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ABSTRACT 

 

 Accurate estimation of medication use is an essential component of any 

pharmacoepidemiological research as exposure misclassification will threaten study validity and 

lead to spurious associations. Many pharmacoepidemiological studies use simple definitions, 

such as the categorical “any versus no use” to classify oral antihyperglycemic medications 

exposure, which has potentially serious drawbacks. This approach has led to numerous highly 

publicized observational studies of metformin effect on health outcomes reporting exaggerated 

relationships that were later contradicted by randomized controlled trials. Although selection 

bias, unmeasured confounding, and many other factors contribute to the discrepancies, one 

critical element, which is often overlooked, is the method used to define exposure. 

 Another factor that may provide additional explanation for the discrepancy between 

randomized controlled trials and observational study results of the association between 

metformin use and various health outcomes is the healthy user effect. Aspects of a healthy 

lifestyle such as following a balanced diet, exercising regularly, avoiding tobacco use, etc., are 

not recorded in typical administrative databases and failure to account for these factors in 

observational studies may introduce bias and produce spurious associations. The influence of a 

healthy user bias has not been fully examined when evaluating the effect of oral 

antihyperglycemic therapies in observational studies. 

 It is possible that some, if not all, of the benefit, observed with metformin in 

observational studies may be related to analytic design and exposure definitions. Thus, our first 

objective is to explore the potential impact of exposure definition on estimates of the association 
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between metformin and all-cause mortality risk, using a large administrative health database, 

similar to databases used in previous studies. The variety of exposure definitions tested in our 

analysis produced a wide range of associations between metformin and mortality risk, therefore, 

we recommend that pharmacoepidemiological studies should include at least two exposure 

definitions and sensitivity analyses of different exposure definitions. Moreover, our second 

objective is to explore the healthy user effect in metformin users versus non-users on various 

health outcomes that should not be associated with metformin use. Results of this study suggest 

that metformin users are more likely to initiate preventive therapies and engage in other healthy 

behaviors, therefore we recommend that the influence of these behaviors should be accounted for 

pharmacoepidemiological studies evaluating the effect of oral antihyperglycemic therapies. 

 

 

 

 

 

 

 

 

 

 

 

iii 



 

 

 

 

AKNOWLEDGMENTS 

 I would like to express my deepest gratitude to the Alliance for Canadian Health 

Outcomes Research in Diabetes (ACHORD) and especially to my supervisors Prof. Dean T 

Eurich and Prof. Scot H Simpson, and I would like to extend my thanks to those who offered 

collegial guidance and support during the program, especially Ben T. Dubois.   

 This study was funded through an operating grant provided by the Canadian Diabetes 

Association and supported by an Alberta Diabetes Institute Studentship for Diabetes Research. 

 Additionally, I am thankful to Drug Safety and Effectiveness Training Program 

(DSECT), McMaster University for provision of the valuable knowledge, education and tools, 

that were useful in my research work. 

 

 

 

 

 

 

 

 

 

 

iv 



 

 

 

 

TABLE OF CONTENTS 

 

ABSTRACT……………………………………...…………………………….…...ii 

AKNOWLEDGMENTS…………………………………………….......................iv  

TABLE OF CONTENTS…………………………………………………………..v 

LIST OF TABLES………………………………………………………………..viii  

LIST OF FIGURES………………………………………………………..............ix  

LIST OF ABBREVIATIONS……………………………………………………...x 

1. CHAPTER 1: INTRODUCTION  

 1.1 Statement of the Problem ……………………………………….………1  

 1.2 Drug Exposure Definition in Pharmacoepidemiology…………………..2 

  1.2.1 Exposure Definition Importance………………………………..2 

  1.2.2 Methods to Define Drug Exposure……………………………..3  

  1.2.3 Exposure misclassification……………………………………..6 

 1.3 Healthy User Bias 

  1.3.1 Healthy User Effect Definition……………..………………….9 

  1.3.2 Healthy User Bias Impact on the Drug Exposure and Health  
   Outcome Association……………………….………………..10 

  1.3.3 Healthy User Effect in Previous Studies…….………………..11 

  1.3.4 Methods to Control for the Healthy User Effect…….………..12 

 1.4 Biases in Oral Antihyperglucemic Agents Research…………………..12  

v 



 

 

 

 

  1.4.1 Literature Review…………………………....…………...……12 

 1.5 Summary…………...…………………………………………………..14  

 1.6 Objectives…………...………………………………………………….15 

 1.7 References………..…………………………………………………….17 

2. CHAPTER 2: IMPACT OF DRUG EXPOSURE DEFINITIONS ON AN 
OBSERVED ASSOCIATION IN PHARMACOEPIDEMIOLOGY RESEARCH   

 2.1 Introduction………………...…………………………………………..20 

 2.2 Methods ……………………………………………………………..…21 

 2.3 Results and Discussion………………………………………………....25 

 2.4 Conclussions……………………………………………………………34 

 2.5 Reference…………………………………………………………….…35 

3. CHAPTER 3: EVALUATING HEALTHY USER EFFECT IN TYPE 2     
DIABETES PATIENTS USING ORAL ANTIHYPERGLYCEMIC 
MEDICATIONS  

 3.1 Introduction………………………………………………………….…45 

 3.2 Methods……………………………………………………………...…47 

 3.3 Results………………………………………………………………….50 

 3.4 Discussion…………………...…………………………………………52 

 3.5 References…………………………………………………………...…59 

4. CHAPTER 4: SUMMARY 

 4.1 Overview of the Research…………………………………….………..61 

 4.2 Objectives………………………………………………………………62 

 4.3 Summary of the Findings…………………...………………………….63 

 4.4 Implications for Future Research………………………………………65 

vi 



 

 

 

 

 4.5 Implications for Clinical Practice………………………………………67 

 4.6 Conclussions……………………………………………………………68 

 4.7 References…………………………………...…………...………….....70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vii 



 

 

 

 

LIST OF TABLES 
 

TABLE 1-1: EXPOSURE METHODS REFERENCE SOURCE ...................................... 4 

TABLE 1-2: POTENTIAL BIASES ASSOCIATED WITH EXPOSURE  ...................... 7  

TABLE 1-3: PATIENT CHARACTERISTICS INCIDENT ORAL 

ANTIHYPERGLYCEMIC AGENTS USERS COHORT, ALBERTA, CANADA, 1998-

2010  ................................................................................................................................... 38 

TABLE 2-1: ORAL ANTI HYPERGLYCEMIC AGENTS INCIDENT USERS 

COHORT CHARACTERISTICS, ALBERTA, CANADA, 2008-2015 ........................... 55 

TABLE 2-2: ASSOCIATION BETWEEN METFORMIN THERAPY AND RISK OF 

HEALTH-RELATED EVENTS, INCIDENT ORAL ANTI HYPERGLYCEMIC 

AGENTS USERS, ALBERTA, CANADA, 2008-2015 ................................................... 56 

 

 

 

 

 

 

 

 

viii 



 

 

 

 

LIST OF FIGURES 

 

FIGURE 1: CONCEPTUAL MODEL EXPLAINING THE HEALTHY-USER EFFECT  

  .................................................................................................................................... 10 

FIGURE 1-A: TIME-FIXED EXPOSURE DEFINITIONS SCHEMATIC 

REPRESENTATION ......................................................................................................... 39 

FIGURE 1-B: TIME-VARYING EXPOSURE DEFINITIONS SCHEMATIC 

REPRESENTATION ......................................................................................................... 40 

FIGURE 1-C: NESTED CASE CONTROL EXPOSURE DEFINITIONS SCHEMATIC 

REPRESENTATION ......................................................................................................... 41 

FIGURE 1-D: ASSOCIATION OF METFORMIN ON ALL-CAUSE MORTALITY 

USING TIME-FIXED EXPOSURE DEFINITIONS ........................................................ 42 

FIGURE 1-E: ASSOCIATION OF METFORMIN ON ALL-CAUSE MORTALITY 

USING TIME-VARYING EXPOSURE DEFINITIONS ................................................. 43 

FIGURE 1-F: ASSOCIATION OF METFORMIN ON ALL-CAUSE MORTALITY 

USING NESTED CASE CONTROL EXPOSURE DEFINITIONS ................................ 44 

FIGURE 2-A: TIME-DEPENDENT EXPOSURE DEFINITION .................................. 58 

 

 

ix 



 

 

 

 

LIST OF ABBREVIATIONS 

ACE - Angiotensin-converting Enzyme 

BMI - Body Mass Index 

CDA - Canadian Diabetes Association 

CI – Confidence Interval  

CV – Cardio Vascular 

FOB – Fecal occult Blood Test 

F/U – Follow-up 

HR – Hazard Ratio 

ICD - International Classification of Diseases 

IRR - Incidence Rate Ratio 

NCC – Nested Case Control 

OD – Odds Ratio 

PIN - Pharmaceutical Information Network 

PSA - Prostate-specific Antigen 

RCT – Randomized Controlled Study 

Rx - Prescription 

SD – Standard Deviation 

TVA – Time-varying Analysis 

 

 

x 



 

1 

 

CHAPTER 1:  

INTRODUCTION 

 
1.1 Statement of the Problem 

 Few head-to-head randomized trials comparing oral antihyperglycemic medications on 

hard clinical outcomes exist. As a result, a large amount of evidence comparing the effectiveness 

of antihyperglycemic medication in diabetes comes from observational studies, which have 

become increasingly popular and make an important contribution to medical knowledge.(1) 

However, a major limitation of observational studies is their subjectivity to a number of potential 

biases that may cause erroneous results and produce spurious associations.  

 Although selection bias, unmeasured confounding, and many other factors contribute to 

the bias in pharmacoepidemiological research, one critical element, which is often overlooked, is 

the method used to define drug exposure.(2) Many pharmacoepidemiological studies use simple 

definitions, such as the categorical “any versus no use” to classify exposure, which has 

potentially serious drawbacks.(3, 4) This approach has led to numerous highly publicized 

observational studies of the effect of diabetes medications on health outcomes reporting 

exaggerated relationships that were later contradicted by randomized controlled trials (RCT).(5)  

 An additional potential source of bias is the ‘Healthy User Effect’ or ‘Healthy User Bias’, 

which is a tendency of healthier patients to initiate preventive therapies and engage in behaviors 

consistent with healthy lifestyles, which in turn can affect their outcomes. Aspects of a healthy 



 

2 

 

lifestyle include following a balanced diet, exercising regularly, moderation of alcohol 

consumption and avoidance of tobacco use, etc. Many of these healthy lifestyle behaviors are not 

recorded in typical administrative databases and failure to account for these factors in 

observational studies of preventive therapies could introduce bias and produce spurious 

associations.(6, 7)  The healthy user effect is still not fully appreciated within 

pharmacoepidemiology research and has scarcely been considered in the evaluation of oral 

antihyperglycemic therapies. Therefore, healthy user bias may provide an alternative explanation 

for the discrepancy in results of metformin use and various health outcomes observed in RCTs 

and observational studies. 

 Although, exposure misclassification and healthy user effects are not the only possible 

explanations for the discrepancy between RCTs and observational study results,(8, 9) it is 

possible that some, if not all, of the benefit, observed with metformin in observational studies 

may be related to analytic design and exposure definition.(10-12) 

 

1.2 Drug Exposure Definition in Pharmacoepidemiology 

1.2.1 Exposure Definition Importance 

  In pharmacoepidemiology, the use of drugs is the determinant of interest when studying 

exposure outcome associations. The increased availability of administrative databases has greatly 

facilitated analyses of drug effects on a population-based scale. The early days of 

pharmacoepidemiology research relied heavily on the use of a simple ‘ever’ versus ‘never’ 

exposure definition for drug use. It is now clear that this definition has potentially serious 
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drawbacks, including the introduction of misclassification bias into research results.(3, 4) For 

example, for the evaluation of many drug/event associations, the dose, the duration, and timing 

of use (which would not be captured in a simple ‘ever’ versus ‘never’ definition) are very 

important in understanding the drug’s potential effect.(3, 4) Moreover, switching between 

different therapies and types of administration are also important and not captured in the 

traditional exposure definition.(1, 4) Therefore, accurate exposure definition is an important 

requirement in every pharmacoepidemiological study, since inaccurately assessed drug exposure 

can introduce misclassification, bias study results, and produce spurious associations, that 

consequently have a negative impact on patient safety and treatment effectiveness assessment.(1, 

4, 13, 14)  

 

1.2.2 Methods to Define Drug Exposure  

 Based on a comprehensive search of the literature, a wide range of exposure definitions, 

and their variants, have been used in pharmacoepidemiological research of oral 

antihyperglycemic medications in diabetes (Table 1-1). Three general approaches to an exposure 

definition include time-fixed approaches, time-varying approaches, and a nested case control 

(NCC) approach. Each method has both strengths and weakness associated with the definition 

and importantly, each method provides a slightly different interpretation in the evaluation of drug 

effect.  
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 Definitions using a time-fixed approach establish medication exposure at a single point 

based on a portion or all of the prescription records in the study observation period. This 

exposure definition does not change during the follow-up period and is entered into multivariable 

models as a dichotomous variable to describe exposure status. Examples of this approach include 

the ‘ever’ versus ‘never’ method,(11, 15-17) and the requirement of at least 2 prescription 

records within a defined interval, such as the entire study period(18) or within 180 days.(19, 20) 

A variation of these definitions is to use either the interval between first and last prescription 

record or the cumulative days of supply information to define exposure as a continuous 

variable.(11, 21-23) 
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Time-varying approaches examine the patient’s prescription records at multiple points 

during the follow-up period to establish exposure status. Examples of this approach include: a) 

legacy effect, where subjects are considered “unexposed” until the first prescription record, then 

considered “exposed” until the end of the follow-up, regardless of subsequent prescription 

information;(15, 24, 25) b) a variation of this definition is to discontinue follow-up (i.e., censor 

patients) if there is no evidence of ongoing medication use;(17, 25, 26) and, c) dividing the 

follow-up period into set intervals or ‘windows’, determining exposure status within each 

window, and using this information as a time dependent variable in the analytical model.(27) To 

determine exposure status within a window, several different methods exist, including a single 

prescription record within the window(13); any use within a window based on expected 

availability from the prescription date and days of supply information(25, 28, 29); and any use 

within a window based on expected availability from the prescription date, days of supply 

information, plus a ‘carry-over effect’ of 10% to allow for poor adherence.(25) Other variations 

of these also exist but by analyzing exposure to drugs as a time-varying variable in a Cox 

regression model, cohort studies with complete coverage of all filled prescriptions can provide us 

with a better understanding of the potential benefits or risks associated with the drug. 

Exposure definitions in nested case control studies use either a prescription record or 

evidence of medication use (based on prescription date and days of supply information) within a 

set time period (usually 30, 90, 180 or 365 days) prior to case event date.(30-33) In addition, 

some NCC studies categorized exposure status as current (prescription date plus days of supply 

overlap the case event date), past (prescription date pus days of supply end before the case event 

date) or never (no prescription records prior to the case event date).(34, 35) The NCC approach 

is commonly used in pharmacoepidemiology because of the time varying nature of drug use and 
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the long duration of follow-up, moreover, this approach provides an efficient and flexible 

analysis of the association between immediate exposure and outcomes.(36) However, this 

approach was initially developed to overcome limitations in computing power which is not 

required in today’s digital world. 

 

1.2.3 Exposure Misclassification 

 How differences in exposure definitions introduce bias into pharmacoepidemiological 

studies stem from misclassification bias. Exposure misclassification can be either differential or 

non-differential. Differential bias occurs when the error rate or probability of being misclassified 

differs across groups of study subjects. This bias has historically been perceived as shifting the 

results away from the null, however, the direction of bias is completely driven by the amount and 

direction of misclassification within the study groups. Non-differential misclassification occurs 

when the frequency of errors is approximately the same in the groups being compared and tends 

to bias the results towards the null.(37, 38)  

 Another type of bias which relates to how drug exposure is defined in studies but is not a 

drug exposure misclassification per se is the concept of immortal time bias. Immortal time bias 

refers to a period of follow-up during which, by design, the study outcome cannot occur. In 

pharmacoepidemiological studies, immortal time typically arises when the determination of an 

individual’s treatment exposure involves a delay or wait period during which follow-up time is 

accrued. Therefore, the timing of follow-up initiation after reaching the exposure definition is of 

a special importance.(1, 14, 39) Time-related biases in pharmacoepidemiological research, such 

as immortal time bias and others have been previously described in studies of diabetes 
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treatment,(40, 41) and the major concern with the analysis of such studies is that patients, who 

reach the outcome during immortal time period is misclassified as unexposed, leading to the 

exaggeration of the medication effect.(1, 18, 40, 41) 

 Exposure misclassification and immortal time bias can be introduced into a 

pharmacoepidemiological study by the method used to define drug exposure. Table 1-2 outlines 

the various biases which can be introduced for the most common exposure definitions used in the 

evaluation of oral antihyperglycemic medications in diabetes and the theoretical impact on the 

observed estimates. 

 

Table 1-2: Potential Biases Associated with Exposure 
Exposure Definition 

Retrospective Cohort 
Immortal 

 Time 
Exposure 

Misclassification 
Impact on the 

estimate Ŧ 
 

Retrospective Cohort Analysis 

Ever vs. Never metformin use 
Follow up starting from index prescription Medium Non Differential Overestimation 
Follow up starting from first metformin 
prescription 

Short Non Differential Neutral 

Filling at least 2 prescriptions 
all study period  
(starting from index prescription) 

Long Differential Overestimation 

all study period  
(starting from 1st prescription) 

Medium --- Neutral 

all study period  
(starting from 2nd  prescription) 

Short Differential Overestimation 

180 days (starting from index prescription) Long Differential Overestimation 
180 days (starting from 1st prescription) Medium --- Neutral 
180 days (starting from 2nd  prescription) Short Differential Overestimation 

Metformin use in years as a continuous variable 
Metformin use in years Short Non 

Differential/Differential 
Overestimation 
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Time Varying Exposure Definition Analyses 

Legacy effect 
30 days window size --- Differential Underestimation 
90 days window size --- Differential Underestimation 
180 days window size --- Differential Underestimation 
365 days window size  --- Differential Underestimation 

Any metformin prescription fill regardless of days supplied 
30 days  --- Differential Overestimation 
90 days  --- Differential Overestimation 
180 days  --- Differential Overestimation 
365 days  --- Differential Overestimation 

Any metformin use based on days’ supply  
30 days  --- --- Neutral 
90 days  --- --- Neutral  
180 days  --- --- Neutral 
365 days  --- --- Neutral 

Discontinue the follow up if there is no evidence of ongoing exposure  
30 days  --- Differential Overestimation 
90 days --- Differential Overestimation 
180 days --- Differential Overestimation 
365 days --- Differential Overestimation 

Carry Over effect of 10% of the medication 
30 days’ time windows --- Differential Underestimation 
90 days’ time windows --- Differential Underestimation 
180 days’ time windows --- Differential Underestimation 
365 days’ time windows --- Differential Underestimation 

 
Nested Case Control Exposure Definition Analyses 

Any Metformin prescription claim within time windows prior to the event 
30 days --- --- Neutral 
90 days --- --- Neutral 
180 days --- --- Neutral 
365 days --- --- Neutral 

Any Metformin use within time windows prior to the event 
30 days --- --- Neutral 
90 days --- --- Neutral 
180 days --- --- Neutral 
365 days --- --- Neutral 

Current and Past use versus never use  
Current Use --- Non Differential Underestimation 
Past Use --- Non Differential Underestimation 
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1.3 Healthy User Bias 

1.3.1 Healthy User Effect Definition 

 Pharmacoepidemiological studies are conducted to evaluate the safety and effectiveness 

of drugs used in actual clinical settings using large administrative databases. These studies are of 

a high importance, since RCTs often exclude populations most likely to use a drug, do not 

account for the complexity of pharmacotherapies, or are simply not feasible in specific settings. 

One of the main limitations of such studies is bias, i.e., systematic differences in prognosis 

between a group of patients using a medication and the comparator group of patients.(6) 

 Healthy User Effect or Healthy User Bias is a tendency of healthier patients to initiate 

preventive therapies and engage in behaviors consistent with healthy lifestyles, which in turn can 

affect their health outcomes.(6, 7, 42) This could occur through either selective prescribing of 

preventive medications to patients in better health and/or through more health conscious patients 

seeking out prescriptions for such medications.(7)  

 Aspects of a healthy lifestyle include following a balanced diet, exercising regularly, 

moderation of alcohol consumption, avoidance of tobacco use, avoidance of risky behaviors, 

participation in vaccination programs, using preventive therapies and health services, overall 

higher functional status and cognition, and interaction with the health system (e.g., annual visits). 

These characteristics are usually unmeasured in the administrative databases, and, therefore, may 

be associated with health outcomes in observational studies of vaccinations, diets, screening 

procedures and preventative therapies (Figure 1).(7, 43, 44)  
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1.3.2 Healthy User Bias Impact on the Drug Exposure and Health Outcome 

Association 

 Healthy lifestyle behaviors are not recorded in typical administrative databases and 

failure to account for these factors in observational studies of preventive therapies could 

introduce bias and produce spurious associations.(6, 7) The healthy user effect has gained 

increasing attention as a potential source of bias in observational studies of preventive therapies 

and treatment of asymptomatic conditions.(43) Indeed, numerous studies have demonstrated the 
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healthy user effect can be a plausible explanation for the discrepancy between RCTs and 

observational studies.(6, 7, 45) 

 The effect of healthy user bias on the observed association can often be anticipated. 

When the effect is inversely associated with the outcome, study results will tend to be smaller 

than the true underlying effect. A failure to account for the healthy user effect in observational 

studies will make null effects appear protective, exaggerate protective effects, and attenuate 

harmful effects or even make them appear protective.(7) 

 

1.3.3 Healthy User Effect in the Previous Studies  

 Healthy user effect has been most notably explored in users of ‘statin’ therapies.(42) 

Indeed, statins (5-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) therapy is 

associated with increased use of a number of other preventative therapies and health services, 

and a reduction in clinical events which are not intuitively associated with statin use, including 

reduced risk of cancer, sepsis, Alzheimer disease and hip fractures.(6, 7, 46) Furthermore, the 

healthy user effect is thought to fully explain the large benefits observed in observational studies 

of hormone replacement therapies and the subsequent RCTs which showed significant 

harms.(45) Additionally, it has also been extensively discussed as a potential source of bias in 

observational studies showing large reductions in all-cause mortality associated with influenza 

vaccination in elderly.(44, 47)  
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1.3.4 Methods to Control for the Healthy User Effect 

 There are several analytical strategies proposed in the literature to control for healthy user 

effect. The optimal method to control for the bias is randomization,(9) however, it is not always 

feasible and the majority of the research presently performed in observational studies requires 

other strategies to address the bias. Therefore, other analytical strategies were proposed, such as 

new user design,(46, 48) using an active comparator,(9, 49, 50) controlling for past medical 

history by adjustments for prior use of preventive therapies and diagnostic tests, using an 

instrumental variable,(43, 48) using a propensity score,(51) and refining the exposure definition 

by using a time-dependent method after using an ‘ever’ versus ‘never’ definition.(49)  

 The variety of these analytical strategies highlight the fundamental difficulties in 

evaluating preventive therapies within observational studies and emphasize the fact that several 

approaches are required in order to control for healthy user effect.(6) 

 

1.4 Biases in Oral Antihyperglycemic Agents Research 

1.4.1 Literature Review 
Numerous observational studies in patients with diabetes have consistently shown 

metformin to be associated with ~30% reduction in all cause or cardiovascular specific mortality 

compared to other oral antihyperglycemic agents.(52, 53) Yet, only one small, sub-study within 

the UKPDS randomized controlled trial has suggested a similar benefit in obese patients with 

type 2 diabetes.(54) Indeed, meta-analyses of RCT’s have failed to replicate the strong 

association between metformin use and all-cause or CV mortality reported in observational 
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studies.(2, 55) Importantly, the vast majority of these RCT studies have not been designed to 

look at mortality associated with metformin per se. As a result, a large body of observational 

studies have further explored the issue and have consistently shown clinically important benefits, 

including substantial reductions in all-cause and CV-related mortality, as well as beneficial 

effects in patients with diabetes and heart failure.(55-57) However, not all observational studies 

of antihyperglycemic therapies have found benefits with metformin. The reason for the 

discrepancy between RCT’s of metformin and within observational studies of metformin are not 

fully known. One plausible explanation is that these differences may be driven, at least in part, 

by the underlying definitions used to define metformin exposure in observational studies.  

Although less studied, healthy user bias may also explain the discrepancies in results 

between observational studies and RCTs of metformin use in patients with type 2 diabetes. 

Although healthy-user bias is most commonly associated with statin and HRT use, there have 

been suggestions in observational studies of metformin that health user bias may also be at play. 

Indeed, metformin has been shown to reduce a wide range of outcomes in patients with diabetes, 

including cancer-related outcomes which one would not normally expect.(12, 40, 41) Therefore, 

it is possible some, if not all, of the benefit, observed with metformin in observational studies 

may be related to the healthy user effect and exposure definitions.(10, 11) and it may also 

explain the discrepancies in results between observational studies and RCTs of metformin use in 

patients with type 2 diabetes.  
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1.5 Summary 

 This research is directly relevant to diabetes, specifically, and health outcomes research 

in general.(55) In order to accurately estimate drug exposure and health outcomes association, it 

is crucial to be able precisely define drug exposure and address patient characteristics, like 

healthy behaviors in a pharmacoepidemiological study. Either during clinical trial or post-

marketing drug safety and effectiveness evaluation, proper methodology would contribute to the 

validity of study results and consequently to safer health care and more effective patient 

treatment. The availability of computerized information about drug use on an individual basis 

(e.g., administrative databases) facilitated analyses of oral antihyperglycemic medications effect 

on a population-based scale. Furthermore, reliable and accurate drug exposure definition along 

with accounting for other cofounding factors related to patient behavior are of paramount 

importance in pharmacoepidemiology, since any misclassification will potentially bias study 

results and produce spurious associations. Moreover, this unique research will shift the current 

paradigm on how observational studies define exposure of diabetes medications, account for 

patient characteristics, and may also reconcile the differences between observational studies and 

RCTs on the potential benefits of metformin on mortality in patients with diabetes. 
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1.6 Objectives 

The two objectives of this program of research were: 

1) To evaluate the influence of exposure definitions used in pharmacoepidemiology on 

estimates, using the association between metformin and all-cause mortality as a proto-

typical model 

2) To explore the healthy user effect in metformin users versus non-users on various health 

outcomes that should not be associated with metformin use 

 The first objective was achieved using a large population-based cohort of 64,293 new 

oral antihyperglycemic users (≥66 years) between 1998 and 2010 in Alberta, Canada. We 

examined oral antihyperglycemic medications use and all-cause mortality as a prototypical 

model to evaluate the effect of different exposure definitions on the estimated association using 

three major groups for exposure definition (time fixed, time-varying and nested case control) 

(more comprehensively elaborated in chapter 2). We hypothesized that the association between 

metformin and mortality will be significantly influenced by the method used to define 

‘exposure’.  

 The second objective was addressed with a large population-based cohort of 135,301 new 

users of oral antihyperglycemic agents in Alberta (≥30 years), Canada based on administrative 

data augmented with clinical laboratory data between 2008 and 2015 (more comprehensively 

elaborated in chapter 3). We hypothesized that metformin use, in part, is a marker of “healthy 
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users” and will be associated with beneficial effects on different health outcomes that could not 

plausibly be related to metformin use per se. 
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CHAPTER 2: 

Impact of Drug Exposure Definitions on an Observed 
Association Pharmacoepidemiology Research 

 

2.1 Introduction 
Few head-to-head randomized trials comparing oral antihyperglycemic medications on 

hard clinical outcomes (e.g. mortality, cardiovascular outcomes) exist. As a result, a large 

amount of evidence comparing antihyperglycemic medications effectiveness in diabetes comes 

from pharmacoepidemiological studies.  Accurate estimation of medication use is an essential 

component of any pharmacoepidemiological research as exposure misclassification will threaten 

study validity and lead to spurious associations.(10)  

Many pharmacoepidemiological studies, however, use crude definitions, such as the 

categorical “any versus no use” to classify exposure, which has potentially serious drawbacks.(3) 

This approach has led to numerous highly publicized observational studies of the effect of 

diabetes medications on health outcomes reporting exaggerated relationships(5, 55)  that were 

later contradicted by randomized controlled trials.(54) Although selection bias, unmeasured 

confounding, and many other factors contribute to the discrepancies, one critical element, which 

is often overlooked, is the method used to define exposure.(11, 55)  

The association between metformin and all-cause mortality is a good proto-typical model 

to examine the influence of exposure definitions because of the differences observed in 

pharmacoepidemiological studies and randomized controlled trials. Numerous observational 
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studies in patients with diabetes have consistently shown metformin to be associated with ~30% 

reduction in all cause or cardiovascular specific mortality compared to other oral 

antihyperglycemic agents.(51, 52) Yet, only one small, sub-study within the UKPDS randomized 

controlled trial has suggested a similar benefit in obese patients with type 2 diabetes.(53) Indeed, 

a recent meta-analysis of 13 RCTs found no benefit of metformin per se relative to other 

treatments.(54)  

It is possible some, if not all, of the benefit, observed with metformin in observational 

studies may be related to analytic design and exposure definitions.(10, 11) Thus, using a large 

administrative health database, similar to databases used to evaluate outcomes associated with 

metformin therapy in previous studies, we explored the potential impact of exposure definition 

on estimates of the association between metformin and all-cause mortality risk. Although we are 

using diabetes medication as our prototypical example, our results would be expected to apply to 

almost all pharmacoepidemiological studies of drug safety and effectiveness. 

 

2.2 Methods 
Between January 1, 1998 and December 31, 2010, all new users of an oral 

antihyperglycemic agent aged 66 years and older were identified using the administrative health 

databases from Alberta, Canada. We used a standard approach by defining new users as those 

with no prescription record for any oral antihyperglycemic or insulin for one year before their 

index date.(52, 59) The restriction to patients 66 years or older was required as in Alberta only 

patients 65 years of age and older are eligible for universal drug coverage, allowing for 1 year to 
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establish our new user cohort.  Socio demographic information was extracted from Alberta 

Registry database and mortality was ascertained from Vital Statistics Registry data. 

Exposure Definitions   

Based on a comprehensive search of the literature, we identified the most common 

exposure definitions, and their variants, used in pharmacoepidemiological research of oral 

antihyperglycemic agents in diabetes (Table 1-1). Three general approaches to exposure 

definitions were identified: 1) time-fixed approaches (Figure 1-A), 2) time-varying approaches 

(Figure 1-B), and 3) nested case control approach (Figure 1-C).  

Definitions using a time-fixed approach establish medication exposure at a single point 

based on a portion or all of the prescription records in the study observation period. This 

exposure definition does not change during the follow-up period. Examples of this approach 

include ‘any versus no’ prescription record (i.e., ‘ever versus never’ users);(11, 14-16) and filling 

at least 2 prescriptions within a defined interval, such as the entire study period(17) or within 180 

days.(18, 19) These exposure definitions are entered into multivariable models as a dichotomous 

variable to describe exposure status. A variation of these definitions is to use either the interval 

between first and last prescription record or the cumulative days of supply information to define 

exposure as a continuous variable.(11, 20-22)  

Definitions using a time-varying approach examine a patient’s prescription records at 

multiple points during the follow-up period to establish exposure status. The simplest method to 

define exposure using this approach is the legacy effect, where subjects are considered 

“unexposed” until the first prescription record, then considered “exposed” until the end of the 
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follow-up, regardless of subsequent prescription information.(14, 23, 24) A variation of this 

definition is to discontinue follow-up (i.e., censor patients) if there is no evidence of ongoing 

medication use among exposed and unexposed patients.(16, 24, 25)  

Other time-varying definitions divide the follow-up period into set intervals or 

‘windows’, determine exposure within each window, and use this information as a time 

dependent variable in the analytical model.(26) Numerous examples of cohort studies using Cox 

proportional hazards models were identified in the literature, with the time windows ranging 

from 1 day to 1 year, or according to actual prescription records.(12, 24, 27, 28, 60) To limit the 

total number of analyses completed, we elected to focus on the more commonly used windows of 

30, 90, 180, 365 days or actual prescription records. We also followed the most common 

procedure by defining time zero as the start of the first oral antihyperglycemic agent use,(35, 59, 

61) then splitting the follow-up time into consecutive windows. To establish exposure status 

within the window, we found  several different methods, including a single prescription record 

within the window(12); any use within a window based on expected availability from the 

prescription date and days of supply information(24, 27, 28); and any use within a window based 

on expected availability from the prescription date, days of supply information, plus a ‘carry-

over effect’ of 10% to allow for poor adherence.(24)  

Exposure definitions in nested case control studies used either a prescription record or 

evidence of medication use (based on prescription date and days of supply information) within a 

set time period (usually 30, 90, 180 or 365 days) prior to case event date.(29-32) In addition, 

some nested case control studies categorized exposure status as current (prescription date plus 
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days of supply overlap the case event date), past (prescription date pus days of supply end before 

the case event date) or never (no prescription records prior to the case event date).(33, 34)  

Analytic Design 

In all of our models, we adjusted for age, sex, and a comorbidity score.(62) We used a 

variation of the Elixhauser comorbidity score, which uses ICD-9/10 codes to identify a defined 

list of diseases and generate a single ordinal variable that is an independent predictor of mortality 

risk.(63) All comorbidities were identified based on hospital discharge records and emergency 

department visit records within one year of staring the first oral antihyperglycemic agent. 

Our reference group for all models was subjects who did not meet the definition for 

metformin exposure under study. Depending on the study design and exposure definition, this 

unexposed group would be patients who did not receive any metformin prescriptions during the 

entire follow-up time, during an individual window, or during the follow-up time prior to the 

first metformin prescription record. In all the models, numerous variants of the exposure 

definitions (e.g., 2 prescriptions within 180 days, or within the follow-up period; different cut-

points based on time, etc.) were explored to determine if these subtle changes in the definitions 

would substantially affect the estimate. All variants were consistent with the more standard 

definitions identified in the literature; therefore, these additional analyses are not presented but 

are available on request from the authors (DTE).  

In the cohort studies, individuals were followed from the index date (first prescription 

record of an oral antihyperglycemic agent) until death or censoring. Individuals were censored at 

the earliest of the end of the study period (December 31, 2010), or departure from the provincial 
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database. We used Cox Proportional hazard regression models for the cohort study designs to 

calculate adjusted hazard ratios (aHR) and 95% confidence intervals (CI). 

In the nested case control studies, we followed conventional risk-set sampling methods 

by defining cases as patients with our event of interest (all-cause mortality) and selecting five 

controls from among those who have not experienced the event after the same duration of 

follow-up as the case. Adjusted odds ratios (aOR) and 95% CI were calculated using conditional 

logistic regression models. 

We fully acknowledge that our models are prone to additional confounding factors.  

However, our goal is not to establish whether metformin is associated with mortality but to 

explore the effects of different exposure definitions. As we are using the same source of 

information and the same set of variables for all analyses, we would expect that all models would 

have the same relative degree of confounding. The only change among models is the method 

used to define metformin exposure. Thus, any changes in estimates between models would be 

expected to be driven, in large part, by the underlying biases associate with the definition used to 

classify metformin exposure. 

 

2.3 Results and Discussion 
Our cohort consisted of 64,293 new oral antihyperglycemic agent users. The average age 

in the cohort was 69 years, and 52% were male. Overall, 86% of the cohort (55,525 patients) 

filled at least one metformin prescription (Table 1-3). Compared to non-metformin users, 

metformin users tended to be slightly younger (69 vs. 71 years) and have a lower level of 

comorbidity (5 vs. 7). After an average follow-up of 6 (SD±4) years, 39% of patients died from 
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any cause. Fewer metformin users died (19,636; 35.4%) relative to those not using metformin 

(5,109; 58.3%) at any point in the follow-up. 

Time-fixed Definitions  

The various definitions using a time-fixed approach to establish exposure status produced 

consistent estimates of metformin effect on all-cause mortality, relative to those not using 

metformin (Figure 1-D).  When a single prescription record is used to define exposure, 

regardless of timing in the follow-up period, any metformin use was associated with a substantial 

reduction in the risk of death (aHR 0.64, 0.62-0.66). However, ignoring the interval between first 

oral antihyperglycemic agent use and first metformin prescription may introduce unintended 

bias, in particular with regard to survival, and lead to an overestimation of the effect. Starting 

follow-up for the exposed group from first metformin prescription date, as depicted in Figure 1-

A, will aid in eliminating some survival bias and improve estimation of the effect.(1, 64) 

A major limitation of using a single prescription record to define exposure is that all 

exposed patients are considered similar, regardless of the number of prescription records or 

duration of use.(3)  Using two or more prescription records to define exposure may mitigate this 

problem; however, patients with only one prescription record will be classified as non-exposed, 

when in fact they did have some exposure.  Furthermore, this method is still dependent on when 

follow-up for the exposed group is started and provides similar adjusted hazard ratios, regardless 

of the number of prescription records used to define exposure. For example, as seen in Figure 1-

A, starting the follow-up at the first oral antihyperglycemic agent prescription produced an aHR 

0.64 (95% CI 0.62-0.66) when a single metformin prescription record is used to define exposure, 

while the aHR was 0.64 (95% CI 0.59-0.68) when using two metformin prescription records 
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within 180 days, and 0.62 (95% CI 0.60-0.63) when using two metformin prescription records 

within the entire study period. 

Time-fixed analyses are particularly prone to exposure misclassification and to immortal 

time bias to varying degrees.(1) For example, an analysis that defines exposure based on 2 

prescription records inherently assumes that the person had to be alive long enough to fill a 

second prescription, thus the period between the subject’s cohort entry date and the 2nd 

prescription would be considered immortal time. The amount of immortal time bias depends on 

when follow-up is initiated (index oral antihyperglycemic agent prescription, and 1st or 2nd 

metformin prescription).(65) Therefore, the combination of using two prescription records within 

a defined period of time and starting follow-up on the date of the second prescription provides a 

further refinement to the exposure definition. However, selection bias can also be introduced 

when periods of immortal time are differentially excluded in a time fixed analysis.  This can 

occur when the start of the follow-up is defined as first metformin prescription fill for exposed 

group and first oral antihyperglycemic agent prescription record for comparator.(38)  

Defining the exposure as a continuous variable produced a relatively large risk reduction 

estimate associated with metformin use: 0.84, 95%CI (0.83-0.85), i.e., each year of metformin 

use is associated with a 16% reduction in all-cause mortality risk compared to non-users. This 

exposure definition may circumvent potential survival bias in observational studies and 

strengthen causality of the association.(21, 66) Furthermore, it provides more precise exposure 

definition and a more robust variable for statistical analysis, unlike commonly used dichotomous 

‘any versus no’ exposure definitions.(3, 67) However, a continuous exposure definition does not 

account for gaps between refills, when the supply from one prescription record is finished well 
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before a subsequent prescription record. For example, the interval between first and last 

prescription record may be several months or years, but if these are the only two prescription 

records there would be a substantial unaccounted gap in exposure. Thus a time-fixed definition 

does not allow for variation in exposure during the follow-up period. 

Overall, the estimates in the time-fixed approach were relatively consistent with previous 

observational studies, showing 30-45% lower risk, with the exception of the continuous variable 

analysis. Several solutions have been proposed to prevent immortal time bias, a well-known 

limitation of the time-fixed approach to defining exposure, including using time-varying 

approaches and nested case control analysis.(22, 38)   

Time-varying Definitions 

Further refinement of exposure using time-varying Cox analysis produced substantial 

variation in the estimates (Figure 1-E). The legacy effect analysis, whereby once a person is 

exposed they are considered always exposed, shifted the estimates to 0.87-0.92. This method for 

defining exposure is similar to the time-fixed ‘ever versus never’ analysis because exposure 

starts with the first metformin prescription.  However, there was a substantial difference between 

the observed associations (0.73 versus 0.87-0.92). One possible explanation for this difference is 

the treatment of time between index oral antihyperglycemic agent and first metformin 

prescription. In the time-fixed ‘ever versus never’ definition, this interval is ignored. The 

advantage of a legacy-based exposure definition is that all observation time can be used in the 

analysis. The interval between the patient’s index oral antihyperglycemic agent date and first 

metformin prescription contributes to the “unexposed” group in a legacy effect analysis.(64) 
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However, the major limitation of the legacy approach is the inability to account for future 

treatment discontinuation, where the patient is still erroneously characterized as exposed.(10) 

An approach to address potential misclassification when treatment is discontinued is to 

censor patients with no evidence of ongoing therapy, i.e., stopping the follow-up in the exposed 

and unexposed groups after 1 window without medication use (Figure 1-B)(16, 25).  This 

approach resulted in a substantial decrease in time at risk for cohort participants and low risk 

estimates ranging from 0.40 to 0.53 (Figure 1-E). Censoring based on absence of a prescription 

record within a defined period of time is highly dependent on when the patient obtains a refill.  If 

there is a delay because of poor adherence or intermittent medication use, the prescription record 

could appear after the end of the window used to identify discontinuation of therapy.  This can be 

especially problematic if the windows are shorter than the usual refill interval, leading to 

erroneous censoring. Moreover, this method for defining exposure violates the Cox proportional 

hazards model key assumption of non-informative censoring (i.e., participants who drop out of 

the study do so for reasons unrelated to the study; thus censored patients are considered to have 

survival probabilities similar to the participants who continued to be followed). Treatment may 

have been discontinued because of advancing disease (for example, switching from metformin to 

insulin), thus censored patients may be at a different level of risk than those who continue to be 

followed in the cohort.  

In the time varying approach, notable differences were also observed dependent the 

method used to determine exposure within the window.  For example, defining exposure based 

on any metformin prescription record within a window resulted in extremely low estimates aHR 

ranging from 0.23 to 0.43. As discussed with the censoring approach above, this approach is 
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highly dependent on the timing of a refill and can lead to misclassification, especially if the 

windows are shorter than the usual refill interval (Figure 1-B). Many provincial health 

jurisdictions in Canada allow a 100-day supply for each metformin refill. Thus, a time-varying 

exposure definition with short windows (e.g., 30 days) would create a majority of windows with 

no prescription fill per se and thus misclassify windows as unexposed. In contrast, long windows 

may introduce misclassification because only a single prescription record is required to define 

exposure within a window. For example, a patient may obtain only a single prescription for 30 

days’ supply of drug within a 365-day window; yet, they will be considered exposed for the 

entire 365-day window, introducing a significant amount of misclassification (335 days are truly 

unexposed). Windows that more appropriately reflect the utilization of the drug in the real world 

in terms of prescription refill frequency and days of supply may provide a better estimate of 

exposure over multiple windows in time-varying exposure definition. 

Accounting for days of medication supply can improve exposure accuracy, since a single 

prescription days of supply can cover several short windows (Figure 1-B). The estimates of any 

metformin use based on this exposure definition produced estimates ranging from 0.64 to 0.70. 

An advantage over previous definitions is the ability to describe periods in the follow-up where 

there are gaps in medication supply and account for intermittent drug use, which is commonly 

seen in chronic diseases. One limitation, however, is the inability to account for poor adherence, 

which is quite common in chronic disease management.(68, 69) Poor adherence could extend the 

duration of exposure beyond the interval defined by the days of supply information in the 

prescription data resulting in exposed periods which may be inadvertently considered as 

unexposed.  
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In order to account for poor adherence, an additional 10% ‘carry over’ of medication 

supply has been used in the literature (i.e., a 100-day supply is assumed to cover 110 days from 

the prescription date). This exposure definition produced lower risk estimates relative to the 

definition based on days of supply alone, with estimates ranging from 0.39 to 0.62. Although this 

definition would account for poor adherence, it creates a differential introduction of an additional 

10% of time which the patients are considered exposed compared to the unexposed group.  This 

differential introduction would favor the exposed group and lead to larger observed protective 

effects. 

Overall, the time-varying approach provided consistent estimates of a 30%-40% lower 

risk, when accounting for days of medication supply and follow-up time.  These estimates did 

not materially change when different durations for the windows were used within the same 

exposure definition. However, censoring patients in the absence of prescription records within a 

defined period yielded highly biased results and are not advocated. The advantage of the time-

varying analysis approach is the ability to obtain precise risk estimates by accounting for 

intermittent drug use,(22) and minimizing the influence of survival bias, immortal time bias, and 

confounding by duration.(12, 65)  

Nested Case Control  

Although the nested case control (NCC) approach has rapidly been taken up in 

pharmacoepidemiology research, further considerations must be accounted for in this model. In 

the NCC study design we followed conventional risk-set sampling methods by identifying 

24,743 cases as patients who had died and matching up to 5 controls from among those with the 

same duration of follow-up as each case patient, but who had not died. Analyses of any 
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metformin prescription record prior to the event date resulted in adjusted odds ratios (aORs) 

ranging from 0.68 to 0.93 (Figure 1-F). As depicted in Figure 1-C, including days of supply 

information in the exposure definition may improve accuracy. However, similar issues as noted 

previously with time-varying analysis will also hold true in the NCC and resulted in aORs 

ranging from 0.69 to 0.96. 

The NCC design provides an efficient and flexible analysis of the association between 

immediate exposure and outcomes; however, it does not account for long term treatment effects, 

which may be important in patients who use a medication for many years in the management of a 

chronic disease. Indeed, the NCC only uses the window immediately before the event to 

determine exposure status. Moreover, the NCC does not easily account for changes in patient’s 

characteristics over time, changes in pertinent risk factors, disease severity and all of the initial 

treatment period is excluded from the analysis. For example, for critically ill patients, metformin 

treatment is often switched to insulin and therefore prior to the event the patient may be 

misclassified as unexposed despite previous metformin use. Patients who discontinue medication 

use long before the outcome may have a different risk profile than patients who continue using 

the medication closer to the event, which may be highly correlated with the outcome of interest, 

introducing a potential selection bias in the estimates. 

One refinement to the NCC design that has frequently been used is to categorize exposure 

into current, past, or never.(33, 34) This approach attempts to capture exposure which may have 

occurred immediately prior to the event. Using this approach, a substantially large benefit for 

current use 0.48, 95% CI (0.46-0.50), and lesser benefit for past use 0.77, 95%CI (0.75-0.79) 

compared to never users was observed.(29, 31) 
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Overall, nested case control analyses provided a wide spread of estimates ranging from 

0.48 to 0.96, which would produce a wide range of clinical interpretations. Our analyses indicate 

that the observed association between metformin and mortality risk could change materially not 

only between the different exposure approaches used in NCC analyses, but also between 

windows within the same exposure definition. Although the NCC is often preferred due to its 

computational efficiency over cohort studies, in today’s era of ‘inexpensive’ computing power 

this relative advantage declines and time-varying approaches may be better suited to capture the 

full exposure profile of drugs used in the management of chronic diseases.(70)  

Despite several strengths of our study, including the large population based sample, the 

replication of numerous exposure definitions and advanced statistical techniques used in the 

literature, several limitations are inherent to our work. Firstly, and most importantly, we fully 

acknowledge that additional unmeasured confounding can be present in our study. Our intent 

was not to establish whether metformin is or is not associated with mortality, but to fully explore 

the impact of different exposure definitions used in pharmacoepidemiology. Indeed, as all 

models used the same data, adjusted for the same covariates, and had the same outcomes, the 

degree of unmeasured confounding is expected to be similar in all the analyses. The differences 

in observed estimates are solely driven by exposure definitions and bias introduced by those 

definitions. Secondly, the administrative databases only indicate the drug was dispensed and do 

not indicate whether the drugs were taken as prescribed.  Our assumption that metformin was 

used if there was a prescription record may lead to an overestimation with any exposure 

definition. This limitation is inherent to most observational studies using administrative drug 

data. Third, although in some instances the degree and deflection of bias is readily identifiable 
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(e.g., immortal time bias in fixed-time analyses), in many cases the substantial change in 

estimates is unknown. 

 

2.4 Conclusions 
In this prototypical model, the observed estimates ranged from 8% to 77% lower risk of 

all-cause mortality risk associated with metformin use.  The differences in observed estimates 

were completely driven by the exposure definitions and related biases. It is interesting that all 

estimates based on a time-fixed approach to defining exposure were relatively consistent, 

showing 30-45% lower risk, while time-varying approaches and NCC definitions had 

considerable variation in the observed estimates. 

Although unmeasured confounding and biases in pharmacoepidemiology research are 

well recognized and discussed, less attention has been directed towards the potential impact of 

exposure definitions. Most agree that time-varying or NCC analyses are preferred to time-fixed 

analyses, but little guidance has been given on how best to implement these approaches. Our 

study indicates that observed results are highly influenced by the approach used to define 

exposure. Given the range of observed estimates, we recommend using at least two different 

exposure definitions with complementary risk of bias, along with sensitivity analyses of 

exposure definitions to provide more robust and potentially valid study estimates. 
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CHAPTER 3:  

Evaluating Healthy User Effect in Type 2 Diabetes Patients 
Using Oral Antihyperglycemic Agents 

 

3.1 Introduction 
Observational studies are commonly used in modern pharmacoepidemiology to evaluate 

drug safety and effectiveness. They have become increasingly popular and make an important 

contribution to medical knowledge, especially when ‘gold standard’ randomized controlled trials 

(RCT) are not always feasible. However, a major limitation of observational studies is their 

subjectivity to a number of potential biases that may cause erroneous results.  

One source of bias has been termed the ‘Healthy User Effect’ or ‘Healthy User Bias’, 

which is a tendency of healthier patients initiate preventive therapies and engage in behaviors 

consistent with healthy lifestyles, which in turn can affect their outcomes.(6, 71) Aspects of a 

healthy lifestyle include balanced diet, regular exercise, moderation of alcohol consumption and 

tobacco use, avoidance of risky behaviors, participation in vaccination programs, and using 

preventive therapies and health services.(71) Many of these healthy lifestyle behaviors are not 

recorded in typical administrative databases and failure to account for these factors in 

observational studies of preventive therapies could introduce bias and produce spurious 

associations.(6, 7)  

The healthy user effect has gained increasing attention as a potential source of bias in 

observational studies of preventive therapies and treatment of asymptomatic conditions. (42) 
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Indeed, numerous studies have demonstrated the healthy user effect can be a plausible 

explanation for the discrepancy between RCTs and observational studies.(6, 7, 44) For example, 

hormone replacement therapies(72) and vitamin E studies among others.(73) Healthy user bias 

has been most notably explored in users of ‘statin’ therapies.(41) Indeed, statin therapy is 

associated with increased use of a number of other preventative therapies and health services, 

and a reduction in clinical events which are not intuitively associated with statin use, including 

reduced risk of cancer, sepsis, Alzheimer disease and hip fractures.(6, 7, 45) Further, healthy 

user bias is thought to fully explain the large benefits observed in observational studies of 

hormone replacement therapies and the subsequent RCTs which showed significant harms.(44) It 

has also been extensively discussed as a potential source of bias in observational studies showing 

large reductions in all-cause mortality associated with influenza vaccination in elderly.(43, 46)  

Although less studied, healthy user bias may also explain the discrepancies in results 

between observational studies and RCTs of metformin use in patients with type 2 diabetes. Meta-

analyses of RCT’s have failed to replicate the strong association between metformin use and all-

cause or CV mortality reported in observational studies.(2, 56) Importantly, the vast majority of 

these studies have not been designed to look at mortality associated with metformin per se. As a 

result, a large body of observational studies have further explored the issue and have consistently 

shown clinically important benefits, including substantial reductions in all-cause and CV-related 

mortality, as well as beneficial effects in patients with diabetes and heart failure.(56-58)  

The underlying reasons for the substantial discrepancy between experimental and 

observational studies in diabetes is unknown, however, we surmise that unaccounted healthy user 

bias may explain part, or fully, the difference between the study designs. 
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Therefore, our primary objective in this study was to gather evidence of healthy user bias 

among metformin users in a large unselected population of patients with type 2 diabetes. We 

hypothesized that type 2 diabetes patients who use metformin, as compared to those not using 

metformin, would be at lower risk of events which should not be associated with metformin 

(e.g., accident events, certain diseases, etc.) and conversely would be more likely to participate in 

healthier behaviors (e.g., using preventative services, vaccines, and diagnostic tests). 

 

3.2 Methods 
We conducted our analysis in a large population-based cohort of new users of oral 

antihyperglycemic agents in Alberta, Canada based on administrative data augmented with 

clinical laboratory data between 2008 and 2015 provided by Alberta Health. Alberta Health 

collects all medical information as part of the universal health care provided to patients within 

the province (~3.5 million). The database included laboratory tests results, Pharmaceutical 

Information Network (PIN), Practitioner Payments (coded with the International Classification 

of Diseases [ICD9] for medical conditions and with Alberta Medical Association services billing 

codes for medical services), Ambulatory Care and Inpatient information (coded with the ICD10 

for medical conditions). Demographics and mortality data were collected from Population 

Registry and Vital Statistic databases. The study was approved by the ethics review board of the 

University of Alberta, Edmonton, Alberta, Canada. 
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Cohort Selection 

Patients were eligible for inclusion if they were at least 30 years old on the index date 

(date of first dispensing record for an oral antihyperglycemic medication).(74) We identified new 

oral antihyperglycemic medication users between April 1, 2009 and March 31, 2015. A 1-year 

washout period was used to define new users by ensuring that there were no prior dispensing 

records for antihyperglycemic medications, including insulin, before the index date. Women 

using metformin as a single oral antihyperglycemic agent for poly cystic ovary syndrome were 

excluded from the analysis based on ICD coding.  

Outcomes 

We evaluated a variety of clinical events and health behaviors that have been postulated 

in the literature to be associated with healthy user bias and that could be identified in the 

administrative databases (Appendix).(6, 7, 41, 42) Clinical events were identified using ICD9 

and ICD10 codes in hospitalization records, emergency department visit records, and physician 

visit records. Receipt of screening tests and vaccines were identified from provincial laboratory 

records and procedure codes in physician visit records.  

Clinical events and preventive services were selected a priori using information from 

previous studies and Canadian Diabetes Association (CDA) recommendations,(75) and were 

grouped into 5 broad categories: accident events, screening events, vaccination, other events not 

expected to be associated with metformin exposure, and other events for which a possible 

association with metformin exposure could be expected.(6, 7, 42) Additionally, the occurrence of 

annual laboratory screening for hemoglobin A1C, lipids and kidney function were evaluated.(76, 

77)  
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Exposure  

Patients were considered as metformin users if they had at least 1 dispensation record for 

metformin during the follow-up period. Metformin exposure was modeled as time-dependent 

variable by considering the patient unexposed until the date of the first metformin dispensation. 

After this date, the patient was coded as a metformin user until the end of the follow-up.(14) 

metformin was modeled in this manner as we were not necessarily interested in the true 

underlying effect of metformin on the outcomes per se, but were interested in metformin as a 

marker of healthy user bias. 

Covariates 

We obtained baseline demographics, physician visits, health services utilization, 

hospitalizations and medication management during the year prior to the initiation of first oral 

antihyperglycemic agent use. The covariates were defined at the index date and included age, 

sex, and other antihyperglycemic medications use. As most observational studies include 

comorbidity scores to control for confounding, we also included the Elixhauser comorbidity 

score based on chronic conditions identified in the year prior to the first oral antihyperglycemic 

agent use.(78)   

Statistical Analyses 

For the majority of outcomes, the associations between metformin exposure and 

outcomes were examined using a multivariable Cox Proportional Hazard model. For these 

analyses, the time to each outcome was determined, with subjects censored by death (for non-

mortality endpoints), or departure from the provincial benefits program (moved out of the 
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province) or reaching end of our observation period, March 31, 2015. Crude and adjusted Hazard 

Ratios (HR), along with the 95% confidence interval (95% CI) were calculated for each 

outcome. In addition, we also completed Poisson regression in the evaluation of hemoglobin 

A1C, lipid, and kidney function tests, which may be expected to be repeated several times a year. 

In these analyses, the adjusted incidence rate ratio (aIRR – number of events observed divided by 

the time at risk of event during the observation period for metformin compared to non-metformin 

users) was evaluated using Poisson regression. All analyses were conducted using STATA, 

version 13.1, statistical software (StataCorp LLC, College Station, Texas, USA).  

 

3.3 Results 
Our cohort consisted of 135,301 new oral antihyperglycemic agent users. The average 

age was 55 years, 75,949 (56%) were male, 97% of the cohort (130,725 patients) filled at least 

one metformin prescription and after an average follow-up of 3.4 (SD±2) years, 6,677 (5%) 

cohort patients died. Compared to non-users, metformin users tended to be younger (55 vs. 60 

years), and had a lower comorbidity index (0.6 vs. 1.4) (Table 2-1). During the year prior to the 

index date metformin users had fewer physician visits than non-users (16 vs. 24), had fewer 

ambulatory care service visits (5 vs.11), but had a similar number of hospitalizations (1.5 and. 

1.7).   

In time-dependent Cox proportional multivariable models we found statistically 

significant lower risks for accident events aHR 0.84 (95% CI 0.79-0.89), and other clinical 

outcomes without an expected association with metformin aHR 0.90 (95% CI 0.84-0.97), 

including all-cause mortality aHR 0.54 (95% CI 0.50-0.59) for metformin users compared to 
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non-users (Table 2-2). Furthermore, metformin users were more likely to have diagnostic 

screening tests and procedures applicable for both sexes aHR 1.17 (95% CI 1.12-1.22) as well as 

those specific for women aHR 1.13 (95% CI 1.08-1.19) and for men aHR 1.64 (95% CI 1.53-

1.75). However, clinical events possibly associated with metformin use showed no association 

aHR 1.01 (95% CI 0.96-1.06) and the association between metformin use and vaccination rates 

was not statistically significant aHR 1.10 (95% CI 0.98-1.23). The likelihood of initiating 

preventive therapies recommended by the CDA (e.g., angiotensin-converting-enzyme (ACE) 

inhibitors and statins)(76) after diabetes diagnosis did not differ between the groups aHR 0.98 

(95% CI 0.94-1.02). However, in Poisson models hemoglobin A1C and lipids blood tests were 

significantly more frequent in metformin users compared to non-users aIRR 1.10 (95% CI 1.09-

1.11) and 1.09 (95% CI 1.07-1.10), respectively.  

Moreover, among the diagnostic tests mammography and prostate-specific antigen (PSA) 

test were the most commonly used by the patients with 74.46 and 17.48 cases per 100 person 

years, respectively, while sigmoidoscopy and fecal occult blood (FOB) test were the least 

common with only 0.55 and 0.80 cases per 100 person years, respectively (Table 2-2).  

The trend in the analyses tended towards decreased risk for clinical events possibly 

associated with unhealthy lifestyle among metformin users. The exception was drug dependency 

related events with aHR 1.18 (95% CI 1.07-1.31) and myocardial infarctions aHR 1.11 (95% CI 

0.93-1.34) conversely showing increased risk for metformin users. Among 36 clinical events, 

diagnostic services and tests that we analyzed, 15 showed a statistically significantly lower risk 

for metformin users, 14 showed non-significant trend towards lower risk, 4 estimates were not 
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associated with the events and 3 showed an opposite association with general risk reduction 

trend.  

 

3.4 Discussion 
In our cohort of new oral antihyperglycemic agent users, metformin users were less likely 

to experience accident events or suffer from clinical outcomes that are not expected to be 

associated with metformin exposure, and were more likely to use preventative services and 

screening, and diagnostic tests. Collectively, these data suggest metformin may be a strong 

marker of a ‘healthy user’. These findings have important implications for observational studies 

involving oral antihyperglycemic agent exposure where metformin often constitutes a high 

proportion of use and is often a user group of interest in the study. 

Numerous observational studies in diabetes have consistently shown metformin to be 

associated with ~30% reduction in all cause or cardiovascular specific mortality compared to 

other oral antihyperglycemic agents.(57, 74) Yet, only one small, sub-study within the UKPDS 

randomized controlled trial has suggested a similar benefit in obese patients with type 2 

diabetes.(56) Indeed, a recent meta-analysis of 13 RCTs found no benefit of metformin per se 

relative to other treatments.(2) 

In our study, although metformin use was associated with 45% lower risk of all-cause 

mortality compared to non-users and consistent with previously done observational studies(57), 

the collective data would strongly suggest this estimate is heavily influenced due to healthy user 

bias associated with metformin use. Moreover, our data also adds credence to the hypothesis that 
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major discrepancies observed between observational studies of metformin and meta-analyses of 

RCTs may in fact be related to difficult to control health user bias. 

Although the observed association between metformin and clinical events is likely 

attributed to unmeasured confounding by health seeking behaviors, other explanations are also 

possible for these findings. For example, the association between metformin and reduced risk of 

fracture could be due to differences in actual health status and particularly due to body mass 

index (BMI), where metformin tends to be used in more obese patients who are at lower risk of 

osteoporotic fractures but is rarely included in observational studies; falls, an outcome that was 

previously used in healthy user bias studies with statins(7) can be associated with other 

medications side effects (syncope from blood pressure medications) or hypoglycemic events 

with non-metformin therapies; and malignant melanoma is subject to screening bias, such that 

patients who are more engaged in their own health are more likely to have their lesions 

detected.(42) Therefore, although these outcome events might be less appropriate markers for 

healthy behaviors and not attributable to healthy user bias per se, they are nevertheless major 

potential source of bias which maybe differential between metformin and non-metformin users. 

Future observational studies of oral antihyperglycemic agent need to better control for 

healthy user bias, particularly where metformin is concerned. Beyond traditional methods new 

user designs(45, 47), using an active comparator,(9, 48, 49), and time-dependent exposures(48), 

researchers should consider controlling for prior use of preventive tests and utilizing, propensity 

score approaches that include markers of the healthy user intro the prediction of drug 

exposure.(50) Additional methods such as instrumental variable utilization(42, 47) have also 



 

54 

 

been put forth, however, the identification of an appropriate instrumental variable for many 

observational studies is difficult.   

Despite several strengths of our study, including the large population based sample, and 

rich clinical data, several limitations are inherent to our work. First, and most importantly, we 

fully acknowledge that additional unmeasured confounding can be present in our study, e.g., 

Body Mass Index, tobacco use, alcohol consumption and socio-economic status were not 

available in our database. Second, our data did not allow us to evaluate the patients who were 

diagnosed with diabetes, but were prescribed with lifestyle modifications by the family physician 

or patients, who were prescribed with an oral antihyperglycemic agent, but were non-compliant 

and never filled the prescription at the pharmacy. Last, we acknowledge that ICD coding may 

not be sensitive or specific for all outcomes evaluated within the administrative data; however, 

there is no reason to believe the coding would be differential based on metformin exposure status 

and therefore the results should not be biased.  

This study suggests that metformin users take better care of themselves by engaging in 

various healthy behaviors and initiating preventive therapies. Therefore, a failure to account for 

these behaviors can introduce bias to observational studies evaluating the effect of oral anti 

hyperglycemic therapies on health outcomes. Moreover, interpretation of observational studies 

that attribute surprisingly protective effects to antihyperglycemic therapies requires cautious 

cautions. Further work is required to gain a better understanding of the heathy user effect in 

diabetic patients and to develop methods for guarding against this effect in observational studies.  
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Table 2-2. Association Between Metformin Therapy and Risk of Health-Related 
Events, Incident Oral Anti Hyperglycemic Agents Users, Alberta, Canada, 2008-2015 

Metformin Use and Health Outcomes Association Based on ICD 10 Codes from 
Hospitalization Data 

 
Outcome 

Event Rate, 
/100 Person-

Years 

Time-varying Exposure  
Definition Model 

Unadjusted Adjusted 
Accident Events    

Burns 0.37 0.82 (0.66-1.02) 0.90 (0.73-1.12) 
Falls 0.04 0.56 (0.33-0.96) 0.77 (0.44-1.35) 
Fractures 0.73 0.49 (0.44-0.55) 0.78 (0.69-0.89) 
Motor vehicle accidents 0.18 0.83 (0.63-1.09) 0.77 (0.58-1.03) 
Open wound 2.26 0.80 (0.74-0.88) 0.88 (0.80-0.96) 
Poisoning 0.73 0.81 (0.69-0.93) 0.90 (0.78-1.05) 
All (first occurrence) 5.82 0.96 (0.91-1.02) 0.84 (0.79-0.89) 

Screening Events    

Both Sexes (n=135,301)    
Eye examinations 10.95 0.92 (0.88-0.96) 1.14 (1.09-1.19) 
Fecal occult blood test  0.80 1.29 (1.09-1.53) 1.60 (1.65-1.91) 
Sigmoidoscopy  0.55 0.77 (0.65-0.91) 0.87 (0.73-1.03) 
All (first occurrence) 12.4 0.94 (0.90-0.98) 1.17 (1.12-1.22) 
Women (n=59,352)    
Papanicolaou test 13.14 1.38 (1.29-1.48) 1.11 (1.03-1.19) 
Mammography   74.46 1.24 (1.17-1.31) 1.21 (1.14-1.29) 
Bone mineral density test 9.49 1.01 (0.95-1.09) 1.17 (1.09-1.26) 
All (first occurrence) 33.22 1.26 (1.20-1.32) 1.13 (1.08-1.19) 

Men (n=75,949)    
Prostate-specific antigen test 17.48 1.87 (1.75-1.99) 1.64 (1.53-1.75) 

Laboratory Tests    
Hemoglobin A1C 39.63 0.98 (0.96-0.99) 1.10 (1.09-1.12) 
Creatinine  39.83 0.74 (0.73-0.75) 0.95 (0.94-0.96) 
Lipids 43.76 0.97 (0.81-1.16) 1.02 (0.97-1.06) 
All 33.89 0.80 (0.80-0.81) 0.97 (0.96-0.98) 

Preventative Therapies    
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Vaccination    
Pneumonia  0.11 1.50 (0.98-2.28) 1.22 (0.79-1.88) 
Influenza   2.04 1.35 (1.20-1.51) 1.10 (0.98-1.24) 
All (first occurrence) 2.14 1.32 (1.18-1.48) 1.10 (0.98-1.23) 

Preventative 
pharmacotherapies 

   

Statin use 9.76 0.75 (0.71-0.78) 1.00 (0.95-1.04) 
ACE inhibitors use 6.07 0.71 (0.67-0.75) 0.89 (0.84-0.94) 
All (first occurrence) 13.85 0.73 (0.71-0.76) 0.98 (0.94-1.02) 

Other Events, 
Possible association expected 

   

Ambulatory Services Use 42.41 0.89 (0.85-0.94) 0.96 (0.92 -1.01) 
Emergency Department 
admissions 

14.38 0.69 (0.65-0.72) 0.92 (0.87-0.97) 

Lung cancer 0.33 0.75 (0.61-0.92) 1.01 (0.81-1.25) 
Mortality (all-cause) 1.49 0.30 (0.28-0.32) 0.54 (0.50-0.59) 
Myocardial infarction 0.44 0.69 (0.58-0.82) 1.11 (0.93-1.34) 
All (first occurrence) 42.56 0.89 (0.85-0.93) 1.01 (0.96-1.06) 

Other Events, 
No association expected 

   

Asthma/COPD  5.38 0.82 (0.78-0.87) 0.91 (0.86-0.97) 
Bacterial Infection 0.62  0.51 (0.45-0.58) 0.85 (0.74-0.98) 
DVT and PE 0.84 0.69 (0.61-0.79) 0.88 (0.76-1.00) 
Dental problems 2.1 0.91 (0.83-0.99) 0.95 (0.86-1.04) 
Diverticulitis 0.48 0.76 (0.63-0.91) 0.86 (0.72-1.04) 
Drug dependency 2.56 1.36 (1.23-1.49) 1.18 (1.07-1.31) 
Food-borne bacterial infection 1.68 0.78 (0.71-0.86) 0.94 (0.86-1.04) 
Gallstones 0.88 0.87 (0.76-0.99) 0.92 (0.80-1.06) 
Gastrointestinal bleeding 0.40 0.48 (0.41-0.56) 0.81 (0.69-0.96) 
Gout 0.18 0.72 (0.65-0.78) 0.72 (0.65-0.79) 
Kidney stones 0.73 1.05 (0.90-1.22) 1.01 (0.86-1.19) 
Migraine 0.91 0.96 (0.83-1.10) 0.87 (0.76-1.00) 
Skin infection 5.11 0.82 (0.77-0.87) 0.91 (0.85-0.96) 
Sexually transmitted diseases 351 0.92 (0.84-1.01) 0.99 (0.90-1.09) 
All (first occurrence) 25.14 0.95 (0.88-1.02) 0.90 (0.84-0.97) 

Abbreviations: COPD – Chronic Obstructive Pulmonary Disease, DVT – Deep Vein Thrombosis, PE – Pulmonary 
Embolism 
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CHAPTER 4: 

SUMMARY 

 

4.1 Overview of the Research 

 A large amount of evidence comparing the safety and effectiveness of antihyperglycemic 

medications in diabetes comes from pharmacoepidemiological studies. These study designs are 

commonly used to evaluate drug safety and effectiveness, and make an important contribution to 

medical knowledge, especially when ‘gold standard’ randomized controlled trials (RCT) are not 

always feasible.(1-3) However, diabetes research literature includes numerous highly publicized 

observational studies reporting exaggerated relationships between diabetes medications and 

health outcomes(4, 5) that were later contradicted by RCTs.(6) These discrepancies are mainly 

due to the subjectivity of observational studies to a number of potential biases that may cause 

erroneous results and produce spurious associations. Although, selection bias, unmeasured 

confounding, and many other factors contribute to the discrepancies, one critical element, which 

is often overlooked, is the method used to define exposure.(5, 7) Therefore, an accurate 

estimation of medication use is an essential component of any pharmacoepidemiological 

research as exposure misclassification will threaten study validity and lead to spurious 

associations,(8)  this may be particularly the case with metformin. Although numerous 

observational studies have suggested dramatic reductions in mortality and/or cardiovascular 

events, meta-analyses of RCTs have failed to replicated the strong association between 

metformin use and all-cause or CV mortality reported in observational studies.(6, 9) It is possible 

some, if not all, of the benefit, observed with metformin in observational studies may be related 

to analytic design and exposure definitions.(7, 8) 
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 Another potential source of bias is the ‘Healthy User Effect’ or ‘Healthy User Bias’, 

which is a tendency of healthier patients to initiate preventive therapies and engage in behaviours 

consistent with healthy lifestyles, which in turn can affect their outcomes.(1-3, 10) The healthy 

user effect has gained increasing attention as a potential source of bias in observational studies of 

preventive therapies (e.g., statins and hormone replacement therapy) and treatment of 

asymptomatic conditions.(1-3) Indeed, numerous studies have demonstrated that the healthy user 

effect can be a plausible explanation for the discrepancy between many RCTs and observational 

studies.(1-3, 11) Although less studied, healthy user bias may also explain the discrepancies in 

results between observational studies and RCTs of metformin use in patients with type 2 

diabetes. 

 Therefore, given the strong possibility that the effects of metformin in observational 

studies may be tied to these two often overlooked biases, a research program was undertaken to 

fully explore their effects. The evaluation of exposure definition effect on the observed 

association and an assessment of the healthy user effect in oral antihyperglycemic medications users 

and health outcomes provided information regarding the discrepancy between observational 

studies and RCTs in diabetes and help improve the validity of study results.  

 

4.2  Objectives 

 Our objectives were accomplished using two large retrospective population-based cohorts 

of new oral antihyperglycemic medications users in Albert, Canada, based on administrative data 

provided by Alberta Health.  
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 In our first objective we hypothesized that the association between metformin and 

mortality will be significantly influenced by the method used to define ‘exposure’. However, our 

hypothesis has never been formally evaluated in diabetes research, therefore, we explored the 

influence of exposure definitions on estimates, using the association between metformin and all-

cause mortality as a proto-typical model.  

 In our second objective we hypothesized that metformin use, in part, is a marker of 

“healthy users” and would be associated with beneficial effects on different health outcomes that 

could not plausibly be related to metformin per se. Therefore, exploring the healthy user effect in 

metformin users versus non-users we evaluated the risk of events which should not be associated 

with metformin as well the use of preventative services or diagnostic procedures and occurrence 

of various health outcomes.  

 

4.3 Summary of the Findings 

 In our first part of the research we used the prototypical model assessing metformin 

exposure and all-cause mortality. The observed estimates widely ranged from 8% to 77% lower 

risk of all-cause mortality risk associated with metformin use, and since the only difference 

between the models is the method that we use to define the exposure, the variation in the 

observed estimates was completely driven by the exposure definitions and their related biases. 

The estimates based on a time-fixed approach to define drug exposure were relatively consistent, 

showing 30-45% lower risk, while time-varying approaches and NCC definitions had 

considerable variation in the observed estimates. Risk decrease in the time-fixed approach was 

consistent with previous observational studies results.(12-14) These results support our initial 
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hypothesis and highlights the importance of exposure definition as a potential source of bias to 

fully, or partly explain the discrepancies observed in observational studies and RCTs of 

metformin. The fact that the estimates were so sensitive to the way metformin use was defined is 

concerning as few pharmacoepidemiological studies fully explore alternative exposure 

definitions when evaluating drug effects. Our research suggest that no single approach is 

sufficient.  

In the second part of the research, we observed that metformin users were less likely to 

experience accident events or suffer from clinical outcomes that were not expected to be 

associated with metformin exposure. Metformin users were also more likely to initiate most 

preventive therapies and engage in other healthy behaviors. The exceptions to this pattern were 

was drug dependency related events and myocardial infarction, which conversely showed 

increased risk for metformin users. Overall, among 36 clinical events, diagnostic services and 

tests that we analyzed, 15 showed a statistically significantly lower risk for metformin users, 14 

showed a non-significant lower risk, 4 estimates were not associated with the events and 3 

showed an opposite association with an increased risk. Collectively the data suggests that the 

estimates are heavily influenced by healthy user bias and that metformin could be considered a 

strong marker of a ‘healthy user’. Furthermore, these results support our initial hypothesis and 

presents evidence for a healthy user effect existing in diabetes research of oral antihyperglycemic 

medications therapies. This is an increasing and novel finding as, to our knowledge, no research 

has suggested a strong healthy user bias associated with metformin use pre se. These findings 

will have important implications of future pharmacological research related to oral 

antihyperglycemic medications use.   



 

65 

 

Taking observations from both parts of this research, our data adds credence to the 

hypothesis that major discrepancies observed between observational studies of metformin and 

meta-analyses of RCTs may in fact be related to the difficulty of controlling for the health user 

effect and the method used to define drug exposure of oral antihyperglycemic medications 

therapies. How much each bias may be contributing to this discrepancy is unclear, but our data 

strongly suggest that the biases observed from these factors likely play a significant role in the 

overestimation of metformin’s effects in observational studies. 

 

4.4 Implications for Future Research 

 Our current research work is directly related to evaluation of drug safety and 

effectiveness in pharmacoepidemiological studies. In order to accurately estimate the effect size 

of a potential adverse drug reaction, it is crucial to be able to define exposure to the medication.  

For post-marketing drug safety and effectiveness evaluation to be meaningful, proper 

methodology in exposure definition is essential to ensure the validity of study results and 

consequently to safer health care and more effective patient treatment. The ability to reliably and 

accurately identify drug exposure is of paramount importance in pharmacoepidemiology as 

misclassification of exposure will lead to biased effect estimates. Given the range of observed 

estimates in our prototypical model of metformin and all-cause mortality in the first part of the 

research (Chapter 2), we recommend using at least two different exposure definitions with 

complementary risk of bias in pharmacoepidemiological studies, along with sensitivity analyses 

of exposure definitions to provide more robust and potentially valid study estimates.  
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 Careful evaluation of the association between drug exposure and health outcomes should 

also consider important differences in patient characteristics between those who are exposed and 

those who are not exposed. Our research also suggests that in the real-world metformin users 

may be fundamentally different than users of other oral antihyperglycemic medications. Metformin 

users tend to take better care of themselves by engaging in various healthy behaviors and 

initiating more preventive therapies and procedures. Therefore, failure to account for these 

behaviours can introduce major bias to pharmacoepidemiological studies evaluating the effect of 

oral antihyperglycemic medications therapies on health outcomes. Like statins and hormone 

replacement therapies(1-3, 15, 16) metformin should also be considered as a marker of healthy 

users and could be used in studies not directly evaluating metformin’s effects per se to account 

for healthy user bias in observational studies. 

 Collectively, these findings have important implications for pharmacoepidemiological 

studies involving oral antihyperglycemic medications exposure, where metformin often constitutes 

a high proportion of use and is often a user group of interest in the study. Implementation of our 

research findings will help to decrease the discrepancy between observational studies and RCTs, 

contribute to the validity of study results, and reduce the bias associated with exposure 

misclassification and the healthy user effect. Moreover, observational studies that attribute 

surprisingly protective effects to antihyperglycemic therapies require cautious interpretation. 

Further work is required to gain a better understanding of the exposure misclassification and the 

heathy user effect in diabetic patients and to develop methods for guarding against these biases 

in observational studies.  
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4.5 Implications for Clinical Practice 

 Our aim was to gather information on the biases and confounding that may be introduced 

by the design of pharmacoepidemiological studies, which in turn could negatively impact clinical 

decision-making.(7, 17-19) Since exposure definition misclassification and the healthy user 

effect are not fully examined in diabetes research, are often overlooked as a potential source of 

bias and possibly contribute to the discrepancy between RCTs and observational studies, we 

decided to focus on these two problems.(5, 7)  

 First, due to a wide range of estimates observed in the prototypical model of metformin 

use and all-cause mortality, utilization of results from pharmacoepidemiological studies with a 

single exposure definition (e.g., ‘ever’ versus ‘never’)(17) should be avoided. We recommend 

that clinical decision-making should be guided by studies that have conducted sensitivity 

analysis by examining the influence of different approaches to defining drug exposures, 

especially those with complementary risks of bias. Accurate exposure definition is important for 

clinicians to make informed decisions based on pharmacoepidemiological studies results. 

Second, the healthy user effect has not been fully examined in oral antihyperglycemic medications 

therapies and not considered as a potential source of bias in pharmacoepidemiological studies. 

However, based on our study results, metformin users are more likely to initiate preventive 

therapies and engage in other healthy behaviors. Thus, studies including methodological 

strategies accounting for this effect (e.g., new user designs(20, 21), time-dependent 

exposures,(22) propensity score approaches that include markers of the healthy user into the 

prediction of drug exposure,(16) etc.) will minimize the healthy user effect on the estimates and 

provide higher results validity. Third, studies using multivariable models including co-variates 

that are suspected as confounders in the association of interest (e.g., age, sex, and a comorbidity 
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score),(23) are an important part of any pharmacological research that contributes to 

confounding reduction and  an increase in the validity of study results; however, consideration 

should be given to routinely using drugs such as statins, hormone replacement therapy, and now 

metformin in models to further account for healthy user bias.  

 Our research shows possible pitfalls in modern pharmacoepidemiological studies of oral 

antihyperglycemic medications therapies and evaluates the discrepancy between ‘gold standard’ 

RCTs and observational studies, indicating several potential biases that should be accounted for 

when appraising research papers and integrating their results into clinical practice. Moreover, an 

interpretation of observational studies that attribute surprisingly protective effects to 

antihyperglycemic therapies should be regarded with high skepticism. However, further research 

is required to evaluate the healthy user effect and the methods to guard against its negative 

impact on oral antihyperglycemic medications therapies evaluation.  

   

4.6 Conclusion 

 In the first part of our research, a variety of exposure definitions were tested and 

produced a wide range of associations between metformin and mortality risk, therefore, 

pharmacoepidemiological studies should include at least two different exposure definitions with 

complementary risk of bias and implement sensitivity analyses of exposure definitions to provide 

more robust and potentially valid study estimates.  

 Furthermore, our research suggests that metformin users take better care of themselves by 

engaging in various healthy behaviors and initiating preventive therapies, and therefore, in the 

studies evaluating the effect of oral antihyperglycemic medications therapies a failure to account for 
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behaviours consistent with healthy lifestyle may introduce healthy user bias. However, further 

work is required to gain a better understanding of the heathy user effect in diabetic patients and 

to develop methods for guarding against this effect. 

 The reason for the discrepancies between observational studies and RCTs on oral 

antihyperglycemic medications therapies are unknown, however, our research indicated a few 

potential additional sources for the problem, such as unmeasured confounding, exposure 

misclassification and the difficulty to control patient characteristics. Moreover, our research has 

highlighted several methodologic strategies to be considered in the design of 

pharmacoepidemiological studies evaluating oral antihyperglycemic medications therapies that can 

improve research methods and enhance clinician decision-making on the management of diabetic 

patients, which we hope in turn will improve health outcomes and therapy safety in these 

patients. 

 

 

 

 

 

 

 

 



 

70 

 

4.7 References 

1. Brookhart M, Patrick A, Dormuth C, et al. Adherence to Lipid-lowering Therapy and the Use of 
Preventive Health Services: An Investigation of the Healthy User Effect. American Journal of 
Epidemiology 2006;166(3):348-54. 
2. Dormuth C, Patrick A, Shrank W, et al. Statin Adherence and Risk of Accidents A Cautionary 
Tale. Circulation. 2009;119(15):2051-7. 
3. Patrick A, Shrank W, Glynn R, et al. The Association between Statin use and Outcomes 
Potentially Attributable to an Unhealthy Lifestyle in Older Adults. Value Health. 2011;14(4):513-20. 
4. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner GM, J Currie, 
CJ. Can People With Type 2 Diabetes Live Longer Than Those Without? A Comparison of Mortality in 
People Initiated With Metformin or Sulphonylurea Monotherapy and Matched Non-diabetic Controls 
Diabetes Obes Metab. 2014;16(11):1165-73. 
5. Gandini S, Puntoni M, Heckman-Stoddard B, et al. Metformin and cancer risk and mortality: A 
systematic review and meta-analysis taking into account biases and confounders. Cancer Prev Res 
(Phila). 2014;7(9):867-85. 
6. Boussageon R, Supper I, Bejan-Angoulvant T, et al. Reappraisal of Metformin Efficacy in the 
Treatment of Type  2 Diabetes: a Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2012;9(4). 
7. Tournier M, Bégaud B, Cougnard A, et al. Influence of the drug exposure definition on the 
assessment of the antipsychotic metabolic impact in patients initially treated with mood-stabilizers. Br J 
Clin Pharmacol. 2012;74(1):189-96. 
8. Brunelli S. Use of prescription drug claims data to identify lipid-lowering medication exposure in 
pharmacoepidemiology studies: potential pitfalls. Pharmacoepidemiol Drug Saf. 2016;25(7):844-6. 
9. UKPDS. Effect of intensive blood glucose control with metformin on complications in 
overweight patients with type 2 diabetes The Lancet. 1998;352(9131):854–65. 
10. Eurich D, Majumdar S. Statins and Sepsis – Scientifically Interesting but Clinically 
Inconsequential J Gen Intern Med 2011;27(3):268-9. 
11. Ray W. Observational studies of drugs and mortality. N Engl J Med. 2005;353(22):2319-21. 
12. Johnson J, Simpson S, Toth E, Majumdar S. Reduced cardiovascular morbidity and mortality 
associated with metformin use in subjects with type 2 diabetes. Diabet Med. 2005;22(4):497-502. 
13. Johnson J, Majumdar S, Simpson S, Toth E. Decreased Mortality Associated with the Use of 
Metformin Compared with Sulfonilurea Monotherapy in Type 2 Diabetes. Diabetes Care 
2002;25(12):2244-8. 
14. Eurich D, Majumdar S, McAlister F, Tsuyuki R, Johnson J. Improved clinical outcomes 
associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345-
51. 
15. Garbe E, Suissa S. Hormone replacement therapy and acute coronary outcomes: methodological 
issues between randomized and observational studies. Hum Reprod. 2004;19(1):8-13. 
16. Gleason C, Dowling N, Friedman E, Wharton W, Asthana S. Using predictors of hormone 
therapy use to model the healthy user bias: how does healthy user status influence cognitive effects of 
hormone therapy? Menopause. 2012;19(5):524-33. 
17. Walker JJ, Johnson JA, Wild SH. Diabetes treatments and cancer risk: the importance of 
considering aspects of drug exposure. Lancet Diabetes Endocrinol. 2013;1(2):132-9. 
18. Matok I, Azoulay L, Yin H, Suissa S. Immortal time bias in observational studies of drug effects 
in pregnancy. Birth Defects Res A Clin Mol Teratol. 2014;100(9):658-62. 
19. Eurich D, Majumdar S. Statins and sepsis - scientifically interesting but clinically 
inconsequential. J Gen Intern Med. 2012;27(3):268-9. 
20. Brookhart M, Wang P, Solomon D, Schneeweiss S. Evaluating Short-Term Drug Effects Using a 
PhysicianSpecific Prescribing Preference as an Instrumental Variable. Epidemiology. 2006;17(3):268-75. 



 

71 

 

21. Brassard P, Wu J, Ernst P, Dell'Aniello S, Smiechowski B, Suissa S. The effect of statins on 
influenza-like illness morbidity and mortality. Pharmacoepidemiology and Drug Safety 2016. 
22. Bykov K, Yoshida K, Weisskopf M, Gagne J. Confounding of the association between statins and 
Parkinson disease: systematic review and meta-analysis. Pharmacoepidemiology and Drug Safety 2016. 
23. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-
CM and ICD-10 administrative data. Med Care. 2005;43(11):1130-9. 

 

 


