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A principal concern of ecological research is to unveil the causes behind observed 
spatio–temporal distributions of species. A key tactic is to correlate observed locations 
with environmental features, in the form of resource selection functions or other 
correlative species distribution models. In reality, however, the distribution of any 
population both affects and is affected by those surrounding it, creating a complex 
network of feedbacks causing emergent spatio–temporal features that may not correlate 
with any particular aspect of the underlying environment. Here, we study the way in 
which the movements of populations in response to one another can affect the spatio–
temporal distributions of ecosystems. We construct a stochastic individual-based 
modelling (IBM) framework, based on stigmergent interactions (i.e. organisms leave 
marks which cause others to alter their movements) between and within populations. 
We show how to gain insight into this IBM via mathematical analysis of a partial 
differential equation (PDE) system given by a continuum limit. We show how the 
combination of stochastic simulations of the IBM and mathematical analysis of PDEs 
can be used to categorise emergent patterns into homogeneous versus heterogeneous, 
stationary versus perpetually-fluctuating and aggregation versus segregation. In 
doing so, we develop techniques for understanding spatial bifurcations in stochastic 
IBMs, grounded in mathematical analysis. Finally, we demonstrate through a simple 
example how the interplay between environmental features and between-population 
stigmergent interactions can give rise to predicted spatial distributions that are quite 
different to those predicted purely by accounting for environmental covariates.

Keywords: animal movement, animal space use, individual based models, partial 
differential equations, resource selection, species distribution models, stigmergy

Introduction

Understanding the processes behind the spatial distributions of animal populations 
has been a core concern of ecological research throughout its history (Elton 2001, 
Nathan et al. 2008). Today, the need to manage the effects of rapid anthropogenic 
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actions on ecosystems makes predictive tools for spatial ecol-
ogy more important than ever (Azaele et al. 2015, Maris et al. 
2018). However, spatial ecology is complicated by the fact 
that the distribution of a population of organisms will affect 
the distributions of those populations that surround it, and 
also be affected by these populations (Morales  et  al. 2010, 
Ovaskainen and Abrego 2020). This generates a complex 
network of feedbacks between the constituent populations of 
an ecosystem, causing spatio–temporal patterns that can be 
difficult to predict, and impossible without the correct math-
ematical and computational tools linking process to pattern 
(May 2019, Potts and Lewis 2019).

There are two principal processes by which space use can 
be affected by interactions between populations (we use the 
word ‘population’ loosely, referring to anything ranging from 
a small group such as a territorial unit or herd through to 
an entire species). First, interactions can affect demographics, 
i.e. birth- and death-rates. This can be, for example, through 
predator–prey interactions or competition for resources, 
both of which are well-known to have non-trivial effects 
on both the overall demographic dynamics and the spatial 
distribution of species (Holmes  et  al. 1994, Tilman  et  al. 
1997, Okubo and Levin 2001, Cantrell and Cosner 2004, 
Lewis et al. 2013, 2016).

Second, for mobile organisms, population interactions 
can affect the movement of individuals (Mitchell and Lima 
2002, Vanak et al. 2013, Breed et al. 2017, Matthews et al. 
2020). It is well-known, from the mathematical literature, 
that the two processes of demographics and movement can 
combine to affect spatial distribution patterns in non-trivial 
ways, as exemplified by studies of cross-diffusion and prey-
taxis (Shigesada et al. 1979, Lee et al. 2009, Gambino et al. 
2013, Potts and Petrovskii 2017, Han and Dai 2019, Haskell 
and Bell 2020). These studies typically model movement 
and demographics in the same system of equations (usually 
partial differential equations), implying that the movements 
are occurring on the same spatio–temporal scale as the 
demographics. Therefore the movements considered in such 
studies are usually dispersal events. However, many animal 
populations can make significant movements to rearrange 
themselves in space over timescales where births and deaths 
are negligible (Moorcroft  et  al. 2006, Vanak  et  al. 2013, 
Ellison et al. 2020). This particularly applies to larger animals, 
such as birds, mammals and reptiles, who have great capability 
for movement but may only reproduce at a particular time of 
the year (e.g. spring). Therefore it is important to understand 
how movement processes alone may affect spatio–temporal 
population patterns (Potts and Lewis 2019).

Spurred by rapid improvements in animal tagging 
technology, the empirical study of movement has surged, 
with data being gathered at ever higher resolutions 
(Williams et al. 2020). Furthermore, an increasing number of 
studies are measuring animal interactions via the co-tagging 
of multiple animals and new techniques for decoding the 
resulting information (Vanak et al. 2013, Potts et al. 2014c, 
Schlägel  et  al. 2019). A key goal of movement ecology 
is to understand animal space use, so the question of how 

fine-grained movement and interaction processes upscale 
to broader spatio–temporal patterns is gaining significant 
methodological attention (Avgar  et  al. 2016, Signer  et  al. 
2017, Potts and Schlägel 2020). However, to make predictions 
requires a theoretical understanding of how movements 
mediated by between-population interactions affect space 
use. Our principal aim here is to provide the theoretical 
framework for answering such questions.

To this end, we construct a general and extensible 
individual-based model (IBM) of movements and interactions 
between multiple populations. We assume that animals, left 
alone on the landscape, will have some sort of movement 
process allowing them to embark on daily activities such as 
foraging. We model this very simply as a nearest-neighbour 
lattice random walk (Okubo and Levin 2001, Codling et al. 
2008). This is a foundational movement model, which can 
be readily extended if one is interested in the finer details of 
foraging activity.

In this study, however, our focus is on the interactions 
between individuals and populations. For this, we assume 
that, as individuals move, they leave a trace of where they 
have been on the landscape, which could be in the form 
of scent, visual or olfactory marks, feces or a simply a trail. 
These marks decay over time if the area is not revisited. 
Consequently, each population leaves a distribution of 
such marks on the landscape, which changes over time as 
the constituent individuals move about. Individuals of a 
population alter their movement according to the presence 
or otherwise of marks, both from their own population and 
from others.

This process of leaving marks that cause others to alter 
their movement is called stigmergy, and has been studied 
in various contexts, including collective animal movement 
and territorial formation (Theraulaz and Bonabeau 1999, 
Giuggioli  et  al. 2013, White  et  al. 2020). For any given 
pair of populations, A and B, one could either have mutual 
avoidance (where individuals from A avoid the marks of 
B and B avoid those of A), mutual attraction (individuals 
from A and B are attracted to the marks of one another), 
or pursuit-and-avoidance (individuals from A are attracted 
to marks of B but those from B avoid the marks of A). These 
combine into a network of stigmergent interactions that 
together determine the overall spatio–temporal distribution 
of the constituent populations (Fig. 1). Our model is a 
generalisation of previous models of territory formation 
from stigmergent interactions (Giuggioli et al. 2011, 2013, 
Potts  et  al. 2012). However, these previous models were 
restricted to mutual avoidance processes and typically had 
only one individual per ‘population’ (recall, we are using 
‘population’ quite generically here and could mean anything 
from a territorial unit to a larger group to a whole species, 
depending on context).

As well as stochastic simulation analysis, we also examine 
the continuum limit of our IBM model in space and time 
(i.e. as the lattice spacing and time step go to zero). We con-
struct the IBM so that this limit is a system of partial differen-
tial equations (PDEs) studied previously in Potts and Lewis 
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(2019). This formal connection between IBM and PDE 
enables us to use the mathematical tools of PDE analysis to 
gain insight into the expected behaviour of the IBM, which 
we can verify through simulation. The resulting techniques 
allow us to use PDE analysis as a starting-point for exploring 
IBM models. This is valuable because PDEs are amenable 
to mathematical analysis, enjoying a huge history of analytic 
techniques (Evans 2010, Murray 2012). However, IBMs are 
closer to reality and may be more amenable to extensions that 
incorporate further realism beyond what is studied here (for 
example, realistic movement processes based on life history 
needs such as foraging and tending to young). Such formal 
connections between IBMs and PDEs are powerful as they 
enable the best of both worlds: combining rigorous math-
ematical analysis with realistic modelling.

Finally, we explain how to account for landscape 
heterogeneity in our model, through coupling our IBM 
to a step selection function (Fortin et al. 2005, Potts et al. 
2014a, Avgar  et  al. 2016). We illustrate this with a simple 
example of two co-existing populations competing for the 
same resource, inspired by wolf–coyote coexistence in the 
Greater Yellowstone Ecosystem (Arjo and Pletscher 2000). 
We investigate how the inclusion of interactions between 
and within the populations combine with the heterogeneous 
landscape. We show how this combination can cause 
emergent spatio–temporal patterns that cannot be explained 
merely by examining the effect of landscape heterogeneity on 
animal space use (as is the norm in resource selection studies 
and many other species distribution models).

A central theme that runs throughout this paper is that 
correlative models are not sufficient for predicting space use 
patterns of multiple species in novel environments. This can 
be illustrated by a simple thought experiment. Imagine there 
are two populations, each of whose space use is affected by 
the other. One could understand the effect of population A 
on the space use of population B by using a correlative model, 
such as resource or step selection, with population B as the 
response variable and A as the explanatory variable. But then 
to predict the space use of B in a novel environment, one 
would need to know a priori the space use of A. Flipping this, 

one could put the distribution of A as the response variable 
and B as explanatory. But then predicting the space use of 
A requires a priori knowledge about B. If there is a novel 
environment where one does not know about the space use of 
either A or B then correlative models (including joint species 
distribution models) cannot be used for prediction. Instead a 
dynamic model is needed, such as an IBM or PDE. Although 
such IBMs and PDEs can be parametrised by correlative 
techniques (Schlägel  et  al. 2019, Potts and Schlägel 2020), 
prediction in a multi-population situation needs techniques 
beyond correlation. Our purpose here is to make inroads into 
building these techniques.

Overall, our study aims to provide both insights into the 
effect of stigmergent interactions between populations on the 
spatio–temporal distribution of mobile species, and provide 
extensible methods for studying these emergent features. This 
complements the burgeoning statistical field of joint species 
distribution modelling, which gives tools for inferring the 
effect of one (or more) species on the distribution of another 
(Ovaskainen and Abrego 2020), whilst also enhancing this 
field by demonstrating the importance of considering the 
nonlinear feedbacks between the movement processes of con-
stituent populations for understanding spatial distributions.

Methods

The model

Our model of animal movement and stigmergent interactions 
is based on a nearest-neighbour lattice random walk 
formalism. We work on an L × L square lattice, Λ. We choose 
periodic boundary conditions for simplicity of presentation, 
although other forms are possible. We assume that there are N 
populations and that, for each index i = 1, …, N, population 
i consists of Mi individuals. Individuals leave marks at each 
lattice site they visit, and those marks decay geometrically over 
time. For simplicity, one can think of these marks as scent, 
such as faeces or urine, but they could correspond to any 
form by which animals may leave a trace of their presence on 
the environment. The movement of each individual is biased 
by the presence of marks from both their own population 
and others. For each population, this bias could be either 
attractive or repulsive, depending on whether it is beneficial 
or detrimental for individuals of one population to be in the 
presence of another population. Since animals look at their 
surroundings at a distance to make movement decisions, our 
model allows for individuals to respond to the local average 
density of nearby marks.

Mathematically this situation can be described by writing 
down the probability f(x,t + τ|x′,t) of moving from lattice site 
x′ to x in a timestep of length τ. This function f is known as 
a movement kernel. To construct our movement kernel, we 
use a generalised linear model to describe the attraction to, 
or repulsion from, the local average density of nearby marks. 
A second equation is then required to describe how marks 
are averaged over space. Finally, the deposition and decay of 

Figure 1. Schematic diagram of stigmergent interactions. The left-
hand side shows the three possible pairwise interactions between 
two populations. On the right is an example network built from 
these interactions. One might imagine that A and B are competing 
prey being predated by mutualistic predators C and D.
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marks over time is given by a third equation. We now give 
precise functional forms of these three equations in turn.

Letting l be the lattice spacing and mi(x,t) be the density of 
marks from population i at location x at time t, the movement 
kernel is given by
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stant where the sum is taken over all x such that |x–x′|  = l, 
ensuring that f(x,t + τ|x′,t) is a well-defined probability dis-
tribution; if aij > 0 (resp. aij < 0) then |aij| is the strength of 
population i’s attraction to (resp. repulsion from) population 
j; and m tj

d( , )x  represents the average mark density over a 
radius of δ. Note that Eq. 1 fits into the broad category of 
functions that can be parametrised by integrated step selec-
tion analysis (Avgar et al. 2016).

The equation for average mark density is
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where Sδ = {z ∈ Λ:|z| < δ} is the set of lattice sites that are 
within a distance of δ from 0 and |Sδ| is the number of lat-
tice sites in Sδ. Note that Eq. 2 requires us to use periodic 
boundary conditions, so that there are always the same num-
ber of lattice sites within a distance of δ from any point in Λ. 
However, if we were to use hard boundaries, e.g. for model-
ling movement near a coastline, we would have to take the 
average in Eq. 2 over the set {x + z ∈ Λ |z ∈ Sδ}.

The equation defining the change in marks over time, which 
are deposited by individuals and then decay geometrically, is

m t m t ti i i( , ) (1 ) ( , ) ( , )x x x+ - +t m rt t=    (3)

where  i t( , )x  is the number of individuals at location x in 
population i at time t, µτ is the amount by which marks decay 
in a time step of length τ, and ρτ is the amount of marking 
made by a single animal in a single time step.

Equation 1–3 are not the only available functional forms 
to describe our stigmergent process. However, the specific 
form for Eq. 1 is advantageous because it arrives in the form 
of a step selection function (Fortin et al. 2005, Avgar et al. 
2016). It thus has the potential to be parametrised by the 
methods of Schlägel et al. (2019), which deals with step selec-
tion for interacting individuals (although here we focus on 
analysing the emergent features of the model in Eq. 3 rather 
than the question of fitting this model to data.) Eq. 2 assumes 

that marks are averaged over a fixed disc around the indi-
vidual and was chosen for simplicity, but other options, such 
as exponentially decaying averaging kernels, are also possible. 
Equation 3 was, likewise, chosen for simplicity.

One drawback is that there is, in theory, no limit on the 
amount of marks in one location. If it is necessary to account 
for such a limit, one might exchange the rt i t( , )x  term 
for something like rt(1 ( , ) / ) ( , )-   i it tx xmax , where 
max  is the maximum number of marks at a single loca-
tion. However, we do not explore this extension in detail 
here; much insight can be gained without needing to incor-
porate this extra complexity. Alternatively, one could replace 
‘amount of marks’ with ‘probability of mark presence’. Since 
probabilities are bounded between 0 and 1, this would lead 
to a similar formalism as the situation where the number of 
marks has a limit. Such a situation was studied in Potts and 
Lewis (2016) but is not considered here.

Finally, there is an analogy between marks and resource 
depletion that enables our modelling framework to be used 
in situations where animals both deplete resources and move 
up resource gradients. The idea is to view the total number of 
marks in a location, from all the populations, as the extent of 
depletion of a resource. In this case, each population would 
avoid ‘marks’ left by either population, as animals will tend 
to avoid depleted resources. We do not explicitly examine this 
situation here, but it is a possibility for future investigations 
and expands the potential applicability of our work.

Methods for analysing simulation output

We analyse the individual-based model (IBM) from Eq. 1 to 3 
using stochastic simulations. Example simulation runs reveal a 
range of patterns (Fig. 2). Here, we detail methods for charac-
terising these via three broad questions: 1) is the distribution of 
animal locations heterogeneous or homogeneous? 2) If hetero-
geneous, do the patterns stabilise over time, so that populations 
keep broadly to fixed areas of space, or do they undergo persis-
tent fluctuations? 3) For any two populations, are they segre-
gated from one another or aggregated in the same small area? 
The stochastic nature of the IBM means that there will always be 
some amount of heterogeneity and persistent fluctuations due 
to noise. Our methods thus need to distinguish between what is 
noise and what is an actual pattern.

To answer question 1, we examine the local popula-
tion density, li,d(x,t), averaged around a disc of radius d, 
at each lattice site x and time t, for each population i. At 
each point in time, we compute the amplitude of the pat-
tern as Ai,d(t) = maxx[li,d(x,t)] − minx[li,d(x,t)], the maximum 
local population density across space minus the minimum. 
We want to find out whether the amplitude ever becomes 
higher than would be expected from individuals moving as 
independent random walkers (i.e. when aij = 0 for all i, j in 
Eq. 1), assuming that the individuals are initially distributed 
uniformly at random on the lattice. For this, we calculate 
Ai,d(t) in the case aij = 0 for all i, j (i.e. no mark deposition 
so no interactions between walkers) and take the average 
over a sufficiently long time period to calculate the mean to 
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a given degree of accuracy (i.e. so that the standard deviation 
of the mean is below a pre-defined threshold, determined by 
the needs of the simulation experiment). We call this mean 
amplitude Arw (for ‘random walk’). Then the extent to which 
the patterns are heterogenous can be determined with refer-
ence to this base-line value.

Question 2 requires that we keep track of the mean 
location of individuals in each population. Since individuals 
are moving on a lattice with periodic boundary conditions, it 
is necessary to take a circular mean (Berens 2009). However, 
if individuals are roughly uniformly spread in either the 
horizontal or vertical direction then the circular mean can 
be very sensitive to stochastic fluctuations. We therefore 
introduce a corrected circular mean which accounts for 
this, and denote it by ci(t) (notice that this is a location in 
two dimensions, for each time, t). Precise details of how to 
calculate ci(t) are given in the Supporting information.

As with the amplitude calculations, we need to determine 
whether changes in ci(t) are indicative of a fluctuating pattern 

(like in Fig. 2c–d) or just noise around an essentially station-
ary population distribution (as in Fig. 2a–b). For any length R 
and time-interval, T, we say that a system has become (R,T)-
stable at time T* if |ci(T* + t) − ci(T*)| < R for each population 
i whenever 0 ≤ t ≤ T. For example, the systems in Fig. 2a–b 
are both (l,1000τ)-stable, but the system shown in Fig. 2c–d 
is not. We will show how to choose values of R and T, by 
ensuring they are consistent with the results of mathematical 
analysis.

For Question 3, the extent to which a pair of populations 
i, j (i ≠ j) is aggregated or segregated at any point in time 
is measured using the separation index, sij(t) = |ci(t) − cj(t)|. 
For systems that become (R,T)-stable at some time T*, we 
can define the asymptotic separation index sij

*  as the average 
of sij(t) across T* < t < T* + T. A separation index close to 0 
indicates that the populations are occupying a similar part of 
space. If we know, from question 1, that both populations 
are displaying heterogeneous patterns then in this case we 
have an aggregation of both populations. Higher separation 

(A) (B)

(C) (D)

Figure 2. Example snapshots of simulation output. In all panels, two populations of 100 individuals each were simulated on a 25 × 25 
lattice, with initial locations distributed uniformly at random on the landscape. Also µ = 0.001 and ρ = 0.01 for all panels (Eq. 3). (a) shows 
a system where two populations form a single, stable aggregation. Here, a11 = a22 = 0, a12 = a21 = 2, δ = 10l (Eq. 1). In (b) the populations 
segregate into distinct parts of space. Here, a11 = a22 = 0, a12 = a21 = −2 and δ = 5l. In both (a) and (b) the snapshot is taken at time t = 5000τ. 
(c) and (d) show a situation where one population (blue) chases other (red) around the landscape in perpetuity, with snapshots at two 
different times. Here, a11 = a22 = 1, a12 = 10, a21 = −10 and δ = 10l.
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indices, coupled with the existence of heterogeneous pat-
terns, are suggestive of segregation patterns.

The separation index is a simple metric that is quick to 
calculate for multiple simulation analysis. However, one 
could also use more sophisticated measures of range overlap, 
such as the Bhattacharyya’s Affinity (Fieberg and Kochanny 
2005) between kernel density estimators (Worton 1989, 
Fleming  et  al. 2015). Here, though, we will keep things 
simple, to enable analysis of a broader range of simulation 
scenarios in a realistic time-frame.

Mathematical techniques

Techniques for analysing the output of stochastic IBMs can 
involve choices that might be somewhat arbitrary, for example 
the choices of Tamp, R and T in section ‘Methods for analys-
ing simulation output’. Therefore it is valuable to ground-
truth these choices by means of mathematical analysis. In 
particular, we do this via a PDE approximation describing 
the probability distribution of individuals for each popula-
tion. In PDE theory, patterns can emerge when a change 
in parameter causes the system to switch from a situation 
whereby the constant steady state (corresponding to homo-
geneously distributed individuals) becomes unstable, leading 
to the distribution tending to either a non-constant steady 
state (heterogeneously distributed individuals), or entering a 
perpetually fluctuating situation. The parameter value where 
the switch occurs is called a bifurcation point. The nature of 
this bifurcation point can be ascertained by a combination of 
linear stability analysis (LSA) and weakly non-linear analysis. 
Here we focus on LSA for simplicity (which is also called 
Turing pattern analysis, after Turing (1952)).

To arrive at a PDE system, we take a continuous limit 
in both space and time, sending l and τ to 0 such that l2/τ 
tends to a finite constant, D > 0. This is sometimes called 
the diffusion limit, as D is a diffusion constant, but is also 
referred to as the parabolic limit (Hillen and Painter 2013). 
If we take this limit, and also assume that infinitesimal 
moments beyond the second are negligible, we arrive at the 
following system of PDEs (see the Supporting information 
for details)
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for each i = 1, …, N, where ui(x,t) is the location density of 
population i, qi(x,t) is the density of marks, ρ is the limit of 

ρτ/τ as ρτ,τ→0, µ is the limit of µτ/τ as µτ,τ→0 and q tj
d( , )x  

is the average of q(x,t) over a ball of radius δ. Here, we assume 
that animals move at the same rate, so D is independent of 
i. It is possible to drop this assumption, and we discuss the 
effect of doing this in the Supporting information. However, 
for simplicity of calculations we keep D constant in the main 
text.

It is sometimes helpful to simplify calculations by assuming 
that qi equilibrates much faster than ui, so that the scent mark 
is in quasi-equilibrium (∂qi/∂t = 0), leading to the following 
equation for each i = 1, …, N
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This assumption says, in effect, that the distribution of marks 
accurately reflects the space use distribution of the popula-
tion. When terrain marking is deliberate, its usual purpose 
is precisely to advertise space use. Therefore this quasi-equi-
librium assumption is likely to be biologically reasonable in 
many realistic situations.

The LSA technique enables us to use Eq. 4 and 5 to con-
struct the pattern formation matrix,   (see the Supporting 
information for the full expression and derivation). The 
eigenvalues of   give key information about whether het-
erogeneous patterns will spontaneously form from small per-
turbations of a homogeneous system (i.e. individuals initially 
uniformly distributed on the landscape), and also whether 
these patterns begin to oscillate as they emerge. This tech-
nique dates back to Turing (1952) and is essentially an exten-
sion to PDEs of stability analysis for ordinary differential 
equations (May 2019).

The emergence of heterogeneous patterns is expected 
whenever there is an eigenvalue whose real part is positive. 
Thus the sign of the eigenvalue with biggest real part (a.k.a. 
the dominant eigenvalue) gives an indication of the answer to 
question 1 above. If the dominant eigenvalue has positive real 
part and a non-zero imaginary part then small perturbations 
of the homogeneous system will oscillate as they grow, at least 
at small times. Often (but not always) these oscillations will 
persist for all times, so give an indication of the likely answer 
to question 2. We stress that this is just an indication, though, 
and that discrepancies may exist between the answer to ques-
tion 2 and whether or not the dominant eigenvalue of   is 
real. Full analysis of when to expect non-constant stationary 
patterns in Eq. 4 and 5, or when to expect perpetually chang-
ing patterns, requires more sophisticated techniques.

Simulation experiments

To give some insight into the sort of patterns that can 
emerge from our model (Eq. 1–3), we perform a variety of 
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simulations in the simple case of two populations (n = 2). 
Throughout, we assume that each population has 100 indi-
viduals (M1 = M2 = 100) and we work on a 25 × 25 lattice. 
We assume τ = 1 and l = 1 so can write µτ = µ and ρτ = ρ for 
ease of notation. We also assume δ = 5 throughout.

First, we examine the situation where populations have a 
symmetric response to one another, so that a12 = a21 = a. For 
simplicity, we set a11 = a22 = 0. In this case the continuum limit 
PDE system (Eq. 4, 5) has the following pattern formation 
matrix (derived in the Supporting information)
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Here, κ is the wavenumber of the patterns that may emerge at 
small times, if there is an eigenvalue of   with positive real 
part (i.e. the wavelength of these patterns would be 2π/κ). 
For our simulation experiments, we fix the scent-marking 
rate ρ = 0.01 to be a low number and vary the decay rate 
µ. We consider two different values of a: either a = 2, which 
corresponds to populations having a mutual attraction, or 
a = −2, corresponding to mutual avoidance. In either case, 
the dominant eigenvalue of   is always real (Supporting 
information). Furthermore, it is positive if and only if µ < 
0.0064. In other words, this mathematical analysis predicts 
that the system will bifurcate at µ = 0.0064 from homoge-
neous patterns (µ > 0.0064) to heterogeneous patterns (µ < 
0.0064). This means that if marks remain long enough on 
the landscape, they will affect movement to such an extent 
that the overall space use patterns change from being homo-
geneous (so indistinguishable from independent random 
walkers) to heterogeneous. This hetergogeneity will be either 
aggregative, if a = 2, analogous to the example in Fig. 2a or 
segregative, if a = −2, like Fig. 2b.

To test whether we see a similar change in stability in 
simulations, we start by simulating our system in the case 
µ = 0.009, run this until it is (R,T)-stable for R = 1 and T = 
1000 and measure the asymptotic amplitude, Ai d,

*  for i = 1, 
2, by averaging Ai,d(t) over the 10 000 time steps after (R,T)-
stability has been achieved. For this, we use d = 5. We then 
use the final locations of each individual as initial condi-
tions in our next simulation run, which is identical except 
for choosing µ = 0.0069. We iterate this process, reducing 
µ by 0.0001 each time, until µ = 0.001. This mimics the 
numerical bifurcation analysis often performed when analys-
ing PDEs (Painter and Hillen 2011). We perform this whole 
iterative process for both a = 2 and a = −2, the expectation 
being that Ai d,

*  will be approximately the same as that of 
non-interacting individuals (Arw) until the value of µ crosses 
µ = 0.0064, at which point we expect Ai d,

*  to start increasing.

To investigate whether linear stability analysis of the PDE 
system (Eq. 4, 5) reflects our method for answering question 
2, we set a11 = a22 = 1, ρ = 0.01, µ = 0.002, and sample a12 and 
a21 uniformly at random, 100 times each, from the interval 
[−5,5]. To make calculations more transparent, we assume 
that the scent marks are in quasi-equilibrium, taking the 
adiabatic approximation in Eq. 6. In this case the pattern 
formation matrix is

 = 1
5

3 8
8 3

12

21

a
a

æ

è
çç

ö

ø
÷÷   (8)

and so the dominant eigenvalue is (15 4 ) / 2512 21+ a a . If 
the cross interaction terms are of identical sign (a12a21 > 0) 
then linear stability analysis predicts stationary patterns to 
emerge (at least at small times), but if they are of different 
sign (a12a21 < 0) then the dominant eigenvalue is not real, 
so patterns should oscillate as they emerge. The latter case 
corresponds to the type of pursuit-and-avoidance situation 
that we see in Fig. 2c–d. We compare these predictions to our 
definition of (R,T)-stability for a range of values of R and T 
to ascertain the extent to which the separation between real 
and non-real eigenvalues corresponds to the existence or not 
of (R,T)-stability.

Incorporating environmental effects

As mentioned at the end of section ‘The model’, Eq. 1 is 
in the form of a step selection function. This means that it 
can be readily used to incorporate the effect on movement of 
environmental or landscape features. Suppose that we have n 
such features, denoted by functions Z1(x), …, Zn(x). For each 
k = 1, …, n, denote by βk the relative effect of Zk(x) on move-
ment. Then, to incorporate these into the movement kernel, 
we modify Eq. 1 as follows

f t t
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We use this to investigate the effect on space use of interac-
tions both between populations and with the environment, 
by considering a simple toy scenario, but one that is based on 
a particular empirical situation. Specifically, we consider two 
populations competing for the same heterogeneously-distrib-
uted resource, Z1(x) (here, n = 1). One population is assumed 
to be a weaker competitor, so avoids the stronger competi-
tor, whilst the movements of the stronger are not affected by 
the weaker. Both have a tendency to move towards areas of 
higher-density resources.

In our simulations, each population consists of 100  
individuals. We examine three cases. The first is where the 
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effect of the stronger competitor on the weaker is ignored 
(so animals are assumed to act independently, which mirrors 
many basic resource/step selection studies). The second 
incorporates the effect of the stronger on the weaker’s 
movements, but treats each individual within a population 
as independent from the others in the population. This 
mirrors some recent resource selection studies whereby the 
movement of one population is affected by the presence of 
another (Vanak et al. 2013, Latombe et al. 2014). The third 
assumes that the stronger population are highly territorial, so 
are split into five separate sub-groups, each of which exhibit 
strong intra-group attraction but inter-group repulsion. The 
simulated resource layer is a Gaussian random field on a 25 × 
25 lattice, previously used in the context of resource selection 
by (Potts  et  al. 2014b). Precise details of the simulation 
experiments we performed are given in the Supporting 
information.

Whilst this situation is a deliberately general and 
simplified model, it is inspired by the particular situation 
of wolf–coyote coexistence in the Greater Yellowstone 
Ecosystem. Here, the stronger competitor is the wolf 
population, coyotes being weaker, and the resource layer is 
the distribution of where prey are likely to be found. The 
ability for coyotes to coexist with wolves in this system has 
been conjectured to emerge from the territorial structures 
of wolves, which include relatively large interstitial regions 
that may be havens for coyote (Arjo and Pletscher 2000). 
If true, this means that the intra-pack attraction and inter-
pack avoidance mechanisms are key to understanding the 
space use of wolves and coyotes. The three models presented 
here can be viewed as testing how the different assumptions 
about wolf–coyote and wolf–wolf interactions might 
interface with resource selection to affect their space use 
distributions.

Results

Figure 3 shows the results of pattern formation analysis of our 
IBM. The place at which the amplitude grows higher than 
that of random non-interacting individuals is reasonably close 
to the bifurcation point predicted by linear stability analysis 
of the corresponding continuum PDE system. However, the 
latter occurs at a slightly lower value of µ than for the IBM 
indicating that a slightly lower decay rate of marks is necessary 
to overcome the stochastic effects and allow patterns to form. 
In other words, the stochasticity has a mild homogenising 
effect.

For negative a (recall a = a12 = a21 in Eq. 1), where we tend 
to see segregation patterns beyond the bifurcation point, the 
amplitudes A1,5

* , represented by black dots, appear to grow 
steadily as µ is decreased (Fig. 3a). However, for positive a, 
there is a sudden jump in the amplitude between µ = 0.0062 
and µ = 0.0061 (Fig. 3b). Such jumps in bifurcation diagrams 
can sometimes be accompanied by a hysteresis effect, 
whereby if the initial conditions contain patterns then the 
patterns may persist even in parameter regimes where they 
would not emerge spontaneously. To test this, we performed 
the same IBM pattern formation analysis as before, but this 
time starting with µ = 0.0004 and increasing µ by 0.0001 
each iteration (rather than decreasing as before). The red 
dots in Fig. 3b show that there is indeed hysteresis in the 
IBM system, whereby the system is bistable for 0.006 ≲ µ ≲ 
0.0065, a phenomenon that has also been observed in single 
population aggregation models with a slightly different class 
of differential equation models (Potts and Painter 2021). 
This means that if a population is already aggregated then µ 
would need to drop below about 0.006 for the aggregation to 
collapse. Yet if a population is not already aggregated, µ would 
have to increase above 0.0065 for aggregations to form.

(a) (b)

Figure  3. Pattern formation analysis of stochastic simulations for n = 2. Each panel shows, using solid dots, the amplitude, A1,5
* , of 

Population 1 for different values of µ, where ρ = 0.01, a12 = a21 = a and a11 = a22 = 0. Black dots represent the situation where µ is decreased 
progressively and red dots show the situation where µ is increased. In panel (a), a = −2 so that the populations repel one another and in 
panel (b), a = 2 so populations are attractive. The value Arw, the amplitude in the situation where each individual is a non-interacting 
random walker, is given by the dashed black line. The blue line gives the bifurcation point predicted by analysis of the continuum limit 
PDE, Eq. 4 and 5, which gives an indication of where we expect the amplitudes of the simulations to become notably larger Arw.
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Figure 4 shows that (R,T)-stability corresponds well to 
the predictions of pattern formation analysis in the case 
where R = l and T = 7500τ. These were the best values of 
R and T we found from the ones tested, inasmuch as the 
results corresponded to the pattern formation analysis in the 
highest proportion of cases, N% (Table 1). Notice too that 
the mutually-avoiding populations (with a12,a21 < 0) tend to 
have much higher separation indices, s12

* , than the mutually 
attracting populations, as one would expect.

Figure 5 shows the results of our three simulation experi-
ments on a heterogeneous resource landscape. When we 
assume that there are no inter-population interactions then 
the resulting model predicts space-use patterns whereby 
both populations have very similar space use distributions 
(Fig. 5a). When we account for the avoidance of the weaker 
population by the stronger then the model predicts that the 
stronger population will live where the resources are better, 
driving the weaker to resource-poor areas (Fig. 5b). This, of 
course, may ultimately lead to the weaker population being 
unable to survive. However, if the stronger population is 
strongly territorial, it can subdivide into separate groups, 
leaving interstitial regions where the weaker population can 
survive and have access to resources that may be relatively 
high quality (Fig. 5c).

Discussion

Resource selection analysis is one of the most popular 
techniques for understanding the distribution of species 
and populations. However, like many species distribution 

models, studies tend to focus on correlating animal 
locations with environmental and landscape features. 
Whilst some more recent studies in resource selection 
(Bastille-Rousseau et al. 2015), step selection (Vanak et al. 
2013) and species distribution modelling (Ovaskainen 
and Abrego 2020) have examined the way presence of one 
population may affect that of another, the first population 
tends to be treated as a static layer, similar to a resource 
layer, which then affects the presence or movement of the 
second population. This assumption neglects the dynamic 
feedbacks that can occur between two or more populations 
of animals.

Here, we have shown that such feedbacks can generate a 
variety of emergent patterns that can be quite different to 
those that appear when only accounting for static layers 
(Fig. 5). We have given a basic categorisation scheme for 
these patterns via simple binary questions: homogeneous or 
heterogeneous, stable or dynamic, segregated or aggregated. 
We have shown that, even with just two populations, all 
these patterns are possible. This categorisation, however, is 
likely to be only the tip of the iceberg in terms of the pos-
sible patterning properties arising from sigmergent interac-
tions between multiple populations. Indeed, a recent study 
of the limiting deterministic PDE (Potts and Lewis 2019) 
unveiled a rich suite of patterns through numerical simula-
tions, including all those patterns studied here, as well as 
period doubling bifurcations, travelling-waves and irregular 
patterns suggestive of chaos. Although such subtleties in pat-
tern formation may be tricky to distinguish from noise in an 
IBM, it is valuable to be aware that they may yet be present in  
real systems.

Figure 4. Stability of emergent patterns. In (a), each dot represents a simulation run of the IBM in Eq. 1–3 where a11 = a22 = 1, ρ = 0.01, 
µ = 0.002 and the values of a12 and a21 are given by the horizontal and vertical axes respectively. Red dots denote simulation runs that were 
not (R,T)-stable (for R/l = 1, T/τ = 7500), whereas those on the purple-to-brown spectrum were (R,T)-stable. This colour spectrum 
corresponds to the separation index, from aggregative to segregative. Linear pattern formation analysis of the PDEs in Eq. 4 and 5 predicts 
stationary (resp. non-stationary) patterns to emerge in the top-right and bottom-left (resp. top-left and bottom-right) quadrants, which 
corresponds well with the dot colours. Notice that the top-right (resp. bottom-left) quadrant corresponds to mutual attraction (resp. 
avoidance) and, likewise, the dot colours indicate aggregation (resp. segregation) patterns. (b) gives a schematic of the between-population 
movement responses corresponding to the four quadrants in (a). An arrow from ui to uj represents attraction of population i towards 
population j. An arrow pointing out of ui away from uj represents ui avoiding uj.
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Whilst a coarse-grained, individual-based approach to eco-
logical modelling is valuable in ensuring emergent phenom-
ena are not simply an outcome of continuum assumptions 
(Durrett and Levin 1994, Getz et al. 2018), here our limiting 
PDE has been very valuable for gaining insight into our IBM. 
First, understanding the places where the PDE system bifur-
cates from between different patterning regimes has enabled 
us to identify interesting parameter regimes for studying our 
IBM (Fig. 3,  4). Second, comparison between patterns in 
our IBM and the corresponding PDE has enabled us to tune 
the various otherwise-arbitrary choices of parameters used 
in analysing IBMs (e.g. the choices of R and T determined 

by Table 1). Whilst there is a tradition of ecological stud-
ies where limiting PDEs have helped decode the complexity 
inherent in IBMs (Durrett and Levin 1994, Sherratt  et  al. 
1997, Hosseini 2006), this is perhaps overshadowed by the 
recent prevalence of IBM-only studies in ecology (Grimm 
1999, Grimm and Railsback 2013, DeAngelis 2018). We 
hope our use of PDEs here helps encourage further studies to 
implement PDEs as a tool for understanding IBMs.

Here, we have explored pattern formation analysis of 
PDEs using perhaps the simplest tool, that of linear analysis. 
However, there are plenty of other tools, with varying 
conceptual and mathematical complexity, that may provide 
insight. For example, in Fig. 3a, we see that patterns emerge 
smoothly as one decreases µ past the bifurcation point, which 
is suggestive of a super-critical bifurcation. However, in 
Fig. 3b, there is a sudden jump, together with a hysteresis 
(bistable) region, something usually accompanied by a sub-
critical bifurcation. Techniques such as weakly non-linear 
analysis (Eftimie  et  al. 2009) and Crandall–Rabinowitz 
abstract bifurcation theory (Buttenschön and Hillen 2021) 
are able to distinguish rigorously between these two cases. 
These are, however, much more conceptually and technically 
demanding than linear analysis, and will require a significant, 
separate work.

Even without advanced techniques for studying PDEs, 
though, we have shown how researchers can gain insight 
through stochastic IBM experiments. To do this, we have 
developed tools that mimic those used for understanding 
PDEs, but tailored for use with stochastic IBMs. A princi-
pal technical obstacle was to seperate-out random noise from 
actual spatial patterns, be they stationary or fluctuating. The 
fact that our techniques agreed well with the analogous PDE 

Table 1. Extent to which analytic predictions agree with our 
simulation analysis for different choices of R and T. The third column 
gives the percentage of the simulations from Fig. 4 for which the 
analytic prediction for stability agrees with that measured from 
stochastic simulations using our method. The fourth (resp. fifth) 
gives the percentage for which the stochastic simulations were 
deemed unstable (resp. stable), for the given values of R and T, but 
the analytic prediction is stable (resp. unstable), denoted as SU/AS 
(rep. SS/AU). The bold row highlights the values of R and T with the 
best agreement between simulation and analytic predictions.

R/l T/τ Agreement SU/AS SS/AU

0.5 5000 54% 46% 0%
1 5000 87% 0% 13%
1 7000 96% 0% 4%
1 7500 97% 2% 1%
1 8000 95% 5% 0%
2 5000 84% 0% 14%
2 7000 93% 0% 7%
2 7500 95% 0% 5%
2 8000 96% 4% 0%

(a) (b) (c)

Figure 5. Incorporating environmental effects. This figure shows the space use distributions that emerge from three different scenarios 
involving two populations attracted to the same heterogeneously-distributed resource. This resource is shown in shades of yellow-green, 
with darker (resp. lighter) green denoting higher (resp. lower) density of resources. Magenta (resp. blue) dots denote the stronger (resp. 
weaker) competitor. In (a) the individuals do not alter their movement in response to the presence of others, and we simply see a preference 
for higher quality resources. In (b), as well as attraction to better resources, the weaker (blue) population has a tendency to move away from 
the stronger (magenta) population. In addition to this avoidance mechanism, in (c) the magenta population is strongly territorial. This leads 
to the emergence of interstitial regions where the blue population can access resources that may be quite high quality.
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analysis provides a validation and ground-truthing of the 
methods, suggesting they are capturing the key features of 
patterning with good accuracy.

Furthermore, even in the relatively simple example situa-
tions studied here, our IBM analysis revealed some interest-
ing theoretical insights. It appears that segregation patterns 
emerge in a continuous fashion as a parameter value moves 
past the bifurcation point (Fig. 3a). However, when aggrega-
tions emerge, they appear suddenly (Fig. 3b), with a small 
change in parameter value causing a sudden jump from 
homogeneous patterns to clearly-defined aggregations. 
Moreover, this is accompanied by a hysteresis effect, mean-
ing that identical underlying processes can give rise to either 
aggregation or homogeneity, depending on the history of  
the system.

As well as using our methods to analyse IBMs, it is 
conceivable that the same methods may be valuable for 
analysing pattern formation in empirical data. One would, 
admittedly, need some rather high quality data: large 
quantities of co-tagged animals for sufficiently long time 
periods to observe changes in space use patterns. However, 
in the present ‘golden age’ of animal movement data 
(Wilmers  et  al. 2015), with ongoing rapid increases in the 
magnitude and quality of datasets (Williams et al. 2020), it 
is good idea to ensure the methodological and theoretical 
tools exist to deal with such data as it emerges. We have not 
focused on data analysis here, but we encourage researchers to 
test this idea in future studies if they have such data.

On the more ecological side, we have shown how 
accounting for feedbacks between the movement mechanisms 
of constituent populations may help explain the emergence 
of interstitial regions in territorial animals that could provide 
safe-havens for weaker competitors. Such patterns have been 
observed in coexistent wolf and coyote populations in the 
Greater Yellowstone Ecosystem. There, these interstitial 
regions have also been observed as refuges for deer (Lewis and 
Murray 1993). Although we did not consider the mobility 
of prey resources in our simple example, one could add 
extra complexity by considering the attempts of mobile prey 
to avoid predators, and observe how this affects the spatial 
patterns. However, for the purposes of our simple illustration, 
this level of modelling complexity was not required.

An important thing to note is that emergent patterns from 
interacting populations cannot be revealed by correlative 
models alone. To take the example from Fig. 5, if one knew 
the distribution of the stronger population, one could 
perform resource selection analysis with this distribution 
and the resource layer as the two explanatory variables 
to understand how these drive space use of the weaker 
population. However, to use this in a novel environment 
to predict space use of the weaker population, one would 
need to know a priori the distribution of the stronger. If 
one wants to predict space use of both populations at the 
same time, in situations where there is no a priori knowledge 
of either population, resource selection functions are not 
enough. Instead, one could perform step selection analysis 
for both interacting population, for example using the 

techniques of Schlägel  et  al. (2019), then feed the output 
of this into a movement kernel in the form of Eq. 1, for 
example using the techniques of Potts and Schlägel (2020). 
This would lead to precisely the sort of IBM studied here, 
which enables analysis of predicted space use patterns in 
novel environments.

In general, our approach is valuable for predicting the 
distribution of populations whenever the locations of two 
or more populations affect the movements of each other 
(Schlägel  et  al. 2020). This has been observed in a variety 
of situations. We have already mentioned competition 
between carnivores, and indeed the movements of coexistent 
carnivore populations in response to the presence of others 
has been measured in various studies (Vanak  et  al. 2013, 
Swanson et al. 2016). Also the effect of predator movement 
on prey locations (sometimes called prey-taxis), and vice 
versa (the ‘landscape of fear’), has been documented in a 
variety of scenarios (Kareiva and Odell 1987, Laundré et al. 
2010, Latombe et al. 2014, Gallagher et al. 2017). Despite 
this, the predominant species distributions models used in 
ecology tend to not to account for the underlying between-
population movement processes and the emergent features 
that they engender, even in cases where they model species 
jointly (Ovaskainen and Abrego 2020). Explicit modelling 
of the underlying movement mechanisms, as we have done 
here, would help plug this gap and lead to more accurate 
description and forecasting of species distributions.
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