
Outflows, Mergers, and Tori, Oh My!

by

Steven Fahlman

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Physics
University of Alberta

c© Steven Fahlman, 2019



Abstract

We study long-term evolution of accretion tori around hypermassive neu-

tron stars in the context of neutron star merger transients, their involvement

in the creation of short gamma-ray bursts, and their role in the synthesis of the

heaviest elements in the universe. First we conduct 2D axisymmetric hydrody-

namic simulations with selected initial conditions relevant to the neutron star

merger GW170817, and compare our ejected masses and velocities to those

inferred from standard two-component kilonova modeling of the event. Our

suite of microphysics includes neutrino transport, nuclear recombination, and

a viscous parameterization of magnetic stresses. We find that these are not

sufficient to drive the ejected blue mass of the kilonova to velocities of 0.3c

required by standard kilonovae fits, motivating the need for including full 3D

magnetohydrodynamics in simulations. As an initial step to implementing this,

we modify the unsplit solver in the FLASH code to evolve hydrodynamics in 3D

spherical coordinates. Tests of the code are demonstrated via the initialization

and evolution of a Sedov blast wave and a 3D equilibrium torus.
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Preface

This thesis is an original work by Steven Fahlman. Chapter 2 of this thesis

was published in the Astrophysical Journal as ‘Fahlman, S. & Fernández, R.

2018, “Hypermassive Neutron Star Disk Outflows and Blue Kilonovae”, ApJL,

869, L3’, c©AAS, reproduced with permission. For this thesis, the introduction

of “Hypermassive Neutron Star Disk Outflows and Blue Kilonovae” has been

removed, and a new short introduction to Chapter 2 was instead put in its

place. The rest of the text in Chapter 2 (section 2.1 and onwards) appears

exactly as it was published aside from minor typo fixes and the addition of

a footnote. Dr. Fernández proposed the idea for the project, and originally

customized the FLASH code to include the microphysics and geometry required

to evolve tori in the post-merger environment. I made minor modifications and

bug fixes to the equation of state necessary for the code to function with high

density tori. I ran the simulations and performed post processing using scripts

of my own and also some that were suitably modified for the new parameter

space, but originally provided by Dr. Fernández. I wrote the first working

draft of the manuscript and figures, which was subjected to heavy edits by Dr.

Fernández and myself.
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Chapter 1

Introduction to Neutron Star

Mergers

The story of neutron star mergers began long ago in the dark ages of astronomy

(circa 2000) when there were two large unexplained questions in astrophysics:

“What is the origin of the extremely energetic and elusive short gamma-ray

bursts?”, and “Where do the heaviest elements in the universe come from?”.

For the latter, it had long been proposed that the ejected material from

neutron star (NS) mergers could provide the hot, neutron-rich environment

necessary for elements to undergo rapid neutron capture (r-process) and cre-

ate the heaviest elements (Lattimer and Schramm, 1974). The r-process was

defined by Burbidge et al. (1957), where the authors noted that when neu-

tron captures onto a seed nucleus occur at a rapid rate relative to the β-decay

processes (∼ 0.01 − 10 s), it is possible to form the most neutron-rich nuclei,

which lie along the neutron drip line. At this point, it becomes energetically un-

favourable to add neutrons, and the nuclei are unstable to inverse β-decay. This

increases the ratio of protons to neutrons, allowing for the addition of more neu-

trons, and the r-process chain continues. The elements created by the r-process

are unstable, and were thought to primarily be formed in the neutron-rich tidal

tails as the two NSs coalesce. Owing to their instability, the nuclei radioac-
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tively decay over a broad range of timescales, injecting energy into the system

that thermalises to create a detectable electromagnetic transient on a similar

timescale (Li and Paczyński, 1998; Kulkarni, 2005). Advancements in nuclear

theory, in particular research into the effects of radioactive heating (Metzger

et al., 2010) and the opacities of elements heavier than iron (Kasen et al., 2013;

Barnes and Kasen, 2013; Tanaka and Hotokezaka, 2013), led to a detailed model

of kilonovae: Radioactively powered transient light curves observable at both

infrared (“red”) and optical/UV (“blue”) wavelengths (Metzger et al., 2010;

Kasen et al., 2017; Metzger, 2017). The exact extent of the contribution from

NS mergers to the r-process abundance in the universe compared to the extent

of contributions from other sources like core-collapse supernovae (CCSN) is

still an active area of research (Côté et al., 2018; Hotokezaka et al., 2018; Siegel

et al., 2019).

The idea of compact object mergers providing the engine for short gamma-

ray bursts (sGRBs) was also proposed in the last few decades (Paczynski, 1986;

Eichler et al., 1989). Such bursts require & 1051 ergs of energy to be deposited

into a small area on the short timescale of ∼ 10−100 ms, feasible to accomplish

in a NS merger, and estimates of merger rates at the time were promising

compared to the incident rate of sGRBs (Eichler et al., 1989; Narayan et al.,

1992). Theory states that material from the newly formed accretion torus

around the central object accelerates to ultra-relativistic velocities (Lorentz

factors & 100), powering the release of γ-rays. The energy must be extracted

from an as yet indeterminate central engine: accretion, neutrinos, magnetar

strength magnetic stresses, or a combination of the three (Nakar, 2007; Berger,

2014; Paschalidis, 2017; Metzger et al., 2018).

In addition to the above questions, the inspiral of two compact objects

provides an environment where general relativistic effects are present, includ-

ing the creation of gravitational waves (GWs). The construction and subse-

quent detection of GWs from numerous binary black hole (BH) mergers by the
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LIGO/VIRGO detectors allowed us to test theories of general relativity against

numerical relativity simulations (e.g., Abbott et al. 2016).

When at least one NS is involved in the merger, mass can be ejected, un-

like binary BH mergers. In these cases, it is then possible to place constraints

on the equation of state of nuclear matter. From the GW signal we can infer

tidal effects through the tidal deformability parameter, which depends on the

mass and radius of the star (Abbott et al., 2017b; De et al., 2018). Additional

constraints can be placed on the EOS when the accompanying EM kilonova is

detected coincident with the GW signal (Radice and Dai, 2019; Margalit and

Metzger, 2019). The discovery of a signal in both gravitational and electromag-

netic waves from the first binary NS merger, GW170817 (Abbott et al., 2017b),

conforms to the general predictions of a kilonova, providing strong evidence for

r-process element formation in NS mergers.

1.1 Kilonovae, GW170817, and You

The kilonova is thought to result from the radioactive decay of elements formed

during the r-process, as the hot, neutron-rich, and sub-relativistic environment

of the merger provides correct conditions for the r-process to occur (Li and

Paczyński, 1998; Just et al., 2015; Lippuner et al., 2017). The neutron-rich

dynamical ejecta is unbound from the system via tidal forces and shock heating

during the final stages of inspiral. It is ideal for the formation of heavy elements,

including lanthanides and actinides, which have high opacities to photons, ∼
10 cm2 kg−1, due to the forest of absorption lines in open d-shell elements

(Kasen et al., 2013; Hotokezaka et al., 2013; Radice et al., 2018). The light

curve from the decay of lanthanides/actinides peaks in the infrared over a

timescale of days to weeks, informally called a “red kilonova”. Matter that does

not coalesce into the central compact object and remains marginally bound

will form an accretion torus around the merger, comprising . 10% of the
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system’s total gravitational mass. On a thermal timescale (∼ 1 s), the torus

will evaporate due to accretion and energy deposition from neutrinos, nuclear

recombination, and magnetic stresses, driving outflows sometimes referred to

as disk winds (Fernández and Metzger, 2013; Metzger and Fernández, 2014;

Perego et al., 2014; Just et al., 2015; Lippuner et al., 2017; Fujibayashi et al.,

2018; Fernández et al., 2019). Since the timescale for evaporation is longer than

that of neutrino interactions, the neutron-richness of these outflows varies as

weak interactions with neutrinos drive the electron fraction toward equilibrium.

A higher electron fraction (or lower neutron-richness), inhibits heavy r-process

element formation and the opacity of the material is closer to ∼ 1 cm2 kg−1,

causing an earlier (∼ days) peak in the light curve, called a “blue kilonova”.

The type of merger remnant modifies the kilonova. Depending on the total

mass of the merger, the object formed is predicted to be a uniformly rotating

stable NS, a differentially-rotating, unstable hypermassive NS (HMNS), or a

BH (Margalit and Metzger, 2019). When the gravitational mass is less than the

supermassive limit, ∼ 1.2MTOV, where MTOV is the maximum mass supported

by a cold irrotational Tolman-Oppenheimer-Volkoff configuration, the object is

most likely an indefinitely lived supermassive NS (SMNS) (Baumgarte et al.,

2000; Paschalidis et al., 2012; Kaplan et al., 2014). A SMNS is theorized

to deposit additional energy in the form of neutrino emission and rotational

kinetic energy associated with its steady spin down to the irrotational TOV

configuration into the torus (Fujibayashi et al., 2018).

In the case where the total gravitational mass of the binary NS system is

above the uniformly rotating maximum mass (∼ 1.2MTOV) and below the hy-

permassive limit, ∼ 1.4MTOV (where the exact limit is EOS dependent), the

remnant left behind is likely a HMNS, which is a NS supported against gravita-

tional collapse by differential rotation and thermal pressure (Baumgarte et al.,

2000; Kaplan et al., 2014; Hanauske et al., 2017; Espino et al., 2019). Pro-

vided it does not collapse from dynamical instabilities, a HMNS is thought
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to be unstable on a secular timescale (∼ ms, Kaplan et al., 2014) and loses

energy through angular momentum transport via the magnetorotational insta-

bility (MRI, Hawley and Balbus, 1991), magnetic winding, (Duez et al., 2006),

neutrino emission (Palenzuela et al., 2015; Sekiguchi et al., 2015), and emis-

sion of GWs (Shibata et al., 2005; Ruiz et al., 2019). The hot, neutron-rich

HMNS is a strong emitter of neutrinos (Lν ∼ 1052 ergs/s), driving neutrino

powered winds and making the resulting kilonova bluer. In the case of prompt

BH formation, when the total mass exceeds the hypermassive limit, all neu-

trino flux is generated predominantly via electron capture in the high density

and temperature regions of the torus. This neutrino self-irradiation is much

weaker than that in the HMNS case. Magnetohydrodynamic stresses (e.g.,

Blandord-Znajek mechanism, inertial frame dragging) and neutrino annihila-

tion are primary contenders for launching a relativistic jet, as a baryon free

funnel is formed in the polar regions of the BH (Blandford and Znajek, 1977;

Berger, 2014). This has observational implications, not only for the additional

acceleration of sub-relativistic matter, but also for providing a chance to dis-

criminate between the central engines powering sGRBs.

The kilonova of GW170817 peaked after . 2 days in the optical, and red-

dened on a timescale of days to a week (Villar et al., 2017; Cowperthwaite

et al., 2017; Drout et al., 2017), consistent with a remnant HMNS surviving for

a finite lifetime. Energy deposition from the spin down of a infinitely long lived

supermassive NS would result in velocities, electron fraction, and mass ejecta

higher than that inferred from GW170817, while the formation of a prompt

BH is unlikely for the opposite reasons (Metzger, 2017; Foucart et al., 2019;

Margalit and Metzger, 2019). While neither of these cases have been ruled out

entirely (Margalit and Metzger, 2017, 2019; Miller et al., 2019), we focus our

efforts on the most probable outcome: A HMNS that survives for longer than

a dynamical timescale.

GW170817 is the first opportunity to compare our simulations of binary
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NS mergers with observational data from a merger event. The chirp mass,

a measure of the total system mass by GW observations, is constrained to

be 2.78+0.05
−0.03 M⊙ (Abbott et al., 2017b). Standard kilonova models using a

two component (red and blue) fit to the light curve return observed outflow

velocities and masses of 0.15c and 0.02− 0.05 M⊙ for the red kilonova, and a

blue component with ∼ 0.02 M⊙ moving in the range 0.1c − 0.3c (e.g., Villar

et al. 2017).

As the majority of ejecta mass (∼ 80%) in GW170817 is thought to arise

from post-merger outflows sourced in the accretion torus (e.g., Villar et al. 2017;

Metzger 2017), the purpose of this thesis is to characterize that ejecta channel

using numerical simulations. In particular we focus on the case of HMNS

formation, since modeling of GW170817 favours HMNS formation (Margalit

and Metzger, 2017; Shibata et al., 2017a), and is thought to be the outcome in

∼ 50% of mergers (Margalit and Metzger, 2019). We will explore the effects of

a HMNS on the post-merger ejecta masses, velocities, and electron fractions,

using GW170817 as our benchmark.
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Chapter 2

Hypermassive Neutron Star

Disk Outflows and the Blue

Kilonova of GW170817

Since the dominant ejecta channel for systems like GW170817 is expected to

be post-merger outflows from the surrounding torus, we wish to run long-

term simulations (∼ 10 s) that include the dominant microphysical effects.

To this end, we carry out axisymmetric hydrodynamic simulations including

a leakage neutrino transport scheme, viscous treatment of magnetic angular

momentum transport, and nuclear recombination of alpha particles. Previous

hydrodynamic simulations either do not explore a parameter space relevant

to GW170817 (Lippuner et al., 2017; Metzger and Fernández, 2014, hereafter

MF14), do not include explicit angular momentum transport (Dessart et al.,

2009; Perego et al., 2014), or included a stable long-lived HMNS (Fujibayashi

et al., 2018). The velocities and masses extracted from light curve modeling of

GW170817 allows us to parameterize for the first time how well our simulated

torus outflows can recreate the kilonova, and the sensitivity of the kilonova

to physical unknowns (e.g., system/torus mass, neutrino luminosity, HMNS

lifetime).
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2.1 Methods

Disk outflow simulations use the same approach as in MF14, with updates re-

ported in Lippuner et al. (2017). Below is a brief summary of the computational

setup.

2.1.1 Numerical Hydrodynamics

Simulations are carried out using FLASH3 (Fryxell et al., 2000; Dubey et al.,

2009) with suitable modifications (Fernández and Metzger 2013; MF14). The

code solves the equations of hydrodynamics and lepton number conservation

in axisymmetric (2D) spherical polar coodinates (r, θ) with azimuthal rotation.

Gravity, azimuthal shear viscosity, and neutrino emission/absorption are in-

cluded as source terms. We use the equation of state of Timmes and Swesty

(2000) with abundances of neutrons, protons, and alpha particles in nuclear

statistical equilibrium, and accounting for the nuclear recombination energy of

alpha particles.

Gravity is modeled with the pseudo-Newtonian potential of Artemova et al.

(1996), azimuthal shear viscosity follows an α-prescription (Shakura and Sun-

yaev, 1973), and neutrino effects are modeled with a leakage scheme for emission

and annular light bulb for absorption (Fernández and Metzger 2013; MF14).

We only include charged-current weak interactions on nucleons. See Richers

et al. (2015) for a comparison of this scheme with Monte Carlo neutrino trans-

port.

The computational domain is discretized radially using logarithmic spacing

with 128 cells per decade in radius, and using 112 cells equispaced in cos θ

covering the range [0, π].

The HMNS is modeled as a reflecting1 inner radial boundary at r = RNS,

1The use of a reflecting boundary preserves the pressure feedback that would be felt via

subsonic accretion onto the HMNS. Use of an absorbing boundary would supress this effect.
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Table 2.1: Simulation parameters and results. Columns from left to right show
model name, central object mass, HMNS radius, initial torus mass, radius
of initial torus density maximum, initial HMNS neutrino luminosity (Lνe =
Lν̄e), initial torus electron fraction, HMNS lifetime, viscosity parameter, initial
torus entropy, ejected mass with positive energy in lanthanide-rich (Ye < 0.25,
subscript R for red) and lanthanide-poor (Ye > 0.25, subscript B for blue)
material, and mass-averaged velocity of ejected red and blue material.

Model MNS RNS Mt Rt Lνe Ye τNS α s M̄R M̄B v̄R v̄B
(M⊙) (km) (M⊙) (km) (ergs) (ms) (kB/baryon) (M⊙) (M⊙) (c) (c)

base 2.65 20 0.10 50 2 · 1052 0.10 10 0.05 8 0.010 0.023 0.091 0.038
α10 0.10 0.008 0.035 0.135 0.070
α03 0.03 0.007 0.019 0.066 0.032
t01 1 0.013 0.008 0.037 0.039
t30 30 0.002 0.058 0.159 0.093
M2.7 2.70 10 0.05 0.009 0.023 0.097 0.042
M2.6 2.60 0.011 0.018 0.080 0.041
mt03 2.65 0.30 0.049 0.031 0.049 0.039
mt02 0.20 0.029 0.033 0.065 0.030
rt60 0.10 60 0.014 0.013 0.057 0.039
rs30 30 50 0.016 0.009 0.042 0.041
L53 20 2 · 1053 0.001 0.041 0.187 0.099
L51 2 · 1051 0.013 0.017 0.077 0.039
s10 2 · 1052 10 0.020 0.014 0.055 0.033
ye25 0.25 8 0.000 0.033 0.000 0.058
best 2.55 20 0.20 60 2 · 1052 0.10 10 0.05 8 0.040 0.022 0.043 0.037

from which prescribed neutrino and antineutrino luminosities are emitted.

These luminosities are constant for the first 10ms, subsequently decaying as

t−1/2 (MF14). When the HMNS collapses into a BH, the radial boundary be-

comes absorbing, and the HMNS luminosities are set to zero. The boundary is

also moved inward to a position halfway between the innermost stable circular

orbit (ISCO) and horizon radii of the newly-formed BH. The computational

domain extends out to r = 2 × 1010 cm. The outer radial boundary condition

is absorbing, and the boundary conditions in θ are reflecting.

The initial condition for the disk is an equilibrium torus with constant

angular momentum, entropy, and electron fraction. The space outside this

torus is filled with an inert low-density ambient medium with density in the

range 10 − 100 g cm−3 inside r = 2 × 107 cm, and decreasing as r−2 outside

this radius. When collapsing the HMNS into a BH, the cells added to the

computational domain are filled with material having the same properties as the

surrounding medium, which is immediately accreted. For numerical reasons,
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we set a floor of density at ∼ 90% of the initial ambient value.

2.1.2 Model Parameters

The total mass of GW170817 measured from gravitational waves is 2.73+0.04
−0.01 M⊙

to 90% confidence (Abbott et al., 2017a). The dynamical ejecta mass expected

from numerical relativity simulations is . 0.01M⊙, and disk masses are ex-

pected to lie in the range 0.05 − 0.3M⊙ depending on the equation of state

used (e.g., Shibata et al. 2017a). We therefore adopt a baseline model (‘base’)

with HMNS mass MNS = 2.65M⊙ and disk mass Mt = 0.1M⊙.

The radius of the baseline HMNS is taken to be RNS = 20 km, following

results of numerical relativity simulations (e.g., Hanauske et al. 2017; Shibata

and Kiuchi 2017). The lifetime of the baseline HMNS is taken to be τNS =

10ms as a first guess (∼ disk thermal time), with the HMNS luminosities

having an initial magnitude of 2× 1052 erg s−1 (e.g., Dessart et al. 2009). The

HMNS has a surface rotation period of 1.5ms and we adopt zero spin in the

pseudo-Newtonian potential. The HMNS collapses into a BH of the same

mass and dimensionless spin 0.8, as typically obtained in numerical relativity

simulations (e.g., Shibata et al. 2017a). The inner radial boundary then moves

from 20 km to 8.7 km in the baseline model. The magnitude of the α-viscosity is

chosen to be α = 0.05, following the general relativistic magnetohydrodynamic

(GRMHD) results of Fernández et al. (2019). The initial electron fraction and

entropy of the baseline disk are Ye = 0.1 and s = 8kB per baryon, respectively.

All model parameters are summarized in Table 2.1.

We evolve additional models that vary one parameter at a time relative to

the baseline simulation, as shown in Table 2.1. We focus on those parame-

ters that are known to have the most impact in the properties of the outflow:

lifetime of the HMNS, magnitude of the α-viscosity, magnitude of the HMNS

luminosity, mass of the torus and total remnant mass, and radius of the HMNS.

Other parameters have a smaller impact on the disk evolution (Fernández and
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has Ye ∼ 0.5 due to strong irradiation, while on the equator the outflow has a

Ye closer to the initial disk value. The bulk of the disk remains neutron-rich

(Ye ∼ 0.2) due the higher densities and shadowing of neutrino irradiation.

Upon collapse of the HMNS into a BH, the boundary layer accretes within

∼ 0.1 ms, and a rarefaction wave is launched outward. The torus readjusts

on the equatorial plane, evacuating the polar funnel. After a viscous time

(∼ 100 − 300ms), weak interactions freeze out and mass is ejected due to

heating by viscosity and nuclear recombination. By this time the electron

fraction of the outflow is higher than the initial disk value due to the lower

degeneracy (Ye ∼ 0.2− 0.3).

2.2.2 Parameter Sensitivity

Table 2.1 shows the mass and mass-averaged radial velocity of unbound disk

ejecta for all models, as measured at a radius r = 109 cm. We use Ye = 0.25

to divide the ejecta into lanthanide-poor (‘blue’) and lanthanide-rich (‘red’)

material (e.g., Lippuner and Roberts 2015). Figure 2.1 illustrates the most

sensitive parameter dependencies. While here we use the two-component fit of

Villar et al. (2017) as a reference observational result, our general conclusions

are independent of the specific (multi-component) kilonova fit used.

Our baseline model ejects an amount of mass with Ye > 0.25 that ap-

proaches the observationally-inferred value, but there is insufficient lanthanide-

rich mass ejected by a factor of 5. Also, the average velocity of the blue com-

ponent is lower than that of the red ejecta, with the latter being 0.09c only.

The larger amount of blue relative to red ejecta for the default HMNS

lifetime (∼ 10ms) differs from that obtained by MF14, because the latter used

a non-spinning BH after HMNS collapse. The red ejecta is produced in the

initial thermal expansion of the disk on the side of the torus opposite to the

HMNS, before weak interactions have time to significantly reprocess the disk

composition, and therefore depends entirely on the initial condition chosen in
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a larger thermal outflow that contains the most neutron-rich material, but also

because the late-time viscous outflow becomes more neutron-rich. The blue

mass peaks at Mt = 0.2M⊙ and then decreases for higher tori masses. The

average velocities of both components remain below 0.05c.

Changes in the initial torus properties other than mass or composition pro-

duce minor quantitative changes, as illustrated by models rt60 and s10. Simi-

larly, changes in the mass of the central object yield the same qualitative result.

Increasing the HMNS radius increases the surface area of the star and decreases

the density in the boundary layer, resulting in stronger torus irradiation and

thus a higher electron fraction in the outflow. However, the total ejected mass

is not significantly affected. We caution that these effects may be unique to

our treatment of the HMNS as a hard boundary.

Finally, our best fit model involves increasing the torus mass and formation

radius. The combination of these effects creates outflows with red and blue

masses close to observational fits (allowing for an additional 0.01M⊙ supple-

ment of red dynamical ejecta), but with lower average velocities for the blue

component than required.

2.2.3 Physical Constraints on the Outflow Velocity

The initial thermal outflow is launched by a combination of viscous and neu-

trino heating. Viscous angular momentum transport enhances the outflow rel-

ative to a pure neutrino driven wind, by transporting material to shallower

regions of the potential well, in addition to enhancing energy deposition (Lip-

puner et al., 2017).

Figure 2.2 illustrates the magnitude of this effect for models that vary

the neutrino luminosity and viscosity parameter. The velocity distribution

of the outflow is broad, and always exceeds the asymptotic velocity obtained

in steady-state neutrino-driven wind models (Thompson et al., 2001; Metzger
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et al., 2018)

vν ≈ 0.12c

(

Lν

2× 1052

)0.3

. (2.1)

The low-velocity portion of the distribution is ubiquitous to all models, arising

from the late-time viscous/recombination-driven outflow which is launched once

the disk has spread to larger radii. This component has an upper limit close to

the maximum velocity that can be gained from nuclear recombination of alpha

particles

vrec =
√

2Bα/mα ≈ 0.12c, (2.2)

where Bα and mα are nuclear binding energy and mass of an alpha particle

(see, e.g., Fernández et al. 2019).

The different components of the outflow can be separated with tracer parti-

cles (Lippuner et al., 2017), as shown in Figure 2.3 for the models that vary the

neutrino luminosity. The prompt (t < 0.1 s) neutrino-driven wind appears as

a tight correlation between the entropy and electron fraction of the particles.

The importance of this component increases significantly with increasing neu-

trino luminosity, with the correlation extending to higher velocities and electron

fractions. An intermediate component (0.1 < t < 1 s) also shows a correlation

between entropy and electron fraction extending up to Ye = 0.4, but with a

larger scatter than the prompt outflow and a lower velocity (< 0.1c). The

late-time viscous/recombination-powered wind in the advective phase (t > 1 s)

has nearly constant average velocity (. 0.05c) and electron fraction (. 0.3),

but with a wide range of entropies.

Out of these components, only the prompt viscously-enhanced neutrino-

driven wind is able to significantly exceed 0.1c. However, in our most extreme

case (model L53), the ejected mass with speeds above 0.2c and Ye > 0.25 is

less than 3× 10−3 M⊙.

We conclude that a combination of neutrino heating and viscous angular

momentum transport in hydrodynamics is not able to account for the observed
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components of the GW170817 when considering the HMNS disk outflow alone.

This conclusion is not altered by our omission of full general relativistic effects,

since the dynamics close to the BH horizon is not a key element for the gen-

eration of outflows while the HMNS is present, and our results are consistent

with those of Fujibayashi et al. (2018), who include all relativistic effects.

2.2.4 Homologous Disk Ejecta

For reference, we provide fits to our disk ejecta once it has reached homologous

expansion, as needed for radiative transfer models. We compute the evolution

into this phase (∼ 1000 s after merger) following the same method as in Kasen

et al. (2015). Figure 2.4 shows the density and electron fraction profiles for the

baseline model in this phase. For the ejecta density, we obtain acceptable fits

with a broken power-law over a finite velocity range:

ρ/ρ0 =

{

(v/v0)
−η0 v0 < v < v1

(v1/v0)
−η0 (v/v1)

−η1 v1 < v < v2,
(2.3)

where ρ and v are the ejecta density and radial velocity, respectively. The

velocity range [v0, v2] is fixed by requiring that 90% of the energy is kinetic,

and it is beyond the turbulent region (r > 1.26 × 106 km). The remaining

variables (ρ0, v1, η0, η1) are fit parameters.

The electron fraction has a more complicated behavior, hence we do not

attempt to fit it. Parameters for equation (2.3) and average electron fraction

are given in Table 2.2.

2.3 Summary and Discussion

We have studied the long-term outflows from disks around HMNS remnants

that collapse into BHs, using axisymmetric hydrodynamic simulations that in-

clude the dominant physical effects save for magnetic stresses. We find that for
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Model ρ0/10
−5 v0/c v1/c v2/c η0 η1 Ȳe

(g cm−3) (10−3) (10−2) (10−1)

base 1.024 7.479 5.101 2.604 1.150 4.503 0.264
a10 0.745 7.771 6.119 2.872 1.125 3.678 0.287
a03 4.485 6.955 3.827 2.371 1.788 4.858 0.260
t01 2.414 7.172 5.347 1.443 1.665 7.671 0.238
t30 0.585 7.739 5.337 3.146 0.875 2.946 0.354
M2.7 2.195 7.138 4.619 2.696 1.479 4.154 0.269
M2.6 2.430 7.109 6.632 2.459 1.741 5.276 0.257
L51 1.893 7.488 5.234 2.314 1.525 4.708 0.254
L53 1.667 7.535 4.728 4.349 1.512 3.252 0.354
mt03 6.673 6.828 4.586 2.263 1.404 5.266 0.233
mt02 3.714 6.822 3.461 2.501 0.996 4.376 0.242
rt60 3.551 6.868 5.747 2.251 1.818 5.589 0.242
rs30 2.543 7.214 4.126 2.019 1.445 5.197 0.233
s10 1.601 7.414 4.352 2.366 1.125 4.936 0.235
ye25 1.299 7.463 4.091 2.482 1.095 4.010 0.311
best 6.284 6.623 4.597 2.415 1.354 5.673 0.233

Table 2.2: Parameters of the broken power-law fit to the density in homol-
ogy (equation 2.3). For reference, we also provide the mass-averaged electron
fraction of the outflow.

19



plausible parameters compatible with GW170817, hydrodynamic disk outflow

models that employ shear viscosity to transport angular momentum cannot

achieve mass-averaged velocities compatible with the blue kilonova as inferred

from multi-component kilonova fits. While the ejected mass can in principle be

brought closer to the inferred values by a suitable parameter choice, the same

cannot be achieved for the velocities of both components.

Kawaguchi et al. (2018) find that radiative transfer simulations that in-

clude reprocessing of photons from the disk outflow by the dynamical ejecta do

not require a disk wind expanding faster than 0.1c to explain the GW170817

kilonova. Here the dynamical ejecta provides a velocity boost to these blue

photons, and eliminates the need for high ejecta masses, bringing it into agree-

ment with current predictions from numerical relativity simulations. Our disk

outflow models are fully compatible with their results (c.f. Figure 2.1). Es-

tablishing whether this is the correct resolution to the wind velocity problem

requires further work.

Alternatively, state-of-the-art numerical relativity simulations predict too

little dynamical ejecta to reconcile the large masses moving at 0.25c. Enhance-

ments in this prompt ejecta can be obtained for example by viscous effects,

either by ejecting material directly from the HMNS at early times (Shibata

et al., 2017b), or by thermally boosting the dynamical ejecta (Radice et al.,

2018). The robustness of these effects remains to be further explored.

The only remaining way to significantly boost the disk velocities are mag-

netic stresses. Initial three-dimensional GRMHD models of BH remnant disks

show that this can easily be achieved (Siegel and Metzger, 2018; Fernández

et al., 2019). The conjecture is further supported by early-phase simulations

of magnetized, differentially rotating HMNS remnants (e.g., Kiuchi et al. 2012;

Siegel et al. 2014). Including the effects of magnetic fields is the most straight-

forward way to improve our simulations.
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Chapter 3

Hydrodynamics on a Three

Dimensional Spherical Mesh

Due to the uncertainty in viscous parameterization of magnetic fields, the next

logical step is to construct an equilibrium torus using magnetohydrodynamics

(MHD), requiring 3 dimensions to avoid suppressing the MRI (e.g., Igumen-

shchev and Abramowicz 1999; Stone et al. 1999). With this advancement we

can also input an equilibrium HMNS, eliminating uncertainties over the use of

a reflecting boundary condition at the surface of the star.

More recent results using MHD show promise in recreating the kilonova,

but more research is required. Many of these results suffer the same flaws

as the hydrodynamic (HD) simulations: Some are not directly applicable to

GW170817 and do not use full neutrino transport (Siegel and Metzger, 2018;

Ciolfi et al., 2019; Fernández et al., 2019), or do not run for sufficiently long

and use only a BH (Miller et al., 2019). Although in principle these simulations

can be run in any coordinate system, the most advantageous setup involves a

spherical grid. The sphericity of the star is preserved, which allows for easy

implementation of periodic boundaries. In addition, this allows for natural

conservation of angular momentum as less numerical diffusion happens through

a φ-border of a spherical cell, as there is minimal flow diagonal to the grid cells.

21



Since the majority of important effects occur with φ-symmetry (e.g., neutrino

emission, MRI, recombination, etc...), we can reduce the resolution along the

φ-axis with minimal loss of accuracy. In the radial direction, a non-uniform

logarithmic grid can also be used to increase the range of the simulation without

incurring large computational costs. This line of reasoning is broadly applicable

to many astrophysical systems, like CCSN.

As a stepping stone to reach full MHD, we implement the capability to per-

form 3D hydrodynamical simulations into the publicly available astrophysical

code FLASH4.5 (Dubey et al., 2009). The public version currently supports the

divergence-free evolution of magnetic fields in 3D Cartesian coordinates, but

not 3D spherical coordinates.

We modify the default dimensionally unsplit solver (Lee, 2013), which solves

the HD Euler equations in each direction simultaneously by including contri-

butions at each face from transverse and diagonal fluxes. This has a straight-

forward expansion to MHD (see §4), and the testing and implementation of

pure hydro fits well into the timeline to complete this MSc thesis.

3.1 Governing Equations of Hydrodynamics

The conservation equations are those of mass, momentum and energy. These

can be written as

∂ρ

∂t
+∇ · [ρv] = 0, (3.1)

∂(ρv)

∂t
+∇ · [ρ(v ⊗ v)] +∇P = 0, (3.2)

∂(ρE)

∂t
+∇ · [v(ρE + P )] = 0, (3.3)

where ρ is the density, v is the vector velocity, E is the total energy, and P

is defined as the total gas pressure. The HD equations can written as a set of
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conserved variables, U, associated fluxes, F , and source terms, S,

∂U

∂t
+∇ · F = S. (3.4)

To make the reduction or addition of dimensions easier, the associated fluxes

are usually expanded as (in spherical coordinates)

∂U

∂t
+

1

r2
∂(r2F)

∂r
+

1

r sin θ

∂(sin θG)

∂θ
+

1

r sin θ

∂H

∂φ
= S, (3.5)

where the additional source terms arise from the finite curvature of spherical

geometry. The conserved variables and fluxes in the r, θ, and φ directions,

U,F,G, and H, respectively, are defined as

U =

(

ρ, ρvr, ρvθ, ρvφ, ρE

)T

, (3.6)

F =























ρvr

ρv2r + P

ρvrvθ

ρvrvφ

vr(ρE + P )























, G =























ρvθ

ρvθvr

ρv2θ + P

ρvθvφ

vθ(ρE + P )























, H =























ρvφ

ρvφvr

ρvθvφ

ρv2φ + P

vφ(ρE + P )























. (3.7)

In conservative mesh based codes such as the finite volume method that

FLASH employs, the conserved variables are evolved by discretizing (3.5) in both

time and space. This means that we evolve each variable by taking a volume

average over the cell, and then advance the volume averaged variable using

the corresponding volume averaged incoming and outgoing fluxes at the faces.

Using the notation {i, j, k} + 1/2 to represent variables at the corresponding
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faces, and n to step in time, this can be written concisely as

Un+1 = Un − ∆t

V

(

(Ai−1/2Fi−1/2 − Ai+1/2Fi+1/2)

− (Aj−1/2Gj−1/2 − Aj+1/2Gj+1/2)

− (Ak−1/2Hk−1/2 − Ak+1/2Hk+1/2)

)

+∆t〈S〉, (3.8)

where Ai,j,k is the area of the face perpendicular to the corresponding direction,

and V is volume of the cell. We have used Gauss’s Law,

✝
V

∇ · FdV =

✍
A

F · dA, (3.9)

to write the volume averaged fluxes as face-centered fluxes. To get to this point

we need a few key ingredients. The first is initial conditions, which will vary by

problem. Second, we need fluxes at each face, discussed in §3.3, and the third

is the volume averaged geometric source terms, which are discussed below.

3.2 Geometric Source Terms

The geometric source terms arise from taking covariant derivatives of second

rank tensors, referred to as a tensor divergence. In spherical coordinates, this

can be written for a generic tensor, T , as (see Appendix §A, or Mignone et al.

2005 for a separate derivation)

∇ · T =











∇rT

∇θT

∇φT











, (3.10)
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where we can define the divergences in each individual direction, starting in

the radial direction:

∇rT =

(

1

r2
∂(r2T rr)

∂r
+

1

r sin θ

∂(sin θT θr)

∂θ
+

1

r sin θ

∂T φr

∂φ
− T θθ + T φφ

r

)

,

(3.11)

in the polar,

∇θT =

(

1

r2
∂(r2T rθ)

∂r
+

1

r sin θ

∂(sin θT θθ)

∂θ
+

1

r sin θ

∂T φθ

∂φ
+

T θr

r
− T φφ

r
cot θ

)

,

(3.12)

and in the azimuthal,

∇φT =

(

1

r2
∂(r2T rφ)

∂r
+

1

r sin θ

∂(sin θT θφ)

∂θ
+

1

r sin θ

∂T φφ

∂φ
+

T φr

r
+

T φθ

r
cot θ

)

.

(3.13)

In both the mass and energy conservation equations we only take the first rank

tensor (vector) divergence, and therefore no additional source terms are needed

to satisfy Gauss’s Law. We turn our attention then to the momentum equation,

which can be explicitly written as a second rank tensor (dyad) by using the

outer product

∂

∂t











ρvr

ρvθ

ρvφ











+∇ ·











ρv2r ρvrvθ ρvrvφ

ρvrvθ ρv2θ ρvθvφ

ρvrvφ ρvθvφ ρv2φ











+∇P = 0. (3.14)
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Explicitly applying the divergences (3.11)-(3.13) to the dyad yields the three

momentum equations in the r, θ, φ directions

∂(ρvr)

∂t
+

1

r2
∂(r2[ρv2r ])

∂r
+

1

r sin θ

∂(sin θ[ρvθvr])

∂θ
+

1

r sin θ

∂(ρvφvr)

∂φ

+
∂P

∂r
=

ρ(v2θ + v2φ)

r
, (3.15)

∂(ρvθ)

∂t
+

1

r2
∂(r2[ρvrvθ])

∂r
+

1

r sin θ

∂(sin θ[ρv2θ ])

∂θ
+

1

r sin θ

∂(ρvφvθ)

∂φ

+
1

r

∂P

∂θ
= −ρvrvθ

r
+

cot θ(ρv2φ)

r
, (3.16)

∂(ρvφ)

∂t
+

1

r2
∂(r2[ρvrvφ])

∂r
+

1

r sin θ

∂(sin θ[ρvφvθ])

∂θ
+

1

r sin θ

∂(ρv2φ)

∂φ

+
1

r sin θ

∂P

∂φ
= −ρvrvφ

r
− cot θ(ρvφvθ)

r
. (3.17)

The spatial derivatives on the left-hand side can now be treated as vector

divergences using Gauss’s Law, however they require the addition of the source

terms on the right hand side. Finally, for use in (3.8) these source terms must

be volume averaged,

1

V

✝
V

S(r, θ)dV. (3.18)

For example, in the r momentum flux equation, we have that

Sρvr(r) =
ρv2θ
r

, (3.19)

so our integral over the cell becomes

1

V

✝
V

Sρvr(r)dV =

− 3

∆φ∆cos θ∆r3

✂ φk+1/2

φk−1/2

✂ θj+1/2

θj−1/2

✂ ri+1/2

ri−1/2

ρ(v2θ + v2φ)

r
r2 sin θdrdθdφ

≈ 3

2

∆r2

∆r3

(

〈ρ〉〈vθ〉2 + 〈ρ〉〈vφ〉2
)

, (3.20)
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where we define the finite differences

∆r2 = r2i+1/2 − r2i−1/2, (3.21)

∆r3 = r3i+1/2 − r3i−1/2, (3.22)

∆ cos θ = cos θi+1/2 − cos θi−1/2. (3.23)

In the final step, the primitive variables are taken to be the volume averages

to match the other variables in the conservative update. In both the φ̂ and θ̂

momentum fluxes we must also integrate over θ,

1

V

✝
V

Sρvθ(r, θ)dV =

− 3

∆φ∆cos θ∆r3

✂ φk+1/2

φk−1/2

✂ θj+1/2

θj−1/2

✂ ri+1/2

ri−1/2

(−ρvrvθ
r

+
(ρv2φ) cot θ

r

)

r2 sin θdrdθdφ

≈ −3∆r2

2∆r3
〈ρ〉〈vr〉〈vθ〉 −

3∆r2

2∆r3
∆sin θ

∆cos θ
〈ρ〉〈vφ〉2. (3.24)

In the exact same way, we find that

1

V

✝
V

Sρvφ(r, θ)dV ≈ −3∆r2

2∆r3
〈ρ〉〈vr〉〈vφ〉+

3∆r2

2∆r3
∆sin θ

∆cos θ
〈ρ〉〈vφ〉〈vθ〉. (3.25)

Since there are common terms to each of the volume integrals, we save on com-

putation and implement this numerically by defining the geometric integration

terms

dysph = −∆sin θ

∆cos θ
=

sin θj+1/2 − sin θj−1/2

cos θj−1/2 − cos θi+1/2

, (3.26)

dxsph =
3∆r2

2∆r3
=

3(ri−1/2 + ri+1/2)(ri+1/2 − ri−1/2)

2(ri+1/2 − ri−1/2)(r2i−1/2 + ri−1/2ri+1/2 + r2i+1/2)

=
3r

(r2i−1/2 + ri−1/2ri+1/2 + r2i+1/2)
. (3.27)
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Doing this reduces our source term equations to

〈Sρvr〉 = dxsph

(

〈ρ〉〈vθ〉2 + 〈ρ〉〈vφ〉2
)

, (3.28)

〈Sρvθ〉 = dxsph

(

− 〈ρ〉〈vr〉〈vθ〉+ dysph〈ρ〉〈vφ〉2
)

, (3.29)

〈Sρvφ〉 = dxsph

(

− 〈ρ〉〈vr〉〈vφ〉 − dysph〈ρ〉〈vφ〉〈vθ〉
)

. (3.30)

3.3 Fluxes and Primitive Variables

Now that we have the source terms, we must compute the fluxes in (3.5) and

(3.7). This is done in the reconstruction step, using the so-called primitive

variables, given in the vector V (not to be confused with the velocities, v), and

their corresponding evolution equations

V = (ρ, vr, vθ, vφ, P )T , (3.31)

∂ρ

∂t
+ v · ∇ρ+ ρ(∇ · v) = 0, (3.32)

∂v

∂t
+ (v · ∇) · v +

1

ρ
∇P = 0, (3.33)

∂P

∂t
+ v · ∇P + γP (∇ · v) = 0. (3.34)

The primitive mass (3.32) and momentum equations (3.33) result from simple

expansion of derivatives in the conservative formulations. The primitive pres-

sure equation comes from the first law of thermodynamics, where for a general

EOS, P = P (ρ, s), and therefore (Following Zingale 2019, Chapter 7)

∂P

∂t
=

∂P

∂ρ

∣

∣

∣

∣

s

∂ρ

∂t
+

∂P

∂s

∣

∣

∣

∣

ρ

∂s

∂t
. (3.35)

When the hydrodynamics are evolved separately from the source terms that

modify the entropy, we can assume adiabatic expansion provides the only

changes in pressure. This implies there are no local entropy sources, and the
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final term goes to zero. Replacing ∂ρ/∂t with equation (3.32) yields

∂P

∂t
+

∂P

∂ρ
(v · ∇ρ+ ρ∇ · v) = 0. (3.36)

We can use the adiabatic index

γ =

(

d logP

d log ρ

)∣

∣

∣

∣

s

, (3.37)

and the fact that

∂P

∂ρ
(v · ∇ρ) = v · ∇P, (3.38)

to arrive at the final result

∂P

∂t
+ v · ∇P + γP (∇ · v) = 0. (3.39)

The advantage to working with primitive variables is that this system and their

partial derivatives can be written in a quasi-linear fashion, taking the form

∂V

∂t
+Ar

∂V

∂r
+Aθ

1

r

∂V

∂θ
+Aφ

1

r sin θ

∂V

∂φ
= S, (3.40)

where the matrices Ar, Aθ, Aφ can be written as (see Lee and Deane 2009 for a

full derivation)

Ar =























vr ρ 0 0 0

0 vr 0 0 1/ρ

0 0 vr 0 0

0 0 0 vr 0

0 γP 0 0 vr























, (3.41)
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Aθ =























vθ 0 ρ 0 0

0 vθ 0 0 0

0 0 vθ 0 1/ρ

0 0 0 vθ 0

0 0 γP 0 vθ























, (3.42)

and

Aφ =























vφ 0 0 ρ 0

0 vφ 0 0 0

0 0 vφ 0 0

0 0 0 vφ 1/ρ

0 0 0 γP vφ























. (3.43)

Alternatively, this can be thought of as an explicit expansion of all the partial

derivatives in the conservation equations. This is the method that we will use

to find the corresponding source terms in the evolution of primitive variables,

referred to as the reconstruction step. Once written in this form, the cell-

centered values can be interpolated to the faces by fitting polynomials. In

FLASH, the default extrapolation is a piecewise linear MUSCL-Hancock method

(PLM, Toro, 2013, Chapter 13.4), which can be thought of as simply a Taylor

expansion of a cell-centered variable to each face, and then a Taylor expansion

in time to half a timestep. The time centering is needed for the conservative

update, where we achieve second order accuracy by centering the fluxes used

for the update in time. We show an example of an expansion to the r faces

(see also Figure 3.1), but an equivalent procedure is followed for both θ and φ,

V
n+1/2
i±1/2,j,k = Vn

i,j,k ±
∆r

2

∂V

∂r
+

∆t

2

∂V

∂t
+O([∆r]2, [∆t]2). (3.44)
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We can eliminate the temporal derivative by replacing it with the quasi-linear

system, (3.40), and then eliminate the spatial derivative by approximating with

a finite difference,

V
n+1/2
i±1/2,j,k = Vn

i,j,k ±
∆r

2

∂V

∂r
+

∆t

2

(

Ar
∂V

∂r
+

Aθ

r sin θ

∂V

∂θ
+

Aφ

r sin θ

∂V

∂φ
− S

)

= Vn
i,j,k +

1

2

(

± I− ∆t

∆r
Ar

)

∆V +
∆t

2

(

Aθ

r

∆V

∆θ
+

Aφ

r sin θ

∆V

∆φ
− S

)

.

(3.45)

This accounts for the parallel fluxes in the first term, and the transverse fluxes

and geometry in the second. However, in 3D we also must account for diagonal

fluxes between cells, which happen when the velocities in each r, θ, φ direction

are close to equal. To do this, the process is much the same except that the

primitive variables are expanded to n+1/3 and i±1/3. Luckily for our spherical

implementation, this does not change the treatment of source terms. A similar

process is followed for expansions in j and k. The expanded primitive variables

at the face are then used to calculate the face-centered, time-centered fluxes

utilized by the Riemann solver. However, we still need the primitive source

terms to perform the expansion. We find the source terms by expanding the

primitive equations, yielding for mass conservation:

∂ρ

∂t
+ vr

∂ρ

∂r
+

vθ
r

∂ρ

∂θ
+

vφ
r sin θ

∂ρ

∂φ
+ ρ

∂vr
∂r

+
ρ

r

∂vθ
∂θ

+
ρ

r sin θ

∂vφ
∂φ

= −ρ

(

2vr + vθ cot θ

r

)

. (3.46)

By examination, we can see that the pressure equation is almost exactly the

same as (3.46), except instead of density, we have a γP or a P attached to

our divergence and gradient, respectively. Using the adiabatic sound speed
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relation, c2sρ = γP , we can rewrite (3.34) as

∂P

∂t
+ vr

∂P

∂r
+

vθ
r

∂P

∂θ
+

vφ
r sin θ

∂P

∂φ
+ γP

∂vr
∂r

+
γP

r

∂vθ
∂θ

+
γP

r sin θ

∂vφ
∂φ

= −c2sρ

(

2vr + vθ cot θ

r

)

, (3.47)

therefore ending up with the sound speed squared multiplied by our original

density geometric factor. The primitive energy variable equation can be used

to optionally evolve the internal energy separately in FLASH. It comes from

expanding the conservative energy equation and removing terms using mass

conservation. Expanding and dividing by energy, E, we find

∂E

∂t
+

P

ρ

(

∂vr
∂r

+
1

r

∂vθ
∂θ

+
1

r sin θ

∂vφ
∂φ

)

= −h

ρ
ρ

(

2vr + vθ cot θ

r

)

, (3.48)

which is just the enthalpy (h = E+P/ρ) divided by the density, multiplied by

our original density geometric factor. Next, we work out the momentum con-

servation equations, which we simplify using the mass conservation equation.

Since the mass conservation equation simply subtracts one factor of

ρ

(

2vr + vθ cot θ

r

)

, (3.49)

and then expanding the derivatives explicitly adds one, the net effect on the

source terms is simply a division by ρ to get

(

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ

)

+
1

ρ

∂P

∂r
=

(

v2θ + v2φ
r

)

, (3.50)

(

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

)

+
1

ρr

∂P

∂θ
=

(

v2φ cot θ − vθvr

r

)

, (3.51)

(

∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

)

+
1

ρr sin θ

∂P

∂φ
= −

(

vφvθ cot θ + vφvr
r

)

.

(3.52)
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The terms on the right hand side are added as the geometric source terms

during the reconstruction phase.

3.4 Evolution Timestep

In order to be physical, and therefore a numerically stable explicit method, the

code must resolve the fastest moving wave in each cell. This sets the timestep

for a given cell, and FLASH is designed to take the minimum timestep in the

domain as the global timestep, to avoid synchronicity errors. This is often

formally stated as the Courant-Friedrichs-Lewy (CFL) condition (e.g., Toro

2013; Zingale 2019), which states that in each direction

max(cs − v, cs + v)∆t

∆ℓ
≤ C, (3.53)

where ℓ must have unit length and C ≤ 1. We define λ as the maximum

wavespeed that we need to resolve,

λ{i,j,k} = max(cs − v{i,j,k}, cs + v{i,j,k}). (3.54)

For spherical coordinates, we can explicitly write the CFL condition for each

cell as

∆t

(

λr

∆r
,
λθ

r∆θ
,

λφ

r sin θ∆φ

)

≤ C. (3.55)

The important thing to note here is that our timestep is most restricted at

small r and sin θ, corresponding to the inner radial, polar boundaries of the

simulation.
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Chapter 4

Implementation in FLASH4.5

FLASH is a highly adaptable mesh based code (Fryxell et al., 2000; Dubey et al.,

2009), and we choose to implement full 3D hydrodynamics in it because the

code is segmented into separate units, or modules. This makes it so that the

modified hydrodynamics module is isolated from the other inner workings of

the code (e.g., Grid, Gravity, EOS), and can be easily reused in other setups

that would also benefit from spherical geometry (e.g., CCSN, mergers). We il-

lustrate this in Figure 4.1, which shows the hierarchical organization of FLASH.

Second, there is a straightforward expansion from unsplit hydrodynamics to

unsplit magnetohydrodynamics, which will be part of future work in creating

a magnetized torus. Third, hydrodynamics already functions in Cartesian, 1D

spherical, and 2D Cylindrical (Tzeferacos et al., 2012), meaning that the frame-

work for many of the modifications is already present (e.g., memory allocation

for source terms, line/area/volume elements), but the specifics are not yet im-

plemented. Finally, FLASH is capable of supporting adaptive mesh refinement

(AMR), which provides a method to lift the restriction on the global timestep

from the φ cells at small radii as discussed in equation (3.55).

In the hydrodynamics unit (see Figure 4.2), three major files must be mod-

ified. The reconstruction of source terms occurs in hy uhd getRiemannState,

which carries out the Taylor expansion given in equation (3.45). It is here that
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Driver

Evolve

Hydro

GravitySplit Unsplit

Init Grid

EOS

Simulation

OR

Figure 4.1: Organizational structure of FLASH. The Driver unit controls the
running of FLASH by calling the individual modules in the necessary order,
usually configuring the grid, running Hydro (for hydrodynamics) and Gravity,
and then computing thermodynamic variables from the EOS. Note the isolated
structures in FLASH, such that modifying the Hydro unit does not interfere with
any other units. The Hydro unit is split into two separate paths consisting of
an unsplit and a split method. We modify the unsplit method since it has a
straightforward expansion to full MHD.
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Unsplit

hy_uhd_unsplit

hy_uhd_getEnergyFix

Hydro_computeDt

hy_uhd_getFaceFlux

hy_uhd_Roe

hy_uhd_prim2flx

hy_uhd_getRiemannState

hy_uhd_dataReconstOneStep

hy_uhd_DataReconstructNormalDir_MH

hy_uhd_unsplitUpdate

hy_uhd_prim2con

hy_uhd_updateSpeciesMassScalar

hy_uhd_HLL*

OR

hy_uhd_con2prim

hy_uhd_upwindTransverseFlux

Figure 4.2: Tree diagram showing the flow of the FLASH hydrodynamics unit.
The main driving file is hy uhd unsplit which calls upon 4 main subfiles.
These are hy uhd getRiemannState, which does a MUSCL-Hancock expan-
sion of the primitive variables to the faces, hy uhd getFaceFlux, which con-
verts the primitive variables to fluxes and solves the Riemann problem at each
face, hy uhd unsplitUpdate which updates the cell centered variables us-
ing the fluxes at each face, and hy uhd energyFix, which calculates the new
global timestep. These files, modified for spherical coordinates, are highlighted
in green. The tasks are further divided into subfiles with their own very specific
purpose, such as interconversions of primitive variables, fluxes, and conserved
variables or the addition of specific terms in the MUSCL-Hancock expansion.
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the geometric source terms are added to the primitive variables when they are

expanded to the face. Once we have the states at the face, hy uhd getFaceFlux

converts these to the fluxes of the conserved quantities and then solves the Rie-

mann problem using a supported solver. The final conservative update, handled

by hy uhd unsplitUpdate, takes these fluxes and uses the divergence theorem

to advance the volume averaged variables to the next time step. In the re-

construction and conservative update, the finite Cartesian area, volume, and

line elements must be replaced by their corresponding spherical components as

given in Table A.1 in Appendix §A. The geometric source terms must also be

added at both steps, but in the conservative update, we use the explicitly vol-

ume averaged ones from equations (3.28)-(3.30). A more general method would

be to volume average using numerical quadrature, but the scratch arrays hold-

ing the primitive variables at cell faces are not accessible by this routine. The

source terms are therefore explicitly integrated for each coordinate system.

During the reconstruction phase, we also have to handle the boundary con-

ditions. It is important that when θ ∈ {0, 180} or r = 0, the fluxes in that

corresponding direction also vanish with the face area. For reflecting boundary

conditions, we ensure that the fluxes in the ghost cells are the exact negative of

the fluxes in the domain. This is not natively implemented for spherical coordi-

nates, as setting the primitive velocities in the ghost cells to the negative of the

domain velocities no longer results in equal and opposite fluxes being recon-

structed. The ghost cells have different geometrical source terms than the do-

main cells due to their radial and angular dependence, which causes this prob-

lem in non-Cartesian geometries. Instead, the routine hy uhd getFaceFlux is

modified to directly set the fluxes in the ghost cells to be equal and opposite.

This allows us to test mass and energy conservation in the domain using all

reflecting boundaries, as well as providing a framework for reflecting boundary

conditions in the even more complex MHD case.
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Chapter 5

Code Verification Tests

5.1 Sedov Blast

The Sedov Blast (Sedov, 1959) has widely been used as a test case for hydrody-

namic codes. An overpressurized region is created by injecting internal energy

into a point at the center of the computational domain, creating a outward

going shock wave. This shock wave spreads out, vacating a cavity as it travels.

Maintaining the sphericity of the explosion is a strong indicator of a functional

code. The semi-analytical solution for the thermodynamic variables at each

point in time and space for the purely hydrodynamic situation has the form

r = r2λ, (5.1)

v = v2f, (5.2)

ρ = ρ2g, (5.3)

p = p2h, (5.4)

where r is the radius, v is the radial velocity, ρ is the density, p is the pressure,

and the subscript 2 indicates the immediate post-shock value of the variable.

The functions λ, f, g, h are dependent solely on the geometry, EOS, and initial

conditions, and can be found via numerical integration.
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We initialize our test explosion with a uniform ambient density of 1, uniform

ambient pressure of 1 × 10−5, and initial energy of 0.85, such that at t = 1s

the shock radius will be at r = 1. This is valid for any consistent unit system

(e.g., cgs), given the self-similar nature of the solution.

5.1.1 Finding the Analytic Solution

Initializing the Sedov solution requires finding the density, pressure and velocity

pre-shock, post-shock, and at the shock, as outlined in equations (5.1)-(5.4).

We follow the methodology of Kamm (2000) for solving the “standard” case

with a small but constant ambient pressure and density, and a point source

energy deposition. We will briefly detail the process of finding the analytic

solution, starting with the HD equations. In 1D, assuming spherical symmetry

and a γ-law equation of state, the HD equations can be written as

∂ρ

∂t
+

∂(ρvr)

∂r
=

−2ρvr
r

, (5.5)

∂vr
∂t

+ vr
∂vr
∂r

+
1

ρ

∂p

∂r
= 0, (5.6)

∂(pρ−γ)

∂t
+ vr

∂(pρ−γ)

∂r
= 0. (5.7)

Sedov showed that by using the self similarity variables V,R and P , implicitly

defined as

v =
r

t
V, (5.8)

ρ = ρ0R, (5.9)

p = ρ0
r2

t2
P, (5.10)

the above system of equations reduces to one that is only dependent on the

initial energy of the shock and the geometry of the problem, such that the
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functions λ, f, g, and h can be explicitly written as (Kamm, 2000)

λ = x−α0

1 x−α2

2 x−α1

3 , (5.11)

f = x1λ, (5.12)

g = xα3

2 xα4

3 xα5

5 , (5.13)

h = xα0j
1 xα4−2α1

3 xα5+1
4 . (5.14)

The constants in the above equations are given as

x1 = aV, (5.15)

x2 = b(cV − 1), (5.16)

x3 = d(1− eV ), (5.17)

x4 = b(1− c

γ
V ). (5.18)

In spherical geometry, j = 3, and we can further expand the constants in

(5.15)-(5.18) as

a =
(j + 2)(γ + 1)

4
, (5.19)

b =
(γ + 1)

(γ − 1)
, (5.20)

c =
(j + 2)γ

2
, (5.21)

d =
(j + 2)(γ + 1)

(j + 2)(γ + 1)− 2(2 + j(γ − 1))
, (5.22)

e =
2 + j(γ − 1)

2
, (5.23)
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and the exponents in (5.11)-(5.14) are given as

α0 =
2

j + 2
, (5.24)

α1 =
(j + 2)γ

2 + j(γ − 1)

(

2j(2− γ)

γ(j + 2)2
− α2

)

, (5.25)

α2 =
1− γ

2(γ − 1) + j
, (5.26)

α3 =
j

2(γ − 1) + j
, (5.27)

α4 =
j(j + 2)

j(2− γ)
α1, (5.28)

α5 =
2j

j(γ − 2)
. (5.29)

To find the solution we need only the function λ (5.11), after which the rest of

the functions can be calculated from it. λ is determined by using the similarity

relation from dimensional analysis of the explosion, which says that the shock

radius and speed are related to the energy of the shock via

r2 =

(

E0

ρ0κ

)1/(j+2)

t2/(j+2), (5.30)

vs =
∂r2
∂t

=
2

j + 2

(

r2
t

)

, (5.31)

where the constant of proportionality κ is once again reliant on only the to-

tal energy of the shock and the geometry. We determine κ by using the self

similarity variables to calculate the integrals defining the total energy of the

system

E0 =

✂ r2

0

1

2
ρv2dV +

✂ r2

0

p

γ − 1
dV. (5.32)
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From here, the self similar kinetic energy integral is defined as J1, the internal

energy is J2, and it can be shown that these are equal to

J1 =
γ + 1

1− γ
V 2

(

α0

V
+

α2c

cV − 1
− α1e

1− eV

)

(

[aV ]α0 [b(cV − 1)]α2 [d(1− eV )]α1

)−(j+2)

(

[b(cV − 1)]α3 [d(1− eV )]α4 [b(1− c

γ
V )]α5

)

(5.33)

and

J2 =
(cV − γ)(γ − 1)

(1− cV )2γ
J1. (5.34)

Both J1 and J2 are integrated numerically from the velocity at the center until

the outer edge of the shock, corresponding to the self similar variables V0 to

VS. These are found by replacing the appropriate radii, velocities, and times

into the self similar solutions, yielding

V0 =
2

(γ − 1)(j + 2)
, (5.35)

VS =
4

(j + 2)(γ + 1)
. (5.36)

The constant proportionality constant for the energy, κ in (5.30), is given as

κ = 2j−2πJ1 +
2j−1

γ − 1
πJ2. (5.37)

(5.38)

If j = 1, for Cartesian geometry, then the geometry no longer has curvature,

and we divide by a factor of π to account for this change in length.

To determine the rest of the immediate post shock values, we use Rankine-
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Hugoniot relations for a strong shock, giving the results

v2 =
2

γ + 1
vs, (5.39)

ρ2 =
γ + 1

γ − 1
ρ0, (5.40)

p2 =
2

γ + 1
ρ0v

2
s . (5.41)

Care and precision must be taken when numerically integrating the self similar

energies, J1 and J2, as a singularity occurs at the lower bound of the integral,

V0. We use Simpsons rule with 1000 points, which allows us to approach the

singularity to a lower bound of V0+1.256×10−6. Implementing this matches the

results of Kamm (2000) for an initial energy of E0 = 0.851072. Additionally,

finding the function λ numerically near the singularity requires careful work

with Newton-Raphson (NR) iterations. We implement this by limiting our NR

slope by a factor of 100 once we approach r = 0.5.

5.1.2 Sedov Blast Results

We generate the initial explosion by reading in the analytic solution for these

conditions at t = 0.04 s, and then allow the code to evolve the solution inde-

pendently. In Figure 5.1 we show a snapshot of the Sedov explosion at 0.14

s, noting that the explosion retains its sphericity despite the θ dependence of

geometric source terms. Furthermore, we overlay the azimuthally and polar

averaged thermodynamic variables extracted from our simulation at a time of

0.14 s and 0.93 s with the analytic solutions in Figure 5.2. At the earlier time,

the simulation is plagued by a transient reverse pressure wave, noticeable in

the velocity and pressure gradients. However, the steepness of the shock is well

preserved across 2-3 cells. At later times, the transient wave reflects off the in-

terior boundary and dissipates once it hits the forward shock. Small differences

in the density in the post shock region are caused by the finite density floor
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add additional microphysics modules, in particular neutrino heating and nu-

clear recombination. Equilibrium tori are also steady-state solutions to the

HD equations, so we can use them to test our code since a torus orbiting a

point mass should retain its equilibrium state over multiple orbits. Sections

§5.2.1-5.2.5 describe the construction of the torus around a spinning compact

object in great detail, due to its importance in future work, while we discuss

the results of the test in §5.2.7.

5.2.1 Initializing the Torus

If we take the compact object to be a point mass, a good approximation for

NS mergers since the remnant contains & 95% of the mass, then we can define

a gravitational potential quite easily. After that, we choose 4 parameters: The

radius the torus forms at and its mass, R0 and Mt, as well as the entropy and

electron fraction of the torus material, s0 and Ye,0. These parameters will yield

a unique dimensionless distortion parameter, d, which sets the cross sectional

area, or shape, of the torus. Following Papaloizou and Pringle (1984) and using

Bernoulli’s principle, we define the equilibrium equation as a sum of enthalpy

and the rotational kinetic energy and gravitational potentials, which will be

equal to a constant,

w + Φg + Φrot = C. (5.44)

For bound torus configurations, the constant C < 0. Equivalently if we write

the rotational kinetic energy as a function of the specific angular momentum,

Φrot = ℓ2/2r2cyl, such that we recover Keplerian rotation in the absence of gas

pressure, we have

w = −Φg −
ℓ2

2r2cyl
+ C. (5.45)

To model the spinning gravity of a compact object, we use the pseudo-

Newtonian potential of Artemova et al. (1996), which can be written outside
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the event horizon as (Fernández et al., 2015)

ΦA =











GM
r1(β−1)

[

1−
(

r
r−r1

)β−1]
, β 6= 1

GM
r1

ln
(

1− r1
r

)

, β = 1

, (5.46)

where M is the black hole mass, and r1 is the event horizon. The parameter β

relates the event horizon and innermost stable circular orbit (ISCO) as

β =
rISCO

r1
− 1, (5.47)

where the ISCO is defined as in the Kerr metric. The gravitational acceleration

at any point is
dΦA

dr
=

GM

r2−β(r − r1)β
, (5.48)

and the event horizon is located at

r1 =
GM

c2
(1 +

√
1− a2), (5.49)

where a is the dimensionless spin parameter. To obtain the constant specific

angular momentum, we define ℓ = r2ω to once again yield Keplerian rotation

and using

ω2 =
1

r

dΦ

dr
, (5.50)

and then applying this to the Artemova potential, we find

ℓ2 = r3
[

GM

r2−β(r − r1)β

]

,

which reduces to

ℓ2 = GM
rβ+1

(r − r1)β
. (5.51)
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Angular momentum must be conserved once the material that forms the torus

passes the circularization radius. Therefore, the torus can be constructed with

constant angular momentum of

ℓ2 = GM
R0

(1− r1/R0)β
, (5.52)

which in turn makes the azimuthal angular velocity

vφ =
ℓ

rcyl

=

(

GM

R0

1

r2cyl(1− r1/R0)β

) 1

2

. (5.53)

If we substitute this back into equation (5.45) using the Artemova potential,

equation (5.46), we get

w =
−GM

r1(β − 1)

[

1−
(

r

r − r1

)β−1]

− GMR0

2r2cyl(1− r1/R0)β
+ C. (5.54)

The constant C is determined by the radial boundaries of the torus (see Pa-

paloizou and Pringle, 1984), and can be defined in terms of the distortion

parameter, d, a measurement of the shape of the torus,

d =
r− + r+
2R0

= − 1

2C
. (5.55)

Real solutions only exist when d > 1, or the torus limits are not physical. We

can put this into (5.54) and factor out GM/R0 to get

w =
GM

R0

{ −R0

r1(β − 1)

[

1−
(

r

r − r1

)β−1]

− R2
0

2r2cyl

(

R0

R0 − r1

)β

− 1

2d

}

. (5.56)

We now have the enthalpy at every point in the torus, dependent on only the

circularization radius, gravitational potential, and the free distortion param-

eter. What we want, however, is to choose a torus mass that fits our chosen
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parameter space. We use the limits of the torus to define the mass as

Mt =

✂ 2π

0

✂ zhi

zlo

✂ rhi

rlo

ρ(w)rcyldrcyldzdφ. (5.57)

To do this, we need to find the density solely as a function of enthalpy,

entropy and electron fraction, all of which we know (or can choose) at each

point. Succinctly, we would like

ρ = ρ(w | s, Ye). (5.58)

We can do this by inverting the enthalpy for a given entropy and composition

(equivalently electron fraction, since all other mass fractions can be determined

from there using nuclear statistical equilibrium). All that remains after that is

to find the bounds of the torus (see §5.2.3-5.2.4), and then integrate the density

within them to find the torus mass.

If the integration does not return the torus mass that we are looking for, we

will change the shape (and therefore mass) by modifying d, using NR iteration

to recalculate the enthalpies and torus mass. Through iteration, we will find the

torus mass that we want, and we can then use the corresponding value of the

distortion parameter and the corresponding enthalpies to create our desired

density function, (5.58). Then using the found density, chosen entropy, and

chosen Ye we can construct a torus with consistent thermodynamic variables.

5.2.2 Helmholtz EOS

FLASH natively supports analytic γ-law type equations of state, and also the

Helmholtz EOS of Timmes and Swesty (2000). The Helmholtz EOS is a tabu-

lated EOS that includes pressure contributions from radiation, an ideal gas of

ions (including Coulomb corrections), and an electron/positron gas with any

arbitrary degeneracy and relativity parameter. It covers the thermodynamic
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range of 10−10 g cm−3 < ρ < 1011 g cm−3 and 104 K < T < 1011 K. The

density and temperature upper bounds can be expanded by the inclusion of an

analytic degenerate relativistic electron/positron gas (Fernández and Metzger,

2013; Bethe et al., 1980). This covers a broad parameter space necessary for the

varying conditions required in the aftermath of a NS merger. The Helmholtz

EOS has been previously modified to support effects of nuclear recombination

(Fernández and Metzger, 2013) and only minor tweaks were made to update

this functionality to work in FLASH4.5.

We can construct our torus using the Helmholtz EOS with the following

recipe. At each point in the torus we calculate the enthalpy for a choice of

gravitational potential and torus mass, given by (5.56). At this point, we want

to find the temperature given the density, enthalpy, and composition. How-

ever, there is no function that inverts the EOS in this way, since the tabulated

electron quantities require a temperature to interpolate. We solve this by com-

puting the EOS at a density, entropy, and composition, which returns a guess

at the enthalpy wg. If this guess at the enthalpy does not match the determined

enthalpy, then we iterate over the temperature until we converge on the correct

enthalpy. We do this by starting with the definition of enthalpy,

w = e+ P/ρ, (5.59)

or to make our NR efficient, we can normalize

0 =
(e+ P/ρ)

w
− 1. (5.60)

Then we change the temperature to find the correct thermodynamic variables,

since we can do

T = T − w
/

(

dw

dT

)

s,Ye

, (5.61)

52



but the Helmholtz EOS does not calculate dw/dT , so we can expand it out as

(

dw

dT

)

s,Ye

=

(

de

dT

)

s,Ye

+
1

ρ

(

dP

dT

)

s,Ye

− P

ρ2

(

dρ

dT

)

s,Ye

(5.62)

This can be further expanded out in terms of partial derivatives that the

Helmholtz EOS does calculate, since for a fixed composition, P = P (ρ, T ),

E = E(ρ, T ), and ρ = ρ(s, T ):

(

dρ

dT

)

s,Ye

=

(

∂ρ

∂T

)

s,Ye

+

(

∂ρ

∂s

)

T,Ye

(

∂s

∂T

)

ρ,Ye

, (5.63)

(

de

dT

)

s,Ye

=

(

∂e

∂T

)

s,Ye

+

(

∂e

∂ρ

)

s,Ye

(

∂ρ

∂T

)

s,Ye

, (5.64)

(

dP

dT

)

s,Ye

=

(

∂P

∂T

)

s,Ye

+

(

∂P

∂ρ

)

s,Ye

(

∂ρ

∂T

)

s,Ye

. (5.65)

All of the derivatives on the right hand side are quantities that are calculated

by the Helmholtz EOS, so we can use this process to find the enthalpy given

that we do not know the temperature.

5.2.3 Finding the Radial Limits

In order to construct the torus, we have to know the radial limits. We know that

at the zero-enthalpy surface, there is no pressure, and this gives the limits of

the torus. If we set z = 0 in the enthalpy equation, we solve for the cylindrical

radial boundaries, so r = rcyl and therefore

0 =
R0

r1(β − 1)

[

1−
(

rcyl
rcyl − r1

)β−1]

− R2
0

2r2cyl

(

R0

R0 − r1

)β

− 1

2d
. (5.66)
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We use NR again to quickly find the root. To make this computationally

efficient, we want to normalize the above equation in units of R0, so we define

rs = r1/R0, (5.67)

ω̃s = rcyl/R0, (5.68)

which yields

f =
1

rs(β − 1)

[

1−
(

ω̃s

ω̃s − rs

)β−1]

− 1

2ω̃2
s

(

1

1− rs

)β

− 1

2d
, (5.69)

and the derivative for the NR iterations is therefore

f ′ = − 1

ω̃2
s

(

ω̃s

ω̃s − rs

)β

+
1

ω̃3

(

1

1− rs

)β

, (5.70)

5.2.4 Finding the z-Limits

At each radius between these two radial limits, we have to find the upper z-limit

by using NR iterations until the enthalpy vanishes, since that is the torus edge.

We assume equatorial symmetry and set the lower z-limit to be the same as the

upper one. This is done through the same process, except now our normalized

function to iterate over is

f =
1

rs(β − 1)

[

1−
(

1

(ω̃2
s + z̃2)

1

2

)β−1]

− 1

2ω̃2
s

(

1

1− rs

)β

− 1

2d
, (5.71)

and we instead iterate over z̃, defined in units of R0 as above. Now, we find

the derivative

f ′ =
rβ−2
s

(rs − r)β
z̃

(ω̃2
s + z̃2)

1

2

, (5.72)

and then we have all the pieces to perform the NR for the z-limits. Convergence

in the root finder is sensitive to the initial seed value. To get around this, we do

one run of the whole torus, finding the z-limits iteratively. Each limit is used as
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a seed to find the next one, which works well as there is not much iteration over

such a small change. Additionally, converging on a solution becomes difficult

when the inner radial limit approaches the ISCO.

5.2.5 Ambient Medium

We want to set up a medium that is in hydrostatic equilibrium, such that

dP = −ρ(r)g(r)dr. (5.73)

The density profile is set to be radially decreasing, so ρ = ρ0r
−λ. Since the

central point mass dominates the gravitational profile, hydostatic equilibrium

is approximately satisfed by imposing

P (r) = −ρφA, (5.74)

which neglects factors arising from the analytic integration of (5.73), and where

φA is given by the Artemova potential (5.46). We can convert this to a tem-

perature using radiation pressure, which dominates the EOS at this point,

T =

(

3P

a

)1/4

, (5.75)

where a is the radiation constant. This temperature is used as the temperature

seed for the Helmholtz EOS iteration in the ambient medium. Slight deviations

from hydrostatic equilibrium do not dynamically affect the outflow, as the

ambient density profile is normalized to a small fraction of the torus (see §2.1.1).

5.2.6 Gamma Law Torus

Initializing a torus using both the Helmholtz EOS and Artemova potential

brings in factors that can disrupt equilibrium, like strong gravitational effects
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near the ISCO. As a simple code test, we also initialize a torus in Newtonian

gravity using a γ-law EOS. This is done by following the same steps as for the

Artemova potential, but we insert a Newtonian gravitational potential, which

gives our equilibrium equation as

P

ρ
(n+ 1) =

GM

R0

(

R0

r
− R2

0

2r2cyl
− 1

2d

)

. (5.76)

where n = (γ − 1)−1 and we have replaced the enthalpy with pressure and

density as in (5.59). Using the point of maximum density, at a cylindrical

radius of R0, and then applying the γ-law EOS to say P = Aργ, we can find

the constant A

A =
GM

R0(n+ 1)ρ
1/n
0

(

d− 1

2d

)

. (5.77)

Two quadratic equations define the r- and z-limits, respectively written as

r± = d±
√

d(d− 1) (5.78)

z± = ± rcyl
d+ r2cyl

√

4(rcyld)2 − d2 − 2r2cyld− r4cyl (5.79)

Since the limits are analytic expressions and there is no ISCO, it is much easier

to form a torus at any radius using the Newtonian potential. The density at

each point is found by rearranging the equilibrium equation (5.76), and then

the pressure is found using the EOS,

ρ =

[

GM

R0(n+ 1)A

(

R0

r
− R2

0

2r2cyl
− 1

2d

)]n

, (5.80)

P = Aργ. (5.81)
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5.2.7 Torus Test Results

The Helmholtz EOS torus with the Artemova potential is evolved for 5 orbits,

using the radius of maximum density in the torus, R0 = 50 km, a gravitational

mass of 2.65M⊙, and a non spinning BH, which determines the parameter β

and the location of the event horizon, r1. Spin, mass, electron fraction, and

entropy of the torus are chosen as 0, 0.1M⊙, 0.1, and 8 kb baryon
−1 respectively,

to match a previously ran 2D case for comparison. The Keplerian orbital

timescale at R0 is given by

t = 2π

√

R3
0

GM
(1− r1/R0)

β/2 ≈ 3.7 ms, (5.82)

where the additional correction factor to the Newtonian timescale comes from

the use of the Artemova potential (see §5.2.1).
A snapshot of the torus density at t = 0 and t = 18.5 ms (5 orbits) is shown

in Figures 5.4 and 5.5. After a few orbits, the torus begins to puff up and

accrete, as the sharp pressure gradient between the torus and ambient cannot

be maintained and diffusion begins. This variation contains < 2% of the initial

torus mass, thus > 98% of the mass remains unchanged. This demonstrates

the ability of the code to advect supersonically in the φ̂ direction, with little

numerical viscosity. The accretion noticeable in the torus is most likely due to

strong gravitational effects near the ISCO. To remove this effect, we initialize

a γ-law torus an order of magnitude further out (500 km) in a Newtonian

potential, shown in Figure 5.6. The mass of this torus is 0.04M⊙, necessary

for equilibrium, and the other torus parameters remain unchanged. In this

setup < 0.05% of the torus diffuses or accretes, showing how without strong

gravitational effects, the torus holds equilibrium much better. These tests also

show the compatibility of the code with additional physical source terms, as

gravity holds the torus in place correctly. Unfortunately, Figure 5.7 shows that

gravity decreases the accuracy of energy conservation to order 10−3. This is
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Chapter 6

Conclusion

In this thesis we simulated the post-merger state of binary NS mergers. We

began modeling 2 dimensional axisymmetric tori around a HMNS with com-

putationally efficient parameterizations of the relevant microphysics, including

gravity, neutrino interactions, nuclear recombination and viscous stresses. We

found that it is problematic to recreate the high (∼ 0.3c) lanthanide-free ejecta

velocities required by standard kilonova modelling of GW170817 with the al-

lowed realistic parameter space derived from theory, EM, and GW observations.

Multiple lines of research may lead to a resolution to this problem, including

the enhancement/inclusion of dynamical ejecta. The small dynamical ejecta

mass of GW170817 may be boosted by thermal effects, and shock heating at

the interface may change the colour of this ejecta (Radice et al., 2018). The

inclusion of photon reprocessing of the blue kilonova in radiative transfer codes

used to reconstruct the kilonova has been shown to reduce both the blue ejecta

velocity and mass, at least in preliminary models (Kawaguchi et al., 2018).

The most straightforward way to boost the blue ejecta kinetic energies is

via the inclusion of fully 3 dimensional magnetic stresses. Recent simulations

in GRMHD have shown that it is in principle possible to recreate the required

mass and velocity from a BH-torus system with appropriate neutrino physics

(Fernández et al., 2018; Siegel and Metzger, 2018; Miller et al., 2019).
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As a first step towards including magnetic fields in our simulations, we

have modified the unsplit staggered mesh solver in FLASH to operate on a 3D

spherical coordinate grid. We implemented source terms that arise from taking

covariant derivatives in a non-Cartesian coordinate system. As well, we in-

clude corrected line, area and volume elements in the data reconstruction and

evolution algorithm. Conservation of energy and momentum are checked by

running a Sedov blast wave in the modified code and comparing to the analytic

solution. We also generate an equilibrium torus using the Helmholtz EOS and

an Artemova potential, to test both the implementation of supersonically ad-

vecting material and gravitational source terms. The results from both of these

tests show that the code is energy and mass conserving to the same precision

as the out-of-the-box Cartesian implementation.

The long-term aim of this project is to simulate a magnetized HMNS-torus

system after a binary merger, to test this part of kilonova theory. Future

work will involve implementing full MHD in the unsplit spherical solver. This

involves adding magnetic source terms to the momentum equations as well

as the induction equation during the reconstruction-evolution steps. The use

of constrained transport to ensure the divergence-free evolution of magnetic

fields must also be adapted to spherical geometry, requiring the use of correct

geometric line and cell face area elements. The setup of an equilibrium HMNS

and a magnetized torus will then be possible, and the addition of neutrino

and nuclear recombination microphysics will allow us to explore post-merger

outflows.
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B. Côté, C. L. Fryer, K. Belczynski, O. Korobkin, M. Chruślińska, N. Vassh,
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Li-Xin Li and Bohdan Paczyński. Transient Events from Neutron Star Mergers.

ApJ, 507:L59–L62, November 1998. doi: 10.1086/311680.

J. Lippuner and L. F. Roberts. r-process Lanthanide Production and Heat-

ing Rates in Kilonovae. ApJ, 815:82, December 2015. doi: 10.1088/0004-

637X/815/2/82.

J. Lippuner, R. Fernández, L. F. Roberts, F. Foucart, D. Kasen, B. D. Metzger,

and C. D. Ott. Signatures of hypermassive neutron star lifetimes on r-process

nucleosynthesis in the disc ejecta from neutron star mergers. MNRAS, 472:

904–918, November 2017. doi: 10.1093/mnras/stx1987.

B. Margalit and B. D. Metzger. Constraining the Maximum Mass of Neutron

Stars from Multi-messenger Observations of GW170817. ApJL, 850:L19,

December 2017. doi: 10.3847/2041-8213/aa991c.

Ben Margalit and Brian D. Metzger. The Multi-Messenger Matrix: the Future

of Neutron Star Merger Constraints on the Nuclear Equation of State. arXiv

e-prints, art. arXiv:1904.11995, Apr 2019.

B. D. Metzger and R. Fernández. Red or blue? A potential kilonova imprint

of the delay until black hole formation following a neutron star merger. MN-

RAS, 441:3444–3453, July 2014. doi: 10.1093/mnras/stu802.

B. D. Metzger, G. Mart́ınez-Pinedo, S. Darbha, E. Quataert, A. Arcones,

D. Kasen, R. Thomas, P. Nugent, I. V. Panov, and N. T. Zinner. Electro-

magnetic counterparts of compact object mergers powered by the radioac-

tive decay of r-process nuclei. MNRAS, 406:2650–2662, August 2010. doi:

10.1111/j.1365-2966.2010.16864.x.

Brian D. Metzger. Kilonovae. Living Reviews in Relativity, 20:3, May 2017.

doi: 10.1007/s41114-017-0006-z.

69



Brian D. Metzger, Todd A. Thompson, and Eliot Quataert. A Magnetar Ori-

gin for the Kilonova Ejecta in GW170817. ApJ, 856:101, April 2018. doi:

10.3847/1538-4357/aab095.

A. Mignone, T. Plewa, and G. Bodo. The Piecewise Parabolic Method for

Multidimensional Relativistic Fluid Dynamics. ApJS, 160(1):199–219, Sep

2005. doi: 10.1086/430905.

Jonah M. Miller, Benjamin R. Ryan, Joshua C. Dolence, Adam Burrows,

Christopher J. Fontes, Christopher L. Fryer, Oleg Korobkin, Jonas Lip-

puner, Matthew R. Mumpower, and Ryan T. Wollaeger. Full Transport

Model of GW170817-Like Disk Produces a Blue Kilonova. arXiv e-prints,

art. arXiv:1905.07477, May 2019.

Ehud Nakar. Short-hard gamma-ray bursts. PhR, 442:166–236, Apr 2007. doi:

10.1016/j.physrep.2007.02.005.

Ramesh Narayan, Bohdan Paczynski, and Tsvi Piran. Gamma-Ray Bursts as

the Death Throes of Massive Binary Stars. ApJL, 395:L83, Aug 1992. doi:

10.1086/186493.

B. Paczynski. Gamma-ray bursters at cosmological distances. ApJL, 308:L43–

L46, Sep 1986. doi: 10.1086/184740.

Carlos Palenzuela, Steven L. Liebling, David Neilsen, Luis Lehner, O. L. Ca-

ballero, Evan O’Connor, and Matthew Anderson. Effects of the microphysical

equation of state in the mergers of magnetized neutron stars with neutrino

cooling. PhRvD, 92:044045, Aug 2015. doi: 10.1103/PhysRevD.92.044045.

J. C. B. Papaloizou and J. E. Pringle. The dynamical stability of differentially

rotating discs with constant specific angular momentum. MNRAS, 208:721–

750, Jun 1984. doi: 10.1093/mnras/208.4.721.

70



Vasileios Paschalidis. General relativistic simulations of compact binary merg-

ers as engines for short gamma-ray bursts. Classical and Quantum Gravity,

34(8):084002, Apr 2017. doi: 10.1088/1361-6382/aa61ce.

Vasileios Paschalidis, Zachariah B. Etienne, and Stuart L. Shapiro. Importance

of cooling in triggering the collapse of hypermassive neutron stars. PhRvD,

86(6):064032, Sep 2012. doi: 10.1103/PhysRevD.86.064032.

A. Perego, S. Rosswog, R. M. Cabezón, O. Korobkin, R. Käppeli, A. Arcones,

and M. Liebendörfer. Neutrino-driven winds from neutron star merger rem-

nants. MNRAS, 443:3134–3156, October 2014. doi: 10.1093/mnras/stu1352.

David Radice and Liang Dai. Multimessenger parameter estimation of

GW170817. European Physical Journal A, 55(4):50, Apr 2019. doi:

10.1140/epja/i2019-12716-4.

David Radice, Albino Perego, Kenta Hotokezaka, Sebastiano Bernuzzi,

Steven A. Fromm, and Luke F. Roberts. Viscous-Dynamical Ejecta from

Binary Neutron Star Merger. preprint, art. arXiv:1809.11163, September

2018.

S. Richers, D. Kasen, E. O’Connor, R. Fernández, and C. D. Ott. Monte Carlo

Neutrino Transport through Remnant Disks from Neutron Star Mergers.

ApJ, 813:38, November 2015. doi: 10.1088/0004-637X/813/1/38.

Milton Ruiz, Antonios Tsokaros, Vasileios Paschalidis, and Stuart L. Shapiro.

Effects of spin on magnetized binary neutron star mergers and jet launching.

arXiv e-prints, art. arXiv:1902.08636, Feb 2019.

L. I. Sedov. Similarity and Dimensional Methods in Mechanics. 1959.

Yuichiro Sekiguchi, Kenta Kiuchi, Koutarou Kyutoku, and Masaru Shibata.

Dynamical mass ejection from binary neutron star mergers: Radiation-

71



hydrodynamics study in general relativity. PhRvD, 91:064059, Mar 2015.

doi: 10.1103/PhysRevD.91.064059.

N. I. Shakura and R. A. Sunyaev. Black holes in binary systems. Observational

appearance. A&A, 24:337–355, 1973.

M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku,

Y. Sekiguchi, and M. Tanaka. Modeling GW170817 based on numerical

relativity and its implications. PhRvD, 96(12):123012, December 2017a. doi:

10.1103/PhysRevD.96.123012.

M. Shibata, K. Kiuchi, and Y.-i. Sekiguchi. General relativistic viscous hydro-

dynamics of differentially rotating neutron stars. PRD, 95(8):083005, April

2017b. doi: 10.1103/PhysRevD.95.083005.

Masaru Shibata and Kenta Kiuchi. Gravitational waves from remnant massive

neutron stars of binary neutron star merger: Viscous hydrodynamics effects.

PhRvD, 95:123003, June 2017. doi: 10.1103/PhysRevD.95.123003.

Masaru Shibata, Keisuke Taniguchi, and Kōji Uryū. Merger of binary neutron
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Appendix A

Spherical Coordinate System

To incorporate spherical coordinates into FLASH, it is necessary to know cell

geometry factors, as well as the form of the spherical divergence. For reference,

we independently derive these quantities from first principles in this appendix.

The infinitesimal line, perpendicular area, and volume elements and their cor-

responding finite cell formulations are given in Table A.1.

Infinitesimal Finite
Line Area Volume Line Area Volume

r dr r2 sin θdθdφ ∆r r2∆cos θ∆φ
θ rdθ r sin θdrdφ r2 sin θdrdθdφ r∆θ 1

2
∆r2 sin θ∆φ 1

3
∆r3∆cos θ∆φ

φ r sin θdφ rdrdθ r sin θ∆φ 1
2
∆r2∆θ

Table A.1: Infinitesimal and finite line, area, and volume elements in 3D spher-
ical. For less than three dimensions, axisymmetry is assumed. In 2D and 1D,
∆φ = 2π, for 1D, ∆θ = π and therefore ∆ cos θ = 2.

We can find the tensor divergence in spherical geometry by first finding the

basis vectors. In relation to cartesian coordinates,

x = r sin θ cosφ, (A.1)

y = r sin θ sinφ, (A.2)

z = r cos θ. (A.3)

We can then find the basis vectors, ea, in two ways. We can either write the
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line displacement in our coordinate system as

ds = dxex + dyey + dzez, (A.4)

and then differentiate the coordinate transform equations,

dx = sin θ cosφdr + r cos θ cosφdθ − r sin θ sinφdφ, (A.5)

dy = sin θ sinφdr + r cos θ sinφdθ + r sin θ cosφdφ, (A.6)

dz = cos θdr − r sin θdθ. (A.7)

If we introduce tensor notation, and use Einstein summation convention, we

can write

ds = eadx
a, (A.8)

which is simply a statement that the measured displacement should not change

across coordinate systems. We can then compare this to equations (A.5)-(A.7)

and say that

er = sin θ cosφex + sin θ sinφey − cos θez, (A.9)

eθ = cos θ cosφex + r cos θ sinφey − r sin θez, (A.10)

eφ = −r sin θ sinφex + r sin θ cosφey + 0ez. (A.11)

An alternative way is to use transformation laws to say the exact same thing

e′a =
∂xa

∂xa′
ea, (A.12)

and then explicitly calculate derivatives to obtain the same result. We can find
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the metric tensor using the inner product

gab = ea · eb. (A.13)

Since our coordinate system is orthogonal, this gives the result

grr = 1, (A.14)

gθθ = r2, (A.15)

gφφ = r2 sin θ. (A.16)

We can see that this metric is not normalized, and in physics we generally write

things in terms of the normalized basis vectors

êr = er, (A.17)

êθ =
1

r
eθ, (A.18)

êφ =
1

r sin θ
eφ. (A.19)

In non-cartesian coordinate systems, the derivative of a first rank tensor or

higher does not yield the components of another tensor. This is because at

each point in space there is curvature, causing the basis vectors to change

with position. To get an equivalent definition of a derivative for constant

basis vectors, the idea of a covariant derivative is used. The divergence is a

contraction of the covariant derivative along the diagonal axis, so it is useful to

define the full covariant derivative first. Introducing the notation ∂vc = ∂v/∂xc,

we write the covariant derivative for a first rank (vector) and a second rank

(matrix) tensor,

∇cv
a = ∂cv

a + Γa
dcv

d, (A.20)

∇ct
ab = ∂ct

ab + Γa
dct

db + Γa
dct

ad. (A.21)
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where Γi
jk are the connection coefficients, or Christoffel symbols of the second

kind. The divergence is simply given by a contraction of the indices c and a,

∇av
a = ∂av

a + Γa
dav

d, (A.22)

∇at
ab = ∂at

ab + Γa
dat

db + Γa
dat

ad. (A.23)

The next step then is to find the connection coefficients for our spherical ge-

ometry. There are two ways to go about this: We can take explicit derivatives

of our basis vectors as they are defined in (A.9)-(A.11)

∂cea = Γb
aceb, (A.24)

or we can use the metric directly (e.g., Hobson et al. 2006, Chapter 3),

Γa
bc =

1

2
gad

(

∂bgdc + ∂cgbd − ∂dgbc

)

, (A.25)

which with a diagonal metric becomes

Γa
bc =

1

2
gaa

(

∂bgac + ∂cgba − ∂agbc

)

, (A.26)

and as such is only non-zero when b = c, b = a, or a = c. Either way, we find

that

Γr =











Γr
rr = 0 Γr

θr = 0 Γr
φr = 0

Γr
rθ = 0 Γr

θθ = −r Γr
θφ = 0

Γr
rφ = 0 Γr

φθ = 0 Γr
φφ = −r sin2 θ











, (A.27)

Γθ =











Γθ
rr = 0 Γθ

θr = 1/r Γθ
φr = 0

Γθ
rθ = 1/r Γθ

θθ = 0 Γθ
θφ = 0

Γθ
rφ = 0 Γθ

φθ = 0 Γθ
φφ = − sin θ cos θ











, (A.28)
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and

Γφ =











Γφ
rr = 0 Γφ

θr = 0 Γφ
φr = 1/r

Γφ
rθ = 0 Γφ

θθ = 0 Γφ
θφ = cot θ

Γφ
rφ = 1/r Γφ

φθ = cot θ Γφ
φφ = 0











. (A.29)

Using these results, we can write the vector divergence:

∇rv
r = ∂rv

r + Γr
rrv

r + Γr
θrv

θ + Γr
φrv

φ = ∂rv
r, (A.30)

∇θv
θ = ∂θv

θ + Γθ
rθv

r + Γθ
θθv

θ + Γθ
φθv

φ = ∂rv
r +

1

r
vr, (A.31)

∇φv
φ = ∂φv

φ + Γφ
θφv

r + Γφ
θφv

θ + Γφ
φφv

φ = ∂φv
φ +

1

r
vr + cot θvθ, (A.32)

which we can write in terms of our unit vectors by dividing each by the nor-

malization factors of each basis. This yields the familiar result that

∇ · v = ∇rv
r +∇θv

θ +∇φv
φ, (A.33)

∇ · v =

(

∂rv
r +

2

r
vr
)

+

(

∂θv
θ +

cot θ

r
vθ
)

+
1

r sin θ
∂φv

φ, (A.34)

∇ · v =
1

r2
∂r(r

2vr) +
1

r sin θ
∂θ(sin θv

θ) +
1

r sin θ
∂φv

φ. (A.35)

We can do the same thing for the tensor divergence. We have already calculated

the first Christoffel symbol for the vector divergence, so we just have to add on

the second one. Columnwise, this looks like

∇rt
rb = ∂rt

rb + Γb
rrt

rb + Γb
θrt

θb + Γb
φrt

φb (A.36)










∇rt
rr

∇rt
rθ

∇rt
rφ











=











∂rt
rr

∂rt
rθ

∂rt
rφ











, (A.37)
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∇θt
θb = ∂θt

θb +
1

r
trb + Γb

rθt
rb + Γb

θθt
θb + Γb

φθt
φb (A.38)











∇θt
θr

∇θt
θθ

∇θt
θφ











=











∂θt
θr + 1

r
trr − rtθθ

∂θt
θθ + 1

r
trθ + 1

r
tθr

∂θt
θφ + 1

r
trφ











, (A.39)

∇φt
φb = ∂φt

φb +
1

r
trb + cot θtθb + Γb

rφt
rb + Γb

θφt
θb + Γb

φφt
φb (A.40)











∇φt
φr

∇φt
φθ

∇φt
φφ











=











∂φt
φr + 1

r
trr + cot θtθr − r sin2 θtφφ

∂φt
φθ + 1

r
trθ + cot θtθθ − sin θ cos θtφφ

∂φt
φφ + 1

r
trφ + cot θtθφ + 1

r
tφr + cot θtφφ











. (A.41)

We can add these all together to get our divergence. We split these into individ-

ual directions, and use the normalized bases just as with the vector divergence.

The normalized tensor is written as

T = tabêa ⊗ êb (A.42)

where we have used the second rank outer product, which defines a dyad

(u⊗ v)ab = uavb. (A.43)

After normalization, the tensor divergence in each direction becomes

r :

(

1

r2
∂r(r

2trr) +
1

r sin θ
∂θ(sin θt

θr) +
1

r sin θ
∂φt

φr − (tθθ + tφφ)

r

)

, (A.44)

θ :

(

1

r2
∂r(r

2trθ) +
1

r sin θ
∂θ(sin θt

θθ) +
1

r sin θ
∂φt

φθ +
tθr

r
− cot θ

r
tφφ

)

, (A.45)

φ :

(

1

r2
∂r(r

2trφ) +
1

r sin θ
∂θ(sin θt

θφ) +
1

r sin θ
∂φt

φφ +
tφr

r
+

cot θ

r
tφθ

)

.

(A.46)
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