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Choice and Temporal Welfare Impacts: 
Dynamic GEV Discrete Choice Models 

 
 

Abstract 
 
 

Welfare economics is often employed to measure the impact of economic policies or 

externalities. When demand is characterized by discrete choices, static models of consumer 

demand are employed for this type of analysis because of the difficulty in estimating 

dynamic discrete choice models. In this paper we provide a tractable approach to estimating 

dynamic discrete choice models of the Generalized Extreme Value (GEV) family that 

addresses many of the problems identified in the literature and provides a rich set of 

parameters describing dynamic choice. We apply this model to the case of recreational 

fishing site choice, comparing dynamic to static versions. In natural resource damage 

assessment cases, static discrete choice models of recreational site choice are often employed 

to calculate welfare measures, which will be biased if the underlying preferences are actually 

dynamic in nature. In our empirical case study we find that the dynamic model provides a 

richer behavioral model of site choice, and reflects the actual choices very well. We also find 

significant differences between static and dynamic welfare measures. However, we find that 

the dynamic model raises several concerns about the specification of the policy impact and 

the subsequent welfare measurement that are not raised in static cases. 
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1.0 Introduction 
Welfare economics is often employed to measure the impact of economic policies or 

externalities, typically using static models of consumer demand. However, if demand has 

dynamic properties, perhaps characterized by habits, learning, state dependence, or 

consumption inertia, the impacts of policies or externalities will necessarily have temporal 

dimensions. Heckman (1981), for example, describes the issue of economic policies to 

alleviate unemployment, and their potential to reduce long term unemployment by having a 

long-lasting effect on future unemployment rates. In an environmental context, consider the 

impact of a chemical spill on beach recreation that may drive recreationists away from the 

affected site and change their visitation pattern so that they do not return to the affected site 

even long after the physical impact has disappeared. In transportation research, assessing the 

impacts of tolls, new alternatives (e.g. light rail transit systems) or congestion also involves 

dynamic elements. Users of transport systems are influenced by their experiences and may 

exhibit habit persistence or variety-seeking in transportation mode choice and shopping 

destination selection. 

Economic assessments of policy options that do not take these dynamic behavioral 

factors into account will likely be biased. Economic policies like taxes or fees may not 

initially have an impact on demand as the inertia associated with consumption continues to 

“fuel” demand until the consumers adjust their expectations about the costs associated with 

the good or service. While casual observation suggests that such dynamic effects occur, there 

has been relatively little empirical implementation of dynamic welfare analysis in the 

economics literature, especially where demand involves discrete choices. To a large degree 

this arises because of the difficulty in estimation of utility-consistent dynamic discrete choice 
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models of consumer choice.  

Heckman (1981) provides a summary of the key issues involved in dynamic discrete 

panel data: state dependence (current preferences being affected by previous choices), habit 

persistence (current preferences being affected by previous preferences), initial conditions 

(lack of knowledge about preferences before the observation period available to the analyst), 

and taste heterogeneity (taste differences between individuals and over time). The literature 

on dynamic choice model estimation has progressed in multiple directions since Heckman’s 

contribution. Several researchers have explored the use of “previous choice” within static 

discrete choice model structures in a relatively ad hoc fashion (among others, Morikawa 

1994 and Adamowicz 1994). However, these methods suffer from the “initial conditions” 

problem, which renders estimates inconsistent. Methods that account for state dependence 

and heterogeneity and address the confounding associated with heterogeneity and unknown 

initial conditions include Heckman (1981), Hensher et al. (1992), Rossi et al. (1996) and 

Degeratu (1999). Heckman originally proposed a number of solutions to the initial conditions 

problem, the most tractable of which is the approximation of the initial time period’s 

probability distribution by a model estimated on the first period’s choices. Degeratu (1999) 

refers to this general approach as the correlated initial conditions approach. A variety of 

approaches have been presented to address this issue, including Keane (1997), Degeratu 

(1999), and Roy et al. (1996). Keane, for example, alludes to the difficulties associated with 

the initial conditions problem by saying that “… [the initial value problem] is a problem of 

awesome computational and economic complexity.” (Keane 1997, p. 315) Thus, it is not 

surprising to note that a thread running through much of this literature is the difficulty in 

developing a model that is utility-consistent, addresses state dependence and initial 
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conditions (as well as other structural aspects of dynamic models), and yet is tractable. 

An alternative approach to the entire issue of dynamic choice is to represent the 

decision maker as formally solving a dynamic programming problem and to embed the 

statistical estimation process within this dynamic programming framework. Examples of uses 

of discrete choice dynamic programming methods are discussed in Wolpin (1996), Erdem 

and Keane (1996) and Rust (1987). Applications include replacement of capital equipment 

(Rust, 1987), recreational fishing site choice (Provencher and Bishop 1997), and brand 

choice in consumer packaged goods (Erdem and Keane 1996). These are structural modeling 

approaches to the dynamic choice problem that examines hypothesized underpinnings of the 

dynamic choice process rather than simpler reduced forms. The main advantage of structural 

models is that they address the so-called “Lucas critique,” since the parameters generated in 

these models are constructed to be unaffected by policy changes, and thus produce unbiased 

assessments of the response to policy change (Erdem and Keane 1996; Lucas 1976). While 

appealing in theoretical form, they are relatively difficult to estimate and at times produce 

results that appear counter-intuitive (e.g. Provencher and Bishop, 1997). 

In this paper we focus on an application of discrete choice modeling to environmental 

valuation, specifically to modeling recreation site choice. It is somewhat surprising, though 

understandable given the associated challenges, that there have not been more applications 

involving temporal aspects in the environmental economics literature, given the importance 

of dynamics, learning, state dependence and habit persistence in activities related to natural 

resources and the environment. In the literature on environmental valuation the applications 

of dynamic choice models include Adamowicz (1994); McConnell et al. (1990) and 

Provencher and Bishop (1997). Smith (1997), reviewing the literature in this area, discusses 
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the importance of temporal dimensions in environmental valuation. The issues are perhaps 

best addressed by an example. Much of the recreation valuation literature focuses on 

developing welfare estimates associated with damages to the natural environment – with the 

use of these models aimed at natural resource damage assessment (see Chapman et al. 1998 

and Dunford 1999 for a discussion on one such case – the American Trader). In these cases 

the welfare impacts associated with the damages are usually assessed using static models, 

and then the impacts on aggregate visitation rates are examined in separate models that 

examine time series of recreational site use. If consumers exhibit explicit dynamic elements 

like habit persistence, then welfare estimates from the static models will be significantly 

biased. For this reason we turn our attention to the development of a dynamic model of 

choice, and compare welfare measures from this model with those of a static model. 

In this paper we provide a tractable approach to estimating dynamic discrete choice 

models of the Generalized Extreme Value (GEV) family that addresses many of the problems 

identified in the literature with extant approaches and provides a rich set of parameters 

describing dynamic choice. The model is shown to be consistent with stochastic utility 

maximization through the conditions of the Generalized Extreme Value Theorem 

(McFadden, 1978; Maddala, 1983). The modeling approach allows for habit persistence, 

state dependence, alternative specifications of initial conditions, future expectations, time-

varying tastes, as well as time-varying covariance structures. The specification of initial 

conditions as a parameter estimated in the model provides information to address the initial 

conditions problem (Heckman, 1981) and allows untangling its effect from that of state 

dependence. Time-varying covariance structures, including changes in both diagonal and off-

diagonal elements, which lead to dynamic heteroscedasticity and cross-substitution effects, 
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are features that have received relatively little attention in the dynamic choice modeling 

literature. The proposed class of models is consistent with the GEV structure, and thus can be 

(1) empirically tested for consistency with stochastic utility maximization and (2) estimated 

in a relatively straightforward fashion. A specific form of the model is applied to a case of 

recreational fishing in which expected environmental attribute levels (catch rates) vary over 

time. Welfare measures for policy simulations, including changes to access costs and changes 

in environmental quality, are examined and compared for static and dynamic models. The 

dynamic models illustrate the persistence of perceived damages beyond the time period of 

the actual “physical” impact and show a corresponding welfare impact that is larger than that 

generated from static models. 

The paper is structured as follows: the next section introduces the proposed class of 

GEV dynamic choice models, after which we introduce the data utilized in the empirical 

study and discuss model estimation results; following, several typical policy scenarios are 

contrasted using a standard model and the richer dynamic GEV model derived from our 

approach; the paper concludes with a summary of our contribution and suggestions for future 

research. 

2.0 Dynamic Choice Models 
 Heckman (1981) presents a general structure for discrete panel data models in which 

the latent element yt, a continuous variable (utility) underlying the choice of a particular 

alternative whenever a threshold is crossed, is expressed as a function of attributes of the 

alternative facing the consumer in the current time period (Zt), utilities (or attributes) from 

previous time periods, decisions made in previous time periods, and an error term. The 

utilities from previous time periods reflect habit persistence, while the decisions made in 
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previous time periods reflect state dependence. This general structure (as presented by 

Heckman 1981) can be written as  
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When y crosses a specified threshold, the consumer chooses that alternative (or, as Heckman 

states, “the event occurs”) and d, the indicator of the event or choice, will equal 1, otherwise 

zero. Z is a vector of exogenous variables, (β, λ, δ) are parameters and G(L) is a lag operator. 

Thus, the “utility” associated with alternative i in time period t is decomposed into a random 

component (ε) and a component containing exogenous and endogenous variables. These 

variables are exogenous “attributes” (that may include past, present and expectations of 

future exogenous elements), previous choices (state dependence), and previous utilities (habit 

persistence). 

 In our formulation of this dynamic model, we imbed a dynamic expression of the 

form above in a Generalized Extreme Value (GEV) structure. The reason for this approach is 

that McFadden (1978) showed that if a probabilistic structure satisfies the conditions of the 

GEV theorem, it is consistent with stochastic utility maximization. This tie-in permits the 

empirical testing of consistency with stochastic utility maximization. Although our empirical 

analysis employs the more complex Tree Extreme Value (TEV) models, to aid in 

presentation we first develop the model for the multinomial logit (MNL) case (thus 

restricting the covariance matrix); subsequently we relax this and other restrictions to 

examine the case of any member of the GEV family. 
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2.1 MNL Panel Data Model 
Let the GEV generation function be 

( )∑∏
= =

−=
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j
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sjtjstt

tyIyG
1 0

)|( µα ,       (2) 

where t=1,…,T, is a discrete time point, j is one of J alternatives, tI is the information set at 

time t (as noted above, this included past choices, past and future utilities, current and past 

attributes, etc.), ),...,( 1 Jttt yyy = , and unknown parameters are 

Initial utilities: ),...,( 0100 Jyyy =        (3a) 

Past dependence: ,0,,...,1,,1,10 0 tsJjsjjs ≤≤=∀≡≤≤ αα    (3b) 

Scale factors: .,...,1,0 Ttt =≥µ        (3c) 

This describes a set of utilities (y) linked through time by dependence on previous utilities 

and initial utilities, and associated with a set of time-varying scales (or inverse of variance) 

terms. The initial utilities are also parameters estimated in the model and are essentially 

averages over the sample of the expected initial utility.1 We now show that this is a valid 

GEV generating function and derive the probability expressions arising from this form. 

Proposition 1: 

Function (2) is a valid GEV generating function that satisfies the conditions of the 

GEV Theorem2 if Ttt ,...,1,0 =≥µ . 

Proof. 

(2) is µt-homogenous, as demonstrated below for any δ≥0: 
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Further, the sign requirements in the GEV Theorem will be met for any non-negative 
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values of µt. This restriction is determined from the second-order partial derivative of 

G() with respect to distinct yjt and ykt in the current time period: 

( ) 0
1

1
2

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∏

=
−

−
t

t

t

s
sjtjsjtt

ktjtktktjt

yy
yy

G
yyy

G µ
µ αµ

∂
∂

∂
∂

∂
∂

∂∂
∂

. 

All higher-order derivatives will be zero also, hence the alternating sign requirements 

of the GEV Theorem are trivially satisfied. 

Q.E.D. 

Given that the form presented satisfies the requirements of the GEV theorem, we now 

turn to the development of the choice probabilities. 

Proposition 2: 

Choice probabilities resulting from GEV function (2) are 
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where 
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yit=exp(Vit). 

Proof. Substitute (2) and its first-order derivative with respect to yit into the 

expression for GEV choice probabilities; suitable rearrangement will result in (4a,b). 

Q.E.D. 

Proposition 2 shows that the probability expressions arising from the GEV model are 

relatively straightforward, with a meta-utility itV~  that is a function of utilities in current and 

previous periods, initial utilities, as well as past-dependence parameters. Depending on the 
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choice of the functional form for the meta-utility, a number of special cases arise. In the 

empirical analysis presented later we employ a simple geometric decay formulation3 of the 

model, as follows: let tsJjj
s
jjs ,...,0,,...,1,10, ==≤≤= ρρα ; then the pseudo-utility 

function (4b) becomes simply 

( )∑
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− ==+=
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and choice probabilities are given by (4a) using utilities (5). Note that the decay parameters 

estimated provide information on the degree to which previous utilities affect current 

choices, with large values of ρ corresponding to long “memories” or high degrees of habit 

persistence. Note also that the decay factors are alternative-specific, allowing for differing 

degrees of decay across alternatives. 

2.2 General GEV Panel Data Models 
The MNL Panel Data Model presented above is actually a special case of a class of 

GEV panel data models. Let 
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where all quantities are as previously defined. The terms on the right-hand side of (6) are, 

respectively, from left to right, 

1. discounted expectations of future utilities (with discount factors γis); 

2. current utility; 

3. discounted past utilities within the observation window (discount factors αis); and 

4. discounted utility of observations before the observation window (discount factors 

αit). 
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Redefining the first term, let 
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Essentially, we subsume all effects of future expectations on current utility into iw . Thus, 
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where we require, as before, that .0,,1,10 0 tsiiis ≤≤∀≡≤≤ αα  This simplification leads to 

utility functions of the form 
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Unfortunately, this parameterization results in confounding between iw  and alternative-

specific constants in Vit. 

This leads to suggesting an alternative parameterization. Consider that the term in (6) 

capturing future expectations can be expressed as a power of current utility, like so: 
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for some φit≥0. Therefore, (6) can be rewritten as 
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for which meta-utility functions are given by 
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This parameterization makes the hypothesis of the impact of future expectations testable: if 

)1( itφ+  is not significantly different from one, future expectations do not impact current 
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utilities at time period t. Estimating a large number of φ’s by alternative and time period is 

impractical, so empirical applications are likely to be more parsimoniously specified by 

applying the restriction that the φ’s vary only by alternative. 

We can now consider any µt-homogenous GEV generating function )|~( tt IyH , 

where ity~  is given by (11). This leads to a generalization of the GEV family from cross-

sectional to conditional time-series models that permit modeling 

1. Initial conditions ( 0iy ), 

2. Future expectations ( itφ ), 

3. Temporal dependence on past utilities, or habit persistence and variety-seeking ( jsα ), 

4. State dependence (via inclusion of past choices in the information set It), 

5. Time-varying scales and covariance structures (by making certain parameters specific 

to H() be time-varying), and 

6. Time-varying tastes (identification restrictions apply, however). 

With respect to point (5), note that meta-utilities (12) can be used in any GEV model. We 

have shown a more restricted version of (12) applied to the MNL model (see 4a,b), but as 

shown in Table 1, one can also develop dynamic Tree Extreme Value (TEV ⎯ see 

McFadden 1981) and Nested MNL models,4 with and without time-varying covariance 

structures, as well as other GEV model forms (to cite a few, Ordered GEV, Small 1987; 

Paired Combination Logit, Chu 1989, Koppelman and Wen 2000; Cross-Nested Logit, 

Vovsha 1998; Choice Set Generation Logit, Swait 2000). 

--- Insert Table 1 --- 

Since these models are developed within the GEV framework, empirical assessment 
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of consistency with stochastic utility maximization is possible. Some members of the GEV 

family, made dynamic through the use of meta-utilities (12), are shown in Table 1. Note that 

in the 2-level TEV with a constant tree structure, the parameters θk do not change over time, 

implying that the covariance matrix is fixed over time, whereas the 2-level TEV with time-

varying structure allows the covariance matrix to change over time, thus exemplifying point 

(5) above. Figure 1 outlines the general structure for such 2-level TEV models, with an 

overall “root” node, followed by nodes for time periods, which are themselves followed by 

the usual tree structure represented by clustering or nesting of elemental alternatives; the tree 

structure is repeated under each time period node. 

--- Insert Figure 1 --- 

 Table 1 also presents the conditions for each model to be consistent with stochastic 

utility maximization, which require that (1) the scale terms in the tree structure be greater 

than the time scale terms µt for all time periods, and (2) the time period scales be greater than 

the overall scale µ. Basically, lower level scale terms must be greater than scale terms higher 

up the tree. 

Estimation requires decomposition of the observation’s likelihood into a product of 

conditional probabilities. Assuming individual parameters stacked in ψn, the likelihood of a 

choice sequence for individual n over T time periods is simply 
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where δnt is a vector of indicator variables for the chosen alternative in period t=1,…,T, 

person n, Int is the information set at period t, and ft(ψ) is the time-varying distribution 
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describing the occurrence of parameters in the population. For a random sample of N 

decision makers, maximization of the log likelihood 
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will yield consistent and unbiased estimates of the taste vector and dynamic process 

parameters included in ψ. 

Consistency with stochastic utility maximization also allows the computation of 

welfare measures based on the theory of welfare in GEV models. Choi and Moon (1997) 

provide an overview of GEV models and their corresponding welfare measures. In our case 

this allows for the computation of welfare measures that contain habit persistence, state 

dependence and future expectations as arguments. Many policy-relevant applied analyses 

have been conducted without consideration of dynamic elements because of the difficulties in 

developing tractable models of choice and welfare in a dynamic context. Several authors (see 

the review in Smith, 1997) have discussed the importance of this omission. Thus, 

development of models that permit welfare analysis in a dynamic context will represent a 

significant contribution to the literature and to policy analysis.  

We now turn to an application of this model to a case of recreational fishing in 

Western Australia. 

3.0 An Application to Recreational Fishing Site Choice 
Dynamic behavior is observed in many markets and activities. Recreational fishing 

choices are examined in this paper because of the inherent dynamics in the situation, and 

because of the policy relevance of the examination of welfare impacts of policy or 

environmental changes. In many cases of environmental impacts on water quality, 
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recreational angling is one of the key activities affected and is often analyzed for the 

determination of damages or welfare losses. If an impact is experienced at a specific site, a 

key question is whether the impact is felt only during the duration of the physical impact, or 

if the welfare impact persists over some time period. In our empirical analysis we develop a 

dynamic model of recreational fisheries choice that allows us to investigate this issue. 

3.1 Description of Data 
Data for the application was collected by issuing a log book to 68 shore anglers who 

reside in the metropolitan area of Perth, capital city of Western Australia. Survey participants 

were asked to record details of their fishing trips over a period of 20 weeks, the last 19 of 

which are used in our analysis. Details included their trip destination, trip costs, catch 

expectations prior to going fishing (by three target fish types) and actual, ex post catches. 

While it would have been ideal to elicit catch expectations for every site in the choice set 

each time a trip was made, this was not practical owing to the excessive burden it would have 

placed on respondents. Instead, expectations were only elicited for the respondent’s intended 

destination. These data were then used to estimate an “expectations function” which was 

used to predict weekly catch rate expectations for each site in the choice set. Respondent 

perceptions about the size and diversity of fish at each site were collected at the 

commencement of the survey period. A copy of the survey instrument is contained in van 

Bueren (1999). 

Complete records for 671 trips were obtained from the returned log books. For the 

purposes of estimating the choice models presented in this paper, three sites were specified 

which comprised an aggregate of individual fishing locations. Site 1 attracted the majority of 

trips (55%), whilst fewer trips were taken to Sites 2 and 3 (35% and 10% respectively) owing 



 

 

 

15

to their greater distance from the residence of most respondents in the sample. Catch rates 

were highly variable over the survey period, reflecting the migratory and feeding behavior of 

the fish types involved. The abundance of Fish Type 1 tended to increase towards the end of 

the season at most fishing locations, while catches of Fish Type 2 declined. This variability 

strengthens the case for specifying a choice model that allows the spatial distribution of catch 

expectations to change through time. 

3.2 Estimation Results 
 Five models are estimated on the panel data described above and presented in Table 

2. All models are TEV variants, with the tree/covariance structure reflecting a separate “Go 

Fishing” versus “Stay Home” partition, with the fishing sites (1, 2 and 3) being the elemental 

alternatives under the “Go Fishing” branch; the elemental “Stay Home” alternative is indexed 

“4” in Figure 2, which presents the entire model structure graphically. 

--- Insert Table 2 --- 

--- Insert Figure 2 --- 

The first model is a simple cross-sectional TEV model that includes no dynamics in 

the sense that the meta-utilities are restricted to be equal to current utilities: there are no 

previous utilities considered, and the time-varying scale parameters are restricted to unity, 

though the model does include state dependence through the “Last Site Fished?” dummy.5 

The second model includes time-varying scales and inclusive value parameters for the “Go 

Fishing” nest, which makes it equivalent to a series of TEV models that differ through 

period-specific covariance matrices (both variances and covariances change in this model). 

The third model adds to the second dynamics (initial conditions, past utilities, etc., as per 

meta-utility (12)), but no future expectations. The fourth model adds this latter dynamic 
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feature, while the final model applies certain restrictions to the fourth model (subsequently 

explained). Note that all models except the first assume that the identifiable tree scale factors 

(θGF,t in Figure 2) are time-varying. These 5 models are referred to as: 

1. TEV 

2. TEV + Cov(t) 

3. TEV + Cov(t) + Dynamics 

4. TEV + Cov(t) + Dynamics + Expectations 

5. TEV + Cov(t) + Dynamics + Expectations (Restricted) 

The results for the basic TEV model show that angler site choice is affected by the 

length of coast at that site, costs of access, angler perceptions of fish size, and if the site was 

visited on the previous trip (i.e. first-order state dependence, which is the only dynamic 

feature of this simplest model). Note that expected catch rates appear to not strongly 

influence site choice, as measured through the significance of the respective parameters. The 

tree scale parameter for “Go Fishing” versus staying at home is highly significant and 

approximately equal to GFθ̂ ≈exp(1.9285)≈6.88 (all scale parameters estimated must actually 

be exponentiated to yield the estimate of scale; see notes in Table 2). Note that this scale 

parameter and the commonly estimated inclusive value parameter are simply inverses one of 

another. Hence, the usual stochastic utility consistency tests which require that inclusive 

value parameters be between zero and one, and more generally, that they decrease as one 

goes deeper into the tree, are simply inverted to require that scale factors increase 

monotonically down the tree. (See Borsch-Supan 1990 and Herriges and Kling 1996 for 

further details on testing stochastic utility maximization consistency.) For Model 1, as we 

stated above, the tree scale is approximately 6.88, so the inclusive value term is about 0.145; 
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since the root scale and inclusive value are unity, we can consider Model 1 to be consistent 

with utility maximizing behavior. 

Continuing our examination of Model 1, note that the number of weeks that the 

angler does not go fishing has a quadratic relationship with probability of site choice. 

Initially, the longer an angler stays at home, the less likely he/she is to go fishing the next 

week. However, after some time staying home (estimated to be about 10 weeks in this data) 

the probability of continuing to stay home decreases, implying an increase in the likelihood 

of going fishing. This effect of weeks without fishing is strongly significant in the static 

model, but as we shall see, it becomes less relevant in the dynamic versions of the model. 

Note that state dependence (introduced via the dummy variable “Last Region Fished?”) is 

significant and distinguishable, in the “Stay Home” alternative, from the effect of weeks 

without fishing. 

The Retiree and Fishing Club Member dummies indicate that being in these 

categories influences the probability of choosing any fishing site (versus choosing to not go 

fishing). Retirees are more likely to go fishing while Fishing Club Members, somewhat 

surprisingly, are not as likely to go fishing. A possible explanation for this result is that club 

members were found to have higher income, which is negatively correlated with fishing 

activity participation. 

Model 2 enhances the prior model by permitting the covariance matrix (i.e. both 

heteroscedasticity and inter-alternative substitutability) to vary over time. Thus, scale factors 

for each time period are estimated, as are “Go Fishing” node scale factors within each period. 

(The corresponding “Stay Home” scale factors are not identified, of course, since only one 

alternative is present in that nest. Accordingly, in Model 2, as well as subsequent models, 
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those scale factors are set equal to the scale of their parent node in the tree as a normalizing 

condition – see Figure 2.) This model, when compared to Model 1, generates a chi-squared 

statistic of 220.2 with 34 degrees of freedom, which is statistically significant at the 95% 

confidence level. Much of the improvement seems to be due to the highly significant 

variation in time period and “Go Fishing” scale factors, since there is very little change in the 

parameters of the utility function (except for linear scaling effects due to time-varying 

scales). Looking ahead, it should be noted that the introduction of the time-varying 

covariance matrix is the single most important improvement in the goodness-of-fit of the 

models tested in this exercise. Finally, observe that Model 2 is consistent with utility 

maximization, as evidenced through a period-by-period comparison of the tree node and time 

period scale factors. 

Model 3 generalizes Model 2 through the inclusion of dynamics, in the form of (1) 

memory decay, or habit persistence, effects and (2) initial utilities. This addition is highly 

significant: the chi-squared statistic is 69.3 with 6 degrees of freedom. In Model 3 the weeks 

without fishing parameters are no longer significant, as they were in the first two models, 

neither of which included true dynamic effects. This indicates that when dynamics are 

explicitly included in the model, ad hoc “dynamicizing” measures are likely to become less 

significant. Despite the estimation of initial utilities in this model, note that the last region 

fished variable is still significant, indicating a degree of state dependence. The parameters on 

the initial utilities are significant and indicate that the “Stay Home” alternative has the 

highest overall sample average initial utility, while the fishing sites have very similar, but 

lower, initial utilities. In general, the significance of the initial utility estimates is likely to be 

a function of the length of the observation window: the longer the window, the less 
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significant these parameters should be. Finally, this model is not consistent with utility-

maximizing behavior since the tree scale in period 13 (exp(0.8739)≈2.40) is smaller than the 

corresponding period scale (exp(1.1177)≈3.06). In addition, the scale factors for periods 16 

and 17 are both smaller than the unit-valued root scale factor. 

The decay factor parameters estimated in Model 3 are all highly significant. (Due to 

identification restrictions, the factor for one alternative must be held constant. In this model, 

the decay factor of “Stay Home” was established by the optimization process, then held 

constant to permit identification of remaining parameters.) The parameters in Table 2 imply 

decay factors of about 0.66 for all four alternatives (see Note 3 of Table 2), which means that 

after about 8 periods the impact of a period’s utility is about 4% of its original value. This is 

a relatively strong persistence effect, particularly given the short duration of the fishing 

season in this data. 

The addition of future expectations to Model 3, resulting in Model 4 – the full model, 

again produces a significant improvement (chi-squared of 26.9 with 4 degrees of freedom) 

over and above the inclusion of “backward-looking” dynamics. Initial utilities are similar to 

those in Model 3, but there is now better differentiation between the values for the three 

fishing sites. The expectation weights are representations of how much weight is placed on 

future conditions when making current decisions. The estimation results show expectation 

weights of 2.85, 1.46, 2.62, 3.31, for Sites 1, 2, 3, and staying home, respectively (in this list, 

only the first value is statistically different from unity at the 90% confidence level). Scale 

factors indicate violation of consistency with utility maximization in exactly the same pattern 

as evidenced in Model 3. 

Model 5 is a restriction of Model 4 that (1) imposes constraints on several time period 
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scale factors and period 13 “Go Fishing” tree node scale factor, and (2) removes the weeks 

without fishing variable from the utility function for the “Stay Home” alternative (see Table 

2 for implementation details). Using a likelihood ratio test, the hypothesis for the restrictions 

cannot be rejected based on the calculated chi-squared value of 6.1, with 6 degrees of 

freedom. Under this somewhat simplified model, behavior is found to be consistent with 

utility maximization. 

To contrast these five models, we present in Figure 3 a comparison of the predicted 

correlation between alternatives in the “Go Fishing” cluster over time. Models 2 through 5, 

all of which permit the covariance matrix to vary over time, generally predict correlations 

that are higher than Model 1, which we consider a default, or base, specification. The only 

significant exception to this is in period 13, where several of the models predict a negative 

correlation within the cluster. This, of course, is a direct result of violating the GEV 

conditions for utility maximizing behavior in Models 3 and 4. Thus, in the final model (5), 

the net effect of the restrictions on the scale factors is to produce a correlation of 0 in period 

13, which is to say, the observed behavior is consistent with Independence of Irrelevant 

Alternatives in that period. Examination of the raw data and other sources has not helped to 

elucidate this peculiar feature of the data, particularly noticeable since periods 14-19 seem in 

line with those preceding 13. 

--- Insert Figure 3 --- 

Figure 4 displays simulations of the predicted probabilities for each week within the 

sample for two of the five models (base Model 1 and Model 5), plus the observed shares for 

the “Stay Home” alternative and Site 1. Note how the model with dynamics appears to fit the 

sample well in the early periods (due to initial utility estimates) and in the later periods (as 
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future expectations of the end of the season begin to affect behavior). The static model seems 

to reflect a “smoothing” of the variability in week-to-week site choice variation by anglers, 

rather than capturing the variation. Overall, Model 5 appears to track the observed data quite 

well, especially at the endpoints of the series. 

--- Insert Figure 4 --- 

3.3 Welfare and Policy Analysis 
 As described above, one of the most important uses of choice models of this type is 

the assessment of environmental impacts or policy changes in terms of welfare and/or 

changes in behavior (demand). The theory of welfare measurement for cross-sectional GEV 

models has been well documented by Choi and Moon (1998). In this case we assume that 

there are no income effects, and apply the standard analytical form for the expected value of 

compensating variation. We shall employ two models in our comparisons: Model 1 (base 

cross-sectional TEV) and Model 5 (all dynamic components TEV with restrictions). 

We examine next simulations of impacts of four different scenarios or policies, to wit: 

Policy 1: An increase in the price (access cost) of 100% for all angling alternatives 

starting in week 4 and proceeding throughout the observation period; 

Policy 2: The closure of Site 2, beginning in week 4 and continuing until week 7 (a total 

of one month); 

Policy 3: Deterioration of fishing quality (movement to the lowest level of the scale) at 

Site 1, again for weeks 4 to 7; and  

Policy 4: Deterioration of fishing quality at Site 1 for weeks 13 to 19, which is simply 

Policy 3 delayed for 9 more weeks into the season. 
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Policy 1: Price Increase 

Policy 1 results in welfare losses for all weeks starting with week 4, with the dynamic 

model producing much larger per trip and cumulative welfare losses (area under the curves in 

Figure 5). In fact, Model 5’s welfare impacts are on the order of 8 times larger than those of 

Model 1’s, accumulated over the observation period. The negative impacts of the price 

increase are compounded in the dynamic model since previous utilities affect current utilities, 

making the utility of staying home much more attractive than would otherwise have been the 

case. These results are not unexpected since the angler’s habits associated with fishing have 

been negatively affected by the price increase. Note how Model 1, omitting dynamics, 

predicts that the impact of the policy is uniform throughout the final 16 weeks of the 

observation period; in contrast, Model 5 predicts a pattern of worsening welfare losses 

through about week 12, and after that a gradual flattening of the loss at about $1.75/trip. 

--- Insert Figure 5 --- 

Policy 2: Site Closure for 4 Weeks  

Policy 2 provides much more interesting dynamics, and also presents interesting 

conceptual problems to be simulated. Beach closures or fishing area closures due to chemical 

spills or other similar incidents are often the focus of natural resource damage assessment 

(NRDA) cases. In this simulation, Site 2 is closed for 4 weeks, that is, it is made unavailable 

to anglers for this period. To simulate this closure effect, two approaches were taken: (a) fuel 

costs for Site 2 were made extremely large during the affected period, effectively creating 

large disutilities for the location, which then were used in subsequent periods as part of 

determining current preferences; (b) Site 2 was removed from the choice set during the 

affected weeks, but the utility of the site during those weeks was impacted by increasing fuel 

costs significantly (though not nearly as much as in method (a)). The fuel cost increase in 
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method (b) is intended to associate some disutility with the closure itself, which one would 

reasonably expect to occur. What should the magnitude of this disutility be? Clearly, the 

optimal solution would have been to observe closures in the data itself, and estimate (for 

example) dummies reflecting the disutility. In the absence of such information, this impact 

must become a parameter of the simulation process that the analyst must establish through 

other means than the model. 

Figure 6 shows how the two methods compare in terms of their predicted share of 

trips to Site 2, over time. Model 1 predicts that the impact of closure is felt only during the 

weeks in question; the predictions of Model 5 are a function of the method of implementing 

the closure. Specifically, under method (a) the share of visits to Site 2 remains zero from 

week 4 onwards, due to the heavy penalty imposed on the utility of that site during the 

affected period and the memory process captured by the dynamics of Model 5. Under method 

(b) the disutility associated with the closure was assumed to be equivalent to a 400% increase 

in fuel price for trips to Site 2; this more reasonable disutility creates the depicted pattern of 

recuperation of trips to the site following re-opening, which is between that of Model 1 and 

the somewhat heavy-handed predictions of Model 5 with method (a). The greater the penalty 

factor used in method (b), the more nearly like method (a) will be the ensuing trip pattern 

after week 7. Thus, the impacts predicted under method (b) are bounded by those of Model 1 

and of Model 5, method (a). 

--- Insert Figure 6 --- 

Returning to Figure 5, the graphs therein illustrate that the dynamic model predicts a 

much larger and longer lasting welfare impact than the static model. Note that the per trip 

welfare measures arising from the dynamic model (method a) do eventually become smaller, 
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but it takes much of the time period for the closure effect to dampen (note also that towards 

the end of the season angler participation in the activity is naturally decreasing anyway, so an 

alternative explanation is not that the closure effect is disappearing, but that the desire to go 

fishing is decreasing for other reasons). In the static model the impact of closure is felt only 

for the 4 weeks that the site is unavailable, and then there are no further negative impacts of 

the closure. Again, the dynamics in Model 5 imply the anglers retain the negative effect of 

the closure in future periods. Note again that the parametrization of the fuel penalty in 

simulating Policy 2 by methods (a) and (b) imply that an envelope enclosing the welfare 

impacts can be derived, as was suggested in Figure 6. 

A key issue in the simulation of site closure is the fact that the observation of site 

closure is seldom present in data. Thus, the issue of most common concern in natural 

resource damage assessment is difficult to assess using the dynamic model because the 

determination of the impact of closure on “memory” is not well defined without observations 

of closures. Static models do not reflect this difficulty since no “memory” is required for 

these models – the consumer simply returns to the original preference structure after the 

damage has been removed. 

Policy 3: Deterioration of Fishing Quality (early in season) 

Policy 3 causes Site 1 to suffer a fishing quality deterioration to the lowest level for a 

four week period, beginning the 4th week. Figure 5 provides details on the welfare loss 

dynamics of this case, while Figure 7 shows simulated choice probabilities for Site 1 and 

staying home under this policy. The probability of choosing Site 1 (displayed in the lower 

panel for Figure 7) shows that the static model actually responds more significantly to the 

change in quality, reducing choice of Site 1 to a lower level for the 4 week period of the 

quality deterioration. The dynamic model shows inertia or habit persistence because choice 
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of Site 1 declines, but not to the degree shown in the static model. However, the experience 

of the decline in fishing quality carries on in the dynamic model, as the probability of 

choosing the location is below the static model. This illustrates that the dynamic model tends 

to dampen the initial effect of a reduction in quality, but carries the effect on for a longer 

period. The overall welfare impact is, consequently, significantly larger in the dynamic 

model. The graph of the probability of not going fishing under this policy (see Figure 7) 

shows that the dynamic model predicts a persistence of the quality impact that increases the 

probability of anglers staying home, relative to the static model.  

--- Insert Figure 7 --- 

Policy 4: Deterioration of Fishing Quality (late in season) 

Policy 4 causes the same impact (fishing quality deterioration) as Policy 3, but it is 

assumed to occur later in the season (beginning in week 14). A similar pattern to Policy 3 

arises (Figure 5), but the welfare impacts are smaller (per trip) than Policy 3 since the impact 

occurs later in the season and the dynamics are shifting more probability to staying home, 

rather than choosing other angling sites. This suggests that not only are the dynamics 

important in identifying welfare impacts, but specifying the seasonal nature of the activity 

and the time within that season that the impact occurs is important in the determination of 

“damages.” 

These simulations emphasize the very real and high value of representing the 

dynamics of choice by capturing habit persistence and state dependence, initial utilities and 

so forth. Extending choice models from the GEV family to straightforwardly incorporate 

these features should help improve the diffusion of the improvements made possible by this 

research into practical policy cases (including natural resource damage assessment) since the 

theory for welfare impact assessment has already been extended to this family of models. 
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4.0 Conclusion and Future Research 
 We have proposed an extension of the GEV family of choice models that incorporates 

a number of dynamic features: initial utility estimation, habit persistence, state dependence 

and future expectations are among them. Additionally, depending upon the member of the 

GEV family that is employed, it is possible to straightforwardly allow for time-varying 

covariance matrices, thus capturing both heteroscedasticity and inter-temporal differences in 

cross-substitutions among alternatives. For example, if the MNL model is used with our 

approach, the resulting model can be temporally heteroscedastic, though all alternatives will 

have identical error variances at a given time period and all covariances will be zero; if a 

TEV or NMNL model is specified, however, the covariances identified through the tree 

structure will be estimable (either constant or varying across time, as we have done in our 

empirical application; see Table 1). 

In practice, GEV models, particularly its more standard members (MNL, TEV, 

NMNL) are relatively easy to estimate via standard methods. The challenges imposed by the 

GEV extensions we have proposed are relatively minor, particularly when compared to 

extant dynamic alternatives. We particularly see the TEV and NMNL extensions as being 

useful tools to support welfare assessment efforts in practice. 

The use of the dynamic model for simulation and welfare measurement has raised 

several issues that are not apparent when using static models. Some of these issues include 

the specification and interpretation of time-varying covariance structures, and the 

interpretation of hierarchies of scale (inclusive value) parameters. However, the most 

challenging issue arising from this study is the specification and interpretation of the welfare 

measures in the case of dynamic demand. Policy changes or environmental changes will have 
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temporal impacts in dynamic models. Thus, certain changes (e.g. a loss in environmental 

quality) will remain in the memory of the consumer for several periods and will affect choice 

and welfare for several periods, even after the effect has been eliminated. This is particularly 

challenging for the case of site closures due to environmental damage. Unless there have 

been observations of closure, and the impact of closures modeled explicitly, it is difficult to 

specify exactly what the dynamic impact will be. A static model treats this issue 

simplistically – individuals return to their original utility levels after the site has been re-

opened. However, dynamic models require that the “memory” of the disutility associated 

with the closure be reflected in previous period utility weights when specifying the utility in 

the current period. This issue opens a wide variety of research questions, including the 

assessment of closures of different types (environmental damage, administrative closures, 

etc.) and the appropriate modeling of each when they are observed. Certainly it would seem 

recommendable that the decay, or memory, factors proposed in the models here become a 

function of the nature of the closure. 

 This paper presents a tractable dynamic discrete choice model, but the empirical work 

presented does suffer from several shortcomings. We have not included taste heterogeneity in 

our empirical work, but it is straightforward to do so in these dynamic extensions of the GEV 

family, as shown in the log likelihood expression (14), particularly using simulated 

maximum likelihood methods (e.g. McFadden and Train 1997, Brownstone and Train 1999). 

This topic also brings up a shortcoming of our current work, which is the omission of serial 

correlation from the dynamics. This omission can be partially accounted for through the 

inclusion of parameter heterogeneity in models, but future research should extend the 

suggested approach to include serial correlation. 
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Figure 1: Dynamic Nest Structure of a 2-Level TEV Model with Time-
Varying Covariance Matrix 
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Figure 2: Dynamic Nest Structure for Recreational Fishing Application 
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Figure 3: “Go Fishing” Cluster (Sites 1, 2 and 3) Correlations 
(Covariance Matrix Estimates) 
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Figure 4: Base Simulations of Probabilities of “Stay Home” and 
Choosing Site 1 
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Figure 5: Welfare Measures, TEV Models, for 4 Simulated Policy 
Changes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Legend: Policy 1 – Doubled cost for all sites, beginning with week 5. Policy 2a,b – Closure of location 2, weeks 4-7. Policy 3 – 
Fishing quality deterioration, location 1, weeks 4-7. Policy 4 – Fishing quality deterioration, location 1, weeks 13-19. 
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Figure 6: Simulations of Probabilities of Choosing Site 2 Under Policy 2 
– Site 2 Closure, Weeks 4-7 
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Figure 7: Simulations of Probabilities of Choosing Site 1 and “Not-
Going” Under Policy 3 – Fishing Quality Deterioration, Site 1, 
Weeks 4-7 
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Table 1: Summary of Certain GEV Models, Generator Functions and 
Stochastic Utility Maximization Consistency Conditions 
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Table 2 – Panel Tree Extreme Value Model Estimation Results 
 

Parameter Estimates (t-stats) 
 

 
 

Variables 

 
 

Cross-
Sectional 

TEV 

 
+Time-

Varying Tree 
and Period 

Scales 

 
 
 
+ 

Dynamics 

 
 
 

+Expec-
tations 

 
 
 
 

 Restricted 
Utility Function      

Length of Coast @ Location 0.0492 (3.56) 0.0020 (2.46) 0.0037 (0.81) 0.0118 (2.44) 0.0093 (2.35) 
Fuel Cost to Access Location -0.2026 (-4.8) -0.0056 (-2.41) -0.0183 (-2.41) -0.0248 (-3.71) -0.0234 (-3.00) 

Size Reliability @ Location 0.1242 (5.09) 0.0042 (2.85) 0.0116 (3.32) 0.0100 (3.71) 0.0095 (4.17) 
Retiree (Base=stay home) 0.6535 (4.47) 0.0281 (3.33) 0.0337 (3.56) 0.0347 (4.17) 0.0303 (3.87) 

Fishing Club Member 
(Base=stay home) 

 
-0.8280 (-4.85) 

 
-0.0236 (-2.79) 

 
-0.0274 (-2.69) 

 
-0.0252 (-3.33) 

 
-0.0256 (-3.16) 

Expected Catch Rate Type 1 0.0201 (0.74) 0.0074 (1.28) -0.0118 (-0.69) -0.0076 (-1.25) -0.0096 (-1.02) 
Expected Catch Rate Type 2 -0.1401 (-2.01) -0.0113 (-1.69) 0.0022 (0.15) 0.0190 (1.45) 0.0149 (1.22) 
Expected Catch Rate Type 3 -0.0255 (-0.55) -0.0020 (-0.27) 0.0263 (1.29) 0.0120 (0.91) 0.0154 (1.11) 

Last Site Fished? 0.2347 (4.38) 0.0541 (3.30) 0.1110 (4.46) 0.0896 (4.44) 0.0892 (7.97) 
Weeks w/o Fishing (stay home) 0.4279 (7.79) 0.0250 (2.63) -0.0038 (-0.27) 0.0039 (0.37) 0 (⎯) 

(Weeks w/o Fishing)2 (stay 
home) 

 
-0.0209 (-3.96) 

 
-0.0019 (-2.02) 

 
0.0002 (0.11) 

 
-0.0002 (-0.17) 

 
0 (⎯) 

Initial Utilities1      
Location 1 0 (⎯) 0 (⎯) -0.1233 (-3.37) -0.3692 (-2.94) -0.3252 (-3.27) 
Location 2 0 (⎯) 0 (⎯) -0.1173 (-3.30) -0.2345 (-2.53) -0.2068 (-2.77) 
Location 3 0 (⎯) 0 (⎯) -0.1207 (-3.01) -0.4312 (-2.74) -0.3170 (-2.61) 
Stay Home 0 (⎯) 0 (⎯) 0 (⎯) 0 (⎯) 0 (⎯) 

Tree Root Scale      
ln(µ) 0 (⎯) 0 (⎯) 0 (⎯) 0 (⎯) 0 (⎯) 

Time Period Scales      
ln(µ1) ≡ ln(µ) 3.7693 (7.26) 3.2503 (6.04) 2.6865 (5.58) 2.7748 (6.00) 
ln(µ2) ≡ ln(µ) 2.2907 (6.08) 2.2550 (7.13) 1.1505 (2.92) 1.3793 (4.43) 
ln(µ3) ≡ ln(µ) 2.2828 (6.71) 2.0395 (6.44) 1.3682 (4.08) 1.5402 (5.27) 
ln(µ4) ≡ ln(µ) 1.1815 (2.79) 0.8185 (1.80) 0.6370 (1.69) 0.7466 (2.11) 
ln(µ5) ≡ ln(µ) 0.8280 (1.73) 0.9092 (2.42) 0.5363 (1.37) 0.6834 (2.09) 
ln(µ6) ≡ ln(µ) 1.0272 (2.80) 0.8777 (2.59) 0.6190 (1.85) 0.7323 (2.36) 
ln(µ7) ≡ ln(µ) 1.2853 (3.95) 1.2882 (4.51) 1.0719 (3.83) 1.2043 (4.69) 
ln(µ8) ≡ ln(µ) 1.3508 (4.41) 1.1491 (4.09) 1.0182 (3.75) 1.1185 (4.44) 
ln(µ9) ≡ ln(µ) 0.2119 (0.47) 0.2225 (0.60) -0.0015 (-0.01) ≡ ln(µ) 

ln(µ10) ≡ ln(µ) 0.9167 (2.84) 0.7626 (2.55) 0.5691 (1.88) 0.6845 (2.56) 
ln(µ11) ≡ ln(µ) 1.0211 (3.33) 0.8950 (3.25) 0.8158 (3.06) 0.9294 (3.90) 
ln(µ12) ≡ ln(µ) 0.5349 (1.62) 0.2307 (0.74) 0.1038 (0.34) 0.2024 (0.69) 
ln(µ13) ≡ ln(µ) 1.2483 (4.16) 1.1177 (3.98) 1.0605 (3.90) 1.0560 (5.87) 
ln(µ14) ≡ ln(µ) 1.0180 (3.33) 0.7440 (2.57) 0.6318 (2.34) 0.7491 (2.66) 
ln(µ15) ≡ ln(µ) 0.6216 (1.98) 0.1904 (0.64) 0.1555 (0.55) 0.2709 (1.06) 
ln(µ16) ≡ ln(µ) 0.2690 (0.79) -0.132 (-0.41) -0.1643 (-0.52) ≡ ln(µ) 
ln(µ17) ≡ ln(µ) 0.3897 (1.23) -0.2569 (-0.80) -0.3200 (-1.02) ≡ ln(µ) 
ln(µ18) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) 
ln(µ19) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) ≡ ln(µ) 

 
(continued)
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Table 2 – (continued) 
 

Parameter Estimates (t-stats) 
 

 
 

Variables 

 
 

Cross-
Sectional 

TEV 

 
+Time-

Varying Tree 
and Period 

Scales 

 
 
 
+ 

Dynamics 

 
 
 

+Expec-
tations 

 
 
 
 

 Restricted 
Tree Scales2      

ln(θ1,1) 1.9285 (9.36) 6.3427 (13.59) 5.1151 (10.16) 3.6557 (5.71) 3.9689 (6.07) 
ln(θ1,2) 1.9285  (⎯) 5.8637 (6.93) 4.4799 (6.87) 7.0160 (5.67) 4.8250 (1.42) 
ln(θ1,3) 1.9285  (⎯) 2.8837 (7.30) 2.3413 (8.49) 1.8746 (5.75) 1.9572 (7.14) 
ln(θ1,4) 1.9285  (⎯) 3.6947 (7.88) 2.7703 (6.41) 2.7235 (5.44) 2.8102 (7.39) 
ln(θ1,5) 1.9285  (⎯) 2.5638 (6.72) 1.7933 (5.68) 1.6590 (4.87) 1.6970 (6.47) 
ln(θ1,6) 1.9285  (⎯) 3.0033 (7.76) 2.2622 (6.72) 2.1944 (6.38) 2.1931 (9.66) 
ln(θ1,7) 1.9285  (⎯) 2.7808 (6.92) 2.0167 (5.78) 1.9564 (5.48) 1.9458 (6.24) 
ln(θ1,8) 1.9285  (⎯) 2.3431 (6.30) 1.6864 (5.62) 1.6740 (5.28) 1.6772 (6.62) 
ln(θ1,9) 1.9285  (⎯) 2.6421 (6.66) 1.9194 (5.45) 2.1325 (5.85) 2.0933 (6.43) 

ln(θ1,10) 1.9285  (⎯) 2.3341 (5.92) 1.6168 (4.78) 1.6520 (4.82) 1.7063 (5.86) 
ln(θ1,11) 1.9285  (⎯) 2.3843 (5.66) 1.6570 (4.38) 1.6848 (4.47) 1.7005 (6.10) 
ln(θ1,12) 1.9285  (⎯) 3.3484 (5.75) 2.7011 (4.87) 2.3153 (4.31) 2.4723 (4.50) 
ln(θ1,13) 1.9285  (⎯) 1.7480 (4.75) 0.8739 (2.70) 0.8924 (2.82) ≡ ln(µ13) 
ln(θ1,14) 1.9285  (⎯) 1.7601 (4.61) 0.8340 (2.26) 0.9672 (2.70) 0.9636 (3.09) 
ln(θ1,15) 1.9285  (⎯) 2.2141 (5.17) 1.2877 (3.03) 1.2995 (3.05) 1.3083 (3.56) 
ln(θ1,16) 1.9285  (⎯) 2.0987 (4.91) 1.2959 (3.21) 1.1647 (3.04) 1.2980 (2.79) 
ln(θ1,17) 1.9285  (⎯) 2.5747 (5.20) 1.7565 (3.71) 1.6581 (3.86) 1.6915 (3.14) 
ln(θ1,18) 1.9285  (⎯) 2.4363 (4.76) 1.5394 (2.82) 1.2778 (3.09) 1.4499 (3.13) 

ln(θ1,19) ≡ ln(θ1,18) 1.9285  (⎯) 2.4363  (⎯) 1.5394  (⎯) 1.2778  (⎯) 1.4499  (⎯) 
Decay Factors3,4      

Location 1 -∞ -∞ 0.6626 (72.45) 0.6574 (67.96) 0.6623 (107.5) 
Location 2 -∞ -∞ 0.6660 (72.01) 0.6545 (59.00) 0.6615 (86.99) 
Location 3 -∞ -∞ 0.6726 (65.21) 0.6619 (53.52) 0.6692 (74.17) 
Stay Home -∞ -∞ 0.7044   (⎯) 0.7044   (⎯) 0.7044   (⎯) 

Expectation Weights5      
Location 1 -∞ -∞ -∞ 0.6174 (1.48) 0.5908 (1.43) 
Location 2 -∞ -∞ -∞ -0.7813 (-0.71) -0.8540 (-0.69) 
Location 3 -∞ -∞ -∞ 0.4823 (0.97) 0.1667 (0.20) 
Stay Home -∞ -∞ -∞ 0.8373 (1.84) 0.6473 (1.70) 

Compatible with Utility 
Maximization? 

     
Goodness-of-Fit      
Number of Parameters 12 46 52 56 50 
Log Likelihood @ 
Convergence (LL(0)=-
2084.43) 

-1182.38 -1072.29 -1037.62 -1024.18 -1027.22 

2ρ  0.427 0.464 0.477 0.482 0.483 
 

Notes: 1. An identification restriction requires that at least one of the initial utilities be zero. 
 2. All models constrain θ2,t, t=1,…,19, to be equal to the period scale µt, t=1,…,19, for identification purposes. 
 3. Decay factors defined as ρ=[1+exp(-γ)]-1, where γ is value shown. 

4. Decay factor for Location 4 held constant due to lack of variability in data, which required imposition of this condition to permit 
identification of remaining parameters. This identification condition is not theoretically required by the model. 

5. Expectation weights defined as (1+ϕ), ϕ= exp(γ), where γ is value shown. 
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ENDNOTES 
1 Many treatments of the initial conditions problem employ information on the sample of 

individuals to address the fact that unobserved heterogeneity essentially “causes” the bias 

arising from the unknown initial utilities.  In our approach we estimate sample average 

initial utilities; however, these could easily be augmented to depend on characteristics of 

the sample or could be estimated as random parameters and thus would include 

heterogeneity considerations in the determination of initial utilities. 

2 GEV Theorem: Suppose G(y1,…,yJ) is a non-negative, homogenous-of-degree-µ (where 

µ≥0) function of (y1,…,yJ)≥0. Suppose lim G()=∞ as yi→∞, for i=1,…,J. Suppose for any 

distinct {i1,…,ik}⊆{1,…,J}, ∂kG()/∂yi1
…∂yik≥0 if k is odd and ≤0 if k is even. Then, 

),...,(/),...,()( JiJiii yyGyyGyiP µ= , where Gi=∂G/∂yi. The corresponding multivariate 

CDF of the error vector εJx1 is given by F(ε)=exp[-G(exp(-ε1),…,exp(-εJ))], -∞<ε<∞. See 

McFadden (1978), Ben-Akiva and Francois (1983). 

3  There are many specifications of decay that can be employed.  The geometric decay 

employed here is a special case of the Schmidt Decay Model. Let ,)1( )1/( jjss
jjs

δδρα −+=  

10 ≤≤ jρ  , 10 <≤ jδ , j=1,…,J, s=0,…,t. Utilities (4b) become 
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and choice probabilities are given by (4a) using the utility function above. This model has 

as a special case the Geometric Decay  Model, when δj≡0, ∀j. In the Schmidt Decay 

Model, past utilities can have a greater impact than current utilities, so it can be useful to 

capture inertia in behavior, habit, etc. 
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4 NMNL models are simply TEV models in which construct node scales are constrained 

to be equal at the same level of the tree. 

5 Note that all scale factors reported in Table 2 are actually the logarithm of the scale 

factors. This transform was employed to guarantee non-negativity of scale estimates. 


