A document is considered novel if it

contains a unique topic not presented in other documents or a rare topic men-

tioned only in a few documents. They also use IDF score to compute the

specificity of each of the individual terms in a document.
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Diversity-based Novelty

Novelty in information retrieval is usually defined as a trade-off between rele-

vancy and diversity of the content of documents. Clark et al. [20] addresses the

issue of redundancy that may happen in question answering. Their evaluation

framework treats questions and answers as sets of independent ‘information

nuggets’ and the relevance as a function of common nuggets between questions

and answers. They consider a document as relevant if it contains previously

unreported nuggets useful to the user. They develop a measure based on

Normalized Discounted Cumulative Gain (nDCG) to formalize their work.

Qin et al. [61] proposes a framework that can extend most existing ap-

proaches on returning top-k relevant results for a given query to return top-k

diverse results. Furthermore, the authors propose three different greedy al-

gorithms for returning top-k diverse results. The first algorithm, called div-

astar, is based on A*. The second algorithm, div-dp, breaks down the results

into components, which are then independently searched using div-astar and

combined using dynamic programming. Finally, the third algorithm, div-cut,

further divides the generated results using cut points and combines them using

advanced operations.

2.2.4 Connection to Our Work

Our work introduces preferences to the table search task. We mainly focus

on skyline, diversity and novelty, three preferences from the literature and a

novel preference, referred to as dependent sets, which is useful in the context

of our work. As we will show in Section 2.2, no work is done on applying

skyline on table search. For the diversity, our work is very similar to the

underlying frameworks of Nguyen [54] and Vieira [78]. We have an objective

function which computes the goodness scores of the chosen top-k candidates

while finding a trade-off between relevance and diversity. Regarding novelty,

our work takes a similar approach to diversity, as they both diversify the

results, by offering an objective function as a trade-off between relevance and

novelty. For both of these preferences, we exploit a greedy approach like
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Swap method [84], which tries to improve the goodness score by swapping the

unselected candidate with the best improvement.
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Chapter 3

Methodology

In this chapter, we first introduce column and table unionability scores, in-

spired by Nargesian et al. [52], and then introduce our TUS operation based

on those scores. For the TUS operation, we propose two efficient implementa-

tions based on the WAND algorithm. Next, we present our preferences, which

include four major ones: skyline, diversity, novelty, and dependent set. Later,

each preference is discussed in terms of how it can be efficiently evaluated.

3.1 Table Union Search (TUS)

To find unionable candidate webtables for a query table, one may first find

unionable candidate columns for each query column. The unionability of two

columns indicates if they are drawn from the same domain, and this notion

can be defined in many different ways. A simple approach is based on the

similarity or the value overlap between the two columns. The more the sim-

ilarity between their values, the higher the chance of them being unionable.

If S1 and S2 denote the set of values in two columns, the similarity between

the two sets may be defined in terms of the Jaccard similarity, expressed as

|S1∩S2|/|S1∪S2|. We refer to the score that such approaches calculate to rep-

resent the degree of unionability of two columns as their Column Unionability

Score (CUScore). For the rest of this thesis, unless explicitly stated otherwise,

we use Jaccard to calculate CUScore of two columns.
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Definition 3.1 (Unionable Pair). Two columns ci and qj are called a unionable

pair, shown as ci → qj, if their CUScore is over some confidence level (like 0.9).

Consider query table Q, with columns q1, q2, . . . , qn and a candidate

webtable C, with columns c1, c2, . . . , cn, both of degree n. We refer to

the set of all possible unionabile pairs between the columns of two tables as

UP (C, Q) and use it to define an alignment between the two tables (Definition

3.2).

Definition 3.2 (Alignment). An Alignment between a query table Q with

columns q1, q2, . . . , qn and a candidate webtable C with columns c1, c2, . . . , cn,

both of the same degree n, is a subset of unionabile column pairs in UP (C, Q)

which form a bijective mapping between the columns of C and Q and is shown

as a(C, Q). The size of a(C, Q), shown as |a(C, Q)|, is the number of union-

able pairs it contains.

In other words, an alignment is a one-to-one mapping between columns of

both tables with each mapping representing a unionabile column pair. Note

that based on this definition, C and Q may have multiple alignments of size n,

each made up of different unionabile pairs. For example, one alignment may

be composed of unionabile pairs ci → qj where i = j , 1 ≤ i, j ≤ n and another

one of unionabile pairs ci → qj where i+ j = n , 1 ≤ i, j ≤ n.

But in real world, two tables C and Q may have different degrees. Consider

query table Q(q1, q2, . . . , qn) of degree n and candidate table C(c1, c2, . . . , cm)

of degreem where n ̸= m. If we denote with u the number of unionable column

pairs between C and Q, then 0 ≤ u ≤ n×m. The minimum, u = 0, happens

when two tables are completely irrelevant and there is no unionable column

pair ci → qj between the two tables, i.e. UP (C, Q) = ∅. The maximum,

u = n×m, is when every column ci of C is unionable with every column qj of

Q, UP (C, Q) = {ci → qj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Now imagine any subset of
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these unionable pairs with only one constraint that no column ci or qj should

appear in more than one unionable pair, i.e. conflicts are not allowed in any

direction. We can think of this subset as an alignment between a projection

operation over Q and a projection operation over C. We refer to the set of all

these possible alignments that result from projection operations over C and Q

as the Alignment Set of the two tables.

Definition 3.3 (Alignment Set). An Alignment Set between a candidate

webtable C(c1, c2, . . . , cm) and a query table Q(q1, q2, . . . , qn), denoted

as A(C, Q), is the set of alignments between all possible projections of the

same degree over C and Q. Ac
S(C, Q) denotes only the subset of alignments

in A(C, Q) which are between projections of degree c and with only mappings

over a subset S of query columns.

We can interpret each unionable pair as an independent event and their

CUScore as the probability of that event occurring. Following this interpreta-

tion, an alignment can be interpreted as the occurrence of multiple independent

events together. Consequently, the unionability score of an alignment a(C, Q)

is the product of the probabilities of events in a(C, Q) assuming independence.

Definition 3.4 (Alignment Unionability Score (AUScore)). The unionability

score of an alignment a(C, Q) between a candidate webtable C and a query

table Q is the product of column unionability scores of all unionable pairs in

a(C, Q), i.e.

AUScore(a(C, Q)) =
∏︂

(ci, qj)∈a(C, Q)

CUScore(ci, qj). (3.1)

Note that based on Definition 3.4, if we add a unionable pair to an align-

ment in order to build a bigger one, the probability decreases. This makes

the comparison of alignments of different sizes challenging. To make all align-

ments comparable, for all alignments of the same size c, we make a continuous
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probability distribution over their AUScores using a big sample dataset. Since

we have alignments with sizes from 1 to n, where n is query table’s degree,

we end up with n different probability distributions. Then, if for each align-

ment a(C, Q) we compute CDF (AUScore(a(C, Q))) over the corresponding

distribution for |a(C, Q)|, we can bring all the AUScores to the same scale

and make alignments of different sizes comparable [52]. We define this up-

dated score after applying CDF function as the Alignment Goodness Score

(AGScore) of the alignment (Definition 3.5).

Definition 3.5 (Alignment Goodness Score (AGScore)). The goodness score

of an alignment a(C, Q) between a candidate webtable C and a query table

Q is the cumulative distribution function (CDF) of its AUScore using the

probability distribution function computed over alignments of size |a(C, Q)|,

i.e.

AGScore(a(C, Q)) = CDF|a(C, Q)|(AUScore(a(C, Q))). (3.2)

We know that for alignments of the same size, the higher the AUScore of

the alignment, the higher the unionability of the pairs of columns it maps and

the more interesting it is for the task under consideration. Generally, con-

sidering alignments of different sizes too, the higher the AGScore, the more

unionable and hence more interesting the alignment is. The alignment with

the maximum AGScore, referred to as the max-Alignment, represents the best

mapping between the two tables. We define Table Unionability Score (TUS-

core) of two tables C and Q as the maximum goodness score of all alignments

in the alignment set A(C, Q) (Definition 3.6).

Definition 3.6 (Table Unionability Score (TUScore)). The unionability score

of a candidate webtable C with respect to a query table Q is the maximum

goodness score of all alignments in the alignment set A(C, Q).

TUScore(C, Q) = argmax
a(C, Q)∈A(C, Q)

AGScore(a(C, Q)). (3.3)
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Consequently, we use TUScorecS(C, Q) to denote the table unionability score

over alignments in Ac
S(C, Q).

Now that we have all the tools, we define table union search as the task

that returns the top-k most unionable candidate webtables for a query table

Q (Definition 3.7).

Definition 3.7 (Top-k TUS). Given a query table Q(q1, q2, . . . , qn) with

degree n, Top-k TUS is the task of finding the top-k candidate webtables in

the corpus with the highest unionability score to Q.

We next discuss how one can can perform top-k TUS efficiently. A naive

approach involves examining every candidate webtable in the dataset, finding

its best alignment with the query table under consideration, and ranking the

candidates according to their table unionability scores. However, this approach

is neither efficient nor scalable for large datasets. We propose an efficient

algorithm for TUS in the next section. Further, some heuristics are applied

in order to make the returned webtables more interesting for the user over

different tasks.

3.2 Base TUS Algorithm

An obstacle for processing TUS operation efficiently is the examination of a

huge space of candidate webtables. If we manage to prune many of these

candidate webtables without fully examining them, that will improve the effi-

ciency of the task. Existing works [52] try to overcome this challenge and offer

an efficient unsafe ranking approach by sacrificing the accuracy and returning

an approximately good results. This trade-off, however, may not works as ex-

pected in the presence of preferences. Those high-ranking candidate webtables

being missed for the approximate results due to the trade-off, can be a great

sources of information for some preferences.
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We need to have a safe ranking approach which guarantees to return the

absolute high-ranking candidate webtables without sacrificing efficiency. We

need the safe ranking as those candidate webtables that are missed in an

unsafe ranking algorithm, may indeed be the best candidates for some of the

preferences. In other words, some preferences may prefer those candidate

webtables with a small unionability as they may offer more new values to the

query table.

We utilize the WAND algorithm [9] to prune candidate webtables early in

the process without fully examining them. The WAND algorithm is a powerful

document-at-a-time technique used for efficiently processing of conjunctive

queries over inverted indexes. The algorithm was first introduced in a paper

by Broder et al. [9] and has since become a popular choice for search engines

that deal with large volumes of data. The WAND algorithm achieves its

efficiency by using a threshold score to limit the number of documents that

need to be examined, drastically reducing the search time. The algorithm also

maintains an upper-bound score for each document that serves as a filter to

skip documents that cannot possibly be in the top-k results, further reducing

the number of documents that need to be scored.

WAND uses a “Weak And” approach to score documents. It performs a

weighted sum of scores for each query term that appears in a document, where

the weight is based on the document frequency of each term. The algorithm

then performs an “and” operation on the resulting scores for each document

to determine the final score. The top-k documents with the highest scores

are returned as the search results. It has been shown to be highly effective at

processing conjunctive queries on large-scale search engines. In comparison to

other state-of-the-art algorithms, the WAND algorithm outperforms in terms

of efficiency and accuracy. The algorithm’s ability to handle large volumes

of data and produce exact search results has made it a popular choice for

search engines, enabling them to provide fast and reliable search results to

their users. The WAND algorithm’s ability to balance speed and accuracy

has made it an essential tool for information retrieval, providing an excellent

solution to efficiently processing conjunctive queries over inverted indexes.

38



There are some challenges in applying WAND to table union research.

First, it needs to be adapted to the domain of table union search, where

the query and candidates are not documents, but webtables. If we consider

candidate webtables as documents and each of their columns as a term, then

we can build inverted indexes for the query table. Each query column will

be considered as a query term equipped with a posting list. The posting list

of query column qi is the ordered list of candidate webtables having at least

one unionable candidate column with qi with their column unionability score

with qi as their weight. The candidate webtables for each posting list are

ordered based on their id with C1 being first, C2 being second and so on and

so forth. Following this interpretation, the “and” operation over terms must

be translated into a multiplication of term weights in order to reflect alignment

and table unionability scores. Consequently, the upper-bound threshold used

by WAND will be the maximum possible unionability score we can expect from

a candidate webtable. Second, any function that is going to be used instead

of “and” operation to calculate the score of a candidate webtable should be a

monotone function in order for the pruning to works perfectly. Our alignment

and table unionability scores are multiplication functions which indeed are

monotone, but this may not be the case for some preferences.

This implementation, referred to as TUS in the rest of this thesis, is the

base algorithm we use in our evaluations (Algorithm 1). We may apply some

constraints to TUS to make the results more desirable for the follow-up opera-

tions the user intends to do. For example, returning only candidate webtables

with an alignment over the primary key of the query table or those with an

alignment over all the query columns may help more with follow-up operations

like adding new rows or finding the missing values. For the rest of this thesis,

we refer to TUS with additional constraints as TUS+.

Our hypothesis is that applying preferences to TUS can make significant

improvements over some down-stream tasks. In the following section, we pro-

vide a running example and demonstrate the step-by-step process of executing

the TUS operation to illustrate how each component of this operation func-

tions.
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Algorithm 1 WAND Algorithm: returns top-k candidate webtables that
match the query table Q with query columns qcs using the inverted index.

1: Input: qcs, inverted index, k
2: Output: top-k webtables that match the query table
3: initialize query column pointers: pointers ← qc: inverted index[qc].begin()

for qc ∈ qcs
4: while not all pointers have reached the end of their lists do
5: min cw id = the minimum candidate webtable among the current po-

sitions of pointers
6: for all qc ∈ query columns do
7: if min cw id < pointers[qc].current cw id then
8: Advance the qc’s pointer until it reaches a point where

pointers[qc].current cw id >= min cw id
9: end if
10: end for
11: ccs = get all the candidate columns for webtable min cw id
12: alignments = use bipartite matching or greedy algorithms to get all

alignments of min cw id using ccs
13: for all a ∈ alignments do
14: if AGScore(a) > k-th item in the top-k list then
15: add a, min cw id to the list
16: remove the webtable with the smallest score from the list
17: end if
18: end for
19: end while
20: Return the top-k list, sorted in descending order of score
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3.3 Running Example

Consider the query table Q presented in Table 3.1 and candidate webtables

C1 − C9 presented in Table 3.2. The posting lists of each query column of Q,

computed based on the Jaccard similarity, is shown in Table 3.3. The posting

list of a query column qi is an ordered list of candidate webtables with at least

one unionability pair with qi based on their id with their CUScore with qi as

their weight.

Table 3.1: Query table Q

Table 3.2: Candidate webtables C1 − C9

Using these posting lists, we can find alignments of different sizes between

each candidate webtable and Q. In Table 3.4, for each possible subset of
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query columns, the top-2 unionable candidate webtables and their AUScores

and AGScores are shown. Notice that for some subsets of query columns, e.g.

{q1, q2, q3}, there are less than 3 candidate webtables with an alignment. Since

each candidate webtable of this example has at most one alignment for each

possible subset of query columns, following the Definition 3.6, the TUScores

of candidate webtables would be the same as their AGScores.

QC Posting List
q1 c11 : 0.5, c21 : 1.0, c31 : 0.5, c41 : 0.667, c81 : 0.167, others : 0.0
q2 c12 : 0.2, c22 : 0.4, c32 : 0.4, c42 : 0.5, c61 : 0.143, others : 0.0
q3 c13 : 0.4, c53 : 0.4, others : 0.0
q4 c91 : 0.125, others : 0.0

Table 3.3: Posting lists of query columns of Q. QC is the query column;

Based on the Definition 3.7 and the results in Table 3.4, the top-2 candidate

webtables are shown in Table are: 1) C2 with score 0.905 and max-alignment

{c21 → q1} and 2) C4 with score 0.854 and max-alignment {c41 → q1}.

Subset Top-2 AUScores Top-2 AGScores
{q1} C2 : 1.0, C4 : 0.667 C2 : 0.905, C4 : 0.854
{q2} C4 : 0.5, C2 : 0.4 C4 : 0.808, C2 : 0.767
{q3} C1 : 0.4, C5 : 0.4 C1 : 0.767, C5 : 0.767
{q4} C9 : 0.125 C9 : 0.491
{q1, q2} C2 : 0.4, C4 : 0.334 C2 : 0.786, C4 : 0.759
{q1, q3} C1 : 0.2 C1 : 0.674
{q2, q3} C1 : 0.08 C1 : 0.499
{q1, q2, q3} C1 : 0.04 C1 : 0.555
others None None

Table 3.4: Top-2 AUScores and AGScores for all possible subsets of query
columns over candidate webtables in Table 3.2.

Rank CW Alignment TUScore
1 C2 {c21 → q1} 0.905
2 C4 {c41 → q1} 0.854

Table 3.5: Top-2 TUS of Q; CW stands for candidate webtable;

In the next section, we will present four major preferences and add them to

the TUS operation. Each one of these preferences introduce some challenges.

Our goal is to address these challenges and propose an efficient algorithm for

each preference.
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3.4 Preferences

TUS looks at all the candidate webtables using the TUScore as the scoring

function with the goal of finding the most unionable ones to a query table. A

few issues with this process may lead to users dissatisfaction. For example,

the list of returned candidate webtables is fixed and independent of the follow

up operations that users may have in mind. Users may prefer some union-

able webtables over the others simply because they offer alignments over some

important subset of query columns, for instance. In this section, we present

some preferences to deal with the problems of TUS and return more inter-

esting webtables suitable for different users’ needs. In particular, we provide

four major preferences skyline, diversity, novelty and dependent set and some

minor ones for the user to take advantage of in customizing and enriching

TUS operation. For example, a preference may assign different weights to

different query columns or some column may be preferred over the others. A

preference may also consider the dependency of query columns and take into

account their values together. Although for some of the proposed preferences,

there is a workaround solution using only TUS, these approaches are usually

inefficient, requiring more efforts and resources.

3.4.1 Skyline

Consider a query table Q (Table 3.1) with four columns ‘movie’, ‘actor’, ‘year’

and ‘distributor’. Under some setting, all query columns may be important,

and returning the most unionable candidate webtable for each query column

may be an interesting source of information necessary for follow up opera-

tions. Taking one step further, the user may also be interested in having the

best candidate webtables unionable over each subset of query columns, e.g.

{movie, actor}. This may give the user a great tool for doing extra follow-

up operations, such as filling in missing values of some columns, using other

columns as anchors.

TUS does not guarantee to return such information. Many webtables in the

dataset may not provide coverage over all query columns of Q. Consequently,
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when many webtables have highly unionable alignments with a specific subset

S of query columns with no unionable pair over the rest of columns, Q−S, TUS

will return the top-k of them as the ranked list of webtables. In this scenario,

the user has no information on the columns in Q−S which makes it impossible

to do follow up operations on these columns. For instance, in our running

example, none of the top-2 candidate webtables of TUS offers a unionable pair

for columns q3 and q2. The necessary information is not available for the user

to fill in the missing value of q3 (Table 3.5). This highlights the importance

of a preference that guarantees to offer at least one unionable webtable with

a coverage over each query column. A more general preference should return

webtables with the highest unionability over each subset of query columns

which also guarantees the coverage of each single query column.

A naive approach is to go over all the candidate webtables in the dataset,

find their alignments with Q, compute their TUScores, rank them and return

the top-k candidates with the highest score. This approach is not efficient and

scalable for large datasets since checking all the webtables is a time-consuming

task which requires significant resources. The question is how we can retrieve

these webtables efficiently without iterating over the whole dataset.

An Efficient Approach

Skyline is a well-known preference extensively studied in the literature [16],

[32], [36]. It is commonly defined over a corpus of data points, each represented

as a numeric vector, where one looks for those data points which are not

dominated by others. A data point Dn represented by vector Vn dominates a

data point Dm represented by vector Vm and shown as Dn ≻ Dm if it has as

good as or better values over all dimensions and a better value over at least

one dimension [16].

Since there is no monotone function for skyline, we cannot apply it as

part of the WAND approach. But, if we manage to represent each candidate

webtable as a numeric vector or a set of numeric vectors, we can utilize ex-

isting efficient algorithms for computing skyline to get the desired candidate

webtables efficiently [4], [56], [57]. This is challenging as we don’t want to lose
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any important information in the transformation process. The first idea is to

have, for each candidate webtable C, a vector V of size equal to the number of

query columns, with each element Vj representing the highest unionability of

any unionable pair between a column in C and the query column qj. This vec-

tor may represent alignments that are invalid for C as one candidate column

may have the highest unionability with multiple query columns or vice versa

and that is not permitted in our settings. We don’t allow conflicts in term of

mapping one column to multiple columns of the other table. So, this represen-

tation may lose information whether by introducing conflicts or missing valid

alignments.

Another idea is to represent each alignment a(C, Q) as a vector Va of size

equal to the number of query columns with each element showing the union-

ability score of a pair of columns. Following this idea, each candidate webtable

with multiple alignments can be represented as a set of numeric vectors. An

observation is that for one candidate webtable, some of the alignments are a

subset of the others. An alignment ai(C, Q) is a subset of another alignment

aj(C, Q) if aj contains all the unionable pairs in ai and more. We can safely

remove the vector representations of all the alignments like ai as their infor-

mation is already been covered by another alignment, aj. This will reduce the

space of vectors for the skyline algorithm and increase the efficiency of the

process.

We can show that by utilizing existing algorithms on skyline, we can re-

turn the candidate webtables with the best alignment over each subset of

query columns (Lemma 1). In other words, skyline will return all the de-

sired webtables and more. Consequently, we can employ current algorithms in

the literature for skyline such as SaLSa [4], BBS [57] or NN [56] to find the

webtables with the best alignments.

Lemma 1. With each alignment between a candidate webtable C and a query

table Q represented as a numeric vector (as discussed), skyline preference

over those vectors returns all the alignments with the highest AUScore and

consequently their corresponding webtables with the highest TUScore.
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Proof. We prove this by contradiction. Suppose the statement is false and

there exist some webtable Ci with an alignment ai(Ci, Q) represented by vector

Vi which has the highest AUScore over subset S of query columns but is not

a member of skyline.

Ci /∈ Skyline ⇒ ∃ Cl ∈ D s.t. Cl ≻S Ci

⇒ ∀ qj ∈ S | Vl[j] > Vi[j]

⇒
∏︂
qj∈S

Vl[j] >
∏︂
qj∈S

Vi[j]

⇒ AUScore(al(Cl, Q)) > AUScore(ai(Ci, Q))

This means there is another webtable Cl with a higher AUScore than Ci over

S. This is a contradiction, hence the statement of the lemma is proved.

Each webtable returned as part of the skyline results may have zero or

more skyline vectors. A webtable with more skyline vectors is more likely to

be unionable with the query table and maybe more interesting to be returned.

After getting all the skyline vectors, we sort the corresponding webtables by

how many skyline vectors they offer, with the webtable that offers more vec-

tors being listed higher. Following this idea, we define top-k skyline to return

the top k webtables of this list (Definition 3.8).

Definition 3.8 (Top-k Skyline). With each alignment between a candidate

webtable C and a query table Q represented as a numeric vector (as discussed),

the Top-k Skyline of Q is the top-k candidate webtables with the most number

of skyline vectors.

Applying this preference on samples presented in Table 3.2 gives us the

skylines shown in Table 3.6. It is easy to show that for each subset of query

columns, the best available webtables are part of skyline. For example, the best

webtable for subset {q1, q2} is C2 with TUScore = 0.786 and for subset {q3} is

C1 with TUScore = 0.767 which both are part of skyline’s results. To return

the top-2 results, since all the four chosen candidates have the same number
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CT Vector Representation Skyline
C1 (c11 : 0.5, c12 : 0.2, c13 : 0.4, 0.0) Yes
C2 (c21 : 1.0, c22 : 0.4, 0.0, : 0.0) Yes
C3 (c31 : 0.5, c32 : 0.4, 0.0, : 0.0) No (C2 ≻ C3)
C4 (c41 : 0.667, c42 : 0.5, 0.0, : 0.0) Yes
C5 (0.0, 0.0, c53 : 0.4, : 0.0) No (C2 ≻ C5)
C6 (0.0, c61 : 0.143, 0.0, : 0.0) No (C1 ≻ C6)
C7 (0.0, 0.0, 0.0, : 0.0) No (C1 ≻ C6)
C8 (c81 : 0.167, 0.0, 0.0, : 0.0) No (C1 ≻ C6)
C9 (0.0, 0.0, 0.0, c91 : 0.125) Yes

Table 3.6: Results of applying skyline on running example (Table 3.2).

of skyline vectors, to break the tie, we return candidate webtables with the

highest TUScore which are C2 with score 0.786 and alignment {c21 → q1, c22 →

q2} and C4 with 0.759 and alignment {c41 → q1, c42 → q2}. Notice that C9 is

part of the top-4 skyline as it is the only candidate webtable with a unionable

pair for q4, but it will not be part of top-4 TUS as there are other candidate

webtables with better unionabilities. This is the situation where the skyline

performs better as it offers candidates for each subset of query columns.

3.4.2 Diversity

There may be more than one interpretation of a query table, some of which

are more important than others [62], [92]. A query table with two columns,

‘country’ and ‘city’, may belong to domains like cities, tourist attractions,

soccer teams, etc. Webtables from aforementioned domains may be unioned

with the query table over both columns. Users may be dissatisfied if they

receive only results relating to one interpretation or domain of the query. Even

if the query table is clear and unambiguous, users may not find it desirable to

see webtables with the same columns as the query table and no new columns

to offer [92]. Consider columns ‘movie’ and ‘actor’ of the query table Q of our

running example (Table 3.1). In order to be helpful and user-friendly for some

follow up operations, the returned webtables should include more columns

than just movie and actor, such as role (i.e. C2), director (i.e. C3), etc. TUS

ranks C2, C4 and C1 higher than others while C3 is more interesting than C4

by having the director column.
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Diversity is a well-studied preference in the literature with the purpose of

resolving ambiguity by returning diverse results. Many approaches have been

introduced to return diverse results in different contexts, such as Information

Retrieval [20], [79], [92] and Databases [24], [29], [70], [78]. The proposed

approaches usually involve a scoring function [78] which tries to find as diverse

results as possible while promoting their relevancy to the search query.

As part of this work, we apply Vieira et al.’s framework [78] for diversifying

the results of a SQL query to the context of table union search over webtables.

This framework maximizes two different scoring functions, referred to as sim

and div. sim calculates how similar the results are to the query, while div cal-

culates how diverse they are compared to each other. To adopt this framework

to table union search, we need to update both scoring functions (Formula 3.4).

We define two scores Relevancy(Rel) and Difference(Dif) equivalent to sim

and dif respectively with important changes. Rel scores guarantee similarity

between candidate webtables and query tables using the unionability notions,

while Dif scores ensure the webtables represent different interpretations of

the query table, either coming from different domains or providing new di-

mensions. Building on this framework, we define top-k diversity as the list R

of k candidate webtables which maximizes this objective function (Definition

3.9).

Definition 3.9 (Top-k Diversity). The Top-k Diversity of query table Q over

subset S of query columns is the list R of webtables from dataset D which

maximizes the following objective function and are sorted based on their TUS-

core.

Diversity(Q,S, k) = argmax
R⊆D,|R|=k

(k − 1).(1− λ).Rel(Q,S,R) + λ.Dif(Q,R).

(3.4)

In this formulation, λ is the parameter that controls the contribution of

Rel and Dif scores to the final score. The term (k − 1) is to make sure that

both scores have the same scale and range. Based on this framework, the Rel
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score is defined over the whole list R of webtables as follows.

Rel(Q,S,R) =

|R|∑︂
i=1

δrel(Q,S,Ri), (3.5)

where δrel is the relevance of a single webtable to the query table Q over subset

S of query columns. For computing the relevance of two tables we use their

table unionability score as defined below.

δrel(Q,S,Ri) = TUScore
|S|
S (Ri, Q). (3.6)

The Dif score concentrates on two aspects: i) how different the webtables

in R are from each other and ii) how different they are from the query table.

Since we want both of these differences to be large at the same time, we define

Dif as the harmonic mean of the two, defined as follows:

Dif(Q,R) = 2 ∗Difc(R) ∗Difq(R,Q)/(Difc(R) +Difq(R,Q)), (3.7)

where Difc and Difq are the differences of the list R of webtables from each

other and from the query table respectively. Each one of the differences can

be formulated as follows:

Difc(R) =

|R|∑︂
i=1

|R|∑︂
j=1,j ̸=i

δdif (Ri, Rj), (3.8)

Difq(R,Q) = (|R| − 1) ∗
|R|∑︂
i=1

δdif (Ri, Q), (3.9)

where δdif is the difference of two tables Ri and Rj from each other and is

defined as the number of columns in Ri that cannot form a unionable pair with

a column in Rj. To bring δdif in range [0, 1] we divide it by the maximum

degree of all webtables in the dataset D.

We employ a unionability score threshold of 0.01 to filter out candidate

webtables that cannot form a unionable pair. This is motivated by two rea-

sons. Firstly, examining all candidate webtables can be a time-consuming task,

especially when most of them are likely irrelevant to the query table. Thus,

filtering out those with low unionabilities can help improve efficiency, even if

it may result in some false negatives. Secondly, if we don’t filter out irrelevant
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webtables, they may offer many incorrect new columns for the query table.

By using a small threshold, we ensure that the remaining candidate webtables

are not completely irrelevant and have a higher likelihood of containing useful

information.

δdif (Ri, Rj) =

|{ci ∈ Ri | ∄ cj ∈ Rj s.t. CUScore(ci, cj) > 0.01}| / argmax
Rx∈D

|degree(Rx)|

(3.10)

For finding the list R, a naive approach is to check every combination of

webtables in the dataset D until the diversity score is the highest. But, this

approach is not efficient or scalable and it is considered as a computationally

hard task [78]. In order to compute a reasonable list R of webtables in time

and memory, we need an efficient algorithm.

It is not possible to apply diversity to the WAND approach for two reasons.

Firstly, there is no monotone function available for diversity. Secondly, the

relationships between candidate webtables required for answering diversity are

not preserved in the WAND approach. However, as we have a filtering and

sorting of candidate webtables at the start of diversity, we can utilize WAND

to get a sorted list of candidate webtables with an alignment over the input

subset of query columns to the diversity preference.

An Efficient Approach

Greedy approaches resolve computationally hard problems by balancing effi-

ciency and effectiveness. Our greedy approach is based on Yu et al.’s Swap

algorithm [84]. The Swap algorithm starts with a list of k webtables and

iterates over the rest of webtables to see if swapping outsiders with insiders

improves the diversity score. After examining all the webtables and performing

swap operations, the final list will be returned.

We modified the Swap algorithm to choose the initial list more carefully

and iterate over webtables in a specific order. Since the focus is on returning

the most diverse list R of webtables over a subset S of query columns, we

50



Algorithm 2 Diversity Greedy Algorithm: returns diverse list R of k union-
able webtables from dataset D over subset S of query columns in Q.

1: R = []: the ranked list of results
2: PL: posting lists of columns in S
3: FC: webtables exist in all PL lists, sorted by #new domains for Q
4: for all Cx ∈ FC do
5: if |R| < k then
6: add Cx to R
7: else if swapping Cx improves Diversity(Q,S, k) then
8: apply swapping with the biggest improvement
9: else
10: skip Cx

11: end if
12: end for
13: Sort R by TUScore

|S|
S and return it as output

Step Description
0 FC = [C1, C2, C3, C4]
1 Top-2 = {C1, C2} with Diversity = 0.887
2 Swap C3 with C2: Diversity = 1.064

Swap C3 with C1: Diversity = 0.831
Top-2 = {C2, C3} with Diversity = 1.064

3 Swap C4 with C2: Diversity = 0.883
Swap C4 with C3: Diversity = 0.939
Top-2 = {C2, C3} with Diversity = 1.064

Table 3.7: Results and steps of applying top-2 diversity with λ = 0.5 over
subset S = {q1, q2} on running example (Table 3.2).

first filter all the webtables that do not have an alignment over S. In order

to perform the filtering process in a more efficient manner without having to

check every candidate webtable, we employ the WAND technique, which was

previously discussed in Section 3.2. We then sort the filtered webtables by the

number of new domains they are offering to the query table Q, with the ones

offering more domains ranked higher. If a column ci in a candidate webtable

C cannot be unioned with any column qj in Q with a unionability score over a

small threshold (e.g. 0.01), it will be considered as a new domain offered by C.

The small level of unionability shows that the two columns are potentially from

different domains, although it is not always the case. At the end, we select

the top k webtables as R and subsequently iterate over the rest to determine

which swap operation improves the diversity score the most (Algorithm 2).
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We applied this preference on the samples provided in Table 3.2 and the

results are shown in Table 3.7. At the first step, an ordered list of webtables

that are unionable with both q1 and q2 is retrieved, i.e. {C1, C2, C3, C4}. Then

the first two webtables of the list, {C1, C2}, are chosen for being in the top-2

results. Next, we check if swapping C3 with any of the webtables currently

in the top-2 list makes an improvement on the diversity score. The swapping

with the best improvement is replacing C1 with C3. The same process is

repeated for C4, and the final list {C2, C3} is deemed as the best top-2 diverse

webtables over subset {q1, q2} of query columns. Each of these two webtables

offer one new domain to Q whereas the tables that are not selected have the

same domains as Q.

3.4.3 Novelty

Based on the notions of unionability previously defined in this work, candidate

webtables that are near-duplicate versions of the query table, get a higher rank

as the most unionable ones. They are therefore unsuitable for users who want

to do specific follow up operations like expanding the query table vertically by

adding rows. In this case, returning webtables with lower levels of unionability

may be a better strategy than returning near-duplicate ones. Another similar

situation that is returning candidate webtables that are not near-duplicate

versions of the query table, but are near-duplicate versions of each other. In

other words, candidate webtables may offer the same new information to the

query table. The user will probably get the same information if only one

candidate webtable is returned from each group of near-duplicate candidate

webtables. Taking the running example (Section 3.3), candidate webtable

C4 is a near-duplicate version of Q and has no new information to offer. In

contrast, C3 offers three new rows to Q and although it is not among the top-2

webtables of TUS, it is a better candidate than C1 and C4.

Novelty is a well-known preference which has been studied in the literature

with the purpose of avoiding redundancy in the returned result [13], [20], [28],

[78]. In the context of our work, we try to avoid redundant webtables and

return those offering as much unique new values as possible over a subset of
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query columns. It can be considered as a special case of diversity preference

which aims at finding webtables with the most diverse values over a subset

of query columns. Hence, we can use the same framework discussed for the

diversity preference with some modifications in the proposed scores.

This framework proposes an objective function consisting of two scores,

Rel and New. The first score, Rel, computes the relevancy of the selected

candidate webtables to the query table. On the other hand, the New score

computes the amount of new information that the selected candidate webta-

bles bring to the query table as a whole. We define top-k novelty over this

framework as the list R of k candidate webtables which maximizes this objec-

tive function (Definition 3.10).

Definition 3.10 (Top-k Novelty). The Top-k Novelty of query table Q over

subset S of query columns is the list R of webtables from dataset D which

maximizes the following objective function and are sorted based on their TUS-

core.

Novelty(Q,S, k) = argmax
R⊆D,|R|=k

(k − 1).(1− λ).Rel(Q,S,R) + λ.New(Q,R),

(3.11)

where the parameters λ and (k−1) in this formulation control the scores’ con-

tribution and to bring them to the same scale. The Rel score uses TUScore

to compute the relevancy of webtables in R to the query table with the same

formulation as before (Formula 3.5). The New score computes the novelty of

the webtables in R and is composed of two different parts: i) the new informa-

tion that a candidate table brings to the query table (Newq), preventing the

selection of near-duplicate versions of Q, and ii) the new information that they

bring to each other (Newc), avoiding the selection of near-duplicate webtables.

As before, we take the harmonic mean of these two scores to ensure they are

both large and significant.

New(Q,R) = 2 ∗Newc(R) ∗Newq(R,Q)/(Newc(R) +Newq(R,Q)), (3.12)
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Newc(R) =

|R|∑︂
i=1

|R|∑︂
j=1,j ̸=i

δnew(Ri, Rj), (3.13)

Newq(R,Q) = (|R| − 1) ∗ [
|R|∑︂
i=1

δnew(Ri, Q)], (3.14)

where δnew measures the novelty that one webtable brings. Since the focus

is on returning webtables with new combinations of values over subset S of

query columns, the following formulation for δnew is proposed.

δnew(Ri, Rj) =

|rowsS(Ri)− rowsS(Rj)|/ argmax
Rx∈D

|cardinality(Rx)|,
(3.15)

where rowsS(Ri) returns the number of unique rows of webtable Ri over the

subset S of query columns. To bring δnew in range [0, 1], we divide it by the

maximum cardinality of all webtables in the dataset D.

We eliminate potential webtables that don’t have at least one unionable

pair with a score above a low threshold, such as 0.01. This is done for two

reasons. Firstly, it increases efficiency as we don’t have to analyze all potential

webtables, including those that are irrelevant to the query table. Secondly, it

prevents a webtable that is completely irrelevant to the query table and lacks

a unionability pair from being mistakenly identified as the candidate with the

highest New score.

To determine which list R of webtables has the highest novelty score, the

naive approach involves checking every combination of webtables with an align-

ment over S and choosing the one with the highest scores. But, this approach

is not efficient or scalable as it is a computationally hard task [78]. We need

an efficient algorithm to compute an optimal list R of webtables in time and

memory,

Similar to diversity, the WAND approach cannot incorporate novelty for

two main reasons. Firstly, there is no available monotone function that can

be used to measure novelty within this approach. Secondly, the relationships

between candidate webtables that are necessary for determining novelty are

not preserved in the WAND approach. Therefore, it is not possible to apply
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novelty to the WAND approach. Again, we can employ WAND approach to

filter candidate webtables that do not cover the input subset of query columns

and to sort them based on their TUScore.

An Efficient Approach

It has been shown that finding the exact list R which maximizes the objective

function is computationally hard [78], hence greedy approaches have been in

use. In Algorithm 3, we do a similar process as we did for diversity preference

by first removing all the irrelevant webtables with no alignment over subset S

of query columns. Then, we sort the filtered webtables based on the number

of unique rows they offer over S. Finally, following the Swap algorithm [84],

we move over the sorted list and at each step try to swap the an outsider

webtable with an insider one if it makes an improvement to the novelty score.

The exchange with the maximum improvement will be applied at each step.

Algorithm 3 Novelty Greedy Algorithm: returns novel list R of k unionable
webtables from dataset D over subset S of query columns in Q.

1: R = []: the ranked list of results
2: PL: posting lists of columns in S
3: FC: webtables exist in all PL lists, sorted by #new rows over S
4: for all Cx ∈ FC do
5: if |R| < k then
6: add Cx to R
7: else if swapping Cx improves Novelty(Q,S, k) then
8: apply swapping with the biggest improvement
9: else
10: skip Cx

11: end if
12: end for
13: Sort R by TUScore

|S|
S and return it as output

Table 3.8 shows the steps the algorithm takes to get to the top-2 results over

subset {q1, q2} of query columns. After getting the filtered list of webtables

over the input subset of query columns, it tries to improve the novelty score

by swapping an unexamined webtable with one of the currently chosen ones.

At Step 3, webtable C3 makes an improvement and takes C1’s place in the

top-2 results. Moving forward, C4 is unable to get to the top-2 list and the

55



Step Description
0 FC = [C1, C2, C3, C4]
1 Top-2 = {C1, C2} with Novelty = 1.465
2 Swap C3 with C2: Novelty = 1.818

Swap C3 with C1: Novelty = 1.275
Top-2 = {C2, C3} with Novelty = 1.818

3 Swap C4 with C2: Novelty = 1.193
Swap C4 with C3: Novelty = 1.398
Top-2 = {C2, C3} with Novelty = 1.818

Table 3.8: Results and steps of applying top-2 novelty with λ = 0.5 over subset
S = {q1, q2} on running example (Table 3.2).

list {C2, C3} of webtables will be returned as the best top-2 webtables for the

novelty preference. C2 and C3 both have 3 unique rows for Q over {q1, q2}

which are the maximum among all five webtables.

3.4.4 Dependent Set

A problem with the notions of unionability used in TUS is that each query

column is treated as an independent entity. Consequently, important infor-

mation about the combination of values across query columns will be lost.

Consider the query table Q of the running example (Table 3.1) with a focus

on query columns ‘movie’ and ‘actor’. If we concentrate on individual query

columns, there may be candidate webtables with similar values (for example,

same movies and same actors) like C2 and C4. However, as there is a many-

to-many relationship between movies and actors, these candidate webtables

offer different combination of values over the two columns. TUS, considers

all these candidate webtables as the same, as far as they have the same set

of movies and actors. But, the data of these two webtables show that C4 is

a near-duplicate version of Q while C2, although the first two rows’ values

appear in Q’s columns, offers one new combination of them.

In order to resolve this issue, we propose dependent set preference, which

differentiates between candidate webtables that have the same values but

different combinations. Dependent set introduces sets of dependent query

columns. Users can put query columns in different dependent sets to demon-

strate the importance of their values together. Note that some query columns
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may not be part of any dependent set or treated as a dependent set of size

one. With this preference, each dependent set Si of query columns is consid-

ered as a new query column with values generated by concatenating the values

of columns in Si. Following this idea, we define top-k dependent set as the

top k candidate webtables with the most table unionability score over the set

of newly created query columns (Definition 3.11).

Definition 3.11 (Top-k Dependent Set). Having sets S1, . . . , Sm of dependent

query columns, the Top-k Dependent Set is defined as top-k candidate webta-

bles of applying top-k TUS over the new set of query columns {q′1, . . . , q′m}

∪ {qi | qi /∈ Sj for j = 1, . . . ,m} where q′i’s values are the concatenation of

values of query columns in Si.

A naive approach to find dependent sets is to concatenate different com-

binations of candidate columns in every possible order for every webtable

in the dataset and then find the most unionable combination over the new

query columns. Since each candidate webtable can have many combinations

of columns, examining all of them is not efficient. In addition, the exponential

growth in possible combinations due to the increase in the number of candidate

query columns makes this less scalable. We need a more efficient approach to

find the desired webtables.

An Efficient Approach

The main problem with the naive approach is the huge space of possible com-

binations of columns that exists for candidate webtables. Pruning this space

is the strategy we follow for evaluating this preference efficiently. We first find

webtables with at least one alignment over a dependent set of query columns

using the WAND approach over query columns’ posting lists. Then, for each

alignment of the filtered webtables, if it covers dependent set Si, we con-

catenate candidate columns in the same order we did for q′i to get to a new

candidate column c′i. The last step is to compute the table unionability score

over the new set of candidate and query columns and to return the top-k ones
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to the user (Definition 3.11).

Algorithm 4 Dependent Sets Greedy Algorithm: returns the top-k webta-
bles from dataset D with the maximum TUScore over sets S1, . . . , Sm of
dependent query columns.

1: R = []: the ranked list of results
2: PL: posting lists of all columns
3: FC: webtables exist in all PL lists of at least one Si

4: for all i ∈ [1,m] do
5: q′i = concatenate(Si) // new query column
6: end for
7: for all Cx ∈ FC do
8: A′(Cx, Q): alignments in A(Cx, Q) covering at least one Si

9: for all a(Cx, Q) ∈ A′(Cx, Q) do
10: for all covered Si do
11: S ′

i: candidate columns paired with Si

12: c′i = concatenate(S ′
i) // new candidate column

13: end for
14: a′(Cx, Q): alignment a(Cx, Q) over new columns
15: goodness = AGScore(a′(Cx, Q))
16: if |R| < k then
17: add (Cx, a(Cx, Q)) to R
18: else if goodness > minimum score in R then
19: swap webtable with minimum score with (Cx, a(Cx, Q)))
20: else
21: skip Cx

22: end if
23: end for
24: end for
25: return R it as output

The results of applying top-2 dependent set on samples of Table 3.2 for

two dependent sets S1 = {q1, q2} and S2 = {q3} are shown in Table 3.9. Since

we are using Jaccard as our column unionability score, some candidate tables

like C2 gets a score of 0.0 because values of concatenation of corresponding

candidate columns, c21 and c22, has no overlap with values of concatenation

of query columns, q1 and q2. Finally, the top-2 dependent set returns C5 and

C1 as top webtables.
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FC = [C1, C2, C3, C4, C5]
q′1 = q1.q2, q

′
2 = q3, q

′
3 = q4

Subset Top-2 AUScores Top-2 AGScores
{q′1} C4 = 0.4, C1 : 0.334 C2 : 0.767, C4 : 0.731
{q′2} C1 : 0.4, C5 : 0.4 C1 : 0.767, C5 : 0.767
{q′1, q′2} C1 : 0.167 C1 : 0.641
others None None

Table 3.9: Results of applying top-2 dependent set with k = 2 for dependent
sets S1 = {q1, q2} and S2 = {q3} on running example (Table 3.2). q1.q2 denotes
the concatenation of two columns.

3.4.5 Other Preferences

We can imagine other useful preferences but since they are not challenging

in terms of implementing them efficiently, we just introduce them briefly here

without further evaluations.

Weighting

In real word, query columns may have different levels of importance and some

of them may be more important than others. The user can assign weights to

query columns indicating how important they are. Consequently, the search

aim at finding candidate webtables more in favor of important query column

(i.e. tables with more unionability over the important columns). For the

implementation, these weights can be reflected on the unionability scoring

functions easily.

Total/Partial Order

The user may prefer some query columns over the others but with no specific

weight. In this case user can provide a set of preferred relationships indicat-

ing one query column is favoured over another. There could be an order of

preference between all the query column (i.e. Total Order) or just a subset of

them (i.e. Partial Order).

Existence Set

A user may wants to have unionable webtables with at least an alignment over

a specific subset of query columns. These query columns may be the primary
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key of the query table or any sensitive or important information the user needs

to see in the results.
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Chapter 4

Experimental Evaluation

To evaluate the proposed preferences, we identify some down-stream tasks

where table union search can be useful. One important goal of TUS is to

augment a query table with additional information from a table corpus. This

translates into three different down-stream tasks in our study: adding new

rows to the query table, adding new columns, and filling in missing values.

This chapter begins by introducing two datasets in Section 4.1, followed

by a discussion of data annotation and how the ground truth is established

in Section 4.2.1 and some scoring functions in Section 4.2.3. We then proceed

to evaluate our preferences in Section 4.3 by comparing them with the two

variations of table union search, referred to as TUS and TUS+, in terms of

precision and time cost. Finally, we evaluate our preferences over three down-

stream tasks to show how the preferences may help in those tasks.

4.1 Datasets

We have collected two datasets commonly used in the literature: (1) Web Data

Commons - English-Language Relational Web Tables 2015 (WDC) dataset

[48], and (2) WikiTables dataset [5]. We build our dataset of query and can-

didate webtables from these base tables by random selection of rows, random

projection of columns and random masking of values. Applying these oper-

ations on a base table is expected to generate new tables that are unionable

with the base table and with each other by the definition of unionability [77].

This provides an easy annotation process as we know for each query table,
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those tables that are sampled from the same base table as the query table are

unionable with the query table.

4.1.1 WDC 2015

We selected 50 webtable with at least 9 columns and 900 records from the

WDC 2015 [48] dataset. Then we checked them manually and pruned those

with less than 5 text columns or with non-English content. Finally we ended

up with 14 webtables as our base tables. We sampled 101 tables from each base

table, as discussed above, and designated one table as our query table and the

remaining 100 tables as candidate webtables. This gave us a total of 14 query

tables and 1400 candidate webtables. For each query table, we selected 100

to 300 rows and 4 to 6 columns randomly from the base table. Usually, query

tables are expected to have a small number of rows. However, we specifically

chose larger tables in order to observe the varying levels of unionability present

in the candidate webtables, and to gain a better understanding of how each

preference operates. We wanted to have smaller candidate webtables in order

to have different levels of unionability with the query tables. So, we did the

same for candidate webtables but with 100 to 200 rows and 3 to 4 columns.

For each query table, we manually masked some cell values in 30 percent of

the rows but limited the number of masked value for each row to only one.

We kept the original cell values to be able to test the task of finding missing

values later in the evaluation phase.

4.1.2 WikiTables

We did a similar process as the one for the WDC dataset. We first selected

top 100 webtables with at least 9 columns and 300 rows from the WikiTables

dataset [5]. Then, we pruned those with non-English content. In addition,

since we wanted to guarantee different levels of unionability among query and

candidate columns, we pruned those tables with many columns that had only

‘yes/no’ values in their content. Finally we ended up with 12 base tables which

we used to generate query and candidate webtables from. We ended up with

12 query tables, one per each base table, and 1200 candidate webtables, 100
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candidates per each base table. We did our masking operation to add some

missing values to random cells of the generated query tables, similar to the

masking carried out over the WDC dataset.

4.2 Experimental Setup

4.2.1 Ground Truth

The way we generated our query and candidate tables from a base table allowed

us to exploit the same base tables as the ground truth. For a query table taken

from a base table, any row, column and cell value of the same base tables can be

considered as expected results to a table union search under some preferences.

For missing value prediction, since each query table is sampled from a subset

of columns of a base table and this subset may not include a key of the base

table, there can be multiple candidates for a missing value and they all may

be treated as correct. We consider any hit on these values as a correct guess

for that missing value.

There are two important points to consider. Firstly, as the query and

candidate webtables are selected randomly, it is possible that some candidate

webtables may not have anything in common with the query table that is

drawn from the same base table. This can result in these candidates being

identified as non-unionable for the query table since value overlap is used as the

unionability scoring function. However, since all approaches in the evaluations

use value overlap to identify unionable candidates, this situation does not affect

the overall trends observed in the evaluations.

Secondly, since base tables may have similar values, candidate webtables

drawn from one base table may be identified as unionable with query tables

from other base tables. In such cases, we consider these candidate webtables

as false positives in our evaluations. However, we still examine the information

they provide for the query table during follow-up operations. If they offer new

information that is present in the base tables but not the query table, we

present them to the user. Otherwise, if there are inconsistencies between the

information they provide and that of the base tables, we ignore them. Despite
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this, this situation does not affect the trends seen in the evaluations.

4.2.2 Evaluation Metrics

First of all, we return a ranked list of top-k webtables for each preference and

utilize Average Precision@k (Formula 4.2) to get a sense of the number of

returned webtables in the top-k list that are truly unionable with the query

table.

Precision@k =
# unionable webtables in the top-k list

k
, (4.1)

Average Precision@k =

∑︁N
j=1 Precision@k for Qj

N
, (4.2)

where N is the number of query tables we do the experiments on.

We also report the time cost which is the time it takes for our implemen-

tations of each preference to return the top-k webtables for one single query

table.

Next, for each follow up task, we report Average Precision@k, Average

Recall@k and Average F1 Measure@k to highlight the effectiveness of each of

the proposed preferences. Note that since we have different follow up tasks,

precision@k, recall@k and f1 measure@k should be updated accordingly. For

example, for the task of adding new rows to the query table, they will be

defined as follows:

Precision@k =
# correct new rows returned by webtables of top-k list

# all new rows returned by webtables of top-k list
(4.3)

Recall@k =
# correct new rows returned by webtables of top-k list

# all possible new rows in the base tables of query tables
(4.4)

F1Measure@k =
2 ∗ Precision@k ∗Recall@k

Precision@k +Recall@k
(4.5)

4.2.3 CUScore Functions

Earlier in the Section 3 we introduced CUScore of two columns as the Jaccard

similarity of their sets of values. However, CUScore is not limited to Jaccard
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and other functions may be suitable for more specific follow up operations.

There are several different definitions of CUScore in Table 4.1 that we intend

to experiment with in this research, as we believe they may be helpful for the

follow-up tasks.

CUScore
Jaccard(q, c) = |Vq ∩ Vc|/|Vq ∪ Vc|
Jaccard similarity over all rows of Q
Jaccardmissingrows(q, c) = |V ′

q ∩ Vc|/|V ′
q ∪ Vc|

Jaccard similarity over rows of Q with missing values
Similarity(q, c) = |Vq ∩ Vc|/|Vq|
Fraction of q covered by c
Similarity Novelty(q, c) = HM(Jaccard(q, c), |Vc − Vq|/N)
Similarity and novelty of c for q at the same time

Table 4.1: CUScore functions over a query column q from query table Q, with
a set of values Vq, and a candidate column c from Table C, with a set of
values Vc; V

′
q is the set of values of columns q over only those rows of Q with

at least one missing value; D is the set of all columns in the dataset; N is
the normalization parameter which could be argmaxc∈D |Vc| and HM is the
Harmonic Mean function.

An observation is that a user may search for candidate webtables with

possible information about the missing values of the query table Q in order to

fill them. Without loss of generality, we can assume that Q has two sets R1 and

R2 of rows, where R1 includes rows with a missing value on at least one of its

columns and R2 consists of those with no missing values at all. Using Jaccard

may result in returning candidate columns, and hence candidate webtables,

with similar information to rows in R2. Such candidates may not cover rows

of R1 which results in lower chances of finding the missing values. So, if we

focus on returning candidate webtables with similar information to R1, we

increase the odds of finding the missing values. Based on this observation we

define Jaccardmissingrows(q, c) as the Jaccard similarity over only rows in R1.

Another situation with using Jaccard is that two candidate columns with

the same number of common values with a query column will not get the same

CUScore if their numbers of non-common values are different. The column

with less number of differences will get a higher score as it has a lower denom-

inator in the Jaccard formula. We define overlap similarity, Similarity(q, c),
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to resolve this issue by focusing on just candidate column values that are

common with the query.

Similarity of two columns is only one measure of relatedness. Consider a

candidate column with the exact same values as a query column. Jaccard will

assign a unionability score of 1.0 to this candidate column. For a user who

wants to see new values in candidate columns, or rows that are not in the

query table, this column will not be desirable. This is where the differences

become as important as similarities. We define Similarity Novelty(q, c) as

the harmonic mean of similarity and difference (i.e. novelty) of a candidate

column to a query column.

For the evaluation, we experiment with all these CuScore functions.

4.3 Experimental Results

Since all the webtables from the same base table are considered as unionable,

to evaluate the average precision@k of our proposed preferences, we run each

preference over the datasets and measure the number of returned webtables

that are drawn from the same base table as the query table. One important

observation is that we consider, as unionable, only those webtables from the

same base table as the query table, based on how our ground truth is con-

structed, whereas our definition of unionability allows webtables from other

base tables to be considered unionable with the query table, resulting in lower

levels of precision.
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Figure 4.1: Average Precision@k for the returned webtables of both datasets.

As it is shown in Figure 4.1, the results of the proposed preferences is mostly

made up of unionable webtables. Novelty seems to have a few non-unionable

webtables as results which is expected since this preference cares about the

new entities in the webtables as much as their relevancy to the query table.

This may result in returning webtables from other base tables as unionable

webtables for a query table. Another observation is that for smaller values

of K, all the preferences have a perfect accuracy in returning only unionable

candidate webtables.

Figure 4.2: Time cost of returning the ranked list of candidate webtables for
a single query table.
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For the evaluation of time cost, we compare the time it takes for each

preference to find the desired webtables for a single query table with the times

of TUS and TUS+. Since our preference performs extra processing over the

candidate webtables, we expect them to take more time than TUS to return

the results.

Plots in Figure 4.2 confirm our expectation that TUS has the lowest time

cost among all the preferences. Skyline has the worst time cost which might

be due to the recursive algorithm we used for its implementation. Existing

approaches such as SaLSa [4] and BBS [57] should have a better performance

than our approach as they utilize better heuristics to prune many candidate

webtables without fully examining them.

4.3.1 Task 1: Adding New Rows

Consider the task of utilizing the candidate webtables that are unionable with

the query table Q to extend Q vertically by adding new rows. The user may

intend to train a machine learning model over the data in Q, for instance.

Training a machine learning model on a table of data with a small number of

rows, or a small sample size, presents several challenges [33] that can affect

the model’s accuracy and reliability. One of the most significant challenges

is overfitting [59], where the model fits the training data too closely and fails

to generalize to new data. With few observations, the sample might not be

representative of the population, which can lead to biased training data and

inaccurate predictions [44], [50]. Feature selection and model selection become

more critical with a small sample size, as selecting irrelevant or redundant fea-

tures can lead to overfitting, and choosing the appropriate model architecture

can be more challenging [31]. Next we discuss some scenarios where TUS will

be unable to return webtables suitable for such purpose while our proposed

preferences may do better.

• The webtables retrieved from the search may only provide alignments

that cover a specific subset of the query columns, leaving some columns

without coverage. As a result, the user may not be able to construct
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complete new rows for the query table due to insufficient information for

the uncovered query columns.

• Although the returned webtables cover all the query columns, they may

be divided into several groups, each offering an alignment over a different

subset of query columns. Consequently, there is no common query col-

umn among webtables of different groups, making it impossible for the

user to create full new rows for the query table by merging the webtables

together.

• The returned webtables may cover all query columns and also be joinable,

but they may be near duplicate versions of the query table, leaving the

user with insufficient new rows.

Our hypothesis is that employing skyline, novelty, and dependent set pref-

erences can aid in returning valuable candidate webtables in the aforemen-

tioned scenarios. Skyline ensures that each subset of query columns, as well as

each query column, will be encompassed by at least one candidate webtable.

Novelty identifies a group of candidate webtables with the highest count of

unique rows across any selected subset of query columns by removing near-

duplicate tables. Dependent set ensures that the retrieved tables pertain to

the same entities as the query table and increasing the likelihood of generating

additional new rows.

Evaluation Setup

To assess this task, we apply each of the proposed preferences on both datasets

and for each query table. We examine the ranked list of candidate webtables

returned by each preference and search for webtables that have an alignment

with Q covering all of its query columns. For each webtable C that meets this

requirement, we retrieve all of its rows, excluding those that already exist in

Q, and consider them as new rows for Q. It should be noted that we need to

rearrange the columns of C prior to returning its rows in order to maintain

the mappings detected by the alignment between C and Q. Finally, any row

provided by the returned webtables will be considered as a correct row if it
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exists in the base table that Q was sampled from.

In accordance with the preference definitions outlined in Section 3.4, di-

versity, novelty and dependent set operate on a subset of query columns. As

candidate webtables with an alignment over all the query columns are de-

sired for this task, we execute these three preferences over the set of all query

columns. Additionally, we set the controlling parameter λ to 0.5 for both

diversity and novelty, indicating relevancy is as important as diversity and

novelty scores.

Performance Evaluation

We first execute all the proposed preferences and both TUS implementations

over the two datasets using the Jaccard scoring function. The results (Figure

4.3) show that novelty and diversity for all values of k and dependent set for

k > 5 have a better f1 measure than that of TUS which means they offer

more correct new rows to the query table. Novelty has the best performance

as it focuses on returning as many new rows as possible. Interestingly, TUS+

which adds some simple constraints to TUS, as discussed in Section 3.2, makes

a significant improvement on the result.

As expected, skyline has the worst performance among all the preferences,

and clearly it is not a good preference for this task. The reason is that skyline

is designed for situations where some query columns are rarely paired with

candidate columns or the returned webtables need to be joined together to

build full rows.
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Figure 4.3: Task 1: Average F1 Measure@k, Average Precision@k and
Average Recall@k of all approaches over both datasets.

Another observation is that the precision of all the proposed preferences

is high which indicates that the returned webtables have indeed many correct

new rows for Q. However, as it is shown, the recall is low, indicating that

only a small portion of possible new rows have been found. There are multiple

reasons for this. First, we only have a small number of candidate webtables

for each base table which leaves many of the possible new rows uncovered by

available candidate webtables. Second, for small values of k, we cannot achieve

a high recall as each candidate webtable only covers a small portion of the base
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table.

Changing the CUScore function

Now that we showed most of the proposed preferences outperform TUS and

TUS+ for this task, we want to experiment if changing the CUScore function

have an effect on the results. We first evaluate TUS and TUS+ using different

CUScore functions to find out which one yields the best f1 measure. The

results (Figures 4.4 and 4.5) show that both implementations, TUS and TUS+,

works slightly better under Similarity scoring function. Notice that since

Jaccardmissingrows is designed for filling in the missing values task, it is not

part of this experiment.

Figure 4.4: Task 1: Average F1 Measure@k for TUS on different CUScore
functions over both datasets.
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Figure 4.5: Task 1: Average F1 Measure@k for TUS+ on different CUScore
functions over both datasets.

Comparing TUS and TUS+ using their best CUScore function with the

proposed preferences on the Jaccard scoring function (Figure 4.6) shows the

same trends we saw in Figure 4.3 and demonstrates that our preferences are

still better than changing the scoring function.

Figure 4.6: Task 1: Average F1 Measure@k for TUS and TUS+ with their
best CUScore function and all preferences with Jaccard as CUScore function
over both datasets.

The question now is how these CUScore functions can impact our pref-

erences. To answer this question, we evaluate each preference using differ-

ent CUScore functions across both datasets. Our experiments show that the
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Jaccard scoring function is the best CUScore function for skyline and de-

pendent set, while the Similarity function is the best for others. Figure 4.7

shows all the preferences and TUS implementations with their best CUScore

function, which exhibits a similar pattern to Figure 4.6, confirming that the

CUScore functions have a negligible effect on some preferences for the task of

adding new rows.

Figure 4.7: Task 1: Average F1 Measure@k for TUS, TUS+ and all prefer-
ences with their best CUScore functions over both datasets.

Changing the diversity/novelty parameter

As the previous evaluations have indicated that novelty and diversity are effec-

tive in expanding the query table vertically, we want to examine how changing

their control parameter λ affects their performance. Based on the formulas

for these preferences (Formulas 3.4 and 3.11), a value of λ = 0.0 corresponds

to full relevance, which is equivalent to TUS. A value of λ = 1.0 indicates

full diversity or novelty and could result in webtables with more new rows

or columns. Figure 4.8 illustrates the results of applying both preferences to

the WDC dataset for various λ values, namely 0.0, : 0.2, : 0.5, : 0.8, : 1.0. We

can conclude that for novelty, larger values of λ leads to more new rows being

returned. This is due to two reasons. Firstly, we eliminate many irrelevant

webtables at the beginning of both preferences by removing those candidate

columns with a unionability score below a very low threshold. This helps to fil-
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ter out webtables that were unlikely to be useful for the query table. Secondly,

the base tables that were selected have a very low similarity in their values

when compared to each other. As a result, there are no candidate webtables

from other base tables that passes the threshold filter. Consequently, we end

up with a long list of relevant candidate webtables to select the top-k from.

The higher the value of λ, the more intriguing the webtable is for inclusion in

the top-k list. The same trend is observed for diversity, although it focuses

on returning webtables with more new columns for the query table. Upon

examining the dataset, we discovered that webtables with more new rows are

mostly those with new columns as well, which explains why we see similar

patterns for diversity.

Figure 4.8: Task 1: Analyzing the effect of parameter λ on Average F1
Measure@k of diversity and novelty over WDC dataset.

4.3.2 Task 2: Adding New Columns

This task utilizes candidate webtables returned for a query to add new columns

to the query table. The query table may have a few number of columns, making

it challenging for a user intending to utilize Q for training a machine learning

model, for instance. Training a machine learning model on a table of data with

a low number of columns, also known as a low dimensionality dataset, presents

several challenges that can affect the model’s accuracy and reliability [37]. A
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major challenge is underfitting, where the model might not have enough infor-

mation to learn the underlying patterns and relationships in the data, leading

to poor predictive performance [14], [55]. With few columns, there is limited

information available to the model, which can lead to a loss of predictive power

and accuracy. Furthermore, the limited number of features can lead to the in-

clusion of irrelevant or redundant features, reducing the model’s predictive

power and increasing the risk of overfitting [26]. The interpretability of the

model’s predictions can also be challenging with few columns, and there are

limited options for feature engineering, which can limit the model’s ability to

learn complex relationships between features [19]. Here are a few cases where

TUS may fail to return desirable candidate webtables for this task.

• Since the focus of TUS is on unionability, all returned candidate columns

may be from the same domains as those of the query columns. Hence,

no new domains may be offered by the returned webtables, which means

no new dimensions can be added to the query table.

• The returned webtables may offer new columns to the query table, but

they may have duplicate domains. As a result, the user ends up with a

few new columns for the query table which may not be satisfactory.

In Section 3.4.2, we proposed diversity for the task of adding new columns

to the query table. Our hypothesis is that this preference can retrieve better

candidate tables for this task.

Evaluation Setup

One way to identify new columns for a query table Q is to obtain candidate

webtables with an alignment that covers all the query columns. Any columns

in these candidate webtables that do not participate in the alignment can be

considered as new columns for Q. Another approach involves searching for

candidate webtables with an alignment over a key of Q, which is a subset of

columns that uniquely identifies a row of the table. As Q typically has a small

cardinality, several column combinations may be identified as its keys. We

select some of the largest keys (i.e., those with the most columns) and look for
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candidate webtables with an alignment over each one of them. Any columns in

the resulting candidate webtables that have no mapping with query columns

may be potential new columns for Q. A new columns is a hit if it exists in the

base table that Q is drawn from.

It’s worth noting that diversity, novelty, and dependent set require an input

set of query columns to function. Therefore, we first execute these metrics

over all query columns, and then separately over some of the largest keys of

Q. Additionally, we set the controlling parameter λ to 0.5 for both diversity

and novelty.

Performance Evaluation

The first step is to execute all proposed preferences and TUS implementations

over both datasets using the Jaccard scoring function. The average f1 measure

results for various values of k indicate that among all the preferences, diversity

performs the best, as expected, since its primary goal is to identify candidate

webtables that have new columns for Q. Additionally, novelty is also effective

in this task since webtables with more new columns also tend to have more

new rows in our datasets. Dependent set puts the most desirable candidate

webtables for this task in ranks 6 to 10 which is still better than that of TUS

and TUS+. However, TUS exhibits the poorest performance, implying that its

results may not be of high quality for this particular task. Interestingly, adding

some constraints to TUS, denoted by TUS+, improves its results significantly.

Nevertheless, our proposed preferences outperform TUS+ as well, indicating

that we cannot achieve the same results as the preferences by implementing

simple heuristics on TUS. Figure 4.9 displays the relevant plots.

A notable observation is that the average precision for nearly all the plots

in both datasets reaches the peak, i.e. 1.0. This indicates that the candidate

webtables returned are relevant to the query table and the new columns they

provide are correct. Despite having a high average precision, the low average

recall of some preferences indicates that their returned candidate webtables

do not encompass all possible new columns of the base table for Q.
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Figure 4.9: Task 2: Average F1 Measure@k, Average Precision@k and
Average Recall@k of all approaches over both datasets.

Changing the CUScore function

In this section, we investigate whether altering the CUScore function affects

the performance of TUS and TUS+. Our hypothesis is that while changing the

scoring function may improve the performance, the preferences still yield bet-

ter results. We use the same approach discussed in Section 4.3.1, starting with

identifying the CUScore function with the best average f1 measure for both

TUS and TUS+. Our evaluations, as depicted in Figures 4.4 and 4.5, demon-

strate that both implementations perform better under the SimilarityNovelty

scoring function. It is worth noting that the Jaccardmissingrows scoring func-

tion, which aims to aid in filling missing values, is not included in these eval-
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uations.

Figure 4.10: Task 2: Average F1 Measure@k for TUS on different CUScore
functions over both datasets.

Figure 4.11: Task 2: Average F1 Measure@k for TUS+ on different CUScore
functions over both datasets.

When comparing TUS and TUS+ using their best CUScore function with

the proposed preferences using the Jaccard scoring function (as depicted in

Figure 4.12), we observe similar trends as those in Figure 4.9. We notice

that TUS+ outperforms skyline and dependent set preferences by a significant

margin, but still lags behind diversity and novelty. Diversity and novelty are

particularly effective for this task, particularly for relatively large values of k.
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Figure 4.12: Task 2: Average F1 Measure@k for TUS and TUS+ with their
best CUScore function and all preferences with Jaccard as CUScore function
over both datasets.

Our goal is to understand the impact of CUScore functions on our prefer-

ences. To do so, we assess each preference using various CUScore functions

on both datasets. The majority of preferences perform best with the CUScore

function SimilarityNovelty, except for two instances where skyline and nov-

elty perform better with Similarity on the Wikitables dataset. Figure 4.13

displays all preferences and both TUS implementations with their optimal

CUScore functions, demonstrating similar patterns to Figure 4.12. Interest-

ingly, the CUScore functions have only a small improvement on some prefer-

ences for the task of adding new columns. As shown, diversity and novelty

have an average f1 measure over 0.95 and outperform others by a large margin

for the WDC dataset and a small margin for the Wikitables dataset.
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Figure 4.13: Task 2: Average F1 Measure@k for TUS, TUS+ and all
preferences with their best CUScore functions over both datasets.

Changing the diversity/novelty parameter

We found that both novelty and diversity significantly outperform other pref-

erences for adding new columns to extend the query table horizontally. Now,

we want to explore how changing their control parameter λ affects their per-

formance. As mentioned earlier, when λ = 0.0, these two preferences only

consider the relevancy of returned webtables, whereas when λ = 1.0, they

prioritize full novelty or diversity, which may result in returning webtables

with more new columns or rows. Figure 4.14 illustrates the results of ap-

plying both preferences on the WDC dataset for various λ values, namely

0.0, : 0.2, : 0.5, : 0.8, : 1.0. It’s worth noting that for diversity, the larger the λ,

the more new columns the preference offers. This pattern emerges from the

fact that diversity initially filters many irrelevant webtables by pruning candi-

date columns with a unionability score below a small threshold. This leads to

having a considerable number of relevant candidate webtables from which to

choose the top-k. The more new columns a webtable has, i.e., the larger the λ,

the more appealing it becomes to include it in the top-k list. We observe the

same pattern for novelty, except that it focuses on returning webtables with

more new rows for the query table. Our analysis of the dataset indicated that

webtables with more new columns are usually the ones with new rows as well,

which clarifies why we observe comparable trends for novelty.
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Figure 4.14: Task 2: Analyzing the effect of parameter λ on Average F1
Measure@k of diversity and novelty over WDC dataset.

4.3.3 Task 3: Filling in Missing Values

The query table may have missing values. Consider a user who wants to train

a machine learning model over the query table as the input dataset. Training

a machine learning model on a dataset with missing values can present sev-

eral challenges that can affect the accuracy of the model [80]. Missing values

can cause biased training data, leading to inaccurate predictions. Handling

missing values with imputation can be challenging, as selecting the appro-

priate imputation method is not always straightforward, and imputed values

can introduce noise and inaccuracies [3]. Feature selection is also an essential

consideration when dealing with missing values, as features with many miss-

ing values might not be useful predictors, and selecting relevant features can

be challenging [35]. Here are a few cases where TUS can return candidate

webtables not suitable for this task.

• Returned webtables may be all unionable over a specific subset of query

columns which leaves some query columns uncovered. If any of the un-

covered query columns contains missing values, the user will not be able

to extract them.
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• All the query columns with missing values may be covered by the re-

turned webtables, but necessary information to extract the correct values

for each missing value may not be accessible. We need a webtable with

an alignment over all the query columns or with a primary key-foreign

key relationship to the query table in order to extract the missing values

from it. TUS does not guarantee that returned webtables meet these

constraints.

• Even if the returned webtables address the first two situations, they may

have near-duplicate information. Not having enough diverse values may

result in not covering some of the missing values.

Skyline and dependent set preferences each addresses one or more of these

situations and we expect them to be beneficial for this task. Skyline covers all

the query columns and there is a chance of extracting missing values for each

and every query column. We can also run novelty and dependent set over those

query columns with missing values. They both return many combinations of

values over those columns which helps in finding their missing values.

Evaluation Setup

To assess this task, preferences are applied and a list of candidate webtables

is generated. From this list, the missing information in the query table Q

is searched for. One approach to extract missing values is to find candidate

webtables that have an alignment that covers all the columns in the query

table. If there is a missing value at a particular column q in a specific row r

of the query table, these webtables can be used to locate the row that is most

similar to r. The value of the candidate column that is mapped to q can then

be used as the potential value for the missing data.

Another strategy is to identify a primary key-foreign key relationship be-

tween the query table Q and a returned webtable. The approach is to first

determine the key(s) of Q, and then check if any of them are covered by an

alignment in a returned webtable. If such alignment(s) exist, they are treated

as foreign keys to Q, and other candidate columns from the alignment are used
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to fill in the missing values of their corresponding mapped query columns.

A different approach is to reverse the process of the previous strategy. The

idea is to first identify the key(s) of any returned webtable C, and then verify

if any of these keys are covered by an alignment. If such an alignment exists,

the mapped columns of the query table are treated as foreign keys to C. This

alignment can be utilized to extract missing values of Q.

The definitions in Section 3.4 highlights that to compute diversity, novelty,

and dependent set preferences, an input set of query columns is required.

Therefore, these preferences are initially executed over all the query columns

and then over some of the largest keys of Q. The parameter λ is set to 0.5 for

both diversity and novelty.

Performance Evaluation

As with other similar tasks, the initial step involves running all proposed

preferences and TUS implementations over both datasets using the Jaccard

scoring function. By varying the values of k, the average f1 measure results are

obtained (Figure 4.15), and the results indicate that for the WDC dataset, the

skyline and dependent set preferences perform well, meeting the expectation of

high performance. However, TUS and TUS+ provide better results, which can

be attributed to their focus on returning webtables with high unionability to

Q, leading to more relevant webtables being returned, increasing the chances

of finding missing values in Q. Dependent set and skyline show the best

performance among all on the Wikitables dataset, which once again supports

our hypothesis that these two would be beneficial in this task. Although

diversity and novelty have high precision, they are not effective in detecting

many of the missing values in Q, leading to a low f1 measure.
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Figure 4.15: Task 3: Average F1 Measure@k, Average Precision@k and
Average Recall@k of all approaches over both datasets.

Changing the CUScore function

This section examines how changing the CUScore function impacts the perfor-

mance of TUS and TUS+. The first step is to determine the CUScore function

that produces the highest average f1 measure for both TUS and TUS+. Fig-

ures 4.16 and 4.17 illustrate that both TUS and TUS+ perform better when

using the Similarity scoring function on both datasets.
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Figure 4.16: Task 3: Average F1 Measure@k for TUS on different CUScore
functions over both datasets.

Figure 4.17: Task 3: Average F1 Measure@k for TUS+ on different CUScore
functions over both datasets.

By comparing the performance of TUS and TUS+, using their best CUS-

core function, with the proposed preferences using the Jaccard scoring func-

tion, we find similar trends to those in Figure 4.15. However, for the Wik-

itables dataset, TUS and TUS+ perform slightly better than skyline. This

observation is shown in Figure 4.18.
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Figure 4.18: Task 3: Average F1 Measure@k for TUS and TUS+ with their
best CUScore function and all preferences with Jaccard as CUScore function
over both datasets.

The objective is to analyze the effect of CUScore functions on preferences,

so we evaluate each preference using different CUScore functions on both

datasets. Most preferences work better with the CUScore function Jaccard,

except for novelty which performs slightly better with Jaccardmissingrows on

the Wikitables dataset. Figure 4.19 shows all preferences and both TUS im-

plementations with their optimal CUScore functions, which indicates similar

patterns to Figure 4.18. Interestingly, the new scoring functions do not en-

hance the majority of preferences in the task of filling in the missing values.

Figure 4.19: Task 3: Average F1 Measure@k for TUS, TUS+ and all
preferences with their best CUScore functions over both datasets.
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Changing the diversity/novelty parameter

While Novelty and Diversity were not effective in detecting missing values in

the query table, we aimed to investigate how changing the λ parameter would

impact their average f1 measure. The results, shown in Figure 4.20, indicate

that decreasing the value of λ leads to higher average f1 measure for both

preferences. This is because a lower λ value assigns a higher weight to the

relevance of the candidate webtables to the query table, which increases the

likelihood of finding the missing values.

Figure 4.20: Task 3: Analyzing the effect of parameter λ on Average F1
Measure@k of diversity and novelty over WDC dataset.
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Chapter 5

Conclusion

Table Union Search aims at retrieving unionable webtables having a query

table at hand. The literature mainly focus on efficiently returning an approx-

imate ranked list of candidate webtables to the user. A drawback of this line

of work is that this may prevent the user from accessing candidate webtables

suitable for the follow-up operations, e.g. augmenting the query table with

more rows and columns.

In this thesis, we study preferences as a powerful tool to improve the usage

of TUS. Equipped with preferences, the user is able to retrieve webtables not

only unionable with the query table, but also those suitable for various follow-

up operations. We presented four main preferences Skyline, Novelty, Diversity

and Dependent Set and showed that they can improve upon different down-

stream tasks significantly.

Our evaluation on two real datasets showed that our proposed preferences

offer significant improvements over three down-stream tasks studied in this

thesis. Compared to both TUS algorithms, our preferences return more new

rows, more new columns and more correct values for the gaps in the query

table.

A possible future direction is to consider joining the returned webtables for

down-stream tasks. Webtables have partial coverage over query columns which

brings up the possibility of joining them in order to get to bigger webtables

which consequently might add more rows and columns or fill more missing

values of the query table.
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Also, we can define and apply more preferences to TUS task in order to

cover a wider range of down-stream tasks. In this work we only showed the

benefits of a small set of preferences. Although these preferences can be used

for other down-stream tasks, we only showed their usefulness on three down-

stream tasks.

Another research direction is related to efficiency of proposed algorithms.

In this research our focus was more on introducing and showing the effec-

tiveness of preferences on TUS task. Although we proposed some efficient

approaches for each preference, a possible direction is studying the efficiency

of these algorithms and possibly developing more efficient solution, in terms

of execution time and memory usage.
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