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Abstract

This thesis consists of two parts. In the first part, we consider the impact
problem of a nonlinear elastic string with variable boundary conditions. Since there
is no similarity solution for this case, we apply a perturbation method when the
deformation has a small change from the initial equilibruim state. The perturbation
solutions are compared with the numerical resuits obtained by a Godunov type
scheme.

In the second part, we consider the impact problem of a circular elastic mem-
brane with variable boundary condition. This problem is an extension of the impact
problem with constant boundary condition which has been considered by Haddow,
Wegner and Jiang. We rederive the nonlinear governing equations using the direct
method of Green, Naghdi and Wainwright. The nonlinear results are compared

with the results obtained from the linearised version equation used by Farrar.

(o



Table of Contents

Chapter 1  Introduction

Chapter 2 Conservation Laws
2.1 Some Basic Facts about Conservation Laws
2.2 Simple Waves
2.3 Riemann Problem

Chapter 3 Governing Equations and Elementary Waves for the
Normal Impact Problem of a Nonlinear Elastic String
3.1 Governing Equations
3.2 Constitutive Relations
3.3 Elementary Waves
3.4 Solutions of Constant Boundary Condition Probl-m

Chapter 4 Perturbation Solutions for the Impact Problem of a
Nonlinear Elastic String
4.1 Solution for the Case with Given Variable Boundary Condition
4.2 Comparison of the Perturbation Solution with the Ezact Solution
for the Case of Constant Boundary Conditions
4.3 Application of the Perturbation Solution to the Impact Problem
of a Nonlinear Elastic String

Chapter 5 Normal Impact of the Nonlinear Elastic String
for the Case A; ~ A,
5.1 Approzimate Equations

[P

82

86
86



5.2 Ezact Solvtion of the Approzimate System

for Constant Boundary Conditions 88
5.3 Solution for the Case of Vartiable Boundary Conditions 94
Chapter 6 Numerical Analysis 106
6.1 Finite Difference Scheme in Conservation Form 106
6.2 Godunov’s Scheme 110
6.3 Approzimate Riemann Solvers 114
6.4 Two Step Riemann Solver 115

6.5 Numerical Analysis of the Normal Impact of

a Nonlinear Elastic String 122
Chapter 7 Normal Impact Problem for a Nonlinear Circular Membrane 133

7.1 Nonlinear Membrane Theory 133

7.2 Governing Equations for the Impact Problem 140
Chapter 8 Numerical Methods for the Impact Problem

of a Nonlinear Membrane 148
8.1 Numerical Procedures 148
8.2 Numerical Results 158

Bibliography 170



Chapter 1

Introduction

The purpose of this thesis is to consider certain quasilinear systems of hyper-
bolic partial differential equations which govern the propagation of nonlinear waves
in isotropic hyperelastic solids; that is elastic solids which have a stored energy
function and are isotropic in a natural reference state. We confine our attention

to mechanical effects and consider certain basic problems concerning ela:<ic strings

and membranes. In general the system of equations may be written in the form

Ou(X,t) + OH (u(X,t))

o 5+ B(u(X,1),X)

0, (1-1)

where u = (uj,uz, - ,un)? isavectorin R® and (X,t)€ RxR%' with X
representing a spatial variable and t time. A superposed T denotes transpose.
Similarly H and B are vectorsin R"™ with H at least once continuously
differentiable in a suitable openset 2 of R". When B =0 the system given
by equation (1.1) is normally referred to as a system of conservation laws, and an
excellent account of the properties of solutions and their applications to physical
problems together with an historical account of investigations of such systems can

be found in Smoller {24].

In matrix form system (1.1) may be written as

_—-—a“(a’t" 9, A(u(X,t))% + B(u(X,t),X) =0, (1-2)



where A isan (n x n) matrix with components

Aij = =— i,7=12,..n.

Following Whitham [31] we refer to the system (1.2) as hyperbolic if the eigenvalues
of A are real and there is a full set of linearly independent left and right eigen-
vectors. If the eigenvalues are all real and distinct we say that the system is strictly
or totally hyperbolic.

It has been recognised since the earliest attempts by Riemann [24] to solve
problems in gas dynamics that, even if the initial and boundary conditions associ-
ated with a problem governed by a system of the form of equation (1.1) are smooth,

solutions. Much of the terminology developed for dealing with these gas dynamics
problems, such as simple waves, shock solutions, Rankine-Hugoniot conditions and
entropy conditions has carried over to general discussions and to the consideration
of waves in solids. An account of progress in fluid and gas dynamics up to 1949 is
contained in the classical book of Courant and Friedrichs [6]. A detailed account
of further progress up to 1983 can be found in the book of Smoller [24], and a
different approach may be found in the text of Whitham [31]. Concurrently with
analytical attacks on problems governed by equations (1.1), (1.2) there has been
substantial progress on numerical methods for dealing with such systems. A good
general reference is provided by Sod [25].

We are concerned here with wave propagation in rubberlike solids. A good
source of information on finite deformations is the book of Ogden [19]. Jeffrey [15]
also treats quasilinear hyperbolic partial differential equations in a form suitable for
application to solids. Additional references may be found in the books by Ciarlet
[3] and by Engelbrecht [9].



Consider first of all the homogeneous form of equations (1.1), (1.2) when B
0 . The general theory of such systems is discussed in the paper by Lax 18], where,
in attempting to distinguish physically relevant solutions of genuinely non-linear
solutions, entropy inequalities were introduced, and will be discussed in subsequent
chapters. An important problem for such a system is the Riemann problem where

we require a solution of the system

Bu(X,t) | OH(uX,1)
ot oxX

=0, —-c0o<X<oo, t=0, (13)

with

{u;_,, X <0,
ug, X >0,

(1-4)

where u; and up areconstant states. In general the solution to such a problem
may be found as a combination of constant states, simple waves, and shock solutions.
The nonlinearity then arises when such solutions are combined to form a complete
solution. An extension of the Riemann problem arises in considering the impact
loading or unloading of a nonlinear elastic string. The loading problem has been
considered by [29] where a general form of the strain energy function and stress-
stretch relation for the string is introduced. The unloading problem for a plucked
hyperelastic string using the general form of strain energy function discussed by
Ogden [19] has been considered by Wegner, Haddow and Tait [30). In these cases
it is assumed that equation (1.3) holdson (X,t) € (0,00) x (0,00) and boundary

initial condition of the type

u=ugr, X>0 t=0,

u'=upr, X=0, t>0, (1-5)

are introduced where up denotes a constant state and u* is an appropiate
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constant subset of u(0,t) . The constant initial/boundary conditions again allow
the solution to be constructed as a combination of constant states, simple waves,
shocks, and contact discontinuities. An interesting feature here is the effect of the
choice of strain-energy function for the elastic material. This determines the stress-
stretch relation and the eigenvalues of the matrix A corresponding to H in
equation (1-3). For the elastic string problem there are, in general, four eigenvalues
+A;, Az, A; >0, Az >0. The eigenvalues determine wave speeds and as
the stretch of the string changes the relative magnitudes of A; and Az also
change so that at certain stretches the wave speeds may coincide (see Fig.1), and
in fact change their order. The basic assumption made in obtaining the solutions

described above is that the velocity at X =0 remains constant.

T(A) *

3.6
8-
2.6
2

1.6

In attempting to explain experimental results, Dohrenwend, Drucker, Moore
and Paul [8] included the elastic restoring force actingat X =0, ¢>0. Asare-
sult the boundary condition is no longer constant and the techniques outlined above
no longer apply. We are then led to consider numerical methods. If no shocks occur

characteristic theory can be used and otherwise it is necessary to consider a method
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suitable for dealing with discontinuous solutions. Difficulties with such methods are
well known and we have chosen a Godunov type scheme based on an approximate
Riemann solver suggested by Harten, Lax and Van Leer [14]. The method has been
extended in order to produce improved shock resolution. If we consider the prob-
lem of a point mass M impacting an elastic string normally and symmetrically
when the restoring force is taken into account, then if the effects of the mass and
it’s impacting velocity are not large a perturbation solution may be appropriate.
We have investigated such solutions in the present thesis using an extension of a
method suggested by Davison [7]. This method is not appropriate for all ranges
of values of the eigenvalues A;, A, and the method has been supplemented in
certain cases by a technique first used by Collins [4,5] in dealing with elastic half
space problems. The results obtained when the perturbation method applies may

then be compared with the numerical results.

Next consider an example giving rise to the nonhomogeneous form of equations
(1-1). If a circular nonlinear elastic membrane is impacted by a flat ended cylindrical
object this form of the system (1-1) governs the resulting motion. For constant
initial/boundary conditions the problem has been considered by Haddow, Wegner
and Jiang [13]. Of course similarity solutions are no longer available. Paralleling
the case for a string we consider the case when the restoring force is taken into
account. Experimental results have been reported by Farrar [10] for this case and
a linear analysis presented. Here we consider the nonlinear system and compare
our results with the linear analysis and compare and contrast our results with those

found in [10].

This thesis consists of eight chapters. In Chapter 2, we introduce some basic
concepts about conservation laws such as the definition of a genuinely nonlinear

characteristic field and the definition of a linearly degenerate characteristic field,

5



the concepts of a weak solution of the initial value problem for a conservation law,
shock waves and jump conditions, entropy conditions, and so on. We also consider

simple wave solutions of a homogenous conservation law. The Riemann problem

for a homogenous conservation law is also considered in this chapter.

In Chapter 3, the equations of motion and the compatibility conditions for
the normal impact problem of a nonlinear elastic string are considered in the first
section. These equations can be written as a system of four conservation laws. The
initial conditions and the boundary conditions are set. In section 3.2, we consider
the various strain energy functions such as the Ogden three parameter one [19], the
Mooney-Rivlin, and the neo-Hookean . The corresponding stretch-stress relations
are obtained for the incompressible hyperelastic string. In section 3.3, elementary
waves are considered and, in section 3.4, we consider the solutions of tle normal
impact problem of a nonlinear elastic string with constant boundary values for the
loading problem.

In the first section of Chapter 4, we consider perturbation solutions for the
impact problem of the string with given small impact velocity under the assumption
that A; # A;. In section 4.2 we compare the perturbation solution with the
solution for the constant boundary-value condition. In section 4.3, we apply the
perturbation solution obtained in section 4.1 to the impact problem of a nonlinear
elastic string.

In Chapter 5, we modify a method suggested by Collins [4,5] in dealing with
a half space problem and in section 5.1, we obtain the approximating equations.
In section 5.2, we consider the solution of the approximate system under the con-
stant boundary value condition and compare these solutions with the corresponding
solution of the original system. In section 5.3, we consider the solution of the ap-
proximate equations for the case of variable boundary value condition.

6



In the first section of Chapter 6, we will explain why it is essential that a
finite difference scheme is in conservation form. We state the definitions of entropy
function and entropy flux and state the entropy condition for a three-point finite
difference scheme. In section 6.2, we discuss a scheme proposed by Godunov [25].
In section 6.3, we discuss Godunov type schemes based on approximate Riemann
solvers and state a theorem proved by Harten, Lax and Van Leer [14] and describe
their simplest Riemann solver containing only one intermediate state. In section 6.4,
we extended the above simplest Riemann solver to a two-step Riemann solver. We
have shown that the numerical solution obtained by the two-step Riemann solver
satisfies the integral form of conservation law and the integral form of entropy
condition. In section 6.5, we apply the Riemann solver suggested by Harten, Lax
and Van Leer [14] and the two-step Rieman solver to the normal impact problem of
a nonlinear elastic string. The numerical results obtained by the two-step Riemann
We also compare the numerical solutions with the perturbation solutions when

Ay # A, and with the approximate solutions when A, = As.

In Chapter 7, we approximate the three-dimensional elastic sheet by a two-
dimensional elastic membrane. Based on the general theory of Cosserat surfaces
given by Green, Naghdi and Wainwright [11], we set up a membrane theory directly
omitting thermomechanical effects. The nonlinear versions of the equations of mo-
tion are then obtained. These equations and the equations of compatibility can be
@mbiﬁed into a system of five conservation laws. We also discuss the connection

between the nonlinear equations and the linear equations used by Farrar [10].

In the last chapter, Chapter 8, we apply a characteristic me’ hod scheme sug-
gested by Haddow, Wagner and Jiang [13] to the nonlinear vers n of the impact
problem. A similar characteristic scheme is applied to the linearized version and the

7



results are compared with those obtained by an extended Riemann solver. Interest-
ingly, if we choose the parameters suitably for the nonlinear version, double-valued
results can be obtained. These results are compared with those obtained by Rox-

burgh, Steigmann and Tait [20] for a corresponding static problem.



Chapter 2

Conservation Laws

2.1 Some Basic Facts about Conservation Laws

Let Q bea fixed regionin R3? space, occupied by some physical substance
with density wu(z,t), where z denotes the spatial coordinates and t denotes
time. If f(u) denotes the flur of the substance crossing unit area of 912,

b(u,z,t) denotes a source term per unit volume of this substance, then one has

—d—/udv=—/ f-ndS—/bdv, (2.1-1)
dt Jo oa 0

where dv is the element of volume of the region 2, J9Q is the boundary of
Q, n isthe outward normal vector to 052, and dS is the element area of
0. Assuming that all partial derivatives of u and f are continuous in the

region £, then by applying the divergence theorem, we have
Ou )
(= + Divf + b)dv = 0, (2.1-2)
q Ot

where Div denotes the divergence operator. Since § is arbitrary, we then have

u

o7 +Divf +b=0. (2.1-3)

If equation (2.1-3) is generalized to a system of equations we have a system of

conservation laws

%+Divf.~+b.- =0, 1=12,..- ,n, (2.1-4)
where f; is some nonlinear function of the u;, (57 =1,2,---,n).

9



If a single spatial variable z is considered, then (2.1-4) can be rewritten as
v, + H(u), + B(u,z) =0, (t>0), (2.1-5)

where

o) (.29

(e="g" ="
u= (ulauz" 0 iuﬁ)Tg
H(u) = (Hy(u),- - , Ha(w)),

B(u,z) = (By(4,z),--- ,Ba(u,z))7.

The superscript T denotes the transpose. If B is not zero, then (2.1-5) is re-
ferred to as an inhomogeneous system of conservation laws or conservation laws with
source term. If B is identically zero, then (2.1-5) is referred to as a homogeneous
system of conservation laws or simply a conservation law.

We can rewrite (2.1-5) in the following matrix form
us+ A(u)u - + B(u,z) =0, (2.1-6)

where A(u) = 8 is the Jacobian matriz for H(u). The components of A
are given by

0H;

Aij = e

4,7=12,:,n. (2.1-7)
We assume for the moment that A has n distinct real eigenvalues

A1(u) < Ay(u) < -+ < Ag(u), (2.1-8)

with the corresponding linearly independent left eigenvectors L;(u) and right

10



eigenvectors R;(u) which are defined by

Liw)A®w) = ALi(),  A®Ri(w) = AwRi(w), (=12 .n)
(2.1-9)
Following Lax [18] and Smoller[24], we define the i-characteristic field to be genuinely

nonlinear if
(grad Ai(u)) : Ri(u) # 0, for all wu, (2.1-10)

and to be linearly degenerate if
(gradAi(u)) - Ri(u) =0  forall wu. (2.1-11)

It is well known that the initial value problem for equation (2.1-5) may not
have a differentiable solution for all time even for the smooth initial condtions
u(z,0) = uo(z). For example, if we consider the initial value problem for the

following scalar homogeneous conservation law

u” ,
e+ (T).i =0, (n>1)

"1, <0,

u(z,0) = { 0, z>0, (2.1-12)

the geometric solution obtained by using characteristic methods is double -valued
for t > 0 (see Fig.2.1-1). There is no regular differentiable solution for the initial
value problem described by equations (2.1-12) forall ¢ > 0. This example confirms
that the initial value problem for the system (2.1-5) in general does not possess a
differentiable solution for all time. It is necessary therefore to consider generalized
solutions so that nondifferentiable functions or bounded measurable functions may

be included as solutions.



Consider the initial value problem of (2.1-5) under the condition
u(z,0) = uo(z), (2.1-13)

and assume that ¢(z,t) is any C! test function with compact support in
t>0. If u(z,t) is a bounded measurable function and satisfies the following

equation
/ 0 (u%t‘-é +H(u)% — B(u,z)¢)dzdt + /_m to(z)¢(z,0)dz =0 (2.1-14)

for any such test function ¢(z,t), then u(z,t) is said to be a weak solution of

the initial value problem (2.1-5), (2.1-13).

At
Il f ’ F
Ve L]
ff‘f"'fL/f
AN
/] /]
;;’xx’,x;”’/
N
f;’fix,
z",x/,
4%
/ f
/ /] A0 N
0 z
Fig.2.1-1

We consider what conditions the discontinuous solution should satisfy. Let C
be a smooth curve across which u has a discontinuity and assume that u is
smooth away from C and has well defined limits as (z,t) approaches points
on C from either side. If the curve C is described by z = z(t), we define
v = u(z(t) - 0,¢) and uy = u(z(t) +0,t). Let P be any point on C,

12



R be a small circle centered at P and R;, Rz be the two parts of R
separated by C. Assume also the test function ¢ iszeroon JR and outside
of R. Notice that u is smoothin R, and R;. Using equation (2.1-5) we

then have

/ (uds + H - — Bg)dzdt = / / ()1 + (H) »)drdt
R; R;

and by applying Green’s theorem, we have

/-/R.- ((ug).s + (Ho),s)dzdt = /{;Ri ¢(—udz + Hdt).

Since ¢=0 on OR , we have

P2
/ ¢(—udz + Hdt) = ¢(—u_dz + H(u_)dt),
R, P,
P,
S(—udz + Hdt) = — | d(—updz + H(uy)dt),
R; P,

where P,,P, aretheintersection pointsof R and C. Substituting the above

results into equation (2.1-14), we get
/ 6(~[uldz + [H(u))dt) = 0,
c

where [u] =u_ —uy, [H(u)]=H(u-)— H(us). Since ¢ is arbitrary we

have
Viu] = [H(u)] (2.1-15)

where V = % is the speed of the discontinuity. The condition given by equation
(2.1-15) is called the jump condition or the Rankine-Hugoniot condition.
We note that in general different corservation laws correspond to different jump

conditions. However, a partial differential equation may correspond to more than

13



one conservation law. For example, the equation u ¢+ u""lu, =0 gives rise to

infinitely many conservation laws
u‘k+1 uﬁ+k i 7 ) 7
- — ] =0 k=0123---. 2.1-16
(k+1)'t+(n+k)‘: 0, 1,2, (2.1-16)

Therefore, if we admit discontinuous solutions, we cannot start from a differential
equation which is not in conservation form. Instead, we must start from a physical
conservation law. We also note that the weak solution satisfying equation (2.1-14)

may not be unique. For example, the following initial-value problem

ﬂ!g+(%)j; - 0, (n>1, t>0, —o0<z<00)
0, z<0,

2.1-17
1, z>0 ( )

u(z,0) = {

has a single-valued solution in the regions z /t<0 and z/t>1 but the values

of u cannot be determined in the region 0< z/t <1 by characteristic methods

v

T

(see Fig.2.1-2).

5]

ig.2.1-2

We can construct a solution in the region 0 < z/t < 1 by introducing a

14



discontinuous function which satisfies the jump condition across the line of discon-

tinuity. We obtain

(z.1) { 0, r<t/n, 5 1.18
uy(z,t) = 2.1-
! 1, z>t/n. ( )
On the other hand, we can find a continuous solution

0, r <0,

1.
‘u2(.1:,t) = (%) n-1, 0<r<t, (2.1-19)
1, T >t

The problem now is how to choose an admissible weak solution. For this purpose,
Lax proposed a criterion for selecting admissible discontinuous solutions. If the i-th
characteristic field of system (2.1-5) is genuinely nonlinear, and the discontinuity
under consideration has speed V, then the discontinuity is admissible in the sense

of Lax if
A.'(tl.;.) <V« A;(u_), A,-_l(u_) <V« A.-+1(u+). (2.1-20)

for some : = 1,2,--- ,n. Such a discontinuity is called an i-shock wave. The
conditions given by inequalities (2.1-20) are referred to as entropy conditions or Laz
shock conditions. For the case of an homogeneous scalar conservation law

Ou 3f(u)

E_F oz

=0, (2.1-21)

the entropy inequality reduces to

a(u_) >V > a(uy), (2.1-22)

where a(u) = f'(u). Clearly the solution described by equation (2.1-18) violates

this condition and hence it is not an acmissible solution of equation (2.1-17). Solu-

15



tion wup is an example of a centered simple wave; we will consider such solutions

in the next section.

2.2 Simple Waves

In this section, we will consider a system of homogeneous conservation laws
v+ H(u) =0, (—o <z <00,t>0). (2.2-1)
System (2.2-1) can be rewritten as a quasilinear hyperbolic system
v+ Au)u =0, (2.2-2)

where it is assumed that A has n real and distinct eigenvalues A;(u) < --- <

An(u) and that the corresponding left and right eigenvectors are linearly indepen-

dent.

If the system (2.2-2) hasa C! solution u depending on a single component

of u, say u,, then

du
(u"tI + ut’zA) du‘ = o. (2.2‘3)
If u is not identically zero, then one has
du
du‘ = kR, UQ't + TU.,;- = 0, (2.2‘4)

where k is some constant and T is an eigenvalue of A and R is the

corresponding right eigenvector. By the second equation in (2.2-4), one has
u = u(u,) = constant, on — =, (2.2-5)

As wu, varies, the lines %f— = 7(u.) sweep out a simple wave region. This idea

is explained in a more precise way below.
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Suppose u € N C R® on which H(u) issmooth. If w: N — R isa

smooth function such that, for u € N,

R - gradw(u) =0,

—
s
[§]

.6)

where Ry is a right eigenvector of A corresponding to the eigenvalue Ay,
then the function w is called a k-Riemann invariant of the system (2.2-1). Since
R} defines a particular direction in R"™ space, there are (n-1) k-Riemann invari-
ants whose gradients are linearly independent in N (see Smoller [24]). Suppose
u is C' in some domain D. If all k-Riemann invariants are constant in D
then u is called a k-simple wave or a k-rarefaction wave.

Suppose now that D is a k-simple wave region with w;(u) = c¢;,i =
1,2,---,n—1, where ¢; are constants and where w;(u) are the (n-1) k-
Riemann invariants whose gradients are linearly independent. Thenif a;, - ,an_;

are (n-1) constants, we have

argradw; + asgradwg + <+« + ap—1gradwy,_; =0 (2.2-7)
ifand ifonly a; =az =---=ap-1 =0. If we define a matrix M by

M = [(gradwy)T, (grad wy)7, - - , (grad wn_;)7), (2.2-8)

where T denotes the transpose, then equation (2.2-7) can be written in a matrix

form
M. ((111 ag,:-- iansl)T =0. (2,2'9)

Since equation (2.2-9) requires a; = 0,i = 1,2,--- ,n — 1, this implies that not

all (n-1) by (n-1) submatrices in M are singular. Therefore, the (n-1) equations
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wy(u) =¢; with u = (uj,uz,--- ,u,,)T are equivalent to a system of the form
uj = uj(u;), j=1,2,---,n, j#i, forsomefixed :. (2.2-10)

Thus a simple wave depends on a single component of u .
Suppose u € N, then the intersection curve of the surfaces wi(u) = ¢; =
constant , i=1,2,---,n—1, isthe integral curve of R; passingthrough u.

To see this, we let v = v(s) denote such an integral curve. Then

dw(v(s)) _ radw. P = ‘Ri= )
7 = grad w ds—gradw Ry =0, (2.2-11)

where w is a k-Riemann invariant. On the other hand, if v(s) is alocal curve

along which all k-Riemann invariants are constant, then

dw(v(s)) _ dv
Fra grad w T = 0, (2.2-12)
for every k-Riemann invariant w so that 42 is orthogonal to the (n-1) dimen-
sional space spanned by gradw;, i=1,2,---,n—1, and so lies in the span of
R, hence
d
2% = os)Ri(v(s)). (2.2-13)

Next, we will see that if u is a k-simple wave in some region D, then the

k-characteristics are straight lines in D. First we note that

du Ou Ou
Li- 55 =Le- (55 +Mg) =0

along %"- = A¢. Secondly, we notice that w;,i =1,2,--- ,n—1, are all constant
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in D ,then

.%:—';=gradur,--%=0, on Z—; = A\
Thus
- Le T
grad w,
: %_0, on %‘1=Ak. (2:214)
_grad;u"_l i

Since Li-Ry #0, Li hasa component in the direction of R; so that the

matrix in (2.2-14) is nonsingular. Then one has

du Ou Ou dx
_—= == Ak—; =0, on —&? = /\k, (2.2—15)

and so u is constant along a k-characteristics and so the characteristics are

straight lines, (See Fig.2.2-1).

i\ ¢
z = Ar(u)(t — )
u = constant
34
?
0 T

Fig.2.2-1
A particular class of simple waves depends only on the ratio (z —z0)/(t—to).
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They are called centered simple waves or centered rarefaction waves, where (zo,to)
is called the center of the wave.
If a simple wave solution is centered at the origin, then the solution is of the

form

u(z,t) = u(z/t), (2.2-16)

and a solution of this form is called a si- wilarity solution.

Now we will describe the states u which can be connected to a given constant
state u; on the right by a k-simple wave. Assume that the A'* characteristic
field is genuinely nonlinearin N, then one can normalize Ry by gradAx-Ri =

1. Let u; € N , then the following problem

ﬁ = Ri(v(B)), v(Ax(uwi)) =wui, B> Ax(u), (2.2-17)

has a solution v(3) on the interval Ax(u;) < 8 < Aix(w) + a, for sufficiently
small a. We have

Ak(v(ﬁ)) = gfradAk = Ry - grad A = 1.
Hence
Ar(v(B)) = 8. (2.2-18)
Now we define u(z,t) by
u(z,t) =v(z/t),  Ax(w) < 2/t < Ax(wi) +a.

If w isa k-Riemann invariant, and [ = z/t , then

g—gra.dw du

dg '_g:a.dw-Rggﬂ,

dp
20



so w is constant for Ax(u) < z/t < Ax(w;) +a. Thus u defines a simple

wave for this region. Also, one has

Ax(v(B)) = B > Aw(u1).

Thus A; increases along the simple wave. Since u is smooth, then one has

1dv
tflﬁ

+ A)R; =0,

z
Tﬂ

( —

us+ Alu)u = — +A(u)3

~in %‘\NF‘“

mmr-m

since z/t = Ay. We have then constructed a one-parameter family u(8) which
can be connected to u; by a centered k-simple wave. If we introduce a new
parameter & by

Ar(u) = Ax(ug) + ¢, (2.2-19)
and note that

wi(u) = wi(u)), 1=1,2,--- ,n—1, (2.2-20)

then since gradw;,i=1,2,.--- ,n—1, and gradA; are linearly independent, it
follows by the implicit function theorem that, equations (2.2-19) and (2.2-20) have a
unique solution for & sufficiently small. By equation (2.2-19), one has %‘ =1.
This implies that € > 0 so that Ag(u;) < Ax(u(e)). With some calculation,

one can show that (see Smoller [24])
=Ry, o=t (2.2-21)

Next, we will introduce the notion of elementary waves. The elementary waves
for the homogeneous conservation laws include simple waves and shock waves for
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the genuinely nonlinear fields, and contact discontinuities for the linearly degenerate
field.

If R; is the i-th right eigenvector of A in equation (2.2-1), we define the
i-simple wave curve, (i = 1,2,---,n) to be the integral curve of the vector field
R;(u) through the state wuo.

If the i-th field is genuinely nonlinear, then a centered i-simple wave is a smooth

solution which connects the left constant state ug to the right constant state wu,

uo, z/t < Ai(uo),
u(z,t) = { v(z/t), Ai(bo) < z/t < Ai(w),
i, z/t > Ai(u;)
Ai(v(z/t)) = z/t, (2.2-22)

where w(z/t) can be connected to up by an integral curve of R;, with
Ai(v) 2 Ai(uo).

If the i-th field is genuinely nonlinear, then a centered i-shock wave is a discon-
tinuous solution u(z,t) satisfying the jump condition and the entropy inequalities
Yo, z/ t< Va

u(z,t) = { 1, z/t>V,

(41 — o)V = H(u;) — H(uo), Ai(u1) <V < Ai(uo).
(2.2-23)

If the i-th field is linearly degenerate, then we have a contact discontinuity

- Yo, $/t < ‘,’
u(et) = { Uy, T/t>V,
V = Ai(uo) = Ai(ur), (2.2-24)

where u; can be connected to up by an integral curve of R;. In the next
section, the solution of the Riemann problem will be considered using elementary

waves.
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2.8 Riemann Problem
The Riemann Problem for a homogeneous conservation law of the type consid-

ered here is defined as the following initial-value problem

u,+ H(u), =0, —oo <z <00, t>0, (2.3-1)

u(z,0) = {

uy, r <0,
u,, >0,
where w; and wu, are constant vectors.

First we consider a system of two conservation laws, where u = (u;,u;)7,
H = (H;(u), Hz(u))T. For this case, the solution of the Riemann Problem (2.3-1)
with arbitrary constant states u; and wu, isgiven by Smoller with the condition
of genuine nonlinearity [23]. For the case without genuine nonlinearity, the Riemann
problem of a system of two conservation laws with arbitrary initial constant states
was solved by T.P. Liu [17)

As a particular example, Smoller solves the Riemann problem for the following

p-system.

Ui+HU):=0. t>0,—c0<z <00

U=(v,u), HU)=(-u pW)T (2.3-3)
where p' <0, p >0. The initial condition is

U(z,0) =

T (v AT :
{U,—(m,m) , x<0, (2.3-4)

If A is the Jacobian matrix for the p-system, then its components are given by

An = 0, Az = -1, An = Pi('v)s A‘ﬂ =0. (23’5)
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A has real and distinct eigenvalues

A= *(*P'(v))ilz <0< ("’—’P"(U))l/2 = Az.

(2.3-6)

With some calculation, we find the i-shock wave curves
given by

Si,(1 = 1,2,) are

Si:u—up=—((v ~ w)(p(v) — p(v)))'/?,

v >v,
Sz u—up=—((v — w)(p(w) — p(v)))'/2, w<v.
¥ U, =

(2.3-7)
(*uf,u'f)T lies on one of the curves S;,(i = 1,2,) then it can be

connected to U; by a i-shock along which the shock speed V satisfies the jump
conditions

vr) = —(ur — ), V(ur — ur) = p(vr) — p(v1). (2.3-8)

The i-rarefaction curves R;, (i

1,2,) are given by

Ritu—~y= / (=p'(y))dy, v>u,
L/

Ry:u—uy = —/ (-p'(¥))*dy, v<u. (2.3-9)
v
If U, liesin the curve R;, then it can be connected to U; by a smooth cen-
tered simple wave U(z/t) = (v(z/t), u(z/t))T, where v(z/t) is determined
by

gft = ~(=p'(v(z/t)'?, M(U) < z/t < A (U,).

(2.3-10)

Then wu(z/t) can be found from the first equation of (2.3-9). The case when U,
lies on the curve R; is similar.
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It can be shown that the curves R; and S; have the same first and second
derivatives at U;. The same is truefor R; and S;. These curves divide the
u-v plane into four regions as shown in Fig.2.3-1. If U, lies in region 1, then
we can find an intermediate state U,, which lies on the curve R; and can be
connected to U, from the right through a 2-shock, ( see Fig.2.3-2). The cases for
which U, lies in regions 2,3 and 4 are shown in Fig.2.3-3, Fig.2.3-4 and Fig.2.3-5,

respectively.

u ;rs
- _ B
_ - -
0 , v
Fig.2.3-1

It is interesting to note that if U, lies in region 4 and

w= [ (- W)y < oo, (2.3-11)

and if u, > u;+2ug, then the Riemann problem for the p-system has no solution.

For the case of isentropic gas dynamics where

k i
P(U) = 1)?!" ¥>1,

with % a positive constant, the integral in equation (2.3-11) is convergent. This

[ o]
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corresponds to the appearence of a vacuum (see Smoller [24]).

We will see in the next chapter that if there is no vertical motion, and if the
Mooney-Rivlin stress-stretch relation is considered, then the governing equation for
a nonlinear elssti;: string is reduced to the p-system. However, the integral in (2.3-
11) is not convergent for this case, hence a vacuum will not appear. Therefore, the
Riemann problem for this nonlinear elastic string can be solved for any given initial
data.

For the system of n conservation laws, Lax proved the following fundamental
result [18]: When wu; isclose to u,, everystate u; has a neighborhood such
that, if u, belongs to this neighborhood, the Riemann Problem (2.3-1) has a
solution . This solution consists of n 4 1 constant states connected by centered
shock waves, centered rarefaction waves, and centered contact discontinuities. There
is exactly one solution of this kind, provided the intermediate states are restricted
to lie in a neighborhood of ;.

The Riemann problem plays an important role in the initial value problem

for conservation laws. James Glimm, using the solution for the Riemann problem

value problem for conservation laws with data u(z,0) = ug(z), as long as the
total variation of wug(z) is small [18].
The first step of Glimm’s method is to approximate wuqo(z) by a piecewise

constant function wv;(z,0)
vi(z,0) =m; Jh<z<(j+1h, j=0,%1,.-. (2.3-12)

where mj; is the average value of wuo(z) over the interval (jh, (j+1)h) and
h = Az is the element of length in the =z direction.

The second step is to construct an exact solution for (2.3-1) with the initial

]
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value u = u(z,0). This solution is obtained by solving a series of Riemann prob-
lems of (2.3-1)

, ] =0,£1,--- 2.3-13
m;, (i'i > ]h)s I ' ( )

u(z,0) = {
The solutions for these Riemann problems can be obtained by the above theorem
given by Lax since mj_; and m; are close by the assumption that ug(z) has
small total variation. If A is an upper bound for |Ax|, then the solutions of the

neighboring Riemann problems do not intersect as long as

h -
t< ET% (2.3-14)

The third step is to take u,(z, %) as a new initial value function, where wu;(z,t)
is the approximate solution constructed by step one and step two, then we approx-
imate this function by a piecewise constant value function. Let a;,a3,---, be
a sequence of random numbers uniformly distributed in the interval [0,1]. Glimm

used the following approximation

vi(z,h/2)) =up(jh + enh, h/2\), jh<z<(j+1)h, j=0,£1,-.-
(2.3-15)

va(z,nh/2)) = up(ih + aq,nh/2)),

Jh<z<(j+1)h, j=0,%1,... n=23,-.. (2.3-16)

Let uj(z,t) be an approximate solution constructed by the above method. Glimm
showed the following fundamental results:
1) For any given real number &£, one can choose & so small that if the
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total variation of wug(z) 1is less then 4, then for any ¢, the total variation of
tp(z,t) along any line in the z direction is less then e.

2) There is a subsequence of u,(z,t) which convergesinthe L; norm with
respect to z, uniformlyin ¢, toa limit u(z,t).

3) For almost all choices of the random sequence a,,, this limit wu(r,t) is
a weak solution of (2.3-1).

These results and the solution for the Riemann problem constructed by Lax
are the basis for the subsequent works on systems of conservation laws.

The solution for the Riemann problem also plays an important role in building
finite difference scheme which is often refered to as Glimm’s scheme or the random
choice method. Another example is Godunov’s scheme which is also based on the

solution of Riemann problem, and will be discussed more fully in Chaper 6.
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Chapter 3

Governing Equations and Elementary Waves for the

Normal Impact Problem of a Nonlinear Elastic String

3.1 Governing Equations

In this chapter we consider the problem of a stretched nonlinear elastic string
subjected to a normal impact. We assume that the string consists of homogeneous
incompressible material, and that it is perfectly flexible so that the shearing force
and the bending moment can be ignored. Since a rubber string is a poor heat
conductor, thermal effects are ignored and a purely mechanical theory is considered.

We consider a fixed rectangular Cartesian coordinate system OXY and as-
sume that the undeformed string lies along the X axis,with —-L< X <L. We
take this configuration as the reference configuration and denote the position of a
material point of the string by X.

The material point at X moves to the position z in the deformed state,

where
z = (z,(X,¢), z2(X, t))T, (3*1’1)

and we assume that the Oz;z; axes coincide with OXY.
The string is then stretched to its initial position: z,(X,0) = &%,  2,(X,0) =
0, where L, > L, andsubjected toa normal impactat X = 0. Since the prob-
Let S(z,t) denote the arc length measured from z = 2(0,t) in the de-
formed configuration and define the stretch A(X,t) by

X, t) = %. (3.1-2)
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Define also 6 = 6(X,?) to be the angle that the tangent to the string makes
with the positive X' axis,andlet u and v denote the components of velocity
in the directions

ry and =z respectively so that

_ dry _ ilrs 3
u= S oe= 92 T\
denotes the nominal tension of the string.

We then have the following compatibility relations:

H(Acosb)  Fu (Asinf) _ Ov 3.1.3
ot ox’ 5 oX (31-9)

O(Tcos6) _ Bu  O(Tsinb) _ dv -
ax  “fa Tax TPa (3.1-4)

where p denotes the constant density of the string in the undeformed configura-
tion.

We may rewrite equations (3.1-3) and (3.1-4) in the nondimensional conserva-
tion form

u:+H(u),x=0, 0<X <1,

t>0, (3.1-5)
where
u = (Acosd, Asind,u,v)T,
| o (3.1-6)
H(u) = —(u, v, T(A)cos8, T()\)sin6) ",

with the superposed T denoting the transpose. The nondimensional form is
obtained by setting

=vfe, T=T/u, (3.1-7)

in equations (3.1-3) and (3.1-4) and dropping the hats. Additional details of the
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c? = u/p, (3.1-8)

where u  the shear modulus for infinitesimal deformation from the undeformed
state,

Initial conditions are taken as

where Ao = L,;/L = 1.

If restoring forces are ignored, the boundary conditions are:

u(0,t) =0, v(0,t) = gq,

u(1,t) = v(1,t) =0, t>0, (8.1-10)

and if the restoring forces are taken into account, the boundary conditions are

u(0,t) = 0, % (0,t) = 2aT{A(0,t)}sin 6(0, ),

u(1,t) = v(1,t) =0, t>0, (3.1-11)
v(0,0%) = g,

where

o= PAL

M ] (3- 1‘12)

with A denoting the cross sectional area of the string and M the impacting
mass.
A in the equation

%,t +A(u)u,x =0, (3.1-13)
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Az = Ay = -1

—As; = T'cos® 6 + T'sin? 6/,

) N o (3.1-14)
—A3zy = —Aqy = (T' = T/)N)sinbcos b,
—A42 = T'sin? 6 + T cos? 6/ )\
where '= ﬁ . The eigenvalues of A are
Agr = (T2, Age = £(T/N)V?, (3.1-15)
with corresponding right and left eigenvectors
R = (Acos@, Asinf, FAjrcosd, FA;Asin G)T,
R#?) = (Asin@, —Acosf, FA2Asinb, LAzAcos 6)7,
(3.1-16)

LED = (AjAcosd, Ai)sinh, Frcosf, Fisind),

L®?) = (A;Asinf, —Az\cosf, FAsinf, +Acosé).

If X =(X1,X2,Xs) denotes the position vector of an arbitrary given mate-
rial point in the undeformed state, z(X) = (z1,22,z3) denotes the corresponding
position vector of the same ma*: rial point in the deformed state, then the deforma-

tion gradient tensor F isd - ed by

Oz
F=— J.L-
F =% (3.2-1)
with components given by
Fia = -e—a,x; s 1=1,23, a=123 (32!2)
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If, for an elastic material, there exist a scalar function of the deformation gradient

tensor F ,say W(F) , such that
W = tr(H(F)F), (3.2-3)

where H(F) is the response function (see Ogden [19]), then this material is
called a Green elastic or a hyperelastic material. The scalar function W is called
a strain-energy function or an elastic potential energy function.

For an incompressible hyperelastic material, Ogden [19] proposed the following
form of strain-energy function

W=

3 N | i
B8+ A5+ 3 - 3), (3.2-4)
i=1 !

where )j, 2,3 are the principal stretches. In equation (3.2-4), if we take a; =
2, az=-2, uy=pa, pz=-u(l—a), pz=0, then wehavethe Mooney-

Rivlin strain -energy function:

&

W=+ 22+ 22 =3)+ (1 =a) A2+ 202+ 2352 -3)) (3.2-5)

2
and if we take a =1, we have the neo-Hookean strain-energy function

w %(;\g + 22 422 -3). (3.2-6)

For the normal impact problem of the incompressible hyperelastic string, we assume
that Ay =X, Jd2=2A3 =A"12 where ) isthe uniaxial stretch. For this case,

equation (3.2-4) reduces to

w=Y" Zﬁ:_(,\"f +2073F - 3). (8.2-7)

i=1
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The nondimensional nominal stress-stretch relation is given by

1 dW .
— (3.2-8)

d\

= |~

T(A) =

so that
1 Y
T()) = jz,,;,-(,\ﬂ-’f'l -A"7F0), (3.2-9)
T =1

We use the values given by Ogden

0.0034, p3 = —0.02374,

p1 = 1.491u, Uz

a) = 13, gy = 5:0, 3 = -2.0.

T(X)

]
A

Fig-gigil

Graph of nominal stress T°()) as a function of the stretch A for the stress/stretch relation {3.2.9)

—) and for 3 Mooney-Rivlin material (-- - -~ ) with a =0.6.

( -
The graph of T()\) as a function of A is an S— shaped curve with an

inflection point at ); = 2.6403. The eigenvalues A; and A; coincide at

Aet = 2.1267, and A = 3.1674.
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The Mooney-Rivlin nominal stress-stretch relation is given by:

T(A) = (a + (1 = a)/A)(A — 1/A2).

(3.2-10)

In Fig.3.2-1, we plot the graph of T(A) as a function of A by using equa-

tions (3.2-9) and (3.2-10) with a = 0.6. The curves are approximately the same

for 1.0 € A €3.5. For further consideration of the impact problem of the elastic

string, we will adopt Ogden’s 3-term formula (3.2-9).

3.8 Elementary Waves

If we denote

u; = Acosf, uz;=2Asinf, uz=u, ug=v,

then the eigenvalues of the Jacobian matrix A in equstion (3.1-13) are
Agr = £A; = £(T)?, Aga = £Ay = (T/N?, A= (u] +ud)'/?
and the corresponding right eigenvectors are

RV = (uy, uz, FAru, FArua)T,

REF?) (ug, —u1, FAzusz, iAgul)T-

Then

- T"A
grad Ay - R = +(A,)') = 5=,
2A,

gradAss - R =0, forall u

(3.3-1)

(3.3-2)

(3.3-3)

and it follows that the characteristic fields related to +A; are linearly degenerate,

while the fields related to +A; are more complicated. If either a neo-Hookean or a

36



Mooney-Rivlin stress-stretch relation is considered, then the fields related to A,

are genuinely nonlinear since in these two cases *’;:! >0 forall u. However,
if we adopt the three terms stress-stretch formula suggested by Ogden, then the
+A; fields can no longer be considered as genuinely nonlinear for all )\ since
T"=0 at A=), Wenotethat J\; isthe only inflection point of the function
T()), soif 1<A< A or A>); the £A, fields are genuinely nonlinear.

For future reference, we consider some known facts on the behaviour of solutions
of the constant boundary condition problem.

Consider first the simple wave solution for the A; field. If T"(X) #0, we
normalize the right eigenvector R(+!) by

r o= ﬁﬁ(ﬂ) = ﬁ(ul,ug, —Aug, —Aug)T (3.3-4)

so that gradA; -r; =1.

Suppose now wug is a constant state; we will construct a solution of the form
u = u(f) which can be connected to the constant state on the right. Consider the

following problem

dti(ﬁf) = Tl(u(ﬁ))a u‘(AI(uﬂ)) = Ug, ﬁ < AI(EG), (3.3-5)

where [ is a parameter. The differential equation can be written in component

form

dul(B) ux duz(ﬁ) Uz dug(ﬁ) _ ?‘Alﬂl du;(ﬂ) _ —A;ug

a8 T AN TdB AN T dB T AN T dB A
(3.3-6)
By the first two of equations (3.3-6), we have
du .
=2 (3.3-7)

&
-
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and if we recall that u; = Acosf,u; = Asin@ , it then follows from equation

(3.3-7) that

By the first and the third of equations (3.3-6), we have

i3 _
d‘l!-] - Al-

L

Since us =u, equations (3.3-9) and (3.3-8) give
u+ / A, (p)dpcos 6y = constant.

Similarly, the second and the fourth equations of (3.3-6) give

and since uy =v, we have
,A V
v+ / Ai(p)dpsin 6 = constant.

We note that

dAlg;g(ﬁ)) =gradA; - g—; =gradA;-r =1

so we have
M(u(B) =8
since u(A;(uo)) = uo.

Since A; = (T'(\))'/2, we have

T'(\B) = £,
38
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and since we require [ < A;(ug), it follows that T'(A(3)) < T'(Xo). Hence
if A(B) > Ao so that we have a loading problem, then we require that 77(\)
is decreasing in the interval considered, and this implies that 1 < A < A,. If
A(B) < Ao, we have an unloading problem and we require that T'(\) is an
increasing function and this implies that A > A;. In these intervals T'()\) is a
monotone function of A and so the inverse function exists, so we can solve for

A(B) using equation (3.3-15) as
AB) = (T')~1(B%). (3.3-16)

Then u and v can be found by using (3.3-10), (3.3-12) and (3.3-16).

Suppose now w is any 1-Riemann invariant, then

dw dw
d_._gra,dw--‘-i—ﬂ—;gradwrlsﬂ

and so u(B) -constructed by the above method is a simple wave for the A; field.

Setting B = X=X0 we easily verify that u( %%‘%) is a solution for (3.1-13) since

t—to
u+ Au x = T1-(A - l;—fnf)u s
= A ME@ne@) =0 (331)

The special choice [ = z/t gives a similarity solution, which is referred to as a
centered simple wave.

Next, we consider the shock wave solution for the A; field, which should
satisfy the jump condition, and the entropy inequality.

The jump conditions are

V[Acos] =[-u], V[Asinf]=[-v], V|[u]=[-Tcosb], V[v]=[-Tsinb].
(3.3-18)
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Eliminating [u] and [v] in equations (3.3-18) we have
V¥ Acosb] = [Tcosb], V?[Asind] = [Tsin6] (3.3-19)
and by eliminating V in the above equations, we have
[T/ A] sin]6] = 0. (3.3-20)
It follows that
either [T/)\] =0, or sin[f] =0, or both. (3.3-21)

Case I: If [A]#£0, [T/A]#0, [6]=

Il
o
23
g

VZ=VE=[T)/]N, (3.3-22)

AD-TA))1/2 g the velocity fora A discontinuity and

where Vi(A+,A~) = (&
A=, At are the values of A immediately behind and ahead of a shock.
Case 2 If [M\]#0, [T/A\=0, [6=0, then

Vi =V}

[TV/IN] = T(\")/A~ = TH)/A%, (3.3-23)
Case $: If [\ 7.0, [T/A\]=0, [6]#0, then
V2 =T(A")/A™ = TOH)/A* = [T)/]\. (3.3-24)

Case 4 f [\ =0, [T/A]=0, [6]#0, then

V2= V2 =T/, (3.3-25)

where Vg = (T(A)/A)!/? is the velocity for a 8 discontinuity.
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The above four cases can be reclassified as two cases

Casel: [)\]#0 (casel, case 2 and case 3.)

2 _ 7]
VE=5p

CaseII: [6] #0 (case 3 and case 4.)

T\
V72~=———(A).

Since the A; field is genuinely nonlinear for the cases A < \; or A > )\,
we have the following centered shock solution

Region 1: X/t>V
A=X, 0=0,, u=wuy, v=uvg.
Region2: V> X/t>0
A=A, 0=60, u=ug~V(A\ —X)cosby, v=vp— V(A — Ao)sinby

where
V= VL(AO, A1), Al(Ao) <V« Al(/\l) (33!26)

If Ao < A;, then theinequality in (3.3-26) requires ); < Ao andif A > )\
we require A9 < A;. For the loading problem we must have \g < \; in the
genuinely non-linear case.

Finally, sincethe A, field islinearly degenerate, we have the following contact
discontinuity solution

Region 1: X/t>V

A=), 0=6), u=1ug, v=ug.
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Region2: V> X/t>0

_.\ = AQ’ é = el,
U= tp— (T(AQ)AQ)I'/?(CDS 61 = COos 6@),

v = vg = (T(Mo) o) /*(sin6; — sinby), (3.3-27)

where
V = Vr = Aa(Xo).

As we mentioned before, in general the A; characteristic field is not genuinely
non-linear over its entire range. A general elementary wave solution of the planar
motion of an elastic string was given by Michael Shearer [22] who also solved the
corresponding Riemann problem using an extension of a method of Wendroff for
two by two systems that fail to be genuinely nonlinear [28]. We employ this idea in
summarising the cases in section 3.4 below.

Interestingly, if there is no vertical motion, then v =6 =0 and the system

(3.1-5) is reduced to
Ar—ux =0, us—T(A),x =0. (3.3-28)

If the Mooney-Rivlin stress-stretch relation is considered, then T'()\) > 0 and
T"()) < 0 so that equations (3.3-28) are in fact a p-system considered earlier in

Chapter 2.

Consider the constant boundary condition problem of system (3.1-5) with con-
ditions (3.1-9) and (3.1-10). The solutions of such problem were given by Wegner,

Haddow and Tait [29] up to reflection for various cases. These solutions hold for
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large deformations. In this section, we will consider some cases in detail and outline
the solutions for the other cases briefly for later reference. We consider only the
loading problem here.

Consider first the A waves.
Case (A): 1< X < Am < Ai, where Xy is the initial stretch, \,, is the
maximum stretch, and JA; is the inflection point where T"(\;) = 0. Since for
this case Aj(Am) < A1(X) < Ay(Xho) for 1< Ao A< A, <)y, then, by the

analysis of simple wave solution in section 3.3, we have the solution as follows

A= Ao, X/t > AI(AQ)
Al(/\) =X/t, Al(Ao) >X/t>A1(Am),

A=Am,  Ai(Am) > X/t 20. (3.4-1)

Case (B): 1< Ao < Ai < Am. For this case, we define Ar (see Fig.3.4-1) by

T(Ar) - T())

=T < ;. 4
P T'(\), 1<A<\ (3.4-2)

We can easily show that Ar > A;. If not, then Ap < A; and Ap # A We
may suppose that Ar > A. Since T"(A\) <0 for A <), wehave T'(\r) <
ﬂ%%).:_i_'(& < T'()\) and this is a contradiction with equation (3.4-2). Thus we
must have Ar > A;.

We define A, (see Fig.3.4-2) by

T(A) = T(N)

- T .
Ty =T A (3.4-3)

Clearly we have A, < A;.
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Ai(Am)

Ay(Xo)

Fig.3.4-5
A ¢
; AJ(Am)

- Az2(Aer) = Vr(Aar)

- Al(f\ﬂ)

‘f

liAqfiAﬂ{Am{Ai

Fig.3.4-6



Ar(Am)

A1(Ao)

A2(Ao) = V(o)

0 da € Ao < Am < Ai X
Fig.3.4-7
/F 4
Al(/\mt) = VL(’\mu Am)
Az2(Ac1)= Vr(Aa)
Ai1(Xe)
0 x

15’\0<Ac1<Ai<Am<AclT<AOT

Fig.3.4-8
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A2x(Am) = Vp(A)

) AJ(A"“) = VL(Am;g Am)

- A1(Xo)

0 X
1< X0 <2y {Ai{AEIT{Am{AQT

Fig.3.4-9

VT(*'\m) = Ai(A'ﬁ)

Vi(roy Am)

—
X

1< 2 < Xi<AT < Im

Fig.3.4-10



A](/\m.) = VL(’\m.w /\m)

Ay(Xo)

Az2(Xo) = Vr(Xo)

vV

Al <A < A < A < AoT

Fig.34-11

A t
Vi(Xo, Am)
Vr(Xo) = Az(Xo)
0 X

et < Ao € XN < AoT < Am < o

Fig.3.4-12
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Vr(Am) = A2(Am)

- Vi(Ao, Am)
=
0 N X
A1 €A <A< Ao < A
Fig.3.4-13
N t
VL(Aﬂs Aﬁl)
Vr(Ao) = Az(Xo)

-

0 X

/\.‘</\0<Ac2, /\o<z\m§.ig. 7

Fig.3.4-14
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VT(Am) = Az(Am)

VL(AD-'» Avﬂ)

\M‘ ‘W

Ai< Ao < Ac2, Ao < :\n < Am-

Fig.3.4-15

Vr(Am) = A2(Am)

- VL(A0) Am)

Ai<A2 <A < Anm

Fig.3.4-16
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X/t = AI(AE):
A1(Xo) > X/t > A1(Ams),
(3.4-4)

If Am < Aor (see Fig.3.4-3), then the solution is :
A(Ome) > X/t > 0.

A=),
Ai(X) = X/t
can be connected

’\:"\ﬂh

If Am > dor (see Fig.3.4-4), then the final state A = A,
by a shock. The solution is
(3.4-5)

X/t > VL(Ao, Am),
VL(d0,Am) > X/t > 0.

A;f\ﬂs

directly to the initial state Ag
(3.4-6)

A:Am:

Case (C): Xi < Ao < Am. The solution is
A= :\,ﬂ, X/t = VL(ADQ A!'Ii.)-;
A=A, Vi(XoyAm) > X/t 2 0.

Next we will fit in the 6 waves.
1€ < I <Ai. I 1<) <An <Aa, the solution is given by

Class (A):
the following
Region 1: X/t > Ai(Xo)
A=2Xo, 0=0, u=0,
Region 2: A1(M) 2 X/t > A1(Am)
=0, u=-I(\), v=0,
52
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Region 3: Aj(Am) 2 X/t > Az(Am)

A=Ay, 0=06,, u=0, v=gq. (3.4-7)

The regions of this solution are shown in Fig.3.4-5.
In equations (3.4-7) I(\) = f;; Ai(p)dp, and A,, and 6, aredetermined
by

¢ = I(0m)(2AmA2(Am) = I(Am)),  sinbm = ~—,

where the above relations can be obtained from equations (3.3-18).

If 1<) <Aa €2Am, the solution is (see also Fig.3.4-6)

Region 1: X/t > A1(Xo)
A=Xp,0=0,u=0,v=0,
Region 2: Aj(Xo) > X/t > A2(Dc1)
A(A)=X/t,0 =0,u = —I(\),v =0,
Region 3: Az(Aa1) 2 X/t > Ai(Am)

AI(A) = X/tg 0=06n,
Am
u = cosbp, Ai(p)dp,
JA
v=gq+ sin6,, A (P)dp,
JA

53



Region 4: Ay(Ap) 2 X/t 20

A=Ap, 6=6,, u=0, v=gq, (3.4-8)

where

2
Am
(/ AI(P)dP+K) =¢* + K?,
Ao

sinf, = —q/K,
A¢:l
K = Ac]Az(Acl) -— A] (p)dp.

Ao

If Ao <20 <Am <A, the solution for this case is (see also Fig.3.4-7)
Region 1: X/t > A2()o)

A=)y, 6=0, u=0, v=0,
Region 2: Az2(Xo) 2 X/t > A1(Ao)
A=Xy, 0=6,, u=u;, v=uv,,
Region 3: A1{Xo) = X/t > A1(Am)

Ar(X) = X/t, 0 =6m,
u = uz — I(\) cos Oy,

v = vy — I(A\)sin 6y,
Region 4: A;(A\m) 2 X/t 20

A=Am, 0=0m, u=0, v=g, (3.4-9)
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where

uy = I(Ap)cos O, ve =q+ I(Ay)siné,,.

2 _ s "9
& = I(hm)(2oM2(0) + I(Am)),  sinf = Tl

Class (B): 1< < Ai<Aip. If 1< <ra<Ai<An<Aar < dor,  the
solution for A starts from the initial constant state A = )y then connects to
a simple wave region A;()\) = X/t, Ai(Ams) < X/t < Aj(Xo) and the value
Ame can be connected to the final state A = A,, by a shock since Aj(Ap.) =
Vi(Ams;Am). The solution for 6 starts from 6 = 0 and jumps to its final
value 0 = 6,, ontheline X = Az(Aq)t (see Fig.3.4-8). If 1< Ao < Aoy <
Ai < AaT < Am < dor, the solution for A starts from the initial constant state
A =)o then connects to a simple wave region A;()\) = X/t, A;(Am.) < X/t <
A1(X) and the value Ap. can be connected to the final state A = A, by
a shock since Aj(Ams) = Vi(AmeyAm). The solution of @ starts from 6 =0
and jumps to its final value 0 =6,, on the line X = Az(An)t (see Fig.3.4-9).
If 1<) <Aci <Ai<Xor < Am, the solution for A consists of two constant
states, the initial state )¢ is connected to the final state \,, by a shock with
speed Vi(Mo,Am). The solution for 6 also consists of two constant states, the
state @ =0 is connected to the final state 0,, by a contact discontinuity with
speed Vr(Am) = A2(Am). Since Vr(Am) < Vi(Xo,Am), there are three regions
for this solution (see Fig.3.4-10). f A, < Ao € Ai € Am < Aor, the solution for
) starts from the initial constant state A = A9 then connects to a simple wave
region A;(A) = X/t, Ai1(Ame) < X/t < Ai(Xo) and the value )\,. can be
connected to the final state \ = A,, by a shock since A;(Ams) = Vi(Ame, Am).
The solution of 6 starts from 6 =0 and jumps to its final value 8 =6,, on
the ine X = Az(Do)t (see Fig.3.4-11).  Aa < Ao < Ai < doT < Am < Ao,
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where Ao is defined by

T(ho) _ T(%)

= el A’ A.
AD AD ] A 1 { D{ 1

The solution for )\ consists of two constant states, the initial state )\g 1is con-
nected to the final state \,, by a shock with speed Vi (Ao, An). The solution
for @ also consists of two constant states, the state 6 = 0 is connected to the
final state 6,, by a contact discontinuity with speed Vr()Ao) = A2(Xo). Since
Vr(Xo) > VL(Xo,Am), there are three regions for this solution (see Fig.3.4-12). If
At € Mo < Ai < Ao < A, the solution for A consists of two constant states,
the initial state Ao is connected to the final state ),, by a shock with speed
Vi(Xo, Am). The solution for 6 also consists of two constant states, the state
0 = 0 is connected to the final state 6,, by a contact discontinuity with speed
Vr(Am) = A2(Am). Since Vy(Am) < VL(Ma,Am), there are three regions for this
solution (see Fig.3.4-13).

Class (C): A < X < Am. K X <)o <Ag and X < Am < Ao, the
solution for A consists of two constant states, the initial state )\ is connected
to the final state \,, by a shock with speed Vi()o,Am). The solution for
@ also consists of two constant states, the state @ = 0 is connected to the
final state 6,, by a contact discontinuity with speed Vr()g) = A2(Xo). Since
Vr(Xo) > Vi(Xo,Am), there are three regions for this solution (see Fig.3.4-14). If
Xi<l<Arz and A < hp < Am, the solution for )\ consists of two constant
states, the initial state Ao is connected to the final state \,, by a shock with
speed Vi()o,Am). The solution for 6 also consists of two constant state, the
the state 6 = 0 is connected to the final state 8,, by a contact discontinuity
with speed Vr(Am) = A2(Am). Since Vr(Am) < Vi(Mo,Am), there are three
regions for this solution (see Fig.3.4-15). The final case ); < A\;a < A\g < A, the
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solution for )\ consists of two constant states, the initial state )y is connected
to the final state J\,, by a shock with speed Vi(A¢,Ann). The solution for
# also consists of two constant state, the the state 8 = 0 is connected to the
final state 6,, by a contact discontinuity with speed Vr(\,) = Az(Am). Since

Vr(Am) < VL(Xo,Am), there are three regions for this solution (see Fig.3.4-16).
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Chapter 4

Perturbation Solutions for the Impact Problem

4.1 Solution for the Case with Given Variable Boundary Condition

Consider equation (3.1-13) described in Chapter 3, namely

u;+ Au x =0 (4.1-1)

under the conditions

E(X, O) = (Aﬂs DaO:O)T = o,
u(0,t) =0, t3>0, (4.1-2)

v(0,t) = ef(t), t=20,

where f(t) is a given continuous functionfor ¢t >0 and f(¢t)=0 for ¢t<0.
¢ is a small positive real number. In equation (4.1-1), u = (\cos#, \sin 8, u,v)T
and the components of A are given in the last chapter. If f(t) is a constant
when t > 0, then the problem is reduced to the constant boundary condition
problem discussed in Chapter 3. However, if f(t) is not a constant when ¢ > 0,
then there is no similarity solution and the problem must be solved by a different
method. In this chapter, we will apply a perturbation method to the above problem.
We will see later that this method fails when A; = Az, where A; =(7)}/? and
Az = (T/)\)!/? are the eigenvalues of the matrix A. Thecasefor A; = Ay will
be considered separately in the next chapter.

We begin by introducing two new independent variables s; and s, as
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follows

Xoaa =Artyay = 0, X(s,8) =0,
Xyo, =Agtyy, =0,  t(s,5) = s. (1.1 3)
Equations (4.1-3) have the following interpretation. If s; = constant, then X
and t are functions of s; only so that
dX X, ,
@ ", (4.1-4)
and the family of curves s, = constant is described by %% = Az. Similarly,
the family of curves s, = constant is described by % = A,.
Writing u(X,t) =U(s;,s2), we have
Ui,g‘- = '!E,tti;‘« +H‘XX T (l == 1,2), (4-1‘5)
and it follows from equations (4.1-5) that
X 20U sy = X 3,U 4,
u g = - — 5
Xl‘lgtial - X!'gitlaﬁ (4 1 E)
u© = t‘;EU‘jl ,_:,,!?LU‘SQ o
X = X -!:t n - Xiixtléz !
Substituting (4.1-3) into (4.1-5), we have
u, = élt,agv Agt -1U ag
,jt - (Al Ag)tnt!g 3 (41 6)
uy= ti—‘ggﬁ, ,,tgazzr‘!z o

X = (Ai - A )t.izt.!;
and equations (4.1-6) break down when A; = A,.
A; # Aa.

We assume in this chapter that
By substituting (4.1-6) into (4.1-1), we have
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t152 (A - ’AJI)UH; !ts-ﬂj (A - AEI)U'@Q = D: (4.1!7)

where suffixes are used to denote partial derivatives and I denotes the identity

matrix. If we assume that quantities of interest can be expanded as a power series

in terms of a small parameter €, then

[==} (==}
t= Ztk(sj,Sg)é", z = Zik(sl,Sg)sk,
é -

k=0

=0
U= iﬁk(51,52)5k, Uo = uo, (4‘1_8)
E=0

and
A=Y M, A=Y Auct. (4.1-9)
k=0 k=0
In equation (4.1-9) the matrix A and the eigenvalues A; dependon U and
the resulting coefficients Ag, Air are then dependent on the coefficients Uy.
Clearly

Ao = A(Uo), Aio=Ai(Uo), i==+1,+2. (4.1-10)

In the case described by equations (4.1-1) and (4.1-2) we use the following notations

U(s1,82) = (A(s1,82) cos 6(s1,82), A(s1,82) sin 8(s;, 82), u(s1, s2), 3(51,32))Ti
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The appropriate expansions are

A(51,82) = Mo + €Ar(81,82) + €2 Xa (51, 82) + -+,
0(s1,82) = €61(s1,52) + €202(s1,82) + -+,
u(sy,382) = eus(sy, s2) + e2ua(sy, s2) + -+,
v(s1,82) = evi(s1,52) + €2va(s1,82) + -+,

(4.1-11)

so that

) , , . 62
Acosf = Ao+ el +e*(M2 = Do ‘%) +oen (4.1-12)
Asinf = exob1 +e¥(Xob2+ 216)) + ..., o

and consequently

Uo = (%,0,0,0)T,
U, = (M, Mobr,us,u1)7,
Uy = (A2 — 2002/2, 2002 + M161,u2,v2)7,
Ao =(To)?,  Au=MTg/2AT3)?,
2L (Ty)

ity _jermiz1/2 4 2 0 \oJ
A1z = Tg' A2 /2(T5) " + ‘\1{(:1-5)1/2 (T332 }/8,

L 1/o M Tovi2,T5 1
Aun = 12 A, = 21 (20y\1/2(Z0 2
Aap (TD/’\D) 3 Agl 2 (»\a) (TD )\D ’

_ By B 1y MM 4 4 T 1
AZEE(AD) {2 (TDWA—D)i 8 [( To 7A§T§ Ag)ﬁ( )]}'

dn
™ = T TW)la=xa.
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The required terms in the expansion of the matrix A are

(Ao)is = (Ao)2e = =1, (Ao)a1 = —(A10)%, (Ao)sz = —(A20)?,
(A1)s1 = —2A10A11,  (A1)s2 = —2A20A2,

(A1)sz = (A1)a1 = ~{(A10)” — {A20)*}61,

(A2)a1 = (A11)? + 2A10A12 — 02{(A10)* — (A20)?},

(A2)az = (A21)? + 2A20A22 + 63{(A10)® — (A20)?},

(A2)32 = (A2)a1 = —201 {A10A11 — AzoA21} — (62 — %)2 ((A10)? — (A20)?),
(4.1-14)

with other entries to this order being zero. The appropriate left and right eigenvec-
tors evaluated at Ug are easily obtained from equation (3.1-16).

Equation (4.1-2) can be written in terms of the variables s; and s;. Ahead
of the fastest characteristic through the origin is the undisturbed region where

U =1uo=(%,0,0,0T andsoif Ajo> Az we have

U(0,s;) = uo = (%0,0,0,0)7,  (s2 <0). (4.1-15)
However, if Ajo < Azo then we have:

U(s1,0) = uo = (X0,0,0,0)T,  (s; <0). (4.1-16)

The second and third equations in (4.1-2) can be written as:

u(s,s) =0, $20,
(4.1-17)
v(s,8) =¢ef(s), s20.
Substituting these expressions into equations (4.1-3) and (4.1-8) gives a se-

quence of approximations. The lowest order approximation gives the constant state

and constant characteristics. We note that U = uo satisfies equation (4.1-7)
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automatically. To order £° we have

Xﬂa-ﬂg - AIDtD,;g = D, XQ(S,S) =0,

Xo,sy — A2otos, =0, 1o(s,s) =s, (4.1-18)

and by equation (4.1-18), we can conclude that

Xo — Aroto = ~Ajos1,

Xo — Azoto = —Azos2, (4.1-19)

and so we can solve for Xy, to from equation (4.1-19). To order €° the

solutions are:

_AoAzo

_ 4. _ Aios1 — Agosz o
Ao — Mgy (17 %2h o= = (4.1-20)

Ao — A

Uo=uo, Xo=
For the nt® approximation with n > 1, equations (4.1-3) and (4.1-7) give

tQiQS(AG = AIOI)ZTﬁ,-El = t@,#i (Aﬂ = AEGI)UH;!; = Fn, (4.1*21)

o
xﬂiiﬁ - ZAIi‘ti‘igg = Q,

r=0

tn,e = ZAgfiri,i =0,

r=0

(4.1-22)

where

n-—1 k

Fp= i { Z t"-ii(Akér -A k—rI)Unﬁk,:;

k=1 r=0

=Y tre(Aker — Mg ke WU ot ). (4.1-23)

r=0
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Since Up is constant the term for k = n drops out of equation (4.1-23) and
F, depends only on approximations of order < n.
If L;,R; denote the left and right eigenvectors of A corresponding to

eigenvalues A; we have
Li-R; =0, i#}. (4.1-24)

In particular, we write the solution of equation (4.1-21) in terms of these eigen-
vectors evaluated at Upy. We then renumber the right eigenvectors with R, =
R;(Uo), R =Ry(Uo), R3z=R_(Uo), Rs4=R_2(Uo), and similarly for the

left eigenvectors. With F, known we may write

4 4 7
Un=Y PM(s1,8)Ri, Fn=Y F"(s1,5)Ri. (4.1-25)

i=1 i=1

Multiplying equation (4.1-21) by each L;, i=1,2,3,4 in turn gives

tﬂ.g;(AzaxAga)P(ﬂ) - 1(“)

1,23 3

tD,ag(A]g - AZQ)P(") = sFén)?

“ 2,5

(4.1-26)
2A10t0,0, Py g, — to,01 (Ar0 + A20) Py, = —F3™,

3,85

(Aso + Azo)to,s, P — 2As0to e, P = —F{™.

< 4,83

The last two of equations (4.1-26) can be brought to a more compact form by

introducing “backward” characteristics

_ _ vy (V8L _ 97
€= (s Am)’ U F(Ago 82 (4.1-27)
where
_ Ao+ Ay _ 2MA10A20

_ = - % y — T i =
K Ao — Az Ao + Ao
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Then we have

AP = —F™ | AP = F{™, AIGPé.ﬁE)

1,52 t2.8

—F3"™, ApP{W = F™.

(4.1-28)
The problem then is essentially reduced to quadratures once appropriate initial and
boundary conditions are imposed. The inclusion of the variables £, 15 causes
the problem to become complicated after a number of iterations and we implement
the procedure for our problem to order &? below.

If n=1, by (4.1-23), we have F; =0, so by (4.1-28), we have

I

P =0, F{) =0, Pi}=0, P{)=0, (4.1-29)
and from the first two equation of (4.1-29), we have
PY = pM(s,), P = PY(sy). (4.1-30)
If Ajo> Az then we have
U(0,s2) = uo = (X0,0,0,0)7,  (s2 £0), (4.1-15)
and to order & the solution of equation (4.1-15) is then given by

Ui(0,32) =0, (s2 <0). (4.1-31)

From the third and fourth equations of (4.1-29), using (4.1-31) we have

2A20P{") ~ (A1 + Az)P{7) =0, 1)
'Ps(l)(oa 52) =0, (32 50) ' 7
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and

(Aro + APy, = 2B20P5 ), = 0.
(4.1-33)

P;”(O, s2) =0, (s2 £0).

The solution of (4.1-32) and (4.1-33) is found to be

P{V(s1,8) =0,  P{V(s1,82) =0

and so
Ui = P{V(s1)Ry + P{"(s2)Re (4.1-35)

or

Uy = (P (1), =20P{ (s2), —doA1oP{ ) (s1), oA2oPs N(s2))T.  (4.1-36)

Recall that

Ul = (Al, AgBl, ui, U;)T, (4}37)
and since to order & we have
u1(s,8) =0, s20,
(4.1-38)

vi(s,8) = f(s), 820,

it follows from equations (4.1-31) and (4.1-38) that
iC)] (4.1-39)

PP(@) =0, A= {20

and consequently
7= 12 o o\
1= (Ds AZD 3 O) f(ég)) 3
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or alternatively

f(s2) ,
U == R’ L] 1~
1 NoAzo 2 (4.1-40)
and
AM=0, 6, = —f—({z—), uy =0, vy = f(s2). (4.1-41)
AoA20

Since A =0, the e order of (4.1-3) is given by

Xl,'z - Alotl,sg =0, Xi (S,g) =0,

Xl,81 - Azotl,al = 0, tl (3; is) = Oi (41'42)
and the solution of equation (4.1-42) is

X1 — Ath =0,
X; — Agot; =0. (4.1-43)
Since Ajo # A0, equation (4.1-43) gives

X, = 0, t =0. (41-44)

Next, we will consider the solution to order €2. Since t; =0 and U, is

a function of s; only, then by equation (4.1-23) we have
Fy = —t9,5,(A1 ~ A1 I)U1 ;. (4.1-45)

Since A; =0 then using equations (4.1-13) we have A;; =0 and substituting

A;, U, into equation (4.1-45), we get

2 A2 oo
Fy = —to,,,(0,0,— 120 A,{°)alf(*’*), 0)7, (4.1-46)
20
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where 6, = — %"i Using the second equation of (4.1-25), we have

L; F e ,
F» = I ;, (no sum,i = 1,2,3,4,) (4.1-47)

after some calculation, we obtain

to,5, (Afo — a)f(Sz)f'(Sz)

A2) _ 20)f (2
B 2)2 AmAgD
F? =y, N
2 . , (4.1-48)
F® = to,s, (Ao — Adp)f(s2)f' (Sz)
2)3 Alqun
F}g) =0,

so by equations (4.1-26) we have

(A 10 T Eﬂ)f(-?z)f’(sz)

p(2)
P = -
e A(%AIDAzu
P =0,
181 =
P 4 Aro + A2 52 _ (Ado — Ado)f(s2)f"(s2) (4.1-49)
3.0 ZAgQ 3,23 4A§ALDA$Q ;
2810 p@) _ .

p(2) _
tor F Ao+ Az 2

The first two equations give

_(A10 + Az0)f3(s2) ,
403A10A%, +9(s1), (4150

P = h(sy),

P =

where g(s;) and h(sz) are functions to be determined. Since to order &2

equation (4.1-15) gives
P@(0,s5) =0, (s2 €0, i=1,238,4), (4.1-51)
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then the third and fourth equations of (4.1-49) and (4.1-51) give

(Az0 — Aro) f2(s2)
ANAAL,

-
™
"

I

L m\
—
B
M
!

0.

Using equation (4.1-25) and the fact that Pf) =0, we have

Uz = (Mo(P® + PP), =20 P, — Ao do (PP = P)), doAsoh(s3))T.

(4.1-52)

(4.1-53)

Since A =0, 6 = {2l then using the third equation in (4.1-13), we get

AoAzo

f2(s2)

Y — 22 Aoba,uz,v,)7.
, 2,\DA§Q’AD 2,U2,v32)

The €? order of (4.1-17) is
uz(s,s8) =0, va(s,8) =0, (s=20)

then by equations (4.1-53), (4.1-54) and (4.1-55) we have

h(s) =0,  P¥s,s) = P{¥(s,s), (s >0)

so that
o) = _L(s1)
glor) = 2)3A10A20”
The solution to order &? of equation (4.1-9) is then

0, 6,=0

f2(s2) — f*(s1)
2= VEAgiAQQ

A ;fg (,51 )

2X0A10A20

Uz = PPR, + PRy

vz
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(4.1-55)

(4.1-56)

(4.1-57)

(4.1-58)



where P,( 2 , P-,( 2 are given by

, Ao+ A )2
PO = {2(s1) - L2t 820) 12(0,)) 19320000,
20

| (4.1-59)
P{Y = —(Aro — Az0)f2(s2)/4)3Ar0Ad,
If we define
a=—

Tg'Azo/2A10(A10 ~ Aso),

) 7 (4.1-60)
b = A1o(A1o + A20)/2X0A20,
then to order &? the solution of equation (4.1-3) can be written as

Xgi.!g EAIDtgsag = EAg, XZ(‘SQ 5) =0,

Xg,;i ——Azgig,gi = b, tg(S,S) =0, (4.1-61)

where ), is given by equation (4.1-58). We can solve equation (4.1-61) and find
that

X2 = K{aAz0f*(s1)(s1 — 82) + bA10 /al f*(p)dp}

t2 = K{af?(s1)(s1 — 83) + b‘/al f*(p)dp} (4.1-62)

where K =1/2)0A10A20(A10 —A20) and a and b are given by (4.1-60).

Next, we consider the equation for the characteristics. First we consider the
equation for s; = constant . Since

X~Apt=(Xo+eX1+-)— Awo(to+6t1 +---)

7 (4.1-63)
and Xo ~ Ajoto = —Ajes1, Xj; =1t =0, then
X — Ajot = —A1o8) + 52(52 - Awtg) e (4.1‘64)
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Substituting equation (4.1-62) into equation (4.1-64), we have

2 af’*’(s,)

X — Aot = —Ajos1 +¢ ohioha (s2 —=s1)+--- (4.1-65)
and since
A A )
X =Xo+€X, +- 10A20(s1 — 52) +e2 Xy 4 (4.1-66)
Ao — A
we have
Ao—A
S1—sp = (¥ _g2X,—...). (4.1-67)
A1oAz0

On substituting equation (4.1-67) into equation (4.1-65) and recalling that a is
given by equation (4.1-60), we obtain the approximate equation for the s; char-

acteristics

e2a(A10 — A20)f%(s1)

X {1
Ut o (hroA)?

} = Aso(t - s1). (4.1-68)

Now consider the equation for the s; characteristic. Since
X — Ayt = (Xo +eX)  +--- ) - Azo(to +ety +--- ) (4.1-69)

and Xo o Azoto = —Azosz, X] =t = 0 and we have Xz - Azotz =

Pk A;o i . '; f%(p)dp , then by equation (4.1-69), we have

e2b L3
X = Azot = =A — 2(p)dp. 4.1-70
20 2082 + oAroAs /’2 fé(p)dp ( )

Neglecting the higher order terms, equations (4.1-67) and (4.1-70) give

Ajg—Ag0
62(A10 + Ago) a2+ AloAz0 X

X- 4A(2)A§0 82

F2(p)dp = Azo(t — s2). (4.1-71)
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The above results are obtained for the case Ajp > Azo. For the case Ajg < Ay,
the condition (4.1-15) should be replaced by (4.1-16). From a similar analysis, the
results for Ajg < Ao are exactly parallel to those for the case A;g > Ag.

To summarise, the approximation to order € is given by

X

) e ., X X )
A=, O0=——flt—-—), u=0, v=cf(t—-—), 4.1-72

with the correction at order £%2. We have

2f27, .
A= g4 S (80 b= 5 ui ~ flo2),  (4173)

2)0A10A20 !

2,\51\20 (F2(s1) = f2(s2)), v=ef(s2),

u=-—

where the characteristics are taken as

e?a(A10 —~ Azg) f2(s1) -
2X0(A10A20)?
2 + Aoe 'agﬂ'gﬂ;{tﬁg X , A
x - ot ha) [T i Aot - s2).
4:\31\,20 J a3

Ayo(t — s1),

X {1+
(4.1-74)

In the next section, we will compare the perturbation solution with the solution

for the case of constant boundary conditions.

4.2 Comparison of the perturbation solution with the ezact solution for the case of
constant boundary conditions

As we mentioned earlier, the normal impact problem for a nonlinear elastic
string can be solved in closed form as long as the boundary values are constant. We
refer to these solutious as exact solutions (see Wegner, Haddow and Tait [29)).

In order to compare the perturbation solution obtained in section 4.1 with the
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results in [29], we will consider equation (4.1-1)
e+ A(u)uy =0 (4.2-1)

under the conditions:

u(X,0) = ug, u(0,t) = 0,

—
,:‘h
i
(3]

—"

u(L,t) =v(L,t) =0, t>0,

and

o(0.) = { eF(t), 0<t<d,

q=c¢€v, t>d, (4.2-3)
with F(t) a smooth monotone increasing function on (0,d) with F(0) =
0, F(d) =v. We may take, for example, F(t) = %!, This preliminary form
allows a transition region and permits a comparison of the perturbation solution
with the exact solution in the constant boundary condition case d = 0.

Let An(X,t) denote the maximum stretch at any point of the string and
Om(X,t) denote the corresponding angle of inclination. In the following, we will
compare the perturbation solution with the exact one, case by case. We refer to
Fig.3.2-1 for the interpretations of A;,Ac2 and \; used below.

Consider first the case 1 < M < Am < Aey, sothat Ay > Az, T3 <0
and thus a > 0. The exact solution for the case d =0 is given as follows (see
also Fig.3.4-1)

Region 1: X/t = Ajo,

A=, 0=u=v=0.

Region 2: Ao 2 X/t > A1,

I
=
Il
1]

X/t=MA(\), O=v=0 u=-I())



Region 3: Ay 2 X/t 2 Agpm,

>
il
>
3
ES
il
S
I
o

u=—I(Am).
Region 4: Az > X/t 20,
A= Am, 0=6,, u=0, v=gq, (4.2-4)

where Aim = Ai(Am), i=1,2, and I(X)= [y Ai(p)dp. Am and 6 can
be determined from the equations
Am Am

= [  Mp)dp{2AmA2(Am) = |  Ai(p)dp}, (4.2-3)

JAa 7 Ao

[ %]

8inbm = —q/AmAz(Am). (4.2-6)

Consider the corresponding perturbation solution given by equations (4.1-73)
and (4.1-74). For the case d > 0, the solution for A starts from an initial
state A = Ao, this state is then connected to a simpl. ave region by a straight
line I; : X = Ajot. For small ¢, the simple wave region is bounded by the
lines X =0, /1 and Il : X = Ajo(1 + ﬁ%%)(t — d). The final state
Am = o+ ﬁ is connected to the simple wave region through the line [,.
As d— 0%, the simple wave degenerates to a simple expansion fan through the
origin.

We notice that # has a constant value on the curves s; = constant. Dif-
ferentiating equation (4.1 — 74)(2) with respect to ¢ shows that for t > d,

the constant s; curves have the same slope :

= Ago {1 + c¢?}, (4.2-7)

& &
!
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 4MiA0A3,
For 0 <t < d, the slope of an sz curve is less than that given by (4.2-7).
However, as X,t increase, they approach the same limit value given by (4.2-7).
On the other hand, differentiating equation (4.1 — 74)(;y with respect to s,
shows that these curves do not intersect, at least for ¢ small. As a result, as
d — 0%, the region where 6 varies degenerates to a line with slope given by
equation (4.2-7). A shock is not formed but a line of discontinuity across which
@ jumpsfrom 0 to 6n. If € issmall, we can write down the perturbation

solution for the case d — 0% as follows

Region 1: X/t 2 Ajo,

A= o, 0=u=v=0
N o ) __Fi -}
Region 2: Ajo = X/t = Awo(1 + ;T‘%iﬁ),

X/t = Am(l + L:AO)), 0=v= Q, u= EAm(/\ = )\Q),

7 N " oo 7 7
Region 3: Ajo(l + ﬁiﬁ;) > X/t > Azo(1 + cg?),

A 6=v= D, u= EAIQ(:\,m - AQ),

‘I\‘I\
S
3

A= Am, 0=0p=———, u=0, v=g, (4.2-8)

where

Am =Ko+ o) O = -, (4.2-9)



If we apply the expressions given earlier, it can be seen that (4.2-9) agrees with

(4.2-5) and (4.2-6) to order &2, We also notice that, by using (4.2-9) we find that

Ty (Am — Ao,
Arm = Ao + %

, , T, ¢2
bl +"'EAIGE‘“ 09

\ _foq 4.2-10
EAIG 4A@A%9AZD ( )

and

(Toro = To)(Am = Xo) +-

s B - - e 2 . _75
T Agg(1+t;q ) (42 11)

Agm = Az +

We can see that the corresponding slope in the perturbation solution agrees with
the exact one to order &2. Therefore, by the above analysis, we conclude that
the perturbation solution agrees with the exact solution to order &% fr.r the case
1< A <Adm < Aar.

Now we consider the case A < Ao < Am < A;. For this case, we have
Az0 > Ayg,a < 0. The exact solution for the case d =0 is given as follows (see
also Fig.3.4-3),

Region 1: X/t = Ay,

L~ Y
Il
[~y
I
[
I
Low

?\—ge‘xﬂa

Region 2: Ago 2 X/t = Ao,

A= Ao, 0=0m, u=IAn)cosbyn, v=gq+I(An)sinby,.

Region 3: Ao 2 X/t 2 A1,

X/t = A1(N), 0 = 0,,,
u = (I(Am) = I(\)) cos b,,,
v =g+ (I(Am) ~ I()))sin 6,,.
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Region4: Ajm > X/t 20,

-‘\;Ams 6=9m1 u=01 vzqi

where A,0,, are determined by

Am Am
g = A Ai(p)dp{2XoA20 + |  Ai(p)dp},
7 Aa Ao
and
_ Am )
sinfm = —q/(AoA20+ [  Ai(p)dp).
Aa

The corresponding approximation for d — 0t is

Region 1: X/t = Ao,

A=do, O=u=v=0.

Region 2: Age = X/t 2 Ay,

,\ﬁ;\n, 6:=9m, U= —_—— v=gq,

Azo

Region 3: Ao = X/t > Ajo(1 + _%E*Ailv ),

Mea
Region 4:  Ajo(l + ﬁ?}%}%\;) 2 X/t>0,

GNP VPR
2X0A10A20 o 7 AoA2o ’

AEAmEAD’F

(4.2-13)

(4.2-14)



It can be shown that the exact solution and the approximate solution are the same
to order 2.

The next case to be considered is Mg < A; < A,,. For this case the above
approximation is not sufficiently accurnte and this can be seen by considering the
constant boundary condition case. It is only necessary to discuss the A values.
The initial A value X = Ao is connected to a final A wvalue A =), by,
in general, an expansion fan which contracts to a shock on its trailing edge, see
[29]. Equation (4.1 —74)(;) on the other hand predicts only an expansion fan as
d — 0. The difficulty arises due to the change in sign of the second derivative of
T. We exclude this case.

Now we consider the case X; < Ao < Am < Azz. For this case Té’ >
0, Ao <Az, sothat a<0.

The exact solution, for the case d = 0, consists of three regions (see also
Fig.3.4-10)

Region 1. X/t > Az

AEAQ, 921&21}20,
Region 2: Az > X/i > VL(AQi f\m)

A=Xo, 6=06p,

u = AzoMo(l — cosby,), v=—Ag0Aosinby,,

Region 3: Vi(Ao,Am) 2 X/t 20

A=Am, 0=0m, u=0, v=g (4.2-16)



where Apm,6, may be found from

{(T(’}fﬂ) — T(2))(Am = 2)}7% = {vd + (MoA20)?}'/? ~ XoAso, (4.2-17)

8in b = —q/{VL(Ao, Am)(Am — Xo) + MoAzo}, (4.2-18)
and
Y ) 1/2
Vi, ) = (@%"‘“)) . Vilho,A) < Aso. (4.2:19)

Consider the corresponding perturbation solution for d > 0. We consider

first the s; curves on which A = constant. By the first equation of (4.1-74),

for s; <0, the s; curvesaredescribedby X = Ajo(t—3s;). For 0<s; <d

i

with ¢ small, s; curves are describedby X = Am(l + ﬂ :‘%S)E\;)g)(t s1) and
010
for s; >d ,wehave X = Ajo(1+ ﬁ)(t . Since T, >0 , it can

be seen that as d — 0% | there is a region, bounded by X = Ajot and X =
forms 1mm:.—.d1ately, We can modify the perturbation solution as follows. Since the
A shock speed Vi for this case is given by (4.2-19) and since A—Xg = 3 ; :: :A})E

for small ¢, we have

T(A) = To + Th(A — ,\Q)+L(,\ do)? + (4.2-20)
so that

Vi(ho,A) = (To + Ty (A = do)/2+---)}/?

T"
= A0+ ——(A o)+ -

=

Ty ngz(sl)

BAl A T (4.2-21)

= Ao +
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and so to order €2

m-+m+

5 (4.2-22)

VL(’\Os A) =

where m_,m, are the slopes of s; curves on both sides of the shock path.
The s; characteristics run into the A shock path from both sides and the

perturbation solution for the case d — 0% can be written down as follows:

Region 1: X/t > A,

A= Ao, f=u=v=0,

" 2
Region 2: Az > X/t > (A1o + 8z\$\§1:/\20 ),

_ 4
A=do, 0= =~
2
__49 —
2A20)0 V=S
1" 2
Region 3: (A1 + gx,fax;;) 2 X/t 20,
/\=/\,,.=/\o+—q2 =0, =— g u=0, v=gq. (4.2-23)
2X0A10A20’ oAz’ ’

It can be shown that the modified perturbation solution agrees with the exact one

to order €.

We consider finally the case when Az < Ao < Am. For this case, T, >
0, Ajo> Az and the exact solution for the case d =0 is given as follows (see
also Fig.3.4-12),

Region 1: X/t > Vi (Ao, Am),

A=A, 6

[

e

]

e

I
=



Region 2: Vi(Xo,Am) > X/t > Az,

A=An, 6=0,

u=—=Vi(Ao; Am)(Am — Xo), v =0,
Region 3: A, 2 X/t 20,

A=An, 0=0,, u=0, v=gq, (4.2-24)
where VL(Xo,Am) is given by (4.2-19). An,0, are determined by

~VL(20; Am)(Am — o) = AmA2m(cos by, — 1),

sinbp, = — Amigm—i (4.2-25)

The corresponding approximation as d — 0% is given by:

Region 1: X/t > (Ao + gﬁi,\—;ﬂ),

A=A, 0=u=v=0,

Region 2: (A0 + 3’.&}%’ - -) > X/t > Azo(1 + c¢?),

10420

2
A = A— = ;\’ ———e—i e = = U = — Y m— o
A= Am o+ PAiorm’ v=0, u Ao(Am — Xo),

Region 3: Az(l1+cq?) > X/t >0,

2
\o= . = \s g7 . ) =0, = ——Z_ = {). = q, 1.0,
A=A;m=XAo + Shohiohos’ =26, 7 -, u=0, v=gq (4.2-26)

It can be shown that the exact solution and the perturbation solution agree to
order &2.
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In the next section, we will apply the perturbation solution to the normal

impact problem of the nonlinear elastic string,.

4.3 Application of the perturbation solution to the impact problem of a nonlinear
elastic string

With the restoring force taken into consideration, the impact problem of a non-
linear elastic string may be described by equations (4.2-1), (4.2-2) and the following

conditions as d — 0%,

v(0,t) = eF(t), 0<t<d,
% = 2aT{A(0,2)} sin{0(0,8)}, ¢>d. (4.3-1)

with F(t) as before a monotone increasing continuous function in (0,d). We
also require F(0) =0, ¢eF(d)=gq. Equations (4.3-1) can be rewritten in terms

of the variables s;,s; as

o(s,5) = F(s), 0<s<d,
% = 2aT{A(s, s)} sin{8(s,s)}, s> d. (4.3-2)

To order ¢ the second equation of (4.3-2) gives
——=2= = 2aT6,(s, s) (4.3-3)

where, from equation (4.1-41)

" ) .
b = ———, 4.3-
U1 oAz (4.3-4)
It then follows that
dv o
ji—; = —2algn. (4.3-5)



Using Equati@ns (4'3-5)! (4-352) Eﬂdnﬂf-ing that vy (d) = I'a, Wi hﬂ‘ni
F 0<as<d,
v1(s,8) = { Fs), 0<s<d,

’ vp exp {—2ahAz0(s —d)}, s> d. (4.3-6)

If we define

ft) = { F(e), 0<t<d,

a 2 ( 4.3-
Vg €Xp {EgﬂAgf](t - d)}‘ t> di (,3 7)

we can apply the perturbation solution obtained in section 4.1 to this problem.
First we consider the case 1 < Ag < A;n < A, from the discussion above
it is clear that we may allow d — 0%. The solution for )\ starts from the
constant state in the region X/t > Ajo and this constant state is connected
by an expansion fan through the origin. The A value increases from J\q to

3
Am = Ao + ZhoAroAzo ' OF

7 2 g2
A= )Xo+ EEE,E —~ (51)

YA A (0=ssd) 4.3-8
2MoA10A20 ( =9 = ) ( )

The expansion fan is followed by a contracting simple wave for A

~+2
A= Ao+ =————— exp {—dahzo(s; —d)}, (s1 > d). (4.3-9)

2X0A 10420
In general this leads to shock formation. Differentiating equation (4.1 — 74)(,)
with respect to s;, s; > d, and minimising the breakdown time it follows that
the shock formson s; =d and as d— 0% this implies the shock forms on the

upper edge of the expansion fan at
zo = 0/2aTy, t. =01+ 1/29), (4.3-10)

where € = Ao(A10Az0)*/q%a(A1o — Ago). Since t, = O(1/e?) one would nor-

mally expect reflection to occur before sho: .« formation. The approximation for @
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is linear but the curves of constant 6, s; = constant, are not straight lines.

as d — 0%, 6 has a discontinuity along the curve s; = 0% described by
X =Az(l +cg®)t with =0 for s <0 and 0= —g/XoAze on s3 =07%,
so that the jump in value is independent of a. For nonzero values of 6 the
curves of constant 6 have an initial speed greater than A, and this decreases
to Ago for large X,t. The expansion wave for A precedes the 8 disconti-
nuity and of course |6 decays exponentially along X = 0.

Graphs of A,6 as functions of X, at fixed time are shown in Fig.6.5-1
and Fig.6.5-2 in Chapter 6. The values obtained using the present perturbation
technique are given together with the values obtained from the direct numerical
method outlined in Chapter 6.

The case Aq < Ao < Am < A; is essentially the same as in the previous case
except that Ago > Ajo sothat the 6 discontinuity precedes the )\ expansion
fan.

The case Ao < A\i < A is excluded as before since the approximation is not
accurate enough to deal with the case in which T" =0 .

For the case Ai < Ao < Am < Ae2;, Ao < Ago, T[',' >0 and the A
solution as d — 0% consists of a steady initial state A = )y bounded by a
shock then followed by a simple expansion wave. The shock wave velocity is given

to order €2, by

VL(/\) = {%}1/2

- ae? f2(s1)(A10 — Aso) .
= Ao {1 - L1000 — Bo)y g8y
10 { 42o(A10A20)?* - ( )

Thus, at a given point on the shock the velocity Vi()\) is the average of the

velocities of the characteristics on each side, and the shock velocity slows along the

84



shock path to the final value A,g, the shock strength being then zero. The a. "ual
shock path is not a straight line; it can be found by integrating the equation (4.3-10)
using equations {4.1-74)(;) and (4.3—7). Thesolutionfor 6 starts from the
undisturbed state 6 = 0 connected by the line of discontinuity X = Aypt where

6 jumps from zero to 8,,. Along a curve s; = constant, 8 is constant and

the slope 9% is initially, at X =0, smaller than Ao and increases to A
P€ 4

for large X. Of course, the 6 discontinuity precedes the A shock. Graphs of
A, 0 as functions of X are shown in Fig.6.4-3 and Fig.6.5-4 in Chapter 6.
For the final case A2 < Ag < A, Ao > Ago, T(; > 0 and the solution is

similar to the above case except that the 6 discontinuity is behind the A shock.
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Chapter 5
Normal Impact of the Nonlinear Elastic String for the Case A; ~ A,

5.1 Approzimate Equations

As we mentioned in chapter 4, the perturbation method employed in that
chapter fails when A; ~ A, and we have to proceed differently. In this chapter,
we will modify a method suggested by Collins in dealing with a half space problem
[4,5].

Consider the system given by

u:+H(u) x =0. (5.1-1)
As before equation (5.1-1) may be written as

u:+ A(u)u x =0, (5.1-2)

where A(u) = %ﬂ. The eigenvalues of A and the corresponding eigenvectors
are given in Chapter 3.

On multiplying equation (5.1-2) on the left by L(=2), we have

., 0 0 .
Asiné 3 (M2 cos8 +u) — Acosé E(AA; sinf +v) =0, (5.1-3)
where
0 O 0
-a—"-_- = a? - Az(A) 5} . (51-4)

Next we multiply equation (5.1-2) on the left by L(-1 and using the first

two equations of system (5.1-1) to replace u,x and wv,x and noting that

dhg

N (A% — A2)/2)4,, (5.1-5)
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we have

A(A3 -~ A 0\

Acosé —()\Ag cosf + u) + Asiné (AAg sinf +v)=—~—1_ 2" “°0 (5.1-6)
where
(7] 3] ,
=% + Aa(A) ax . (h.1-7)
Since A; ~ Ag, if A varies slowly in the direction % = Az(A), we may
neglect the right hand side of equation (5.1-6). We then have
E(M cosf +u) =0 8(,\1\ iné 4 0 5.1-8
- 2 COS = _— 3 811 1Y =0 5 1.
3y (M2 cos u) =0, 5y Mz sin +v)=0. (5.1-8)
If the initial state is constant we then have
AAz(A) cos @ + u = AgAgg,
(5.1-9)
AA2(A)sinf + v = 0.
By using (5.1-9) and the first two of equations (5.1-1), we have
1)) a ,.
Bt + X (M2(V) =0,
ot  0X g (5.1-10)
LMW\ |
at TR ex T

The first equation of (5.1-10) is already in conservation form. If we rewrite the
second equation in conservation form, we obtain a system of two conservation laws.
Of course there is more than one way to do this. For example, we may rewrite

equations (5.1-10) in the following form

v:+fx=0 (5.1-11)
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where v = (M A0P)T,  f = (AA3,0A267)T, p > 0. The corresponding jump
condition is

. A1 [ M) .
Y ["‘9”] B [»\ﬂpiz(e\)] ‘ (5.1-12)

where [p] = ¢~ — 1 isthe jumpin ¢ across the shock with =, ¢t the
values immediately behind and ahead of it. V is the shock velocity. For the

present case the possibilities are

M)

) =0, N#0, V,(0*, A7) = o

(5.1-13)

The path of possible discontinuity in 6 is precisely that obtained for the full
set of equations (5.1-1). If we denote by V the longitudinal shock velocity for

equations (5.1-1) then

[T] ‘
VL= m ) (5.1-14)

and to terms of order £2, noting that Aj(Ai) =0 (i =1,2),

Vi = T = AaQhet) + o8l (04 _ 34 4™ = d) (5.1-15)
L = VL = 2 Act 4A2(Aci) el T A ct ). J.a=1

Therefore, system (5.1-11), together with equations (5.1-9), are approximations of

the system (5.1-1).

5.2 Ezact Solution of the Approzimate System For Constant Boundary Conditions
For the purpose of simplicity, we take p =1 in system (5.1-11) and rewrite

it in the following form
v+ Bvx=0 (5.2-1)
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where v = (A, A6)T and the components of the matrix B are
Bii = (M2(0)s  Biz=0,  Bu=XA,(0), Ba=A()). (522
The eigenvalues of B are
ai(X) = (AM2(N), az(A) = Ax(X). (5.2-3)
The corresponding right eigenvectors are
r = (1,6)7, ry =(0,1)7. (5.2-4)
Since

grada; -ry = (AA2)” # 0, (A=A, 1=1,2,),

gradaz -r2 = 0, (5.2-5)

the a; characteristic field is genuinely nonlinear so that there are simple waves
and shock waves for this field. On the other hand, the a3 characteristic field is
linearly degenerate; hence there is a contact discontinuity for this field. By using
these elementary waves, one can find the exact solution of the approximate system

(5.2-1) for the case in which the constant boundary conditions are given by
u(0,t) =0, v(0,t) = g=¢€vq, (t>0). (5.2-6)

Let )Xo denote the initial stretch and \,, the final stretch and let 6,, denote
the angle of inclination corresponding to A,. Then, by using equations (5.1-9),

we find

AmT(Am) = JoT(%) +¢*,  tanfm = -3 X - (5.2-7)
0432
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Since AT()) is a increasing function of A. then by equation (5.2-7), one has

Am > /\0- ( 2.

[y |
]
"+
e

Using equation (5.2-7) one can solve for A, and 6, to get the boundary

conditions

A(0,1) = Am, 0 =6, (t > 0). (5.2-9)
The initial conditions are
AMX,0) = Ao, 6(X,0) =0, (X >0). (5.2-10)

We consider a number of cases, with A close to A, in cases 1, 2, 3 and close
to A2 In cases 4, 5.

Case1l. ) <Ay < Aa.

The exact solution for the approximate system is

Region 1: X/t > aj(Xo).
A=, 6=0.

Region 2: a1(Xo) > X/t > a1(Am).

a(A\) = X/t, 68=0.

Region 3: a1(Am) > X/t > A2(Am).

A=An, 6=0.

Region 4:  Aa(A\m) > X/t 2 0.

A=Apm,  0=0p. (5.2-11)



Case 2. A < Ag < A

The solution is

Region 1: X/t > Az(Xo).
A = Ao,
Region 2:  Az(Xo) > X/t > a1(Xo).
A= /\o,.
Region 3: aj(Xe) > X/t > a1(Am).
a1(A) = X/t,
Region 4: a1(Am) > X/t 2 0.
A= Am,
Case 3. Mo <A1 < .
The solution for this case is
Region 1: X/t > a1(Xe).
A = Ao,

Region 2: al(/\o) > X/t > A2(/\c1)-

a (X)) = X/t,
Region 3: Az(Ac1) > X/t > a1(Ap)-

ar()) = X/t,
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ACl < A<A’vn,

6=0.

0=06n.

6 =6,,.

(5.2-12)

6=0.

/\0<A<A¢1, 6 =0.

0—_—01’1.



Region 4:

Case 4.
Here, ).
Region 1:

Region 2:

Region 3:

Case 5.
Here, ).
Region 1:

Regoin 2:

Region 3

a1(Am) > X/t > 0.

A< An €Az or A <Az <A < A,
satisfies Az(As) = Az(Xo) , where Xo isclose to but less than  A..

X/t > Az(Xo).

0.

A=l 6
Az(Xo) > X/t > Vi(Xos Am).
A=lo, 0=06p.
V(X0 Am) > X/t > 0.
A=Am, 0 =06n. (5.2-14)

has the same meaning as in case 4.

X/t > Vi(Xos Am)-

0.

A=X, 0
V1(X0sdm) > X/t > Az(Am).

A=A, E

1]
\P\

Az(Dm) > X/t >0.

A= Am, 0=20,. (5.2-15)



Once the values of A and 6 are found, one can find the values of u
and v from equations (5.1-9) and (5.2-7). For example, the values of u and
v in case 3 can be found as follows: in region 1, u = v = 0; in region 2,
u = AgA20 — M2()), v = 0; in region 3, u = AgAzo — AM2(A)cosb,, v =
—AA2(A)sin@,, ; in region 4, u = 0,v = q. Then we can compare the exact
snlutions of the approximate system with the exact solutions of the original system
for the case of constant boundary values. For example, the exact solution of the

original system for the case Mg < Aqg < A was obtained by Wegner Haddow

and Tait [29)]

)\=/\o,0=0,u=0,v=0, for X/t)Al(Ao).

A(N) =X/t,0 =0,u =—-I(\),v =0, for Aj(Xo) > X/t > Az(Aa1).
Am
A(A) = X/t,0 =0, u = cosbp, Ai(p)dp,
A

Am
v=gq+ sin @y, A (p)dp, for Az(Acl) > X/t > AI(’\m)
A

A=A, 0=0p,u=0,v=g4q, for Ai(Am) 2 X/t >0,

(5.2-16)
where
Am 2
( Ar(p)dp +K) =¢ + K%,
Ao
sinfp,, = —¢q/K,
xcl
K =XaAz(Aa) — A Aq(p)dp,
R Q
I(\) = /A Ai(p)dp. (5.2-17)
0

Equations (5.2-17) can be obtained from equations (3.3-18).
Since (A2) — Ay = 1"—‘2}':—’-2 the slopes in the corresponding regions of

the two solutions are the same to terms O(A; — A2)2. On expanding equations
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(5.2-7), (5.2-17) correct to terms O(gq*), both give

5.8 Solution for the Case of Variable Boundary Conditions

Consider the approximate equations

;\Az(/\) cosb +u = Aoz,

AA2(A)sinf +v =0,

a9
5 T ax (AAz(N) =0,
90 6
o TN 5 =0,

subject to the conditions

u(0,t) =0, %t—) = 2aT(\(0,t)) sin (0, t),
A(X,0) = Ao, 6(X,0)=0, X >0,

u(X,0) =v(X,0) =0, X >0, u(0,0)=0.

We set

t >0,

v(0,0%) =evg =¢q, A0,0%)=)\n,, 6(0,0%) =6,

where A,,, 0, are given by

AmT(Am) = XoT(Mo) +¢%,  tanb = —

MoAzo’

(5.3-1)

(5.3-2)

(5.3-3)

(5.3-4)

Equations (5.3-4) are obtained from the first two equations in (5.3-1) using condi-

tions (5.3-2) and (5.3-3).
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Substituting from equations (5.3-1) into equations (5.3-2) leads to

d-»\(Q,f) _ f%&A:(AT - .ALDTTD) ; .
dt T AMAT+AZ) (5.3-5

where the right hand side is evaluated on X =0, ¢t > 0. This equation may be

integrated to give

¢ A (N (AT(N) = 2oTo)

1 AWM M) 56
- ./,\ d, (5.3-6)

so that \(0,t) decays monotonically from A,, but does not decrease to g

in a finite time. Fig. 5.3-1 shows the graph of A(0,t) as a function of time.

3165 — — ——— —

O, 1)

3.155 4

3.150 1

3.145

0 05 1.0 i5
t

Flgiﬁﬁzl Ao =3.14,¢=103, a =1.0.

Consider first the solution of )\ for the case )\ = )\,. We introduce a

transition region [0,d] on the ¢ axis by

A=F(t), 0<t

IA

d;
A=A0,t~d), t>d,  X0,04) = Am, (5.3-7)
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where F\(t) isamonotone increasing function with F(0) = \g and F(d) = \,,,
A(0,t) is determined by equation (5.3-6). The solution for A under condition
(5.3-7) can be found by the method of characteristics. The solution for A under
steady state A = Ao followed by an expansion fan through the origin, where A
increases from JAg to \,,, and this is followed by a contracting simple wave
region. A shock will eventually form.

The initial breakdown time is obtained by minimising ¢, for s >0 where

o= s 4 A2

+ A" (5.3-8)

where "~ = ;—% . Since, referring to equation (5.3-5), this is of order ¢~2 the
shock will not occur before reflection. Fig.5.3-2 shows the A characteristics in
the X —t plane for the case A= A;y beforea X shock occurs. Since A(0,1¢)

is known 6(0,t) is given by

20 A =(0,), (5.3-9)

and 6(0,¢) increases monotonically from —8p, to zero. Since M X,t) is
known everywhere and 6 is constant along curves %‘} = A2{A(X,t)}, 6 can
be determined. The precise description is best carried out numerically but we give
a brief qualitative discussion. For the case Ao < A\¢; < Ay , the value 8., from
with 6 jumping from 0 to 6. Similarly, the value of 6 corresponding to
A(0,t) = Ac1 s carried out along a parallel straight line. For A < A(0,2) < A
the corresponding curve for 6 constant moves into a region of increasing A since
aX

(A2) < Az if A > A4, Thus the slope % decreases until the curve crosses

X = (M2)'(Am)t where it moves into a region of decreasing )\ so that the slope
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increases to a limiting value Aj()A;). For values Ap < A(0,%) < A, (AA2) >

Az so that the curve of constant 6, starting on the t axis moves to lower

valucs of A  so that the slope % = A2(A) decreases and tends to a limiting

value Az(Xg). Shock incidence will affect this description but as pointed out above
this in general will not happen before reflection has occurred. Fig.5.3-3 shows the

A and & characteristics in the X — ¢ plane for the case M < A1 € A

before a A shock occurs. The other cases when ) 2~ )A.; can be studied in a
similar way (see Fig.5.3-4 and Fig.5.3-5).
If X\ varies in the neighborhood of A.; thesignof T" changes. We then

have

T>0, T'>0, T">0,
25 2
(M) = Az + M, = Al%;\i’ >0, (5.3-10)
2TT" — (A} — A3)?

RV R G | 2

so that with A; >~ Az, (AA32)” >0 andthegraphof (AA;) asafunctionof )\
is concave up. Again introducing a transition case as before and allowing d — 0%
showsthata A shock isinitiated immediately in the loading phase. Assuming that
the first two equations in (5.3-1) hold and that the valuesof A and § on X =0
are given by equations (5.3-6), (5.3-9), with values A(0,0%) = )\, 6(0,0%) =
0m as before. Since A(0,%) decreases for ¢ increasing the straight line
characteristics now form an expanding simple wave behind the shock. If the last
two equations in (5.3-1) are written in conservation form by multiplying the second

equation by A we have the shock condition
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where V is the shock velocity and the two possible solutions of 1" are given by
equation (5.1-13).

A straightforward calculation shows that
(AM2)' (Mo) < Vi(R0,A) < (AA2(A)), Ao < A < A (5.3-12)

We thus have a stable shock moving into a region of constant A = \g, and since
A0,t) decreases with t the shock slows as X,¢ increase eventually slowing
to a speed (AA2)'(Xo) with the shock strength decaying to zero. A(X,t) is
then known everywhere once the shock path is calculated and this is best done
numerically. Fig.5.3-6 shows the ) shock path and the )\ characteristics in
the X —t plane for the case A & A;;. The variation of the shock pa/ i from
a straight line is of necessity small and we indicate the deviation from the straight
line in Fig. 5.3-7.

With A(X,t) known 6(X,t) may now be found from the last equation in
(5.3-1). Since

oy . AT AZ .
(A2) = A+ 12 (5.3-13)
24,

it follows that

0< (Ma(N) < A2(A), A< A,

0< Ag(e\) < (AAg(,\))', Aez < A (5.3-15)

Consider the case where Ao < Apm < A2, Since Az2(dm) > f”;(,\g,,\m) the
curve 6(z,t) =0, must precede the shock. Since 6 is continuous across a \
shock this implies the curve is continued as a straight line of slope Aj(\g) (see

Fig.5.3-8). Across this line 6 is discontinuous, jumping from the initial value
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t /N
Vi
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V4
0 X
Fig.5.3-6
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t
Fig.5.3-7

The quantity (Xv,, — X,)-10° plotted as a function of time ¢ , where X, denotes
the A shock path. Vin = (Vi)mar , where Vi =[AA3)/[A] and Xy, is given by
X =Vnt ,for X=3.14,¢=10a=1.0.
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Fig.5.3-8
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Fig.5.3-9
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Vir(Xo) = Az(Xo)

Vr(X) = Aa(D)

—>
AO{AEE{RQ{Am X

Fig.5.3-10

e }
Az € A0 < A

Fig5.3-11
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0 to 6. 6(0,t) is known from equation (5.3-9) . Since Az > (M)’ this
implies that the curve 6 = 6,, say, 0 < 6, < 6,,, moves into a region where
A increases,as X increases from zero. Since A;()\) decreases with increasing
A in this region the 6 =6, curve slows as X increases until it meets the )\
shock. @ is, as mentioned above, continuous across the shock but the value of
X

%% has a jump discontinuity there, jumping to the value A,(Xo) ahead of the

shock.

If Ao < Ai2 < A the situation is slightly different. In the 7 — X plane let
the line of slope AZ(\o) meet the curve again at Ay so that "%‘% = %é%)
If An < Mo the @ discontinuity described above again precedes the A shock
travelling with speed Az()\o) (see Fig.5.3-9). Since \(0,%) decreases from A\,
to Mo theline z = Az(A2)(t—t.), where t, ischosensothat A(0,t.) = Az,
divides the region behind the shock into two parts. Clearly the 6(z,t) = constant
curve when A = ). coincides with this line as does the A characteristic.
For X > Mg, A2 < (M2) sothat 6 = constant moves to smaller values of
A, A; decreases and the speed % decreases. The argument for A < A2 is
similar and the speed again decreases, as X,¢ increase. If A, > Ao, the )
shock precedes the @ discontinuity initially. The A characteristicfrom X =0
carrying the value A, meets the shock at some point. The curve 6(X,t) = 6.,
emanating from X = 0, ¢t = 0 has slope X = Ay()\) so that if it meets
the A characteristic carrying A2 it is tangent to it and will continue as a
straight line. Otherwise it remains below that characteristic and must meet the
shock so that thereafter the 6 discontinuity will precede (see Fig.5.3-10). The case
Az < Ao < Am  gives no difficulty with the shock preceding the 6 discontinuity
(see Fig.5.3-11). Typical graphs of X and @ as functions of X at a given
time and with A ~ )\, are shown in Fig.6.5-5 and Fig.6.5-6 .., chapter 6. In
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obtained by the direct numerical method described in chapter 6.
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Chapter 6

Numerical Analysis

6.1 Finite Difference Scheme in Conservation Form

Consider the initial value problem for the conservation law

Ou OH(u) Ay .
Bt + ? =0, u(z,0) = uo(z),
—00 < T < 400, t>0,

(6.1-1)

H(u) = (Hy(u),..., Ho(u))T. Suppose wu(z,t) is

where u = (u;,uz,...,u,)7,
a solution of (6.1-1). We define u? by

Il:' = “('Tistn)z
z;i=th, h=Az, i=0,%£1,£2,..
(6.1-2)

= At, n= 0, 1,2, es

tn=nk, k

is the nu-

(1Az,nAt), then we say o? is an

merical solution at the grid point (z,t)
approximation to uf. ;
It is well known that the approximate solutions obtained from a finite difference
method may not converge to a weak solution of the system (6.1-1). For example
[16], we consider a scalar conservation law

—o<z<oo, t>0

[ | m H\u
Mgt
i
L

2|®
+
2o
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with data

z <0,

z>0. (6.1-4)

, 1
u(z,0) = up(z) = { 0,
Since equation (6.1-3) can be written as

du du
,E—f-uE

5 3z = 0, (6.1-5)

then the approximation

Ou(z,1 E:‘jl‘*‘

3t ) I(Z,t)s(iér.nafg) ==} T’

oz ’I(f,t):(fﬂf,ﬁét) = Ta

u(iAz,nAt) = v} (6.1-6)

allows equation (6.1-5) to be approximated by the finite difference scheme

P = o - TouR(f - vly) (6.1-7)

Az

vy

with data

1, i<,
g: 3 H 5 1.
Y {o, i>0. (61-8)

Clearly the scheme gives v} = v? for all i anc hence vl = vf for all i.
Thus the numerical solution converges to the function u(z,t) = ug(z) which
is not a weak solution of equation (6.1-3). This example shows that a numerical
solution may not converge to a weak solution of the corresponding conservation law

no matter how one refines the step sizes At and Az. In order to overcome this

difficulty, we need to introduce a conservative numerical method.
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A finite difference method for equation (6.1-1) is said to be in conservation

form if it has the form

n+ el ’At fall i i 6
v, +1 =9, — Z(G‘*llg - i—ilg)’ (G.l‘g)

where

—n — LT . ;) n
Gi+1/2 = G('—’ial+ial’i—z+gs e ¥it),

Gi1/2 =GO, 14150V 1y)- (6.1-10)

The function G with 2! arguments is called the numerical fluz function. The

numerical flux must be consistent with the physical flux in the sense that
G(u,...,u) = H(u). (6.1-11)

¥ o} (i=0,%£1,£2,.., n=0,1,2,...) isan approximate solution of system
(6.1-1) corresponding to a finite difference method in conservation form, we define

a continuous function wv(z,t) by setting
v(z,t) = v}, i=[z/Az], n=[t/Al], (6.1-12)

where [a] denotes the maximum integer which is not greater than the real num-
ber a. The following theorem shows why it is important that a finite difference

approximation to a conservation law be in conservation form.

Theorem 6.1-1 (Lax, Wendroff [25])

Suppose that the solution v(z,nAt) of a finite difference method in con-
servation form converges boundly almost everywhere to some function u(z,t) as
Az and At approach zero. Then wu(z,t) is a weak solution of the system
(6.1-1).
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The above theorem does not indicate whether the weak solution wu(z,t) is
a physically relevant solution. We define the physically relevant solution as that
which is the limit as € — 0 of a solution wu(e) of the viscous equations
Ou OH(u)
+ _—

ot or ag-r e>0. (6.1-13)

If system (6.1-1) possesses an entropy function U(u) satisfying the conditions,
1) U is a convex function of u, i.e. Uyu is positive definite,

2) UyH, = F,, where F is some other function called entropy flux, it can be
shown that a smooth solution of system (6.1-1) also satisfies

0U(u) BF(u)
ot Oz

(6.1-14)

Limit solutions of equation (6.1-13) satisfy the following inequality in the weak sense

U(u) 6F(u)

o 50 S0 (6.1-15)

We say that the finite difference scheme (6.1-9) is consistent with the entropy con-
dition (6.1-15) if

Urtt < upr - ( PR F /2), (6.1-16)
where
UPH = UH), UF = UG)),

n — T'feTt n "
it1/2 = Fol 10,9 142y 0 O00)s

4 in-uz = F(v]_;, 00 141,000 1o): (6.1-17)

Theorem (6.1-1) was extended by Harten, Lax and Van Leer as follows [14]:
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Theorem (6.1-2)

Suppose the difference scheme (6.1-9) is consistent with the conservation law
(6.1-1) and with the entropy condition (6.1-15). Let ©? be a solution of the
scheme (6.1-9), with initial values v§ = ug(iAr). Suppose that for some sequence
of grids indexed by [ =1,2,---, with mesh parameters (At);,(Ar); — 0 as

l — oo, where (3;:)2 = constant . If wv(z,t) converges boundly almost every-

where to some function u(z,t) as ! — oo, then the limit u(r,t) is a weak

solution of the system (6.1-1) and satisfies the weak form of entropy condition

4o poo
/ / a“"U+ ——F‘)dzdt+ f ' w(z, 0)U (uo(z))dz < 0, (6.1-18)

-

where w(z,t) is any nonnegative smooth test function with compact support.

In the next section, we will discuss a well known scheme proposed by Godunov.

6.2 Godunov’s Scheme

In this section, we describe a method known as Godunov’s method which de-
pends on the exact solution of the Riemann problem. For details of the solution of
Riemann problem and further information on Godunov’s method see [24] and [25].

Consider the Riemann problem defined by the system

- + ———2 =, (6.2-1)
with initial condition
(6.2-2)

where ur, ugp are constant states. The similarity solution which depends on

vy, ugr and theratio z/t, is denoted by R(z/t,ur,ur). Suppose that v?
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is given. We construct a piecewise constant function by setting
v (z) = v}, for zeli=[(: -1/2)Az,(i +1/2)Az], (6.2-3)

and now consider the initial-value problem given by (6.2-1) and (6.2-3). On each
interval [iAz,(i + 1)Az] the initial value problem defines a Riemann problem;
thus the initial value problem (6.2-1) and (6.2-3) defines a sequence of Riemann

problems. If we choose

At : .
A lamaz] < 1/2, (6.2-4)

where |anaz| is the largest signal velocity, then since

R(z/t,up,ur) =ur, z/t<ayr,

R(z/t,ur,ur) =ugr, z/t2ag, (6.2-5)

where a; and agr are the smallest and largest signal velocities, there is no
interaction between neighboring Riemann problems under the condition (6.2-4).
Therefore the exact solution of the initial-value problem (6.2-1) and (6.2-3) can be

expressed as

oo p(Zo¥1DAT
v(z,t) —R( t —nit i”i:”i+1)s

iAz <z < (i+1)Az, nAt <t <(n+1)At, (6.2-6)

;n+1

then v can be obtained by

n+1 1 sl on Ton i 7 y_*
oMt = = A v°(z, (n + 1)At)dz. (6.2-7)



By the integral form of conservation law, one has

/ v°(z,(n + 1)At)dz —/ v°(z,nAt)dr
l" :

(n+1)Ate

(n+1)At
+ / H(v((i + 1/2)Az,t))dt — / H(ve((i - 1/2)Axr.1))dt = 0.
nAt nAt (6.2—8)

By equation (6.2-6), we have

ve((i - 1/2)Az,t) = R(0,v]_,,v7),

ve((i + 1/2)Az,t) = R(0,v], 07, ,). (6.2-9)
Using equations (6.2-7) and (6.2-9), equation (6.2-8) can be written as

n n At

where

H?—1/2 = H(R(0,v{_,,v7)),
H?+1/2 = H(R(Ov”?’”?+l))-

The finite difference scheme (6.2-10) is called Godunov’s scheme. Clearly, Go-
dunov’s scheme is in conservation form. Since the exact solution v®(z,t) satisfies

the entropy condition

oU (v¢(z,t)) + OF (v®(z,t))

pr 5 <0, (6.2-11)

then integrating (6.2-11) over the rectangle I; x [rAt,(n + 1)At], we have

/ U(v®(z, (n + 1)At))dz — / U(v®(z,nAt))dz
I; I;
(n+1)At

(n+1)At
+ / F(v*((i + 1/2)Az, t))dt — / F(v*((i — 1/2)Az,t))dt < 0.
nAt nat (6.2-12)
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Notice that

v°(z,nAt) = v}, for el
ve((: — 1/2)Az,t) = R(0,v]_,,v}),

ve((t + 1/2)Az,t) = R(0,v},v},,),
so that inequality (6.2-12) can be simplified to

[ vtz n + DAOYE < AP ~ AH(FGp - FLLy ), (6.2-13)

JI;

where

Uit =U(v}),
Fli1/2 = F(R(0,07,v%,)),

I .'11/2 = F(‘R(Os'—-’:‘ﬁhﬂ:‘))
Since U is a convex function, Jensen’s inequality [21] holds in the form
U i/ u(z,t)dz) < #/ Ulu(z, ))dz (6.2-14)
v I‘i,;,_zE&Jﬁ u(z,t))dz. 2-14;

By using inequalities (6.2-13) and (6.2-14), we can verify that the entropy inequality

is satisfied, namely
, . At , , A e
urtt <up - A Fivyz = Flip)- (6.2-15)

By theorem (6.1-2), the approximate solution obtained by Godunov’s scheme will
approach a weak solution of system (6.2-1) which satisfies the weak form of entropy
condition as we refine the grid sizes, provided it converges.
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6.3 Approzimate Riemann Solvers

Godunov’s scheme depends on exact solutions of Riemann problems. The exact
solution of the Riemann problem for a general system of n conservation laws witl,
n > 2. is known only when the left state u; is close to the right state wugy. If
u; isnotcloseto ugp andif n > 2, then the solution of the Ricmann problem
is not known in general except for some specific problems (for example, Michacl
Shearer [22]). Even for the problems for which the exact solution of the Riemann
scheme. On the other hand, since Godunov’s scheme does not make use of all
information in the exact solution of the Riemann problem, this implies that we
may replace the exact solution of the Riemann problem R(z/t,u;,ur) by an
approximate solution w(z/t,u;,ug) as long as it does not violate conservation
properties and the entropy inequality. The numerical schemes based on approximate
solutions of the Riemann problem are called Riemann solvers.

Godunov’s scheme was extended by Harten, Lax and Van Leer [14] in the
following theorem
Theorem 6.3-1

Let w(z/t,u;,ur) be an approximation to the solution of the Riemann prob-

lem that satisfies the following conditions:

Az/2 ) Az o -
1) / w(z/t,ur,ur)dz = S-(uy +ur) — AHg - Hy),  (6.3-1)
~Az/2 &

for Az/2> Atmax|Ax(u)|, where Hj=H(uy), Hp=H(ug),

Az /2 B 7 7 Az - o 7 o
2) / ) U(w(z/t,ur,ur))dz < — (UL +Ur) - AY(Fr - FL), {6.3-2)
-Az /2

for Az/2 > Atmax|Ai(u)| , where Fp = F(u;), Fgr = F(ugr). Define a
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Godunov-type scheme as follows

v, Az ./D w(I/riug—lau: ) I+ Az Az W(I/ v; ﬂl-l-l) T (5 3 )

Then if conditions 1) and 2) are satisfied, the Godunov-type scheme is in con-
servation form consistent with system (6.1-1) and satisfies the entropy inequality
(6.1-16).
It can be shown that Godunov’s scheme is of Godunov type.
The simplest approximate Riemann solver contains only one intermediate state
(14]). If ap denotes the lower bound of the smallest signal velocity and ag
denotes the upper bound of the largest signal velocity, we define the approximate
Riemann solver by
ur, z/t<ar,
w(z/t,uL,ur) = ¢ uLr, ar <z/t<ag, (6.3-4)
4R, ar<zft,
where the intermediate state upr is determined by the integral form of the con-

servation law (6.3-1) as

apup —arur _Hr—Hi (6.3-3)
ar —ay, ap—ar .

ULR =

The above Riemann solver can be extended to a two-step Riemann solver which

satisfies the integral form of the conservation law and the entropy condition.

6.4 Two-Step Riemann Solver
The simplest Riemann solver with only one intermediate state described in the

last section can be extended to a two-step Riemann solver as follows.
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Consider the Riemann problem

Ou OH(u) _
o " or =0, |
_fuL, z€[-Azr/2,0), 7
u(z,nAt) = { ur, z€(0,Ar/2), (6.4-1)

on the region [—Az/2,Az/2] x [nAt,(n + 1)At]. If we denote the simplest Rie-

mann solver given in last section by wpy(z/t,ur,ur), then

uL, I/t < a,
wy(z/t,uL,ug) = { uLr, aL <z/t<ag, (6.4-2)
uRr, agr<z/t,

where

apur—aruy Hpr—-HL

uip = R (6.4-3)
ar —ar ar —ajg ) '
I.
(n+ 1)AL
ap aL
(n+1- p)at
ar ar
1 nAt
—-Az/[2 0 Az/2
Fig.6.4-1

We apply the Riemann solver wp(%,ur,ur) to the region (z,t) € [a%, %-‘s]
x[nAt,(n + 1 — B)At], where 0 < 8 < 1, (see Fig.6.4-1). Then, when ¢t =

(n+1— B)At, the approximate Riemann solver wy has three constant states;
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these states constitute two neighbouring Riemann problems with initial conditions

_fuL, -—Az/2<z<aL(l-p)At, o
u(z,(n+1-p)At) = { urr, ar(l—pB)At <z <agr(l - pB)At, (6.4-4)
and
., au(l —B)At < z < agr(l — B)At, o
u(z,(n+1-F)At) = { :ZR Zil —gm z i i Taf/z. 7 (6.4-5)

With suitable translation of the origin, we can apply the Riemann solver wgy
for the Riemann problems with data given by equations (6.4-4) and (6.4-5) (see
Fig.6.4-1). We shall denote the two step Riemann solver constructed above as
wg(z,t). Then wpg(z,t) has five constant states when ¢ = (n + 1)At. These

states are given by

U4 =1L, UB=ULR, YC =UR,
arurr —arur  H(urr)—H

UAB =

ar —ar ar —ay
—aLyy H(ugp) — H(u o
tuge = GRUR ~ QLULR _ *—(—’R) (ELR)! (6.4-6)
QR —ar ap —ar

In order that the neighbouring Riemann problems have no interaction, we require

ar(l — B)At + apfAt < ar(l — B)At + arBAL. (6.4-7)

Since agp —ar >0, we then have

(6.4-8)

B

Next, we will show that the two-step Riemann solver wg(z,t) satisfies the integral
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form of conservation law (6.3-1). Clearly, we have

Az/2 z Az . , L
/_Az/sz ((n +1- ﬂ)At’uL’uR) de = _2_('”‘ tur)~(1-A)At(Hp — Hy).
(6.4-9)
If z* is some point such that (see Fig.6.4-1)
ar(1 — B)At + arBAt < z* < ar(l — B)At + aLfAL, (6.4-10)
then
Az /2 z° Azx[2
/ wp(z, (n + 1)At)dz = / wpdz + / wpdz. (6.4-11)
-Az/2 ~Ax/2 z°
I* can be shown that
/ wg(z,(n + 1)At)dz = (Az/2 + ar(1 — B)At)u,,
~Az/[2
+(z* —ar(1~B)At)uLr — BAYHLp — HL), (6.4-12)
and
Az/[2
/ wg(z,(n + 1)At)dzr = (Az/2 — ar(l — B)At)ug
z.
+ (ar(1 — B)At — 2*)urr — BAYHR — HR), (6.4-13)

where Hpp = H(urr). By equations (6.4-11), (6.4-12) and (6.4-13) , we have

Azf2
/ ooy 28 (04 DAY = (Az/2 + ar(1 - H)AtJus+
—Azf2

(Az/2 —ap(1 - B)At)ur + (ar —aL)(1 — B)Aturr — BAYHR -~ HY),
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since

rAz[2
./-Ajz (rz + 1 B)At 8L, UR)dz = (Az/2+ ar(1 - B)At)ur+
(Az/2 —ar(1 - B)At)ur + (ar — ar)(1 — B)Atup, (6.4-15)

then by equations (6.4-9), (6.4-14) and (6.4-15), we have

Az /2
/“Q P wg(z,(n + 1)At)dr = (uL +ugr)— At(Hr — H;). (6.4-16)

Hence the two-step Riemann solver wg satisfies the integral form of the conser-
vation law (6.3-1). We will show that wjg also satisfies the entropy condition

(6.3-2). We need to show

/ = U(wp(z,(n + 1)At))dz < —(UL +UR) — At(Fgr - Fr).  (6.4-17)
J—-Az[2

We already know that

-Ax /2 . )
/_ Aes2 U(wn(z/(n+1-B)At,ur,ug))dz < AT(UL +Ugr) — (1 — B)At(Fr — FL).
| (6.4-18)

Since

rAZ]2
./;g " U(wr(z/(n +1 - B)At,uL,ur))dz = (Az/2+ar(l - B)At)UL+

(Az/2 — ap(1 — B)At)UR + (ar — a)(1 - B)AtULg, (6.4-19)

where Upr = U(urr) , then using equations (6.4-18) and (6.4-19), we can show

that

U; Uy, F Fy
ULr £ IR ﬁ a L LR L (6.4-20)
ar —ar, ar —ar

119



Now we consider a Riemann problem in the region (z,t) € [-Ar/2,r*| x[(n+1—

B)At,(n + 1)At] with initial conditions

o . ur, =Az/2<z<ar(l-A)At, o
u(z,(n +1— B)At) = R 3.4-2
u(e (n+1-A)A {um, ar(l -p)At <z <z (6.4-21)
If u®(z,t) denotes the exact solution of the above Riemann problem, then
oUw?) | OF(w’) (6.4-22)

ot oz

Integrating the inequality (6.4-22) over [~Az/2,z*] x [(n + 1 — B)At,(n + 1)At],
we have

=% ,fi

/ T Uu(e, (n+ 1)AY)dz — / Uz (n + 1 - B)AL)de-
=Az/2 J=Azx[2

r(n+1)At (n+1)At 7
/ Fu*(z*, t))dt — / F(u(-Az/2,1))dt < 0.

Notice that u®(z*,t) =urr and u®(—Az/2,t) =uy, so that by (6.4-23)

/ :\,2 U(u'(z, (n + 1)At))dz < (Az/2 +ar(1 - A)AHU,~

ar(1 — B)AtULr — BAt(FLr — FL). (6.4-24)

We will show
/: - U(wg(z,(n + 1)At))dz < /; U(u®(z,(n + 1)At))dz. (6.4-25)
J-az/2 J-az/2

Since we have wg(z,(n+1)At) = u®(z,(n+1)At) =u; when z € [-Az/2,a,At)
and wg(z,(n + 1)At) = u(z,(n + 1)At) = uLg when z € (aLAt + (agp -
ar)BAt,z*], we need only show

apAt+(ag=ar)fAt

Uws(z, (n+ DAtz < [ U(u*(z, (n+1)At))dz.

/ﬂ;éi+(¢n—nt,)ﬁﬁi
Jar At JarAt
(6.4-26)
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(6.4-27)

Since when a At <z <arAt+ (ag—aL)BAt and t=(n+1)At, we have
raLAt+(ag—ar )AL 7
u®(z,(n + 1)At)dz = usp

o |
- ﬂL)ﬁét Jar At
is convex, then by Jensen’s inequality

U(wg(z,(n + 1)At))dz = (ar — ar)BAtU(wp)
u®(z, (n + 1)At)dz)

8= lan

and since U
arAt4(ag—ar)BAt
apAt+(ap—ar)fat
U(u®(z, (n + 1)At))dz.
(6.4-28)

-/n,,ﬁi
.. 1 )
ar — BALU ,
(HR EL)B ((HE _ ﬂL)ﬁét -/;LAS
1 a7 At+(ag—ai)BAL
(ar —aL)BAL -/ﬂ;_A:

Thus inequality (6.4-26) holds and hence inequality (6.4-25) is satisfied. We then

< (ar —ar)BAL

have
[ Utonte, (0 + DAz < (B2/2 + 011 - £)AOV -
J-az/2
ar(1 = B)AtULr — BAY(FLr — FL). (6.4-29)
Similarly, we can show that
rAxf2 7
/ U(wp(z, (n + 1)At))dz < (Az/2 ~ an(l - B)At)Ur+
ar(l — B)AtULR — BAL(Fg — FiR). (6.4-30)
Therefore
Ax /2
[ Utoa(a,(n+ 1at)de <
J—Azx/2
%(UL + Ur) + (arUL — arURg)(1 — B)At+
(6.4-31)

(ar —ar)(1 — B)AtULg ~ BAL(Fr — Fy).
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By using inequality (6.4-20), inequality (6.4-31) can be simplified as

Azr/f2 Az N
/ U(wg(z,(n + 1)At))dr < ;QE(UL + Ur) = At(Fgr - F1). (6.4-32)
—-Azx/2

Thus inequality (6.4-17) is satisfied. Therefore the two step Riemann solver w gl t)

satisfies all conditions in theorem (6.3-1) and the Godunov-type scheme

| [+1/D4z
ot = L / ws(z, (n + 1)At)dz (6.4-33)
Az Jii12)a:

will be in conservation form and satisfy the entropy inequality

n n At 'n P 6.4-3
UPH S U — 2o (Flags = Fitaja). (6.4-34)

6.5 Numerical Analysis of the Normal Impact of a Nonlinear Elastic String
The governing system of equations of the wave motion in an elastic string is in
nondimensional form (see Chapter 3),

%u
ot

OH (u)

3X =0, 0<X<l1, t>0, (6.5-1)

+

where

u = (Acos 8, Asinf,u,v)T,

= —(u,v,T(A)cos b, T()\)sin 6)7. (6.5-2)
The function T(A) has been written in nondimensional form

3
T() = 2 3w - A=), (6.5-3)

=1

|
o]
I



where Ogden’s values

p1=1.491p, pp=0.003y, ps3=—0.02374,

(03] —';—'1.3, Qg = 5.0, Qg = -2.0 (6.5-4)

are used. The graph of the function T(A) can be found in Fig.3.2-1. The eigen-

values of the Jacobian matrix 2%52 are +A; and +A; where
Av=(T'ONY2, Ay = (T()/A)2 (6.5-5)
The initial condition is
u(X,0) = (Xo,0,0,0)7. (6.5-6)
The boundary conditions are

u(0,t) =0, u(l,t)=0v(1,t)=0,

v(0,0%) = g,
E’l’fz_") = 2aT(A(0, #)) sin 6(0, ¢). (6.5-7)

For this problem, we may define an entropy function U and entropy lux F by

A
U= l(u2 + v?) +/ T(s)ds,
2 Ao

F = —T()\)(ucos 8 + vsiné). (6.5-8)
It can be verified that
U OF
o tax ="

Uuwu >0, (positive definite)
U-H' = F.. (6.5'9)
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Consider first the application of the simplest Riemann solver with only one inter-
mediate state

7 urL, X/t <ar,
YLr, ap < X/t<ag,
 up, ar<JX/t,

wy(X/tur,ug) = (6.5-10)

where a; and ap are the lower and upper bounds the of signal velocity re-
spectively. Then we have

(6.5-11)

The intermediate state upLr in equation (6.5-10) is then given by the following

r— (6.5-12)

Recall that

AX/2
ntr L &

v;

X J, w(X/t,vl ,,v7)dX + AX Joaxse w(X/t, vl v} )dX.

(6.5-13)
We then obtain the numerical scheme for the simplest Riemann solver
vitl=(1-arp? + %(d“?ﬂ +ol_) = (H(viyy) - H(v].,)), (6.5-14)

~. The above scheme can be written in conservation form

‘,?4-1 =v] — T(G'?;H/g = G?—lli)i (6.5-15)
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where

;?41/2 = E(”?a“::kl)

(‘1(“ -vlyy) + H(vl,) + H(v})),
i— 1/2—‘;(”- 197)

(@0l —o7) + H(9D) + H(v]-,), (6.5-16)

and it can be verified that

G(u,u) = H(u). (6.5-17)

The corresponding numerical scheme for the two-step Riemann solver is

- arep + 222

('3(1’:4-1 +vi,) = (H(viy,) — H(vi,))
_ ﬁr(g(”?ﬂ +oi  HE, -

) H(”?+1+“ H,-H?
2

W),
2 2 (6.5-18)

¥ g=0,

then scheme (6.5-18) reduces to the scheme (6.5-14). Scheme (6.5-18)

can be written in conservation form as

un#—l

=v] = r(F 12— Fi /2),

(6.5-19)
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where

|+1/2 = F(v},v,)

= ’1(1 = B)(a(v] —vl,) + H(vl ) + HoM))+

.+1 +v! HYL,-H}
BH(- %a ),

i- IIZEF(ul 1Y l

= =(1—ﬁ)(a(u, =)+ H(v}) + H(v]_ )+

n+v‘ 1 Hl ’;E}i-j'
2 2a )

BH (-

(6.5-20)

It can be verified that
F(u,u) = H(u). (6.5-21)

As before, we denote the initial stretch and the maximum stretch by Ag and Ap,.
If 1<Xo<Am<Aa, then Aj(Xo) > A1(A) > Az2(A) for A < A< An and
hence we may take a = A;()o).

In Fig.6.5-1, we plot the graph of )\ as a function of X when )¢ =
15, ¢=02 and a = 1.0 using the simplest Riemann solver and the results
of the perturbation method. In Fig.6.5-2, we plot the graph of 8 as a function of
X for the same data as in Fig.6.5-1.

H A <X < 2dn <Az, then Az(Xo) > Az(X) > Ai(D) > Ai(No) for
Ao < A £ Am and hence we may take a = Az(Ao) .

In Fig.6.5-3, we plot the graph of A as a function of X when M\ =
28, ¢g=03 and a = 1.0 using the simplest Riemann solver and the results
of the perturbation method. In Fig.6.5-4, we plot the graph of 6 as a function of
X for the same data as in Fig.6.5-3.
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o o2 a4 08 08 10 12 14 1.6

Fig.6.5-1 Ao =154¢=02 a=1.0¢t=1.0.
——perturbation method,

- - -direct numerical method, dt=0.0005, r=0.9.

0 0.4 08 12 16

Fig65-2 5 -15 ¢=02 a=10,¢=10.
—perturbation method,
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.

2.79 +—— 1 ———— = —- =i

Fig.6.5-3 X =28,¢=03,aa=1.0,¢t=1.0.

—perturbation method,

- - -direct numerical method, dt=0.0005, r=0.9.

0.250 T— e —— e e

0.135 4

-8

Fig.6.5-4 A =28,¢=03,a=10,%t=1.0.
—perturbation method,
- - -direct numerical method, dt=0.0005, r=0.9.
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o 02 04 06 08 10 12 14 16
X

Fig655 Ao =3.14,¢=03,a=10,¢=10.
—approximation method,

- - -direct numerical method, dt=0.0005, r=0.9.

0250 p————— e

0.125

0.125 = - —_— —
0 04 08 1.2 16

Fig6.5-6 )y =3.14,¢=03,a=10,%t=1.0.
—approximation method,

- - -direct numerical method, dt=0.0005, r=0.9.
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29BA——=4-——71 = =71+ 1 O {7yt 1770
0.0 0.a 0.2 0.3 04 0.5 0.8 0.7 0.8

Fig6.57 X =30,4=035,t= 0.5, a = 0.0, r = 0.25, At = 0.001.
- - - - - -simplest Riemann solver,

— — —two step Riemann solver with g = 0.25,

————two step Riemann solver with g = 0.5.

=0.10 A

=0.15

6. -0.20{—

0.0, r = 0.25, At = 0.001.

Fig.6.5-8 X0=30,9=051t= 0.5, a
- - - - - -gimplest Riemann solver,
— — —two step Riemann solver with 8 = 0.25,

——two step Riemann solver with g = 0.5.
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3.02

2.98 T T L T T 1
. . . 04 0.5 0.6 0.7 0.8

Fig.6.5-9 X0 =3.0,¢=05,t=0.5, a=0.0, r =0.25.
------ simplest Riemann solver with At = 0.001,

two step Riemann solver with B8 = 0.5, At = 0.0005.

0.00

-0.06

-0.10

-0.16 -

-0.36

V40T T T T al
00 0.1 02 03 04 06 06 07 08

X
Fig65-10 o =3.0,¢=05,¢=0.5, a =00, r = 0.25.
------ simplest Riemann solver with At = 0.001,
two step Riemann solver with g = 0.5, At = 0.0005.
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In Fig.6.5-5, we plot the graph of A as a function of X when )\, =
3.14,g = 03 and o« = 1.0 using the simplest Riemann solver and the results
obtained by the approximation method described in Chapter 5. In Fig.6.5-6, we
plot the graph of 6. as a function of X for the same data as in Fig.6.5-5.

In Fig.6.5-7, we plot the graph of A as a function of X when X\ =
30, ¢=05, t=05 and a =0.0 by the simplest Riemann solver and by
the two-step Riemann solver with §=0.25 and B =0.5. In Fig.6.5-8, we plot
the graphof 6 asafunctionof X for the same data as in Fig.6.5-7. We can see
that for the same grid size AX and At, the results obtained by the two-step
Riemann solver with 3 > 0 have better shock representation than those obtained
by the simplest Riemann solver.
parethe A and 6@ valuesobtained by the two-step Riemann solver with 8 = 0.5
and grid size AX = 0.004, At
Riemann solver with one half of the above grid size AX =0.002, At = 0.0005.

0.001 and those obtained by the simplest

The CPU time for the two-step Riemann solver is 78.6 Second, while the CPU time
for the simplest Riemann solver is 127.4 Second. We can see that the results of the
two methods are very close but the computing time of the two-step Riemann solver

is le-~ than that of the simplest Riemann solver.

i
[ ]
[ ]



Chapter 7

Normal Impact Problem for a Nonlinear Circular Membrane

7.1 Nonlinear Membrane Theory

A membrane theory had been developed by Green, Naghdi and Wainwright
as a special case of the general theory of Cosserat surfaces [11]. They set up the
theory in a way that is readily generalisable to consider thermomechanical effects,
but we confine our attention here to a purely mechanical discussion and set up the
membrane theory directly.

Assume that we have a fixed rectangular Cartesian coordinate system OXY Z
and that 6%(a = 1,2) are convected Gauss coordinates on the membrane consid-
ered as a two-dimensional surface which maintain a one-to-one correspondence with
material points under deformation. If we take the undeformed state as the reference
configuration , then a deformation carries the material point p with coordinates
6° from its reference position X(6',62) to the deformed position r(8',6%) in
a three-dimensional Euclidean space. We define the natural basis in the deformed

configuration by

g =T 4 EE‘;’ (f! =1, 2) (?-l*l)

If a; xaz #0 ,then a; and a; span the tangent plane to the deformed

surface at r. The metric tensor has components

Gap = Gq ' Gg, a = det(aag) > 0, (7.1-2)
and with a > 0 the reciprocal metric tensor a®® and the dual basis a® are
defined in the usual way with

a®*aup =83, a* =a"Pag. (7.1-3)

133



Here Greek indices take the values 1, 2, and the summation convention is used. If
the bounding curve for the deformed membrane surface is denoted by | we denote
the unit normal to the surface by a;, the tangent to ! by #, and the unit
normal to ! in the surface by 7. Then

az = (al X ag)/aln,
-~ dr dé~
t = a: =t°‘a°, = —d-s—ao,,
. . des ,
fi=txa; = al/zeapz-ac’ = —a'*t%,pa?, (7.1-4)
where s is the arc length along [ and €2 =1, e =-1 and eup =0

otherwise. Similarly, we define basis vectors and a metric tensor on the undeformed

surface as

_ X
R

Aap = Ao - Ag, A =det(Aag) >0,

A% A,p =685, A®=A"PA, (7.1-5)

The deformation gradient F is defined by

dr = FdX. (7.1-6)
Since
dr =r od0” = a,d6”,
dX = X o,d0” = A,d6°, (7.1-7)
we have
Ap-dX = Ag - Aodi® = Ap,db”, (7.1-8)
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thus
A‘"‘"ﬂ.dg -dX = A“ﬁAggdB‘“ = 55&9" = df°, (7.1-9)

then by the first equation of (7.1-7) and equation (7.1-9), we have

dr = ao,df”* = EQABE(AE -dX)

=a,(A%-dX) = (a, ® A*)dX. (7.1-10)
Hence we have
F=a,®A% (a=1,2) (7.1-11)

If ¥ denotesthe undeformed membrane surfaceand o the deformed membrane
surface, dL an element of curveon ¥ , N the unit normal to dL in the
surface £, d! an element of curveon ¢, 7 the unit normalto d! in the
surface o, andif ¢* denotes the force per unit lengthon L, ¢ denotes the

force per unit length on [, then we have
t*dL = tdl. (7.1-12)
Now we define the Cauchy stress tensor 7 on the deformed surface o by
t="Tn. (7.1-13)
With some calculation we obtain the two-dimensional Nanson’s relation
fidl = JdL(a® ® Aa)N, (7.1-14)
where J = (a/A)'/2. It then follows that

t°dL = tdl = Tidl = JT(a® ® Aa)NdL. (7.1-15)

135



If we define Piola-Kirchhoff stress tensor & by

t" = SN, (7.1-16)
then

(7.1-17)
If we define

T = JTa", (7.1-18)
then we can write

(7.1-19)

For unconstrained Green elastic materials, we assume that there exists an elas-

tic potential energy function W(F) per unit area of the undeformed membrane
surface so that

W = tr(STF). (7.1-20)

r= Tiéii Gy = rfﬁéi,
F=r'16i®A* = Fi&; ® A*. (7.1-21)

Since

W= tr(‘?;f),

r .€i ® A%,

F=r7

(7.1-22)
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then by equations (7.1-20) and (7.1-21), we have

5=M: 0 A

Comparing equation (7.1-19) and equation (7.1-23), we have

The Cauchy stress tensor can be written in component form as

T =Ta, ® ag, T8 = The,
and it can be shown that
T = JT%Pa,.
We assume W is objective so that
W(F) = W(C),
where
C=FTF = (A" ®aa)(as ® A*),
= (aq -ap)A% ® A°.
Since
C = CopA® ® A®,
then

Cap = aq - @g = aap.
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(7.1-25)

(7.1-26)

(7.1-27)

(7.1-28)

(7.1-29)

(7.1-30)



ow N
(7.1-31)

- =27 .
‘3'1;13 @

It can be shown that
art,

. oW

Substituting equation (7.1-31) into equation (7.1-24), we have

(7.1-33)

By comparing equation (7.1-26) and equation (7.1-32), we get

If we ignore the effect of heat transfer, then the equation of energy balance can

be written as [11]:
D (1.1 . L
— v -0+ ol Ydo = . s
Dt,[/,;(EP” v + pU)do ft vdl,
v =5

velocity, and U is the internal energy per unit mass. Equation (7.1-34) can be
(7.1-35)

written as
D 1 ; ;
—_— =4 = U ’JdS; t-' l
D /L(zu v+ U)pJdE f; vdl,

where ¥ refers to the undeformed surface and J = (a/A)!/2. By conservation
(7.1-36)

of mass, we have
pd = po = constant,

where po is the mass per unit area in the undeformed surface. By using equation

(7.1-35) and equation (7.1-36), we have
f/(pair ‘v + poU)dZ = ft-udz,
z Ji
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or

//”(Poi) ‘v + po(.f)-dja- = f;t .vdl. (7.1-37)

We assume that p, U, ¢ remain unchanged under superposed uniform rigid

body translational velocities. Then for any constant vector b we have
. - do oo
/ / (pos - (v.+8) + pol) S = ft (v +b)d. (7.1-38)
o {
By subtracting equation (7.1-37) from equation (7.1-38), we get

.do
b (/apovj——f;tdl) —0.

Since b is arbitrary, we have

/ /0 pot':dj'- = ]{tdz. (7.1-39)

The Stokes-Green theorem is given as follows (see A.E.Green[12])

/ / a‘l/zi(al/qu“)da' = f ¥on.dl, (7.1-40)
I'4 o6~ ] '
where n, isdefined by n =n,a®. If we take

¢a — ta . c,

where t* isdefinedby ¢=1%n, and c¢ is an arbitrary constant vector, then

a—l/z _6_2:(“1/2'/)0) = a—l/z 5z_c.(allztcw .c)
= a'llza%(allzt") -c, (7.1-41)
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hence we have

f(ta ‘€)nqdl = // 3_1/2%(111/2!“) - edo, (7.1-42)

since ¢ is arbitrary, we have

ftdl = /f a“”z%(allgt“)dm (7.1-43)
! JJe b

Since o is arbitrary, then by equation (7.1-39) and equation (7.1-43) we gt
Jf”gi(auzt“) = pov (7.1-44)
C 86 o T

Since
—ng, (7.1-45)

it is clear that

27,

t° =5 (7.1-46)

Notice that J = (a/A)'/2, then equation (7.1-44) can be written as

2 0 . 1/2:ma , L
Aailz éF(AllgTa) = pgij, (7l‘47)

The above equation is the equation of motion of an elastic membrane.

7.2 Governing Equations for the Impact Problem

Consider a two-dimensional circular elastic membrane with radius B in the

can ignore the bending moment and the transverse shearing force. The membrane
is pre-stretched such that it is subjected to an equibiaxial stretch )g > 1, so that
the radius of the membrane becomes b= A\gB. We fix the edge of the membrane
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so that no displacement is allowed, the membrane is then subjected to a normal
impact in the region of a circle with radius r = a < b, and the initial impact
velocity vp is given. We take A = a/).

We take 6' = R, 6?=0, where R,0 ace cylindrical polar coordinates.
We denote the position of a point in the reference surface by X = X'¢; , where

¢y, t=123, is the fixed retangular basis, we have

X'=Rcos®, X?=Rsin®, X3¥=0. (7.2-1)

The position of a point in the deformed surface is described by r = r'¢; , where

r' =r(Rt)cos®, rP=r(Rt)sin@®, r*=2(R,1). (7.2-2)

Recall that A, =X ,, a,=r, , we have

A, = cosOé; +sin Oe,,

A; = —Rsin ©€; + Rcos ©é,,

or ns 4 eas s 07 .
a = éE(CDS ©é; + sin Eg) + %Egi

a; = —rsin ©€; + r cos ©é,. (7.2-3)
It can be shown that

(Aap) = (Dl Roz)a

wn=(l 2)

(anﬂ)=((§—§%2+(§=§)3 r2 D)' (7.2-4)

Since A® = A*PA; , we have

_A,. (7.2-5)



If we define

€r = cos ©¢; + sin Oc,,
€e = €3 X égp = —sin O¢; + cos OF,, (7.2 6)
then
_ A . B . 1 . 72 1 a
Al =E€R, AE = Réa, A = €R, A = ‘Ef?éi
or . 8z . ) —
a] = %ER + §E3i a; = rég.

Hence the deformation gradient tensor F and the right Cauchy-Green deforma-
tion tensor C = FTF are given by

F=a,Q A" = aré ® é +33é ®éR+ —éo®é
= = ——¢p —_—. €p 4+ —¢ Y fe
o & 3RER R+ opér@cr Rfa& e,
C=Mér®ér+ Noéo ® éo, (7.2-3)
where A? =(2£)2 +(4%)? and M =(r/R)® . F has a polar decomposition
F =RU , where
U= MER R ER + Ioéo B éo,
R =cosaér ® ér +sinaéy ® ér + éo @ ée, (7.2-9)

where

cosa = %/At, sina = g—;/,\,. (7.2-10)

2 i N
t» aiz2=az =0 and

Using equations (.7.1-19), (7.1-32) and note that a;; = A
azz = R?)} , then the Biot stress tensor 7(!) (see Ogden[19]) can be calculated
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L]

_Foa EF Rl a
T = 3(STR+ RTS) = alAIDéR G éR+
! S 4

D

where a superposed T

denotes the transpose. Following Haddow, Wegner and
Jiang[13], the quantities

§WQ(A1,A§) awﬂ(’\—i’ '\5) = 19
= ———— ¥ ’\ B A = ———r _2!
Ti (A, Ae) = O ) To(Ae, M) ETH (7.2-12)
are taken as Biot principal stresses

Here, we adopt the elastic potential energy
function Wy

proposed by Haddow, Wagner and Jiang [13]
Wo(Ae, Xg) = E(ey(ﬁem FATIAFE=3)+ (1=9)( A2+ 2052 + 2202 =3)), (7.2-13)

with p the modified shear modulus for infinitesimal deformation from the unde-
formed state and 0 < 4 < 1. By equation (7.2-4), we have

A = det(Aqp) = R?.

(7.2-14)
The equation of motion (7.1-47) can now be written as
i(RTI) + }E(RTZ) 2 = po¥ 7.2-15)
RV 17 RV 2 = Pov, ( &m 1Y
where, by equation (7.1-31)
1 W oW, oW,
T = 2- 2= =
- day; o+ aﬂiiag 2'3'111 a1
oW, - OW; ~ oW, L
2 _ 9o o Wo 0_ 9.
T £ aﬂgl a; + aagg gaagg 2 (7 2 16)
It can be shown that
T' = Ty cosaép + Tysinads, T2 = %Tgée. (7.2-17)
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Notice that

O _ .
50 - R

U =r =T€R + €3, (7.2-18)

and as a result we have the equation of motion in component form as

o T; - T
—aR(Tl cosa) + 42 COSI(; 2 = poT,
0 . Ty si N
-a—I—Z'(Tl sma) + ! ;na = poz. (7.2- 19)

The compatibility equations are

O(Aecosa)  Ou d(A¢sina)  Ov ¢ u
5 -8R’ % ~OR & R (7.2-20)
where u=%=', v=%§=é.

Next, we will consider the boundary conditions for this problem. The boundary

conditions at R =B are

17)
Z(B,t) = 0, wlR:B = élR:B = 0,
0
u|p=p = 5§|R=B =0, J¢lr=B=ro. (t>0) (7.2-21)

The boundary conditions for R< A are

(M + AM)Z(R,t) = 2rat|r=4 - &3,
A0=A0’ ,(OSRSA,tZO),

u=0, A=MX,(0SR<A t2>0)
(7.2-22)

where M is the mass of the impact object, AM = wA%py is the mass of the

membrane inside the circle R< A (or r<a ),with py being the density per
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unit area in the undeformed configuration. Since

- - a) ai
t= Tﬂ, n=s—=-—,
las] A
;2 OW,
T = S I = (@A =20,

then

so the first equation in (7.2-22) can be written as

(M + AM)z(R,t) = TT] sin a, (R = A). (7.2-23)

The nonslip assumption implies that Mg|r=a = Ao . Equation (7.2-23) can be

written as
2ra . . )
ETI sin a, (R=A). (7.2-24)
do , ,

(M + AM)3(R,t) =

If we introduce the nondimensional variables

then equations (7.2-19) and equations (7.2-20) remain unchanged when the hats are
dropped except that po is replaced by 1. These equations can be written in
system form

(7.2-26)

+5§(“) +B(u,R)=0, A<R<I,

®|@
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where

u = (M cosa, \sina, Mg, u,v)T,
H = —(u,v,0,T cosa, T sina)7T,

B =—(0,0,u/R,(T; cosa — T3)/R, Ty sina/R)T, (7.2-27)

where a superposed T denotes the transpose. The condition (7.2-24) can be

written as
2AM 1
p = i = — = <R< 2-2
v = KT} sina, K M1 AM (A)’ 0<R<A (7.2-28)

The complete description of nondimensional boundary conditions and initial condi-
tions will be given in Chapter 8.
The linearised version of the above problem has been treated by Farrar([10]. If

we set

r=XMR, u=0, T =T, Ticosa=Ty,

0z

E =tana, Tp= T](Ao,/\o) = Tz(/\o,/\o), (7.2-29)

in equation (7.2-19) we get

E_AoToi(az
pe= or

- r—) , a<r<b. (7.2-30)

The linearised version of the first equation of (7.2-22) is

(M + AM)s(a,) = 22200 22 ) (7.2-31)
0

In Farrar’s case the initial thickness of the sheet is denoted by hp, the density

of the material pr is considered constant. The tension of the sheet T is also
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considered constant. Then
po = ;\ghF‘pF, To = XohrTp, (7.2-32)

and we recover Farrar’s form

1. 18 ( 8z o
=5z = " — (ri) ) a<r<b t>0, C}=Tr/pr. (7.2-33)

Equation (7.2-31) can be written as

(M +AM)z = Zﬂ'ﬁthg, r=a. (7.2-34)

The complete description of the linearised boundary conditions and initial condi-
tions will be given in Chapter 8.

We leave the linearised equations in dimensional form. As a result when com-
parison is made between the linear and nonlinear cases it is necessary to convert

the results to dimensional form.



Chapter 8

Numerical Methods for the Impact Problem of a Nonlinear Membrane
8.1 Numerical Procedures

a nonlinear elastic membrane were derived in Chapter 7 and are given by

Ou OH(u) . . .

where

u = (A cose, A sina, Mg, u,v)7,

—(%,v,0,T; cosa, T sin @)Ts

H

B = —(0,0,u/R, (T} cosa — T)/R, T} sina/R)7, (8.1-2)

where a superposed T denotes the transpose. The notation is explained in Chap-
ter 7 and we use the same nondimensionalisation. System (8.1-1) can be written in

the matrix form

ou o , o
5 TAW)zE +Bw,R) =0, A<R<], (8.1-3)
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where A(u) = %;L its nonzero components are given by

1

sz = Ei(sina)z - T (cona,
M

)"
oTy

As; = Eﬁssini!

d)

The eigenvalues of A(u) are

Ao=0, Ayy==Cr, Ai2==Cr, (8.1-5)

where

1/2 o\ 1/2
CL:(%) , T:(ﬁ) i (8.1-6)

The corresponding left eigenvectors are

LD = (03 03 11 03 D)a
F e -1 aTl - T
Ly =(CLcosa,CLsina,Cy ?,$§ascx,f|:sma),
OAg
Liz = (Crsina,~Crcosa,0, Fsina, + cos a). (8.1-7)

149



The initial conditions for the impact problem of an elastic membrane are

A(R,0) = Ao(R,0) = Ao,

u(R,0) = a(R,0) =0, 0<RZ1
_ v, 0<R<A,
v(R,0) = wo T
0, A<R<1.

(8.1-8)

If we do not consider the restoring force, then the boundary conditions for this

problem are

X=X, v=vg, u=0, 0SR<A, t>0,
At =Xy, a=0, 0<R< A t>0,

V|R=1 = t|R=1 = 2|p=1 =0, Ag¢|R=1 = )0, t>0. (8.1-9)

If we consider the restoring force, then the boundary conditions are

Ao = Ao, u=0, 0<R<A t=>0,
, 2AM 1 o
5= sin { = <R<
v = KT sina, K M+AM( ) 0<R<A,
At=X, a=0, 0SR<A t>0,
v|R=1 =u|p=1=2|R=1 =0, MAg|lp=1=Xo, t>0. (8.1-10)

Following the procedure in [13], we multiply system (8.1-1) on the left by L =

Lo, Ly, Lys , we have

. du ~ dR A
L!Tt;#L!B;D, on T—Cr (Silgll)
where C =0, £Cr, £Cr. When C =0, then
dg v _. 4R _ 2 1.19
% R0 on i = 0. (8.1-12)



When C = +C;, we have

dA du dﬁ ET] dAg i 11'2(3&5{1 E:TI o
CLgy Feosay Fsinagy +‘:L e RTTr =0
on céf =+Cy,
(8.1-13)

and when C = +C7, we have

da du dv T
—CrM—- Fsina— + cosa— Fsina— = 0,

dt dt dt R

on d’tr = +Cr. (8.1-14)

—_— (n+1)At

If we forward difference equations (8.1-12),(8.1-13) and (8.1-14), we obtain, on

dR __
a =0

Qo)PH! = ()7 + At (8.1-15)
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and on W =+CL

APt — (A n+l _ 7 atl
(CL) ( t) At( t)iL ;\fcﬁﬂ)iL%i(SEnﬂ)iLl;Ti
+(CL)1} ( ) (»\a)ﬂ+ —(Ag)rL  uxL )+ (Th)+1L 5,,(%)112—’4“25,{{):&14 o,
At Res Rt (8.1-16)

Similarly, on —dﬂ +Cr we have

n4l .ntl

> ai" —a ‘ i AT
_(/\t)iT(CT)é:TlA*tiT:F (sin QET%
vﬁ+l — vgT (Tg Sil’lﬁﬂ)i']'

+(cos a)yr—t—nr - 0,
At Ryt (8.1-17)

where the points +L, +T are shown in Fig.8.1-1. Ryp, RyT are given by

R_, =R} . ) s i 20),
*133 A
n At(cﬂ)! (& *
R, = R"* — ——, 1 = )
P Ar((Cu)2 = (CU)7) t2D (8.1-18)

where p=L,T. We also have

. el n
ey =€ + T(R R,),
el o
ey =€l + %ﬁﬁ(ﬁgp R}), (8.1-19)

where e represents one of A, @, Mg, u,v and p=L,T. The corresponding

finite difference equation for the second equation in (8.1-10) is
vgt! = vl + AtKTi((Me)3, (No)}) sin(af). (8.1-20)

If R# A,1, wecansolve (A)'*! by equation (8.1-15). Then the unknowns
)7L, o, ul*, vt can be found from equations (8.1-16) and (8.1-
17). If R = A, there are three unknowns u3*!, (A)2*!' and af*'. The



unknown uvg*' can be obtained from equation (8.1-20), and then (A)2*},al*!

can be found from equations (8.1 —16); and (8.1-17); . If R =1, there
are two unknowns (ARt} and (e)jlly. they can be found from equations
(81 - 16)| and (81 - 17)1

The linear governing equation for the membrane is

1. 10 ( 8z i : . i
CT%Z = ;5‘; (Ta—i) s a-<=r< b, t> 05 C%- = TF/FF (8,1-21)

The corresponding initial conditions are

(8.1-22)

where a isthe radiusof the impact projectileand b is the radius of the stretched
circular membrane.
If we do not consider the restoring force, then the boundary conditions for the

linear problem are

0z, a: o
‘glrgg = Ug, glfgb = %Ir;b = 0, t>0. (8.1’23)

If we consider the restoring force, then the boundary conditions are

(M + AM)3 = 2rahsTr %, r=a,
T ,

where hp is the initial thickness of the elastic sheet. The linearised equation may

also be treated as a system by setting

vy = :fgi v2 = é (8.1-25)
Cg ot or



so that

>y + - 737" =0, a<r<hbh, (8.1-26)
where
T . n é%i’l T r ey
v=(v,02)°,  Flor)=—{rv,——) . (8.1-27)
The corresponding initial conditions are
v1(r,0) = vy(r,0) =0, a<r<hb (8.1-28)
The corresponding boundary conditions are either
vi(a,t) = gvo,  vi(bt) =0, >0, (8.1-29)
GF' '
or
b1(a,t) = Kva(a,t),  vi(b,t) =0, ¢t>0, (8.1-30)

where K =2AM/(M + AM), AM = na*hppr.

The approximate Riemann solver with one intermediate state proposed by
Harten, Lax and Van Leer can be extended to systems of the form (8.1-26). For
example, Antman and Szymczak treat their problem using the extended Riemann
solver [1]. The extended Riemann solver for system (8.1-26) is

v, r/t < -Cp,

w(r,t) = { vLg, ~Crp <rft <Cp, (8.1-31)
| YR, r/t > CF,

where

vir = L ';”E - F(“E"'R;;F(M:"L)_

(8.1-32)
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Then ve approximate o}t! by

) 1 a4-(i+1/2)Ar
ot = L / rormas w(r, tnys)dr (8.1-33)

B>

so that

o At , ,
ot = (1 - CpA/Ar] + oo (Cr(vi, +93,) + FI, — FLy,),  (8.1-34)

where
Fo,=FOl,ni1),  Foy=Flurisn). (8.1-35)

On the other hand, we may apply the characteristic method to the system

(8.1-26). This system can be written in matrix form

"l + AF(u)é_r + Bf(v,r) =0, a<r<hb, (8.1-36)

where

_ Civy R 1.a°
Br = (—vs, J,;E’I)T (8.1-37)

The eigenvalues of Ap are +Cp, the corresponding left eigenvectors are
Licy =(1, Fr/CF). (8.1-38)

Multiplying Lic, on the left of system (8.1-36) we have

dr

dv - dr
LiCFTi? +LiceBr =0, on ;j = +Cp. (8.1-39)
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We then have

(8.1 40)

} (n+1)At
B —* nAl

)i~ (o) | roc (@it ~(w)-c _ )
At Cr 7~ —(v2)-cH ==
@) = e _ re o)I*! - (me _ (.  Crw)e

' ' —— =0, 1<1
At C'i ét 2 1 = %
’ e (8.1-41)
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where th points +£C  are shown in Fig.8.1-2 and

r_c =r; + CFAL,
(v1)-c = ()] + Cr((v1)igs = (1)),
(v2)-c = ()] + Cpa-((v2)24s = (22)]),

— CrAt,

re
(vl)cz(m)"+cpm((vl)‘ = (o)),

(v2)c = (v2)i' + Cr 2 (( ~ (v2)}).

The unknowns (vy)**?, (v2)?*! can be found from equations (8.1-41)

_r-cPc+rcPc

n+1 =

(v1); s

(vg)P+! = — Cr(Pc - P_c)

i T rc+r-c
where
AtCr(v;)c
Pc = —=(n)c+ —(1’2)(_';' At(vs)e — %,

r-c AtCp(vn)-c

P.c=—(vi)-c— —(l’z) ¢ — At(vz)-c + —————.

(8.1-42)

(8.1-43)

(8.1-44)

The corresponding finite difference equation for the boundary condition (8.1-30) is

(v1)8*! = ()8 + AtK(v2)3.

Numerical results will be given in the next section.
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8.2 Numerical Results

For the nonlinear case we need to compare our numerical results with those
given by Haddow, Wegner and Jiang under the assumption of constant impact
velocity [13]. Fig.8.2-1 shows the graph of the nondimensional displacement 3
as a function of R at different moments of nondimensional time {, where the
variables 2, R and { are defined in Chapter 7. Figure 8.2-2 shows the graph
of A; asafunctionof R at different instants of nondimensional time {, these
results are in good agreement with those in [13].

For the linear case, we need to compare numerical results with those given by
Farrar[10]. There is a minor discrepancy in some of the parameters in [10] and
we rearrange these parameters so that they are consistent. We will denote these

parameters by a suffix F. We have taken

Ar=il=X, hr=03x10"%2m, ap=19x10"2m,
br = 0.1275m, Vp = 12.5m/s, Cr = 20m/s,
Ep = 3559 x 10°Kg/ms?, pr = 889.75Kg/m?,
AM = makhrpr =3.0276 x 107°Kg,  Mp=71x10"Kg,
(8.2-1)
where hp is the initial thickness of the elastic sheet, ar 1is the radius of the
projectile, bp is the outer stretched radius of the sheet, Vp is the initial impact
velocity, C% = Tr/pr, Er is the Young’s modulus of the material and Mg
is the mass of the projectile.
Figure 8.2-3 shows the graph of the displacement 2z as a function of r at
different moments time ¢ obtained by the linear theory with the characteristic

method and the method of the extended Riemann solver.
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z displacement

R

Fig.8.2-1

do = 12,8, =0.5,7v=09, B/A=6,A=A/B=01667, Ai=AR=0001,K =0,
£ = 0.230, 0.461, 0.691, 0.992, 1.152, 1.398, 1.656, 1.920, 2.192, 2.474.

3.5
3.
Ae 2.5
2
15
1=
o 041

R

Fig.8.2-2

Ao =12,0p =05,9=09, B/A=6,A= A/B=0.1667, Af=AR=0001,K =0,

{ = 0.230, 0.461, 0.691, 0.992, 1.152, 1,398, 1.656.
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2 displacement

Fig.8.2-3

Ao =11, v =1.25cm/ms, @ = 1.9cm, b= 12.75cm, K = 0.0818,
t = 1.7ms, 3.4ms, 5.1ms, 6.8ms,
-characteristics method with At = 0.002ms, Ar = 0.004cwn,

------- extended Riemann solver with At = 0.002ms, Ar = 0.008cm.

z displacement

Fig.8.2-4

Graphof z asafunctionof r for t=17ms,3.4ms,5.1ms,6.8ms,
with Ao = 1.1,v = 1.25¢m/ms,a = 1.9cm, b = 12.75¢cm.

nonlinear theory, K =0. ------ linear theory, K =0.
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2z displacement

Fig.8.2-5
Graphof z asafunctionof r for t=1.7ms,3.4ms,5.1ms,6.8ms,

with A = 1.1,4 = 1.25evn/ms,a = 1.9cm, b = 12.75¢m.
—nonlinear theory, K =0.5489. - - - - - -linear theory, K = 0.0818.

1.30 5

1.25

1( 1.20 4

AL L

Fig.8.2-6

Graphof )¢ asafunctionof r for t= 0.425ms,0.850ms, 1.275ms, 1.700ms,
2.125ms,2.550ms with Ag = 1.1,vp = 1.25cm/ms,a = 1.9¢m,b=12.75em.
ar theory, K = 0.5489.
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re 1.08

i!aii"fl'll'lii—!l—{!

Fig.8.2-7
Graphof )s asafunctionof r for t=0425ms, 0.850ms,1.275ms, 1.700ms,
2.125ms,2.550ms with A = 1.1,vp = 1.25cm/ms,a = 1.9cm, b = 12.75¢m.

———nonlinear theory, K = 0.5480.

i
[

e
-
|

]

0.4 4
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7 8 10 11 2
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Fig.8.2-8

Graphof v= % a5 a function of r for ¢=0.85ms,1.70ms,2.55ms,3.40ms
with A = 1.1,v = 1.25em/ms,a = 1.9cm,b = 12.75cm.
————nonlinear theary, K = 0.5489.
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=10

-20

-40

=r=r=—

T L B
7 &8 8 10 N 12

Graphof a asafunctionof r for t=0.85ms,1.70ms,2.55ms,3.40ms,4.25ms
with Ay =1.1,v5 = 1.25em/ms,a = 1.9em, b = 12.75em.

—————rnonlinear theory, K = 0.5489.

z dlsplacement

Graphof z asafunctionof r for {=0.850ms,1.700ms,2.550ms,2.908ms,
with ) = 2.0,v = 1.25cm/ms,a = 1.9em,b = 12.75cm.




z displacement

T =TT |
8 8 10 1 12

Fig.8.2-11
Graphof z asafunctionof r for t=0.850ms, 1.700ms, 2.550m3,2.908ms,
with Ap = 2.0,vp = 1.25cm/ms,a = 1.9¢em, b= 12.75¢cm.
——nonlinear theory, K = 0.1709.
<+« - -linear theory, K = 0.02547.
1-
0.9 -

z displacement

T T 1 T LI I
0 02 04 08 08 1 12 14 16 18 2

Fig.8.2-12

Graphaof z asafunctionof r with 7=03,% =20, A=01,8=10,B
For dynamic problem, C§ =10, K =04, Ai=AR=0001,
- dg=10, {=07725

For static problem - - - - - - AR = 0.001.
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T 1 * 1 T T T+ 1 L T 1
0 02 04 06 08 1 12 14 18 18
r
Fig.8.2-13  Graphof A asafunctionof r with y=03% =20, A=015
For dynamic problem, Cj =10, K =00,Af=AR=000],

- 99 =10, {£=0.7725,

0.001.
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Figg 2_14 Graphof Ay ssafunctionof r with 7=103,3 =20, A= O;Lé = 1.0,

For dynamic problem, €3 =10, K =0.0,Af = AR =0.001.
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z at r=a

1
i

Fig.8.2-15

Graph of £(a,?) as a function of 1.

Ag = 1.1, o = 1.25em/ms, a = 1.9¢m, b = 12.75em.

1.——nonlinear theory, K =0.3. 2.- - . . linear theory, K = 0.04471.
3.———nonlinear theory, K =0.8. 4.- - - - linear theory, ¥ = 0.1192.

o
s
o
1
[
-

1324

L s — !

Fig.8.2-16

Top part: graphs of Cp,Cr characteristicn starting at R = 4 = 0.149,{ = 0.0.

— C characteristics,------ Cr

bottom part: graph of A\ (A,f) as a function of i,

cierintics.

Parameters are: ) = 1.3,

K =05,00 =0.1, where R, A,{,iy are nondimensional variables.
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To compare the linear and nonlinear cases we need to find the parameters for

the nonlinear case corresponding to that given in (8.2-1), we have

= A thpp = 3.2208Kg/m?, =09,
= 2401.1Kg/s?, C3 = (4p/po)'’? = 54.5315 5m/s. (8.2-2)

Other scaling factors can be easily found. Note that we need to convert the results
from the nonlinear case into dimensional form in order to compare the results with
the linear case. Figure 8.2-4 provides a comparison of the linear and the nonlinear
displacement responses for the parameters given above when the constant boundary
condition is used. Figure 8.2-5 provides a comparison of the linear and the nonlinear
displacement responses when the variable boundary condition is used. For the
variable bonndary condition case we plot the values of ), \g,v,a as functions of
r at various times in Figs. 8.2-6, 8.2-7, 8.2-8, 8.2-9 respectively.

For the elastic potential energy function given by equation (7.2-13), we have

2|3
ﬂh-l\m""

(7 + (1 =7+ 3252074,

A}
fl
ﬂ N mﬂ
]

= (*7+(1 — AL =A%),

AN
I
t g

(8.2-3)
It follows that C7 > 0 and we require A?X¢ > 1 sothat C% > 0. By using
equations (8.2-3), we have

P~ CE =271 — v+ 9052). (8.2-4)

N
I1I\

o

Hence one has C} > C3 > 0 whenever M)g > 1. If ), is large, we have
CL = Cr. Ifweassume Cp = Cr and that )y is constant, a short calcu-

lation shows that the governing equations reduce to the linear case. Thus as the
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initial stretch increases we would expect the linear approximation to be close to the
non-linear results at least for small times. This conclusion can be verified by the
results shown in Fig.8.2-10 and Fig.8.2-11 where we plot the displacement : asa
function of r for the case of constant boundary conditions and the case of variable
boundary conditions respectively. For this case, the initial stretch is increased so
that Ao =2. Parameters a,b,M,pu,po,C§ are fixed as before. Apy = Ao =2,
and the new values of A and B are easily found. The other parameters can

be found from

L , , N Tea N2 (Toro\'?
AM = na’hpaprs = ma*(po/N2), Cra = (i) = (T”) . (8.2-5)
PF2, Po

Interestingly, if we choose the parameters suitably for the nonlinear case the
graph of 2z as a function of r could be double valued. As a result, the other
variables such as A; and M)y are also double valued functions of r . Simj-
lar double valued results are obtained by Roxburgh, Steigmann and Tait for the
corresponding nonlinear static problem [20).

In Fig.8.2-12, we plot the graphof 2 asa functionof r and try to compare
displacement responses of the dynamic problem and the static problem. We have
chosen parameters so that the dynamic problem and the static problem have the
same displacement at r = a. Of course there are infinitely many way for the
dynamic case to reach the given displacement at r = a. We have taken ~ =
03, A=2A=01, B=1.0,B =1.0 . The other parameters are given in the
figure captions.

In Fig.8.2-13, we plot the graph of ); as a function of r with the same
function of r with the same parameters given in Fig.8.2-12.

We have continued the numerical analysis beyond the time at which reflections
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occur. QOur assumption here is that shocks do not occur and to that extent the
results obtained are subject to further examination. First we investigate the time

at which the mass again attains free flight. The displacement at r =a is shown
in Fig.8.2-15 as a function of time in the linear and nonlinear cases for two different
impacting masses. The computation is stopped when 7T)sina =0. The time and
displacement at which free flight occurs is clearly dependent on the impacting mass.

Finally in Fig.8.2-16 we try to find the connection between the reflection of

characteristics and the variationof A, at r=a.
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