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Abstract 

Winter Road Surface Condition (RSC) monitoring currently relies on qualitative descriptors such 

as "bare lane," "partially snow-covered," and "fully snow-covered. These descriptors present two 

inherent problems—their subjective nature, which gives rise to measurement inconsistencies, and 

the difficulty for road users to discern between safe and unsafe roads due to the broad spectrum of 

conditions intermediate RSC classes cover. Friction-based measurements, ranging from 0 to 1, 

alleviate these issues as they provide a much more objective measure. Despite this, the large-scale 

implementation of such measurements has long been impeded by high collection costs. Even with 

the incorporation of friction values, the existing RSC monitoring system is often plagued by 

limited spatial coverage and infrequent updates. This can result in potential discrepancies between 

reported and actual conditions, thus compromising the reliability and usability of the system.  

To overcome these challenges, this thesis capitalizes on the advancements in computing 

capabilities and sophisticated machine learning techniques. The primary focus is to repurpose the 

information-rich image datasets and to enable continuous monitoring of dynamic winter RSCs. 

This strategy ensures a consistent flow of reliable and timely information for maintenance 

personnel and road users. At the core of this novel approach is a comprehensive framework 

designed to convert winter road surface images into friction values. This framework synergistically 

integrates three essential components—an image-based friction model, a friction interpolator, and 

a binary collision model. Together, they form a robust system aimed at addressing the prevalent 

issues in winter RSC monitoring for improved winter road safety. 

For the development of the image-based friction prediction model, 128 friction measurements and 

their corresponding road surface images were collected over select roads in the city of Edmonton. 
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Since the images themselves could not serve as direct inputs, feature extraction techniques were 

used to summarize the information found within the images. These techniques encompass RSC 

labeling into four classes (bare lane, one-track bare, two-track bare, and fully snow-covered), 

image thresholding, Local Binary Pattern (LBP), and Gray Level Co-occurrence Matrix (GLCM). 

With these extracted features, three tree-based algorithms; namely, decision tree, Random Forest 

(RF), and Gradient Boosting (GB), were used to model the relationship between the friction values 

and the extracted feature. All three tree-based models displayed robust performance based on 

standard statistical measures such as RMSE and RMSPE.  

In an effort to improve the spatial coverage of RSC monitoring, the friction interpolator was 

subsequently constructed. Continuous friction values were generated by feeding collected road 

surface images into the friction model. Ten datasets were then created by varying the distance 

between available observation points from 100 m to 1000 m per observation. A total of six 

interpolators were evaluated on these datasets, including Ordinary Kriging (OK), Regression 

Kriging (RK), Random Forest (RF), RFOK, Random Forest Spatial Interpolator (RFSI), and 

RFSIOK. Among these interpolators, OK yielded the highest accuracy and displayed the least 

sensitivity across nearly all observation distances. An additional case study was conducted using 

the City of Edmonton’s traffic camera locations as a real-world scenario to demonstrate the 

applicability of the proposed model. This case study assesses the potential for using traffic camera 

data to interpolate friction measurements. Identical to the sensitivity analysis, OK was found to be 

the top-performing interpolator, achieving commendable accuracy with only five friction 

measurements as input. 

To underscore the potential of the proposed framework in enhancing road safety, a binary collision 

likelihood model was developed by utilizing continuous friction measurements. After examining 
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segment lengths ranging from 500 m to 20 km, the 6.5 km model was determined to offer the 

optimal balance between interpretability and accuracy. The developed model demonstrated robust 

performance leveraging Annual Average Daily Traffic (AADT) and friction as predictors. 

Furthermore, an additional analysis was conducted assuming the availability of Connected 

Vehicles (CV) and appropriate sensing technologies. This analysis took a more pragmatic 

approach to assess potential safety benefits by evaluating the predictive capabilities of the 

generated continuous friction measurements in relation to collision events. The findings offered a 

tangible demonstration of the potential safety improvements that could be realized using the 

proposed framework.  
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Chapter 1 Introduction 

1.1 Background 

Road Surface Condition (RSC) monitoring is essential for jurisdictions that experience winter 

weather. The information gathered can be used by maintenance personnel for targeted treatment 

and disseminated to the public for advance travel planning. The former provides better-conditioned 

roads, and the latter allows road users to avoid dangerous road sections, both of which have the 

potential to improve road safety. 

Most commonly, RSC information is provided in the form of qualitative descriptions (e.g., Alberta, 

CA, and Iowa, U.S., use a three-category system of bare, partially snow-covered, and fully snow-

covered to describe the condition of the road surface (511 Alberta, 2023; Iowa DOT 511, 2023)). 

The problem with labeling or describing pavement condition is that it is subjective in nature. 

Different people will have different opinions on what qualifies as a particular category, leading to 

measurement discrepancies that make the information disseminated less reliable. Moreover, 

generalizing all winter conditions into a limited number of categories creates situations where a 

single category simultaneously represents two conflicting safety levels. Such is the case with the 

partially snow-covered class mentioned above, where the amount of grip provided varies over a 

wide range (Wu & Kwon, 2022). When road users are confronted with this type of ambiguous 

condition, it becomes unclear what the appropriate response should be. A solution to this problem 

is changing the surrogate measure to friction. The advantage of this change is that it eliminates the 

need to make subjective interpretations, as friction is a measured variable made by a device. It also 

removes the safety ambiguity inherent in qualitative, category-based systems by using the direct 

relationship between friction and collisions to find friction thresholds where collision risk is most 

pronounced (Abohassan et al., 2021).  

Although friction is beneficial in many ways, it is not widely used due to the financial constraints 

associated with the collection process. The technology to effortlessly collect friction value as the 

vehicle travels already exists; however, the equipment cost associated is too high for mass 

implementation. Comparatively cheaper options are also available, but these devices are much 

more labor-intensive due to their relatively time-consuming measuring procedure and the need for 
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traffic control (Hall et al., 2009). For friction to become more widely adopted, equipment costs 

must be reduced while minimizing labor demand in the collection process.  

Changing the surrogate measure used to represent RSC is only half the problem; the spatial 

coverage of RSC must also be extended. From our observation, RSC is assumed to be constant 

over long distances. This assumption may need to be corrected according to the existing literature, 

where it has been found that conditions tend to vary even in short stretches (Gu, 2019). 

Additionally, there is also an issue with update frequency. Depending on the jurisdiction in 

question, the update frequency can be as low as once or twice per day. As a result, the information 

presented to road users may not reflect the actual conditions they may encounter.  

Two conditions must be met in order to address the above shortcomings: first, an automated, low-

cost method of friction measurement must be developed; and second, there must be a way to 

convert point measurements to continuous measurements without additional investment in 

increasing measurement density and patrol frequency. Researchers have tried to develop methods 

that satisfy one of these two conditions but never both. Attempts at developing friction models 

have shown that there are several viable ways of estimating friction values. Cameras can be used 

to capture images of the road surface, which can then be converted to friction using a Machine 

Learning (ML) model (Du et al., 2020). Vehicle tires can be embedded with force sensors to 

measure parameters needed to estimate friction using mathematical friction models (Matilainen & 

Tuononen, 2011). There are also methods that use the vehicle's existing sensors to estimate friction 

through mathematical formulation (Khaleghian et al., 2017). Among these methods, the use of 

road surface images to estimate friction is particularly promising because it has several advantages 

over other methods; first, it is much easier to implement than tire sensors, and second, its 

implementation is not limited to vehicles; it can be applied to any infrastructure that has imaging 

capabilities. However, there is a significant research gap associated with image-based friction 

models: existing studies have focused solely on bare conditions; it is unknown whether friction 

values can be accurately estimated for winter road conditions. 

In the field of developing interpolators to estimate friction, existing efforts revolve around using 

Regression Kriging (RK) to interpolate a friction-like measure called Road Surface Index (RSI). 

Although these studies produced encouraging results, several environmental studies have shown 
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that Random Forest (RF) and RFOK (hybrid model that combines RF and Ordinary Kriging) have 

shown exceptional performance in interpolating variables like mud sea content, solar flare, etc. 

(Leirvik & Yuan, 2021; Li et al., 2011; Sekulić et al., 2020). In these studies, the accuracy of RF 

and RFOK exceeds geostatistical interpolators like RK and other ML methods. The fact that RF 

and RFOK have not been explored in friction interpolation and road weather interpolation is a 

missed opportunity, i.e., a gap that needs to be addressed. 

1.2 Problem Statement and Motivation 

Based on the above discussions, it is clear that both a low-cost friction model and a friction 

interpolator are needed to solve the problems found in the existing winter RSC monitoring system. 

In order to develop effective components that will enable this improvement, three research 

questions need to be answered. 

The first research question is, can friction values be accurately predicted using winter road surface 

images? As mentioned previously, friction models have only been developed for bare asphalt 

conditions. These methods used image textures and RSC descriptions as predictors of friction 

values. Whether these features can be used to accurately predict winter friction values is unknown. 

Nevertheless, there are papers that propose a framework for estimating winter friction values, but 

the authors were unable to validate their proposed method due to a lack of actual friction 

measurements (Roychowdhury et al., 2018; Wu & Kwon, 2022). As a result, the question of 

whether friction values can be estimated from winter road surface images remains unanswered.  

The second research question is, what is the best interpolator for friction? RK is the only 

interpolator that has been evaluated in the existing literature. It is unknown how it compares to 

Ordinary Kriging (OK), which has been shown to outperform RK when there is no trend in the 

data (Zhu & Lin, 2010). It is also unclear whether the superior performance shown by RF models 

persists when the target variable changes to friction. Likewise, what happens when RF is combined 

with OK? Overall, there is a need to compare the performance of RK with other high-performing 

interpolators. 

Finally, can continuous friction values be used to identify the occurrence of winter collisions? 

Assuming that both an image-based friction model and a friction interpolator have been 
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successfully developed, presenting the output continuous friction values without modification may 

confuse road users and maintenance personnel unfamiliar with the concept of friction. Therefore, 

a simpler way to present this information is needed. One solution is to develop a binary collision 

model—using friction as a predictor—to predict whether a collision is likely or unlikely. Such a 

model has the ability to improve road safety by providing advance warnings to road users and 

informing maintenance personnel where treatment is needed without additional interpretation. The 

development of a collision model with friction as an input has been explored in the existing 

literature. However, similar to image-based friction models, most efforts have focused on bare 

asphalt conditions, where the consensus is that lower friction values are associated with more 

collisions. In terms of winter collision modeling, it appears that only one author has attempted to 

model winter collisions using friction as a predictor (Abohassan et al., 2021, 2022). Furthermore, 

the current approach in collision modeling relies on parametric models that make a distribution 

assumption. It is possible that using non-parametric machine learning methods could enhance the 

performance of the collision model. Ultimately, additional research is required to substantiate the 

correlation between friction and winter collisions through modeling and to investigate the 

feasibility of utilizing machine learning for friction-collision modeling. 

1.3 Research Objective 

This thesis contains a primary and a secondary objective. The primary objective is to develop a 

framework for generating continuous road friction values from winter road surface images. Then, 

to demonstrate how the proposed framework can be used to improve road safety, a secondary 

objective was formulated: to construct a binary collision likelihood model that provides advance 

warnings to road users regarding dangerous road sections. Three components are required to 

achieve these two objectives; the first two are designed to meet the primary objective and answer 

the first two research questions, and the third component answers the third research question while 

satisfying the secondary objective. The specifics of each component and what they aim to 

accomplish are listed below: 

Component One: Image-based Friction Model  

• Produce a friction model that maintenance personnel can apply to estimate friction 

coefficients from winter road surface images. 
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• Quantify and rank the viability of different image features on their ability to predict road 

friction values. 

• Evaluate and validate the relationship between winter road surface conditions and road 

friction values. 

• Compare the performance of three different tree-based algorithms (decision tree, random 

forest, and gradient boosting) in their ability to estimate friction values from road surface 

images. 

Component Two: Friction Interpolator 

• Evaluate the performance of Machine Learning (ML) models for interpolating friction 

coefficients. 

• Compare the interpolation performance between ML models, geostatistical methods, and 

hybrid models that combines ML with geostatistical methods. 

• Determine the feasibility of using traffic cameras to generate continuous friction 

measurements. 

Component Three: Binary Collision Model 

• Provide a novel collision likelihood modeling framework that uses interpolators to 

determine the optimal aggregation length. 

• Validate the relationship between friction coefficient and winter collision occurrences 

through modeling. 

• Evaluate the viability of using ML to model the friction-collision relationship. 

• Quantify the expected savings of the proposed framework in a connected vehicle and 

intelligent transportation system environment. 

 

1.4 Thesis Structure  

This thesis contains six chapters. Excluding the introduction chapter, it is organized as follows: 

In chapter two, the literature review section, readers will find a summary of the physics of friction, 

an overview of measurement methods commonly used in industry, and prototypes developed in 

previous research. Additionally, a summary of current research efforts in the interpolation of 
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friction and environmental variables is also provided. This section concludes with a discussion of 

the relationship between friction and collision occurrence. 

Chapter Three is the Methodology section. The organization of this chapter follows the order of 

the three components. This chapter first explains the data and methods used to develop the image-

based friction model, then the friction interpolator, and finally, the binary collision model. 

Chapter Four covers the development of an automated image-based friction model. The prediction 

accuracy of the model, the internal logic of the model, and the relative importance of the features 

are presented in this chapter.  

Chapter Five compares the performance of six interpolators on datasets with increasing distance 

between measurements to determine the best-performing friction interpolator. Also included in 

this chapter is the development of a binary collision model based on segment length calibration 

and its associated safety benefits. 

The last chapter, chapter six, highlights this thesis's main findings and research contributions, 

along with its limitations and potential future research directions.  
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Chapter 2 Literature Review 

Chapter two aims to provide an in-depth overview of the theory behind friction and how it can be 

measured. The measurement methods discussed are divided into two categories: commonly used 

industry-accepted methods and prototype methods proposed in the literature. In addition, this 

chapter includes a comprehensive review of existing studies in spatial interpolation and friction-

based collision modeling. A summary of the key points and existing research limitations can be 

found at the end of this chapter. 

2.1 Road Surface Friction 

Friction Overview 

Road surface friction is the amount of resistant force between the tires and the road surface; it is 

what allows road users to manipulate and control their vehicles (Hall et al., 2009). The specific 

amount of friction force generated by the tires is a product of two mechanisms: adhesion and 

hysteresis. Adhesion is the force generated from the tires interlocking with the road surface, and 

hysteresis occurs as a result of the tires compressing after engaging with the road surface, resulting 

in energy being stored within the tires. When the tire relaxes, some of this stored energy is lost as 

heat, which produces a frictional force. Other factors also impact pavement friction; however, they 

are considered insignificant compared to adhesion and hysteresis (Hall et al., 2009). Figure 2.1 

illustrates the main mechanisms that impact road friction. 

 

Figure 2.1 Two Main Factors That Impact Road Friction (Hall et al., 2009) 
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These two forces act as two different kinds of road textures. Adhesion depends on micro textures, 

whereas hysteresis depends on macro textures. As their name suggests, micro and macro textures 

operate at different scales. Macro textures can be thought of as the uneven pavement texture from 

the material (gravel, sand, etc.) that make up the pavement surface, and micro textures are the 

unevenness that exists on a single material element.  

Factors Affecting Pavement Friction 

Other than macro and micro textures, several other factors influence the two friction forces. The 

most impactful parameters are listed in Table 2.1.  

Table 2.1 Factors That Impact Road Friction (Adapted from Hall et al., 2009) 

Road Surface 

Characteristics 

Tire Parameters Environmental 

Factors 

Vehicle Parameters 

• Micro texture 

• Macro texture 

 

• Tread design 

and condition 

• Tire pressure 

• Snow and ice 

• Water 

• Vehicle speed 

• Braking 

method 

Tire Parameters 

Tire tread patterns and material usage affect the amount of friction provided (Hall et al., 2009). In 

wet conditions, certain tread patterns can expel water trapped at the tire/road interface, allowing 

the tires to have more contact with the pavement. Similarly, tires designed for winter conditions 

have deeper and wider grooves to dissipate snow and slush. As the tire ages, the tread depth 

decreases, resulting in poorer performance. As for tire pressure, a poorly inflated tire is prone to 

concaving. Instead of expelling water through the treads, water is now trapped under the tire. (Hall 

et al., 2009). 

Environmental Factors 

Water, snow, and ice all act as lubricants in the tire-pavement interface (Hall et al., 2009). The 

effect of water is most pronounced at higher speeds during hydroplaning, where the vehicle’s tires 

float on the layer of water. Since there is no contact between the tires and the road, friction is close 

to zero. Snow and ice have the same effect—they prevent contact between the tires and the road 
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surface (Hall et al., 2009). In general, the greater the presence of snow and ice, the lower the 

coefficient of friction  (Wallman & Åström, 2001).   

Vehicle Parameters 

The speed of the vehicle and the braking method control the slip ratio (Hall et al., 2009). When 

the vehicle is rolling freely, the tire and vehicle speeds are the same. In this case, the slip ratio is 

0. During braking, the tire speed can rotate at a slower speed than the vehicle speed. Depending 

on the difference in speed, the coefficient of friction will vary. Peak friction is reached between 10 

and 20% slip ratio, beyond which friction decreases until the sliding friction coefficient is reached 

(achieved at 100% slip ratio) (Hall et al., 2009). Figure 2.2 illustrates this relationship. 

 

Figure 2.2 Relationship Between Friction and Tire Slip 

Methods for Measuring Friction 

Friction measurement methods fall into two categories: generally accepted methods that have been 

rigorously tested, and prototype methods developed by researchers that have only been validated 

in the confine of the research itself. 

Existing Testing Methods 

Friction measurement devices currently used by jurisdictions can be split into four categories: 

locked-wheel, deceleration-based, slip-based, and portable. Locked-wheel and slip-based methods 

require the attachment of additional equipment to the vehicle in the form of a small trailer or a 
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third tire (Al-Qadi et al., 2002). In the locked-wheel method, the vehicle travels at a constant speed 

of 40 mph (64 km/h), at which point the driver can choose to lock the device wheel to collect point 

measurements (Al-Qadi et al., 2002). In comparison, the slip-based methods collect friction values 

continuously by measuring the rotational resistances of smooth tires at a specific slip ratio (Lee et 

al., 2019). However, its ability to collect continuous measurements comes at the cost of complex 

data processing and high maintenance fees (Lee et al., 2019).  

Deceleration-based methods measure changes in velocity via an in-vehicle device. The procedure 

involves the vehicle reaching a certain speed, then fully initiating the breaks (Al-Qadi et al., 2002). 

During the breaking process, the initial velocity and braking time are recorded, from which friction 

can be calculated by dividing the deceleration rate by gravity. This method has been shown to be 

simple and accurate; however, it only provides point measurements and requires traffic control 

measures (Al-Qadi et al., 2002). 

The last type of method is portable friction testers. Devices in this category include the British 

Pendulum Tester (BPT) and Dynamic Friction Tester (DFT) (Hall et al., 2009). BPT measures 

friction based on how high the pendulum swings after its rubber shoe slides across the pavement 

surface. The results generated using this method are said to be highly dependent on operator 

procedure and wind effects. On the other hand, DPT is an automated device that measures friction 

through a spinning disk that hovers over the road surface. The spinning disk is spun at a constant 

tangential speed of 55 mph (88 km/h); it is then lowered to make contact with the road surface. 

The force generated between the disk and the pavement is measured and used to determine friction 

(Hall et al., 2009). 

Prototype Methods 

Researchers over the years have attempted to develop more efficient and cost-effective methods 

of estimating friction. According to Khaleghian et al. (2017), existing research can be either 

experimental or model-based. Experimental-based methods attempt to find the correlation between 

sensor data and friction, whereas model-based methods attempt to mathematically model friction.  

In the field of experimental-based methods, researchers have attempted to use optical sensors to 

estimate friction. One researcher, Du et al. (2020), collected closeup images of bare asphalt 
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surfaces and classified them into two friction levels (qualified and unqualified resistance). They 

extracted features using Local Binary Pattern (LBP), Gray Level Co-occurrence Matrix (GLCM), 

color histograms, and Convolutional Neural Network (CNN), then built models using RF and 

Artificial Neural Network (ANN) algorithms to predict the friction level. The ANN model 

achieved 90.67% accuracy, while the RF model achieved 76%. Another study was done by 

Roychowdhury et al. (2018), who proposed a two-stage framework to label winter road images by 

friction. Stage one used a CNN to filter out dry asphalt images (assumed to be high friction). Stage 

two divided the image into quadrants and applied a logistic regression model to estimate snow 

likelihood. Then, based on the snow likelihood of each column, the image was labeled as high, 

medium, or low friction. Using this approach, the authors reported an 89.5% road friction 

estimation accuracy. Note that it is unknown how this accuracy value was obtained as the author 

did not have actual friction values. 

Yang et al. (2021) differed from the previous two studies by attempting to predict friction using 

regression rather than categorization. They used texture analysis and Multi-Linear Regression 

(MLR) on 3D scanned images of bare asphalt at different depths. The models with the highest R-

squared values of 0.87 and 0.88 were for 60 km/h and 10 km/h braking speeds, respectively, at 2.5 

mm depth. Wu et al. (2022) also tried to predict friction coefficients. They made a system to turn 

winter road images into a Road Surface Index (RSI)—a surrogate of friction. Images were inputted 

into a CNN RSC model to label images as bare, partially snow-covered, and fully snow-covered. 

An upper and lower RSI limit would restrict the RSI value depending on which RSC category the 

image belongs to. Then, using image thresholding to separate pixels into foreground and 

background values, the precise RSI can be determined using the formula  (𝑅𝑆𝐼𝑚𝑎𝑥 −

(𝑅𝑆𝐼𝑚𝑎𝑥 − 𝑅𝑆𝐼𝑚𝑖𝑛)  ∙ % 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 . In terms of prediction accuracy, because the 

author did not collect any friction values, it is not possible to examine the validity of their proposed 

method. 

Excluding optical sensors, tire sensors have also been used to estimate friction. Erdogan et al. 

(2011) installed a piezoelectric sensor to measure tread deflections; the estimated deflection was 

then inputted into the brush model (a mathematical model) to estimate friction. Likewise, 

Matilainen et al.  (2011) installed force sensors on the vehicle tie rods to measure the tire moment 

conditions needed in the brush model for friction estimation. Researchers have also embedded tires 
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with accelerometers to estimate tire load, which is necessary to estimate friction through 

formulation and track vibration differences resulting from slippery surfaces (Khaleghian et al., 

2016; Niskanen & Tuononen, 2015). Overall, the tire sensor approach tends to focus on estimating 

the necessary parameters found in a mathematical model instead of directly using it to predict 

friction.  

In terms of pure model-based methods, they do not require additional sensors that the vehicle does 

not already have (Khaleghian et al., 2017). One group of models in this category is the vehicle 

dynamic based-methods; these models contain two types of parameters—measurable and 

unmeasurable; through formulation, the measurable are used to estimate the unmeasurable. An 

example of a model that belongs in this class is the wheel dynamic model, which focuses on the 

motion of a single wheel. Another is the bicycle model that combines the rear and front wheels to 

create a two-wheel model. There are also other model categories like the tire-based and slip-slope-

based methods, where the former centers around tire forces and slip ratios/angles, and the latter 

estimate friction using the slip curve (Khaleghian et al., 2017).  

2.2 Spatial Interpolators 

The spatial interpolator aims to reduce the required data collection efforts and optimize the use of 

collected friction values. Although certain friction estimation methods can gather continuous 

measurements, employing workers to drive through a jurisdiction’s entire road network to collect 

data regularly is not financially feasible. A solution is to use spatial interpolators to generate 

continuous friction readings from limited point measurements. In the existing literature, three types 

of methods display the most promising performance: geostatistical-based, Machine Learning-

based (ML-based), and hybrid models that combine geostatistical with ML-based methods.  

Road Weather Interpolators 

Wu et al. (2022) used Kriging, a geostatistical method that interpolates data based on spatial 

correlation, to estimate Road Surface Temperature (RST) and Road Surface Index (RSI) from 

point measurements collected by Road Weather Information System (RWIS) stations. The 

objective of the study was to evaluate whether Kriging can be used to estimate the values between 

point measurements collected by RWIS stations. The input data for RST interpolation were 
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collected by mobile RWIS stations, with portions removed to mimic point measurements collected 

by stationary RWIS. By using Regression Kriging (RK), the study reported RMSE values ranging 

from 0.237 to 0.805, depending on the number of measurements available and the time of 

collection. Similarly, the study applied the same data processing to simulate stationary RWIS 

measurements for RSI, resulting in an RMSE value of approximately 0.15. 

Gu et al. (2019) conducted a similar investigation using geostatistical methods to interpolate RSI 

and RST. The input data used in this project were also collected from mobile RWIS. However, 

unlike Wu et al., who focused solely on Kriging, multiple interpolation methods were evaluated. 

These include Inverse Distance Weighting (IDW), Polynomial Interpolation (PI), and Thin Plate 

Splines (TPS). Performance was evaluated by randomly excluding 30% of the available data for 

testing. Among these methods, Regression Kriging (RK) produced the lowest average RMSE error 

of 0.231. For RSI, only RK was used for interpolation and produced RMSE between 0.004 and 

0.169, depending on the time of measurement and the highway segment in question. After 

determining that RK was the best-performing interpolator, stationary RWIS point measurements 

were artificially created by hiding a portion of the mobile RWIS’s RST data for validation. An 

RMSE between 0.52 and 0.88 was obtained via RK. This evaluation was performed only for RST, 

as stationary RWIS stations did not collect RSI data. 

ML and Hybrid Interpolators 

Outside of road weather-related research, there has been a growing interest in using machine 

learning (ML) for interpolations. Li et al. (2011) compared several ML methods with traditional 

statistical interpolators for predicting mud sea content. They tested 23 models, including Random 

Forest (RF), Support Vector Machine (SVM), Regression Tree (RPart), Ordinary Kriging (OK), 

IDW, and hybrid methods combining two algorithms. The top five models were RFOK, RF, 

RFIDW (2nd power), RpartOK, and IDW (3rd power). They concluded that RF captured the 

spatial trend well and performed better than Kriging and IDW. 

Leivik et al. (2021) also looked into using ML algorithms in making spatial interpolations. Their 

study evaluated the performance of RF, RK, and OK at interpolating solar flare radiation across 

the globe. The results show that for virtually all continents, RF produced the lowest error; in most 

cases, the next most accurate model had double the error of RF. For example, in North America, 
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RF had an estimation error of 9.69 Mean Absolute Error (MAE), whereas the next accurate 

model—a form of RK—had an MAE of 12.91. Hence, the author described RF as this study’s 

most accurate spatial interpolator. 

Recognizing the strength of RF, Sekulic et al. (2020) created a modified RF model called Random 

Forest Spatial Interpolator (RFSI). The difference between this and traditional RF is that two 

additional covariates were added: “values at nearby locations” and “distance to these 

measurements.” The reasoning is that these two features allow RF to learn the similarity between 

neighboring values. Using precipitation and temperature as the target variables, the author 

compared the performance of RFSI with RF, RK, and IDW. Overall, it was found that RFSI was 

the superior interpolator by a small margin.   

2.3 Relationship Between Friction and Collisions 
 

The relationship between friction and collisions is complicated, as friction is not the only factor 

that influences road safety. Researchers have attempted to shed light on this relationship through 

empirical evidence by comparing the proportion of collisions that occurred on low-friction road 

surfaces. The Road Research Laboratory in London (1965) compared the friction level between 

sites where collisions occurred and a series of randomly selected locations. It was found that sites 

linked to collisions had a lower mean friction value than the randomly selected ones; 0.45 versus 

0.60. In addition, the number of sites with friction below 0.45 could only be found in sites linked 

to collisions. A similar study was conducted by Schulze et al. (1977), where they observed that the 

friction distribution of collision sites differed from randomly selected sites; it was found that the 

majority of sites found at friction value below 0.40 were from collision sites. Another observation 

was made in the same study that accident rates increased as friction decreased.  

Researchers have also made efforts to statistically model the relationship between friction and 

collisions. Kuttesch (2004) developed a crash rate model using data collected in Virginia, U.S. The 

author developed several models using an aggregation length of one mile with friction only, AADT 

only, and friction and AADT together. In all three models, friction was found to be significant; 

however, by itself, it could only explain 0.4% of the total variation. AADT, on the other hand, was 

able to explain 29.9% while also being significant. The combined model posted the best results 

with an R-squared value of 0.3122, with both parameters being significant. In all three models, the 
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coefficient of friction was negative, which supports the idea that lower frictions result in more 

collisions. McCarthy et al. (2016) also developed a model using AADT and friction, where both 

AADT and friction were determined to be significant parameters that improved model 

performance. The authors developed three models for three different types of roads, and in all three 

models, friction had a negative coefficient. In addition to these two studies, many other researchers 

have examined the friction-collision relationship and concluded that the lower the friction, the 

higher the number of collisions (Hall et al., 2009; Lee et al., 2019). 

Up to this point, all of the studies discussed focused exclusively on non-winter conditions. The 

number of studies examining the relationship between friction and collisions during the winter is 

far fewer than in bare/wet conditions. According to Wallman et al. (2001), these studies generally 

compare the collision rate on various winter road conditions or are maintenance studies 

investigating the effect of anti-icing treatments. The results showed that the barer the road surface, 

the lower the accident rate. One notable Norwegian study found that the collision rate was eight 

times higher at friction coefficients below 0.15 than at 0.35 or higher (Wallman & Åström, 2001). 

In terms of researchers trying to model the relationship between winter collisions and friction, 

Abohassan et al. (2021) performed one of the few studies that used friction coefficients as a 

predictor of winter collision frequency. In their study, weather and maintenance variables, road 

surface friction, and road and traffic characteristics were assumed to be predictors of collision 

frequency. Using Structural Equation Modeling (SEM), the authors found that friction has a direct 

causal relationship with collision frequency; collisions decrease when friction increases. On the 

other hand, maintenance operations and weather data affect collision frequency through friction as 

a medium, i.e., maintenance operations and weather are a predictor of friction, which is a predictor 

of collisions. In a subsequent study, Abohassan et al. (2022) attempted to determine a safety 

threshold for when collisions are more likely to occur. They created three separate collision 

frequency models with three different ranges: less than 0.35, between 0.35 and 0.60, and greater 

than 0.60. They found that friction values less than 0.35 resulted in a significant increase in 

collisions, values between 0.35 and 0.60 resulted in an insignificant increase in collisions, and 

values greater than 0.60 resulted in a significant decrease in collisions. Based on these results, the 

authors recommended 0.35 as a safety threshold. Zhao et al. (2022) also used friction for collision 

modeling based on year-round data; however, the target variable was collision severity instead of 
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collision frequency. Other variables like roadway, traffic, and driver characteristics were included 

as predictors. A total of four models were evaluated: logit model, SVM, ANN, and XGBoost, 

among which logit, ANN, and XGBoost had near-identical accuracy of around 70%.  

2.4 Summary 

This section has provided an overview of the mechanics behind road friction and methods of 

measuring friction. In general, road friction is affected by several factors, including road surface 

texture, vehicle and tire parameters, and environmental characteristics. Existing methods that 

account for these factors require cumbersome measurement procedures that provide only point 

measurements. While more complex methods can measure friction continuously, they involve 

using devices that are bulky, more complicated to operate, and costly to maintain. Because of the 

limitations associated with existing methods, it is difficult to collect friction data on a large scale. 

In order to make the collection process more efficient and cost-effective, researchers have 

developed prototype methods that convert data collected by sensors into friction values using 

mathematical, statistical, and ML models. Among these proposed methods, optical sensors in the 

form of cameras have shown high potential for friction estimation when used in combination with 

ML models. The advantage of using cameras over other methods is that they are non-intrusive; 

they do not require embedding sensors to collect vehicle dynamic data. Furthermore, they are not 

limited to in-vehicle implementation; any roadside infrastructure equipped with a camera gains the 

ability to collect friction values, a property that makes optical sensors the most suitable for large-

scale implementation. Nevertheless, most of the studies that revolve around image-based models 

focus solely on bare conditions. The few that have incorporated winter images have done so 

without any validation data; hence, whether an accurate friction model can be developed for winter 

conditions is unknown.    

On top of providing a summary of existing friction collection methods, the necessity of spatial 

interpolation and the relationship between friction and collisions were also discussed. Spatial 

interpolators complement the friction collection process by allowing point measurements to be 

converted to continuous measurements, which significantly reduces the data collection effort 

required to collect continuous measurements. Researchers have attempted to investigate the 

performance of interpolators for road-related variables, which has shown Kriging to be the most 
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accurate method. For non-road-related variables, RF, an ML method, has demonstrated higher 

estimation accuracy than Kriging. However, its performance on road weather variables is unknown. 

Regarding the relationship between friction and collisions, the consensus from examining 

empirical evidence is that collisions are linked to low-friction road surfaces. A similar observation 

has also been made through modeling, where friction has a negative coefficient, meaning that 

lower friction leads to more collisions. That being said, most of the studies examining this 

relationship have been conducted under bare asphalt conditions; the number of studies examining 

winter conditions is somewhat lacking. Furthermore, the development of these collision models 

uses the parametric Safety Performance Function (SPF) approach, which makes an assumption 

about the data distribution that can potentially negatively affect model performance. It is possible 

that by using ML to model the relationship between friction and collisions, higher performance 

can be achieved as ML models are non-parametric and, therefore, better able to model the 

relationship between friction and collisions. 
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Chapter 3 Methodology 

This chapter explains the specifics of the techniques involved in our proposed framework, an 

illustration of which is shown in Figure 3.1.  

 

Figure 3.1 Proposed Methodological Framework 
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As illustrated in Figure 3.1, the proposed framework consists of three components. The first 

component, the image-based friction model, focuses on the conversion of road surface images into 

point friction values. Road surface images collected from cameras are fed into a series of feature 

extraction techniques to convert the images into predictive features. These techniques include a 

CNN model to label the RSC class, image thresholding to determine the degree of asphalt exposure, 

and Local Binary Pattern (LBP) and Gray Level Co-occurrence Matrix (GLCM) to extract generic 

image textures that describe the pixel patterns found in the image. The extracted features are then 

fed into a friction model built using a tree-based algorithm to output a point friction value. In the 

second component, the output point measurements and supporting auxiliary variables (position, 

elevation, and slope data) are fed into a friction interpolator to convert the point measurements 

into continuous ones. The final component of the framework uses the friction-collision relationship 

to determine whether a collision is likely or unlikely using Average Annual Daily Traffic (AADT) 

and other supporting variables.  

3.1 Component One: Image-Based Friction Model1 

Friction Model Data 

Data collection for this work occurred in the City of Edmonton, Alberta, Canada, during its 

2021/2022 winter season. In total, 128 friction tests were performed during daytime over three 

days: Jan 18, 19, and 25th, with temperatures of -21.2ºC, -21.6 ºC, and -1.2ºC, respectively. These 

tests were taken after plowing and anti-icing treatments in response to snowfall events on Jan 17 

(7.3 mm) and 24th (2.4 mm). Nighttime data were not collected as city personnel does not perform 

traction testing at night. Figure 3.2 depicts the study area and routes visited for data collection.  

 
1 Contents in Section 3.1 has been published in Xie, Q., & Kwon, T. J. (2023). Developing Machine Learning-based 

Approach for Predicting Road Surface Frictions using Dashcam Images – A City of Edmonton, Canada, Case Study. 

Canadian Journal of Civil Engineering. Just-IN. https://doi.org/10.1139/cjce-2023-0015 and Xie, Q., & Kwon, T. J. 

(2022) and Development of a Highly Transferable Urban Winter Road Surface Classification Model: A Deep Learning 

Approach. Transportation Research Record, 2676(10), 445–459. https://doi.org/10.1177/03611981221090235  

https://doi.org/10.1139/cjce-2023-0015
https://doi.org/10.1177/03611981221090235
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Figure 3.2 Study Area and Route Selected 

Road friction values were collected using Vericom VC4000 (a deceleration-based device) installed 

within a Ford F150 (City of Edmonton fleet vehicle). The testing procedure requires the driver to 

reach a speed of 30 km/h, at which point the driver fully initiates the brakes until the vehicle comes 

to a complete stop. Based on the device's internal accelerometer, the device records the average 

longitudinal G force experienced by the vehicle during the breaking process as the friction 

coefficient. In addition, to provide road surface imagery alongside friction tests, a GoPro Hero 9 

camera was mounted inside the vehicle to record road surface footage. The advantage of using a 

GoPro is that each recorded video file is attached with metadata containing GPS and speed 

information, which are critical in linking the road surface image with its corresponding friction 

value. We need these two pieces of information because the friction measuring device records time 

to the nearest minute. Instead of physically watching the recorded footage to locate the exact time 

of the friction test, speed changes can be used to pinpoint the precise testing time. In essence, 

within the minute interval, if the speed drops significantly by 2 m/s or greater (signifying that the 

driver slammed the brakes), this point in time would be when the friction testing started. Using 

this method, 128 images that correspond with the 128 friction tests were extracted. 

With the extracted images, a technique called perspective transformation (Roychowdhury et al., 

2018) was applied to remove irrelevant environmental features. Like cropping, perspective 

transformation removes everything but the area of interest; however, it is unique in that it shifts 

the perspective of the road surface to a top-down view, which improves the visibility of the road 

surface located farther away in the image. In this study, we used OpenCV (Bradski, 2000) to derive 
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a transformation matrix that warps the cropped image into a 300 x 300 square image. An example 

of this transformation is shown in Figure 3.3. 

 

  

Original Image Processed Image 

Figure 3.3 Original Image Versus Transformed Image 

Image Feature Extraction 

Road Surface Condition (RSC) Classification 

The processed image cannot be used directly for friction modeling. Instead, images must first be 

translated into numerical features that summarize the image's content. One way to accomplish this 

task is to classify the images using an RSC classification system. RSC classes that represent a 

lesser degree of precipitation can be interpreted to have higher friction than one with more 

precipitation due to greater asphalt exposure. Researchers have also suggested a connection 

between RSC and road surface friction but could not validate the relationship due to the lack of 

friction data (Roychowdhury et al., 2018; Wu & Kwon, 2022). As a result of the need to validate 

said relationship and the intuitive nature between the two measures, the RSC category was chosen 

as one of the predictor features. 

In this study, a four-class system described in Table 3.1 was selected. This classification system 

is based on what Wu et al. (2022) used in their study with one modification: partially snow-covered 

was further segregated into two-track and one-track bare under the assumption that the location 

and extent of asphalt exposure affect friction values. Since asphalt provides more friction than 

snow/ice, having exposed asphalt under both tires offers more grip than only one tire. Likewise, 

there are also cases where the exposed asphalt is under neither tire, or the width of the exposed 

asphalt is too narrow to allow for sufficient contact between tire and asphalt.   
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Table 3.1 RSC Classification System (Adapted From Wu et al. (2022)) 

Sample Image RSC Description RSC Category 

 

Driving lane is free of 

contaminants. Asphalt is 

completely exposed 

Bare 

 

Both tire tracks in the 

driving lane are visible and 

free of contaminants 

Two-track Bare 

 

Tire tracks are not entirely 

free of contaminants. This is 

an intermediate case 

between two-track bare and 

fully snow-covered 

One-track Bare 

 

Driving lane is completely 

covered in snow. Asphalt is 

not visible 

Fully snow covered 

In accordance with this four-class system, the extracted images were manually classified into the 

four classes during model development to prevent misclassifications from affecting performance. 

Figure 3.4 provides a breakdown of the number of images in each class.  

 

Figure 3.4 Number of Images in Each RSC Class 

Bare, 29

Two 
Track 

Bare, 52

One 
Track 

Bare, 26

Fully 
Covered, 

21
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For model implementation, a Convolutional Neural Network was selected to automate the RSC 

classification process due to its high performance in existing literature (Wu & Kwon, 2022; Xie & 

Kwon, 2022). A typical CNN model can be broken down into two components—feature extraction 

and classification. In the feature extraction step, images are first processed into three-dimensional 

(3-D) image arrays, where each dimension represents a channel of the RGB color spectrum. 

Following this step, image arrays will go through a series of convolutional and pooling layers. 

Convolutional layers use filters to extract feature maps such as edge location, color patterns, and 

so forth, whereas pooling layers reduce the matrix size (height and width) of the feature maps. 

Images will typically go through the convolutional layer first, and then be passed through the 

pooling layer to reduce matrix size. In most cases, the outputted feature maps will continue to go 

through additional convolutional and pooling layers until the matrix size is sufficiently small, at 

which point, it is converted into a one-dimensional (1-D) array and passed into a Fully Connected 

(FC) layer. 

The FC layer is where classification occurs; it is typically the final step in most CNN models. 

Unlike the feature extraction layers, there are no convolutional or pooling layers. FC is entirely 

made up of dense layers, with each dense layer composed of smaller units called neurons. The 

dense layer receives the 1-D feature map and converts it into a probability vector with the same 

number of entries as the number of classes. By looking for the highest probability in the output 

vector, one can determine which class the image belongs to. An example of a generic CNN network 

is illustrated in Figure 3.5. 

 

Figure 3.5 CNN Model Architecture 

There are two ways of training a CNN model, one is to train the model from scratch, and the other 

is to use transfer learning. The benefit of training a model from scratch is that the model is tailored 
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to a specific purpose. Given that there are a sufficient amount of training data, the model can 

become highly accurate. However, the training speed can be slow depending on the number of 

parameters in the model. In comparison, transfer learning builds upon previously learned 

knowledge. This process is based on the idea that features captured in the initial layers are generic 

features, and features captured deeper in the CNN are more dataset-specific (Kensert et al., 2019). 

Hence, the training process involves taking a pre-trained model and training only parameters found 

in the deeper layers. Since fewer parameters need to be calibrated, the model can be developed 

faster and with a smaller dataset than what is normally required.  

Before training the model, the image dataset was split 80/20, with 80% of data allocated to training 

and 20% allocated to validation. In addition, the image array was normalized to be within [0,1], 

and its matrix dimension was reshaped to [224,224] to align with the input requirements of the 

pre-trained model. When evaluating the performance of the CNN network, two variables were 

tracked in this study: accuracy and loss. Accuracy is based on whether the model classification is 

equivalent to the actual class. Loss, on the other hand, is determined using cross-entropy loss, 

which is the difference between the true distribution and the predicted distribution. Equation 1 

gives the formula for cross-entropy loss where the true distribution is a one-hot vector—a vector 

containing all 0s except for one entry set to 1. 

𝐿𝑜𝑠𝑠 = −log (𝑝) ( 1 ) 

Where 𝑝 is the probability assigned to the actual class in the output probability vector. 

During training, a stopping criterion is placed to prevent overfitting. If the loss of the model does 

not improve in 20 epochs (one pass through the entire dataset), training is concluded automatically. 

All CNN models were trained using the ADAM optimizer.  

Image Thresholding 

Image thresholding was chosen similarly to why RSC was chosen as a predictor: the greater 

presence of snow means lower friction values due to less contact area between tire and asphalt. 

Thresholding involves converting the pixel value of the image to either 1 (white) or 0 (black). 

Suppose we assume that the frequencies of 1s and 0s in a thresholded image represent the number 

of pixels classified as snow and asphalt, respectively. In that case, the output from thresholding 
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can be used to represent the degree of snow coverage, making it a potential input feature. In this 

study, the chosen thresholding method is mean adaptive thresholding, a regionalized thresholding 

technique where the threshold value varies depending on the image region. For each pixel value, 

the mean of its neighborhood is used as the threshold. If the pixel exceeds the local threshold, it is 

assigned 1. If not, it is given 0. This process is summarized in Equation 2.  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
∑ ∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛2
 

𝑥𝑖𝑗 = {
1, 𝑥𝑖𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑥𝑖𝑗 ≤ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
 

( 2 ) 

Where 𝑥𝑖𝑗 is the pixel value at row 𝑖 and column 𝑗, and n is the width of the square neighborhood 

region.  

The benefit of adaptive thresholding is its ability to accommodate changing lighting conditions 

(Davies, 2005). Depending on the surrounding environment and time of day, certain portions of 

the road surface image may appear more illuminated than others. For these images, adaptive 

thresholding can account for image contrast differences. It can assign a lower threshold value to 

shaded areas and a higher value to illuminated regions, thereby allowing for a more accurate 

separation between snow and asphalt pixels (an example of this process is depicted in Figure 3.6).  

 

Original Image 

 

            Thresholded Image 

Figure 3.6 Original Image Versus Thresholded Image 
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Local Binary Pattern (LBP) 

Unlike RSC and image thresholding, which is based on prior knowledge of factors that influence 

friction, LBP is a texture analysis method that does not require any previous understanding of the 

data. LBP characterizes local spatial structures and contrast patterns. It is simple to implement and 

produces high-performance accuracy (Armi & Fekri-Ershad, 2019). The extraction process is 

similar to adaptive thresholding, where the value of a pixel is based on its surrounding neighbors. 

This study applied the uniform non-rotational variant of LBP to reduce dimensionality. Uniform 

means that the output of LBP is classified into either uniform or non-uniform features, and non-

rotational implies that LBP is not affected by image rotation. Standard LBP outputs 256 features 

for a neighborhood of eight pixels, whereas the variant we use only outputs ten but preserves 

approximately 90% of the variation found (Ojala et al., 2002). Since we only have 128 samples, 

using all 256 features would result in poor model performance as we need more data to fully 

explore the relationship between the predictor and output variables, i.e., the curse of dimensionality 

(Chen, 2009).  

The LBP process implemented herein can be summarized as follows: if the neighbor pixel is 

smaller than the center pixel, it is assigned 0; otherwise, it is set to 1. The eight neighboring values 

are then organized into a binary sequence. Within each sequence, if there are greater than two 

transitions from 0 to 1, it would be labeled as a non-uniform sequence; all other cases are uniform 

(Tchangou Toudjeu & Tapamo, 2019). Among the uniform sequences, the binary sequences are 

reorganized into their lowest value form, making them rotational invariant. Then, the center value 

of these sequences is replaced by the sum of the binary sequence. In contrast, the center value of 

non-uniform sequences is automatically assigned the value 9. Once the image has been processed, 

each unique LBP value's frequency is counted and considered an input feature. The basic 

formulation of LBP is depicted below in Equation 3. 

𝐿𝐵𝑃 = ∑ 𝑓(𝑥𝑛 − 𝑥𝑐)

𝑛−1

0

 

𝑓(𝑥) = {
1   (𝑥𝑛 − 𝑥𝑐) ≥ 0

0   (𝑥𝑛 − 𝑥𝑐) < 0
 

( 3 ) 
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Where 𝑥𝑛 is the neighbor pixel, 𝑥𝑐 is the center pixel, and n is the number of neighbors. 

It is important to point out that features extracted from LBP do not have any inherent meaning; 

they merely represent image patterns that resemble edges, corners, and flat surfaces. Due to the 

generic nature of these features, it is incredibly challenging to interpret how the frequencies of 

these patterns influence friction. In this project, the purpose of applying LBP is to capture the 

macro-textures of the road surface as well as any road surface details missed by the human eye, 

like the presence of sand and ice.  

Gray Level Co-occurrence Matrix (GLCM) 

Like LBP, GLCM is also a texture analysis method that examines the spatial relationship between 

pixels. GLCM generates a matrix that tracks the number of unique combination pairs of pixel 

values in a specified direction. This generated matrix is symmetrical, meaning a GLCM matrix in 

the west direction is equivalent to one in the east direction. Hence, to track the pixel value changes 

in all directions of the road image, GLCM only needs to be calculated in four directions: 0, 45, 90, 

and 135º. Subsequently, texture measures can be calculated using the GLCM matrix generated in 

each direction that describes the image. This study calculated the following measures: contrast, 

dissimilarity, homogeneity, Angular Second Moment (ASM), energy, entropy, and correlation. 

Contrast, dissimilarity, and homogeneity are all contrast measures; they represent how similar or 

different neighboring pixels are to one another. In comparison, ASM, energy, and entropy are 

orderliness measures; they quantify the randomness within an image. Lastly, correlation is a 

descriptive statistics measure that describes the linear dependency between neighboring pixels. 

Ultimately, all features extracted by GLCM are non-task specific. They do not have direct meaning 

tied to any output variable, making them difficult to interpret. Nevertheless, like LBP, it is a way 

to capture road surface texture information and details that are not easily labeled without physically 

examining the road surface. 

Equations 4 to 11 detail how each texture measure was calculated (Hall-Beyer, 2017). 

𝑃𝑖,𝑗 =
𝑉𝑖,𝑗

∑ 𝑉𝑖,𝑗
𝑁−1
𝑖,𝑗=0

 ( 4 ) 
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𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 ( 5 ) 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 ( 6 ) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 ( 7 ) 

𝐴𝑆𝑀 = ∑ 𝑃𝑖,𝑗
2

𝑁−1

𝑖,𝑗=0

 ( 8 ) 

𝐸𝑛𝑒𝑟𝑔𝑦 = √𝐴𝑆𝑀 
( 9 ) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑃𝑖,𝑗(−𝑙𝑛𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 ( 10 ) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑃𝑖,𝑗 [
(𝑖 − 𝑢𝑖)2

σ2
]

𝑁−1

𝑖,𝑗=0

 

𝑢 = ∑ 𝑖(𝑃𝑖,𝑗) 

𝑁−1

𝑖,𝑗=0

 

σ2 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝑢𝑖)2 

𝑁−1

𝑖,𝑗=0

 

( 11 ) 

Where 𝑉𝑖,𝑗 is the pixel pair frequency for reference pixel value i and neighbor pixel value j , 𝑃𝑖,𝑗 is 

the probability of 𝑉𝑖,𝑗 , 𝑢 is the GLCM mean, σ2 is the GLCM variance, and N is 255, which is the 

max pixel value in 8-bit gray-scale images. 
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Tree-based Machine Learning Algorithms 

Using the methods discussed above, candidate predictor features can be extracted from the 

collected road surface images. But to formulate the relationship between the extracted features and 

friction values, an appropriate modeling technique must be used. In this study, tree-based machine 

learning methods were applied over traditional statistical methods and deep learning methods due 

to their non-parametric nature and high interpretability. The issue with deep learning is that it 

creates black-box models, and in the case of traditional statistical methods like generalized linear 

models, assumptions are made about the relationship between the dependent and independent 

variables, which may hinder performance (Gaur et al., 2021; Pichler et al., 2020). Tree-based 

methods address both of these issues; they offer visibility into their decision-making process while 

also being non-parametric. These non-parametric algorithms use decision trees to predict the 

desired output variable from a set of predictor features. During the construction of a decision tree, 

each predictor feature will be evaluated on its ability to split the data in a way that generates the 

lowest squared error. The feature that produces the lowest squared error will be chosen as the tree's 

root. The benefit of this selection process is that redundant variables are automatically filtered out 

since they cause an insignificant reduction in error. Following the creation of the root node, the 

same predictor selection process will be carried out for each subset of the divided dataset, where 

the best predictor becomes the direct child of the root node. This process repeats until the minimum 

sample size requirement for further splitting is not met or if the tree has grown to its maximum 

allowable size. These restrictions aim to prevent the tree from overfitting to the training dataset. 

To determine the two parameters that govern tree growth, a parameter search must be performed 

to find the configuration that results in the highest model performance. 

Three types of tree-based machine learning algorithms were explored in this study: decision tree 

(Quinlan, 1986), Random Forest (RF) (Breiman, 2001), and Gradient Boosting (GB) (Friedman, 

2001). Unlike the decision tree model that uses only one tree, RF and GB employ multiple trees in 

their prediction process. RF constructs its decision trees by bootstrapping the dataset. Because 

each tree is constructed on a slightly different dataset, each tree would offer its own unique 

explanation, and when the constructed trees are grouped into a forest, it is capable of accounting 

for more variation than a single decision tree. Furthermore, the bootstrapping process also makes 

it more difficult to overfit the data, as the dataset changes each time a tree is constructed. Similarly, 
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GB also employs multiple decision trees. However, instead of bootstrapping the dataset, GB 

constructs trees to account for the residual between its predictions and observed values. The goal 

of the GB algorithm is to slightly reduce the model's prediction error with each additional tree. 

Among the three different algorithms, the general consensus is that RF and GB outperform the 

decision tree model. However, the improved performance comes at the cost of interpretability. 

With the decision tree model, there is only one tree to interpret; the decision path taken for each 

prediction can be clearly understood. In contrast, GB and RF models are composed of tens of 

thousands of trees in some instances. For a user to understand their internal workings, they would 

have to examine each individual tree model. Although possible, it makes interpreting the decision-

making process incredibly challenging as each prediction is an amalgamation of tens of thousands 

of decision paths—a tradeoff that one must balance between accuracy and interpretability when 

developing models. Furthermore, there may be conflicting decision paths in the RF model as the 

dataset changes due to bootstrapping, and for GB, the decision trees predict residuals, not actual 

friction values, all of which further complicate the interpretation process. One method to get 

around this is through permutation feature importance. A feature's importance is the decrease in 

performance a model experiences when the feature of interest is perturbed through random 

shuffling. If no change in performance is observed after perturbation, that feature would have zero 

importance (Molnar, 2022).  

Prior to model development, the dataset was split into 80% training and 20% testing. K-fold 

(Hastie et al., 2009) was then applied to the 80% training dataset to divide it into five folds for 

cross-validation. These five folds were put through 500 random search trials to determine the 

optimal parameter values for the tree-based models. From our observation, model performance 

typically plateaus after 300 trials; nevertheless, an additional 200 trials were added to explore the 

parameter space more conservatively. The best configuration found—the one with the lowest 

RMSE—was used to construct the final model, followed by a final performance evaluation using 

the testing dataset via RMSE and Root Mean Squared Percentage Error (RMSPE); the formulas 

for these two error metrics are shown in Equation 12 and 13. This final performance evaluation 

is the basis for comparing the three tree-based algorithms. 

𝑅𝑀𝑆𝐸 = √
∑ 𝐸𝑖

2𝑁
𝑖=1

𝑁
 ( 12 ) 
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𝑅𝑀𝑆𝑃𝐸 =
√∑ (

𝐸𝑖

𝑌𝑖
)

2
𝑁
𝑖=1

𝑁
 

( 13 ) 

Where 𝐸𝑖  is the difference between predicted and observed, 𝑁 is the sample size, and 𝑌𝑖  is the 

actual value. 

3.2 Component Two: Spatial Interpolator 

Interpolator Data  

Evaluating interpolator performance requires sufficient data density to allow the chosen 

interpolator to learn the observed spatial variations. This condition prevented us from using the 

collected friction values because they were extremely sparse. To overcome this problem, road 

surface images were extracted from Jan 18, 2022, footage at a rate of one image every five seconds. 

These images were fed into the image-based friction model to generate spatially dense friction 

values. Within the friction dataset generated, the Whitemud Drive section was selected as the focus 

of this study due to the high friction variation present. After extracting data from this section, each 

friction measurement was averaged with neighboring values (50 m radius) to make the spatial 

patterns more distinct (Smoothing Time Series, 2023). The generated friction values and the road 

section selected for this study are shown in Figure 3.7.  

 

Figure 3.7 Generated Continuous Friction Values and Selected Segment for Interpolation 
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The generated data were then separated into training and validation data. This process involved 

keeping only measurements spaced by a certain distance, i.e., a measure is kept every “x meters.” 

The measurements kept were used for training, whereas the measurements removed were reserved 

for validation. A total of 10 datasets were created in this manner with increasing distance—from 

100 m to 1000 m per observation (step size of 100 m)—to evaluate the impact separation distance 

has on interpolation accuracy. An example of the training data is depicted in Figure 3.8. 

 

Figure 3.8 Training Data With 500-Meter Separation Distance 

The function of an interpolator is to estimate unmeasured values using known values. From the 

perspective of this study, the interpolator was used to estimate the removed friction values using 

the retained values. Three different types of interpolators were compared to perform this operation: 

Kriging, machine learning, and hybrid models that combine two algorithms. The two Kriging 

methods selected are OK and RK. The reason for choosing RK is that it has been shown to be the 

highest-performing interpolator for road weather variables (Gu, 2019; Wu & Kwon, 2022). In 

order for ML methods to be considered superior, they must exceed the performance of the state-

of-the-art RK, i.e., RK serves as the comparison baseline. In terms of OK, it was selected in case 

of a lack of linear trend in the data. In this situation, OK replaces RK as the comparison baseline 

as it has shown higher performance (Zhu & Lin, 2010). With respect to the ML methods, the two 

interpolators selected were RF and RFSI, as these two models have shown superior performance 

than RK and OK in several environmental studies (Leirvik & Yuan, 2021; Li et al., 2011; Sekulić 

et al., 2020). We would like to know if their better performance extends into road-related variables, 

which is one of the objectives of component two. The last category of methods is hybrid methods, 

which are RSIOK and RFOK. The reason for combining ML with OK is the same as why 
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regression was combined with OK to form RK—to detrend the dataset. However, unlike RK, 

which assumes the trend to be linear, RF and RFSI may do a better job detrending the dataset as 

they are non-parametric, leading to overall better performance. The specifics of each of the three 

categories of interpolators are discussed below.  

Ordinary Kriging (OK) 

Kriging has been shown to be the most accurate interpolation method for road weather variables 

(Gu, 2019; Wu & Kwon, 2022). The unique property of this method is that it considers the spatial 

covariance structure of the measurements and uses it to estimate unmeasured values. Equation 14 

below depicts the general Kriging formula. 

�̂�(𝑥) = 𝑚(𝑥) + ∑ λ𝑖[𝑍(𝑥𝑖) − 𝑚(𝑥𝑖)]

𝑚

𝑖=1

 ( 14 ) 

Where �̂�(𝑥) is the interpolated value at an unknown 𝑥 location, 𝑚 is the number of observation 

points, 𝑚(𝑥) is the expected value at unknown location 𝑥, λ𝑖 is the Kriging weight for observation 

𝑖, 𝑍(𝑥𝑖) is the observed value at location 𝑖, and 𝑚(𝑥𝑖) is the expected value at location 𝑖.  

There are several forms of Kriging, such as Simple Kriging (SK), Ordinary Kriging (OK), and 

Regression Kriging (RK). The main difference between these models is how the m(x) or trend 

component is modeled. The form we will focus on here is OK because, unlike SK, OK does not 

assume that the global mean is known, which leads to more accurate results. Furthermore, OK is 

required in RK and hybrid models to model residuals after detrending. The formula for OK 

(Wackernagel, 1995) is derived from Equation 14 above by forcing the weights to sum to one, 

i.e., ∑ λ𝑖
𝑚
𝑖=1 = 1. This change allows us to rewrite the Kriging formula as follows: 

�̂�(𝑥) = ∑ λ𝑖(𝑥)𝑍(𝑥𝑖)

𝑚

𝑖=1

  ( 15 ) 

[

λ1

⋮
λ2

𝑢

] = [

𝐶(𝑥1, 𝑥1) ⋯ 𝐶(𝑥1, 𝑥𝑚) 1
⋮ ⋱ ⋮ ⋮

𝐶(𝑥𝑚, 𝑥1) ⋯ 𝐶(𝑥𝑚, 𝑥𝑚) 1
1 … 1 0

]

−1

[

𝐶(𝑥1, 𝑥)
⋮

𝐶(𝑥𝑚, 𝑥)

1

] ( 16 ) 
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∑ λ𝑖(𝑥)

𝑚

𝑖=1

= 1   ( 17 ) 

Where 𝐶(𝑥𝑛, 𝑥𝑚) is the covariance between the observations at location 𝑛 and 𝑚. 

In order to determine the covariance structure, a semivariogram (Hohn, 1999) must first be 

constructed to model the degree of dissimilarity between two measurements based on their 

separation distance. The dataset used for this purpose must be trend free to meet the modeling 

assumption of mean stationarity (Olea, 2006). Upon removing the trend, an empirical 

semivariogram can be assembled using the following formula: 

γ̂(ℎ) =
1

2𝑛
∑[𝑍(𝑥𝑖 + ℎ) − 𝑍(𝑥𝑖)]2

𝑛

𝑖=1

 ( 18 ) 

Where �̂�(ℎ) is the semivariance at lag distance ℎ, 𝑛 is the number of samples, and 𝑍(𝑥𝑖 + ℎ) is 

the observed value at h lag distance away from observation at 𝑥𝑖. 

Based on the developed empirical semivariogram structure, a theoretical variogram with a similar 

structure must be fitted, from which the covariance values used in Kriging are obtained. There are 

several options for theoretical semivariogram models; the most common ones are shown in Table 

3.2.  The spherical model was selected for this study as it had the best fit.  

Table 3.2 Common Theoretical Semivariograms 

Theoretical Model Formula: 

Spherical 
𝐶 (

3ℎ

3𝑎
−

1

2
(

ℎ

𝑎
)

3

) 

Exponential 
𝐶 (1 − 𝑒

−3ℎ
𝑎 ) 

Gaussian 
𝐶 (1 − 𝑒−3(

ℎ
𝑎

)
2

) 

Where 𝐶 is the sill, ℎ is the distance, and 𝑎 is the range.  
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Regardless of the model chosen, all semivariogram models contain three parameters: nugget, sill, 

and range. The nugget is the amount of semivariance at a lag distance of 0, typically due to 

measurement error. In comparison, the sill is the point at which semivariance plateaus, beyond 

which observations are no longer considered spatially correlated. Lastly, the range is the lag 

distance where the sill is reached. In other words, it is the maximum distance at which spatial 

autocorrelation is present. A stereotypical semivariogram is illustrated in Figure 3.9. 

 

Figure 3.9 Typical Semivariogram Structure 

Random Forest (RF) and Random Forest Spatial Interpolator (RFSI) 

Among the many Machine Learning (ML) methods, RF has shown the most promising results as 

an interpolator (Leirvik & Yuan, 2021; Li et al., 2011; Sekulić et al., 2020). When used in this 

manner, it functions in the same way as traditional RF. The dataset is randomly sampled with 

replacement to create a new dataset, which is then used to create a decision tree model. This 

process of sampling the dataset and constructing a decision tree model repeats until the maximum 

number of trees has been reached, at which point, training concludes. The main difference is that 

position data (x and y coordinates) must be included to allow the model to capture spatial 

covariance. 

However, using coordinate information as the sole spatial data may not be enough to capture the 

target variable’s spatial structure. Hence, the Random Forest Spatial Interpolator (RFSI) model 

was conceptualized to compensate for this deficiency. RFSI attempts to mimic how spatial 

structure is modeled in traditional statistical interpolators, where it is assumed that variables 
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decrease in similarity as the distance between them increases. By adding information regarding 

observation values at nearby observations and the distance to these neighbors, the RF algorithm 

can better capture the spatial structure of the target variable, leading to better performance (Sekulić 

et al., 2020). Equation 19 shows the basic formulation of the RFSI model. 

�̂�(𝑥) = 𝑓(𝑍(𝑥1), … , 𝑍(𝑥𝑚), 𝑑(𝑥, 𝑥1), … , 𝑑(𝑥, 𝑥𝑚), 𝑎1, … , 𝑎𝑛) ( 19 ) 

Where �̂�(𝑥)  is the RFSI interpolator, 𝑍(𝑥𝑚)  is the observed value at mst nearest neighbor, 

𝑑(𝑥, 𝑥𝑚) is the distance between estimation location x and observed value at mst nearest neighbor, 

and 𝑎𝑛 is the nth auxiliary variable.  

This study considers only the five closest neighbors because when the observation distance is set 

to 1 km, there are not enough measurements to use a larger neighborhood size.  

Hybrid Models 

Besides Kriging and ML, there is a third type of interpolator that combines OK with another 

algorithm. Compared to pure models, hybrid models have shown higher accuracy in existing 

research (Li et al., 2011). The principle behind this is that instead of assuming the mean to be 

constant within a local region, the mean is a function that depends on position coordinates and 

other auxiliary variables. To predict this mean, a separate model is developed using any algorithm 

capable of regression. This model would be used to predict the mean or trend in the observations. 

The mean would then be subtracted from the observation to determine the residual. This process 

of removing the mean from the observations is called detrending. With the detrended data, OK is 

used to model the spatial relationship between the residuals. At the end of this process, there are 

two models: a regression model that predicts the mean and an OK model that predicts the residual. 

By summing the two predictions, the final output is obtained via Equation 20.  

𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 +  𝑂𝐾 𝑀𝑜𝑑𝑒𝑙 =  𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ( 20 ) 

Three hybrid models are evaluated in this thesis: Regression Kriging (RK), which combines Linear 

Regression with OK, RFOK, and RFSIOK. Note that RK can be considered a Kriging model 

because the trend component can be formulated directly into the Kriging algorithm. In the context 
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of this thesis, RK is grouped with RFOK and RFSIOK because all three models are developed in 

the same manner.  

3.3 Component Three: Binary Collision Likelihood Model 

Collision Likelihood Dataset 

Similar to the dataset used for interpolator evaluation, the dataset used to develop the collision 

likelihood model was also based on the aforementioned friction model. However, in this case, all 

the road footage available (Jan 18, 19, 25, and Feb 04, 2022) was converted into friction 

coefficients to maximize the training data available. Following this conversion process, the road 

sections with friction values were divided into equal-length segments, where the friction value of 

a segment is the average of all overlapping friction values. In addition to friction, other road 

segment characteristics were also assigned, including elevation, AADT, slope, and x and y 

coordinates. Next, a binary classification was given to each segment identifying whether a collision 

had occurred based on traffic safety records provided by the City of Edmonton. Note that this 

process was done independently for each day.  

Decision Tree Classifier 

The decision tree classifier was chosen to model the relationship between collision occurrence and 

the selected independent variables. As mentioned earlier, decision trees are highly interpretable 

compared to other ML models. Post-training, the decision tree model offers unique transparency 

by allowing users to follow its internal logic and understand how predictions are made. This level 

of insight is in stark contrast to more complex algorithms such as RF, GB, and deep learning 

models. Although these advanced models possess strong predictive power, they often function as 

“black boxes” that often fail to provide any rationale for their predictions. This lack of transparency 

can impede targeted safety improvements as the underlying causes remain unclear. In contrast, 

while traditional parametric SPF functions are transparent in their decision-making, they assume 

that crashes follow a particular distribution—a strong assumption that undermines their 

performance. Past studies, including Das et al. (2021), have shown that prediction error for SPF is 

contingent on the chosen distribution and can be outperformed by regression tree models that do 

not make such assumptions. In addition, as a non-parametric model, decision tree algorithms can 
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manage high-dimensional datasets, which align with the multidimensional nature of collision data 

due to the multitude of contributing variables.  

Hence, our choice of the decision tree algorithm hinges on its dual benefits: one, its proven 

performance advantage as a regression tree model compared to traditional SPF, and two, its 

transparency that empowers users to discern why a road section is deemed risky, enabling them to 

implement precise mitigation measures. Furthermore, from a friction research perspective, it 

allows us to see the underlying relationship between friction and collisions, identify safety 

thresholds, and check the model’s overall intuitiveness. 

As for the model algorithm, the decision tree classifier works in the same way as a normal decision 

tree, except that the Gini Impurity Index (Equation 21) is used as the error metric. Of the available 

input variables, the one with the lowest Gini impurity is selected as the decision node. The stopping 

condition used to develop the collision model is based on the number of decision nodes. Training 

and validation accuracies are evaluated simultaneously as the number of tree nodes increases. The 

optimal number of nodes is the point where the validation accuracy peaks. In cases where multiple 

configurations produce the same accuracy, the structure with the least number of nodes was 

selected. 

Gini Impurity = 1 − ∑ pi
2

k

i=1

 ( 21 ) 

Where 𝑘 is the number of classes, and 𝑝𝑖 is the proportion of 𝑡ℎ𝑒 𝑖 label. 

A dataset split of 80% training and 20% validation was used during model development.  

3.4 Summary 

This chapter provides an overview of the proposed framework and explains the methodology 

behind each of the three components: image-based friction model, friction interpolator, and binary 

collision likelihood model.  

The image-based friction model is developed based on traction testing data collected by the City 

of Edmonton and their associated road surface image. Because the images are not usable as inputs 

on their own, a series of feature extraction techniques are used to convert them into predictor 
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features. These methods include RSC categorization, image thresholding, LBP, and GLCM. Then, 

tree-based algorithms are employed to model the relationship between friction values and the 

extracted image features. 

Component two focuses on the construction of the friction interpolator. Because collected traction 

data is too sparse, the dataset used to develop the interpolator is generated using the image-based 

friction model. Three types of interpolators are selected based on high performance in the existing 

literature: Kriging, RF-based, and hybrid models. Each interpolator is evaluated based on its ability 

to interpolate friction values as the separation distance between available input data increases 

(from 100 to 1000 m). The goal is to find the interpolator with the least sensitivity to change in 

separation distance while maintaining high accuracy.  

The final component centers around the development of a binary collision model. Continuous 

friction values are inputted into the collision model, along with AADT and supporting variables, 

to produce a collision likelihood value that indicates whether a collision is likely or unlikely for a 

given road segment. The data used for this model is also generated from the image-based friction 

model for the same reason as component two, data sparsity. The algorithm used for this purpose 

is the decision tree model. Its high interpretability allows us to validate the friction-collision 

relationship, determine unsafe thresholds, and judge the intuitiveness of the model. 
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Chapter 4  Developing Machine Learning-based Approach for 

Predicting Road Surface Frictions using Dashcam 

Images2 

As mentioned earlier, there are three components to the proposed framework. This chapter focuses 

on the first component: the image-based friction model, which converts images into point friction 

values. An accurate friction model is critical to the proposed framework as the values it generates 

are needed to develop the two remaining components.  In this chapter, we first assess the accuracy 

of models built with tree-based algorithms and the importance of each predictor feature. Next, we 

demonstrate how the friction model can be automated using the CNN deep learning algorithm. 

Finally, we will summarize the key results at the end of this chapter. 

4.1 Friction Model Development 

Following the techniques described in the methodology section, a total of 41 features were 

extracted: RSC category, frequencies of black and white pixels from image thresholding, 10 LBP 

features, and 28 GLCM features (7 in each of the four directions mentioned). With all 41 features 

as input, a parameter search was performed to determine the optimal configuration for the decision 

tree model. The results show a minimum split sample size of 8 and a max tree depth of 3 yielded 

the lowest RMSE.  

When evaluated using the testing dataset, the decision tree model displayed a performance of 

0.0759 RMSE and 19.6% RMSPE. In other words, 80.4% accuracy. This level of performance is 

reflected in the model's predictions vs. observation graph (Figure 4.1), where a linear relationship 

is observed between predictions and observations.  

 
2 Contents in Chapter 4 has been published in Xie, Q., & Kwon, T. J. (2023). Developing Machine Learning-based 

Approach for Predicting Road Surface Frictions using Dashcam Images – A City of Edmonton, Canada, Case Study. 

Canadian Journal of Civil Engineering. Just-IN. https://doi.org/10.1139/cjce-2023-0015 
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Figure 4.1 Decision Tree Model Prediction vs. Observed Friction Values 

Based on the decision tree model's low RMSE value, it is evident that the developed model is 

accurate. However, whether the predictions are based on intuitive interpretations of the extracted 

features is unknown. Fortunately, because the decision tree model is highly interpretable, the 

internal workings of the model can be visualized. By investigating the decision paths illustrated in 

Figure 4.2, we can further evaluate the model's reliability. 

 

Figure 4.2 Internal Logic of Decision Tree Model 
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From the depicted tree model shown above, the user can see the logic behind the friction 

predictions and the relative importance of the predictor features. By examining the tree diagram, 

we can see that friction can be explained by four predictors: RSC category, GLCM contrast in the 

N-S direction, and LBP patterns 3 and 0. Among these features, their relative importance can be 

gauged by the change in squared error caused by the node's decision. In our developed model, RSC 

is the most critical feature because of its error-reduction capability and the number of times it 

appears. The decision tree we constructed has a depth of three, and at all three depths, RSC is used 

as the decision rule that reduces error by a significant amount: from 0.034 to 0.02, 0.02 to 0.008, 

and 0.008 to 0.003 at the top, middle, and bottom of the tree, respectively. This level of error 

reduction was not observed from any other input features, making the RSC the most vital predictor 

feature. Furthermore, how RSC splits the dataset is also intuitive. RSC value of 0 (bare lane) is 

assigned a high friction estimate of 0.679 because of the high level of exposed asphalt. Then, as 

the amount of road surface precipitation increases—equivalent to an increase in RSC value—the 

estimated friction value decreases due to more and more contaminants on the road surface.  

In terms of the remaining three features, their relative importance in estimating friction is unclear 

as they appear the same number of times as decision nodes and cause similar levels of error 

reduction. They are also difficult to interpret as they are generic features that describe pixel patterns. 

Based on the decision rules, having low contrast in the N-S direction and less LBP pattern 0 and 3 

decreases friction value, which could indicate less exposed asphalt or the presence of ice. 

Unfortunately, due to few studies in this subject area and the fact that these features are non-task-

specific, we cannot confirm whether this is a common observation nor if it is intuitive, only that 

such a relationship may exist. 

Other than focusing on the changes in squared error to evaluate feature importance, as stated in 

the methodology section, a more systematic way of assessing feature importance is by performing 

permutation feature importance, as shown in Figure 4.3. 
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Figure 4.3 Feature Importance of Decision Tree Model 

The advantage of permutation feature importance is that it can quantify the difference between 

features that induce similar reductions in squared error. By examining Figure 4.3, we can see that 

RSC is undoubtedly the most important feature in our model. When we perturbed the RSC feature, 

it led to a 0.2 increase in RMSE, seven times more than the next most important feature. Excluding 

RSC, Pattern 0 is about twice as important as contrast and four times more important than pattern 

3.  

As mentioned, two other tree-based algorithms; namely, RF and GB were also investigated in this 

study as both aim to improve model performance by including multiple decision trees in the 

prediction process. From the results of our parameter search, we found the optimal configuration 

of our RF model to contain 75 trees with a minimum sample split of 7 and a max depth of 4. In the 

case of GB, 250 trees, minimum sample split of 2, max depth of 3, and a learning rate of 0.01 

(dictates the contribution of each tree's prediction toward the outputted prediction). When these 

configurations are evaluated on the testing dataset, the results shown in Figure 4.4 were obtained. 



44 

 

 

Figure 4.4 Friction Model Performance Comparison 

As shown in Figure 4.4, both RF and GB obtained low errors. When considered in unison with 

the decision tree model, all three models displayed high performance on the testing dataset with 

an average RMSE and RMSPE of 0.0796 and 20.7%, respectively. This means that our developed 

models operate at approximately 80% accuracy, proving the proposed framework's feasibility. 

Although the decision tree model appears to outperform the other models, the difference in 

performance is relatively small: between 0.4 and 2.6%. One plausible cause could be the lack of 

data. Our dataset did not contain enough variation that required more complex algorithms. Another 

possibility is that the parameter search performed in this study did not find the most optimal 

configuration. Through additional trials and larger search space, we may be able to identify a 

higher-performing configuration. However, it must be pointed out that even if a slightly better 

model could be obtained, RF and GB are less interpretable due to a more complex estimation 

process. Unlike the decision tree model, where the user can clearly understand the decision-making 

process, RF and GB's feature importance can only be evaluated through permutation feature 

importance, which only shows the impact a feature has on overall model accuracy, as depicted in 

Figure 4.5. 
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Figure 4.5 Random Forest and Gradient Boosting Feature Importance 

The feature importance from our developed RF and GB models show nearly identical results. Both 

figures depict RSC as the most important predictor feature, followed by the frequency of black 

and white pixels extracted from image thresholding. The importance of the remaining features 

varies between the two models (e.g., LBP pattern 3 is the second most important feature in GB but 

fourth in the RF model). Nevertheless, regardless of their order of importance, LBP patterns 3 and 

7 and GLCM contrast and correlation in the N-S direction are relatively more critical than the 

remaining feature. Intuitively, the inclusion of black and white pixel frequencies makes sense as 

they represent the amount of bare asphalt and precipitation found in an image. The issue is that it 

is difficult to determine how they are used by the two models, as there are 75 trees in the RF model 

and 250 in the GB model. The same applies to the remaining features identified to be important; 

we only know that they are necessary for estimating friction but do not know why, owing to the 

low interpretability nature of RF and GB models. 

From our analysis of feature importance in the tree-based models, it is evident that RSC is 

undoubtedly the most important feature in predicting friction. In all three developed models, RSC 

is seven times more important than the next feature and causes a significant increase in prediction 

error if removed—a minimum of 0.12 increase in RMSE. This observation validates the proposed 

connection between RSC and road friction suggested by previous researchers (Roychowdhury et 
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al. 2018; Wu and Kwon 2022). Other than RSC, LBP pattern 3 and GLCM contrast in the N-S 

direction were found to be important in all three models. Although they are not as impactful as 

RSC, it is speculated that they assist in finetuning the friction predictions. In contrast, the 

remaining features' importance depends on the modeling technique used. For example, frequencies 

of black and white pixels were insignificant in the decision tree model but important in the RF and 

GB models.  

The Effect of Automating RSC Labeling 

Up to this point, the friction model performance shown is based on manual RSC labeling. Although 

it is possible to automate the RSC labeling process, it was not done during model development to 

prevent potential misclassifications from compromising model performance and feature 

interpretation. However, when it comes to model implementation, the RSC labeling process must 

be automated, or the need for manual labeling will severely limit update frequency and spatial 

coverage. Therefore, to maximize the cost-effectiveness and usability of the proposed work, the 

RSC labeling process was automated using a Convolutional Neural Network (CNN), thereby fully 

automating the image-based friction model. 

In order to develop the CNN model, 5300 images were extracted from the GoPro footage recorded 

during traction testing. The number of images labeled in each category were as follows: 2281 bare, 

1884 two-track, 582 one-track, and 553 fully snow-covered. Since the number of images in each 

category was unequal, the splitting of training and validation data was done separately. This 

ensured that 80% of the images in each category were in the training dataset. We also created two 

versions of this data, cropped and non-cropped. The benefit of cropping is that it eliminates 

environmental variables such as trees and nearby vehicles that may confuse the model, which may 

improve model performance. 

In terms of CNN architecture, the chosen architecture was initially designed by Carrillo et al. (2019) 

for RSC labeling. We and other researchers have optimized this specific architecture to develop 

models that label RSC into three categories (bare, partially snow-covered, and fully snow-covered) 

with >90% accuracy (Wu & Kwon, 2022; Xie & Kwon, 2022). Figure 4.6 depicts the optimized 

CNN architecture found in our previous study (Xie & Kwon, 2022).  
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Figure 4.6 Selected CNN Architecture 

In addition to the architecture depicted in Figure 4.6, a state-of-the-art general-purpose model—

EfficientNet—one of the most accurate CNN models for image classification was included to show 

how our proposed model compares to the state-of-the-art. To help distinguish between the two 

designs, the architecture shown above will be referred to as "RoadNet" from this point forward.  

Based on these two architectures, two types of models were developed: models trained from 

scratch and models built using transfer learning. The required pre-trained models for transfer 

learning were taken from previous studies. These models include a three-category RSC model 

trained on 3,914 road images and an EfficientNet Model trained for everyday object identification. 

The accuracy results obtained are shown in Figure 4.7. 

 

Figure 4.7 Validation Accuracy Difference Between the Developed CNN Models 
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From Figure 4.7, it is observed that training from scratch resulted in higher accuracy than transfer 

learning, which can be explained by dataset size. In a previous study, we performed a sensitivity 

analysis that compared the performance accuracy as the dataset size increased, from which we 

found that transfer learning outperformed training from scratch only when the dataset size was 

small (Xie & Kwon, 2022). As the dataset size increased, there was a point at which training from 

scratch became better than transfer learning. This is the case here, where the dataset size has 

exceeded the threshold. Another observation is that cropped images tended to have higher accuracy 

than full images, which was expected since removing the environmental variables allows the 

model to focus only on the road segment, simplifying the classification task. Overall, the most 

accurate model found was the RoadNet cropped image model trained from scratch, with an 

accuracy of 85.8%, 2 % higher than the state-of-the-art EfficientNet Model. 

With the developed CNN RSC classifier, we evaluated the feasibility of automating the RSC 

labeling process by first comparing predictions made by the CNN model versus the actual labels. 

The result from this analysis is shown in Figure 4.8. 

 

Figure 4.8 CNN Model Accuracy on Friction Dataset Images 

According to Figure 4.8, it is evident that the developed CNN model is capable of assigning RSC 

labels accurately. All classes were labeled with an above 85% accuracy rate, signifying the high 
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performance of the developed model. Furthermore, the RSC categories commonly associated with 

low friction values had an even higher 90% accuracy, which is beneficial from a safety perspective, 

as it would mean the vast majority of potentially risky road conditions can be identified.   

Next, the RSC labels in the validation dataset (friction model) were replaced with the CNN-

predicted labels. The modified dataset was then used to re-generate the friction predictions using 

the friction model with the lowest error—the decision tree model shown in Figure 4.2. A 

performance comparison was then made between the prediction generated using CNN labels and 

actual labels with RMSE and RMSPE as metrics. The results generated from this comparison are 

shown in Figure 4.9. 

 

Figure 4.9 Prediction Accuracy Before and After Inclusion of CNN Model 

As shown in Figure 4.9, automating the RSC labeling process had minimal effect on friction 

prediction accuracy. RMSE increased by 0.05, and RMSPE increased by 0.6%. Based on these 

results, it is evident that the image-based friction model can be fully automated without 

impacting performance accuracy. 

4.2 Summary 

This chapter presents the results generated from the development of the image-based friction 

interpolator. There are two sections in this chapter, the first section focuses on the friction model 
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itself, and the second section explains how the model can be fully automated and the implications 

of doing so. 

The developed model converts road surface images into 41 features through four feature extraction 

techniques, RSC classification, adaptive thresholding, Local Binary Pattern (LBP), and Gray Level 

Co-occurrence Matrix (GLCM). Using the extracted image features as input and friction values as 

output, three friction prediction models were developed via three tree-based algorithms: decision 

tree, random forest, and gradient boosting. All three models displayed high performance with an 

average RMSE of 0.0796 and an accuracy of 79.3% based on  RMSPE. In addition, it was 

discovered through a method called permutation feature importance that RSC is the most critical 

predictor for friction. RSC was found to be seven times more important than the next most 

important measure and would cause at least a 0.12 RMSE increase had it not been included as a 

predictor. Other features like LBP pattern 3 and GLCM contrast in the N-S direction were also 

found to be necessary, but because they are generic image features without inherent meaning, we 

could only determine that they assist in estimating friction value without knowing the exact 

mechanism. Nevertheless, we speculate that these features may be proportional to asphalt exposure.  

With an image-based friction model developed, the next step was to automate the RSC labeling 

process to fully automate the friction prediction process. For this purpose, eight CNN models were 

developed that differed in model architecture (RoadNet and EfficientNet), training method (from 

scratch and transfer learning), and input image transformation (cropped and full). By evaluating 

the performance of these eight models, it was observed that training from scratch outperformed 

transfer learning, using cropped images produced better results than full images, and our RoadNet 

model outperformed the state-of-the-art EfficientNet model. In an effort to determine the effect of 

adding the CNN model to the prediction process, friction predictions were made using the CNN-

generated RSC labels and compared to the actual friction values to calculate RMSE and RMSPE. 

Compared to the manually labeled friction values, there was only a 0.05 and 0.6% increase in 

RMSE and RMSPE, respectively, demonstrating that the developed image-based friction model 

can be fully automated. 

  



51 

 

Chapter 5 Assessing Interpolation Methods and Collision Models 

for Road Safety Enhancements 

The focus of Chapter 5 is on components two and three of the proposed framework. Component 

two is the friction interpolator, which converts the point friction values generated by the image-

based friction model into continuous values without any additional data collection effort, and 

component three is the binary collision model, which identifies the dangerous road sections. There 

are three sections in this chapter: the first section discusses the interpolation of the accuracy of the 

six chosen interpolators; the second section evaluates the possibility of using existing 

infrastructure (traffic cameras) to generate continuous friction values; the third section focuses on 

the development of the binary collision model via aggregation distance calibration; and the last 

section summarizes the main findings from the previous three sections. 

5.1 Evaluation and Development of Spatial Interpolators 

The interpolator evaluation process has two components: first, the RMSE of each interpolator was 

calculated to quantify the difference between the measured and the predicted, and then the ability 

of each interpolator to capture the spatial pattern was examined to verify the credibility of the 

obtained RMSE. Figure 5.1 depicts the results generated from the first part of this analysis. 

 

Figure 5.1 Interpolator Performance Comparison 
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According to Figure 5.1, the interpolator accuracy decreases as the separation distance increases, 

which is expected due to the decrease in the information available to the model to capture the true 

spatial variation. However, the amount by which interpolator accuracy decreased with increasing 

distance varied. OK and RK had the slowest rate of performance degradation, with interpolation 

error increasing linearly between 100 and 900 m. Similarly, RF and RFOK had a relatively gradual 

rate of change but had a steeper slope and more instances of sharp increases in error. The two 

remaining interpolators, RFSI and RFSIOK, were the least stable. After the separation distance 

increased to above 200 m, significant drops in performance were observed. Between 200 and 600m, 

the error increased by ten folds, which was significantly larger than what was observed in the four 

other interpolators. Overall, RK and OK showed the least sensitivity to changes in separation 

distance, followed by RF and RFOK, then RFSI and RFSIOK.  

In terms of interpolation accuracy, OK was observed to be the most accurate interpolator; it had 

the lowest error at all separation distances except 600 m. The next best performers were the RF 

models, followed by the RFSI models, with the hybrid versions of these models having lower 

errors. These findings are somewhat contrary to what was found in previous literature, where RF, 

RFOK, and RFSI produced higher accuracy than OK and RK, and RK performed better than OK 

(Li et al., 2011). The RF-based models’ relatively poor performance could be attributed to 

differences in the validation approach and interpolation task. While previous studies used random 

sampling to divide the data into training and validation sets, we manually removed data to create 

equally spaced gaps. This may have increased the difficulty of the interpolation task because the 

validation points were further away from the locations with measurements. Another factor is the 

difference in the interpolation task itself. For variables such as solar flare and mud sea content, the 

interpolator used measurements from all directions, whereas for friction, interpolation was limited 

to only two directions. Regarding the observation that OK outperformed RK, one possible 

explanation is that the implementation of a regression model was unnecessary; the dataset was 

already trend free, i.e., the additional step of trend removal did not improve performance since all 

it did was reposition the data. 

Aside from assessing the accuracy of interpolator performance using RMSE, it is crucial to analyze 

the form of interpolator predictions to verify that the pattern in the input dataset is being captured, 

and not simply predicting a constant value at every location. From 100 to 300 m, there was virtually 
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no difference between the six interpolators, as all could mimic the spatial pattern. Only after 300 

m did the performance begin to diverge. The main difference was that RF and RFSI began to lose 

their ability to capture the local minimums and maximums found in the spatial pattern, which 

worsened as the separation distance increased (Figure 5.2). In other words, the amount of variation 

in the interpolations decreased as the separation distance increased. This issue was much less 

prominent in OK and RK. These two interpolators maintained their ability to mimic the spatial 

pattern even at 900 m. Comparatively, RF and RFSI at 900 m predict what was essentially a 

straight line, as shown in Figure 5.3.  

 

Figure 5.2 Interpolator Performance at 300 m Separation Distance 

 

Figure 5.3 Interpolator Performance at 900 m Separation Distance 

When RF and RFSI were combined with OK, both interpolators saw an improvement in their 

ability to capture the pattern found in the input dataset. Previously, these two interpolators began 

to perform poorly at 300 m. After the inclusion of OK, RFOK could mimic the spatial pattern until 

900 m and RFSIOK up to 400 m; it can be said that adding OK to ML models can boost 

performance. Figure 5.4 below depicts the interpolation improvements made through the inclusion 

of OK.  
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Figure 5.4 ML Hybrid Model Performance at 300 m Separation Distance 

Ultimately, identical results were obtained from the interpolated values’ error comparison and 

visual inspection. OK was the best of the six interpolators, requiring the fewest input variables 

while having the lowest error and the ability to mimic the spatial pattern closely.  

Real-World Friction Analysis Using Traffic Cameras 

Based on the analysis above, it is clear that all six interpolators possess the ability to interpolate 

friction values. However, they were only evaluated in artificial scenarios where the observations 

are equally spaced apart, which is not typically found in the real world. For this reason, an 

additional dataset was created to simulate a real-world scenario where observations are only 

available at locations with traffic cameras to simulate friction collected by traffic cameras. The 

objective is to evaluate the feasibility of using traffic cameras to obtain continuous friction 

measurements. Figure 5.5 depicts the dataset generated. It should be noted that the friction data 

used here was generated from the dash camera images and not from the traffic camera images. 

 

Figure 5.5 Friction Measurements Obtained at Locations with Traffic Cameras 
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With the above observations as inputs, the following results were obtained from the six 

interpolators. 

  

  

  

Figure 5.6 Traffic Camera Interpolation Curves 

By looking at the interpolated curvature found in Figure 5.6, it appears that OK, RK, RF, and 

RFOK could capture the global variations with only five input measurements. Nevertheless, that 

are some differences; one is that OK and RK outputted much smoother estimations than the ML-

based models. This observation is expected as Kriging is known to produce smooth estimates 

(Olea, 1999). Another difference is that the models with Kriging were better at capturing the 

peaks and valleys, which is consistent with the distance sensitivity analysis performed prior. In 

contrast, the RFSI-based did not appear to have captured the spatial trend, as its estimations are 

essentially constant. 
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From qualitative analysis alone, it is difficult to determine which interpolator performs better 

among OK, RK, RF, and RFOK, as their ability to mimic the spatial pattern is all very similar. For 

this reason, RMSE (shown in Figure 5.7) was calculated for all six interpolators to investigate 

interpolator performance more closely.  

 

Figure 5.7 Traffic Camera Interpolator Error Comparison 

Excluding the RFSI models that could not reproduce the spatial structure, the remaining four 

models all produced low errors. The average RMSE for the four models (OK, RK, RF, RFOK) is 

0.063, among which OK performed best, with an RMSE of 0.05552.  

It is also important to note that while pure ML models like RF and RFSI do not perform as well as 

OK or hybrid models, they have the advantage of requiring fewer data to develop. Kriging models 

require the development of a semivariogram, which is impossible to construct without a 

sufficiently large dataset. When it comes to measuring road surface friction, relying solely on 

traffic camera images is insufficient for constructing a semivariogram. To increase the number of 

measurements, a vehicle would need to drive through an entire section of the road. Only then can 

a semivariogram be constructed. Although this process may not be too difficult for a single road 

section, the data collection effort required for the entire road network would be extensive. In 

addition, it is unknown how long the semivariogram will remain valid. Image data may need to be 

collected periodically to update the model. In contrast, pure ML interpolators are independent of 

the semivariogram. They are built using only the data collected from the traffic camera locations, 

making them much easier to develop and update. Although RF is inferior in performance, RF may 

be the better choice if both accuracy and data requirements are considered. 
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5.2 Collision Model Development for Safety Assessment 

Binary Collision Model 

With the friction interpolator developed, the next step is to construct a binary collision likelihood 

model using continuous friction values. The main reason we opted for developing a binary 

collision model rather than a collision frequency model hinges on several factors. Primarily, binary 

classifications offer easier interpretation by presenting a clear “safe” or “unsafe” status, as opposed 

to relying on the potentially ambiguous interpretations derived from predicted collision numbers. 

Secondly, binary models excel in treating rare events such as collision—a domain where frequency 

models might struggle due to data sparsity. Lastly, binary models seamlessly integrate into 

decision-making systems by directly triggering actions like alerts or rerouting in connected 

vehicles (to be dealt with in subsequent sections), making them exceptionally practical for safety 

warnings. 

To construct the binary model, the continuous friction values were averaged to represent how 

slippery a road segment is, for which the specific length has to be calibrated due to the class 

imbalance problem (Javaheri et al., 2014). If the segment length is too short or too long, the model 

will predict mostly one class because one category dominates most of the input data. Therefore, a 

calibration process is needed to determine the optimal segment length, which requires continuous 

friction values so that aggregation can be done at all lengths. In addition, model implementation 

also requires continuous measurements to ensure that the friction value assigned to each road 

segment is representative. Hence, because of the importance of spatially dense measurements, we 

developed a friction interpolator beforehand to demonstrate how continuous friction values can be 

obtained. Nevertheless, since we already had extremely dense friction values, interpolated values 

were not used for model development to prevent interpolation errors from carrying over to the 

collision model.  

In this study, all models were developed using the decision tree algorithm due to it being non-

parametric and highly interpretable.  Concerning aggregation length, segment lengths between 500 

m and 20 km (500 m increment) were evaluated to identify the optimal value. Figure 5.8 shows 

the obtained results. 
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Figure 5.8 Model Validation Accuracy at Various Road Segment Lengths 

When evaluating each model, its training and validation dataset, model structure, and validation 

accuracy were examined. This process ensures that the model performance obtained is genuine 

and not due to class imbalance.  

Between 500 m and 6 km, the validation accuracy fluctuated between 70 and 90%. The models 
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long distances. Now that the main feature was too homogeneous to be useful as a predictor, a drop 

in accuracy of about 30% was observed. From this point on, most of the models could only predict 

“collision likely, “meaning that validation accuracy became a measure of the proportion of road 

segments in the validation dataset associated with a collision event. 

Based on the extent to which friction was used in the models developed, it is evident that friction 

is a crucial predictor of collision events. Excluding cases where significant class imbalances and 

friction values became too homogenized, every model had friction as a decision node, which 

cannot be said about any other variable selected in this study. In addition, when friction became a 

poor input variable because of low variation, a major accuracy decrease was observed, signifying 

the importance of the variable.  

Overall, the optimal segment length was between 6.5 and 8.5 km because the friction values in this 

region were the least homogenized and had a balanced dataset. When we evaluated the internal 

logic of these models, we found that 7.0, 7.5, and 8.5 km produced highly complex models. 

Although they showed excellent performance, it was difficult to assess whether the generalizations 

made were reasonable. In contrast, the 6.5 km models were simple and intuitive (as shown in  

Figure 5.9) but had a slightly lower accuracy of 76.9%. Ultimately, the choice of model depends 

on user preference, as there is a trade-off between model performance and intuitiveness. Herein, 

intuitiveness was prioritized.  

 

Figure 5.9 Decision Tree Model Structure With 6.5 km Segment Length 
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The model shown in Figure 5.9 assumes that collisions are influenced by friction and AADT. 

Collisions are unlikely when the coefficient of friction is above 0.408. For road segments with 

friction less than 0.408, a traffic flow rate below 19,000 vehicles per day is considered safer. This 

model aligns with the Federal Highway Administration (FHWA) mandate of including AADT as 

a variable (Bauer & Srinivasan, 2013). Furthermore, these findings are in line with existing 

literature that associates higher AADT and lower friction with more collisions and identifies 0.38 

as the unsafe friction threshold (Zhao et al., 2022). 

Quantifying Safety Benefits in a CV Environment 

As we venture into a future where Connected Vehicles (CV) and Intelligent Transportation System 

(ITS) infrastructure are increasingly ubiquitous, the ability to estimate and quantify the safety 

benefits of such technologies becomes paramount. As demonstrated in the previous sections, 

spatially rich friction estimations have emerged as critical data points that could potentially 

enhance road safety. They pave the way for real-time RSC monitoring and data-driven 

interventions for improved traffic safety. 

The proposed framework in this study capitalizes on these technologies and presents a potential 

use case to improve road safety during winter months. Assuming maturity and widespread 

availability of CV and ITS infrastructure, this framework offers a method for processing and 

harnessing the wealth of data captured by these technologies. In the envisioned scenario, snapshots 

of the RSCs captured by CVs or ITS equipment are transmitted to a nearby server. This server then 

converts these images into point friction values using the models previously developed and 

discussed. Subsequently, based on the attached location information, the point friction values are 

transformed into continuous friction values using an interpolator.  

In a scenario where CVs and ITS equipment sufficiently saturate the road network, continuous 

friction values for the entire road network become accessible. The server can aggregate these 

friction values and convert them into collision likelihood ratings. This processed information is 

then relayed back to the CVs, triggering critical safety interventions. For instance, vehicles might 

be rerouted if an approaching road segment is identified as dangerous. If re-routing is not feasible, 

drivers receive warnings about potential dangers on the road ahead, thereby promoting cautious 
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driving. The entire process is repeated every few seconds to ensure constant provision of the most 

current information. Figure 5.10 illustrates the above-mentioned process.  

 

Figure 5.10 Proposed Framework Implementation in CV and ITS Environment 

This sophisticated system lends to the quantification of safety benefits through crash avoidance 

estimations. For each 6.5 km road segment, the number of Property Damage Only (PDO), injuries, 

and fatalities were calculated for the four days where friction values were available. These 

segments were then evaluated through the binary collision likelihood model to ascertain the 

probability of a collision. It was assumed that all sections marked as “collision likely” had the 

potential to be avoided with the proposed framework, as the driver would have been prompted to 

re-route or warned to take necessary precautions. The resulting model demonstrated a labeling 

accuracy of 80%, identifying 11 road segments as potentially dangerous. These segments were 

linked with 22 PDOs and one injury.  

In this study, two collision reduction scenarios were examined. The first scenario represented an 

ideal condition where all vehicles were effectively re-routed before reaching a hazardous road 

section, leading to a 100% Crash Reduction Factor (CRF). The second scenario applied a more 

conservative CRF of 18%, drawn from a similar study by the state of California on dynamic real-

time road condition warning systems (Ye et al., 2012). It is worthwhile highlighting that this 18% 

CRF was employed for broad estimations of safety benefits when rerouting is unattainable. Table 

5.1 lists the number of collisions reduced and the safety benefits associated with each scenario.  
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Table 5.1 Potential Number of Collisions Reduced Over Four Days Within the Study Area 

Collision 

Severity 

Cost (Direct 

Plus 

Indirect) 

Number of 

Collisions 

Collision 

Reduction 

(100% CRF) 

Safety 

Benefits 

(100% 

CRF) 

Collision 

Reduction 

(18% CRF) 

Safety 

Benefits 

(18% 

CRF) 

PDO $14,065 22 22 $ 309,430 4 $ 56,260 

Injury $137,749 1 1 $ 137,749 0 $ 0 

Fatality $2,450,139 0 0 $ 0 0 $ 0 

   Total $ 447,179 Total $ 56,260 

According to Table 5.1, Scenarios 1 and 2 would have saved $447,179 and $56,260 over four days, 

respectively, if the proposed framework had been implemented. It is important to note that these 

monetary benefits only apply to a small portion of Edmonton’s road network; the actual savings 

should be greater.  

In order to get a sense of the potential savings on a city-wide scale, traffic collision records for the 

same four days were obtained. Because these records did not have friction values, they could not 

be inputted into the developed model to determine whether a warning or re-routing would have 

been triggered. The solution is to use random sampling. Since our model operates at a 76.9% 

accuracy, we can assume that there is a 76.9% probability of our model detecting a dangerous road 

section. However, this assumption applies to only collisions that occurred on surface conditions 

our model was trained on—snowy and icy conditions. After filtering the data and removing 

duplicate reports, a total of 336 collisions remained. Among these collisions, a random sampling 

without replacement was implemented to select 76.9% of the dataset (294 collisions); these 

represent the hypothetical collision events that could have been avoided due to our model. In the 

case of scenario one, the process stopped here as all 294 collisions were considered avoidable due 

to re-routing. In comparison, for scenario 2, an additional sampling procedure was performed to 

select 18% of the 229 collisions to account for the 18% CRF.  

Table 5.2 identifies the potential number of collisions mitigated in each scenario using the 

proposed framework. 
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Table 5.2 Potential Collision Reduction Over Four Days City-wide 

Collision 

Severity 

Cost 

(Direct Plus 

Indirect) 

Number of 

Collisions 

Collision 

Reduction 

(100% 

CRF) 

Safety 

Benefits 

(100% CRF) 

Collision 

Reduction 

(18% CRF) 

Safety 

Benefits 

(18% CRF) 

PDO $14,065 243 243 $ 3,417,795 42 $ 590,730 

Injury $137,749 14 14 $ 1,928,486 4 $ 550,996 

Fatality $2,450,139 1 1 $ 2,450,139 0 $ 0 

   Total $ 7,796,420 Total $ 1,141,726 

The total savings for the four days was estimated to be $7,796,420 ($1,949,105 per day) and 

$1,141,726 ($285,431 per day) for scenarios one and two, respectively. These benefits were larger 

than those calculated in Table 5.1, which was expected since this was a city-wide evaluation. 

While the findings presented herein offer valuable insights into the potential safety benefits of 

utilizing Connected Vehicles (CV) for real-time hazardous road surface conditions monitoring, it 

is important to acknowledge that several assumptions have been made in generating these results.  

These assumptions include the availability of city-wide friction information, the model's ability to 

maintain its performance when data variation increases, the rerouting process successfully 

resolving the incident without causing issues elsewhere, and the driver responding to the safety 

message by slowing down. As a result of these assumptions, it may introduce certain limitations 

to the generalizability of our conclusions. Nonetheless, the proposed framework serves as a 

pioneering effort to quantify the safety benefits of this advanced technology. It provides a 

structured pathway for future research and practical applications, thereby underscoring the 

transformative potential of CV in enhancing road safety, especially during challenging weather 

conditions. 

5.3 Summary 

This chapter focuses on the development of the friction interpolator and the binary collision 

likelihood model. 
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In order to identify the most accurate interpolators, six interpolators were evaluated using datasets 

with increasing distances between measurements (from 0.1 to 1 km): Ordinary Kriging (OK), 

Regression Kriging (OK), Random Forest (RF), Random Forest Spatial Interpolator (RFSI), and 

hybrid models (RFOK and RFSIOK). The results show that OK had the lowest error and was least 

affected by increasing separation distance. Additionally, to evaluate each interpolator in a real-

world scenario where measurements are not evenly spaced, only friction measurements near the 

City of Edmonton traffic cameras were used as input data. The results obtained were identical to 

the distance sensitivity analysis, where OK produced the lowest error and demonstrated the ability 

to capture the spatial pattern with only five available observations. 

After demonstrating that continuous friction values could be accurately generated, we developed 

binary collision models using segment lengths from 500 m to 20 km. Based on model accuracy 

and intuitiveness, the most optimal model was found at 6.5 km, which used friction and AADT  as 

parameters and displayed a classification accuracy of 76.9%. The proposed framework can be used 

to generate advance warnings for road users, which, if implemented in an environment with 

intelligent transportation systems and connected vehicles, there is an expected minimum safety 

benefit of approximately $285,431 per day city-wide. 
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Chapter 6 Conclusion and Future Work 

This chapter provides an overview of this thesis and highlights the major findings and 

contributions of the research conducted herein. In addition, limitations of the research and 

recommendations for future research can also be found in this chapter. 

6.1 Overview 

The provision of real-time winter Road Surface Condition (RSC) information has the potential to 

improve road safety by allowing road users to take the necessary precautions needed on hazardous 

roads or avoid them altogether. This potential, however, has yet to be realized fully due to 

limitations in how RSC is represented, its spatial coverage, and its update frequency. In most 

jurisdictions, winter RSC is categorized based on the degree of snow coverage, using terms such 

as bare, partially snow-covered, and fully snow-covered. This kind of system is problematic 

because the determination process is subjective, and the intermediate classes can represent both 

safe and unsafe conditions simultaneously. Both problems are solved by using friction. Because 

friction is a measured variable, it eliminates the need for subjective interpretation, and since 

friction is a continuous measure between 0 and 1, it allows for the establishment of safety 

thresholds to separate risky from non-risky roads. Nevertheless, there is currently a lack of cost-

effective methods for measuring friction, preventing it from being implemented at a large scale.  

In terms of spatial coverage and update frequency, these issues are driven by the cost of collection. 

It is simply not feasible to collect dense friction measurements on a regular basis without a 

significant increase in cost. As a result, the RSC data collected is sparse, and the update frequency 

can be as little as once a day, which means it is likely that the information provided does not reflect 

actual conditions. 

To address these challenging issues, this thesis proposes a novel framework that leverages 

advances in computer vision and ML. Computer vision makes it possible to effortlessly convert 

images into predictor features, which are then utilized by ML algorithms to learn the relationship 

between friction and the extracted features. Compared to traditional collection methods, our 

proposed framework is more effortless and cost-effective as the collection process is fully 

automated, all of which are improvements that make the proposed framework more appealing for 
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large-scale implementations. At the core of our proposed framework are three interconnected 

components. Component one is an automated image-based friction model to predict friction values; 

component two is a friction interpolator to generate continuous friction values from limited point 

measurements; and the final component is a binary collision model to identify high-risk road 

sections. The combination of these three components forms a novel framework that transforms 

winter road images into valuable information that allows road users to take precautions on risky 

road sections and maintenance personnel for targeted treatment. Furthermore, with the 

proliferation of CVs and ITS equipment, this framework provides the ability to transform the 

wealth of information collected into valuable real-time RSC data. 

6.2 Research Findings 

Component One: Image-based Friction Model 

• The image-based friction prediction model was developed using 128 pairs of images and 

friction values. These images were converted into predictor features by RSC categorization, 

Local Binary Pattern, Gray Level Co-occurrence matrix, and image thresholding. Then, 

three tree-based algorithms—Decision Tree, Random Forest, and Gradient Boosting—

were used to find the relationship between the extracted predictor features and measured 

friction values. All three displayed high performance with an average RMSE of 0.0796 or 

79.3% accuracy based on RMSPE. 

• A method called permutation feature importance was used to determine the relative 

importance of the features based on their impact on the prediction error. The results show 

that RSC categorization is the most important feature extraction method—a model without 

RSC as a feature produced seven times more errors than a model with RSC. 

• A Convolution Neural Network (CNN) model was used to fully automate the friction 

model. The highest-performing CNN model found had a validation accuracy of 85.8%. 

When applied to the friction model’s validation dataset, it labeled all RSC categories with 

over 85% accuracy. To determine the effect of including a CNN model in the friction 

prediction process, friction predictions were generated using the CNN-generated labels. 

The results show that adding a CNN model had minimal impact on model performance; 

only a 0.05 and 0.6% increase in RMSE and RMSPE were observed, respectively. 
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Component Two: Friction Interpolator 

• Six Interpolators—Ordinary Kriging (OK), Regression Kriging (RK), RF, RF Spatial 

Interpolator (RFSI), RFOK, and RFSIOK—were evaluated on datasets with increasing 

separation distance (from 100 m to 1 km with a step size of 100), OK produced the highest 

accuracy among these interpolators while showing the least sensitivity.  

• The same six interpolators were evaluated using a dataset with measurements only 

available at locations with traffic cameras. This was done to simulate the idea of using 

traffic camera images to generate continuous friction values. Similar to the sensitivity 

analysis, OK was found to be the highest-performing interpolator with an RMSE of 

0.05552 and the ability to capture the spatial pattern. 

Component Three: Binary Collision Model 

• A binary collision model was developed using segment length calibration to find the 

optimal length at which there was a balanced number of road sections with and without 

collisions. In an effort to find this distance, at each segment length from 500 m to 20 km 

with an interval of 500 m, a decision tree model was developed. Among these models, the 

6.5 km segment model was selected based on model accuracy and intuitiveness. It had a 

76.9% accuracy and utilized AADT and friction as input features. By examining the 

internal logic of the 6.5 km friction model, it was found that lower friction and higher 

AADT make collisions more likely.  

• The proposed framework has the potential to offer real-time collision likelihood ratings for 

every vehicle on the road network by using continuous friction values obtained from 

connected vehicles and Intelligent transportation systems equipped with cameras. This can 

help reroute vehicles to avoid risky road sections or warn road users of upcoming risky 

conditions. If implemented, the framework would provide significant safety benefits. 
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6.3 Research Contributions 

This thesis has made significant methodological and practical contributions to the field of winter 

road condition monitoring and safety.  

Methodological Contributions 

Methodologically, a novel framework is proposed that uses image processing techniques and 

machine learning algorithms to convert road surface images into continuous friction measurements. 

This approach addresses the consistency and subjectivity issues inherent in qualitative RSC 

descriptors and overcomes the challenges associated with the high cost of friction data collection. 

Until this thesis, the plausibility of developing a winter road friction model using road imagery as 

the sole source of information remained uncertain, as none of the existing efforts in this area appear 

to have been based on actual friction data. This study marks the first time that a model with robust 

performance has been developed using collected friction data, demonstrating the potential of 

image-based friction collection methods. In addition, this work also serves as a reference in the 

selection of predictive features for future research. Not only have we identified the features used 

in friction prediction, but we have also ascertained the most critical feature for friction prediction 

through feature importance. The benefit of this finding is that future researchers will know which 

features to prioritize when developing models and which features to replace with alternative 

predictor features extracted using other computer vision techniques. 

This thesis is also a pioneer in the exploration of the performance of ML and ML hybrid 

interpolators on road-related variables.  The use of ML as interpolators has only been explored in 

environmental studies with measurements available in all directions, where ML showed higher 

accuracy than geostatistical methods. In this thesis, we have rigorously evaluated the performance 

of ML interpolators in different scenarios to determine their advantages and disadvantages, which 

is an invaluable reference that future modelers can refer to when choosing the optimal interpolation 

method for their specific circumstances. Lastly, from the development of the binary collision 

model, we were able to validate the relationship between friction and winter collisions. Prior to 

this study, only one author had investigated this relationship. This work further substantiates the 

notion that lower friction leads to a higher probability of collisions, highlighting the importance of 

monitoring RSC via friction.   
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Practical Contributions 

Practically, the framework introduced in this thesis is an innovative solution that can greatly 

enhance winter road condition monitoring and forecasting. By using continuous friction 

measurements in conjunction with connected vehicle technology and intelligent sensors, we can 

envision a system that not only predicts hazardous conditions, but also proactively alerts drivers 

or reroutes vehicles to improve road safety. The implementation of such a system can lead to 

improvements in traffic management, road safety, and the overall driving experience during the 

winter season, ultimately leading to a potential reduction in winter-related accidents and their 

associated costs. 

The benefits of the proposed framework extend beyond prospective implementation; they also 

enhance the value of existing infrastructure and equipment. For example, the current need for 

hiring contractors to manually inspect the road surfaces to determine RSC can be streamlined using 

a dash camera to capture road surface footage. Our proposed framework can then process the 

collected footage to generate dense friction measurements, which can be converted into collision 

likelihood measures and published on platforms like 511 for advance trip planning. This paradigm 

shift implies that the time contractors spend inspecting the road surface can now be allocated to 

collecting more data, thereby increasing the spatial coverage of RSC information. For urban road 

networks, dash cameras can be installed on buses to collect road condition information. Since 

buses travel over most of a city's road network at regular intervals, they are a great way to collect 

spatially extensive and timely information with minimal additional investment. Furthermore, 

existing infrastructure with imaging capabilities, such as traffic cameras, can be integrated into the 

RSC collection process. The images collected by these devices can be converted into friction 

values and collision likelihood readings. With sufficient camera density on a given road section, 

producing continuous RSC information may be possible, as demonstrated in the traffic camera 

case study. A compelling advantage of this approach is that because these devices collect data 

around the clock, the update frequency of RSC information can be adjusted to any interval without 

a significant increase in expenditure, thereby solving the update frequency issue. 

This thesis presents innovative advancements in monitoring winter road conditions that could 

create a new path for enhancing road safety. By combining image processing techniques, machine 



70 

 

learning algorithms, interpolation methods, and existing infrastructures; this study improves our 

understanding of road safety management during the winter season. 

 

6.4 Limitations and Future Research  

The research conducted in this thesis shows that the conversion of winter road surface images into 

continuous friction values is possible and can be done accurately. It also indicates that a collision 

model that identifies high-risk road sections can be developed based on the resulting continuous 

friction measurements. However, there are a number of limitations that should be addressed in 

future studies. 

• Investigate how the friction model performance changes when more friction and 

supplementary maintenance operation data are available. Increasing friction dataset size 

allows us to evaluate whether the accuracy exhibited by our proof of concept model persists 

when dataset variation increases, and it may reveal more information regarding why certain 

generic features extracted from LBP and GLCM are deemed important.  

• Replace image thresholding with Semantic Segmentation (SS), as SS allows for more 

accurate pixel separation between asphalt and road precipitants. It is possible that the 

inaccuracies introduced during the separation process caused the thresholding features to 

be underused as input predictors. 

• Explore the possibility of using maintenance data as predictors. Maintenance data provides 

information on which roads have been treated with road additives, which are known to 

impact friction. Incorporating this kind of information has the potential to make the 

proposed friction model more accurate.  

• Re-evaluate the interpolators over a much longer stretch of road. This will allow more 

training data to be used for model development. The superior performance of OK may be 

due to the road segment being relatively short in our case study. 

• Develop a traffic camera-focused friction prediction model. The model we created in this 

project was built using dash camera images; friction tests were not performed in the vicinity 

of traffic cameras to allow us to develop a model that linked traffic camera images with 

friction values. Although we could use the friction model developed in this study with 

traffic camera images, the accuracy would suffer significantly due to vastly different 
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camera angles and environmental factors. Creating such a model would require the 

exploration of potentially more advanced machine learning algorithms to compensate for 

the constantly changing traffic camera angles and the increase in environmental variables 

like vehicles, traffic signals, and other road infrastructure. 

• Confirm the relationship identified between friction and collisions using collision records 

from an entire winter season. The current model was developed using four days of collision 

data because these were the only four days for which friction data were available. 

Increasing the size of the model development dataset will allow a more representative 

model to be developed, which may provide more insight into the friction-collision 

relationship. 

• Adopt an extreme value theory approach for modeling collision likelihood. This change 

would allow us to use collision surrogate measures like time-to-collision for model 

development. Unlike actual collision data, time-to-collision data and its corresponding 

friction value can be generated using simulation software, providing us with more data to 

develop a more reliable collision likelihood model. 
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Appendix 

 
Figure A1. Ordinary Kriging (OK) Interpolation Curve 
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Figure A2. Regression Kriging (RK) Interpolation Curve 
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Figure A3. Random Forest (RF) Interpolation Curve 
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Figure A4. RFOK Interpolation Curve 
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Figure A5. Random Forest Spatial Interpolator (RFSI) Interpolation Curve 
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Figure A6. RFSIOK Interpolation Curve 
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Table A1. Sensitivity Analysis Error Comparison 

 

Observation 
Gap OK RK RF RFOK RFSI RFSIOK 

100 0.006068 0.006664 0.018416 0.013724 0.010684 0.010142 

200 0.009511 0.010221 0.036411 0.022055 0.024523 0.019866 

300 0.012689 0.013969 0.044642 0.03023 0.059214 0.04812 

400 0.017556 0.01889 0.047665 0.034488 0.055107 0.048822 

500 0.015638 0.021129 0.063017 0.047634 0.0703 0.059196 

600 0.025845 0.023545 0.056933 0.035731 0.096406 0.082898 

700 0.027872 0.028861 0.059824 0.043463 0.087096 0.073138 

800 0.025905 0.030293 0.058074 0.044286 0.083844 0.075116 

900 0.032585 0.032088 0.065228 0.043344 0.084657 0.075525 

1000 0.05119 0.057832 0.070466 0.063669 0.07782 0.067425 


