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ABSTRACT 

The properties of pristine and isotopieally doped clusters of molecular hy­

drogen (both para-hydrogen and or£/),o-deuterium) at. low temperature (down to 

0.0625 K) are studied theoretically, by means of computer simulations based on 

the Continuous-space Worm Algorithm. Different model interactions have been 

used; the basic physical conclusions are independent of the intermolecular poten­

tial, which only causes a shift in the temperature scale. The superfiuid response 

at low temperature displays strong variation with the number N of molecules in 

the cluster, reflecting structural changes that occur by adding or removing even 

a single molecule. Clusters of specific sizes display quantum meAting, going from 

solid-like to liquid-like as the temperature is lowered. This intriguing behavior 

is caused by quantum exchanges of molecules. Superfiuid response of pure para-

hydrogen c;lusters dramatically decreases when few molecules are substituted by 

orf/io-deuterium ones. This finding suggests that superfluidity correlates with long 

exchanges of identical molecules in the entire cluster. Estimates of the local super-

fluid density confirm such a suggestion, showing that significant superfiuid response 

is only seen when both the inner and the outer part of the system are superfiuid 

and liquid-like, as a result of the occurrence of long permutationai cycles involving 

all molecules. 



ACKNOWLEDGMENTS 

I wish to thank all the people who have supported me in several different ways 

during my PhD program. First of all Massimo Boninsegni, who has directed my 

research effort being for me an unlimited source of good advice, as well as an 

example from the professional and human point of view. Without his guidance 

and patient dedication, little or none of this work would have been possible. I 

am also extremely grateful to Antonella, for her precious and constant help with 

everyday problems, and for making me feel at home during the holidays (and not 

only) I have spent here in Edmonton. 

I can not forget my office mates Joe and Long and the little chats we had be­

tween one "qsub" and one "ssh". Their presence has been fundamental to make 

my working days more effective and pleasant. I would like to thank Daniel, Aditya, 

Giang, Neda, Amsalu and all the other fellows in room 213, for the friendly atmo­

sphere they have been able to create and maintain in the office. I am also grateful 

to Javier for the useful discussions we had on the subject of this thesis. 

A very special thanks goes to Mehmet for several dinners at his place and much, 

much more. 

Finally I want to thank my family (all included!!!) and all my lifelong friends 

(non ho spazio per declinare le generalita'... e forse e' pure meglio!!!). 

Words are not enough to thank Chiara. 

This work was supported in part by the Natural Science and Engineering Research 

Council of Canada, under research grant 121210893, and by the Informatics Circle 

of Research Excellence (iCORE). Computer simulations were performed on the 

Mammouth cluster at University of Sherbrooke (Quebec, Canada). 



Table of Contents 

INTRODUCTION 1 

1 PHYSICAL MODEL AND METHODOLOGY 12 
1.1 Many-body Hamiltonian 12 
1.2 Computational methods 14 
1.3 Potentials 15 
1.4 Path Integrals 19 

1.4.1 Quantum statistics 22 
1.4.2 Numerical implementation 22 

1.5 Metropolis algorithm 25 
1.6 Continuous-space Worm Algorithm 27 

1.6.1 Metropolis updates 29 
1.7 Details of the simulation 36 

1.7.1 High-temperature density matrix 36 
1.7.2 Thermodynamic estimators 37 
1.7.3 Evaluation of the statistical errors 39 

2 RESULTS 42 
2.1 p-H2 clusters 42 

2.1.1 Energetics 42 
2.1.2 Superfluidity 46 
2.1.3 Quantum melting 53 

2.2 o-D2 clusters 58 
2.2.1 Energetics 59 
2.2.2 Superfluidity 60 
2.2.3 Structure 64 

2.3 Isotopically doped ;KH2 clusters 67 
2.4 50/50 Mixed clusters 75 
2.5 Local superfluidity of p-H2 clusters 77 
2.6 Dependence of the numerical estimates on the interaction potential 85 



TABLE OF CONTENTS 

CONCLUSIONS 89 

Bibliography 94 



List of Figures 

1 Schematic diagram of a HENDI spectroscopy experimental appara­
tus. [Reprinted with permission from Ref. [21]] 4 

2 Infrared spectra of an OCS molecule embedded in a cluster of 4He 
(a) and 3He (b) atoms. Evolution of the spectrum in b when an 
increasing number of 4He atoms is added (c-f). Temperature is 0.38 
K. [Reprinted with permission from Ref. [21]] 5 

1.1 Functional form of the Buck. LJ and SG potential 18 
1.2 Schematic representation of the paths of two particles in imaginary 

time. In this example. M=5. and the two particles undergo an 
exchange 24 

1.3 Schematic representation of one configuration in the G-sector. for a 
system of five particles in one dimension. This configuration con­
tains four closed and one open world line, namely the worm, whose 
head (I) and tail (M) are indicated in picture 28 

1.4 Configuration of three particles before (left) and after (right) a swap 
update 32 

2.1 Energy per p-H2 molecule versus cluster size N, at T = l K. Estimates 
have been obtained using the SG (circles) and the Buck (boxes) 
potential. When not shown, statistical errors are of the order of, or 
smaller than the symbol size. Solid line is only a guide to the eye. 
Also shown for comparison are results from Ref. [35] (triangles). . . 43 

2.2 Chemical potential of p-R2 clusters versus cluster size N. Estimates 
have been obtained using the SG potential. When not shown, statis­
tical errors are of the order of, or smaller than the symbol size. Solid 
line is only a guide to the eye. Numbers refer to stable ("magic") 
clusters 45 



LIST OF FIGURES 

2.3 Temperature dependence of the superfluid fraction ps{T) for a clus­
ter of 18 p-H2 molecules (circles). Estimates are obtained with the 
SG potential. Dotted line is only a guide to the eye. When not 
shown, statistical errors are smaller than the symbol size. Also 
shown for comparison are results from Ref. [35] (triangles) 47 

2.4 Superfluid fraction of p-R2 clusters versus cluster size N, at T=l K. 
Estimates have been obtained using the SG (circles) and the Buck 
(boxes) potential. When not shown, statistical errors are of the 
order of, or smaller than the symbol size. Solid line is only a guide 
to the eye. Also shown for comparison are results from Ref. [35] 
(triangles) 48 

2.5 Radial density, at T—\ K, computed with respect to the center of 
mass, for clusters with 15. 25, 26, and 27 p-H2 molecules. Estimates 
have been obtained using the SG potential. Statistical errors, not 
shown for clarity, are of the order of 5 x l 0 ~ 4 A~A or less 50 

2.6 Three dimensional representation of a cluster comprising 25 and 
26 p-H-2 molecules (interacting via the SG potential) at a temper­
ature of 1 K. Even though the information provided by this kind 
of figure is purely qualitative, the structural difference is evident: 
(p-H2)25 is essentially liquid-like (molecules are highly delocalized), 
while {p-B.2)'2& is solid-like (molecules are more localized and clearly 
distinguishable) : 51 

2.7 Statistics of permutation cycles involving 1 < M < N molecules for 
the clusters (p-R2)rs (a), (]>H2)18 (b), (p-H2)26 (c) and (p-H2)33 (d) 
at T=\ K. SG potential has been used 52 

2.8 Potential energy per molecule and superfluid fraction observed dur­
ing a typical Monte Carlo run (see text) for a cluster of N=23 p-H.2 
molecules at T=l K (panels a and b) and T=1.4 K (panels c and d). 
Estimates have been obtained using the SG potential. The coexis­
tence of two phases can be easily recognized since the averages of 
ps and V simultaneously switch between high (liquid-like superfluid 
phase) and low (solid-like insulating phase) values. The liquid-like 
superfluid phase becomes dominant as T is lowered 54 

2.9 Potential energy per molecule and superfluid fraction recorded dur­
ing a typical Monte Carlo run for a cluster of JV=18 p-H-2 molecules 
at T = 2 K. Estimates are obtained with the SG potential. In this 
case, ps and V simply oscillate around their average values (ap­
proximately 0.6 for ps) without featuring the clear, simultaneous 
"jumps" observed in Fig 2.8. This system is found to be liquid-like 
in the range of temperature considered in this work 56 



LISTOFFIGUBES 

2.10 Radial density profiles for a j/-H2 cluster with A=T8 [T=0.75 K 
(boxes) and T=2 K (triangles)] and ,¥=23 [T=0.75 K (diamonds) 
and T = 2 K (stars)] p-H2 molecules. Estimates have been obtained 
with the SG potential. Statistical errors, not shown for clarity, are 
of the order of 5 x l 0 ~ 4 A~3 or less 57 

2.11 Energy per o-D2 molecules e versus cluster size N at a temperature 
of 0.5 K. Statistical errors are smaller than the symbol size. Solid 

line is only a guide to the eye 59 
2.12 Chemical potential of 0-D2 clusters versus cluster size A'. When 

not shown, statistical errors are of the order of, or smaller than the 
symbol size. Solid line is only a guide to the eye. Numbers refer to 
stable ("magic") clusters 60 

2.13 Temperature dependence of the superfiuid fraction ps(T) for a clus­
ters of 11 o-D2 molecules. Dotted line is only a guide to the eye. 
When not shown, statistical errors are smaller than the symbol size. 61 

2.14 Statistics of permutation cycles involving 1 < M < N molecules for 
the cluster (o-D2)n at T=0.5 K (lower panel) and T = 2 K (upper 
panel) 62 

2.15 Superfiuid fraction of o-D2 clusters versus cluster size A', at T=0 .5 
K (circles) and T = 2 K (boxes). When not shown, statistical errors 
are of the order of, or smaller than the symbol size. Solid lines are 
only guides to the eye 63 

2.16 Radial density profiles for o-D2 clusters with A r=7, 10 and 11, at 
T=0.5 K. The inset shows the radial density profiles of (o-D2)i3 and 
(p-H2)i3 at the same temperature. Statistical errors, omitted for 
clarity, are of the order of 5 x l O - 4 A - 3 or less 65 

2.17 Three-dimensional representation of clusters comprising 18 and 19 
o-D2 molecules, at T=0.5 K. Both systems have solid-like properties, 
as molecules enjoy a high degree of localization. However, (o-D2)19 

features greater stability, due to its more symmetric structure (see 
text) 66 

2.18 Superfiuid fraction psH of the para-hydrogen component in clus­
ters of N molecules with one (circles), two (triangles) and four 
(squares) substitutional ort/io-deuterium molecules, and with one 
(stars) orf/10-hydrogen molecule. Upper panel shows data at T=0.5 
K, lower at T = l K. Open diamonds show results for the undoped 
clusters (entirely superfiuid at T=0.5 K). Error bars are comparable 
to the size of the symbols 68 



LIST OF FIGURES 

2.19 Radial density profiles for a pure (p-H2)25 (lower peak at short r) 
and a (|>H2)24-(o-D2)1 cluster, at T= l K. Profiles are computed 
with respect to the geometrical center of the cluster. In the case 
of the doped cluster, no distinction is made between molecules of 
different types. Statistical errors are not shown for clarity; they are 
of the order of 5.0xl(T4 A"3 69 

2.20 Radial density profiles of the two components of the cluster (p-
H2)24-(o-D2)] (at a temperature of 1 K) taken separately. Profiles 
are computed with respect to the geometrical center of the cluster. . 70 

2.21 Radial density (multiplied by r2) for the single o-D2 and o-H2 impu­
rities in the doped (p~H2)24- (o-D2)i and (p-H2)24-(o-H2)i clusters, 
at a temperature of 1 K. Profiles are computed with respect to the 
geometrical center of the cluster 71 

2.22 Three-dimensional representations of the clusters (p-H2)i6-(o-D2)4 

(A) and of (p-H2)2o (B). Darker color is used for impurity molecules. 72 
2.23 Frequency of occurrence of exchange cycles of length M (i.e., in­

volving 1 < M < NH p-H2 molecules) at T = l K. Spikes from left 
to right refer to a pristine (p-H2)2r> cluster and to the mixtures (p-
H2)24-(o-H2)i and (p-H2)24-(o-D2)i 74 

2.24 Number of p-H2 (circles) and o-D2 (triangles) molecules in the su-
perfluid phase in mixed clusters of varying size JV and equal con­
centration of the two isotopes (i.e., NH = ND = N/2) at r=0 .5 
K 75 

2.25 Three dimensional representation of the cluster (p-H2)5~(o-D2)5 (A) 
and (p-H2)io-(o-D2)io (B) at a temperature of 0.5 K; o-D2 molecules 
are rendered in darker color 76 

2.26 Profiles of total [n(r)} and superffuid [ns(r)] density computed with 
respect to the center of mass of the cluster (p-H2)ig at T = l K (lower 
panel), T=2 K (middle panel) and T=3 K (upper panel) 79 

2.27 Profiles of total and superfluid density at T=0.0625 K (solid line 
and circles), T=0.25 K (dashed line and triangles) and T=0.5 K 
(dotted line and diamonds) for the cluster (p-H2)2e 80 

2.28 Frequency of occurrence of permutation cycles involving M molecules 
in a cluster of 26 p-H2 molecules at T=0.5 K (lower values) and 
T=0.0625 K (higher values). Long permutation cycles set in at low 
T 82 

2.29 Profiles of total and superfluid density for the cluster (p-H2)25 (solid 
line and circles), (p-H2)26 (dotted line and diamonds),(p-H2)27 (dashed 
line and triangles) at T=0.5 K. Open symbols show estimates of the 
local superfluid density obtained for the cluster (p-H2)25 using the 
same measure utilized in Ref. [42] 83 



LIST OF FIGURES 

2.30 Energy per p-H.2 molecule as a function of the cluster size A' at T = l 
K. Estimates are obtained using the Buck (diamonds), SG (circles) 
and LJ (triangles) potential 85 

2.31 Superfiuid fraction of p-H2 clusters versus cluster size N at T—\ K 
(filled symbols) and T=0.5 K (open symbols). Estimates have been 
obtained using the SG (circles). Buck (diamonds) and LJ (triangles) 
potential 87 

2.32 Potential energy per molecule and superfiuid fraction observed dur­
ing a typical Monte Carlo run for a cluster of N=26 p-H2 molecules 
at T = l K (panels a and b)-and T=1.5 K (panels c and d). The coex­
istence of two phases can be easily recognized since the averages of 
ps and V simultaneously switch between high (liquid-like superfiuid 
phase) and low (solid-like insulating phase) values. The liquid-like 
superfiuid phase becomes dominant as T is lowered. Results are 
obtained with the LJ potential 88 

2.33 Radial density profiles for a p-H2 cluster with N=26 at T=0.0625 
K (solid line) and T~\ K (dashed line). The system undergoes 
quantum melting at lowr T. Statistical errors, not shown for clarity, 
are of the order of 5xl0~4 h~:i or less, results are obtained with the 
Buck potential 89 



1 

INTRODUCTION 

The superfluid phase of matter can be observed in the liquid phase of" both isotopes 

of helium, below a critical temperature T = T\ = 2.177 K for 4He and approxi­

mately 2 mK for 3He [1]. The term "superfluidity" (SF) was coined by Kapitsa 

[2], to indicate the ability of liquid 4He to flow (at T < 7\) with no measurable 

viscosity through a microscopic gap between two disks1. In order to explain the 

apparent contradiction between these findings, and the finite viscosity measured 

by Keesom and MacWood by means of an oscillating disk dipped in a helium 

bath [4], Tisza proposed a two-fluid model [5], according to which below T\ liquid 

helium consists of two distinct components: one is normal (viscous), the other 

superfluid (non-viscous), the latter becoming dominant in bulk liquid helium as T 

approaches 0 K. Such a phenomenological picture accounts quantitatively for the 

experimental result of Andronikashvili, who observed the progressive decrease of 

the moment of inertia of a torsional oscillator in helium, as T decreases below T\. 

This is interpreted as the sign of the increase of the helium superfluid component, 

which is decoupled from the oscillator rotation [6]. 

In the last 70 years, SF has been the subject of intense experimental and the­

oretical investigation. Its connection to superconductivity, another phenomenon 

xThe same experimental observation was made independently by Allen and Misener [3], 
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which manifests itself in the form of dissipation-less flow, one with potential im­

portant technological applications, renders the microscopic understanding of SF 

one of the most important problems in condensed matter and many-body physics. 

A particularly intriguing question is whether it is possible to detect SF in condensed 

phases of atomic or molecular species other than helium. Indeed, observing the 

same phenomenon in different physical systems is often the key to gaining further 

understanding. Enormous technical advances made over the past decade in the 

experimental trapping and laser cooling of cold atoms, have allowed the observa­

tion of SF in a highly controlled, artificial setting [7]. Still, the search for a second, 

naturally occurring superfluid is widely regarded as a worthwhile goal. 

Fluids made of light bosonic molecules such as para-hydrogen (p-H2) or ortho-

deuterium (o-D2), whose mass is smaller than (or equal to) that of helium atoms, 

have long been regarded as potential superfluids. Indeed, it was first noted by 

Ginzburg and Sobyanin [8], that the same simple argument based on a non-

interacting Bose gas, predicting a Bose-Einstein Condensation transition (believed 

to coincide with the superfluid one [1]) for 4He at approximately 3.3 K (i.e., sur­

prisingly close to the experimental T>), would predict a transition for a p-H.2 fluid 

at approximately 6.5 K, on account of the lighter molecular mass. However, there 

is a fundamental physical difference between condensed helium and hydrogen; un­

like helium, which under its own vapor pressure remains a liquid all the way down 

to zero temperature, owing to the weakness of the interaction between two he­

lium atoms, the considerably stronger attractive interaction between two hydrogen 

molecules results in an equilibrium crystal phase, with a freezing temperature of 

13.8 K, significantly higher than that at which a superfluid transition might take 

place [9]. Several at tempts have been made [10, 11, 12, 13] to supercool bulk liquid 
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2>-H2, but the search for SF (in the bulk) has so far not met with success. 

Confinement, and reduction of dimensionality, are deemed plausible avenues to 

stabilize a metastable liquid phase down to temperatures sufficiently low that a 

superfluid transition may be observed. However, theoretical studies of j>-H2 films 

adsorbed on various substrates [14, 15. 16], as well as in two mathematical dimen­

sions [17], have so far yielded no hint of possible SF. The suggestion was made 

that SF may occur in a strictly two-dimensional (2D) p-H2 fluid embedded in a 

crystalline matrix of Alkali atoms [18]. That prediction was actually based on 

numerical simulations of model systems of very small size, and was subsequently 

disproven by more accurate calculations, showing that the superfluid signal ob­

served in Ref. [18] was merely an artifact of the very small system size utilized 

[19]. 

On the other hand, sufficiently small clusters of ]>H2 molecules may remain 

"liquid-like" at significantly lower T than the bulk, and therefore SF could occur 

at temperatures which could conceivably render its observation possible. Indeed, a 

recently introduced experimental technique, known as Helium NanoDroplet Isola­

tion spectroscopy (HENDI). allows one to investigate a single molecular impurity 

embedded in clusters comprising from a few, to several thousand He atoms [20]. In 

these experiments, SF of the medium surrounding the molecule (i.e., the cluster) 

is inferred from the rotational spectrum of the dopant. Specifically, the observed 

decoupling of the rotation of the molecule from that of the cluster signals the onset 

of SF in the cluster. The experimental setting commonly adopted in this kind of 

investigation is sketched in Fig. 1. Clusters of various sizes, comprising as few as 

a handful of atoms, are produced by expanding in vacuum through a small noz­

zle helium gas at high pressure. The evaporation that takes place on the cluster 
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Figure 1: Schematic diagram of a HENDI spectroscopy experimental apparatus. 
[Reprinted with permission from Ref. [21]]. 

surface reduces the temperature of the cluster from approximately 30 K to less 

than 1 K, at which point the cluster enters the scattering chamber where a for­

eign molecule is captured. Finally, the molecule is spectroscopically activated by 

some suitable radiation. The absorbed photon results in a successive evaporation 

of helium atoms (beam depletion) detected by the mass spectrometer. 

Fig. 2 shows the infrared spectra of a linear carbonyl sulfide (OCS) molecule 

surrounded by a cluster of helium at a temperature of 0.38 K [21]. When the 

cluster is made of 4He atoms, the observed spectrum (panel a) shows a resolved 

rotational structure consistent with that of a free rotor, with a moment of inertia 

three times higher than that of the same dopant molecule in the gas phase. On the 

other hand, for a 3He cluster (panel b of the same figure), the spectrum is consistent 

with that of a dopant in a normal fluid (the temperature of the experiment is in 

fact not sufficiently low to observe SF of 3He), featuring a single, broad vibrational 

line. Moreover when the cluster is made of a 3He/ 4He mixture, resolved rotational 

lines reappear in the spectrum in the presence of as few as 64 4He atoms (panel d). 
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Figure 2: Infrared spectra of an OCS molecule embedded in a cluster of 4He (a) 
and 3He (b) atoms. Evolution of the spectrum in b when an increasing number of 
4He atoms is added (c-f). Temperature is 0.38 K. [Reprinted with permission from 
Ref. [21]]. 

The described behavior indicates, in the spirit of the Andronikashvili experiment 

[6], the superfluid character of the 4He cluster, within which the embedded OCS 

molecule can rotate as though it were essentially in vacuo. An analogous experi­

ment gave some evidence of a possible superfluid response of clusters of Af=14-16 

P-H2 molecules surrounding the same impurity; these clusters were enclosed in a 

larger helium droplet. The same experiment failed to detect superfluid behavior 

of o-D2 clusters [22]. 

These observations constitute the starting point for an intense theoretical ef-
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fort, spanning now almost a decade, aimed at gaining a deeper understanding 

of SF in clusters of p-H2 and, possibly, o-D2 molecules. Quantum Monte Carlo 

(QMC) methods have quickly emerged as the most powerful theoretical tool to 

attack such an interesting problem, and have already been successfully employed 

to characterize the structure and SF of doped 4He clusters both at finite and zero 

temperature [23, 24, 25, 26, 27]. For instance. Path Integral Monte Carlo (PIMC) 

simulations have yielded evidence of SF in (;>-H2)/v clusters seeded with an OCS 

molecule [OCS@(p-H2)jv]. for 10 < N < 17, as well as in smaller complexes such 

as OCS@(p-H2)5 and OCS@(o-D2)5 [28, 29, 30]. Reptation Quantum Monte Carlo 

simulations have provided information about the structure of CO@(p-H2)jv, for 

N ~ 12. and have clarified some features of the experimentally measured infrared 

spectra [31, 32]. 

Obviously, of crucial importance to the full characterization of the experiments, 

as well as to the understanding of the microscopic origin of SF. remains the study 

of pristine (i.e., undoped) clusters. In this sense, hydrogen is even richer a play­

ground than helium. For example, pure clusters of p-H2 or o-D2 provide a unique 

opportunity to study the effect of mass on the superfluid and structural properties 

of such small systems, because the o-D2 molecular mass is twice that of p-H2, while 

the intermolecular interaction is very nearly the same [33]. A mixed cluster of p-H2 

and o-D2 molecules constitutes a simple realization of a mixture of isotopic bosonic 

molecules that offer the possibility to investigate other fundamental questions, e.g., 

the sensitivity of the superfluid response of a finite cluster to its detailed isotopic 

composition. Moreover, because the equilibrium phase of hydrogen is crystalline 

at low T, studying clusters of molecular hydrogen offers insight into the evolution 

of the physical properties as the number of particles is increased. 
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Although experimental data are not yet available, a novel technique, based on 

Raman spectroscopy, allowing one to assign spectral features to (p-H^A- clusters 

with N=2,....S as well as to identify clusters featuring enhanced stability, seems to 

be a promising avenue for the study of superfluidity in pure or isotopically doped 

clusters [34]. 

The first numerical investigation of the physics of pure p-H'2 clusters at finite 

temperature, based on PIMC simulations, was published in 1991; it was restricted 

to three cluster sizes, namely JV=13. 18 and 33. Two clusters were found superfluid 

and "liquid-like", while {p-Jlzjw was observed to be "solid-like" at T < 2 K [35]. 

The same technique has been employed to study p-H2-o-D2 mixtures down to 

T=2.5 K, but without including quantum exchanges [36]. No other studies of SF 

in pristine hydrogen clusters had been reported until 2006. 

This thesis is a contribution to the theoretical investigation of the superfluid 

properties of pristine and isotopically doped clusters of hydrogen molecules. Our 

aim was to gain quantitative insight, into the physics of these systems, by carrying 

out a systematic theoretical study, based on QMC simulations, with the ultimate 

goal of addressing fundamental scientific open questions such as: 

• What is the mechanism responsible for the onset of SF in small clusters? 

• What is the relation between their structural and superfluid properties? 

• How does the physics of a finite hydrogen cluster approach that of the bulk, 

as the size of the cluster is increased? 

• What is the dependence of the properties of these systems on the mass of the 

cluster components and on the intermolecular model interaction utilized? 
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• How do substitutional isotopic molecules change the behavior of a superfluid 

p-H2 cluster? 

• Is SF (if present) confined to a specific region (i.e. the surface) of a pristine 

cluster? 

• What is the connection between global and local properties of a small cluster? 

The relevance of these aspects goes obviously beyond the physics of molecu­

lar hydrogen clusters, as it impacts our general theoretical understanding of SF. 

perhaps the most fascinating macroscopic manifestation of quantum mechanics. 

When the research project whose results are reported here began, in late 2004, 

there was neither a systematic theoretical study of the structural and superfluid 

properties of pure p-H2 and o-D2 clusters as a function of size and temperature, nor 

any prediction, based on a fully quantum-mechanical treatment, for isotopically 

doped hydrogen clusters. 

The QMC scheme employed in our calculations is the recently developed Continu­

ous-space Worm Algorithm (WA) [37, 38]. This computational methodology allows 

one to perform essentially exact numerical calculations of thermodynamic proper­

ties of Bose systems. In particular, the superfluid fraction can be calculated with 

much greater accuracy and at much lower temperature than that afforded by con­

ventional PIMC, which has been one of the leading many-body computational 

methods for the last 20 years [39]. Specifically, we have computed energetics, den­

sity profiles, three-dimensional structure and superfluid fraction of pure p-H2 and 

0-D2 clusters, as well as of isotopically doped hydrogen cluster of size as large as 

^ = 4 8 molecules, in the temperature range 0.0625 K < T < 4 K. 

Our main findings are briefly and schematically summarized as follows: 
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1) Pristine (p-H2).<v clusters with N < 21 below T—\ K are super-fluid, and liquid­

like, with a superfluid fraction p$ — 1. On increasing the cluster size, ps changes 

in a non monotonia fashion, reflecting important structural changes that occur 

on adding even a single molecule. For example, the addition of one molecule to 

an almost entirely superfluid cluster can result in the complete depletion of p$, 

with the concomitant emergence of a, remarkably solid-like structure. Moreover, 

some clusters display coexistence of insulating (solid-like), superfluid (liquid-like) 

phases, the latter induced by quantum exchanges and zero-point motion, becoming 

dominant as T is lowered. We refer to this behavior as quantum, melting [40, 41]. 

2) Superfluid behavior has also been detected in o-D2 clusters of about 14 molecules 

at T=0.5 K. The larger mass of the o-D2 molecule renders a o-D2 cluster generally 

more rigid than a p-H2 one comprising the same number of molecules; however, 

also in the case of o-D2 clusters superfluid response and structure strongly depend 

on the cluster size. 

3) For both isotopes, we have observed (magic) clusters which feature enhanced 

stability. This property may reflect particular solid-like behavior as in the case of 

the cluster (p-H2)26 at T=\ K or the completion of a shell of molecules as for the 

system (p-H2)i3 which does not rule out liquid-like behavior [41]. 

4) Substitution of ^-H2 with o-D2 molecules, generally causes pristine superfluid 

p-B.2 clusters to turn progressively solid-like, their structure increasingly mimick­

ing that of pure o-D2 clusters with the same numbers of molecules. For clusters 

comprising more than 20 molecules, however, the change from liquid to solid-like 

can occur abruptly. A much smaller reduction of the superfluid response is ob­

served if substitutional impurities are ortho-hydrogen (o-H2) molecules [(o-H2) is 

another isotope, which has the same mass of p-H2, but different spin (S=l)]. A 
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crucial observation is that few substitutional 0-D2 molecules sit in the inner part 

of the cluster, whereas o-H2 impurities are primarily located near its surface. 

5) Evidence of spatial segregation of the two isotopes is obtained for clusters with 

equal numbers of p-H-2 and o-D2 molecules, of size up 20 molecules altogether. The 

structure of these clusters is prevalently solid-like, and their superfluid response 

generally not significant down to T=0.5 K. 

6) Our results for the local superfluid response of pristine p-H2 clusters not only 

confirm the relation between SF and exchanges of molecules in different region of 

the cluster but also give additional insight on how SF is distributed across the 

system. In fact it is shown that , contrary to what stated in a recent publication 

[42], SF is not localized at the surface: rather, in the low temperature limit clusters 

are uniformly superfluid; this statement applies not only to the more liquid-like 

ones (i.e., those with fewer than ~ 20 molecules), but also to those displaying a 

more pronounced shell structure, which softens at low temperature due to quan­

tum melting, in turn underlain by exchange cycles involving molecules in both the 

inner and outer shells. Based on these results we contend that the physical picture 

proposed in Ref. [42] of SF as arising from "loosely bound surface molecules" does 

not apply. Indeed, we have observed no clusters with a rigid core and a superfluid 

outer shell. Instead, SF crucially depends on the onset of long exchange cycles 

involving all molecules, not just those on the surface [43]. 

All of the above findings generally underscore the prominent role played by 

long exchanges, especially involving molecules in different shells of the cluster, in 

stabilizing a liquid-like structure of large clusters at low T, in turn allowing for SF 

to occur [44]. 

We have performed calculation using three different interaction potential namely 
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the Silvera-Goklman potential [45], the Buck [46], and the Leimard-Jones one. 

Although we observed some noticeable quantitative discrepancies between results 

obtained with different model interactions [47], only the energetics and the temper­

ature scales depend on the potential utilized. On the other hand, all the qualitative 

physical conclusions are not affected by the choice of the intermolecular interaction. 

The reminder of this thesis is organized as follows: 

• in the first chapter we introduce the physical model adopted to describe our 

systems of interest and discuss in details the numerical method utilized for 

our calculations; 

• in the second chapter we present and discuss our results: 

• finally we outline our conclusions, also indicating possible avenues for further 

investigations. 
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Chapter 1 

PHYSICAL MODEL AND 

METHODOLOGY 

In this chapter we discuss the physical model and the methodology adopted to 

investigate, by means of Path Integral Monte Carlo (PIMC) computer simulations 

based on the Continuous-space Worm Algorithm (WA) [37, 38], the structural and 

superfluid properties of molecular hydrogen clusters. 

1.1 Many-body Hamiltonian 

If one seeks to carry out a microscopic study of molecular hydrogen clusters at 

low temperature, the starting point is a quantum-mechanical many-body Hami-

tonian, making use of a realistic, ab initio potential to describe the interaction 

among particles. A hydrogen molecule can be treated as an individual particle 

(i.e., neglecting the electronic degrees of freedom). This approximation is largely 

justified being the energy associated to the first excited state of the order of one 
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electronvolt ( ~ 11600 K); therefore at the temperatures relevant to our study 

(of the order of 1 K) molecules can be considered in the electronic ground state 

(Born-Oppenheimer approximation). With 2 electrons in the 1.9 orbital a hydrogen 

molecule is to an excellent degree of approximation a spherically symmetric bound 

state, consequently, the intermolecular interaction can be described by means of a 

central potential. Quantum mechanics is necessary for this problem, as the ther­

mal wavelength of a hydrogen molecule at temperatures below 1 K is of the same 

order of magnitude as that of a helium atom, i.e., a large overlap exists between 

the probability "clouds" of different particles. Thus, quantum-mechanical effects 

such as zero-point motion and exchanges of particles are expected to be just as 

important as in condensed helium. 

We model our system of interest, as a collection of N p-H2 (o-D2) molecules, 

regarded as spin-0 point particles. If we "assume for simplicity that all N particles 

in the cluster are identical, the Hamiltonian of the system can be written as1: 

H = ~\J2Vf + V(R) (1.1) 
i 

where A = Ti2/2m = 12.031 KA2 for p-U2 (half of this value for o-D2), R = 

ri , r2 • • • rN is a collective coordinate referring to all the N particles in the system, 

and V(R) the total potential energy of interaction of the system corresponding to 

the many-particle configuration R. The potential energy V is given by a sum of 

pairwise terms (three-body terms can be incorporated in part as effective pairwise 

contributions [45], while higher many-body interactions are neglected). As men­

tioned above the pair potential utilized is central, i.e., it depends on the relative 

' T h e expression of t he hamil tonian of a p-H?— o-D2 mixed cluster is a straightforward gener­
alization of (1.1). 
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distance of two molecules [see Eq. (1.2)]. In this work, therefore, it is consistently 

V(R) = '£v(\ri-rj\\). (1.2) 

Despite its apparent simplicity, an analytical solution of the Schroedinger equation 

based on the hamiltonian in (1.1) is out of question for clusters comprising more 

than two molecules. Hence the only viable computational strategy is tackling the 

problem numerically. 

1.2 Computational methods 

Quantum Monte Carlo techniques afford accurate, in principle exact estimates of 

thermodinamic properties of Bose systems at finite or zero temperature. Zero-

temperature QMC methods [48] such us Path Integral Ground State (PIGS), Dif­

fusion and Reptation Monte Carlo (DMC and RMC, respectively) make use of 

similar strategies to obtain, starting from an initial trial wave function, the ground-

state of the system by means of a projection procedure. In all these methods, the 

trial wave function is chosen to capture the essential physics of the system, and 

is optimized with respect to various free parameters, according to the variational 

principle. In principle, methods such as PIGS and RMC [49] can "extract" the 

exact ground-state of the system, the only requirement on the trial wave function 

being that it be non-orthogonal to the true ground-state. In practice, the efficiency 

of these methods varies enormously, depending on the accuracy of the trial wave 

function; therefore, its optimization is a very important, often time-consuming part 

of the study. PIGS, RMC and DMC methods have been extensively employed in 
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the study of doped and pristine hydrogen clusters [31. 32, 50, 51, 52]. They have 

provided valuable results, not only to compare to experimental data available for 

clusters doped with a single impurity, but also to assign spectral features of the 

roto-vibrational spectrum of doped clusters to system of specific sizes [32]. A 

typical experimental spectrum, in fact, consists of several lines due to clusters of 

various sizes; the correct assignment of this lines is, in general, a very tough task 

to accomplish experimentally and becomes extremely difficult for large clusters. 

Since we were interested in the study of structural and superfhud properties 

of molecular hydrogen clusters as a, function of temperature T and cluster size N, 

the computational method for our investigation had to allow finite temperature 

simulations of systems of a given size (i.e., in the canonical ensemble). This is the 

specific case of PIMC (the only exact QMC method at finite temperature) which, 

therefore, has been our method of choice. In particular we used an implementa­

tion of this method based on the Continuous-space Worm Algorithm which, for a 

Bose system, such as a molecular hydrogen cluster, affords the calculation of key 

quantities (i.e., global and local superfiuid fraction) with much greater accuracy 

[37, 38] than that provided by conventional PIMC [39]. 

1.3 Potentials 

The computational methodology that we describe below, namely the Worm Al­

gorithm, is formally exact2. The only source of uncertainty in our study, is the 

model potential adopted, whose choice can obviously affect the reliability of the 

Statistical errors arising from the fact that one is using a Monte Carlo procedure can in 
practice be reduced to a point where they are essentially unnoticeable. 
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numerical estimates. This is the only input to the calculation"*. As mentioned 

above, we have made use of spherically symmetric potentials only. It is worth 

mentioning that, in some applications, the spherical approximation for the inter­

action potential is regarded as rather poor, especially when studying systems in 

which hydrogen molecules interact with a foreign impurity (see, for instance, Ref. 

[53]). In such cases, a more elaborate pair potential may be needed, depending 

on the relative orientation of the two molecules as well. In our study however, we 

focus on pristine clusters, and thus do not expect our results to be significantly 

dependent on the spherical approximation for the pair interaction. 

For the majority of our calculations we have used the Silvera-Goldman pair po­

tential [45] which is employed in most of the published numerical work on molecu­

lar hydrogen clusters. Moreover, recent Quantum Monte Carlo studies have shown 

that the zero-temperature equation of state of bulk hydrogen computed with the 

Silvera-Goldman potential is in reasonable agreement with experiment [54, 55]. 

For comparison purposes, however, we have also obtained results using different 

intermolecular potentials, namely the Buck [46] and the Lennard-Jones (LJ) ones. 

The Silvera-Goldman (SG) potential is expressed as: 

»*c(r) = f { e - - * - * * - [ £ + | - £ + ^ ] / ( r ) } (1.3) 

where the first term is the repulsive part, which arises from the Pauli exclusion 

principle, that prevents electrons in the orbital clouds of two different atoms or 

molecules from overlapping in space. The second term incorporates both the (van 

der Waals) long range attractive interaction of induced dipoles as well as a term 

It is worth stressing that the pair potential is not adjusted in our calculation. 
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(proportional to r~9) which effectively describes three-body interactions of the 

Axilrod-Tellcr-Muto form. The damping function / . whose role is to turn the 

long-range interaction off at short distances, is given by: 

/ ( r ) = exp — • - 1 
r 

if r<r*. 1 otherwise. (1-4) 

There are altogether nine parameters in the above expression, whose values are 

provided in Ref. [45]. The Buck potential has the same analytic form as the SG 

but with D = 0, i.e.. it does not include three-body contributions (obviously the 

values of the parameters are different). Finally, the simple LJ potential is expressed 

as follows: 

where a is the effective molecular diameter and e the attractive well depth. For 

P-H.-2, the values of these parameters adopted in previous numerical works (see for 

example Refs. [36, 42]) are (x=2.96 A, and £=34.16 K. 

The LJ is perhaps the most popular model interaction, extensively utilized in 

simulations of both classical and quantum fluids and solids. Its main quality is 

its simplicity, and the fact that it does incorporate the most important physical 

features of any interatomic or intermolecular interaction. It is rather crude, though, 

and the agreement that it affords with experiment is typically not very good. 

The most obvious shortcoming is the unphysical divergence at short distances, 

which renders it particularly "stiff"; however, as clearly shown in Fig. 1.1, even at 

long distances it fails to provide a quantitative description of the pair interaction. 

In Fig 1.1 we compare the three potential. For short distances (not shown for 

clarity) the LJ potential is the most repulsive. In fact, its analytical form displays 
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Figure 1.1: Functional form of the Buck, LJ and SG potential. 

an unphysical divergence at r=0, not present in the expression of the SG (or 

Buck) potential. Aside from a small region around the minimum, the LJ potential 

is far less attractive than the SG and the Buck potentials, the latter being the 

most attractive of the three. These features cause, as we shall see, important 

discrepancies between numerical estimates of main physical quantities computed 

with different potentials. 

Next we review the foundations of Feynman's Path Integral approach to quan­

tum statistical mechanics and discuss in details the numerical method adopted for 

J I I I I I I L 
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our calculations. 

1.4 Path Integrals 

Consider a system of N identical, interacting quantum particles of mass m. We 

shall initially neglect for simplicity quantum statistics, i.e., assume that the par­

ticles are identical but distinguishable. Later on we shall incorporate indistin-

guishability (and Bose statistics) in the formalism. Let the quantum-mechanical 

Hamiltonian of the system be given by an expression such as (1.1), namely 

II = H0 + V (1.6) 

where 

N 

//0 = - A ^ V * and V = V{K) (1.7) 
i 

with the notation introduced in section 1.1. As previously explained, in our study 

the potential energy of interaction V is expressed as a sum of terms describing the 

interactions between pairs of particles. However, the formalism described below 

does not depend on the detailed form of V(R). Henceforth, we shall assume for 

definiteness that the many-particle system of interest is three-dimensional. 

The thermal average of a quantum-mechanical operator O (assumed for simplic­

ity diagonal in the coordinates space) at a temperature T = 1//3 (in our notation, 

we set the Boltzmann constant kB=l and measure all energies in K) is given by: 

(O) = \: JdR O(R) p(R, R, fi) (1.8) 
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where 

p(R, R, ;3) = (R\e-pJ1\K) (1.9) 

is the many-body density matrix and 

Z= f dR p(R,R, (J) (1.10) 

is the canonical partition function. Aside from a few simple cases, an analytical 

expression for the many-body density matrix of an interacting system is generally 

unknown, as its calculation would require the knowledge of the full spectrum of the 

many-body Hamiltonian II. However, a systematic procedure exists, first proposed 

by R. P. Feynman, to recover the full p [56]. 

Specifically, one begins from the formal identity: 

e~pH = (e-TH) with 0 = Mr; (1.11) 

on taking advantage of the completeness relation 

fd,R\R){R\ = l (1.12) 

and on introducing M such identity operators between all consecutive exponentials 

in (1.11), one obtains 

p(R, R, /?) = ( R | e - T " e~Ttl • • • e~r"\R) = 

=J(IRL-ARM-I P{R,RI,T) ••• p ( R M - i , R , r ) , (1.13) 

still formally exact for arbitrary M. If M » 1, then the inverse temperature 
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argument r in the density matrices inside the multidimensional integral becomes 

small; in this limit, p(R, R ' , r ) can be approximated as follows: 

p(R,R',T) « pp(R,R',T) exp - T W R ) + V(R') j / 2 + 0(r3 [1.14) 

where 

having defined 

P F ( R , R ' , T ) = ( R | e - ^ | R ' ) = n PfitiSpT) 

p/( r , r ' , r ) exp 4Ar 

(1.15) 

(1.16) 
(V/47TAT)3 

Expression (1.15) is the density matrix for a system of non-interacting, identical 

(but distinguishable) quantum particles [56]. Eq. (1.14) can be easily verified 

by expanding the exact p to second order in T. On plugging the approximate 

expression (1.14) into the basic equation (1.8), one obtains an approximation for 

thermal expectation values, as a ratio of multidimensional (3NM dimensions) 

integrals, which may not be easily computable in practice, but can be rendered 

arbitrarily accurate on taking M large. Indeed, it can be formally shown that this 

procedure will yield an exact thermal expectation value in the limit M —» oo (i.e., 

r —» 0) [56], wherein (1.8) is transformed into the following: 

(O) 
J D R ( T ) 0 ( R ( T ) ) exp - 5 [ R ( T ) ] 

J P R ( T ) exp -5[R(r)] 
(1.17) 

where the integrations run over all possible, continuous many-particle "paths" 

R(r) , with 0 < r < (3 and R(/3) = R(0). The quantity r is normally referred to 

as imaginary time, owing to the formal equivalence of the operator exp[—rH] to 
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a quantum-mechanical imaginary-time evolution operator. Finally, S'[R(r)] is the 

so-called Euclidean action 

.^M]^"*{fE(f)2
 + v(RM)} (Lis) 

which differs from the classical action by the sign of the potential energy term. 

1.4.1 Quantum statist ics 

If particles in the system are now assumed to be indistinguishable, and obey either 

Bose or Fermi statistics, the above formalism must be modified to ensure that the 

many-body density matrix feature the proper symmetry upon interchange of the 

particle labels. We shall henceforth assume that particles obey Bose statistics, as 

that is the situation that we face in this study. 

It is simple to show that the above path integral formalism remains valid, the only 

modification being that many-particle paths must be allowed to end at T = ft with 

the same positions of all particles as at r = 0, but with a possible permutation 

of the labels of the particles, i.e., R(/3) = PR(0), where P is a permutation of 

particle indices. In other words, for example, the position of particle 1 at r = /? 

may be that of particle 5, say, at r = 0 and so on. 

The inclusion of such permutations is crucial in order to capture effects due to 

quantum (Bose) statistics, including (and chiefly) superfluidity [39]. 

1.4.2 Numerical implementation 

Formally, one can evaluate thermal expectation values based on the prescription 

(1.17) by computing the numerator and denominator for a finite number M of 
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"time steps", using the "high-temperature" approximation (1.14) for p(R, R ' , r ) 

(different approximations exist, enjoying faster convergence with r; we shall come 

back to this point later on), and then taking the limit of the ratio for M —> oo. 

Unfortunately, the analytical evaluation of the integrals appearing at both numer­

ator and denominator of expression (1.17) is out of question for all but the simplest 

many-body problems, as the presence of pairwise interactions does not allow one 

to factorise integrations. For this reason, the path integral formalism only yielded 

qualitative, even if interesting, insight for about thirty years since its formulation. 

All of that changed with the appearance of large-scale computing facilities, that 

allow one to carry out, the computational program described above numerically. 

The only viable strategy to perform a numerical evaluation of (1.17), is one based 

on Monte Carlo. The presence of a very large number of variables (3NM in three 

dimensions, with N and M possibly as large as several thousands, for different 

reasons each), renders a straightforward numerical integration by discretization 

unfeasible, given the exponential scaling of computer resources needed as a func­

tion of the number of variables. 

Path Integral Monte Carlo 

We begin by re-writing (1.17) assuming a finite number M of steps: 

(o) * /<«o(x)P(x) (119) 
\U/ JdXP(X) [ i y j 

where X = JR0, Ri,. . . , R M - I , R-M } is a many-particle path (a collection of config­

urations R; visited by the system at the discrete "imaginary times" 0, T, ...,MT = /?; 

each path consists of N single-particle paths (also referred to as world lines). A 
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Figure 1.2: Schematic representation of the paths of two particles in imaginary 
time. In this example, M=h. and the two particles undergo an exchange. 

world line is a sequence of M linked beads (positions), labeled by the index of the 

corresponding imaginary-time slice (see Fig. 1.2). 

As mentioned above, paths are periodic in imaginary time, i.e., it must be 

R-M — ^(R-o), meaning that the positions of all particles at "slices" M and 0 

must be identical, but a permutation P of particles is allowed, on account of their 

indistinguishability. 

We can generally write 

M-\ 
P(X) = f ^ I J ! PF(R*,Ri+i,r) (1.20) 

where U is a function that includes correlations both in space and imaginary time 
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rising from the interaction among particles. If the simple approximation (1.14) is 

adopted, then 

U(X) = T E y ( R i ) (1-21) 
3=0 

but several choices are possible, and indeed the one that we use in this work is not 

(1.21). The only requirement is that, whatever "high-temperature" approximation 

one chooses, the proper limit is recovered [i.e., expression (1.17)] as M —> oo (i.e., 

r -> 0). 

As mentioned above, one can carry out the multi-dimensional integration in 

(1.19) numerically, using the Monte Carlo method. The ensuing methodology is 

known as Path Integral Monte Carlo (PIMC). A Monte Carlo evaluation of the inte­

gral (1.19) consists of generating on a computer, a large number Np of independent 

many-particle paths {X,: > (i=l...iVp) randomly drawn from the probability distri­

bution P(X). The thermal average in (1.19) can be estimated as the statistical 

average of the observable O over the set of paths. A key ingredient to the scheme, 

like in any Monte Carlo scheme, is the efficient generation of pseudo-random, num­

bers, a task for which very well-established procedures exist, as this has been a 

subject of intense study in applied mathematics over the past five decades [57]. 

1.5 Metropolis algorithm 

The set of paths IX, \ can be generated by means of the Metropolis algorithm 

[58]. The idea is to produce a random walk through the space of the many-

particle paths, based on a fundamental transition probability 'P(X —> X'), with 

an arbitrary initial condition X0. The goal is that of "visiting" the generic path 

X with a probability proportional to P(X). A fundamental requirement for the 
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random walk is that of ergodicity, i.e., for each visited point there has to be a finite 

time of return to the same point, at least in principle. 

Such a random walk is markovian because V{X —» X') depends only on the current 

position (in the configurational space), not on those previously visited. One way to 

accomplish the above goal, i.e., sample P(X), is by fulfilling the so-called detailed-

balance condition: 

P{X)P{X ->• X') = P{X')P(X' -> X). (1.22) 

The Metropolis algorithm accomplishes the above by factoring the transition prob­

ability V as 

V{X -> X') = S(X -> X') A(X -> X'). (1-23) 

Here, S(X —* X') is an arbitrarily chosen sampling probability, whereas A is an 

acceptance probability, given by: 

Although, as mentioned above, the choice of the sampling probability is arbitrary, 

S should be a simple distribution that can be sampled efficiently. We summarize 

below the procedure to sample, using the Metropolis algorithm, the distribution 

probability P; 

• the random walk starts from an arbitrary initial point (i.e., a path) X0; 

• let Xj be the current position of the random walk. A trial new path X*, 

is sampled by updating the positions of one or more particle at several 

imaginary-time slices, with probability S(Xj —> Xk); 
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• compute the acceptance probability A(Xj —> Xfc); 

• draw a random number r\ uniformly distributed in [0.1); if A > i], then the 

next point of the sequence is X J + i = X^; otherwise, X^+i = Xj. 

The above scheme is fairly general, and its simplest implementation is rather 

straightforward. However, whether or not an actual calculation will be feasible in 

practice, given the computational resources that are available, crucially depends 

on the efficiency of the scheme. In particular, the strategy employed to update the 

many-particle paths, embodied in the sampling probability S. is of crucial impor­

tance to the overall efficiency of the calculation; independent implementations of 

PIMC proposed over the past two decades [39] differ ultimately in the choice of S. 

In this work, we have made use of a recently formulated PIMC scheme, known 

as Worm Algorithm, which has afforded a significant efficiency boost over existing 

PIMC strategies [37, 38]. Among other things, this means that one can study Bose 

systems comprising as much as three order of magnitude more particles, and at a 

temperature an order of magnitude lower than previously possible. 

1.6 Continuous-space Worm Algorithm 

The main difference between the WA and conventional PIMC, is the structure of 

the configurational space. In the conventional approach the configurational space 

contains only closed paths, each representing one particle. On the other hand, 

the WA operates in an extended configurational space containing configurations in 

which all the world lines are closed (Z-sector) as well as configurations in which 

one world line is open (G-sector). Such a special open path, whose head and tail 
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Figure 1.3: Schematic representation of one configuration in the G-sector, for a sys­
tem of five particles in one dimension. This configuration contains four closed and 
one open world line, namely the worm, whose head (I) and tail (M) are indicated 
in picture. 

can move in imaginary time, is called "worm". A schematic representation of a 

configuration in the G-sector is presented in Fig. 1.3. 

The transition between the Z- and G- sector (and vice-versa) takes place by 

opening (closing) a closed (open) world line. When the worm is created, two 

special beads appear, namely the head and the tail of the worm, to which we refer 

for historical reason as Ira and Masha. The thermodynamic expectation values of 

the physical observables (except, for the Matsubara Green function and the one-

body density matrix) are computed in the ^-sector of the configurational space, 

i.e., the one with no worm, which is the full configurational space of conventional 

PIMC. 
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The general WA described in Rcfs. [37, 38] allows one to perform simulations 

in the grand-canonical ensemble, in which the number of particles fluctuate and 

the chemical potential is given as input, in lieu of the density. Grand-canonical 

simulations are performed by allowing the worm to "disappear" as well as "appear" 

in the configuration. In this work, we have used a canonical implementation. 

The only difference with the fully grand-canonical version, is that all the Z-sector 

configurations have the same number of particle (there are no fluctuations in N). 

Moreover, (7-sector configurations have always N — 1 closed world lines, plus the 

worm. 

1.6.1 Metropolis updates 

The generic configuration X, i.e., a many-particle path with or without a worm, 

is assigned a statistical weight. W(X, r)e~ f /^x\ with 

A f - l 

W(X,r) = ; Q M % R , + I , T ) (1.25) 
.7=0 

where pp given by (1.15). Obviously, for Z-sector configurations the weight coin­

cides with P(X) given by (1.20). The extended configuration space is sampled by 

means of elementary ergodic updates, defined in complementary pairs: open/close, 

advance/recede, swap; each of them involves the worm. The updates that change 

the number of continuous variables in imaginary time are arranged in complemen­

tary pairs, so as to ensure the requirement of the detailed balance. The swap 

update does not change the number of continuous variables and, in this sense, is 

self-complementary. Below, a detailed description of all these moves is provided. 

Henceforth, we shall be adopting a commonly used terminology and refer to the 
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the jth position (j ranging from 0 to M — 1) of. say, the ith particle along its path, 

as a "bead". 

Open 

The open update is only possible when the random walk is at a configuration in 

the Z-sector. Starting from the many particle path X(>H one particle world line. 

say the ith, and an integer P (with 2 < P < Pmax < M chosen at the beginning of 

the simulation and adjusted to yield the desired average acceptance for this move) 

are selected at random. All the intermediate beads of the path of this particle, 

from the (M — P)th to the (M — l)th (with exclusion of the ends) are removed4. If 

the move is accepted, the selected world line will become the worm;, the Ira bead 

will coincide with the (M — P)th bead of the ith world line, while Masha will be 

at the (M — l)th bead of the same world line (without loss of generality Masha 

can be kept fixed at the last bead). The new configuration XraeMJ is accepted with 

probability: 
f eAU ) 

Aop = mm 1 , — — J (1.26) 

where 17, VM-I are the positions of the beads of Ira and Masha, K = P — 1 and, 

here and in the following, AC/ — U{K„u) — U(Xnew). 

Close 

The close update is only possible in the G-sector. If the number of slices be­

tween Ira and Masha in the positive direction of the imaginary time is K with 

1 < K < Pmax (otherwise the move cannot be attempted), K — 1 intermediate 
4If P = 2 no beads are removed, only the link between the bead M — 2 and the bead M — 1. 
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new beads are sampled directly from the product of K free-particle propagators5 

f[pf(r^,rrT) (1.27) 

where ro = vi and VK = TM-\ • The acceptance probability is given by: 

Acl = min{l,pfirj.TM.uKT) eAU}. (1.28) 

Advance/Recede 

In the G-sector, the position of Ira can be updated by moving it backward or 

forward in imaginary time. Let / be the current position of Ira in imaginary 

time, i.e.. 0 < / < M — 1. In an Advance type update, a randomly chosen number 

P < M—\ — I oi imaginary-time slices is sampled, and positions of beads generated 

by the direct sampling of free-particle propagators, as in Close. Conversely, the 

Recede update consists of erasing a random number H of beads, starting from / 

and going back in imaginary time6. With our notation, the acceptance probability 

of these two update is expressed by the same formula: 

^arf(re) = min{l,eAf/}. (1.29) 

5 Gaussian probability distributions can be easily sampled directly using random numbers; see, 
for instance, Ref. [57]. 

6If Ira and Masha are already adjacent, no Advance (if I=M—2) or Recede (if 1=0) move 
may be attempted. If H > w — 2 where w is the number of beads of the worm, Recede move is 
automatically rejected. 
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Swap 

The swap update is the key update of the WA, as it allows for the efficient sampling 

of many-particle permutations which is crucial to obtain accurate estimates of the 

superfluid fraction. A schematic representation of a swap is illustrated in Fig. 1.4. 

This update involve one closed world line and the worm. Let Ira be on the jth 

Figure 1.4: Configuration of three particles before (left) and after (right) a swap 
update. 

slice of the ith world line, and let us select a random closed world line, as well as 

another time slice j+rn, with 1 < m < Qma,x, Qmax < M being a number chosen at 

the beginning of the simulation in order to yield the desired average acceptance for 

this move. The selection of the closed world line is done by sampling a probability 

table7 constructed with free-particle propagators: 

T,= 
) _ Pf{rij,*kJ+m,mT) 

T.i& Pf{r Z^i 
(1.30) 

7The sampling of a discrete probability table Tj requires that a single random number \ be 
drawn. The entry I that is selected is that for which J2j<i % — X < S,<((+i) ^i-
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where r^ stands for the position of bead p of the Ith world line. Once a specific-

world line k has been sampled (and clearly the table gives greater weight to world 

lines that go throiigh the spatial vicinity of Ira), a set of intermediate beads, going 

from Vij to Yk,j+m (the end beads are left unchanged) is sampled from free-particle 

propagators, just like in the Close move. Contextually the beads (j + 1),.... (j + 

rn — 1) of the fcth world line are erased. If the whole update is accepted, the world 

line j reconnects to the world line k, and the position of Ira changes as shown in 

figure. A straightforward relabeling of the beads from 1 to j of both the ith and 

kth world lines is required, as shown in Fig. 1.48. The acceptance rate is given by: 

As,„ = min{l, eAU^y (1.31) 

Permutation sampling 

As mentioned before, sampling many-particle permutations is a crucial ingredient 

of any realistic quantum simulation strategy. It is precisely these exchange cycles 

that occur in Bose fluids at low temperature, which underlie macroscopic physi­

cal phenomena such as Bose-Einstein condensation and SF. The combination of 

moves described above represents a major step forward compared to the previous, 

accepted PIMC prescription [39], which suffers from an exponential decrease of ef­

ficiency of sampling of long permutation cycles, with increased number of particles 

and/or of imaginary-time slices M. The loss of efficiency occurs for the following 

reason: in conventional PIMC, the permutation of a group of particles is sampled 

by "cutting" the corresponding world lines and by attempting a reconnection, by 

"re-sewing" all open world lines in such a way that a permutation occurs, all while 
8 Obviously, care must be taken to ensure that the correct information about the reconnection 

of all world lines across the /3-line be preserved. 
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remaining in the Z-sector. Such a procedure works reasonably well if particles 

interact only weakly; however, in the presence of an interaction potential with a 

repulsive core at short distances (featured by essentially any realistic interatomic 

or intermolecular model interaction), when the new pieces of world lines are con­

structed, no matter how cleverly, inevitably two or more particles will be brought 

in the vicinity of one another, with a large probability that the potential energy 

will be high, due to the presence of the repulsive core. This will cause a very high 

rate of rejection for permutational moves, especially when the group of particles 

in the permutation cycle is greater than two. 

The ensuing inefficiency is particularly serious an issue when attempting to 

study SF, which is precisely underlain by long permutation cycles, involving a fi­

nite fraction of all the particles in the system. For this reason, and in spite of (at 

least) a hundredfold increase in computer speed since the pioneering work of Ref. 

[59] it has not proven possible to obtain, with the conventional PIMC scheme, esti­

mates of the superfiuid fraction, e.g., in bulk liquid 4He, for finite systems of more 

than iV=64 particles. Besides the unfavorable scaling of computing resources as 

a function of N, another major issue that this entails is the difficulty of assessing 

reliably whether the observed absence of long permutation cycles reflects a genuine 

physical effect, or merely lack of ergodicity of the path sampling scheme. 

This hurdle is overcome in the WA, as the Swap move generates all possible many-

body permutations through a chain of local single-particle updates. Since no two 

particles need be brought within a distance of the order of the hard core of a typi­

cal interatomic potential, this move enjoys a high acceptance rate, similar to that 

for the Advance/Recede updates. It must be emphasized that in the WA, unlike in 

conventional PIMC, arbitrary permutations of identical particles, as well as macro-
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scopic exchange cycles need not be explicitly sampled. They appear automatically. 

if the physical conditions warrant them. 

The WA has first been shown to afford the simulation of the superfluid tran­

sition in liquid 4He in two and three dimensions, for systems comprising as many 

as 2500 particles, i.e., about 100 times greater than those accessible to conven­

tional PIMC [37. 38]. Subsequently, it has been applied to the study of Bose 

condensation in crystalline 4He in the presence of vacancies and extendend defects 

such as grain boundaries and dislocations, for systems comprising as many as K)4 

particles [60, 61, 62, 63]. In all of these applications, the WA has provided accu­

rate numerical results, simply not obtainable with any other existing method. It 

has to be stressed, however, that the WA is not merely about doing large system 

sizes (important as this is); it is also the first grand-canonical QMC method with 

local updates that incorporates in full quantum statistics. It affords the exact 

computation of imaginary-time off-diagonal correlations, such as the one-particle 

Matsubara Green function, that are not accessible to conventional PIMC (nor to 

any other QMC technique in continuous space). 

In this work, the WA was applied to study finite systems with a relatively small 

number of particles, and one may therefore think that its usefulness may be some­

what more limited. This is not the case, however, as we shall see. Specifically, 

the much greater efficiency with which the WA can sample long permutation cy­

cles, compared to traditional PIMC, has resulted in intriguing new physics being 

revealed. 
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1.7 Details of the simulation 

We model our system of interest as a collection of N p-H2 (0-D2)9 molecules re­

garded as point particles (for details see section 1.1). The intermolecular inter­

action potential used for the majority of our calculations is the SG one whose 

analytic expression is reported in Eq. (1.3) [Buck and LJ interactions (see section 

1.3) have been used as well for comparison]. In our calculations the system is en­

closed in a cubic box with periodic boundary conditions in all directions. Because 

we are interested in studying a finite cluster, the box side is chosen sufficiently 

large (typically 50 A) that the cluster is entirely contained in a region of size equal 

to less than half of the box size, thereby rendering the use of periodic boundary 

conditions immaterial (they are used for convenience only). In previous calcula­

tions (e.g., Ref. [35]), an artificial confining potential was adopted, in order to 

prevent molecules from evaporating (i.e., to keep the clusters together). We found 

this device unnecessary, as all the clusters studied here stay together, with no sign 

of evaporation, without such an external potential. 

1.7.1 High-temperature density matrix 

We outlined in 1.4.2 how several different high-temperature approximations for the 

many-body density matrix exist; all of them are constructed to recover the same 

limit, namely Eq. (1.17). The preference toward one or another form depends 

on a trade-off between the efficiency with which the approximate density matrix 

is computed (as that operation must be performed many times during a typical 
9Extension to isotopic mixtures is straightforward once, one takes into account the different 

masses. 
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simulation), and a fast convergence of the physical estimates vis-a-vis the number 

M of "slices" that is required. A particular form, known as the "pair-product", 

became a rather popular choice since its introduction by Pollock and Ceperley 

[59], and was for a long time regarded as optimal. Its implementation and use 

are extremely cumbersome, however, and in recent times its real effectiveness and 

accuracy have been seriously questioned [64]. In this work, we have used a high-

temperature approximation that is accurate up to the fourth order in the imaginary 

time T [65]. Specifically the analytic expression for the function U in Eq. (1.20) 

that we employed is given by: 

2r M-l 

U(X) = -Y1 V(R,-) + V(R,0 
6 3-0 

(1.32) 

where 

V(Ri 
V(K7) + (Ar2/3) E ^ ( V ^ ( R , ) ) 2 

0 even j . 

odd j 
(1.33) 

We empirically found the value r = 1/640 K"1 to yield estimates indistinguishable, 

within our quoted statistical uncertainties, from those extrapolated to the r —> 0 

limit (i.e., the limit where the method becomes formally exact). 

1.7.2 Thermodynamic es t imators 

In the present work we computed energetics, superfluid fraction pg and profiles of 

total and superfluid density \n(r) and ris(r) respectively]. The energy estimators 

utilized are discussed extensively in Ref. [65]. The average kinetic energy per 



CHAPTER 1. PHYSICAL MODEL AND METHODOLOGY 38 

particle is given by: 

W ^ - ^ ( ( " - M V T < ( W ( M , > W 

where (...) stands for the thermal average, (rfc — r fe+])
2 is the square distance 

between the positions of a particle at adjacent time slices and the gradient in the 

third term is taken with respect to the coordinate of one of the particles at an even 

slice. The average potential energy per particle is obtained as: 

(V) « i ^ R ^ ) ) . (1.35) 

We computed the superfluid fraction by means of the "area estimator''. In a 

finite system, such as a small cluster, and within the PIMC formalism, it can be 

shown [66] that ps{T), defined as the fraction of the system that decouples from 

an externally induced rotation, is expressed by: 

Ps(T) = -§^{A% (1.36) 

Here Ic is the classical moment of inertia of the cluster, and A the total area swept 

by the many-particle paths, projected onto a plane perpendicular to one of the 

three equivalent rotation axes. There have been several attempts to formulate 

an estimator for the local superfluid response to be used in QMC simulations, 

especially in the context of the study of doped helium clusters [23. 67, 68]. A 

posited measure of the local superfluid response, frequently adopted in previous 

QMC calculations at finite temperature, is the radial density profile of particles 

involved in permutation cycles, sometimes with a lower cutoff (e.g., six particles) 
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for the length of the cycles considered. In a recent paper [42], Khairallah et al. 

utilized this measure to study the superfluid density of p-H2 droplets. Because 

exchanges underlie SF. it is tempting to ascribe some quantitative value to the 

above-described measure: however, the theoretical shortcomings of such a local 

superfluid density estimator have been long recognized, specifically the fact that 

the area swept by the many-particle paths, whose square average is proportional 

to the total superfluid fraction, bears no direct relation to the number of particles 

involved in a permutation cycle [23]. 

Instead, in this work we computed profiles of radial superfluid density by means 

of a microscopic estimator recently proposed by Kwon et al. [68]; specifically, the 

local superfluid density n,s(r) is given by: 

ns(r) _ 4m*{AA(r)) 

n(r) j3ti>Ic(r) l j 

where A(r) and /c(r) are, respectively, the contributions to A and lc from a 

spherical shell of radius r centered at the center of mass of the cluster. The above 

estimator, contrary to the other proposed measures (which lack any theoretical 

foundation), is rigorously defined and integrates to the correct moment of inertia. 

1.7.3 Evaluation of the statistical errors 

We outlined in paragraph 1.4 how the thermal average of a physical observable O 

can be estimated by means of an average of its values over a large set of many-

particle paths Xj (i = 1, ...,Np): 

-i NP 

< 0 } « — ^ O ^ ) . (1-38) 
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Assuming the values <9(X.j) independent and normally distributed, an estimate of 

the statistical uncertainty affecting the estimate of (O) is given by: 

a(°)^^{Np-l)^
0{Xi)~{0))2- (L39) 

However, the configurations generated by the Metropolis algorithm are not in­

dependent, as they are generated through a random walk which clearly relates 

configurations visited sequentially. As a result, formula (1.39) underestimates the 

statistical error. To overcome this problem, one typically divides the set of configu­

rations generated by means of the random walk in several bins, each including the 

same, relatively large number of sequentially generated configurations. For each 

bin, one can compute a partial average of the observable of interest, thereafter one 

perforins the same statistical analysis described above, but on the reduced set of 

partial averages. Obviously, binning has no effect on the estimate of the average 

value, but affects that of the statistical uncertainty. 

The procedure is as follows [69] (let us for simplicity assume that Np = 2C. 

a condition that can always be fulfilled by discarding some of the initial configu­

rations): one typically starts with a number of bins Np equal to the number of 

configurations (i.e., each bin contains just one configuration). The zeroth estimate 

of the general formula: 

of the error, namely <r,A, is given by the specialization (with j — 0 and Np = Np) 

(j) _ O'B 
a ' ~ — — 

NB 

im^jB{0h-{0)r- (L40) 

One then doubles the size of each bin (i.e., incorporating the estimates yielded by 
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two successively generated configurations), thereby reducing the number of bins 

by two, and computes a second estimate of the uncertainty (i.e., ^ L j , based on 

the partial averages from each bin: the same procedure is iterated to obtain, using 

formula (1.40), C + 1 estimates a^\ j — 0 , 1 , . . . , £. In the typical case, a^ will 

grow for small j , but then reach a plateau before j approaches C too closely. If 

evidence of such a plateau is observed, then the convergence value can be taken as 

a reliable estimate of the statistical uncertainty on (O). On the other hand, if no 

such plateau is seen then one can only conclude that the simulation did not take 

a sufficiently long time to provide a robust estimate of the statistical uncertainty 

of (6). 
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Chapter 2 

RESULTS 

In this chapter we present our results for pure and isotopically doped molecular 

hydrogen clusters. Energetics, as well as structural and superfluid properties of 

p-H2 and o-D2 clusters are discussed in the next two sections, while the dependence 

of these properties on the isotopic composition of a mixed cluster in the third and 

fourth ones. Finally we discuss the relation between local and global superfluid re­

sponse of 2>-H2 clusters and test our theoretical predictions against different choices 

of the intermolecular potential. 

2.1 P-H2 clusters 

2.1.1 Energet ics 

The total energy per p-H2 molecule e(JV) as a function of the cluster size N, at 

T=\ K, computed using the Silvera-Goldman potential, is shown in Fig 2.1. Also 

shown in the figure are the estimates from Ref. [35]. For comparison purposes, 

we also show energies computed with the Buck potential; as we can see, binding 
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Figure 2.1: Energy per P-H2 molecule versus cluster size N, at T = l K. Estimates 
have been obtained using the SG (circles) and the Buck (boxes) potential. When 
not shown, statistical errors are of the order of, or smaller than the symbol size. 
Solid line is only a guide to the eye. Also shown for comparison are results from 
Ref. [35] (triangles). 

energies estimated with the Buck potential are considerably greater than those 

computed with the SG interaction. For example, a cluster of 23 molecules is 

characterized by an energy some 2.5 K more negative than that obtained with the 

SG potential. Such a difference can be simply ascribed to the deeper attractive 

well (roughly 2 K at the minimum) of the Buck potential. We come back to a more 

detailed comparison of energies computed with different interactions, including the 

LJ potential, later on. 
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The energy per p-B.2 molecule is a moiiotonically decreasing function of the 

cluster size: the simple formula 

e(JV) = Av + AsN-3 + AcN-% (2.1) 

where Av, As and Ac are volume, surface and curvature terms, fails to yield a 

reasonable fit to our data, as well as an accurate extrapolation of the bulk energy 

(~ —90 K) [55], to indicate that the physics of the bulk is not yet approached by 

clusters of size studied here. This should be compared with the case of small 4Hc 

clusters (of size up to JV=50), for which the same formula provides an acceptable 

fit to the data, even though the extrapolated bulk energy differs from the actual 

value by 7% [70]. 

The energy values shown in Fig. 2.1 for the Buck potential are generally con­

sistent with those obtained by Guardiola and Navarro [51], who computed them at 

T=0 by means of Diffusion Monte Carlo simulations. We have computed energet­

ics for several clusters at T lower than 1 K, and estimate the maximum difference 

between our results at T=l K and those extrapolated to T—0 to be less than 

0.3 K. However, for some clusters our energies are significantly lower than those of 

Ref. [51]. We note, indeed, that our data for the Buck potential are in agreement 

with those computed by the same authors in a more recent work [52] and by other 

groups, using T=0 QMC methods [50, 71]. 

Because in the case of helium the equilibrium condensed phase is liquid, no 

qualitative structural change occurs as the size of the cluster is increased. For 

hydrogen, on the other hand, since the equilibrium bulk phase at T=0 is solid, the 
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Figure 2.2: Chemical potential of p-Hz clusters versus cluster size N. Estimates 
have been obtained using the SG potential. When not shown, statistical errors are 
of the order of, or smaller than the symbol size. Solid line is only a guide to the 
eye. Numbers refer to stable ("magic") clusters. 

structure must evolve from liquid- to solid-like1, presumably in a non-monotonic 

fashion, going through structures of different shapes and geometries. It is there­

fore scarcely surprising that a simple formula like (2.1) should not offer equally 

acceptable a fit as for helium clusters. Recent T=0 QMC calculations [50, 51] 

have pointed out the existence of magic sizes (i.e., 7V=13) corresponding to partic­

ularly stable clusters. In order to have a clear visual identification of these magic 
1 Obviously, because a cluster is a finite system one cannot speak rigorously of "solid" and 

"liquid". Nevertheless, we shall use this loose, but intuitive terminology for the sake of clarity. 
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sizes, we plot in Fig. 2.2 the chemical potential p as a function of the cluster size 

defined as: 

p,(N) = E(N - 1) - E{N) (2.2) 

where E(N) is the total energy of a cluster of N molecules. The chemical potential 

increases monotonically for N < 13; for clusters of greater size, its behavior is 

rather irregular. Local maxima are observed for particular values of N (i.e.. N—1S 

and 26). The corresponding clusters are characterized by considerable stability, 

and rather compact structure. 

In the following we show that p-H2 clusters of size N < 22 display properties 

consistent with a liquid-like superfluid character; the stability of (p-H2)i3 is, in our 

view, not the sign of the occurrence of a particular solid-like structure, as proposed 

in Ref. [51], but rather of first-shell completion (which does not rule out liquid-like 

behavior) [31. 34]. 

2.1.2 Superfluidity 

Data for the superfluid fraction ps(T) of (p-H2)ig are shown in Fig 2.3. As ex­

pected, ps(T) is a monotonic decreasing function of T; this cluster is essentially 

entirely superfluid (i.e., ps{T) ~ 1) at T < 1 K. Then, ps{T) drops to a value ~ 0.27 

in a temperature interval of 1.5 K and decreases more slowly at higher T. 

A finite system cannot undergo a phase transition in a strict sense; therefore, 

in order to assign a "transition temperature", one must resort to some arbitrary 

criterion. Because the notion of superfluid fraction is scarcely meaningful when 

the average number of molecules in the superfluid phase is ~ 1, we empirically 

define our "transition temperature" Tc as that at which Nps(Tc) ~ 2. Hence the 
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Figure 2.3: Temperature dependence of the superfluid fraction ps{T) for a cluster 
of 18 p-H.2 molecules (circles). Estimates are obtained with the SG potential. 
Dotted line is only a guide to the eye. When not shown, statistical errors are 
smaller than the symbol size. Also shown for comparison are results from Ref. [35] 
(triangles). 

estimated transition temperature is Tc w 3 K. 

The superfluid fraction computed with the SG potential (circles) as a function 

of the cluster size at T—\ K is presented in Fig 2.4. Clusters of size N < 22 are 

entirely superfluid (or nearly so, at least within the precision of our calculations), 

and display a temperature dependence of the superfluid fraction similar to that 

shown in Fig. 2.3 for JV=18. 

An interesting, non-monotonic trend is observed (Fig. 2.4) for the superfluid 
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Figure 2.4: Superfluid fraction of p-H2 clusters versus cluster size N, at T=l K. 
Estimates have been obtained using the SG (circles) and the Buck (boxes) poten­
tial. When not shown, statistical errors are of the order of, or smaller than the 
symbol size. Solid line is only a guide to the eye. Also shown for comparison are 
results from Ref. [35] (triangles). 

fraction at low T of clusters of N > 22 molecules. The value of ps(T=l K), is close 

to unity for N=22, and drops to a local minimum if a single molecule is added 

(i.e., for iV=23). It then rises again to approximately 85%, if another molecule is 

added (JV=24), and remains relatively large for N—25. The addition of another 

molecule, from N—25 to iV=26, again causes an abrupt drop of ps, to less than 

0.1. On adding one more molecule, ps becomes again significant (approximately 

25%), but drops sharply once more at N=29; it remains small, while still featuring 
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noticeable oscillations, for greater N values. 

Generally speaking, as the number N of particles increases, the physics of a 

cluster ought to approach that of the bulk; in its bulk phase at low T. p-H2 is an 

insulating (non-superfluid) crystal, i.e., its character is completely different from 

that of small clusters (i.e., N < 22), which remain liquid-like and are entirely 

superfluid. Data in Fig. 2.4 show that the evolution from liquid- to solid-like 

does not occur continuously, i.e., bulk properties do not gradually emerge when N 

increases. 

In particular, we interpret the peculiar behavior of ps observed for N > 22, 

as due to alternating superfluid (liquid-like) or insulating (solid-like) character of 

the clusters. It seems plausible that drastic changes of the superfluid fraction, 

occurring upon adding just one molecule, ought to be directly connected with 

structural changes. 

In order to illustrate this point, we show in Fig. 2.5 profiles of radial density 

[n(r)], computed with respect to the center of mass of the cluster, at T=\ K. For 

JV=15, the large value of n(r —> 0) and the local minimum for r ~ 2 A indicate 

the presence of a single p-H2 molecule in the center of the cluster. Other molecules 

form a floppy shell around the central one, as shown by the peak at r=4 A. On 

increasing the cluster size, qualitative changes occur at N ~ 22. The value of 

n(r —> 0) becomes negligible, i.e., the center of the cluster is no longer occupied by 

a molecule. There is a peak at about 2 A from the center, as an inner molecular 

shell forms. A second, broader peak at larger distance (r ~ 5 A) corresponds to 

the formation of an outer shell. 

The main structural change, going from N=25 to N=26, is that the first peak 

becomes significantly sharper, and its height increases by some 40% (see Fig. 2.5). 
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Figure 2.5: Radial density, at T=l K, computed with respect to the center of mass, 
for clusters with 15, 25, 26, and 27 ]>-H2 molecules. Estimates have been obtained 
using the SG potential. Statistical errors, not shown for clarity, are of the order of 
5x l0 - 4 A"3 or less. 

We interpret this as evidence that the inner shell as well as the entire cluster 

becomes more solid-like, with molecules localized and quantum exchanges sup­

pressed, both in the first shell as well as between the first and second shells. If 

another molecule is added, the density profile for JV=27 features a first-shell peak 

and an intershell minimum of heights intermediate between those of the iV=25 

and N=26 cases, and ps increases to a value much lower than that for N—25, 

but significantly greater than that for JV=26. Thus, the addition of a molecule to 

the N=26 has the effect of frustrating the solid order of the inner shell, increasing 
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Figure 2.6: Three dimensional representation of a cluster comprising 25 and 26 
P-H2 molecules (interacting via the SG potential) at a temperature of 1 K. Even 
though the information provided by this kind of figure is purely qualitative, the 
structural difference is evident: (p-H2)'25 is essentially liquid-like (molecules are 
highly delocalized), while (p-H2)26 is solid-like (molecules are more localized and 
clearly distinguishable). 

molecule derealization and leading to quantum exchanges. 

Particularly telling is the graphical representation of the three-dimensional 

structure of the clusters (p-H2)25 and (p-H2)26 at T = l K shown in Fig. 2.6; these 

figures are produced as explained in Ref. [31]. The solid-like properties of the 

cluster (p-H2)26 are evident. Its structure consists of three rings of five molecules, 

with four other molecules linearly arranged along the axes of the rings, while the 

remaining seven molecules form an outer shell. Although their position is smeared 

out by zero-point fluctuations, the various molecules in the cluster can be clearly 

identified, indicating that they enjoy a fairly high degree of spatial localization; 

consequently, exchanges among different molecules are highly suppressed (though 

not completely absent, as shown in Fig. 2.7), and the superfluid response is weak. 
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Figure 2.7: Statistics of permutation cycles involving 1 < M < N molecules for 
the clusters (p-H2)13 (a), (p-H2)i8 (b), (p-H2)26 (c) and (p-H2)33 (d) at T=\ K. SG 
potential has been used. 

Conversely, the equilibrium positions of molecules in the cluster (p-H2)25 cannot 

be clearly identified, and the entire system appears amorphous. Because of their 

pronounced derealization, molecules have a strong propensity to be involved in 

quantum exchanges, hence the large superfluid response observed. The physics is 

reminiscent of that of the insulating-superfiuid quantum phase transition observed 

in lattice models of hard core bosons, where a superfluid, non-crystalline phase 

appears as the system is driven away from commensuration (where it is an insu­

lator) [72]. Fig. 2.7 shows the statistics of exchange cycles involving 1 < M < N 

molecules for the clusters (from bottom to top) (p-H2)i3, (p-H2)is, (p-H2)26 and 

(p-H2)33 at a temperature T—\ K. Long exchange cycles are known to underlie su-
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perfluidity. The value of the superfluid fraction of the smaller clusters (i.e., N=13 

and 18) is close to 1. and exchanges occur involving up to N molecules, with sig­

nificant frequency. On the other hand, in the case of (p-H2)2(i and (p-H2)a3 Ps is 

less then 0.1; remarkably, however, exchange cycles involving as many as 23 and 18 

molecules respectively have finite, albeit small, statistical weight. This observation 

is consistent with that made in Ref. [73] (based on a PIMC simulation which did 

not explicitly include exchanges). 

The superfluid fraction computed with the Buck potential (boxes in Fig. 2.4) 

is in excellent agreement with that obtained with the SG, for those clusters that 

are liquid-like (i.e., with N < 22). Quantitative differences (i.e., lower values of 

ps obtained with the Buck potential, as shown in Fig. 2.4) occur for bigger clus­

ters (which generally display more solid-like behavior), due to the more attractive 

character of the Buck potential, which results in greater molecular localization. 

However, the observed trend is qualitatively identical (for details see section 2.6) 

2.1.3 Quantum melting 

Some clusters of size N > 22, feature a fascinating behavior in the temperature 

range explored in this work; we discuss in detail the case of (p-H2)23, for which 

the superfluid fraction takes a local minimum. Fig. 2.8 shows the values of the 

superfluid fraction and of the potential energy per molecule, recorded during a 

typical Monte Carlo run for a cluster of 23 p-H2 molecules at T=1.4 K and T—\ K. 

In particular, we show consecutive block averages of ps and V, each block consisting 

of 500 sweeps (a sweep is a sampling cycle which starts with the opening and ends 

with the closing of the worm [37, 38]). 

Despite the large fluctuations affecting the values of ps, two different regimes 
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Figure 2.8: Potential energy per molecule and superfluid fraction observed during a 
typical Monte Carlo run (see text) for a cluster of N=23 p-B.2 molecules at T = l K 
(panels a and b) and T=1A K (panels c and d). Estimates have been obtained using 
the SG potential. The coexistence of two phases can be easily recognized since the 
averages of ps and V simultaneously switch between high (liquid-like superfluid 
phase) arid low (solid-like insulating phase) values. The liquid-like superfluid phase 
becomes dominant as T is lowered. 

can be easily identified: one in which the superfluid fraction is high, with an av­

erage value close to 1, and the other characterized by low values of ps, with an 

average value close to zero. The potential energy, correspondingly, takes on high 

(low) values when ps is large (small). While the behavior of the superfluid fraction 

is consistent with coexistence of two phases, characterized by large and small su­

perfluid response, the information given by the potential energy suggests that these 

two phases have also liquid-like and solid-like properties. For, the switching of the 
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average value of the potential energy between two different regimes, separated by 

some ~ 6 K , can be interpreted as due to the system visiting relatively ordered, 

solid-like, insulating configurations (characterized by low potential energy), and 

disordered, liquid-like, superfluid ones. The coexistence between two distinct (dis­

ordered and ordered) phases is consistent with the observation made in Ref. [74] 

for classical clusters. 

On decreasing the temperature from T=1.4 K (panels c and d of Fig. 2.8) to 

T = l K (panels a and b of the same figure), the superfluid (liquid-like) phase (i.e., 

large values of ps and V) is observed during a greater fraction of the simulation 

time, and becomes dominant as T approaches 0 K; the cluster therefore "melts" at 

low T. This process is ostensibly induced by zero-point motion, and the ensuing 

exchanges of molecules, whose importance increases as T is lowered. In this sense, 

one could state that melting is driven by Bose statistics, i.e., it is associated to the 

energy contribution due to quantum exchanges. 

On the other hand, when T is sufficiently high, quantum exchanges are sup­

pressed and the system "freezes" in a solid-like structure. Other clusters of size 

N > 22 presumably display the same physics, albeit at lower T. For example 

evidence of quantum melting has also been found for (p-H2)27 at T ~ 0.5 K and for 

(p-H2)26 at T ~ 0.1 K. It has to be mentioned that at the remarkably low tempera­

ture of 0.0625 K even the cluster (p-H.2)48, the largest studied in this work displays 

remarkable superfluid properties. It is important to stress that the behavior illus­

trated in Fig. 2.8 is different from that of a cluster that is liquid-like, and simply 

not 100% superfluid; indeed, in such a case superfluid fraction and potential energy 

fluctuate around their average values, with no evidence of the switching displayed 

in Fig. 2.8. This is precisely what we find for clusters of size N < 22 , which are 
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Figure 2.9: Potential energy per molecule and superfluid fraction recorded during 
a typical Monte Carlo run for a cluster of J Y = 1 8 p-H2 molecules at T=2 K. Esti­
mates are obtained with the SG potential. In this case, ps and V simply oscillate 
around their average values (approximately 0.6 for p$) without featuring the clear, 
simultaneous "jumps" observed in Fig 2.8. This system is found to be liquid-like 
in the range of temperature considered in this work. 

liquid-like at all temperatures, with superfluid (normal) component growing at low 

(high) T (see Fig. 2.9). 

Our interpretation is supported by the evolution with T of the radial density 

profiles n(r) of the cluster, defined with respect to its center of mass. In Fig. 2.10, 

radial density profiles for (p-H2)23 and (p-H2)i8 at T=0.75 K (diamonds and boxes) 

as well as at T=2 K (stars and triangles) are shown. A cluster comprising 23 p-

H2 molecules at a temperature T=2 K, displays a two-shell structure with one 
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Figure 2.10: Radial density profiles for a p-H2 cluster with N—18 [T=0.75 K 
(boxes) and T=2 K (triangles)] and N=23 [T=0.75 K (diamonds) and T=2 K 
(stars)] p-H2 molecules. Estimates have been obtained with the SG potential. 
Statistical errors, not shown for clarity, are of the order of 5xl0~4 A_,< or less. 

sharp peak at r « 2 A, and a second broader one at about 5.5 A. As T is lowered 

to 0.75 K, the first peak becomes significantly broader, and its height decreases. 

Therefore, molecules in the inner shell are less localized, and the cluster is more 

liquid-like, with greater propensity for quantum exchanges both in the first shell, 

as well as between the first and the second shells. For a cluster of 18 molecules, 

on the other hand, density profiles stay the same, as T is lowered from 2 K to 

0.75 K, featuring one particle at the center of mass [signaled by the large value of 

n(r —> 0)] and an outer shell, separated by a shallow minimum (indicative of liquid-
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like structure). The value of the superfiuid fraction of {p-B.2)i8 increases from about 

0.57 to roughly 1 when T goes from 2 K to 0.75 K; however, this change is hardly 

reflected in the cluster structure. Quite differently, the increase of ps in a cluster of 

23 molecule, observed in the same temperature range, reflects a substantial change 

in the structure, due to quantum melting (as shown in Fig. 2.10). This phenomenon 

clearly exemplifies the importance of quantum effects on the structural properties 

of small systems, which has been also investigated in clusters of neon, which display 

moderate quantum character [75, 76, 77]. 

We conclude by stressing once again that, even though the results presented in 

this section are obtained using the SG potential, similar physics is observed if the 

more attractive Buck potential is adopted. The only quantitative changes are the 

values of the superfiuid fraction, which are generally lower than those computed 

with the SG interaction for a given T. However, quantum melting is observed in 

clusters of the same size, even if the potential due to Buck is used, i.e., it is broadly 

independent of the details of the interaction (see paragraph 2.6). 

2.2 0-D2 clusters 

Next, we discuss the properties of o-D2 clusters; here too, we regard o-D2 molecules 

as bosons of spin zero [78], with a mass twice that of p-H2 molecules. We computed 

(with the SG potential) energy, superfiuid fraction and radial density profiles for 

clusters of size N ranging from 3 to 20 molecules at 0.5 K < T < 2.0 K. 
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2.2.1 Energetics 

The total energy per o-D2 molecule as a function of the cluster size, at T=0.5 K 

is shown in Fig. 2.11. 

Figure 2.11: Energy per o-D2 molecules e versus cluster size N at a temperature 
of 0.5 K. Statistical errors are smaller than the symbol size. Solid line is only a 
guide to the eye. 

For JV=3, the energy has a value close to — 9 K, which smoothly decreases with 

N, reaching a value of roughly —36 K for iV=12. On adding one more molecule, 

the energy drops to about —39.5 K (JV=13), and decreases more slowly for N up 

to 17. For greater values of N an important drop of the energy is still observed at 

N=19. 
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Figure 2.12: Chemical potential of o-D2 clusters versus cluster size TV. When not 
shown, statistical errors are of the order of. or smaller than the symbol size. Solid 
line is only a guide to the eye. Numbers refer to stable ("magic") clusters. 

As in the previously discussed case of p-H2 clusters, a fit of our data using 

Eq. 2.1 is difficult, and does not allow an accurate estimate of the bulk energy; 

moreover, the chemical potential (see Fig. 2.12), displaying sharp local maxima 

for JV=13 and 19 confirms the existence of "magic" sizes, corresponding to highly 

stable clusters [i.e., (o-D2)i3 and (o-D2)i9]. 

2.2.2 Superfluidity 

Fig. 2.13 shows ps(T) for a cluster consisting of 11 o-D2 molecules. The mono-

1 ' I • 1 • I • 1 • I • 1 • I • I 
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Figure 2.13: Temperature dependence of the superfiuid fraction ps(T) for a clusters 
of 11 o-D2 molecules. Dotted line is only a guide to the eye. When not shown, 
statistical errors are smaller than the symbol size. 

tonically decreasing trend is qualitatively similar to that in Fig. 2.3 for (p-H2)i8-

However, the superfiuid fraction of the cluster (o-D2)n decreases more rapidly 

with T. In particular, it is approximately 1 at T < 0.5 K, and suddenly drops 

to a value ~ 0.39 (corresponding to roughly 4 molecules in the superfiuid phase) 

when T increases by 0.5 K. At higher temperature, the superfiuid fraction be­

comes essentially zero (in the sense explained in the previous section) for T ~ 1.4 

K, at which the average number of molecules in the superfiuid phase is less than 

two. It is important to note that, while the cluster (p-H2)is is almost 60% su-
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Figure 2.14: Statistics of permutation cycles involving 1 < M < N molecules for 
the cluster (o-D2)n at T=0.5 K (lower panel) and T—2 K (upper panel). 

perfluid at T=2 K (Fig. 2.3), (o-D2)n at the same temperature is non-superfluid, 

and the probability of observing permutation cycles comprising more than 3 o-D2 

molecules is less than 5 x 10~4. The statistics of many-particle permutations in 

the system (o-D2)n at T=0.5 K (lower panel) and 2 K (upper panel) shown in Fig. 

2.14 points out how, at high T, long exchange cycles disappear, as clusters behave 

more classically. 

The size dependence of the superQuid fraction at two different temperatures 
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Figure 2.15: Superfluid fraction of oD 2 clusters versus cluster size N, at T=0.5 K 
(circles) and T=2 K (boxes). When not shown, statistical errors are of the order 
of, or smaller than the symbol size. Solid lines are only guides to the eye. 

(T=0.5 and 2 K) is shown in Fig. 2.15. At T=0.5 K, small o-D2 clusters (N < 9) 

are entirely superfluid, while for larger values of N the trend of p$ is consistent 

with a noticeable dependence on the cluster size, similarly to what was observed 

for p-B.2 clusters with N > 22. A local minimum is observed for iV=10; then the 

superfliuid fraction grows to a value close to 1 for iV=ll, and remains relatively 

large at JV=12. 

Large fluctuations, observed during lengthy simulations, render the determina­

tion of the value of ps quite difficult for clusters greater than 11 o-D2 molecules. 

Nevertheless, we can conclude from our data that clusters of up to 14 molecules still 
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feature a significant superfluid response, which instead is close to zero for larger 

clusters. As expected, at higher temperatures ps becomes progressively smaller 

and many-particle permutation cycles are almost absent. 

The behavior shown in Fig. 2.8, indicative of quantum melting, has been 

observed for large 0-D2 clusters at much lower temperature. For example the 

cluster (o-D2)26 has been found to melt at a temperature as low as T = 0.0625 K. 

2.2.3 Structure 

Radial density profiles of the clusters (0-02)7, (o-D2)io and (o-Dajn at T=0.5 K 

are shown in Fig. 2.16. The cluster (o-D2)7 features a single-shell structure, with 

a broad peak at about 2.5 A, consistent with a high degree of derealization of 

the molecules. For N—1Q. the probability of having the center of the system 

occupied by a molecule becomes significant, and the peak is shifted to higher 

distances by roughly 1 A. The shallow minimum, which appears at r ~ 2 A, 

suggests that exchanges are frequent, and not restricted to molecules in the first 

shell, i.e., they involve also the molecule in the center of the cluster. Important 

structural differences characterize (o-D2)ii; as shown by the small value of the 

radial density at the minimum, and by the increased height of the first peak in 

Fig. 2.16, the molecule in the center of the cluster is strongly localized [see also 

the high value of n(r —> 0)], and scarcely participates in multi-particle exchanges. 

Remarkably, the superfluid fraction of all these systems is large, close to 1 for N=7 

and 11. The inset of Fig. 2.16 compares radial density profiles of (o-D2)i3 and 

(p-H2)i3 at T=0.5 K; the effect of the mass difference on the structural properties 

is evident. Indeed, the density profile of (p-H2)i3 reflects the liquid-like nature of 

such a system, whereas in the case of (o-D2)i3, structural details (i.e., pronounced 
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Figure 2.16: Radial density profiles for o-D2 clusters with N=7, 10 and 11, at 
T=0.5 K. The inset shows the radial density profiles of (o-D2)i3 and (p-H2)j3 at 
the same temperature. Statistical errors, omitted for clarity, are of the order of 
SxlCT4 A"3 or less. 

first-shell peak and the small value of the radial density at the minimum) are 

consistent with a more orderly (i.e., solid-like) structure. 

It has been already pointed out how local maxima of the chemical potential 

correspond to magic clusters, featuring greater stability than others (see Fig. 2.12). 

Here, we discuss in detail the case of (o-D2)19. In Fig. 2.17 we show the three-

dimensional structure of clusters comprising N—18 and 19 o-D2 molecules, at 

T=0.5 K. The cluster (o-D2)i8 is made of three rings of five molecules, with the re­

maining three molecules linearly arranged along the axes of the rings. On adding a 

single molecule (N=19), which also positions itself along the axes of the rings, the 
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Figure 2.17: Three-dimensional representation of clusters comprising 18 and 19 
o-D2 molecules, at T=0.5 K. Both systems have solid-like properties, as molecules 
enjoy a high degree of localization. However, (o-D2)i9 features greater stability, 
due to its more symmetric structure (see text). 

structure becomes symmetric with respect to the plane of the central ring. Since 

both (o-D2)i8 and (o-D2)ig at T=0.5 K are solid-like and insulating (i.e., molecules 

are clearly distinguishable and the value of ps is less than 0.1), the sharp maxi­

mum of the chemical potential at iV=19 appears not to be related to noticeable 

structural changes (i.e., from more liquid- to solid-like, as observed, at T— 1 K for 

p-B.2 when N increases from 25 to 262), but rather to the pronounced symmetry 

of this cluster. 
2Recent T=0 QMC calculations found no evidence o'f the magic cluster ( p - H ^ e [52, 79]. 

This is consistent with the fact that no shell completion occurs at iV=26 and with the quantum 
melting of this cluster (for details see section 2.5). 
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2.3 Isotopically doped p-H2 clusters 

In this section, we present results of a microscopic study of p-H2 clusters doped 

with isotopic impurities; specifically, we investigate the effect of the substitution 

of few p-H2 with o-D2 (or, o-H2) molecules, in (^H2)JV clusters that are entirely 

(or, almost entirely) superfluid. As discussed previously (see sections 2.1 and 2.2), 

due to the different mass of their constituents. p-H2 and oD 2 clusters display dif­

ferent superfluid response. For example a cluster comprising 20 p-H2 molecules 

at T—0.5 K is liquid-like and superfluid, while at the same temperature a cluster 

comprising the same number of o-D2 molecules is solid-like and insulating. There­

fore the study of isotopically doped p-H2 clusters comprising a total of about 20 

molecules can provide important information on how solid-like properties emerge 

in a liquid-like p-H2 cluster when p-H2 molecules are progressively substituted with 

o-D2 ones. 

For definiteness, we focus on clusters of size N > 16, at the two temperatures 

T=0.5 and 1 K. The model adopted is the usual, namely the system is regarded 

as a collection of NH p-H2 and ND = N — NH o-D2 (o-H2) molecules regarded as 

Bose particles of spin S=0 (S=l) and interacting via the SG pair potential. 

Fig. 2.18 shows the superfluid fraction p§H of the p-H2 component of an iso­

topically doped p-B.2 cluster, as a function of the cluster size N at T = l K (lower 

panel) and T=0.5 K (upper panel). Different symbols refer to a different number 

of substitutional o-D2 or o-H2 molecules (see figure caption). When a single p-H2 

molecule is replaced by an o-D2 one, psH is relatively little affected for N < 22, 

with respect to a pristine p-H2 cluster, but is suppressed substantially in larger 

clusters, particularly at higher T. For example, the substitution of one o-D2 in a 
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Figure 2.18: Superfluid fraction psH of the para-hydrogen component in clusters 
of N molecules with one (circles), two (triangles) and four (squares) substitutional 
ortfto-deuterium molecules, and with one (stars) orifto-hydrogen molecule. Upper 
panel shows data at T—0.5 K, lower at T=\ K. Open diamonds show results for 
the undoped clusters (entirely superfluid at T=0.5 K). Error bars are comparable 
to the size of the symbols. 

(p-H2)25 cluster causes psH to drop from 75% to less than 20% at T—l K, while at 

T=0.5 K an almost complete suppression of the superfluid fraction is observed, in 

the same cluster, when two JO-H2 molecules are replaced by 0-D2. It should also be 

noted that pristine p-H2 clusters with more than 22 molecules, generally display 

solid-like behavior even when undoped, albeit to different degrees [e.g., (p-H2)23 at 

r = l K (see section 2.1)] 

Fig. 2.19 compares the radial density profile (at T = l K) of the (largely super-
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Figure 2.19: Radial density profiles for a pure (p-H2)25 (lower peak at short r) and 
a (p-H2)24-(o-D2)i cluster, at T = l K. Profiles are computed with respect to the 
geometrical center of the cluster. In the case of the doped cluster, no distinction 
is made between molecules of different types. Statistical errors are not shown for 
clarity; they are of the order of 5.0 xlO - 4 A~3. 

fluid) pristine (p-H2)25 cluster, with that of the (essentially insulating) cluster with 

the same number of molecules, but with one p-H2 replaced by an o-D2. Profiles 

are computed with respect to the geometrical center of the cluster (in the case of 

a mixed cluster, no distinction is made between molecules of different types). The 

main structural change arising from the substitution of a p-H2 clearly occurs in 

the center of the cluster where molecules are more localized. In the vicinity of the 

surface of the system, density profiles are, in fact, almost identical. 
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Figure 2.20: Radial density profiles of the two components of the cluster (p-H2)24-
(o-D2)i (at a temperature of 1 K) taken separately. Profiles are computed with 
respect to the geometrical center of the cluster. 

If the dopant is o-H2, on the other hand, then the structure of the cluster and its 

superfluid properties are much less sensitive to the substitution (see Fig. 2.18). For 

example, the corresponding profile for the cluster doped with one o-H2 molecule is 

indistinguishable from that of the pristine cluster, on the scale of Fig. 2.19. 

An important observation is that a lone o-D2 molecule sits in the first shell of 

the cluster (see Fig. 2.20); this is something that we observe for all cluster studied 

here, with up to four o-D2 substitutional impurities, in agreement with previous 

work [36]. The lighter o-H2 dopant, conversely, is considerably more delocalized, 
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Figure 2.21: Radial density (multiplied by r2) for the single o-D2 and o-H2 impuri­
ties in the doped (p-H2)24-(o-D2)i and (p-H2)24~(o-H2)i clusters, at a temperature 
of 1 K. Profiles are computed with respect to the geometrical center of the cluster. 

and indeed is found prevalently in the external part of the cluster, as shown in 

Fig. 2.21. 

The effect of cluster "crystallization," induced in relatively large clusters by 

one or two o-D2 impurities (and the ensuing siippression of p-H2 SF) can also 

be observed in smaller systems, but a greater number of substitutions is needed. 

Fig 2.22 shows the structures of the two clusters (p-H2)i6-(o-D2)4 (part A of the 

figure), and (p-H2)2o (part B); these pictures were obtained using the procedure 

outlined in Ref. [31]. The pristine cluster has a featureless structure, and is entirely 
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Figure 2.22: Three-dimensional representations of the clusters ( P - H 2 ) H ; - ( O - D 2 ) 4 

(A) and of (p-H2)2o (B). Darker color is used for impurity molecules. 

superfluid at T < 1 K. On the other hand, ps„ is small in the doped cluster, 

whose solid-like structure is evident, with a central axis surrounded by rings of 

molecules. Two of the four o-D2 molecules are placed on the axis, the other two 

on the central ring. 

Numerical studies by other authors [31, 80] had already yielded evidence of 

localization of j>-H2 molecules around a heavy impurity, rendering small, pristine 

clusters [e.g., (p-H2)i3] significantly more rigid and solid-like. In all previous works, 

however, impurities were considered such as CO, or HF, not only significantly 

heavier, but, more importantly, featuring a stronger (more attractive) interaction 

with the p-B.2 molecules, than that between the molecules themselves. 

The results presented here, offer insight into the microscopic mechanism of SF 

in quantum clusters. In order for SF to occur, clusters (either doped or pristine) 

must be essentially liquid-like in character, i.e., molecules must enjoy a high degree 

of mobility and derealization. The most important structural difference between 
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clusters that are insulating or superfluid at T < 1 K, also based on the results 

for pristine clusters discussed in sections 2.1 is that the former feature a rigid, 

solid-like core, possibly with some loosely bound molecules on the surface; on the 

other hand, SF is enhanced in clusters whose inner region is floppy, with exchanges 

taking place between molecules in the inner and outer shells. 

This is consistent with the notion of quantum melting of large clusters, at 

low T (see section 2.1.3), originating from permutational exchanges involving all 

molecules, including those located in the inner part of the cluster. These exchanges 

become increasingly important at low temperature, where clusters become increas­

ingly liquid-like, and consequently superfluid. 

Fig. 2.23 displays the frequency with which exchange cycles of varying length 

(i.e., involving a different number 1 < M < NH of p-H2 molecules) occur (spikes 

from left to right) in a pristine (p-H2)25 cluster as well as in the mixtures (p-H2)24-

(o-H2)i and (̂ -£12)24 {o-D>2)i at T = l K. All exchange cycles are clearly suppressed 

in the cluster doped with a single o-D2, but the reduction is most dramatic for very 

long cycles. Conversely, when the cluster is doped with an o-H2, exchanges (other 

than the very longest one) take place at almost the same frequency as in the 

pristine cluster. 

Thus, a single substitutional o-D2, which is located in the center of the cluster 

owing to its greater mass, has a strong inhibiting effect on long exchanges of p-H2 

molecules. As a result, the cluster turns solid-like, and SF is altogether suppressed. 

Conversely, a single o-H2 dopant molecule can effectively get out of the way, thereby 

allowing for a greater occurrence of long exchanges, including those involving p-H2 

molecules in the inner and the outer shell of the cluster. As a result, the doped 

(p-H2)24-(o-H2)! cluster remains largely liquid-like, with a value of psH close to 
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Figure 2.23: Frequency of occurrence of exchange cycles of length M (i.e., involving 
1 < M < NH p-H.2 molecules) at T—l K. Spikes from left to right refer to a pristine 
(p-H2)25 cluster and to the mixtures (p-H2)24-(o-H2)i and (p-H2)24-(o-D2)i. 

60%. 

The suggestion that SF is underlain, or strongly enhanced by the occurrence 

of exchange cycles involving also molecules located in the central region of the 

cluster is not in direct contradiction with the observation made in Ref. [42] that 

the superfluid density is largest at the surface. For, as discussed above the primary 

mechanism by which these exchanges promote SF is not by locally increasing the 

value of psH, but by stabilizing an overall liquid-like phase of the whole cluster. 

However, according to our results, the picture of SF, as arising from exchanges 

involving exclusively surface molecules, proposed in Ref. [42] seems not plausible. 

I I I I I 1 1 - 1 1 I I I I I I I I I I 1-1 1 l - T 
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2.4 50/50 Mixed clusters 

Next we discuss mixed clusters with equal numbers of p-H2 and o-D2 molecules. 

The sup.erfluid response of either component in these clusters, is generally not 

significant at a temperature as low as 0.5 K; In fact, as shown in Fig. 2.24, the 

average number p-Hz or o-D2 molecules in the superfluid phase do not exceed 2 

for clusters comprising more than 10 molecules altogether (at T=0.5 K). 

3 

x 
m 

Q . 

1 h 

0 

Figure 2.24: Number of p-H2 (circles) and o-D2 (triangles) molecules in the super-
fluid phase in mixed clusters of varying size N and equal concentration of the two 
isotopes (i.e., NH = ND = N/2) at T=0.5 K. 

This suggests that at this temperature quantum effects are relatively modest in 

these systems, and therefore the mass difference is largely immaterial, the physical 
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Figure 2.25: Three dimensional representation of the cluster (p-H2)5(o-D2)5 (A) 
and (p-H2)10-(o-D2)10 (B) at, a temperature of 0.5 K; o-D2 molecules are rendered 
in darker color. 

behavior being dominated by the potential energy. 

It is notable that pristine clusters comprising J V = 1 0 p-H2 or o-D2 molecules, 

are superfluid at T—0.5 K, as shown in sections 2.1 and 2.2 while in the mixture (p-

H2),5-(o-D2)5 SF is significantly suppressed. Therefore, the simultaneous presence 

of the two components mutually suppresses the superfluid response of both, and 

promotes a more solid-like arrangement of molecules. 

Fig. 2.25 shows graphical representations of the three-dimensional structures 

of (p-H2)5-(o-D2)5 (part A) and (p-H2)io-(o-D2)10 (part B) clusters. While for the 

smaller cluster smearing of the molecules, attributed to zero-point motion, can be 

seen, the larger mixed cluster displays a classical structure, identical to that of a 

(o-D2)20 cluster3. 

In the bulk, isotopic Bose mixtures are predicted theoretically to undergo spa­

tial segregation at low temperature [81]. Our study shows that, even in clusters 

Simulations in progress for the mixed cluster (p-H2)io-(o-D2)io at T=0.0625 K reveal in­
cipient melting of the 0-D2 component which occupies the inner part of the system. This is 
consistent with the quantum melting observed in pure clusters, indicated by the "collapse" of 
the first peak of the density profile (see Fig. 2.10). 
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of relative small size, such as the ones studied here, incipient de-mixing of the two 

species is easily recognizable, as already observed in classical binary LJ clusters 

[82, 83]. It should finally be noted that, while the increasing concentration of o-D2 

causes the entire cluster to turn progressively solid-like, isotopic separation is not 

observed to affect the structure in which the cluster crystallizes. 

2.5 Local superfluidity of p-H.2 c lus ters 

The results presented in section 2.3 suggest the connection between superfluid 

response and long permutational cycles of identical molecules throughout the whole 

system. One interesting open issue is how the superfluid response of a pure cluster 

is distributed across the droplet. Because a, cluster is a finite non-homogeneous 

system, one may meaningfully pose the question of whether the decoupling from 

an externally applied rotation characterizing a superfluid is greater in some parts 

thereof (e.g., the surface). The relevance of this aspect goes obviously beyond the 

physics of p-B.2 clusters, as it impacts the general theoretical understanding of SF, 

and its connection with Bose condensation. 

In a recent paper, Khairallah ef, al. utilized the radial density profile of par­

ticles involved in permutation cycles to study the local superfluid density of p-H2 

droplets. Based on their results, they concluded that the superfluid response is 

largely confined at surface of these small clusters, mainly arising from exchange 

cycles involving loosely bound surface molecules [42]. 

Aside from the difficulty of providing a meaningful definition of "surface" of 

clusters of such small size, the physical picture proposed in Ref. [42] is at odds 

with our results presented in the previous sections of this chapter for pure and 



CHAPTER 2. RESULTS 78 

isotopically doped p-H2 clusters, which have yielded, evidence that their superfluid 

response correlates with permutational exchange cycles comprising molecules in 

both the inner and the outer shell. Indeed, even clusters that display a coexistence 

of liquid- and solid-like behavior at T ~ 1 K [e.g., (p-H2)23J are essentially entirely 

superfluid in the liquid-like "phase" (see section 2.1.3). an observation which raises 

doubts about the contention that SF may be confined at the surface of the cluster. 

In order to provide an independent theoretical check of the predictions of 

Ref. [42], we undertook a systematic study of the local superfluid properties of 

p-H2 clusters at low temperature, using QMC simulations with a recently intro­

duced, rigorous local superfluid density estimator [whose expression has been given 

in formula (1.37)]. consistent with the basic two-fluid model [68]. 

Specifically we have computed the local superfluid density of pristine j>H2 

clusters of up to 27 molecules in the temperature range 0.0625 K < T < 3 K4, and 

examined its connection to global properties previously discussed in section 2.1. 

Fig. 2.26 shows profiles of total [n(7-)\ and superfluid [ns(r)} radial densities, 

computed with respect to the center of mass of the system, for a cluster comprising 

JV=18 p-H2 molecules. At T—l K the cluster (see Fig. 2.3) is entirely superfluid, 

within the statistical uncertainty of our calculation. As shown in Fig. 2.26, the 

superfluid fraction is 100% everywhere in the cluster, with no sign of weakening 

near the center. At T—2 K, the total superfluid fraction of the cluster decreases 

to ~ 55%; notably, however, the superfluid density remains finite throughout the 

cluster, even in its inner region. Upon increasing T to 3 K, the superfluid fraction 

drops to about 14% and ris(r) is correspondingly uniformly suppressed through­

out the whole system, almost completely in correspondence of the total density 

4Results presented in this section are obtained using the SG potential. 
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Figure 2.26: Profiles of total [n(r)j and superfiuid [ns(r)] density computed with 
respect to the center of mass of the cluster (p-H2)ig at T = l K (lower panel), T=2 K 
(middle panel) and T=3 K (upper panel). 

minimum. The latter information confirms the qualitative relation between SF 

and exchange cycles involving molecules in different spatial regions of the cluster. 

Clearly, the local superfiuid response of this cluster is never confined to the surface. 

It is important to note that the discussed variations of ris(r) occur against a total 

density profile which is essentially unaffected by temperature, for this liquid-like 

cluster (as shown in Fig. 2.26). 

A behavior analogous to that illustrated above for the (p-H2)is cluster is dis-
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Figure 2.27: Profiles of total and superfiuid density at T=0.0625 K (solid line 
and circles), T=0.25 K (dashed line and triangles) and T=0.5 K (dotted line and 
diamonds) for the cluster (p-H2)26-

played essentially by all clusters with fewer than 22 molecules, which are liquid-like 

in the temperature range considered here. As discussed in section 2.1, clusters 

with a number of molecules greater than 22 feature a different physical behavior, 

displaying (to different degrees) coexistence of liquid- and solid-like properties at 

T < 1 K. We discuss here the specific case (p-H2)26-

Fig. 2.27 shows the same profiles as Fig. 2.26 but for a cluster of N=26 

molecules. This cluster displays insulating properties at T=0.5 K; its superfiuid 

fraction is barely over 10%, rising to approximately 32% at T=0.25 K and reach-
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ing 100% at T=0.0625 K. Correspondingly, and quite unlike the A'=18 case, the 

structure of the cluster undergoes a significant change, as shown by the evolution 

of the radial density profile. In particular, the peak corresponding to the first 

shell (at r ~ 2 A ) becomes suppressed as T decreases; hardly any remnant of the 

shell structure is left at T=0.0625 K, as a liquid-like structure emerges, i.e., the 

cluster undergoes quantum melting. Indeed, it is at low T (in contrast with what 

suggested in Ref. [42]), when this cluster quantum melts, that its basic physics be­

comes qualitatively reminiscent of that of a superfluid (liquid-like) helium cluster. 

It is interesting to examine the corresponding evolution of the local superfluid 

density, also shown in Fig. 2.27. At the highest temperature shown, ns(r) is small 

at all distances from the center of mass, and negligible between the two shells 

(diamonds); here too it has to be stressed how, though the superfluid response is 

fractionally greater in the immediate surface (i.e., r > 7 A), it is nonetheless not 

confined thereto. Moreover, as the temperature is lowered and the cluster turns 

liquid-like and superfluid, the relative increase of ns(r) is far more significant in 

its inner part. Especially telling is the disappearance of the dip in the region 

between the two shells (at r ~ 4 A), suggesting the occurrence of permutations 

involving particles in both the inner and outer shell. This is consistent with the 

observed temperature dependence of the frequency of occurrence of permutation 

cycles involving different numbers of molecules, shown in Fig. 2.28. 

We discussed in 2.1.2 the non-monotonic behavior of the total superfluid frac­

tion of clusters of size N > 22; we further illustrate this phenomenon here, by 

focusing on a very narrow range of cluster sizes, within which the value of the 

superfluid fraction changes dramatically when adding just one molecule at a time. 

The results for the local superfluid, and total density definitively demonstrate that 
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Figure 2.28: Frequency of occurrence of permutation cycles involving M molecules 
in a cluster of 26 p-H2 molecules at T—0.5 K (lower values) and T=0.0625 K 
(higher values). Long permutation cycles set in at low T. 

such behavior reflects structural changes throughout the whole cluster, not just its 

surface as contended in Ref. [42]. 

Total and superfluid densities for clusters of 25, 26 and 27 molecules at a 

temperature of 0.5 K are shown in Fig. 2.29. The superfluid fraction is close to 1 

for iV=25, dropping to roughly 0.12 for N=26 and rising again up to approximately 

0.85 for N=27. For the N=25 cluster, the superfluid response is fractionally close 

to 100% throughout the entire cluster. While obviously fewer particles reside on 

average in the core than on the surface region of such a small cluster, the results 
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Figure 2.29: Profiles of total and superftuid density for the cluster (p-H2)25 (solid 
line and circles), (p-H^e (dotted line and diamonds),(p-H2)27 (dashed line and 
triangles) at T=0.5 K. Open symbols show estimates of the local superfluid density 
obtained for the cluster (p-H2)25 using the same measure utilized in Ref. [42]. 

of Fig. 2.29 again clearly show how SF is not confined to the surface, and the 

core of the cluster is not rigid but superfluid. The addition of a single molecule 

causes the entire cluster to turn abruptly insulating and solid-like, as shown by 

the increase in the height of the total density first shell peak. The local superfluid 

response is concurrently suppressed throughout the whole system, especially in the 

region between the two shells, to indicate the paucity of exchanges taking place 

between molecules in different shells. When adding yet another molecule, i.e., when 

increasing the cluster size to N—27, the cluster returns to a liquid-like structure, 
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and consistently the supcrfluid response is enhanced, at the surface, but also in 

the inner part of the system. These findings lend substantial theoretical support 

to the notion that the liquid-like, superfiuid phase of these small clusters occurs 

as a result of the onset of long exchanges involving all molecules in the system. 

This is in fundamental disaccord with the picture put forth in Ref. [42], according 

to which SF would correlate to long exchanges involving loosely bound surface 

molecules. 

One might be tempted to attribute the discrepancy of our results with those 

of Ref. [42] to the difference between the estimator of the local superfiuid density 

utilized here, and the qualitative measure employed in" Ref. [42], which lacks 

any microscopic justification [68, 23]. For comparison, we have performed a few 

calculations using that same measure, and found no substantial differences with our 

results (a comparison is shown in Fig. 2.29). Furthermore, our physical conclusions 

can also be inferred from the evolution of the density profiles as the temperature 

is lowered (Fig. 2.27), clearly showing the disappearance of the shell structure and 

the concurrent approach to unity of the total superfiuid fraction (for this quantity 

the same estimator is used in our work and Ref. [42]), as well as by the temperature 

dependence of the frequency of occurrence of long permutation cycles (Fig. 2.28). 

All of this unambiguously shows that superfluidity correlates with long exchanges, 

comprising molecules both in the inner and outer shells. 

More generally, it should be pointed out that the Continuous-space Worm Al­

gorithm, utilized in this work, enjoys [37, 38] a much greater efficiency in sampling 

permutations than the method used in Ref. [42]. It is quite conceivable that the 

physical behavior observed in this work, underlain by long permutation cycles, 

may have remained hidden to the authors of Ref. [42], due to the inefficiency of 



CHAPTER 2. RESULTS 85 

their method in sampling such cycles, especially at the lowest temperatures. 

2.6 Dependence of the numerical estimates on 

the interaction potential 

In this section, we examine in detail the dependence of our numerical results on 

the choice of the model interaction, pointing out how the physics described in this 

work does not depend on such a choice. 
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Figure 2.30: Energy per p-H2 molecule as a function of the cluster size N at T=\ K. 
Estimates are obtained using the Buck (diamonds), SG (circles) and LJ (triangles) 
potential. 
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Although the SG potential (the one used in the majority of our calculations) 

is probably the best choice to describe the properties of molecular hydrogen (in 

small clusters as well as in the bulk) a comparison with other model interactions 

is due. Specifically, we compare estimates obtained with the SG, Buck, and LJ 

potential. 

Fig. 2.30 shows the energy per p-H2 molecule as a function of the cluster size N 

at a temperature of 1 K, computed with the LJ (triangles), Buck (diamonds) and 

SG (circles) potential. The values obtained with the Buck potential are ~ 2.5 K 

lower than those computed with the SG potential. This difference is consistent 

with the fact that the Buck potential is more attractive than the SG one. On 

the other hand, the energies estimated with the LJ potential display values up 

to 5 K higher than those calculated with the SG interaction. It seems therefore 

plausible that such a large quantitative difference may entail significantly different 

temperature dependence of some of the physical properties of interest. 

Estimates of the superfluid fraction at T~0.b K and T=\ K, as a function of the 

number of molecules in a p-H.^ cluster, are shown in Fig 2.31. Clusters of size up to 

~ 20 molecules are largely superfluid at T < 1 K, and the computed values of ps are 

essentially independent of the potential. When the cluster size increases, although 

a similar non monotonic trend of the superfluid fraction is observed regardless 

of the choice of the potential, important numerical discrepancies between results 

obtained with different potentials are evident. For example, a cluster comprising 

N=26 molecules at T=0.5 K is found to be insulating with the Buck or SG potential 

(open circles and diamonds), but 100% superfluid with the LJ one (open triangles). 

In general, the LJ potential yields a large superfluid response at a temperature 

considerably higher than that needed to detect the same superfluid response with 
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Figure 2.31: Superfluid fraction of p-H2 clusters versus cluster size N at T = l K 
(filled symbols) and T=0.5 K (open symbols). Estimates have been obtained using 
the SG (circles), Buck (diamonds) and LJ (triangles) potential. 

the SG (or Buck) potential. However, it is crucial to stress that the physical 

mechanism by which clusters melt at low temperature, namely quantum melting, 

as well as all the other physical effects discussed in this work, are independent of 

the choice of the potential, whose only effect is to alter the energy scale. 

Figures 2.32 and 2.33 illustrate the quantum melting phenomenon (extensively 

discussed in the case of the SG potential in section 2.1.3) when the LJ, or Buck, 

potential is used. In Fig. 2.32 we show the potential energy per particle (V) and 

the superfluid fraction of the cluster (p-H2)2e at T=l K (panels a and b) and at 

T=1.5 K (panels c and d), computed in a typical Monte Carlo run. Estimates 
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Figure 2.32: Potential energy per molecule and superfluid fraction observed during 
a typical Monte Carlo run for a cluster of N=26 p-H2 molecules at T = l K (panels 
a and b) and T=1.5 K (panels c and d). The coexistence of two phases can be 
easily recognized since the averages of ps and V simultaneously switch between 
high (liquid-like superfluid phase) and low (solid-like insulating phase) values. The 
liquid-like superfluid phase becomes dominant as T is lowered. Results are obtained 
with the LJ potential. 

are obtained with the LJ potential. The values of ps and V (in analogy with the 

discussion offered in section 2.1.3 for a cluster of 23 p-H2 molecules interacting 

via the SG potential) indicate the coexistence of a liquid-like (superfluid) and a 

solid-like (insulating) "phase". The former becomes dominant at low T; it is in 

fact at low T, that the cluster quantum melts. 

Quantum melting occurs (at much lower T) even when the Buck potential 

is used. Fig. 2.33 shows profiles of radial density of (p-H2)26 at T=l K and 
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Figure 2.33: Radial density profiles for a p-B2 cluster with 7V=26 at T=0.0625 K 
(solid line) and T=l K (dashed line). The system undergoes quantum melting at 
low T. Statistical errors, not shown for clarity, are of the order of 5xl0~4 A~3 or 
less, results are obtained with the Buck potential. 

T=0.0625 K obtained with the Buck potential. At T = l K the superfluid frac­

tion (estimated with the Buck potential) of this cluster is approximately 0.06 and 

its structure is solid-like as indicated by the height of the first peak and by the 

pronounced inter-shell minimum of the density profile (dashed line). When T is 

lowered to 0.0625 K the value of ps approaches 0.95 and concomitantly the cluster 

quantum rnelts becoming liquid-like and almost completely structureless as sig­

naled by the "collapse" of the first-shell peak and by the persistent tail of density 

at long distances (solid line). Once again we stress that Fig. 2.32 and 2.33 show the 
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same physical phenomenon (i.e., the quantum melting) that occurs independently 

of the interaction potential employed. 
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CONCLUSIONS 

We have presented results obtained by means of accurate Path Integral Monte 

Carlo simulations based on the Continuous-space Worm Algorithm for the low 

temperature (0.0625 K < T < 4 K) properties of pristine and isotopically doped 

hydrogen clusters of size up to Ar=48 molecules. 

Pristine (p-H2)jv clusters comprising up to N=21 molecules are liquid-like and 

superfluid with a superfluid fraction ps ~ 1 at T < 1 K. The superfluid fraction, 

for N > 22, displays a remarkable size dependence reflecting structural changes 

that occur on adding or removing even a single molecule. Coexistence of liquid-like 

(superfluid) and solid-like (insulating) phases has been shown in some clusters; the 

dominance of the former at low T indicates that these systems melt as a result of 

zero-point motion and quantum exchanges, freezing instead at high T. We refer 

to this intriguing behavior as quantum melting. Significant superfluid response has 

also been found, at T=0.5 K, in o-D2 clusters of size up to N ~ 14. The heavier 

mass of the 0-D2 molecules is responsible for the suppression of ps in larger clusters. 

Some clusters, featuring specific numbers of particles, are characterized by greater 

stability; the fact that the "magic number" J V = 1 3 is present for both p-R2 and 

o-D2 clusters, suggests that its stability is associated with high symmetry, i.e., it 

is related to the potential energy. These structures, however, need not necessarily 
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be solid-like, but rather simply have filled coordination shells. 

We have also studied mixed isotopically doped p-E^ clusters of various sizes, 

down to T=0.5 K. To our knowledge, this is the first study of a mixed isotopie 

bosonic cluster including all quantum-mechanical effects, namely zero-point motion 

and permutations of identical particles. We find that the superfluid fraction of 

pure p-B.2 clusters is suppressed by replacement of few p-H2 by o-D2 molecules. 

The suppression is most dramatic for clusters with more than 22 molecules, which 

display (at T ~ 1 K) incipient solid-like behavior even when pristine. The reduction 

of the superfluid fraction is considerably smaller in the presence of substitutional 

o-H2 impurities. Lighter impurities, which are delocalized throughout the system, 

have less disruptive an effect on long exchanges than the heavier impurities, which 

sit in the inner part of the cluster. These findings are consistent with the notion 

of melting of pure clusters at low temperature as arising from purely quantum-

mechanical effects, namely long exchanges of indistinguishable particles. 

Mixed (50/50) (p-H2)-(o-D2) clusters comprising up to 20 molecules altogether 

are generally found to be non-superfluid at T ~ 0.5 K. The fact that at this 

temperature the superfluid response is suppressed also in small (N ~ 10) mixed 

cluster is in contrast with what observed for pure p-H2 (o-D2) clusters of the same 

size which display pronounced superfluid response. The isotopie composition of 

mixed clusters, therefore, has the effect of suppressing the stiperfluid response of 

both components. Moreover we observed, even in small 50/50 mixtures, such as 

those studied in this work, incipient de-mixing of the two components. 

The spatial distribution of superfluidity has been studied in pure p-H2 clusters. 

We found no evidence of superfluid response confined at the surface, regardless 

of temperature and system size explored. Superfluidity concomitantly grows as 
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T decreases in the inner and outer part of the system in liquid-like clusters [i.e.. 

(j>H2)is] as well as in those which feature quantum melting at low T. In the lat­

ter case, structural variations such as the progressive collapse of the first peak of 

the radial density profile are due to long (i.e., inter-shell) exchanges, involving all 

molecules in the cluster. Long exchanges cause the system to turn liquid-like at 

sufficiently low T, with the ensuing onset of superfluidity. Significant superfluid 

response is only seen when the core and the surface are both superfluid and liquid­

like, i.e., it is not the effect of quantum exchanges involving exclusively, or mostly, 

surface molecules. These findings obtained by means of a rigorously defined es­

timator for the local superfluid density are at variance with recent calculations 

[42], performed by means of conventional Path Integral Monte Carlo, on the ba­

sis of a semi-empirical defined estimator. The main reason of this disagreement, 

however, seems related neither to the particular choice of the estimator nor to 

the different interaction potential utilized in Ref. [42]. Rather it might depend 

on the scarcely efficient sampling of many-particle permutations which affect the 

conventional Path Integral Monte Carlo approach. 

We have carefully checked our physical conclusions and numerical estimates 

repeating most of the simulations with the Buck and Lennard-Jones potential. 

These model interactions have been shown to be somewhat less accurate than the 

Silvera-Goldman one, employed in the majority of our calculations and in most 

of the theoretical investigations of this kind, however they can provide an impor­

tant benchmark for the relevant physical effects discussed in this work. Despite 

noticeable numerical discrepancies, due to the particular potential utilized, in the 

estimates of energetics and superfluid fraction, we observed quantum melting at 

low temperature driven by the onset of long quantum exchanges with all the three 
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interactions. For example a. J9-H2 cluster of 26 molecules interacting via the Silvera-

Goldman potential is almost completely molten at T=0.125 K. at half of this value 

in the case of the Buck interaction and at T of the order of 1 K when the Lennard-

Jones interaction is used. Evidence is therefore found that the mechanism by which 

clusters melt at low T is independent of the specific interaction potential whose 

unique effect is to alter the energy and temperatures scale. 

The study of Bose-Einstein condensation in small clusters appears to be the 

natural extension of this work. In particular estimates of "condensate" density pro­

files (obtainable by the one-body density matrix) can be used together with the 

information given by profiles of superfluid density to gain additional insight into 

the relation, still not well established, between superfluidity and Bose-Einstein con­

densation. Moreover simulations in progress on large 50/50 (p-B.2)-(o-D-2) mixed 

clusters at T=0.()625 K. revealing the incipient melting of the inner part of the 

cluster, occupied by the heavier component, encourage us to explore lower temper­

ature regimes with the reasonable expectation of finding an example of superfluid 

bosonic mixture. 
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