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A Passivity Criterion for Sampled-data Bilateral
Teleoperation Systems
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Abstract

A teleoperation system consists of a teleoperator, a human operator, and a remote environment. Conditions involving system and
controller parameters that ensure the teleoperator passivity can serve as control design guidelines to attain maximum teleoperation
transparency while maintaining system stability. In this paper, sufficient conditions for teleoperator passivity are derived for when
position error based controllers are implemented in discrete-time. This new analysis is necessary because discretization causes
energy leaks and does not necessarily preserve the passivity of the system. The proposed criterion for sampled-data teleoperator
passivity imposes lower bounds on the teleoperator’s robots dampings, an upper bound on the sampling time, and bounds on the
control gains. The criterion is verified through simulations and experiments.
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[. INTRODUCTION

A teleoperation system comprises of a human operator interacting with a master robot, and remotely controlling a slave robot,
which is expected to perform a desired task on a remote environment. In designing controllers for such a system, stability is a
prime issue that is investigated by many researchers. Stability of teleoperation systems is mainly jeopardized by two factors:
(a) time delay in the communication channel, and (b) controller discretization. While the stability of delayed teleoperation
systems has been widely studied in the literature [1], [2], we contemplate the impact of the discrete-time controllers on the
passivity of the teleoperator, which includes a master robot, a slave robot, their controllers, and a communication channel. The
communication channel is assumed to be delay-free, which requires the master and the slave robot to be physically close to
each other. An example of this situation is robotics-assisted surgical systems where the master and the slave robots are in the
same room.

Due to the unknown, time-varying and sometimes nonlinear dynamics of the environment and/or the operator, it is easier
to analyze the passivity of the teleoperator in lieu of the stability of the closed-loop teleoperation system (Fig. 1). Indeed, the
interconnection of a passive teleoperator with passive environment and operator terminations will be passive and consequently
stable [3]. For a bilateral teleoperation system in continuous-time, the teleoperator is modelled as a 2-port network and
subsequently the teleoperator passivity condition is related to the scattering matrix of the 2-port network [1]. Alternatively, the
passivity of the continuous-time teleoperator can be analyzed by Raisbeck’s condition [4], [S].
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Fig. 1. The passivity of the teleoperation system is guaranteed when the 2-port network teleoperator is passive and connected to two passive 1-port network
terminations.

The passivity of a teleoperation system is not guaranteed once the continuous-time controllers are substituted with their
discrete-time counterparts because of energy leaks caused by the zero order hold (ZOH) [6]. A zero-order hold accounts for
half-sample delay (not to be confused with the communication channel’s delay) and has energy-instilling effects.

Similar to bilateral teleoperation, in a force-reflective virtual reality simulation system, the operator feels virtual contact
forces while applying position commands through the haptic user interface. Colgate and Schenkel found a passivity condition
for such a system considering the discrete-time components of the system [7]. The passivity condition for the discrete simulation
of a virtual wall K + sB was found to be b > KT/2 + B, where b is the haptic interface damping and T is the sampling
time. The stability of the virtual wall system has also been investigated using the Routh-Hurwitz method [8]; the condition for
the stability of the same system is b > KT/2 — B, which is clearly less conservative than the passivity condition. Previous
research has also considered the impact of other non-idealities such as quantization and friction on the stability of the virtual
wall system [9], [10]. While the effects of energy leaks caused by discretization have been thoroughly investigated for haptic
interaction with a virtual wall [8], [9], we consider the effect of discretization components for the case of haptic interaction
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with a physical environment via a computer-controlled teleoperation system. In this paper, we will find passivity conditions
that can be used in control design to achieve maximum transparency and enable the human to stably teleoperate in the presence
of discretization components.

In some approaches to studying sampled-data teleoperation, the entire teleoperation system is converted to either the
discrete-time domain [11] or the continuous-time domain [12], which simplifies the stability analysis for known models of
the environment and the operator. Also, Hannaford et al. proposed a passivity observer / passivity controller for monitoring
and controlling the energy in the communication channel of a discrete-time teleoperation system [13]. In addition, Stramigioli
et al. proposed a geometric method to investigate the problem of having both continuous-time and discrete-time signals in a
single system where the teleoperation system is represented by a continuous-time port-Hamiltonian system [14], [15].

In this paper, the passivity analysis starts with considering the dynamics of the master and the slave controllers as well as the
dynamics of the master and the slave robots. Then, we will derive a passivity condition for a sampled-data teleoperation system
with a position-error-based controller architecture. The passivity conditions will impose bounds on the system parameters such
as the sampling time, the controller gains, and the robots damping. It is important to determine the lower bound on the
damping term of the robots as most of the newly designed haptic devices intentionally have low damping terms to deliver
touch sensitivity and fidelity to the operator. The upper bounds on the controllers gains give a useful guideline for control
design as the transparency of the teleoperation system is degraded if the control gains are small in the stable region [16]. Thus,
the results of this paper can be viewed as conditions that can be used as design guidelines for achieving highly transparent
yet stable teleoperation.

The rest of this paper is organized as follows. The teleoperation system is modelled in Section II and this model is used in
Section III to find a condition for the passivity of the teleoperator. This condition has been tested via computer simulations in
Section IV, which allows the flexibility to charge the damping terms of the robots (they are fixed in the experiments). Then,
the experimental results using two Phantom Premium robots are reported in Section V, and concluding remarks are given in
Section VI.

II. TELEOPERATION SYSTEM MODELLING

A diagram of a position-error-based sampled-data teleoperation system is shown in Fig. 2. The master and the slave robots
are modelled as 1-degree-of-freedom (1-DOF), linear time invariant (LTI) systems

fh_fm - mmxm+bmxm
fe - fs = msi‘s + bsiis (1)

The subscripts m and s indicate the master and the slave robots, respectively. In (1), f;’s are the controller output forces and
x;’s are the robots positions and fj, and f. are the human operator and the environment forces. Also, m and b denote the mass
and the damping of each robot. It is also assumed that the robots do not include link or joint flexibility. The environment and
the operator are modelled as LTI impedances Z.(s) and Zj,(s), which are assumed to be passive but otherwise arbitrary. In
Fig. 2, f3, is the exogenous input force from the operator’s hand and f. is the exogenous input force from the environment.
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Fig. 2. The block diagrams of a teleoperation system, which includes discretized controller models.

As depicted in Fig. 2, the positions of the master and slave robots are discretized using samplers blocks. The superscript *
denotes sampled signals. The sampled signals are converted back to the continuous-time domain using zero-order-hold blocks.
The environment and the operator LTI models of Fig. 2 can be written in the Laplace domain as

I:ih(s)—Fh(S) = Zn(s)sXm(s)
Fe(s) = Fe(s) = Ze(s)sXs(s) (2)



The robots’ dynamics (1) can be rewritten in the Laplace domain as

SXn(9) = e (Fu(5) ~ Fo(s)
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The output of the sampler can be mathematically represented as a Dirac comb weighted by the sampled signal [17], i.e.,
z*(t) = > poo@(kT)0(t — kT) and the mathematical representation of the sampled signal in the Laplace domain is

X*(s) = L{a*(t)} = > _ w(kT)e T “)

k=0

The z-domain equivalent of (4) is X(2) = Z{x*(t)} = X*(8)|s=1/7m-- The ZOH block’s transfer function relating its
discrete-time input to its continuous-time output is [18]
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The position error based (PEB) controller blocks in Fig. 2 apply forces based on the master/slave position difference. The
position error is defined as

Fn(s) =
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The discrete-time controllers of the master and the slave implement the following control laws
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III. PASSIVITY CONDITION FOR THE SAMPLED-DATA TELEOPERATOR
The teleoperator passivity condition in the time domain is based on the dissipated energy in the equivalent 2-port network
of the teleoperator, which can be measured by the input-output energy integral at the two ports (Fig. 1). For the 2-port network
initially at rest, the passivity condition is
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The teleoperator is passive if and only if, for all time ¢ > 0, (8) holds. Condition (8) will be satisfied if
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Clearly, (9) is sufficient but not necessary for (8). The dynamics of the master robot in (1) implies that
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Finding f, from (10) and substituting it in (9), along with similar simplifications for the slave robot, simplifies (9) to
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A generalization of the Parseval’s theorem [lé] can be used to t:ake (11) to the frequency domain as
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where V; and F; (for ¢ = m, s) are the Fourier transforms of &; and f;, respectively, and the superscript ¢ denotes the complex
conjugate operator.
Based on (5) and (7), the control signals for the master and the slave are
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where
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The sampled positions in (13) can be found from (4) as
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where wy = 27 /T. Substituting (13) and (15) into the first two terms of (12) simplifies the latter to
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To further simplify (16), the master and the slave controllers are selected to be equal to each other:
Cm(jw) = Cs(jw) = C(jw) a7

In a special case later in this section, the assumption (17) will be altered to cover a more general case where the controllers
are proportional to each other with the same scaling factor as the position scaling factor.
For simplicity of notation, let us define C'(jw) = C,,(jw). Then, (16) can be rewritten as
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where V (jw) is defined as
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Using Lemma 1 in Appendix , C(jw) can be replaced by its real value
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Now, (20) can be split to two parts based on the sign of the real part of the transfer function C' as
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Lemma 2 in Appendix shows that the first integral in (21) is positive at all time.



Therefore, using (16) and (21), a sufficient condition (12) for the teleoperator passivity becomes
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Using Lemma 3 in Appendix , the first integral in (24) is greater than
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Thus, for passivity of the teleoperator it is sufficient to have
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The definition of V' (jw) can be substituted from (19) in (26). Then, the first integral in (26) becomes
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Applying Lemma 4 in Appendix to the last integral in (27), it can be said that (27) is less than
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Ultimately, Lemma 5 in Appendix shows that (28) and the last two integrals of (26) result in a sufficient condition for
passivity of the teleoperator as
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A. A more general case: Unequal controllers
The restriction that the master and slave controllers be identical may be relaxed:
Con(Jw . .
% = Cs(jw) = C(jw) (30)

where « is a position scaling factor for the master and the slave, respectively. It should be noted that setting the controllers to
the same proportion as the position signals is practically justifiable. For instance, in micro-surgery, the slave’s micro-surgical
tools undergo fine motions and need a higher-gain controller compared to the master’s handle whose range of motion spans
the human hand’s workspace (i.e., C;,, < Cs and x,, > x). The assumption (30), which serves as a requisite for the passivity
of the teleoperator, has also been made in similar passivity analyses for continuous-time bilateral teleoperation systems [20],
[21]. In the case of (30), the position error (6) becomes

€=y, — Ts 3D



We repeated the previous analysis for the case of (30) and (31), but do not show the steps for brevity. The resulting passivity
condition in the unequal controller case is
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B. A special case: PD controller
The passivity condition (29) is valid for all controllers C,,, = C;. If the controller’s structure is known, the condition can be
further simplified. For instance, for a PD controller K + Bs, which can be discretized using bilinear transformation method as
z—1

Cs(z) =Cp(z) =K+ B T

(33)

the passivity condition (29) simplifies to
b> KT — 2B coswT (34)

where b is the minimum of by and b,,. Condition (34) is dependent on the frequency w. The term coswT can vary between
-1 and 1. Thus, a sufficient condition for teleoperator passivity over all frequencies will be

b> KT +2B (35)

which has to hold for both the master and the slave robots.

Condition (35) implies that increasing the sampling time and controller gains drive the teleoperator closer to non-passivity.
The robot damping b is a physical characteristic of the robot and cannot be easily changed whereas the other parameters in
(35) can be appropriately set in the control design process. In addition to the passivity of the teleoperator, it is desirable to have
high teleoperation transparency. In a continuous-time teleoperation system, increasing the controller gains makes the system
more transparent. Condition (35) can be used to achieve as high a transparency as possible while maintaining passivity in a
sampled-data teleoperation system. It is interesting to note that the passivity condition (35) for the teleoperation system with
equal PD controllers (33) for the master and the slave has coincided with the passivity condition for a system involving haptic
interaction with a discretely-simulated virtual wall as investigated by Colgate and Schenkel [7].

IV. SIMULATION STUDY

The teleoperation system of Fig. 2 has been simulated in MATLAB/Simulink and the passivity condition (35) has been
tested for a teleoperator comprising a pair of 1-DOF robots modelled by mass and damping terms. These mass and damping
parameters match those of Phantom Premium 1.5A robots used in the experiments, the details of which will be described in
Section V. The simulation allows for variation of parameters that cannot be altered in experiments such as the robot damping
term .

To determine the passivity of the teleoperator, a passivity observer, which calculates the dissipated energy, has been
incorporated into the simulations. The dissipated energy is represented by the input-output energy integral in (8). For a passive
teleoperator, the energy integral is non-negative at all times.

For selected model parameters, first the passivity borderline is theoretically determined via condition (35) and shown in Fig.
3 by red lines. Next, the simulation is repeated for various model parameters changed over a grid in the parameter space. The
system is simulated for a chosen passive model (a first-order positive-real transfer function) for the human operator and the
environment. Changing the model of the human operator and the environment — zero impedance, infinite impedance, or other
positive-real transfer functions yields similar simulation results, which have been omitted for brevity. In each point of the grid
of parameters values, the energy integral is monitored to detect non-passive teleoperator cases; if the energy integral becomes
negative at any time, it signals a non-passive teleoperator. The dark pixels in Fig. 3 indicate where in the parameter space the
energy integral becomes negative (i.e., the teleoperator is non-passive). As it can be seen, the regions indicated by the passivity
condition (35) closely match the simulation results. There is a gap between the filled area and the red line, which corresponds
to cases where condition (35) is conservative for detecting the teleoperator non-passivity. The conservatism of condition (35)
was predictable due to the fact that it was found as a sufficient condition for passivity.

V. EXPERIMENTAL RESULTS
A. Teleoperation system setup

To verify the passivity condition (35) experimentally, the stability condition has been tested for a teleoperation system
consisting of a pair of Phantom Premiums 1.5A robots (Sensable Technologies/Geomagic, Wilmington, MA) with JR3 force
sensors (JR3, Inc., Woodland, CA) at their end-effectors. We consider the robots to work in the joint space — angular position
and torque are the output and input of each joint of each robot. Out of the three actuated joints of each robot, the first one
is used in the experiment while the second and the third joints, which form a parallel mechanism, are locked using high gain
controllers.



Non—passive region

Controller gain K (N.m/rad)

—— Condition bound

5 10 15 2‘0 2‘5 C;O 3‘5 4‘0 45
Sampling time 7 (ms)
(@)

« | — Condition bound

Ezﬁ—

Passive region

o

Non—passive region

15 20 25 30

Sampling time 7 (ms
b

Controller gain K (N.m/rad)

— Condition bound
0 L Lo L Lo 1 Lo ad
0.001 0.01

Robot damping term b (Kg.s.mz)
(c)
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B =0, and (¢) in K — b plane for B =0, m = 0.015 and 7" = 1™s.

B. Choice of terminations: Free-motion/free-motion (FF) vs. free-motion/clamped (FC)

The experiments have set up to include two extreme cases of zero and infinitely-stiff impedances corresponding to free-motion
and a clamped coupling for each termination. This results in four combinations for the two terminations.

o Case 1: Both master and slave in free motion (FF)

o Case 2: Master in free motion and slave clamped (FC)

o Case 3: Master clamped and slave in free motion (FC)

o Case 4: Both master and slave clamped (CC)

Since our teleoperation system including its controllers is symmetric with respect to the master and the slave, Cases 2 and 3
are similar experiments (FC). In contrast to Cases 1 to 3 for the termination choices where at least one of the robots is able to
move and potentially show the instability of the teleoperation system, Case 4 does not serve our experiment objectives. Having
clamped robots allows for non-zero forces, but does not allow for the investigation of stability in our position-error-based
teleoperation system. Thus, Case 4 has been excluded from our experiments. Case 4 (CC) can be important as one of the
extreme cases for termination choices especially in control architectures with force sensor feedback (e.g., the 4-channel method)
where the destabilizing effect of non-collocated sensing and link/joint flexibility are important. Fig. 4 shows the experimental
setup for the FC termination arrangement, and the FF arrangement (not shown) is similar except that it involves no clamping
of either robot.

It should be noted that the experimental protocol described above has the advantage that it is independent of any human
operator’s intervention (as master’s coupling), rendering the experiments highly reproducible. Similarly, it does not depend on
any particular physical environment (as slave’s coupling).

Within each of the two cases for the terminations (FF or FC), different experiments have been run for different values of the
sampling time. Within each experiment (i.e., at a given sampling time), the controller gain has been altered in different zeszs.
Within each test (i.e., at a given sampling time and a given controller gain), different trials have been conducted for different
values of the initial condition.

C. Choice of initial conditions

In the experiments, when the master and/or the slave are in free motion, we provide them with initial conditions such that
the teleoperation system is excited; otherwise, there will be no motion. The initial condition specifies the position difference



Fig. 4. Experimental setup for the case where the master arm (left) is in free motion and the slave arm (right) is clamped (FC).

between the master and the slave at the onset of a trial (within a test within an experiment) — the slave is placed at the origin of
its coordinate system while the master has an initial angular position. Since a passive system should remain stable regardless
of its initial condition, when investigating the passivity of the teleoperator, the initial condition has been changed over a series
of trials in a large span only limited by the physical constraints of the experimental setup. Instability in one trial is enough
to indicate that the teleoperation system with the chosen parameters is potentially unstable. If none of the trials makes the
teleoperation system unstable, the system is identified as passive at this particular test (with controller gain K) and experiment
(with sampling time 7).

D. Determination of passivity/non-passivity borderline

In both FF and FC cases, either the velocity or the contact force is zero in both the master and the slave sides. This makes the
passivity definition according to the integral of power at the two ports, namely (8), impossible to check because the power at
each port is always zero. Instead, to determine the non-passivity of the teleoperation system, its instability has been monitored
as characterized by growing oscillations. It should be noted that the reverse conclusion is not valid; there are systems that are
stable without being passive.

The procedure for experimentally determining the passivity/non-passivity borderline is as follows. A given sampling time T’
specifies a vertical line in the iK' — T plane for different values of the controller gain K. The intersection of this vertical line
with the theoretical passivity borderline determines the value of the controller gain below (above) which the teleoperator is
expected — from a purely theoretical perspective — to be passive (non-passive). The objective of each experiment is to find the
smallest and the largest controller gains that make the teleoperator non-passive and passive, respectively, at a given sampling
time. Such an experiment is then repeated at different sampling times (vertical line locations). To find the smallest controller
gain that makes the teleoperator non-passive, the controller gain is first set to the value given by the theoretical passivity
borderline at that sampling time. Next, we perform a trial for a small initial condition, the results of which can be one of the
following two possibilities.

e (A) If the teleoperation system is stable, the trial is repeated with a larger initial condition. The increase in the initial
condition is continued until either the system becomes unstable (reverting to Case B below) or the entire range of initial
conditions has been tested. If no instability was observed across the trials, the data point corresponding to this test is marked
as being passive in the K —7T plane. Then, the controller gain is increased slightly (by steps of less than 1% of the maximum
gain) and the same test is repeated for this new gain, possibly adding one more passive data point to the K — T plane.
The increase in the controller gain is continued until the system becomes unstable, which corresponds to a non-passive
teleoperation system.

o (B) If the teleoperation system is unstable, the data point corresponding to this test is marked as being non-passive in the
K — T plane. Then, following a procedure in the opposite direction, the controller gain is decreased slightly (by steps of
less than 1% of the maximum gain) until the system becomes stable. Again, if no instability was observed across several
trials, the data point corresponding to this test is marked as being passive in the K — T plane.

The result of the above procedure is an accurate experimentally-obtained passivity borderline in the K — T plane.

E. Results

The experimental borderlines found for FF and FC experiments are shown in Fig. 5 and 6, respectively. Thus, in Fig.
5, the teleoperator is coupled to two zero-impedance terminations. Also, in Fig. 6, the teleoperator is coupled to a zero-
impedance termination and another infinite-impedance termination. The theoretical regions of passivity and (potential) non-
passivity obtained from condition (35) are shown as separated by the theoretical borderline (blue line). Also, the result of each
experiment is indicated either as a star (stable) or a circle (unstable) in these figures. For a given sampling time, many more
tests were conducted but not shown in Fig. 5 and 6; only those data points corresponding to the previously-discussed “smallest
and the largest controller gains” were shown.

As seen in Fig. 5, in the FF case, the theoretical teleoperator passivity/non-passivity borderline closely matches the experimentally-
obtained borderline. The close match between the theoretical borderline (35) for the passivity of the teleoperator and the
experimental borderline for the stability of the teleoperation system in the FF case (Fig. 5) demonstrates that the aforementioned
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Fig. 6. Free-motion/clamped (FC) experiment data points and theoretical passivity borderline. Stars represent stable, and circles represent unstable systems.

theoretical condition is not overly conservative in the context of stability analysis. Also, this theoretical condition corresponds
to a worst-case scenario in terms of termination choices the stability region for the teleoperation system in the FC case (Fig. 6)
is bigger than that predicted by the passivity region for the teleoperator in the FF case (Fig. 5). From Fig. 6, in the FC case, it
is seen that the theoretical teleoperator passivity/non-passivity borderline is more conservative than the experimentally-obtained
borderline in the sense that, in the K — T' plane, certain theoretically non-passive points are found to be practically passive.
Both of the above were expected for the reasons explained below. Recall that we defined a teleoperation system to consist of
a teleoperator coupled to two terminations (a human operator and a remote environment). In the FF case, the teleoperation
system and the teleoperator are the same and, therefore, the non-passivity of the teleoperation system (as assessed by the
procedure outlined in Section V-D) is tantamount to the (potential) non-passivity of the teleoperator (as assessed by condition
(35)). However, in the FC case, the experimental procedure to determine passivity/non-passivity in Section V-D concerns that
of the teleoperation system, which is now different from the teleoperator alone due to the presence of one infinitely-stiff
termination for the teleoperator. In other words, while the choice of terminations cannot affect the passivity or nonpassivity
of the teleoperator, it affects the stability of the overall teleoperation system, which is what is evaluated through the steps in
Section V-D. Thus, the theoretical passive region (35) for the teleoperator was expected to be different from the experimental
non-passive region for the teleoperation system with the gap between these two regions being affected by the passive behaviors
of the terminations. The extreme FF and FC cases for terminations in Fig. 4 correspond to two of the possible extreme
passivity/non-passivity borderlines.

E Transparency comparison

From the passivity borderlines in Fig. 5 and Fig. 6, it can be concluded that the upper bound on the controller gain becomes
smaller as the sampling time increases. For any given sampling time, one may choose the controller gain to be low enough
to avoid instability of the teleoperation system. However, lowering the controller gain comes at a cost to transparency of
the teleoperation system; to limit the transparency degradation, we need to use the largest stabilizing controller gain. Table I
demonstrates this fact using free-motion experiments in which the controller gain K and the sampling time 7" are altered and
master-slave position tracking error is measured: in most cases increasing K in the stable region of the K — T plane results



TABLE I
MEAN-SQUARE-ERROR OF MASTER-SLAVE POSITION TRACKING RELATIVE TO THE MASTER POSITION MEAN-SQUARE (PERCENT).

[Tms) [ K=04 [ K=10] K=20] K=24
\ 7 [ 102580 [ 9.9864 [ 3.0355 | 33159 |
[ I5 [ 132608 | 5.8948 [ Unstable | Unstable |

in smaller percent mean-square-error (MSE) in position tracking relative to the mean-square-error of master position. This is
why knowing the passivity borderline is important.

VI. CONCLUSIONS

In this paper, a passivity condition has been found for a delay-free bilateral teleoperation system in which the position error
based controllers are implemented in discrete-time. To find this condition, the models of the zero-order-hold and the sampler
are incorporated in an appropriate frequency-domain analysis. The condition imposes a lower bound on the robot damping, an
upper bound on the sampling time, and bounds on the controller gains. For the special case of PD control, the bounds on the
proportional and derivative controller gains have been found to be upper bounds. Thus, the passivity condition provides the
designer with guidelines about how much the controller gain can be increased with no risk of instability. Supporting simulations
and experiments demonstrating the validity of the passivity condition have been reported.
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APPENDIX
Lemma 1: For any arbitrary function V (jw) and C(w)
R = V(jw + jnws) [V (jw)]°
c E d 36
/_oo ) jotjnws | gw | oo

n—=—oo

The integral (36) does not change if C'(w) is replaced with its real part Re{C(w)}.
Lemma 2: PFor any arbitrary function V (jw) and positive definite CT(w)

* 6 S V(w + gnw) [V ()]
ct dw >0 37
[ 2 TGeriw | e | ® 7
Lemma 3: For V(jw) as in (12) and any arbitrary negative definite C~(w) we have
S e} Vi . V(i c
J—0 o Jw + Jnw Jw
RISV 1 e
/_OOC (W)n:z_:OC mV(JW)V (Jw)dw (38)

Lemma 4: For any arbitrary complex numbers of X and YV, —XY° - X°Y < X X°4+YY*®, where superscript ¢ stands for
complex conjugate.
Lemma 5: A sufficient condition for satisfying the passivity condition

/Z C (W) > mV(jw)Vc(jw)dw+

n=—

/ b Vi (Jw) V5 (Jw) dw + / bs Vs (jw)VE(jw)dw > 0 (39)
is
- _ —jwT jwT
b > 17c0st.uTRe{(1 e ) Crm (1)}
by> — 1 Re {1 —eT)Cy (7T} (40)

57 1 —coswT
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