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ABSTRACT

In this thesis, we discuss two separate topics from the theory of harmonic

analysis on locally compact groups. The first topic revolves around the topo-

logical centers of module actions induced by unitary representations while the

second one deals with the set of topologically invariant means associated to

an amenable representation.

Part I of this thesis is about the topological centers of bilinear maps in-

duced by unitary representations. We give a characterization when the center

is minimal in term of a factorization property. We give conditions which guar-

antee that the center is maximal. Various examples whose topological centers

are maximal, minimal nor neither will be given. We also investigate the topo-

logical centers related to sub-representations, direct sums and tensor products.

In Part II we study of the set of topologically invariant means associated

to an amenable representation. We construct topologically invariant means

for an amenable representation by two different methods. A lower bound of

the cardinality of the set of topologically invariant means will be given.
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Chapter 1

Introduction and some

preliminaries

In 1951, Arens initiated the study of extension of bilinear maps on normed

space and introduced the concept of regularity of bilinear maps (see [1] and

[2]). The study of Arens regularity of bilinear maps and the topological center

problem has attracted some attention. In [41], Ulger showed that the Arens

regularity of a bounded bilinear map can be characterized by its weakly com-

pactness or its reflexiveness and simplified proofs of some old results. For

more recent results, the reader is referred to [14] and [36]. On the other hand,

special attention has been focused on the bilinear maps arisen from Banach

algebras. See [34] and [13].

Our purpose in Part I of the thesis is to study a bounded bilinear map

induced by a unitary representation π of a locally compact group G and the

topological center problems related to it. Part I is organized as follows. In

chapter 2, we introduce some notations in abstract harmonic analysis, defining

the bounded bilinear map induced by a unitary representation π, giving some

preliminary results. In chapter 3, we study cases under which the topological
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center is maximal, minimal nor neither. A characterization of the maximality

of the topological center will be demonstrated and various examples will be

given. In chapter 4, we investigate the topological centers of bilinear maps

induced by direct sums, tensor products, subrepresentations of given represen-

tations.

A locally compact group is a group equipped with a locally compact Haus-

dorff topology such that the group operations are continuous with respect to

that topology, i.e. both the multiplication G × G → G, (x, y) 7→ xy and the

inverse G→ G, x 7→ x−1 are continuous. Let G be a locally compact group. It

is well-known that G possesses a positive Radon measure m which is invariant

under left translation, i.e. m(E) = m(xE) for any Borel set E ⊆ G and x ∈ G.

We call such a measure a left Haar measure of the group G, denoted by m,

dm, dm(x) or simply dx. We remark that left Haar measure of the group G

is unique up to a positive scalar multiple. Given a locally compact group G,

we fix a left Haar measure once and forever.

We denote the modular function associated to the group G by ∆G or sim-

ply ∆, which is a continuous group homomorphism ∆G : G→ (0,∞) from G

into the multiplicative group of positive real numbers. We remark that the

modular function has the following properties:

dm(xy0) = ∆(y0)dm(x),(1.1)

dm(x−1) = ∆(x−1)dm(x).(1.2)

(x, y0 ∈ G; y0 is regarded as a constant while x is regarded as a variable)
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For 1 ≤ p ≤ ∞, let (Lp(G), ‖ · ‖p) denotes the usual Banach space associ-

ated with G and m. For p = 2, Lp(G) is a Hilbert space with the inner product

〈f | g〉 =
∫
f(x)g(x) dx. For a function f : G → C and x ∈ G, we define the

left translation of f by x by lxf : G→ C, lxf(y) = f(xy). Similarly, we define

the right translation of f by x by rxf : G → C, rxf(y) = f(yx). Sometime,

we also denote lxf and rxf simply by xf and fx respectively. We denote the

space of all bounded complex-valued continuous functions on G by CB(G).

If f ∈ CB(G), we identify f with its equivalence class in L∞(G). With this

identification, CB(G) is a unital C*-subalgebra of L∞(G). Let f ∈ CB(G). If

the map G → CB(G), x 7→ lxf is continuous with respect to the ‖ · ‖∞-norm

topology, we say that f is left uniformly continuous. We denote the set of all

left uniformly continuous functions by LUC(G). Similarly, we say that f is

right uniformly continuous if the map G→ CB(G), x 7→ rxf is continuous with

respect to the ‖ · ‖∞-norm topology. We denote the set of all right uniformly

continuous functions by RUC(G). We remark that LUC(G) and RUC(G) are

unital C*-subalgebras of CB(G). Let UCB(G) = LUC(G)∩RUC(G). We say

that f is a uniformly continuous function if and only if f ∈ UCB(G). It should

be noted that in [21], LUC(G) (resp. RUC(G)) is precisely the space of right

(resp. left) uniformly continuous functions on G.

As well-known, the dual space of LUC(G), denoted by LUC(G)∗, can be

made into a Banach algebra as follows. Let m,n ∈ LUC(G)∗, f ∈ LUC(G),

x ∈ G. We define mlf : G → C by mlf(x) = 〈m, lxf〉. It is easy to check

that mlf ∈ LUC(G). Define mn ∈ LUC(G)∗ by 〈mn, f〉 = 〈m,nlf〉. When

equipped with the product (m,n) 7→ mn, LUC(G)∗ becomes a Banach algebra.

The reader is referred to Lau [28] for more details. Let M(G) be the Banach
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algebra of all the regular complex Borel measures on G. Lau showed that

M(G) can be embedded into LUC(G)∗ as a closed subalgebra (see [28]). At

later time, Ghahramani, Lau and Losert improved that result and proved the

following lemma in [16].

Lemma 1.1. The map θ : M(G)→ LUC(G)∗ defined by 〈θ(µ), f〉 =
∫
f(x) dµ(x),

(µ ∈ M(G), f ∈ LUC(G)) is an isometric algebra homomorphism. Moreover,

we have:

(a) LUC(G)∗ = M(G)⊕1 C0(G)⊥, and

(b) C0(G)⊥ is a closed two-sided ideal of LUC(G)∗.

Let X be a Banach space and let G be a locally compact group. We say

that X is a Banach G-module if G acts on X as bounded invertible operators

with norm less than or equal to one such that the action is continuous with

respect to the norm topology. More precisely, it means that there exists a map

X ×G→ X with the following properties:

• For each ξ ∈ X, x, y ∈ G, we have ξ · e = ξ and (ξ · x) · y = ξ · (xy).

• For each x ∈ G, the map ξ 7→ ξ ·x is a bounded, invertible linear operator

on X with norm less than or equal to one.

• For each ξ ∈ X, the map x 7→ ξ · x is continuous with respect to the

norm topology.

We refer the reader [31] for details.

By a unitary representation π of a locally compact group G, we mean

a group homomorphism π : G → B(H) from G into the group of unitary

operators acting on some Hilbert space H such that the map x 7→ π(x) is
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continuous with respect to the strong operator topology, i.e. for each ξ ∈ H,

the map x 7→ π(x)ξ is continuous. By integration, we obtain a non-degenerate

*-representation, still denoted by π, of L1(G) on the Hilbert space H, namely

f 7→ π(f) =
∫
f(x)π(x) dx.
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Chapter 2

Topological Centers of a Left

LUC(G)∗-Module Action

In this chapter, we associate a module action to a given unitary representa-

tion. The topological center of that module action will be defined and some

preliminary results will be given.

2.1 Module Actions

Let π : G→ B(H) be a unitary representation of a locally compact group G.

Bekka and Xu defined a unital C*-subalgebra of B(H) and a bilinear map as

follows. See [4] and [42].

Define a map B(H)×G→ B(H) by T · x = π(x−1)Tπ(x), then B(H) be-

comes a G-module. Define UCB(π) = {T ∈ B(H) | The map G→ B(H), x 7→

T ·x is continuous in norm topology.}, then UCB(π) is a unital C*-subalgebra

of B(H). When the G-module action is restricted on UCB(π), UCB(π) be-

comes a Banach G-module.

Lemma 2.1. The mapping UCB(π)∗ × UCB(π)→ LUC(G), (M,T ) 7→ MT,
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defined by MT (x) = 〈M,T · x〉 is bilinear and ‖MT‖∞ ≤ ‖M‖‖T‖.

Proof. Let x ∈ G, then |MT (x)| = |〈M,T · x〉| ≤ ‖M‖‖T · x‖ ≤ ‖M‖‖T‖,

hence MT is a bounded function on G. Let (xα) be a net in G such that

xα → x ∈ G, then |MT (xα)−MT (x)| ≤ ‖M‖‖T ·xα−T ·x‖ → 0. Therefore,

MT is a continuous function. Let xα, x, y ∈ G such that xα → x, then

|xα(MT )(y)−x (MT )(y)| = |MT (xαy)−MT (xy)|

= |M(T · xα)(y)−M(T · x)(y)| = |〈δyM,T · xα − T · x〉|

≤ ‖δyM‖‖T · xα − T · x‖ ≤ ‖M‖‖T · xα − T · x‖ → 0

uniformly about y, where δyM ∈ UCB(π)∗ is defined by 〈δyM,T 〉 = 〈M,T ·y〉.

Therefore MT ∈LUC(G). The checking of the bilinearity of the mapping

(M,T ) 7→MT is left to the reader.

Next, we define a map LUC(G)∗ × UCB(π)∗ → UCB(π)∗ by (m,M) 7→

mM , where 〈mM,T 〉 = 〈m,MT 〉, T ∈ UCB(π). It is routine to check that

the map is a bounded bilinear map with ‖mM‖ ≤ ‖m‖‖M‖.

Proposition 2.2. With the mapping (m,M) 7→ mM defined above, UCB(π)∗

becomes a left Banach LUC(G)∗-module with ‖mM‖ ≤ ‖m‖‖M‖ and δeM =

M .

Proof. Let T ∈ UCB(π), M ∈ UCB(π)∗, x, y ∈ G, then

x(MT )(y) = (MT )(xy) = 〈M, T · xy〉

= 〈M, (T · x) · y〉 = M(T · x)(y).

Therefore x(MT ) = M(T · x). Next, for all n ∈ LUC(G)∗,

nl(MT )(x) = 〈n, x(MT )〉 = 〈n, M(T · x)〉

= 〈nM, T · x〉 = (nM)(T )(x)
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and hence nl(MT ) = (nM)T . Therefore

〈(mn)M, T 〉 = 〈mn,MT 〉

= 〈m, nl(MT )〉 = 〈m, (nM)T 〉 = 〈m(nM), T 〉,

so (mn)M = m(nM). Also

〈δeM, T 〉 = 〈δe, MT 〉 = (MT )(e)

= 〈M, T · e〉 = 〈M, T 〉,

hence δeM = M.

Remark 2.3. The bilinear map (m,M) 7→ mM constructed above coincides

with Arens’ construction when G is discrete. We recall Arens’ construction.

Let X, Y , Z be Banach spaces and let θ : X × Y → Z be a bounded bilinear

map. Define θ∗ : Z∗×X → Y ∗, the adjoint of θ, by 〈θ∗(z′, x), y〉 = 〈z′, θ(x, y)〉

(x ∈ X, y ∈ Y, z′ ∈ Z∗). The above process can be repeated and we define

θ∗∗ = (θ∗)∗ : Y ∗∗ × Z∗ → X∗ and θ∗∗∗ = (θ∗∗)∗ : X∗∗ × Y ∗∗ → Z∗∗. If

G is a discrete group, both UCB(π) and LUC(G) have preduals. Namely,

UCB(π) = B(H) = L1(H)∗, where L1(H), equipped with the trace-class norm,

is the Banach space of all trace-class operators on the Hilbert space H. (see

[40] Chapter II, Section 1) and LUC(G) = l∞(G) = l1(G)∗. Define a G-

module action on the space L1(H) by G × L1(H) → L1(H), (x, L) 7→ x ·

L = π(x)Lπ(x−1). By integration, we obtain a Banach l1(G)-module L1(H),

namely l1(G)× L1(H)→ L1(H),

(f, L) 7→ f · L =

∫
f(x)x · Ldx =

∑
x∈G

f(x)x · L.

Define a bounded bilinear map θ : l1(G)× L1(H)→ L1(H) by θ(f, L) = f · L.
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Let L ∈ L1(H), T ∈ B(H), M ∈ B(H)∗, x ∈ G, then

〈θ∗(T, δx), L〉 = 〈T, θ(δx, L)〉 = 〈T, x · L〉 = tr(Tπ(x)Lπ(x−1))

= tr(π(x−1)Tπ(x)L) = tr((T · x)L) = 〈T · x, L〉.

Therefore θ∗(T, δx) = T ·x and 〈θ∗∗(M,T ), δx〉 = 〈M, θ∗(T, δx)〉 = 〈M,T ·x〉 =

MT (x), hence θ∗∗(M,T ) = MT . Finally, 〈θ∗∗∗(m,M), T 〉 = 〈m, θ∗∗(M,T )〉 =

〈m,MT 〉 = 〈mM,T 〉. Therefore θ∗∗∗(m,M) = mM .

2.2 Topological Centers

In this section, we define the notion of topological center. Using the notation

defined in the previous section, it is obvious that for each fixed M ∈ UCB(π)∗,

the map LUC(G)∗ → UCB(π)∗, m 7→ mM is weak*-weak* continuous. How-

ever, it is false that for each m ∈ LUC(G)∗, the map UCB(π)∗ → UCB(π)∗,

M 7→ mM is weak*-weak* continuous. A natural question arises: For what

m is the mapping M 7→ mM weak*-weak* continuous ? Therefore it makes

sense to define

Z(π) = {m ∈ LUC(G)∗ | The map UCB(π)∗ → UCB(π)∗,

M → mM is weak*-weak* continuous.},

the topological center of the module action induced by π. Note that Z(π)

contains M(G). Before proving this result, we would first state a proposition

which characterizes Z(π).

Proposition 2.4. Let π : G → B(H) be a unitary representation of a locally

compact group G and let UCB(π) and Z(π) be defined as above. For each

m ∈ LUC(G)∗, the following are equivalent:
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1. For each T ∈ UCB(π), the map Tm : UCB(π)∗ → C defined by

〈M , Tm〉 = 〈mM , T 〉 (M ∈ UCB(π)∗) lies in UCB(π).

2. m ∈ Z(π).

3. The map UCB(π)∗ → UCB(π)∗, M 7→ mM is weak*-weak* continuous

on all bounded parts of UCB(π)∗.

Proof. The equivalence of (1) and (2) are clear and the implication of (2)⇒(3)

is trivial. Now we prove that (3)⇒(1). Suppose that the mapping M 7→ mM

is weak*-weak* continuous on all bounded parts of UCB(π)∗. Let T ∈ UCB(π)

be fixed, then the linear functional Tm ∈ UCB(π)∗∗ is σ(UCB(π)∗,UCB(π))

continuous on any bounded part of UCB(π)∗. By [10] [V.5.6], Tm is a σ(UCB(π)∗,UCB(π))

continuous linear functional on UCB(π)∗ and hence Tm ∈ UCB(π) by [8] P.125

Theorem 1.3.

Lemma 2.5. Let π : G → B(H) be a unitary representation of a locally

compact group G. Then M(G) ⊆ Z(π), where M(G) is regarded as a subspace

of LUC(G)∗ as in lemma 1.1

Proof. Define a map UCB(π) × LUC(G)∗ → UCB(π)∗∗ by (T, m) 7→ Tm,

where 〈M, Tm〉 = 〈mM, T 〉, M ∈ UCB(π)∗. The map is clearly bilinear and

‖Tm‖ ≤ ‖T‖‖m‖. Let m ∈ M(G) with m 6= 0, T ∈ UCB(π) and ε > 0.

First, we assume that the support of m, denoted by K = supp(m) is compact.

Choose a finite partition {Ei |i = 1, 2, . . . , n} of K consisting of Borel sets Ei

such that ‖T · x − T · y‖ < ε/|m|(K) whenever x, y ∈ Ei. This is possible by

the uniform continuity of the map x 7→ T · x on the compact set K. For each
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i, fix xi ∈ Ei. Let M ∈ UCB(π)∗, then

|〈M , Tm−
n∑
i=1

m(Ei)T · xi〉| = |〈m, MT 〉 −
n∑
i=1

m(Ei)〈M , T · xi〉|

= |
∫
K

MT (x) dm(x)−
n∑
i=1

m(Ei)〈M , T · xi〉|

= |
n∑
i=1

∫
Ei

〈M , T · x− T · xi〉 dm(x)| ≤
n∑
i=1

‖M‖ ε

|m|(K)
|m|(Ei) = ε‖M‖.

Therefore ‖Tm −
∑n

i=1m(Ei)T · xi‖ ≤ ε. Since Tm can be approximated

by a sequence of elements in UCB(π) with respect to the norm topology,

Tm ∈ UCB(π). If the support of the measure m is not compact, we can choose

a sequence of measures (µn)n with compact supports such that ‖m−µn‖ → 0.

Then ‖Tm − Tµn‖ ≤ ‖T‖‖m − µn‖ → 0, so Tm ∈ UCB(π). By proposition

2.4 , m ∈ Z(π).

Proposition 2.6. Let π : G → B(H) be a unitary representation of a locally

compact group G and let UCB(π) and Z(π) be defined as above. Then the

topological center Z(π) is a Banach subalgebra of LUC(G)∗ containing M(G).

Proof. By proposition 2.4 (1) and the previous lemma, Z(π) is a subalgebra

of LUC(G)∗ containing M(G). Let (mk) be a sequence in Z(π) such that

mk → m ∈ LUC(G)∗ with respect to the norm topology. Let (Mα) be a

bounded net in UCB(π)∗ such that Mα → M ∈ UCB(π)∗ with respect to the

weak* topology. Let T ∈ UCB(π) and let ε > 0. Choose K > 0 such that

‖Mα‖ ≤ K for all α. Fix k such that ‖mk −m‖ < ε/(K(‖T‖+ 1)), then

|〈mMα, T 〉 − 〈mM, T 〉|

≤ |〈mk(Mα −M), T 〉|+ |〈(m−mk)Mα, T 〉|+ |〈(mk −m)M, T 〉|

≤ |〈mk(Mα −M), T 〉|+ 2ε.

Consequently lim supα |〈mMα, T 〉 − 〈mM, T 〉| ≤ 2ε and hence 〈mMα, T 〉 →

〈mM, T 〉, i.e. m ∈ Z(π) by proposition 2.4. Therefore Z(π) is closed.
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Chapter 3

Minimality and Maximality of

the Topological Centers

In this chapter we study two extreme cases about topological centers, namely,

minimality and maximality of topological centers. An example whose topo-

logical center is neither minimal nor maximal will be demonstrated.

3.1 Minimality of the Topological Centers

In this section, we state a theorem which characterizes the minimality of a

topological center (i.e. Z(π) = M(G)) in terms of a factorization property. It

follows immediately that the topological center of the module action induced

by the left regular representation of any locally compact group is always min-

imal. Lastly, we give an example that the topological center of a countable

direct sum of finite dimensional representations is minimal.

Before stating the main theorem, we need a few lemmas. The first lemma

may be well known, however, we include a proof for completeness.
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Lemma 3.1. Let G be a locally compact group and let K1, K2 be two disjoint

compact subsets of G, then there exists a compact, symmetric neighborhood U

of e such that K1U and K2U are disjoint.

Proof. First we claim that for any y ∈ K2, there exist open neighborhoods Uy,

Vy of e such that K1Uy∩yVy = ∅. Let y ∈ K2 be given. For each x ∈ K1, there

exist open neighborhoods Sx and Tx of e such that xSxSx ∩ yTx = ∅. Note

that {xSx |x ∈ K1} covers K1, so we may select a finite subcover {xiSxi | i =

1, 2, . . . , n}. Define Uy =
⋂n
i=1 Sxi , Vy =

⋂n
i=1 Txi , then Uy and Vy are open

neighborhoods of e. We show that K1Uy ∩ yVy = ∅. Let x ∈ K1, then

x ∈ xiSxi for some i. Consequently xUy ∩yVy ⊆ xiSxiSxi ∩yTxi = ∅ and hence

K1Uy ∩ yVy = ∅.

By the above claim, for each y ∈ K2, we may choose open neighborhoods

Uy and Vy for e such that K1Uy ∩ yVyVy = ∅. Note that {yVy | y ∈ K2}

covers K2, so we may select a finite subcover {yiVyi | i = 1, 2, . . . ,m}. Define

open neighborhoods U =
⋂m
i=1 Uyi , V =

⋂m
i=1 Vyi of e. Let y ∈ K2, then

y ∈ yiVyi for some i. Therefore K1U ∩ yV ⊆ K1Uyi ∩ yiVyiVyi = ∅ and hence

K1U ∩ K2V = ∅. We finish the proof by choosing a compact, symmetric

neighborhood of e contained in U ∩ V .

Lemma 3.2. Let G be a locally compact, non-compact group and let K1 and K2

be two disjoint compact subsets of G. Then there exists a compact, symmetric

neighborhood U of e and a sequence (xn) in G such that:

1. K1Uxi ∩K1Uxj = ∅ whenever i 6= j,

2. K2Uxi ∩K2Uxj = ∅ whenever i 6= j,

3. K1Uxi ∩K2Uxj = ∅ for any i, j.

Moreover the set {xn |n ∈ N} is closed but not compact.
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Proof. Without loss of generality, we assume that K1 and K2 are non-empty.

By lemma 3.1, we choose a compact, symmetric neighborhood U of e such

that K1U ∩K2U = ∅ and construct a sequence (xn) inductively. Let x1 = e.

Suppose that x1, x2, . . . , xn have been choosen such that:

K1Uxi∩K1Uxj = ∅ whenever i 6= j, and K2Uxi∩K2Uxj = ∅ whenever i 6= j,

and

K1Uxi ∩K2Uxj = ∅ for any i, j ∈ {1, 2, . . . n}.

We assert that there exists y ∈ G such that:

K1Uxi ∩K1Uy = ∅ for i = 1, 2, . . . , n and

K2Uxi ∩K2Uy = ∅ for i = 1, 2, . . . , n and

K1Uxi ∩K2Uy = ∅ for i = 1, 2, . . . , n and

K1Uy ∩K2Uxi = ∅ for i = 1, 2, . . . , n.

Suppose the contrary that the assertion is false, then for any y ∈ G, we have

y ∈
n⋃
i=1

[U−1K−11 K1Uxi ∪ U−1K−12 K2Uxi ∪ U−1K−12 K1Uxi ∪ U−1K−11 K2Uxi]

and hence

G =
n⋃
i=1

[U−1K−11 K1Uxi ∪ U−1K−12 K2Uxi ∪ U−1K−12 K1Uxi ∪ U−1K−11 K2Uxi],

which is a contradiction since the set on the right is compact. Choose xn+1 = y,

where y ∈ G is any element which satisfies the above condition. By induction,

we obtain a sequence (xn) in G. Clearly (i) and (ii) are satisfied by our

construction. For (iii), if i = j, K1Uxi ∩ K2Uxi = (K1U ∩ K2U)xi = ∅. If

i 6= j, K1Uxi ∩K2Uxj = ∅ by our construction. We show that {xn |n ∈ N} is

a closed, non-compact subset of G. Suppose the contrary that {xn |n ∈ N} is

compact. For the net (xn)n, it has a subnet (xnα)α which converges to a point,
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say xk in {xn |n ∈ N}. Choose α0 such that xnα ∈ Uxk whenever α � α0.

Choose α1 such that nα ≥ k+1 whenever α � α1. Choose α2 such that α2 � α1

and α2 � α0, then xnα2 ∈ Uxk. Clearly xnα2 ∈ Uxnα2 . However nα2 ≥ k + 1

implies that xnα2 6= xk, contradicting to Uxk∩Uxnα2 = ∅. Let (xα)α be a net in

{xn |n ∈ N} which converges to x ∈ G. We assert that there exists α0 such that

xα = xα0 whenever α � α0. In that case, xα → xα0 ∈ {xn |n ∈ N}. Suppose

the contrary. Choose an open neighborhood V of e such that V V −1 ⊆ U .

Choose α0 such that xα ∈ V x whenever α � α0. By assumption, there exist

α1, α2 � α0 such that xα1 6= xα2 . Note that xα1 ∈ V x and xα2 ∈ V x, so

xα1x
−1
α2
∈ V xx−1V −1 ⊆ U and hence xα1 ∈ Uxα2 , which is a contradiction.

Lemma 3.3. Let G be a locally compact, non-compact group and let K1,K2

be two disjoint, compact subsets of G. Let U , (xn) be the compact, symmetric

neighborhood of e and the sequence in G respectively as in the previous lemma.

Then there exists f ∈ LUC(G)\C0(G), 0 ≤ f ≤ 1, such that f = 1 on⋃∞
n=1K1xn and f vanishes outside

⋃∞
n=1K1Uxn. In particular, f = 0 on⋃∞

n=1K2Uxn.

Proof. By Urysohn Lemma, we choose g ∈ C0(G), 0 ≤ g ≤ 1, such that

g = 1 on K1 and g vanishes outside K1U . Define f : G → [0,+∞] by

f(x) =
∑∞

n=1 g(xx−1n ). Note that for each x ∈ G, there exists at most one n

such that g(xx−1n ) 6= 0. For, if m 6= n but g(xx−1n ) 6= 0 and g(xx−1m ) 6= 0, then

xx−1n ∈ K1U and xx−1m ∈ K1U , hence x ∈ K1Uxn∩K1Uxm which is impossible.

It is immediate that 0 ≤ f ≤ 1 and f is a Borel function. Let (tα)α be a net inG

such that tα → t ∈ G. Let s ∈ G be arbitrary. Let ε > 0. Choose α0 such that

‖tαg−t g‖ < ε whenever α � α0. Let α � α0. Note that there are at most two

integers n such that the term |g(tαsx
−1
n )−g(tsx−1n )| is non-zero. Moreover, for

such non-zero terms, we have |g(tαsx
−1
n )−g(tsx−1n )| ≤ ‖tαg−tg‖ < ε. Therefore
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|tαf(s) −t f(s)| = |f(tαs) − f(ts)| ≤
∑∞

n=1 |g(tαsx
−1
n ) − g(tsx−1n )| < 2ε, so

f ∈ LUC(G). By the construction, it is clear that f = 1 on
⋃∞
n=1K1xn and

f = 0 on (
⋃∞
n=1K1Uxn)c. In particular, f 6∈ C0(G). Since

⋃∞
n=1K1Uxn and⋃∞

n=1K2Uxn are disjoint, f = 0 on
⋃∞
n=1K2Uxn.

Remark 3.4. A similar technique was used by Granirer and Lau. We refer the

reader to [18, lemma 4].

Lemma 3.5. Let G be a locally compact group. Given µ ∈ M(G) and f ∈

LUC(G), we define f · µ(x) =
∫
f(yx) dµ(y), then f · µ ∈ LUC(G). Moreover,

‖f · µ‖∞ ≤ ‖f‖∞‖µ‖.

Proof. Let M = ‖µ‖ + 1. Let ε > 0, then there exists an open neighborhood

U of e such that |f(x) − f(y)| < ε/M whenever xy−1 ∈ U . First, we assume

that the support of µ, denoted by K, is compact. For each y ∈ K, there

exists a symmetric open neighborhood Vy of e such that VyVyVy ⊆ y−1Uy.

Note that {yVy | y ∈ K} is an open covering of K, so we may choose a finite

subcover {yiVyi | i = 1, 2, . . . , n}. Define V =
⋂n
i=1 Vyi . Let x1, x2 ∈ G such

that x1x
−1
2 ∈ V . Let y ∈ K be arbitrary, then y ∈ yiVyi for some i. Therefore

(yx1)(yx2)
−1 = yx1x

−1
2 y−1 ∈ yiVyiVyi(Vyi)

−1y−1i = yiVyiVyiVyiy
−1
i ⊆ U and

hence |f(yx1)− f(yx2)| < ε/M . Consequently

|f · µ(x1)− f · µ(x2)| ≤
∫
K

|f(yx1)− f(yx2)| d|µ|(y) ≤ ε‖µ‖/M < ε.

This proves that f · µ ∈ LUC(G). It is clear that ‖f · µ‖∞ ≤ ‖f‖∞‖µ‖ for

general µ ∈ M(G), f ∈ LUC(G). Lastly, if the support of µ is not compact, we

may, by inner regularity of µ, choose a sequence (µn) in M(G), with supp(µn)

compact and ‖µn − µ‖ → 0, then ‖f · µ − f · µn‖ ≤ ‖f‖∞‖µn − µ‖ → 0.

As f · µn ∈ LUC(G) and LUC(G) is a closed subspace of L∞(G), f · µ ∈

LUC(G).
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Now, we are ready to state the main theorem in this paper which charac-

terizes the minimality of the topological center Z(π) in terms of a factorization

property. The forward implication of that theorem is inspired by [14, Theorem

3.1] .

Theorem 3.6. Let G be a locally compact, non-compact group and let π :

G → B(H) be a continuous unitary representation. Let F = {MT |M ∈

UCB(π)∗, T ∈ UCB(π)}, then the following are equivalent:

(a) The linear span of F is norm dense in LUC(G).

(b) Z(π) = M(G).

Proof. We prove that (a)⇒(b). Suppose that the condition in (a) holds. Let

Z be the topological center of LUC(G)∗, i.e. Z is the subset of LUC(G)∗ which

consists of all m such that the map LUC(G)∗ → LUC(G)∗, n 7→ mn is weak*-

weak* continuous. Recall that Z = M(G) by [28] and we already know that

M(G) ⊆ Z(π), so we will finish the proof once we show that Z(π) ⊆ Z. Let m ∈

Z(π). To prove that m ∈ Z, it suffices that the map LUC(G)∗ → LUC(G)∗,

n 7→ mn is weak*-weak* continuous on all bounded parts of LUC(G)∗ (see

[28]). Let (nα) be a bounded net in LUC(G)∗ such that nα → n ∈ LUC(G)∗

with respect to the weak*-topology. Let f ∈ LUC(G). First, we assume that

f ∈ span F . Write

f =
k∑
i=1

MiTi,

where Mi ∈ UCB(π)∗ and Ti ∈ UCB(π), then
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〈mnα, f〉 =
k∑
i=1

〈mnα,MiTi〉

=
k∑
i=1

〈m, (nα)l(MiTi)〉 =
k∑
i=1

〈m, (nαMi)Ti〉

=
k∑
i=1

〈m(nαMi), Ti〉 →
k∑
i=1

〈m(nMi), Ti〉

=
k∑
i=1

〈m, (nMi)Ti〉 =
k∑
i=1

〈m,nl(MiTi)〉

= 〈mn, f〉.

Then we drop the assumption that f ∈ span F . Let ε > 0. Choose K >

0 such that ‖nα‖ ≤ K and ‖m‖ ≤ K. Choose f0 ∈ span F such that

‖f − f0‖∞ < ε/(K2). Since 〈mnα, f0〉 → 〈mn, f0〉, there exists α0 such that

|〈mnα, f0〉 − 〈mn, f0〉| < ε whenever α � α0. For any α � α0,

|〈mnα, f〉 − 〈mn, f〉|

≤ |〈mnα, f〉 − 〈mnα, f0〉|+ |〈mnα, f0〉 − 〈mn, f0〉|+ |〈mn, f0〉 − 〈mn, f〉|

≤ 3ε.

Therefore m ∈ Z.

We prove the direction (b)⇒(a) by contradiction. Suppose the contrary

that the closed linear span of F 6= LUC(G). Pick m ∈ LUC(G)∗ such that

m 6= 0 but m vanishes on the closed linear span of F . Note that for any

M ∈ UCB(π)∗, mM = 0. In particular m ∈ Z(π). By lemma 1.1, we may

write m = m1 + m2 where m1 ∈ M(G) and m2 ∈ C0(G)⊥. If m2 6= 0, we

obtain a contradiction immediately since m2 = m−m1 ∈ Z(π). Suppose that

m2 = 0. We denote m = m1 = µ ∈ M(G). Now we try to produce another
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m′′ ∈ Z(π) with m′′ 6= 0 and m′′ ∈ C0(G)⊥, then we will arrive a contradiction.

Note that for M ∈ UCB(π)∗, T ∈ UCB(π), x, y ∈ G, we have

(δxM)T (y) = 〈δxM,T · y〉 = 〈δx,M(T · y)〉

= (M · (T · y))(x) = 〈M, (T · y) · x〉 = 〈M,T · (yx)〉

= (MT )x(y)

and hence (MT )x = (δxM)T . Therefore∫
MT (yx) dµ(y) = 〈µ, (δxM)T 〉 = 0,

for each x ∈ G.

First we consider the case that µ is a signed-measure. By Jordan de-

composition theorem, we have µ = µ+ − µ−. Furthermore, we assume that

supp(µ+) ⊆ K1 and supp(µ−) ⊆ K2, where K1 and K2 are two disjoint com-

pact subsets of G. Choose a compact, symmetric neighborhood U of e, a

sequence (xn) in G, f ∈ LUC(G)\C0(G) as in lemma 6.2 and lemma 3.3. By

lemma 6.3, f · µ ∈ LUC(G). We assert that f · µ 6∈ C0(G). Note that the

constant function 1 ∈ F . (For, let T = idH and choose M ∈ UCB(π)∗ such

that 〈M,T 〉 = 1), so µ(G) = 〈µ, 1〉 = 0. Therefore µ+(G) = µ−(G) 6= 0. We

prove that f · µ+ = µ+(G) on {xn |n ∈ N} and f · µ− = 0 on {xn |n ∈ N}.

Let y ∈ K1 and x ∈ {xn |n ∈ N}, then yx ∈
⋃∞
n=1K1xn, so f(yx) = 1.

Consequently,

f · µ+(x) =

∫
K1

f(yx) dµ+(y) = µ+(K1) = µ+(G)

and hence f · µ+ = µ+(G) on {xn |n ∈ N}. If y ∈ K2, x ∈ {xn |n ∈ N}, then

yx ∈
⋃∞
n=1K2xn ⊆

⋃∞
n=1K2Uxn, so f(yx) = 0 and consequently f · µ−(x) =∫

K2
f(yx) dµ−(y) = 0. Therefore f · µ = f · µ+ − f · µ− = µ+(G) on the
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non-compact set {xn |n ∈ N}. In particular f · µ 6∈ C0(G). Note that in our

case, ‖f‖∞ = 1.

Then we consider the case that µ is a general signed measure. Denote

λ = ‖µ‖ > 0, then µ+(G) = µ−(G) = λ/2. By inner regularity of µ+, µ−, we

may choose positive measures µ+
0 ,µ−0 with supp(µ+

0 ) ⊆ K1, supp(µ−0 ) ⊆ K2,

K1, K2 being compact and 0 ≤ µ+
0 ≤ µ+, 0 ≤ µ−0 ≤ µ−, ‖µ+ − µ+

0 ‖ < λ/100,

‖µ− − µ−0 ‖ < λ/100. Since µ+ and µ− are mutually singular, K1,K2 can

be chosen such that K1

⋂
K2 = ∅. By the previous argument, there ex-

ists f ∈ LUC(G) with ‖f‖∞ = 1 such that f · (µ+
0 − µ−0 ) = µ+

0 (G) >

λ/2−λ/100 = 49λ/100 on a non-compact set {xn |n ∈ N}. Set µ0 = µ+
0 −µ−0 ,

then ‖µ−µ0‖ < λ/50, so ‖f ·µ− f ·µ0‖∞ ≤ ‖f‖∞‖µ−µ0‖ < λ/50. Therefore

|f · µ(x)| > 49λ/100 − λ/50 for any x ∈ {xn |n ∈ N} hence f · µ 6∈ C0(G).

If µ ∈ M(G) is a complex measure, we may write µ = µ1 + iµ2 for some

finite signed measures µ1, µ2. Note that at least one of µ1, µ2 is non-zero.

Choose f ∈ LUC(G) as before, according to the non-zero measure µi, then

f · µ = (f · µ1) + i(f · µ2). Note that both f · µ1, f · µ2 are real-valued and at

least one of them is not in C0(G), so f · µ 6∈ C0(G).

We conclude that there exists f0 ∈ LUC(G) such that f0·µ ∈ LUC(G)\C0(G).

By Hahn Banach theorem, there exists m′ ∈ LUC(G)∗ such that m′(f0 ·µ) 6= 0

while m′ = 0 on C0(G). Define m′′ ∈ LUC(G)∗ by 〈m′′, f〉 = 〈m′, f ·µ〉. Clearly

if f ∈ C0(G), then f · µ ∈ C0(G), so m′′ ∈ C0(G)⊥. m′′(f0) = 〈m′, f0 · µ〉 6= 0,

so m′′ 6= 0 and in particular m′′ 6∈ M(G). If M ∈ UCB(π)∗, T ∈ UCB(π), then

〈m′′,MT 〉 = 〈m′, (MT ) · µ〉. However (MT ) · µ(x) =
∫
MT (yx) dµ(y) = 0, so

〈m′′,MT 〉 = 0. Consequently, m′′M = 0 for all M ∈ UCB(π)∗. In particular
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m′′ ∈ Z(π)\M(G).

We notice that in our main theorem, if the closed linear span of F is strictly

contained in LUC(G), the m ∈ Z(π)\M(G) constructed has the property that

mM = 0 for any M ∈ UCB(π)∗. It is interesting to ask: Is it possible

to find such a m other than that form ? In the following, we give a sufficient

condition which guarantees the existence of m ∈ Z(π)\M(G) with the property

mM = M for all M ∈ UCB(π)∗.

We recall some facts about Stone-Čech Compactification. Let Ω be a Tychonoff

space (i.e. T1 and completely regular). The Stone-Čech compactification βΩ

of Ω is defined as the Gelfand spectrum of CB(Ω), the commutative, unital

C*-algebra of all bounded, continuous, complex-valued functions defined on

Ω. Note that βΩ has the following properties:

1. βΩ is compact.

2. The identity map ι : Ω → βΩ is a topological embedding, i.e. ι(Ω) is

dense in βΩ and the map ι : Ω→ ι(Ω) is a homeomorphism.

The reader is referred to [8] P.137-138 for more detail. We remark that a

locally compact Hausdorff space is a Tychonoff space. We identify Ω with

ι(Ω) and simply write ω for ι(ω). The following lemma is probably well-

known. However, we cannot find a proof from standard textbooks, so we

include a proof here for completeness.

Lemma 3.7. Let Ω be a locally compact Hausdorff space. Let f ∈ CB(Ω),

then f ∈ C0(Ω) if and only if f̂(ω) = 0 for any ω ∈ βΩ\Ω. (f̂ denotes the

Gelfand transform of f .)

Proof. Let f ∈ C0(Ω). We prove by contradiction. Suppose that there exists

ω0 ∈ βΩ\Ω such that f̂(ω0) 6= 0. Since Ω is dense in βΩ, we may choose a net
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(ωα)α is Ω such that ωα → ω0. Fix ε0 > 0 such that |f̂(ω0)| > ε0. By passing

to a subnet, we may assume, without lose of generality, that |f̂(ωα)| > ε0 for

all α. Let K = {ω ∈ Ω | |f̂(ω)| ≥ ε0} which is compact. Choose a subnet

(ωα′) of (ωα) such that (ωα′) converges to some ω′0 ∈ K. However, ωα′ → ω0

and ω0 6= ω′0, which is a contradiction. Conversely, let f ∈ CB(Ω) such that

f̂(ω) = 0 for each ω ∈ βΩ\Ω. Let ε > 0 and define K = {ω ∈ Ω | |f̂(ω)| ≥ ε}.

Let (ωα)α be a net in K. By regarding (ωα)α as a net in βΩ and by the

compactness of βΩ, there exists a subnet (ωα′) of (ωα), and ω0 ∈ βΩ such that

ωα′ → ω0. Observe that |f̂(ω0)| = limα′ |f̂(ωα′)| ≥ ε, so ω0 ∈ K. Therefore K

is compact and hence f ∈ C0(Ω).

Proposition 3.8. Let π : G → B(H) be a unitary representation of a locally

compact group. Let N = {x ∈ G | T ·x = T for any T ∈ UCB(π)}, the kernel

of the G-module action induced by π, which is a closed normal subgroup of G.

If N is non-compact, there exists m ∈ Z(π)\M(G) such that mM = M for

any M ∈ UCB(π)∗. In particular, M(G) is strictly contained in Z(π).

Proof. Regard N as a locally compact Hausdorff topological space. As N is

non-compact, we can select ω0 ∈ βN\N and define a character m̃ on CB(N)∗

by 〈m̃, f〉 = f̂(ω0), where we identify the two C*-algebras CB(N), C(βN) via

the Gelfand transform f 7→ f̂ . By the previous lemma, 〈m̃, f〉 = 0, for any

f ∈ C0(N). Define m ∈ LUC(G)∗ by 〈m, f〉 = 〈m̃, f |N〉. Let f ∈ Cc(G), then

clearly f |N ∈ Cc(N). Therefore 〈m, f〉 = 〈m̃, f |N〉 = 0, i.e. m ∈ C0(G)⊥.

Denote the identity functions on G and on N by 1G and 1N respectively, then

〈m, 1G〉 = 〈m̃, 1N〉 = 1, hence m 6= 0. Let M ∈ UCB(π)∗, T ∈ UCB(π) and

x ∈ N , then MT (x) = 〈M,T ·x〉 = 〈M,T 〉. Therefore MT |N = 〈M,T 〉1N and

hence 〈mM,T 〉 = 〈M,T 〉〈m̃, 1N〉 = 〈M,T 〉, i.e. mM = M .

We also remark the following observation.
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Corollary 3.9. Using the above notation, if G is non-compact and the kernel

N of the G-module action is non-trivial, i.e. N 6= {e}, then the factorization

property in the main theorem fails to hold, hence M(G) is properly contained

in Z(π).

Proof. Suppose that there exists x ∈ N with x 6= e. Clearly for each M ∈

UCB(π)∗ and T ∈ UCB(π), MT (x) = MT (e). Consequently, f(x) = f(e)

for each f in the closed linear span of F . However, by Urysohn lemma, there

exists g ∈ Cc(G) ⊆ LUC(G) such that g(x) 6= g(e) and hence g ∈ LUC(G)\

the closed linear span of F .

Now we apply our main theorem to some examples.

Corollary 3.10. Let λ be the left regular representation of a locally compact

group G. Then {MT |M ∈ UCB(λ)∗, T ∈ UCB(λ)} = LUC(G), hence Z(λ) =

M(G).

Proof. Let f ∈ LUC(G) be given. Define Tf : L2(G)→ L2(G) be the multipli-

cation operator induced by f , i.e. Tf (g) = gf (g ∈ L2(G)). We recall that the

map f 7→ Tf is an isometric embedding of LUC(G) into B(L2(G)). Note that

for any x ∈ G, Tf ·x = Txf . Therefore if (xα) is a net in G converging to x ∈ G,

we have ‖Tf ·xα−Tf ·x‖ = ‖xαf−xf‖ → 0, hence Tf ∈ UCB(λ). For y ∈ G, we

let δy ∈ LUC(G)∗ be the evaluation at y. We regard LUC(G) as a subspace of

UCB(λ) and let My ∈ UCB(λ)∗ be any Hahn-Banach extension of δy. If x ∈ G,

then (MyTf )(x) = 〈My, Tf · x〉 = 〈My, Txf〉 = 〈δy, xf〉 = f(xy) = fy(x).

Therefore MyTf = fy. In particular, MeTf = f . It follows that, by the main

theorem, Z(λ) = M(G) if G is non-compact. If G is compact, we always have

Z(λ) = M(G) since LUC(G)∗ = C(G)∗ = M(G).
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Example 3.11. Let G = Z be the discrete group of integers. For each n ∈ N,

let qn : Z → Zn be the canonical quotient map and let λ̃n : Zn → B(l2(Zn))

be the left regular representation. Let λn = λ̃n ◦ qn and define π =
⊕∞

n=1 λn.

Then Z(π) = M(G).

Proof. We identify l2(Zn) ∼= Cn and let e
(n)
k (k = 1, 2, . . . , n), be the canonical

orthonormal base of l2(Zn). Let H =
⊕∞

n=1 l2(Zn), then {e(n)k |n ∈ N and k =

1, 2, . . . , n} is an orthonormal base of H. For each x ∈ G, π(x)e
(n)
k = e

(n)
[k+x]n

,

where [k+ x]n is the unique integer in {1, 2, . . . , n} such that [k+ x]n ≡ k+ x

(mod n). First, we claim that for any subset A ⊆ N ∪ {0} ⊆ G, χA ∈

{MT |M ∈ UCB(π)∗, T ∈ UCB(π)}. Let A ⊆ N ∪ {0} be given. Define

T ∈ B(H) by setting

T (e
(n)
k ) =

 e
(n)
k , if n is even, k ∈ {1, 2, . . . , n/2} and k − 1 ∈ A

0 , otherwise

For each n ∈ N, we define Mn = e
(2n)
1 ⊗e(2n)1 ∈ L1(H) ⊆ B(H)∗. ( If ξ1, ξ2 ∈ H,

we define a rank-one operator ξ1⊗ ξ2 on H by ξ1⊗ ξ2(η) = 〈η, ξ2〉ξ1. ) Choose

a subnet (Mnα)α of (Mn)n such that Mnα → M ∈ B(H)∗ with respect to the

weak* topology. Let x ∈ G. Fix n0 ∈ N such that n0 > |x|. Note that

MnT (x) = tr(MnT · x)

= tr(Mnπ(x−1)Tπ(x)) = tr(π(x)Mnπ(x−1)T )

= tr(e
(2n)
[1+x]2n

⊗ e(2n)[1+x]2n
T ) = 〈Te(2n)[1+x]2n

| e(2n)[1+x]2n
〉.

Consider two cases.

Case I: Suppose that x ∈ A. Let n ≥ n0, then 1 ≤ 1 + x ≤ 2n, so [1 + x]2n =

1 + x. As [1 + x]2n − 1 = x ∈ A, Te
(2n)
[1+x]2n

= e
(2n)
[1+x]2n

. Therefore

MT (x) = lim
α
〈Mnα , T · x〉 = lim

n→∞
〈Mn, T · x〉 = 1
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.

Case II: Suppose that x 6∈ A. Let n ≥ n0. If x ≥ 0, we still have 1 ≤ 1+x ≤ 2n,

so [1 + x]2n − 1 = x 6∈ A and consequently Te
(2n)
[1+x]2n

= 0. If x < 0, we have

−n < 1− n < 1 + x ≤ 0, so [1 + x]2n = 2n + (1 + x) ∈ {n + 1, n + 2, . . . , 2n}

and consequently Te
(2n)
[1+x]2n

= 0. Therefore

MT (x) = lim
n→∞

MnT (x) = 0.

This shows that χA = MT .

Then we prove that for any A ⊆ {n ∈ Z |n < 0} ⊆ G, χA ∈ {MT |M ∈

UCB(π)∗, T ∈ UCB(π)}. Let such set A be given. Define T ∈ B(H) by

setting:

T (enk) =

 e
(n)
k , if n is even, k ∈ {n

2
+ 1, n

2
+ 2, . . . , n} and k − 1− n ∈ A

0 , otherwise

For each n ∈ N, define Mn = e
(2n)
1 ⊗ e(2n)1 ∈ L1(H) ⊆ B(H)∗. Choose a subnet

(Mnα)α of (Mn)n such that Mnα → M ∈ B(H)∗ with respect to the weak*

topology. Let x ∈ G and fix n0 ∈ N such that n0 > |x|. We consider two cases.

Case I: Suppose that x ∈ A. Let n > n0, then MnT (x) = 〈Te(2n)[1+x]2n
| e(2n)[1+x]2n

〉.

As [1 +x]2n = (1 +x) + 2n ∈ {n+ 1, n+ 2, . . . , 2n}, [1 +x]2n−1−2n = x ∈ A.

Consequently, Te
(2n)
[1+x]2n

= e
(2n)
[1+x]2n

so MnT (x) = 1. Therefore

MT (x) = lim
α
MnαT (x) = lim

n
MnT (x) = 1.

Case II: Suppose that x 6∈ A. Let n > n0. If x < 0, we have [1 +x]2n−1−n =

x 6∈ A, so Te
(2n)
[1+x]2n

= 0. If x ≥ 0, we have [1 + x]2n = 1 + x 6∈ {n + 1, n +

2, . . . , 2n}. Therefore T (e
(2n)
[1+x]2n

) = 0 and hence MnT (x) = 0. Consequently

MT (x) = lim
n→∞

MnT (x) = 0,
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so χA = MT. It is now clear that for any B ⊆ G, χB lies in the linear

span of {MT |M ∈ UCB(π)∗, T ∈ UCB(π)}. Therefore the linear span of

{MT |M ∈ UCB(π)∗, T ∈ UCB(π)} contains all the simple functions and

consequently it is dense in l∞(G) = LUC(G). By our characterization theorem,

Z(π) = M(G).

Remark 3.12. In this example, each representation λn is finite dimensional

and by proposition 3.13.1 below, Z(λn) = LUC(G)∗. However, Z(
⊕∞

n=1 λn) is

minimal, i.e. equals to M(G).

3.2 Maximality of the topological centers

In this section, we give two sufficient conditions, each of which will guarantee

that the topological center is maximal, i.e. Z(π) = LUC(G)∗. An example

whose topological center is maximal is also demonstrated.

Proposition 3.13. Let π : G→ B(H) be a unitary representation of a locally

compact group G. If at least one of the following conditions is satisfied, the

topological center Z(π) is maximal, i.e. Z(π) = LUC(G)∗.

1. dim(π) <∞.

2. For each ε > 0, we define N(π, ε) = Nε = {x ∈ G | ‖T · x − T‖ <

ε‖T‖ for any T ∈ UCB(π)}. Suppose that for each ε > 0, there exist

x1, x2, . . . , xm ∈ G satisfying that: For each x ∈ G, there exist i ∈

{1, 2, . . . ,m} and y ∈ Nε such that x = xiy.

Proof. Suppose that the first condition holds. Let (Mα)α be a net in UCB(π)∗

such that Mα → M ∈ UCB(π)∗ with respect to the weak* topology. Since
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dim(π) <∞, UCB(π)∗ is a finite dimensional vector space and all locally con-

vex topologies coincide. Therefore for any m ∈ LUC(G)∗ and T ∈ UCB(π),

|〈mMα, T 〉− 〈mM,T 〉| = |〈m, (Mα−M)T 〉| ≤ ‖m‖‖Mα−M‖‖T‖ → 0, hence

m ∈ Z(π).

Suppose that the second condition holds. We assert that for any bounded

net (Mα)α in UCB(π)∗, M ∈ UCB(π)∗, T ∈ UCB(π), if Mα → M with

respect to the weak*-topology, then ‖MαT −MT‖∞ → 0. Without loss of

generality, we assume that ‖Mα‖ ≤ 1, ‖M‖ ≤ 1, ‖T‖ ≤ 1. Let ε > 0 be

arbitrary. Choose x1, x2, . . . , xm ∈ G as in the assumption, then we obtain

a partition {A1, A2, . . . , Am} of G with the property that for any x ∈ Ai,

there exists y ∈ Nε such that x = xiy. Let x ∈ Ai and write x = xiy for

some y ∈ Nε, then ‖T · x − T · xi‖ = ‖(T · xi) · y − T · xi‖ < ε‖T · xi‖ ≤ ε.

Therefore |MT (x)−MT (xi)| = |〈M,T · x− T · xi〉| ≤ ‖M‖‖T · x− T · xi‖ <

ε. Similarly, we have |MαT (x) − MαT (xi)| < ε. Define λi = MT (xi) and

λαi = MαT (xi). Since MαT → MT pointwisely, we may choose α0 such

that |MαT (xi) − MT (xi)| < ε whenever i ∈ {1, 2 . . . ,m} and α � α0, i.e.

|λi−λαi | < ε. By the above discussion, it is clear that ‖MT−
∑m

i=1 λiχAi‖∞ ≤ ε

and ‖MαT −
∑m

i=1 λ
α
i χAi‖∞ ≤ ε. Therefore

‖MαT −MT‖∞

≤ ‖MαT −
m∑
i=1

λαi χAi‖∞ + ‖
m∑
i=1

λαi χAi −
m∑
i=1

λiχAi‖∞ + ‖
m∑
i=1

λiχAi −MT‖∞

≤ 3ε

whenever α � α0 and hence ‖MαT − MT‖∞ → 0. Let m ∈ LUC(G)∗.

In order to show m ∈ Z(π), by proposition 2.4 it suffices that the map

M 7→ m ·M is weak*-weak* continuous on all the bounded part of UCB(π)∗.

Let (Mα)α be a bounded net in UCB(π) and suppose that Mα → M with
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respect to the weak* topology. Let T ∈ UCB(π), then |〈mMα, T 〉−〈mM,T 〉| ≤

‖m‖‖MαT −MT‖ → 0. Therefore m ∈ Z(π).

Remark 3.14. Let N = {x ∈ G |T · x = T for any T ∈ UCB(π)}. If |G/N | <

∞, the second condition will be satisfied and hence the topological center Z(π)

is maximal. For, suppose that |G/N | = m. We pick an element xi from each

N -coset, then for each ε > 0, x1, x2, . . . , xm and N clearly satisfy the second

condition since N ⊆ Nε.

Identify the quotient group R/Z with [0, 1) in a canonical way. Let α ∈

[0, 1)\Q. It is an easy exercise to check that the subgroup of R/Z generated

by α, namely {nα |n ∈ Z} is dense in [0, 1).

Lemma 3.15. Identify the quotient group R/Z with [0, 1). Given sufficiently

small ε > 0 , α ∈ [0, 1)\Q (where α is regarded as an element in R/Z) , we

define Z0 = {n ∈ Z |nα ∈ (0, ε)}, then

1. Z0 is an infinite set, and

2. There exists k ∈ N such that |m − n| ≤ k whenever m,n ∈ Z0 are two

successive elements in Z0.

Proof. Since α is irrational, the map n 7→ nα ∈ R/Z is injective. Since

{nα |n ∈ Z} is dense in [0, 1), there exist infinitely many n ∈ Z such that

nα ∈ (0, ε). This proves the first part. Next, we choose n0 ∈ Z such that

0 < n0α < ε/2. Denote β = n0α and define Z1 = {n ∈ Z |nβ ∈ (0, ε)}. Let

n1 be the smallest positive integer such that n1β < 1 < (n1 + 1)β. Let m,n

be two successive elements in Z1 with m < n. If mβ ∈ (0, ε − β), we clearly

have mβ + β ∈ (0, ε) so n = m + 1. If mβ ∈ [ε − β, ε), then mβ + n1β '

mβ+n1β−1 > (ε−β)−β > 0. Note thatmβ+n1β ' mβ+(n1β−1) < mβ < ε.

Therefore (m + n1)β ∈ (0, ε) and hence n ≤ m + n1. Lastly, if n ∈ Z1, then
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nβ ∈ (0, ε), nn0α ∈ (0, ε), so nn0 ∈ Z0. Consequently n0Z1 ⊆ Z0. Take

k = n0n1, then |m− n| ≤ k for any two successive elements m,n ∈ Z0.

Example 3.16. Let Z be the usual discrete group of integers. Choose θ ∈

[0, 2π) such that θ/(2π) is irrational. Let

A =

 cos θ − sin θ

sin θ cos θ

 .

Let H = C2 and let π : Z → B(H) ' M2(C) be defined by π(n) = An. Let

π̃ =
⊕∞

n=1 π be the countable direct sum of π. Let H̃ =
⊕∞

n=1H. Although

Nπ̃ = Nπ = {0} and dim(π̃) =∞, we still have Z(π̃) = l∞(G)∗.

Proof. Let ε > 0. Choose δ > 0 such that∥∥∥∥∥∥
 cosφ − sinφ

sinφ cosφ

− I
∥∥∥∥∥∥ < ε/2,

whenever φ ∈ (−δ, δ) + 2πZ. Therefore∥∥∥∥∥∥
∞⊕
n=1

 cosφ − sinφ

sinφ cosφ

− Ĩ
∥∥∥∥∥∥ =

∥∥∥∥∥∥
∞⊕
n=1

 cosφ − sinφ

sinφ cosφ

− I
∥∥∥∥∥∥

=

∥∥∥∥∥∥
 cosφ − sinφ

sinφ cosφ

− I
∥∥∥∥∥∥ < ε/2,

where Ĩ is the identity operator on H̃. Define Nε = {n ∈ Z | ‖π̃(−n)T π̃(n) −

T‖ ≤ ε‖T‖, for any T ∈ B(H̃)}. Set Z0 = {n ∈ Z |nθ/(2π) ∈ (0, δ/(2π)) +Z}.

If n ∈ Z0, then for any T ∈ B(H̃),

‖π̃(−n)T π̃(n)− T‖

≤ ‖π̃(−n)T π̃(n)− T π̃(n)‖+ ‖T π̃(n)− T‖

≤ ‖π̃(−n)− Ĩ‖‖T‖+ ‖π̃(n)− Ĩ‖‖T‖

≤ ε‖T‖,
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by observing that π̃(n) =
⊕ cosnθ − sinnθ

sinnθ cosnθ

, π̃(−n) =
⊕ cos(−nθ) − sin(−nθ)

sin(−nθ) cos(−nθ)


with nθ ∈ (0, δ) + 2πZ and −nθ ∈ (−δ, 0) + 2πZ. Therefore Z0 ⊆ Nε. By

the previous lemma, Z0 is an infinite set such that the distance between two

successive elements in bounded. As Nε is a superset of Z0, Nε has the same

property. Now it clear that condition (2) in the proposition 3.13 is fulfilled,

so Z(π̃) = l∞(Z)∗.

3.3 An example that M(G) ( Z(π) ( LUC(G)∗

In this section, we give an example that the topological center Z(π) is neither

minimal nor maximal.

Example 3.17. Let G = Z × Z and let q : G → Z be the canonical quo-

tient map defined by q(i, j) = j. Let λ : Z → B(l2(Z)) be the left regular

representation and let π = λ ◦ q, then M(G) ( Z(π) ( LUC(G)∗.

Proof. Since the kernel of the G-action induced by π is non-trivial, M(G) is

properly contained in Z(π). LetH = l2(Z) and let {ek | k ∈ Z} be the canonical

base of H. We show that Z(π) is not maximal. For each i ∈ N, let ni = δ(0,i) ∈

l1(G) and let n ∈ l∞(G)∗ be any weak*-cluster point of the net (ni). We assert

that n 6∈ Z(π). For each j ∈ N, define Mj = e−j ⊗ e−j ∈ L1(H) ↪→ B(H)∗. Let

T0 ∈ B(H) be defined by

T0(ek) =

 ek if k ≥ 1

0 if k ≤ 0
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Let T ∈ B(H). We observe that

〈niMj, T 〉 = 〈ni,MjT 〉 = (MjT )((0, i)) = 〈Mj, π((0,−i))Tπ((0, i))〉

= tr (Mjπ((0,−i))Tπ((0, i))) = tr (π((0, i))Mjπ((0,−i))T )

= tr (ei−j ⊗ ei−jT ) = 〈ei−j ⊗ ei−j, T 〉,

and hence niMj = ei−j ⊗ ei−j. Let M be an arbitrary weak*-cluster point of

the net (Mj), then we have

〈nM, T0〉 = lim
i→∞
〈niM,T0〉

= lim
i→∞

lim
j→∞
〈niMj, T0〉 = lim

i→∞
lim
j→∞
〈ei−j ⊗ ei−j, T0〉

= lim
i→∞

lim
j→∞
〈T0ei−j | ei−j〉 = 0.

On the other hand

lim
j→∞
〈nMj, T0〉 = lim

j→∞
lim
i→∞
〈niMj, T0〉

= lim
j→∞

lim
i→∞
〈ei−j | ei−j〉 = 1.

Let Mjα be a subnet of (Mj) such that limαMjα = M with respect to the

weak*-topology. Now it is clear that nMjα 6→ nM with respect to the weak*-

topology and hence n 6∈ Z(π).
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Chapter 4

Direct Sums and Tensor

Products of Unitary

Representations and Their

Topological Centers

In this chapter, we investigate the relations between the topological centers

of sub-representations, finite direct sums, tensor products with that of the

underlying representations. We prove that if π1 is a sub-representation of π2,

we always have Z(π2) ⊆ Z(π1). We also show that for an arbitrary unitary

representation π, and n ∈ N, the finite direct sum
⊕n

i=1 π = nπ and the

original representation π have the same topological centers. Lastly, we give a

condition which guarantees that Z(π1 ⊗ π2) = M(G).

Lemma 4.1. Let (π1,H1), (π2,H2) be unitary representations of G. Suppose

that π1 is a subrepresentation of π2. Let P : H2 → H1 be the canonical

projection. For each T ∈ B(H2), we define T ′ ∈ B(H1) by T ′ = P ◦ T |H1. If
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T ∈ UCB(π2), then T ′ ∈ UCB(π1). Moreover, the map T 7→ T ′ is surjective.

Proof. Let x ∈ G. Notice that

T ′ · x = π1(x
−1)T ′π1(x) = π1(x

−1)P (T |H1)π1(x)

= Pπ2(x
−1)T [π2(x)|H1 ] = P [T · x]|H1 .

Let (xα) be a net in G such that xα → x ∈ G, then

‖T ′ · xα − T ′ · x‖B(H1) ≤ ‖P‖‖T · xα − T · x‖B(H2) → 0,

i.e. T ′ ∈ UCB(π1). Given T0 ∈ UCB(π1), we define T = T0 ◦ P ∈ B(H2). It is

clear that T ∈ UCB(π2) with T ′ = T0, so the map T 7→ T ′ is surjective.

Lemma 4.2. Using the above notation, if M ∈ UCB(π1)
∗, we define M̃ ∈

UCB(π2)
∗ by 〈M̃, T 〉 = 〈M, T ′〉. Then M̃T = MT ′ as an element in LUC(G)

for any T ∈ UCB(π2).

Proof. Let x ∈ G, then

M̃T (x) = 〈M̃, T · x〉 = 〈M, P ◦ (T · x)|H1〉 = 〈M, T ′ · x〉 = MT ′(x)

.

We now state a proposition relating the topological centers of a sub-representation

and the original representation.

Proposition 4.3. Let (π1,H1),(π2,H2) be unitary representations of a locally

compact group G. If π1 is a subrepresentation of π2, then Z(π2) ⊆ Z(π1).

Proof. Let m ∈ Z(π2). Let (Mα) be a net in UCB(π1)
∗ such that Mα →

M ∈ UCB(π1)
∗ with respect to the σ(UCB(π1)

∗,UCB(π1))- topology. Let

T ∈ UCB(π2), then 〈M̃α, T 〉 = 〈Mα, T
′〉 → 〈M, T ′〉 = 〈M̃, T 〉, hence M̃α →
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M̃ with respect to the σ(UCB(π2)
∗,UCB(π2))- topology. Let T0 ∈ UCB(π1).

Choose T ∈ UCB(π2) such that T ′ = T0, then

〈mMα, T0〉 = 〈m, MαT0〉 = 〈m, MαT
′〉

= 〈m, M̃αT 〉 = 〈mM̃α, T 〉 → 〈mM̃, T 〉

= 〈m, M̃T 〉 = 〈m, MT ′〉 = 〈m, MT0〉

= 〈mM, T0〉.

Hence mMα → mM with respect to the σ(UCB(π1)
∗,UCB(π1))-topology, i.e.

m ∈ Z(π1).

Next, we consider direct sum of unitary representations. Let π be a unitary

representation ofG and let π′ =
⊕

α π be the direct sum of α (a cardinal) copies

of π. It is interesting to ask: How are Z(π) and Z(π′) related ? Since π is a

subrepresentation of π′, we have Z(π′) ⊆ Z(π) by the previous proposition. In

fact, if α is finite, we can say more. Before stating and proving the proposition,

we first introduce some notations. Let H be the underlying Hilbert space for

π and let H′ =
⊕

nH, the direct sum of n copies of H. In order to avoid

confusion, we let H1 = H2 = . . . = Hn = H and write H′ =
⊕n

i=1Hi. For

each i ∈ {1, 2, . . . , n}, we let Pi : H′ → Hi be the canonical projection and let

Ii : Hi → H′ be the canonical injection. Given T ∈ B(H′), we associate n2

operators on H (here we identify H1 ' H2 ' . . . ' Hn ' H) as follow:

For i, j ∈ {1, 2, . . . , n}, we define Tij : Hj → Hi by Tij = Pi ◦ T ◦ Ij. We

call {Tij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} the components of T . Conversely, given n2

bounded linear operators Tij ∈ B(H), we can associate T ∈ B(H′) by

T =
∑

1≤i≤n,1≤j≤n

Ii ◦ Tij ◦ Pj.

We remark that the above processes of decomposition and composition are

converse to each other. More precisely, given T ∈ B(H′), we first decompose it
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and obtain Tij ∈ B(H), then use these n2 operators Tij to construct T̃ ∈ B(H′).

It can be verified that T = T̃ . On the other hand, given n2 operators Tij on

H, we compose them and obtain T̃ ∈ B(H′). It can be shown that T̃ij = Tij. If

x ∈ G and T ∈ B(H′) or T ∈ B(H), we denote π′(x−1)Tπ′(x) and π(x−1)Tπ(x)

by the same symbol T · x. We then prove few lemmas.

Lemma 4.4. Using the above notations and let T ∈ B(H′), Tij ∈ B(H) the

components of T , then for each x ∈ G, T · x has components Tij · x, i.e.

(T · x)ij = Tij · x.

Proof. Note that

T · x = π′(x−1)Tπ′(x) =
∑
i,j

π′(x−1) ◦ Ii ◦ Tij ◦ Pj ◦ π′(x).

But for each i, j,

π′(x−1) ◦ Ii ◦ Tij ◦ Pj ◦ π′(x) = Ii ◦ π(x−1) ◦ Tij ◦ π(x) ◦ Pj = Ii ◦ (Tij · x) ◦ Pj.

Therefore T · x =
∑

i,j Ii ◦ (Tij · x) ◦ Pj and hence (T · x)ij = Tij · x.

Lemma 4.5. Let T ∈ B(H′) with components Tij ∈ B(H), then T ∈ UCB(π′)

if and only if for each i,j, Tij ∈ UCB(π).

Proof. Suppose that T ∈ UCB(π′). Let x, y ∈ G. By the previous lemma, for

any i, j,

‖Tij · x− Tij · y‖ = ‖(T · x)ij − (T · y)ij‖

= ‖Pi ◦ (T · x− T · y) ◦ Ij‖

≤ ‖Pi‖‖T · x− T · y‖‖Ij‖ → 0

as x→ y. Therefore Tij ∈ UCB(π).

Conversely, suppose that for each i, j, Tij ∈ UCB(π). Let x ∈ G, then

(Ii ◦ Tij ◦ Pj) · x = π′(x−1) ◦ (Ii ◦ Tij ◦ Pj) ◦ π′(x)

= Ii ◦ π(x−1) ◦ Tij ◦ π(x) ◦ Pj = Ii ◦ (Tij · x) ◦ Pj,
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so for any x, y ∈ G,

‖T · x− T · y‖

= ‖
∑

((Ii ◦ Tij ◦ Pj) · x− (Ii ◦ Tij ◦ Pj) · y)‖

≤
∑
‖Ii‖‖Tij · x− Tij · y‖‖Pj‖ → 0

as x→ y. Therefore T ∈ UCB(π′).

Then we consider decomposition of elements in B(H′)∗. We continue to use

the notations defined in above. Given M ∈ B(H′)∗, we associate n2 elements

in B(H)∗ as follow:

For each i, j ∈ {1, 2, . . . , n}, we define Mij ∈ B(H)∗ by 〈Mij, T 〉 = 〈M, Ii ◦ T ◦

Pj〉. We call Mij the components of M . We remark that if M ∈ UCB(π′)∗,

then Mij ∈ UCB(π)∗.

Lemma 4.6. Let M ∈ B(H′)∗ and T ∈ B(H′) with components Mij and Tij

respectively, then 〈M,T 〉 =
∑

ij〈Mij, Tij〉.

Proof. 〈M,T 〉 =
∑

ij〈M, Ii ◦ Tij ◦ Pj〉 =
∑

ij〈Mij, Tij〉.

Lemma 4.7. Let M ∈ UCB(π′)∗, T ∈ UCB(π′) with components Mij,Tij

respectively, then MT =
∑

ijMijTij.

Proof. Let x ∈ G, thenMT (x) = 〈M,T ·x〉 =
∑

ij〈Mij, (T ·x)ij〉 =
∑

ij〈Mij, Tij·

x〉 =
∑

ijMijTij(x).

We also need a lemma which deals with weak*-convergence.

Lemma 4.8. Let (Mα)α be a net in UCB(π′)∗, M ∈ UCB(π′)∗. Let Mα
ij, Mij

be the components of Mα and M respectively, then the following are equivalent:

(a) Mα →M with respect to σ(UCB(π′)∗,UCB(π′))-topology,

(b) For each i,j, Mα
ij →Mij with respect to σ(UCB(π)∗,UCB(π))-topology.
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Proof. Let (Mα)α be a net in UCB(π′)∗ such that Mα → M with respect to

the weak*-topology. Let i, j ∈ {1, 2, . . . , n} and let T ∈ UCB(π), then

〈Mα
ij, T 〉 = 〈Mα, Ii ◦ T ◦ Pj〉

→ 〈M, Ii ◦ T ◦ Pj〉 = 〈Mij, T 〉.

Therefore Mα
ij → Mij with respect to the weak*-topology. Conversely, let

(Mα) be a net in UCB(π′)∗, M ∈ UCB(π′)∗ such that for each i,j, Mα
ij →

Mij with respect to the weak*-topology. Let T ∈ UCB(π′), then 〈Mα, T 〉 =∑
ij〈Mα

ij, Tij〉 →
∑

ij〈Mij, Tij〉 = 〈M,T 〉. Therefore Mα →M with respect to

the weak*-topology.

Now we are able to state and prove the following proposition.

Proposition 4.9. Let π be a unitary representation of a locally compact group

G and let π′ =
⊕

n π be the direct sum of n copies of π (n ∈ N), then Z(π) =

Z(π′).

Proof. Since π is a sub-representation of π′, we have Z(π′) ⊆ Z(π). Therefore,

it suffices to show the reversed inclusion. Let m ∈ Z(π). Let (Mα) be a net in

UCB(π′)∗ such that Mα → M ∈ UCB(π′)∗ with respect to the weak* topol-

ogy. Let T ∈ UCB(π′), then 〈mMα, T 〉 = 〈m,MαT 〉 = 〈m,
∑

ijM
α
ijTij〉 =∑

ij〈mMα
ij, Tij〉. By the previous lemma, Mα

ij → Mij with respect to the

weak*-topology for each i,j. Since m ∈ Z(π), mMα
ij → mMij with re-

spect to the weak*-topology. Therefore,
∑

ij〈mMα
ij, Tij〉 →

∑
ij〈mMij, Tij〉 =∑

ij〈m,MijTij〉 = 〈m,MT 〉 = 〈mM,T 〉, hence m ∈ Z(π′).

In the following, we consider the tensor product of two unitary represen-

tations. Let π1 : G→ B(H1), π2 : G→ B(H2) be unitary representations of a

locally compact group G. We denote the inner tensor product of π1 and π2 by
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π1⊗ π2, i.e. π1⊗ π2 : G→ B(H1⊗H2) defined by π1⊗ π2(x) = π1(x)⊗ π2(x),

x ∈ G.

Lemma 4.10. Using the above notations, if T1 ∈ UCB(π1) and T2 ∈ UCB(π2),

then T1 ⊗ T2 ∈ UCB(π1 ⊗ π2).

Proof. Let T1 ∈ UCB(π1) and T2 ∈ UCB(π2) and let x ∈ G. Note that

(T1⊗T2)·x = (π1(x
−1)⊗π2(x−1))(T1⊗T2)(π1(x)⊗π2(x)) = (π1(x

−1)T1π1(x))⊗

(π2(x
−1)T2π2(x)) = (T1 · x) ⊗ (T2 · x). Therefore, if (xα) is a net in G which

converges to x ∈ G, then ‖(T1⊗T2) ·xα− (T1⊗T2) ·x‖ = ‖(T1 ·xα)⊗ (T2 ·xα)−

(T1 ·x)⊗ (T2 ·x)‖ ≤ ‖(T1 ·xα)⊗ (T2 ·xα)− (T1 ·xα)⊗ (T2 ·x)‖+‖(T1 ·xα)⊗ (T2 ·

x)− (T1 ·x)⊗ (T2 ·x)‖ ≤ ‖T1 ·xα‖‖T2 ·xα−T2 ·x‖+ ‖T2 ·x‖‖T1 ·xα−T1 ·x‖ ≤

‖T1‖‖T2 · xα − T2 · x‖+ ‖T2‖‖T1 · xα − T1 · x‖ → 0

Proposition 4.11. Using the above notations, if there exists i ∈ {1, 2} such

that span{MT |M ∈ UCB(πi)
∗, T ∈ UCB(πi)} is norm dense in LUC(G),

then Z(π1 ⊗ π2) = M(G).

Proof. Let F = {MT |M ∈ UCB(πi)
∗, T ∈ UCB(πi)} and F ′ = {M ′T ′ |M ′ ∈

UCB(π1 ⊗ π2)
∗, T ′ ∈ UCB(π1 ⊗ π2)}. We try to show that F ⊆ F ′. We

simplify our notation and assume that i = 1. The case that i = 2 can be

proved in exactly the same way. Let M1 ∈ UCB(π1)
∗ and T1 ∈ UCB(π1).

Choose M2 ∈ UCB(π2), such that 〈M2, I2〉 = 1, where I2 is the identity

operator on the Hilbert space H2. Note that the map UCB(π1) × CI2 → C,

(T, λI2) 7→ 〈M1, T 〉〈M2, λI2〉 = λ〈M1, T 〉 is bounded bilinear, so it induces a

bounded linear functional M ′ : UCB(π1) ⊗ CI2 → C. We extend M ′ (still

denoted by M ′) and obtain a bounded linear functional on UCB(π1 ⊗ π2) by

Hahn-Banach Theorem. Define T ′ = T1 ⊗ I2, then T ′ ∈ UCB(π1 ⊗ π2) by the

previous lemma. If x ∈ G, then M ′T ′(x) = 〈M ′, T ′ · x〉 = 〈M ′, (T1 · x)⊗ I2〉 =
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〈M1, T1 · x〉 = M1T1(x). Therefore the linear span of F ′ is norm dense in

LUC(G). If G is non-compact, Z(π1 ⊗ π2) = M(G) by 3.6. If G is compact,

it is automatic that Z(π1 ⊗ π2) = M(G)
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Part II

Topologically Invariant Means

for Amenable Representations
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Chapter 5

On the Set of Topologically

Invariant Means

This part of the thesis is devoted to the studies of the set of topologically

invariant means associated to a given amenable representation. The studies

of amenability can be dated back to 1904 when Lebesgue asked whether the

Lebesgue integral is still uniquely defined if the countable additivity is replaced

by just finite additivity. In the classical period, mathematicians mainly con-

cerned about the studies of finitely additive, invariant measures. At that time,

Banach-Tarski Theorem was discovered and the old notion of amenability of a

group was formulated by von Neumann. Later, Day revolutionized the subject

and gave the modern definition of amenability of a group G.

Once the notion of amenability has been properly defined, a natural ques-

tion arises ”How large is the set of left invariant means?”. Day [9] and Granirer

[17] initiated the studies of the cardinality of the set of invariant means. Chou

[6] showed that for a discrete infinite amenable group G, the cardinality of

the set of all left invariant means on l∞(G) is 22|G| . Later, Lau and Paterson

[32] generalized this result and proved that for a noncompact, amenable locally
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compact group G the cardinality of the set of topologically left invariant means

on L∞(G) is 22d(G)
, where d(G) is the smallest cardinality of a covering of G by

compact sets. Also see Yang [44], Miao [35], Hu [23] for recent developments.

In 1990, Bekka [4] generalized the classical notion of amenability and gave

the definition of amenable representations. It is natural to ask the cardinality

problem paralleling to the classical version.

We attempt to solve such a problem in two different ways. In the first

method, we mainly focus on the left regular representation of an amenable

[IN]-group. We modify Bekka’s construction and give a “canonical extension”

for each topologically left invariant mean on L∞(G). Consequently, we are

able to estimate a lower bound of the set of topologically left invariant means

on B(H). In the second method, we apply Day’s Fixed Point Theorem (which

is inspired by Lau and Paterson’s paper [32]) to construct topologically invari-

ant means on B(H).

In part II, unless otherwise specified, G always denotes a locally compact

group equipped with a fixed left Haar measure dx. Let m be a linear functional

on L∞(G). m is said to be a mean if it satisfies any two of the conditions:

‖m‖ = 1, m(1) = 1, m(φ) ≥ 0 whenever φ ∈ L∞(G) with φ ≥ 0. It is well-

known that any two of the above conditions imply the others. If moreover, m

satisfies the condition m(xφ) = m(φ) for each x ∈ G and φ ∈ L∞(G), m is

said to be a left invariant mean. The notions of left uniform continuity, right

uniform continuity and uniform continuity are defined as in Part I. Moreover,

we still denote the space of left uniformly continuous functions, right uniformly
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continuous functions and uniformly continuous functions by LUC(G), RUC(G)

and UCB(G) respectively. A locally compact group G is amenable if there

exists a left invariant mean on L∞(G). It is well known that G is amenable if

there exists a left invariant mean on any one of the function spaces: LUC(G),

RUC(G), UCB(G). We refer the reader to [19] for detail. In 1990, Bekka

[4] generalized the notion of amenability and defined the notion of amenable

representations. Let π : G → B(H) be a continuous unitary representation.

The representation π is said to be amenable if there exists a state M ∈ B(H)∗

such that M(π(x)Tπ(x−1)) = M(T ) for any x ∈ G and any T ∈ B(H). In this

case, M is called a G-invariant mean on B(H) for the representation π. Let

m ∈ L∞(G)∗ be a mean. We say that m is a topologically left invariant mean

if m(f ∗ φ) = m(φ) for any φ ∈ L∞(G) and f ∈ L1(G) satisfying f ≥ 0 and∫
f(x) dx=1. The operator version was defined by Bekka [4] as follow:

Let π : G → B(H) be a unitary representation. Let T ∈ B(H) and let

f ∈ L1(G). Define f · T ∈ B(H) in weak sense by the formula:

f · T =

∫
f(x)π(x)Tπ(x−1) dx.

More precisely, f · T is defined as the unique bounded linear operator on H

such that for any ξ, η ∈ H, one has

〈f · T (ξ) | η〉 =

∫
f(x)〈π(x)Tπ(x−1)ξ | η〉 dx.

As in part I, we define UCB(π) to be the set consisting all T ∈ B(H) such that

the mapping G → B(H), x 7→ x · T is norm continuous. Note that UCB(π)

is a unital C*-subalgebra of B(H) containing all the compact operators. As

pointed out by Bekka [4], UCB(π) is a non-commutative analog of UCB(G).

By Cohen factorization theorem, we actually have UCB(π) = L1(G) ·B(H) =

{f ·T | f ∈ L1(G), T ∈ B(H)}. Let π : G→ B(H) be a unitary representation.
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An element M in B(H)∗ (resp. UCB(π)∗) is called a topologically invariant

mean on B(H) (resp. UCB(π)) if M satisfies:

(i) M is a state,

(ii) M(f · T ) = M(T ) for any T ∈ B(H) (resp. T ∈ UCB(π)) and f ∈ L1(G)

satisfying f ≥ 0 and
∫
f(x) dx = 1.
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Chapter 6

G-Invariant Means and

Topologically Invariant Means

In this section, we try to give a lower bound on the size of the set of all

topologically invariant means on B(H) by using two different methods. The

first method works well for the left regular representation of amenable [IN]

groups while the second method works for general unitary representation of

amenable locally compact groups.

Lemma 6.1. Let λ : G → B(H) be the left regular representation, where

H = L2(G). Given f ∈ H, we define a rank-one trace-class operator f ⊗ f by

f ⊗ f(g) = 〈g | f〉f . Given φ ∈ L∞(G), we define Tφ ∈ B(H) by Tφ(f) = φf

(f ∈ H). Let U be the set of all open neighborhoods of e, directed under the

reversed set inclusion ⊇. For each U ∈ U , we choose fU ∈ Cc(G) such that

fU ≥ 0,
∫
f 2
U = 1 and supp(fU) ⊆ U . We denote the net (fU)U∈U simply by

(fα). Let T ∈ B(H). Define ϕαT (x) = tr(Tλ(x)(fα ⊗ fα)λ(x−1)), then for each

φ ∈ RUC(G), ϕαTφ → φ uniformly.

Proof. Let φ ∈ RUC(G) be given. Let ε > 0. Choose an open neighborhood U
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of e such that |φ(xy)− φ(x)| < ε whenever x ∈ G and y ∈ U . Denote α0 = U .

Let x ∈ G, then

ϕαTφ(x) = tr(Tφλ(x)(fα ⊗ fα)λ(x−1)) = tr(λ(x−1)Tφλ(x)(fα ⊗ fα))

= 〈λ(x−1)Tφλ(x)fα ⊗ fα(fα) | fα〉 = 〈Tφ x−1(fα) | x−1(fα)〉

=

∫
φ(y)f 2

α(x−1y)dy =

∫
φ(xy)f 2

α(y)dy

Therefore, |ϕαTφ(x)− φ(x)| = |
∫
U

[φ(xy)− φ(x)]f 2
α(y)dy| ≤ ε whenever α � α0

and x ∈ G.

Lemma 6.2. Let G be a locally compact group and let λ : G → B(H) be

the left regular representation, where H = L2(G). Given a topologically left

invariant mean m on L∞(G), we can associate a topologically invariant mean

M on B(H) in such a way that M(Tφ) = m(φ) for each φ ∈ RUC(G), where

Tφ ∈ B(H) is defined by Tφ(f) = φf .

Proof. Let (fα) be the net defined in lemma 6.1. Let D = {z ∈ C | |z| ≤

1} and let B be the closed unit ball of B(H). Given T ∈ B(H), we define

ϕαT ∈ CB(G) as in lemma 6.1. It is routine to check that ‖ϕαT‖∞ ≤ ‖T‖.

Let m be a topologically left invariant mean on L∞(G). Define θα ∈ DB by

θα(T ) = m(ϕαT ). By Tychonoff theorem, we choose a converging subnet of

(θα) which converges to some θ ∈ DB. We still denote such a subnet by (θα).

Define M : B(H)→ C by

M(T ) =

 ‖T‖θ(T/‖T‖), if T 6= 0

0, if T = 0

Note that M(T ) = limαm(ϕαT ). By observing that for any T1, T2 ∈ B(H),

k ∈ C, ϕαkT1+T2 = kϕαT1 +ϕαT2 , it follows that M is linear. Note that if T ∈ B(H)

is positive, ϕαT ≥ 0. Therefore, if T ∈ B(H) is positive, M(T ) ≥ 0. If I is the
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identity operator onH, ϕαI is the constant function 1. It follows that M(I) = 1

and hence M is a mean on B(H). Denote Sα = fα⊗ fα. Observe that for each

x ∈ G, g ∈ L1(G) with g ≥ 0 and
∫
g(x) dx = 1, we have

g ∗ ϕαT (x) =

∫
g(y)ϕαT (y−1x) dy =

∫
g(y) tr(λ(x−1y)Tλ(y−1x)Sα) dy

= tr[λ(x−1)

∫
g(y)λ(y)Tλ(y−1) dyλ(x)Sα] = tr[λ(x−1)g · Tλ(x)Sα]

= ϕαg·T (x),

i.e. g ∗ ϕαT = ϕαg·T . For T ∈ B(H), we have

M(g · T ) = lim
α
m(ϕαg·T )

= lim
α
m(g ∗ ϕαT )

= lim
α
m(ϕαT )

= M(T ).

Therefore M is a topologically invariant mean. Let φ ∈ RUC(G). By lemma

6.1, ϕαTφ → φ uniformly, hence M(Tφ) = limαm(ϕαTφ) = m(φ).

We need few lemmas about quotient groups and uniformly continuous func-

tions. Let φ : G → C be a bounded continuous function. We remark that

φ ∈ LUC(G) if and only if for each ε > 0, there exists an open neighborhood

U of e such that |φ(yx) − φ(x)| < ε whenever x ∈ G and y ∈ U . Similarly

φ ∈ RUC(G) if and only if for each ε > 0, there exists an open neighborhood

U of e such that |φ(xy)− φ(x)| < ε whenever x ∈ G and y ∈ U .

Lemma 6.3. Let G be a locally compact group and let K be a compact normal

subgroup of G. Let mK be the normalized Haar measure on K and regard

mK as a measure on G in a canonical way. Given φ ∈ LUC(G), we define

φ′(x) =
∫
K
φ(tx) dmK(t), (x ∈ G), then φ′ ∈ LUC(G) and φ′ is constant on

each K coset.
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Proof. Let φ ∈ LUC(G). Let ε > 0. Choose an open neighborhood U0 of e such

that |φ(yx)− φ(x)| < ε whenever y ∈ U0 and x ∈ G. By the continuity of the

map G→ CB(G), t 7→t φ, for each t ∈ K, there exists an open neighborhood

Vt of t such that ‖t′φ −t φ‖ < ε whenever t′ ∈ Vt. By compactness of K, we

select t1, t2, . . . , tn ∈ K such that K ⊆ ∪nj=1Vtj . Define U = ∩nj=1t
−1
j U0tj. Let

y ∈ U , x ∈ G, t ∈ K. Choose j such that t ∈ Vtj , then

|tφ(yx)−t φ(x)| ≤ |tjφ(yx)−tj φ(x)|+ 2‖tjφ−t φ‖

≤ |φ(tjyt
−1
j tjx)− φ(tjx)|+ 2ε

≤ 3ε

by noticing that tjyt
−1
j ∈ U0. Therefore |φ′(yx) − φ′(x)| ≤

∫
K
|tφ(yx) −t

φ(x)| dmK(t) ≤ 3ε. Clearly φ′ is bounded and continuous and hence φ′ ∈

LUC(G). Let x ∈ G, k ∈ K, then φ′(kx) =
∫
K
φ(tkx) dmK(t) =

∫
K
φ(tx) dmK(t) =

φ′(x) Therefore φ′ is constant on each K coset.

Lemma 6.4. Let K be a compact normal subgroup of a locally compact group G

and let Q : G→ G/K be the canonical quotient map. Define Ψ : CB(G/K)→

CB(G) by Ψ(φ) = φ ◦Q, then:

(i)Ψ(LUC(G/K)) = {φ ∈ LUC(G) |φ is constant on each Kcoset.},

(ii)Ψ(RUC(G/K)) = {φ ∈ RUC(G) |φ is constant on each Kcoset.}.

Proof. We prove (i) only. (ii) can be proved in a similar way. Let φ ∈

LUC(G/K). Let ε > 0. Choose an open neighborhood U of ė = eK ∈ G/K

such that |φ(ẏẋ)− φ(ẋ)| < ε whenever ẏ ∈ U and ẋ ∈ G/K. Let U = Q−1(U)

which is an open neighborhood of e ∈ G. If y ∈ U , x ∈ G, we have:

|Ψ(φ)(yx) − Ψ(φ)(x)| = |φ(ẏẋ) − φ(ẋ)| < ε, so Ψ(φ) ∈ LUC(G). It is also

obvious that Ψ(φ) is constant on each K coset. Conversely, suppose that

ϕ ∈ LUC(G) such that ϕ is constant on each K coset. Define φ : G/K → C
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by φ(ẋ) = ϕ(x), (x ∈ G). Note that φ is bounded. Let ε > 0, then there exists

an open neighborhood U of e ∈ G such that |ϕ(yx) − ϕ(x)| < ε whenever

y ∈ U and x ∈ G. Let U = Q(U) which is an open neighborhood of ė ∈ G/K.

Let ξ ∈ U , η ∈ G/K be given. Choose y ∈ U , x ∈ G such that Q(y) = ξ and

Q(x) = η, then |φ(ξη)− φ(η)| = |φ ◦Q(yx)− φ ◦Q(x)| = |ϕ(yx)− ϕ(x)| < ε.

Therefore φ ∈ LUC(G/K) with Ψ(φ) = ϕ.

Let G be a locally compact group and let A ⊆ G. We say that A is

invariant (under conjugation) if for each x ∈ G, A = xAx−1, where xAx−1 =

{xyx−1 | y ∈ A}. We say that G is a [SIN] group, denoted by G ∈ [SIN], if the

set of all invariant compact neighborhoods of the identity e ∈ G forms a local

base of e. We remark that a locally compact group G is a [SIN] group if and

only if LUC(G) = RUC(G). We say that a locally compact group G is an [IN]

group, denoted by G ∈ [IN] if there exists a compact invariant neighborhood

U of e. Let G ∈ [IN]. Let K be the intersection of all compact invariant

neighborhoods of e. We remark that K is a compact, normal subgroup of G

and G/K ∈ [SIN]. See [20] for detail.

Lemma 6.5. Let G be an amenable [IN] group and let m1, m2 be topologically

left invariant means on L∞(G). Suppose that m1 6= m2, then there exists

ϕ ∈ UCB(G) such that m1(ϕ) 6= m2(ϕ).

Proof. Let K be the intersection of all compact invariant neighborhoods of e.

Let Q : G → G/K be the canonical quotient map. Define Ψ : CB(G/K) →

CB(G) by Ψ(φ) = φ ◦ Q. Choose ϕ0 ∈ L∞(G) such that m1(ϕ0) 6= m2(ϕ0).

Choose f ∈ L1(G) with f ≥ 0 and
∫
f(x) dx = 1, then m1(f ∗ϕ0) = m1(ϕ0) 6=

m2(ϕ0) = m2(f ∗ ϕ0). Note that f ∗ ϕ0 ∈ LUC(G), so we may assume, with-

out loss of generality that ϕ0 ∈ LUC(G). Define ϕ(x) =
∫
K
ϕ0(tx) dmK(t),

then by lemma 6.3, ϕ ∈ LUC(G) and ϕ is constant on each K coset. By

50



lemma 6.4, ϕ = Ψ(φ) for some φ ∈ LUC(G/K). Since G/K ∈ [SIN], we have

φ ∈ LUC(G/K) = UCB(G/K), so ϕ ∈ UCB(G) by lemma 6.4 again. Re-

gard ϕ =
∫
K tϕ0 dmK(t) as a vector valued integral. Note that since the map

t 7→t ϕ0 is continuous with respect to the norm topology, the integral can be ap-

proximated by a Riemann integral. Therefore, m1(ϕ) =
∫
K
m1(tϕ0) dmK(t) =∫

K
m1(ϕ0) dmK(t) = m1(ϕ0). By the same argument, m2(ϕ) = m2(ϕ0), hence

m1(ϕ) 6= m2(ϕ).

Theorem 6.6. Let G be an amenable [IN] group. Let λ : G → B(H) be the

left regular representation of G on the Hilbert space H = L2(G). For each

φ ∈ L∞(G), we define Tφ ∈ B(H) by Tφ(f) = φf , where f ∈ H. For each

topologically left invariant mean m on L∞(G), we can associate a topologically

invariant mean Mm on B(H) such that Mm(Tφ) = m(φ) for each φ ∈ RUC(G).

In particular if m1 6= m2, then Mm1 6= Mm2.

Proof. We define Mm according to lemma 6.2. Let m1, m2 be topologically

left invariant means on L∞(G) with m1 6= m2. By the previous lemma, we

may choose φ ∈ UCB(G) such that m1(φ) 6= m2(φ). Therefore Mm1(Tφ) 6=

Mm2(Tφ). In particular Mm1 6= Mm2

Corollary 6.7. Let G be a non-compact amenable [IN] group and let λ : G→

B(H) be the left regular representation of G on the Hilbert space H = L2(G).

Then the cardinality of the set of topologically invariant means for λ is at least

22d(G)
, where d(G) is the smallest cardinality of a covering of G by compact

sets.

Proof. By [32], the cardinality of the set of topologically left invariant means

on L∞(G) is exactly 22d(G)
. By the previous theorem, the result follows imme-

diately.
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Remark 6.8. We say that any topologically invariant mean M on B(H) satis-

fying M(Tφ) = m(φ) a canonical extension of m.

We introduce the second approach. Let π : G → B(H) be a continuous

unitary representation of a locally compact group G. Let L1(H) be the Banach

space of all trace-class operators on H, equipped with the trace-norm norm

‖ · ‖1. If L ∈ L1(H) and x ∈ G, we define L · x = π(x−1)Lπ(x). Under the

map (L, x) 7→ L · x, L1(H) becomes a right Banach G-module, i.e.:

(i) L · e = L and for any x, y ∈ G, (L · x) · y = L · (xy),

(ii) For each x ∈ G, the map L 7→ L ·x is a bounded invertible linear operator

on L1(H) with ‖L · x‖1 ≤ ‖L‖1,

(iii) For each L ∈ L1(H), the map x 7→ L · x is continuous with respect to the

‖ · ‖1-topology.

Dualize the aboveG-action, we obtain a leftG-module action on B(H), (x, T ) 7→

x · T , where 〈x · T, L〉 = 〈T, L · x〉, (L ∈ L1(H), x ∈ G, T ∈ B(H)). Note that

〈T, L · x〉 = tr(TL · x) = tr(Tπ(x−1)Lπ(x))

= tr(π(x)Tπ(x−1)L) = tr(x · TL)

Therefore x · T = π(x)Tπ(x−1). In general, for a fixed T ∈ B(H), the map

x 7→ x ·T is not continuous with respect to the norm topology. We restrict our

attention on the C*-subalgebra UCB(π) which consists of all T ∈ B(H) such

that the map x 7→ x ·T is continuous with respect to the norm topology. Note

that UCB(π) is a left Banach G-module. We further dualize the G-module

action and obtain a right G-module action on UCB(π)∗: (M,x) 7→ M · x,

where 〈M · x, T 〉 = 〈M,x · T 〉, (T ∈ UCB(π)). It is clear that:

(i)For each x ∈ G, the map M 7→M · x is weak*-weak* continuous,

(ii)For each M ∈ UCB(π)∗, the map x 7→M · x is weak*-continuous.
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We need a lemma about G-invariant means on UCB(π) and topologically

invariant means on B(H). Recall that if f ∈ L1(G) and T ∈ B(H), we define

f · T =
∫
G
f(x)x · T dx.

Lemma 6.9. Let f, g ∈ L1(G), x ∈ G, T ∈ B(H). Then:

(i) (xf) · T = (x−1) · (f · T ), where xf(y) = f(xy).

(ii)g · (f · T ) = (g ∗ f) · T .

(iii) If f ≥ 0 and T ≥ 0, then f · T ≥ 0.

Proof. (i)(xf)·T =
∫
f(xy)π(y)Tπ(y−1) dy =

∫
f(y)π(x−1)π(y)Tπ(y−1)π(x) dy

= π(x−1)(f · T )π(x) = (x−1) · (f · T )

(ii)g · (f · T ) =
∫
g(y)y · (f · T ) dy =

∫
g(y)(y−1f · T ) dy

=
∫∫

g(y)f(y−1x)π(x)Tπ(x−1) dxdy =
∫
g ∗ f(x)π(x)Tπ(x−1)dx

= (g ∗ f) · T .

(iii) Suppose that f ≥ 0 and T ≥ 0. Let η ∈ H, then 〈f · T (η) | η〉

=
∫
f(y)〈Tπ(y−1)η | π(y−1)η〉 ≥ 0. Therefore f · T ≥ 0.

Lemma 6.10. Let π : G → B(H) be a unitary representation of a locally

compact group G on a Hilbert space H. Let UCB(π) be the C*-subalgebra of

B(H) defined in above. Then the map M 7→ M |UCB(π) is a bijection from the

set of all topologically invariant means on B(H) onto the set of all G invariant

means on UCB(π).

Proof. Let M be a G-invariant mean on UCB(π). We assert that for each

fixed T ∈ B(H), there exists k ∈ C such that 〈M, f · T 〉 = k
∫
f(x) dx for all

f ∈ L1(G). Let T ∈ B(H) be fixed. Without loss of generality, we assume

that T ≥ 0. Define θ ∈ L1(G)∗ by θ(f) = 〈M, f · T 〉. By the previous
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lemma, θ|Cc(G) is a positive, left translation invariant linear functional, so

θ|Cc(G) is induced by a left Haar measure. There exists k > 0 such that

θ(f) = k
∫
f(x) dx, f ∈ Cc(G). As Cc(G) is ‖·‖1 dense in L1(G), it follows that

〈M, f · T 〉 = θ(f) = k
∫
f(x) dx, for any f ∈ L1(G). Now fix f0 ∈ L1(G) with

f0 ≥ 0 and
∫
f0(x) dx = 1. Define M ′ ∈ B(H)∗ by 〈M ′, T 〉 = 〈M, f0 · T 〉. By

the previous lemma (iii), M ′ is positive and 〈M ′, I〉 = 〈M, f0 ·I〉 = 〈M, I〉 = 1.

Let g ∈ L1(G) with g ≥ 0 and
∫
g(x) dx = 1, then

〈M ′, g · T 〉 = 〈M, (f0 · (g · T ))〉

= 〈M, (f0 ∗ g) · T 〉

= 〈M, f0 · T 〉, since

∫
f0 ∗ g(x) dx =

∫
f0(x) dx

= 〈M ′, T 〉.

Therefore M ′ is a topologically invariant mean on B(H). Consider the map

M 7→ M |UCB(π) from the set of all topologically invariant means on B(H) to

the set of all G-invariant means on UCB(π). Let M1, M2 be two topologically

invariant means on B(H). If M1 6= M2, there exists T ∈ B(H) such that

〈M1, T 〉 6= 〈M2, T 〉. Fix f ∈ L1(G) with f ≥ 0 and
∫
f(x) dx = 1, then

〈M1|UCB(π), f · T 〉 = 〈M1, f · T 〉 = 〈M1, T 〉 6= 〈M2, T 〉 = 〈M2, f · T 〉

= 〈M2|UCB(π), f ·T 〉, so M1|UCB(π) 6= M2|UCB(π). Therefore the map is injective.

On the other hand, given a G-invariant mean N on UCB(π), we fixed f0 ∈

L1(G) with f0 ≥ 0 and
∫
f0(x) dx = 1 and define 〈M,T 〉 = 〈N, f0 · T 〉,

T ∈ B(H). Note that M is a topologically invariant mean on B(H). Let
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S ∈ UCB(π), then S = g ·T for some g ∈ L1(G) and T ∈ B(H). Observe that

〈M,S〉 = 〈N, f0 · (g · T )〉

= 〈N, (f0 ∗ g) · T 〉

= 〈N, g · T 〉, since

∫
f0 ∗ g(x) dx =

∫
g(x) dx

= N(S)

This shows that M |UCB(π) = N and hence the map is surjective.

Remark 6.11. The lemma in above is an analog of [39] Proposition 1.7.

Theorem 6.12. Let π : G→ B(H) be a unitary representation of an amenable

locally compact group. Suppose that H has a family of mutually orthogonal in-

variant subspaces {Hi | i ∈ Λ}, then for each i ∈ Λ, there exists a topologically

invariant mean Mi on B(H) such that {Mi | i ∈ Λ} are linearly independent.

Proof. For each i ∈ Λ, pick ξi ∈ Hi with ‖ξi‖ = 1 and define Li = ξi ⊗ ξi ∈

L1(H), then Li ≥ 0 and ‖Li‖1 = 1. Let Ci be the convex hull of {Li ·x |x ∈ G}

which is invariant under the right G-action. Let Ĉi = {L̂|UCB(π) |L ∈ Ci},

where L̂ denotes the canonical image of L under the canonical embedding

L1(H) ↪→ B(H)∗. Note that Ĉi is a bounded subset of UCB(π)∗, so its

σ(UCB(π)∗,UCB(π))-closure, denoted by Ki, is weak* compact. Note that

when equipped with weak* topology, UCB(π)∗ is a locally convex space and

each Ki is a compact, convex subset of UCB(π)∗. G acts affinely on Ki by

(M,x) 7→ M · x, (M ∈ Ki, x ∈ G) and the action is clearly separately

continuous. By Day’s fixed point theorem, there exists Mi ∈ Ki such that

Mi · x = Mi for each x ∈ G, hence Mi is a left invariant mean on UCB(π).

By lemma 6.10, Mi is extended in a unique way to a topologically invariant

mean on B(H). We denote that topologically invariant mean by the same
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symbol Mi. We assert that the means in {Mi | i ∈ Λ} are linearly indepen-

dent. Let M1,M2, . . . ,Mn ∈ {Mi | i ∈ Λ} and let αi ∈ C, i = 1, 2, . . . , n.

Suppose that
∑n

i=1 αiMi = 0. Let Pi : H → H be the orthogonal projec-

tion onto Hi. Since Pi commutes with π(x), it follows that x · Pi = Pi and

therefore Pi ∈ UCB(π). Note that 〈Mi, Pj〉 = δij. For, choose a net (Li,β)β

in Ci such that L̂i,β|UCB(π) → Mi with respect to the weak*-topology. Then

〈Mi, Pj〉 = limβ〈L̂i,β, Pj〉 = δij. It follows that αj = 〈
∑n

i=1 αiMi, Pj〉 = 0 and

hence M1,M2, . . . ,Mn are linearly independent.

Corollary 6.13. Let π : G→ B(H) be a unitary representation of an amenable

locally compact group G. In order that there exists a unique topologically in-

variant mean M on B(H), it is necessary that π is irreducible.

We recall that a locally compact group G is a Moore group, denoted by

G ∈ [Moore], if every irreducible representation of G is finite dimensional. All

abelian groups and all compact groups are Moore groups and Moore groups are

amenable. In fact, the latter conclusion can be proved easily by Bekka’s theory.

For, if G is a Moore group and π : G→ B(H) is an irreducible representation,

then π is amenable since dim(H) <∞ ([4] Theorem 1.3). Now all irreducible

representations of G are amenable, so G is amenable by [4] Corollary 5.5.

Proposition 6.14. Let G be a Moore group. If π : G→ B(H) is an irreducible

representation, there exists a unique G-invariant/topologically invariant mean

on B(H).

Proof. We remark that if dim(H) < ∞, a G-invariant mean M on B(H) is

automatically a topologically invariant mean. For, suppose that M is a G-

invariant mean on B(H). Suppose that dim(H) < ∞, then B(H)∗ ' L1(H).

Write M =
∑n

i=1 αiξi ⊗ ξi, for some αi ∈ C, ξi ∈ H with ‖ξi‖ = 1, i.e.
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〈M,T 〉 = tr(T
∑n

i=1 αiξi ⊗ ξi), (T ∈ B(H)). Let T ∈ B(H) and let f ∈ L1(G)

with f ≥ 0 and
∫
f(x) dx = 1. Then

〈M, f · T 〉 =
n∑
i=1

αi tr(f · Tξi ⊗ ξi) =
n∑
i=1

αi〈f · Tξi | ξi〉

=
n∑
i=1

αi

∫
f(x)〈x · T (ξi) | ξi〉 dx =

∫
f(x) tr[(x · T )

n∑
i=1

αiξi ⊗ ξi] dx

=

∫
f(x)〈M,x · T 〉 dx =

∫
f(x)〈M,T 〉 dx = 〈M,T 〉.

Let π : G → B(H) be an irreducible representation. Let M1, M2 be two G-

invariant means on B(H). Let T0 ∈ B(H). Define E = B(H) and regard it

as a locally convex space. Let K be the closed convex hull of {x · T0 |x ∈ G}.

Note that G acts on K affinely by (x, T ) 7→ x · T and the action is separately

continuous. By Day’s fixed point theorem, there exists T ∈ K such that

x ·T = T for any x ∈ G, i.e. π(x)T = Tπ(x). Since π is irreducible, T = λI for

some λ ∈ C by Schur’s lemma. Choose a net (Sα) in K such that Sα → T , then

λ = 〈M1, λI〉 = limα〈M1, Sα〉 = 〈M1, T0〉. By the same reason, λ = 〈M2, T0〉.

Therefore M1 = M2.

Let λ : G → B(H) be the left regular representation of a locally compact

group G on the Hilbert space H = L2(G). Given a topologically left invariant

mean m on L∞(G), we obtain a topologically invariant mean M on B(H) via

the canonical extension by passing to a suitable converging subnet. However,

the original net may have more than one cluster point, so in general, topo-

logically invariant mean arisen from canonical extension is not unique. In the

following, we give such an example.

Example 6.15. Let T be the circle group equipped with the normalized Haar

measure. Let λ : T → B(H) be the left regular representation of T on the

Hilbert spaceH = L2(T). For each n ∈ Z, we associate a character χn : T→ C
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by χn(z) = zn (z ∈ T). We remark that {χn |n ∈ Z} is an orthonormal base

of H and for each n ∈ Z, Cχn is an invariant subspace of H. By theorem

6.12, there exists a family {Mn |n ∈ Z} of topologically invariant means which

are linearly independent. By tracing the proof of theorem 6.12, we note

that for each x ∈ T, n ∈ Z, we have: x · (χn ⊗ χn) = χn ⊗ χn. Therefore

Mn = χn ⊗ χn ∈ L1(H). Let φ ∈ L∞(T) and let Tφ ∈ B(H) be defined by

Tφ(f) = φf , then

〈Mn, Tφ〉 = tr(MnTφ) = 〈Tφχn |χn〉

=

∫
φ(x)|χn(x)|2 dx =

∫
φ(x) dx = 〈m,φ〉,

where m is the unique topologically left invariant mean on L∞(T). Therefore

Mn is an extension of m.
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