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Abstract

Background: Single nucleotide polymorphism (SNP) genotyping assays normally give rise to certain percents of
no-calls; the problem becomes severe when the target organisms, such as cattle, do not have a high resolution
genomic sequence. Missing SNP genotypes, when related to target traits, would confound downstream data analyses
such as genome-wide association studies (GWAS). Existing methods for recovering the missing values are successful
to some extent – either accurate but not fast enough or fast but not accurate enough.

Results: To a target missing genotype, we take only the SNP loci within a genetic distance vicinity and only the
samples within a similarity vicinity into our local imputation process. For missing genotype imputation, the
comparative performance evaluations through extensive simulation studies using real human and cattle genotype
datasets demonstrated that our nearest neighbor based local imputation method was one of the most efficient
methods, and outperformed existing methods except the time-consuming fastPHASE; for missing haplotype allele
imputation, the comparative performance evaluations using real mouse haplotype datasets demonstrated that our
method was not only one of the most efficient methods, but also one of the most accurate methods.

Conclusions: Given that fastPHASE requires a long imputation time on medium to high density datasets, and that
our nearest neighbor based local imputation method only performed slightly worse, yet better than all other
methods, one might want to adopt our method as an alternative missing SNP genotype or missing haplotype allele
imputation method.

Background
Genetic fine-mapping for complex traits (such as human
cancers, diabetes, mental illness, cattle milk products,
beef quality, etc.) is still a great challenge for geneti-
cists. With the availability of millions of single nucleotide
polymorphisms (SNPs), research sees new potentials via
using these common variants — the genome-wide asso-
ciation studies (GWAS) [1]. In general, GWAS, either
case-control or categorical or quantitative, requires many
samples along with large and dense SNP marker sets,
which are apt to contain a significant number of missing
data. For diploid species such as human and cattle, high
density SNP microarray chips can give an unphased geno-
type value for each SNPmarker. For humans with a superb
resolution reference genome, the current general purpose
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high-density gene chips are estimated to contain a portion
of missing genotypes and genotyping errors in the range
from 0.05% to 5%; for other species such as cattle, their
whole genomes have not yet been sequenced ideally, and
consequently their gene chips could contain many more
missing data and errors, up to 20% [2,3].
The unphased genotype data is certainly the No. 1 issue

that complicates GWAS. The missing genotypes present
in the dataset, particularly when the percentage is high,
also challenge the association study methods [4-9]. When
markers with missing genotypes are recognized extremely
suspecting, one can choose to repeat the genotyping or
modify the data analysis tools to accommodate the miss-
ing data. However, both approaches are expensive in terms
of labor and cost. Alternatively, one can try to com-
putationally infer the missing data, otherwise known as
imputation, at a minimal labor and cost. Nevertheless, it
should be pointed out that when the genotype data are
generated by low-to-medium density arrays, imputation
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might not be accurate and thus should be avoided, as oth-
erwise the imputed data would confound the gene-trait
association analyses [3,4,10-19].
In this paper, we propose the local imputation approach

that has several advantages over existing global imputa-
tion methods, where our computational inference is done
based on the following biological observations. For our
target diploid organisms human, mouse and cattle, chro-
mosomes come in pairs. TheMendelian law of inheritance
states that, for each individual, one of a pair of homolo-
gous autosomes is inherited from her father (the paternal)
and the other from her mother (the maternal). In general,
a child does not inherit a complete parental chromo-
some from each parent, as recombination (or crossover)
events occur. That is, during the meiosis process where
the two parental chromosomes get duplicated and shuf-
fled and four chromatids are made, one of the chromatids
is passed on to the child. Between any two consecutive
SNP loci along the chromosome, the recombination rate
is described by the genetic distance between them. The
human genetic map can be obtained from the HapMap
[20].
For each individual, the two alleles at a SNP locus of

a pair of homologous chromosomes together is called
the genotype of this locus. The genotype of a locus does
not specify which allele comes from which one of the
two chromosomes. Thus, the genotype of a locus can
be denoted as an unordered pair of two alleles, and the
genotype of a pair of homologous chromosomes can be
viewed as a sequence of unordered pairs of SNP alleles.
A SNP locus is homozygous if its two alleles are the same,
or heterozygous otherwise. On the contrary, the haplo-
type of a SNP locus specifies the parental origin for the
two alleles, and a chromosomal haplotype consists of all
the alleles, one for each SNP locus, of the same parental
origin.
From the Mendelian law of inheritance and the fact that

recombination is a rare event, we know that for each short
haplotype allele (over a short chromosomal region), there
are likely many individuals share it due to identical-by-
descent (IBD). The length of such a haplotype allele could
vary from location to location, and it is likely population
dependent. In fact, this coalescent theory underlies many
existing haplotyping-based imputation methods using a
variety of techniques, such as hidden Markov models
(HMMs) and the expectation maximization (EM) algo-
rithm [8]. Among them, the most promising and the most
applicable methods to GWAS analysis include fastPHASE
[17], MaCH [21], and Impute [6] that are based on Li and
Stephens “product of approximate conditionals” frame-
work [22], and Beagle [5] that is based on Browning “local-
ized haplotype clustering” model [23]; while many others
are either out of date or too computationally intensive
[3,10-12,14,16].

Despite the fact that several of these haplotyping-based
imputation methods can bypass the haplotyping phase,
they impute the missing genotypes to satisfy various
haplotyping needs, and thus their imputation accuracies
highly depend on the haplotyping assumptions [8]. It is
worth mentioning that more problematically sometimes,
the haplotyping-based imputation methods may alter a
certain percentage of known genotype as well to satisfy
their haplotyping needs [17], making the task of missing
genotype imputation difficult to evaluate.
There are also several imputation methods that are not

based on haplotyping, but indirectly use the coalescent
theory to impute missing genotypes without considering
haplotype phases [18,19,24]. Their representatives include
regression methods and k-nearest neighbor methods. The
recent one nearest neighbor method Npute [18], extended
to KnnWinOpti and SnpShuttle [24], proposes to use sur-
rounding SNP loci to compute the genotype similarity
between two samples, and imputes the target missing
genotype with the genotype from the nearest sample.
Note that the current code of Npute does not accept het-
erozygosities in the datasets, and thus it is essentially for
missing haplotype allele imputation [25].
In this paper, we focus on direct missing genotype impu-

tation, to avoid the ambiguous genome block partitioning,
the time-consuming haplotyping stage, and the haplo-
typing uncertainties in the haplotyping-based imputation
methods [3,8,16,17]. To this end, we present a new nearest
neighbor method denoted as NN and a weighted vari-
ant denoted asWNN. Both methods follow the coalescent
theory that the target individual has a genotype sequence
similar to one from the population; they also respect the
observation that recombination events are rare to infer the
target missing value using only nearby SNP loci, where the
vicinity is defined by a genetic distance (or recombination
rate) threshold; while NN treats these nearby SNP loci
equally, WNN method steps further to weight these SNP
loci by the reciprocal of their genetic distance to the target
locus. Therefore, both NN andWNN are local imputation
methods. Besides these two methods, we have also imple-
mented several other local machine learning imputation
methods, including a local support vector machine with a
radial basis function kernel (SVM), a local neural network
(NeuralNet), and a local first order Markov chain (MC).
We have used a (Southwest African) human SNP geno-

type dataset downloaded from the HapMap [20], an
inbreed mouse SNP genotype dataset extracted from the
NIEHS/Perlegen resequencing project, a medium density
and a high density cattle SNP genotype datasets from
our Beef Cattle Whole Genomic Selection projects, for
extensive comparative studies between our methods and
two existing best methods fastPHASE [17] and Npute
[18] through simulation experiments on various settings.
The results show that our NN and WNN methods were
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among the most efficient methods, and outperformed
existing methods except fastPHASE in missing SNP geno-
type imputation; furthermore, on missing SNP haplotype
allele imputation, our methods performed comparably
again fastPHASE, sometimes even better. Note that the
original human and mouse datasets all contain a certain
percentage of missing values. The imputed datasets by our
NN method, the simulated datasets, all our implemented
methods in Java, and the detailed imputation result statis-
tics are available in the supplementary materials [26].

Results
Datasets
To validate our NN and WNN methods, and to com-
pare against the other three machine learning imputa-
tion methods SVM, NeuralNet and MC that we have
implemented and two existing best imputation methods
fastPHASE and Npute, we used four real SNP geno-
type datasets for simulation studies. The first dataset
is a human population SNP genotype dataset for chro-
mosome 17 obtained from the International HapMap
project (Phase I) [20] (file name “genotypes chr17 ASW
r27 nr.b36 fwd.txt.gz”), which contains 40,775 SNPs and
83 individuals of African ancestry in Southwest USA
(ASW). This original dataset contains 0.268% missing
calls. For simulation study purpose, SNPs with missing
values are removed and the dataset is left with only 34,071
(or 83.60%) SNP markers. This final dataset is simply
called the human dataset in the sequel. The correspond-
ing genetic map for human chromosome 17 was also
downloaded from the HapMap (file name “genetic map
chr17 b36.txt”). The second dataset was extracted from
the NIEHS/Perlegen resequencing project, which pro-
vides a high-resolution map of 16 common mouse strains.
We used again the chromosome 17 SNP whole genome
dataset, which is made up of 15 inbred mouse strains
genotyped at 288,229 SNP loci along the chromosome,
and with 11.1% missing calls. Our examination confirmed
that all the genotype values are homozygous, and thus the
dataset can be used for simulation studies on missing SNP
haplotype allele imputation. To this purpose, we removed
those SNP loci containing missing values; the final dataset
is left with 144,820 (or 50.24%) SNP markers, which is
referred to as the mouse dataset in the sequel.
The human and the mouse datasets are of very high

density, and they are referred to as density-1 datasets.
From these two density-1 datasets, we respectively retain
every tenth and every hundredth SNPmarkers to simulate
medium and low density datasets, referred to as density-
0.1 and density-0.01 datasets. Namely, the density-0.1
and density-0.01 human datasets contain 3,408 and 341
SNP markers respectively; the density-0.1 and density-
0.01 mouse datasets contain 14,482 and 1,449 SNP
markers respectively.

Our target datasets are for cattle, which were obtained
from the Beef Cattle Whole Genomic Selection projects
(more datasets are expected to come in the near future).
One such dataset has a medium density of 51,828 mark-
ers and 469 genotyped animals, and the other has a higher
density of around 700K markers and 64 animals. The ani-
mals in both datasets are considered largely unrelated, or
at least very distantly related. These two datasets contain
0.078% and 2.224% missing genotypes, respectively. For
chromosome 17, the low density dataset contains 1,508
SNP markers, 237 of them have missing values; the high
density dataset contains 22,266 SNP markers, but unfor-
tunately only 5,487 of them have genotype values from all
64 animals. We refer to these two cattle datasets on chro-
mosome 17 in the sequel as the low density (ld) dataset
and the high density (hd) dataset, respectively. All the four
datasets are summarized in Table 1.
On each of the above three human, three mouse,

and two cattle datasets, we uniformly randomly mask
0.5%, 1%, 2%, 5%, 10% and 20% genotypes, respectively, to
mimic different missing rates due to various reasons. At
each missing rate, a total of 10 simulated SNP genotype
datasets are independently identically generated; every
imputation method, NN, WNN, SVM, NeuralNet, MC,
fastPHASE, Npute (when applicable), and BaseLine is
applied on them and the average imputation accuracy,
which is the number of correctly imputed genotypes over
the total number of missing genotypes, is reported as the
method performance at this missing rate. Here BaseLine
is a simple majority voting using the most frequent value
at the target SNP locus from the samples with a known
genotype value.

Imputation accuracy comparison
In the sequel, we use a triplet to denote one kind
of datasets; for example, 0.1-human-2% denotes the
density-0.1 human datasets with missing rate 2%. We run

Table 1 Dataset summary

Dataset: human mouse hd cattle ld cattle

Physical length 79 mbp 95 mbp 76 mbp 76 mbp

#samples 83 15 64 469

#SNPs 40,755 288,229 22,266 1,508

Missing genotype rate 0.268% 11.1% 2.224% 0.078%

#complete SNPs 34,071 144,820 5,487 1,271

The summary of the four datasets we used in the simulation studies. These four
datasets are all on chromosome 17, for human, mouse and cattle. The “physical
length” refers to the chromosome length, in million basepairs (mbp). “#samples”
is the number of individuals genotyped in the dataset, “#SNPs” is the number of
SNP markers in the original dataset, and “missing genotype rate” refers to the
percentage of missing genotype values in the original dataset. “#complete
SNPs” is the number of SNP markers at which all samples have genotype values.
All the other SNP markers were removed, leaving a complete sub-dataset to be
used in the simulation studies.

genotypes_chr17_ASW_r27_nr.b36_fwd.txt.gz
genotypes_chr17_ASW_r27_nr.b36_fwd.txt.gz
genetic_map_chr17_b36.txt
genetic_map_chr17_b36.txt
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fastPHASE andNpute strictly following their instructions,
but note that Npute does not apply for human or cattle
datasets due to heterozygosities. To run our implemented
local imputation methods, we will need to set up genetic
distance thresholds. We adopt a grid search scheme to use
{0.01, 0.02, 0.03, 0.04, 0.05}/density centi-Morgans; never-
theless, instead of reporting the best performance we
collect the statistics across all five thresholds. It is worth
pointing out that, due to random masking, there could be
some missing entries for which there are no neighboring
SNP loci within the covering window and thus no infor-
mation for inference, which are excluded from imputation
accuracy calculation for fairness.

Missing genotype imputation
For each (human and cattle) triplet, we ran all imputa-
tion methods on the ten simulated datasets using all five
associated different genetic distance thresholds. For fast-
PHASE and BaseLine, genetic distance threshold does not
have any effects on their run; but their imputation accu-
racies could slightly vary with the threshold since some
missing genotype values can be excluded from statistics
(noted in the last paragraph).
For each human triplet, we calculated the average impu-

tation accuracy for a method by taking the average over
all five runs using different genetic distance thresholds on
the 10 simulated datasets. That is, it is the average of 50
accuracies. Table 2 lists these average imputation accu-
racies on all three density human datasets each with six
missing rates, one column for a method. They are also
plotted in Figure 1 for easier view of performance differ-
ence. As one sees, the general tendencies are 1) on the
low density datasets, no methods performed significantly
better than BaseLine; 2) on the median density datasets,
methods started to perform better than BaseLine, with
fastPHASE being the best (p-values < 0.0001) and our
methods NN and WNN and SVM performing not sig-
nificantly different; 3) on the high density datasets, the
differences between fastPHASE and the second group,
between the second and the third group of MC and Neu-
ralNet, and between the third group and BaseLine became
significantly larger. It is worth pointing out that our meth-
ods NN andWNN ran in seconds to minutes on a dataset,
while fastPHASE ran thousands of times slower, in days.
More detailed results on runtime statistics are in the next
subsection “Imputation time comparison”.
For each cattle triplet, we also calculated the average

imputation accuracy for a method by taking the average
over all five runs using different genetic distance thresh-
olds on the 10 simulated datasets. Table 3 and Figure 2 list
and plot, respectively, these average imputation accuracies
on these two density cattle datasets each with six missing
rates. As one sees, 1) fastPHASE once again performed
statistically significantly better (p-values < 0.0001) than

Table 2 Average imputation accuracies on the three
density human datasets

Methods fPH NN WNN SVM NeuN MC BL

0.01-0.5% .6427 .6456 .6225 .6499 .6431 .6561 .6495

0.01-1% .6418 .6279 .6119 .6353 .6338 .6399 .6384

0.01-2% .6707 .6447 .6091 .6503 .6474 .6474 .6477

0.01-5% .6656 .6171 .5968 .6452 .6415 .6474 .6449

0.01-10% .6683 .6113 .5927 .6506 .6472 .6510 .6513

0.01-20% .6658 .6016 .5776 .6492 .6465 .6515 .6536

0.1-0.5% .7692 .7167 .7348 .7412 .6707 .7032 .6484

0.1-1% .7712 .7087 .7294 .7340 .6691 .6999 .6501

0.1-2% .7778 .7081 .7311 .7399 .6753 .7092 .6577

0.1-5% .7741 .6993 .7176 .7345 .6714 .7043 .6556

0.1-10% .7684 .6908 .7048 .7252 .6701 .7011 .6549

0.1-20% .7547 .6742 .6804 .7105 .6652 .6944 .6548

1-0.5% .9548 .8836 .9094 .9036 .7854 .7732 .6493

1-1% .9537 .8822 .9077 .9028 .7826 .7722 .6493

1-2% .9520 .8796 .9036 .9006 .7820 .7713 .6495

1-5% .9502 .8755 .8919 .8948 .7774 .7679 .6503

1-10% .9462 .8673 .8736 .8833 .7689 .7611 .6494

1-20% .9373 .8481 .8391 .8579 .7526 .7488 .6493

Average imputation accuracies on the three density human datasets. At each
missing rate, the highest accuracy is in bold. ‘fPH, NeuN’ stand for ‘fastPHASE,
NeuralNet’, respectively.

all the other six methods; 2) our methods NN and WNN
and SVM performed no differently, and significantly bet-
ter (p-values < 0.0001) than MC, NeuralNet and Base-
Line. Interestingly, it is challenging to argue which one of
the two datasets is easier to impute. As far as we know, the
low density dataset has been curated multiple times when
it was used in GWAS, and it contains much more samples
(469) which are certainly helpful for imputation; the high
density dataset was more recently generated, has not been
used in GWAS, and it contains only 64 samples. Neverthe-
less, the performance differences between fastPHASE and
the second group of NN, WNN and SVM, and between
the second group and the other three methods are similar
to those on high density human datasets. Lastly, it is again
worth pointing out that our methods NN and WNN ran
in seconds to minutes on a dataset, while fastPHASE and
SVM ran thousands of times slower, in hours to days (see
“Imputation time comparison”).

Missing haplotype allele imputation
For missing haplotype allele imputation comparison, we
ran all imputation methods, including Npute this time as
it is designed for such imputation [18], on the ten simu-
lated mouse datasets using five different genetic distance
thresholds. Again, for fastPHASE, Npute and BaseLine,
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Figure 1 Average imputation accuracies of the sevenmethods, fastPHASE (fPH), NN, WNN, SVM, MC, NeuralNet (NeuN) and BaseLine
(BL), on the three different density level human datasets: density-0.01, density-0.1 and density-1. The general tendencies are, on the low
density datasets, no methods performed significantly better than BaseLine, which is a simple majority vote; on the median density datasets,
methods started to perform better than BaseLine, with fastPHASE being the best and our methods NN and WNN and SVM performing not
significantly different; on the high density datasets, the differences between fastPHASE and the second group, between the second and the third
group of MC and NeuralNet, and between the third group and BaseLine became significantly larger.

genetic distance threshold does not have any effects on
their run, but their imputation accuracies could vary due
to some missing values being excluded from the statis-
tics. Table 4 lists these average imputation accuracies on
all three density mouse datasets each with six missing
rates, and they are plotted in Figure 3 for easier view of
performance difference. This time, 1) in all three density
level datasets, our methods NN and WNN performed no

Table 3 Average imputation accuracies on the two cattle
datasets

Methods: fPH NN WNN SVM NeuN MC BL

hd-0.5% .9151 .8701 .8748 .8538 .6518 .8012 .5449

hd-1% .9209 .8695 .8707 .8563 .6495 .7991 .5432

hd-2% .9174 .8624 .8599 .8484 .6437 .7933 .5412

hd-5% .9123 .8482 .8436 .8362 .6336 .7817 .5379

hd-10% .8968 .8232 .8344 .8057 .6204 .7771 .5378

hd-20% .8831 .7951 .8032 .7782 .6072 .7548 .5352

ld-0.5% .9643 .8618 .8705 .8765 .6817 .7269 .6563

ld-1% .9627 .8601 .8674 .8732 .6799 .7270 .6527

ld-2% .9616 .8571 .8636 .8704 .6796 .7265 .6552

ld-5% .9598 .8480 .8468 .8577 .6765 .7230 .6532

ld-10% .9566 .8328 .8209 .8395 .6740 .7169 .6542

ld-20% .9492 .7951 .7686 .8029 .6680 .7110 .6528

Average imputation accuracies on the two cattle datasets, the high-density one
is 700K and the low-density one is 60K. At each missing rate, the highest
accuracy is in bold. ‘fPH, NeuN’ stand for ‘fastPHASE, NeuralNet’, respectively.

differently from fastPHASE, and even slightly better on
the density-0.01 datasets; all three of them performed sta-
tistically significantly better (by ∼6%, p-values < 0.0001)
than previously the best method Npute. Compared to the
above missing genotype imputation, the general tendan-
cies are different: 2) there are only three groups here, the
first group consists of fastPHASE, NN andWNN; the sec-
ond group includes SVM, Npute, MC and NeuralNet; and
the last group contains only BaseLine. 3) Even on the low
density datasets, all other methods performed better than
BaseLine; on the median and high density datasets, the
gaps became significantly larger. It should be pointed out
that SVM performed very strangely on the high density
datasets with missing rates 5% (and 10%, 20%). We have in
fact separately tested multiple times, but the same pattern
was always there.

Imputation time comparison
All our experiments were run on a CPU cluster, where
each node consists of a dual AMD Opteron 2350 quad
core with 64-bit CPU’s. The CPU’s run at 2.0GHz, have
an 800MHz HyperTransport bus, with a primary cache of
64KB I + 64KB D per core, a secondary cache of 512 KB
I+D per core, and a 2MB L3 cache per chip. In general, our
methods NN and WNN, and MC and BaseLine were very
fast, seconds per dataset; (Npute and) NeueralNet needed
some more time to impute a dataset, though not too long;
fastPHASE was always the slowest, and could take more
than a week on a high-density dataset. For instance, for
imputing the original human dataset (40,775 SNPs, 83
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Figure 2 Average imputation accuracies of the sevenmethods, fastPHASE (fPH), NN, WNN, SVM, MC, NeuralNet (NeuN) and BaseLine
(BL), on the two real cattle datasets. fastPHASE performed statistically significantly better (p-values < 0.0001) than all the other six methods on
both datasets; our methods NN and WNN and SVM performed no differently, and significantly better (p-values < 0.0001) than MC, NeuralNet and
BaseLine. Interestingly, it is challenging to argue which one of the two datasets is easier to impute. As far as we know, the low density dataset has
been curated multiple times when it was used in GWAS, and it contains much more samples (469) which are certainly helpful for imputation; the
high density dataset was more recently generated, has not been used in GWAS, and it contains only 64 samples. Nevertheless, the performance
differences between fastPHASE and the second group of NN, WNN and SVM, and between the second group and the other three methods are
similar to those on high density human datasets.

Table 4 Average imputation accuracies on the three density mouse datasets

Methods: Npute NN WNN fPH SVM NeuN MC BL

0.01-0.5% .8363 .8977 .8960 .8655 .8534 .8357 .8278 .8106

0.01-1% .8554 .9068 .9079 .8898 .8517 .8371 .8322 .8088

0.01-2% .8542 .9023 .9006 .8932 .8588 .8445 .8322 .8121

0.01-5% .8462 .8940 .8955 .8898 .8573 .8436 .8347 .8162

0.01-10% .8406 .8861 .8865 .8854 .8470 .8354 .8283 .8120

0.01-20% .8281 .8668 .8639 .8712 .8366 .8268 .8231 .8118

0.1-0.5% .8708 .9247 .9236 .9237 .8831 .8680 .8647 .8215

0.1-1% .8685 .9283 .9267 .9296 .8850 .8697 .8634 .8203

0.1-2% .8672 .9241 .9240 .9269 .8810 .8636 .8578 .8159

0.1-5% .8655 .9201 .9212 .9252 .8796 .8611 .8571 .8160

0.1-10% .8617 .9140 .9139 .9212 .8741 .8553 .8527 .8158

0.1-20% .8541 .9015 .8986 .9112 .8598 .8426 .8426 .8136

1-0.5% .8825 .9405 .9377 .9434 .9032 .8898 .8723 .8152

1-1% .8814 .9392 .9373 .9432 .9023 .8896 .8742 .8169

1-2% .8806 .9381 .9364 .9426 .8986 .8885 .8730 .8171

1-5% .8788 .9358 .9334 .9408 .6215 .8845 .8703 .8166

1-10% .8763 .9317 .9280 .9375 .8377 .8777 .8657 .8167

1-20% .8695 .9223 .9156 .9290 .7365 .8621 .8553 .8151

Average imputation accuracies on the three density mouse datasets. At each missing rate, the highest accuracy is in bold. ‘fPH, NeuN’ stand for ‘fastPHASE, NeuralNet’,
respectively.
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Figure 3 Average imputation accuracies of the eight methods, fastPHASE (fPH), NN, WNN, SVM, Npute, MC, NeuralNet (NeuN) and
BaseLine (BL), on the three different density level mouse datasets: density-0.01, density-0.1 and density-1. Compared to the above missing
genotype imputation, the general tendencies are different: 1) in all three density level datasets, our methods NN and WNN performed no differently
from fastPHASE, and even slightly better on the density-0.01 datasets; all three of them performed statistically significantly better (by ∼6%, p-values
< 0.0001) than previously the best method Npute. 2) There are only three groups here, the first group consists of fastPHASE, NN and WNN; the
second group includes SVM, Npute, MC and NeuralNet; and the last group contains only BaseLine. 3) Even on the low density datasets, all other
methods performed better than BaseLine; on the median and high density datasets, the gaps became significantly larger. It should be pointed out
that SVM performed very strangely on the high density datasets with missing rates 5% (and 10%, 20%). We have in fact separately tested multiple
times, but the same pattern was always there.

ASW individuals, 0.268% missing calls), fastPHASE took
about eight days while our NN took less than three sec-
onds. SVM appeared to be the second slowest, likely due
to its internal training.
Table 5 lists the detailed average runtime of all eight

methods on four datasets at missing rate 0.5%: namely
0.01-human-0.5%, 0.01-mouse-0.5%, hd-cattle-0.5%, ld-
cattle-0.5%. The average is taken over the 10 simulated
datasets associated with the triplet, and 5 genetic distance
thresholds except fastPHASE, Npute and BaseLine. One
can see from this table that, in general, fastPHASE is thou-
sands of times slower than our methods NN and WNN,
while from Tables 2, 3, and 4 that the imputation accuracy
of our methods are very close to that of fastPHASE. This
supports the adoption of our NN andWNN as alternative
imputation methods for fastPHASE.

Discussion
The limit of imputation
On all of our simulated datasets, 180 human, 180 mouse
and 120 cattle, we have never seen a 100% imputation
accuracy by any method, using any covering window size
(if applicable). Besides the limitation of methodologies,
the small sample size in the datasets could be another
cause. Currently we do not have quantified effects of the
sample size, for the reason that all human, mouse and
high-density cattle datasets have an already small number
of samples, while the 469-cattle dataset is of only medium
density and thus not suitable for simulation studies.

The effects of density
From Tables 2 and 4, one can see that from low to
medium to high densities, the imputation accuracies of

Table 5 Average imputation runtime on four datasets, in seconds

Methods: fPH NN WNN SVM NeuN MC BL Npute

0.01-human-0.5% 860.44 0.22 0.28 156.09 13.08 0.10 0.07 -

0.01-mouse-0.5% 530.59 0.17 0.16 33.47 0.43 0.12 0.08 21.08

hd-cattle-0.5% 6178.95 0.37 0.41 931.16 43.79 0.22 0.16 -

ld-cattle-0.5% 36209.82 1.15 2.41 22570.29 847.00 0.54 0.18 -

Average imputation runtime of all methods on four datasets: 0.01-human-0.5%, 0.01-mouse-0.5%, hd-cattle-0.5%, ld-cattle-0.5%, where the average is taken over 10
simulated datasets (with 5 runs using different genetic distance thresholds, except fastPHASE, Npute, BaseLine). ‘fPH, NeuN’ stand for ‘fastPHASE, NeuralNet’,
respectively. Note that Npute spent most of its time, 20.62 out of the 21.08 seconds, in training for selecting the best window size in the range [1, 50].
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most imputation methods increase. We believe this is rea-
sonable since a higher density provides more neighboring
SNPs, and consequently greater linakge disequilibrium,
for imputation purpose. Interestingly, on cattle datasets, it
is challenging to claim that the high density one is easier to
impute. From Table 3 and Figure 2, one can see that only
NN, WNN, SVM and MC performed better on the high
density datasets, while fastPHASE, NeuralNet and Base-
Line all performedworse.We suspect that themuch larger
sample size (i.e. 469) in the low density dataset could help
fastPHASE for imputation, as it assumes a certain number
of haplotype allele clusters. This suggests that when the
sample size is smaller, our methods NN and WNN could
be more suitable imputation methods.
Since fastPHASE takes more advantage of coalescent

theory to perform haplotyping and imputation, it is
expected to outperform our methods NN and WNN,
which take only partial advantage of coalescent theory,
on missing genotype imputation. This is validated on the
human and the cattle datasets, in Tables 2 and 3 and
Figures 1 and 2. For the same reason, fastPHASE is not
expected to do well on missing haplotype allele imputa-
tion. However, from the imputation results on the mouse
datasets (Table 4 and Figure 3), we see that fastPHASE
is one of the best methods. Our methods NN and WNN
performed very competitively against fastPHASE, some-
times better sometimes worse but overall there was no
significant difference. Given that fastPHASE ran much
slower than our methods, for missing haplotype allele
imputation, we recommend our methods NN and WNN
strongly.

The effects of missing rate
From Figures 1, 2 and 3, we see that except the strange
behavior of SVM on the high density mouse datasets, in
general a higher missing rate makes the imputation more
difficult. This is a non-surprising result since a higher
missing rate means less deterministic data used in the
imputation process. Nevertheless, as long as the missing
rate stays low, such as lower than 10%, the variance is
small and within ∼ 1% range. For the large jump by SVM,
which was consistently there despite we simulated many
more datasets and ran SVMmultiple times on each, we do
not have concluding insights but suspect that it is dataset
dependent.

The effects of genetic distance threshold
As we have shown earlier in missing haplotype allele
imputation (Table 4 and Figure 3) that by using genetic
distance thresholds, our methods NN and WNN outper-
formed significantly Npute, which uses a fixed number of
surrounding SNP loci. On each simulated dataset, we have
actually tested five different thresholds, and found that
the achieved imputation accuracies do not change much.

Figure 4 plots the average imputation accuracies, each
over the associated 10 simulated datasets, of the imputa-
tion methods on the density-0.1 human, the density-0.1
mouse, the high-density cattle and the low density cattle
datasets with missing rate 0.5%, respectively. The aver-
age imputation accuracies of most methods are nearly flat
across all five thresholds, respectively, except SVM and
NeuralNet were in favor of larger genetic distance thresh-
olds on the two cattle datasets. We thus conclude that, in
practice, one may choose any reasonable genetic distance
threshold for imputation, as long as there are a minimum
of 3 SNP loci from each side of the target SNP locus.

Weighting the SNP loci, or not
In our NN method and Npute, when calculating sample
distances, each SNP locus within the covering window
contributes equally. Inspired by the Mendelian inheri-
tance rule, SNPs closer to the target locus certainly recom-
bine less frequently, and thus are weighted heavier in our
method WNN, as the reciprocal of the genetic distances
to the target locus. A bit surprising observation is that
such a biologically meaningful weighting scheme did not
always work out well. Inmore details,WNNperformed no
differently from NN across all datasets, with any missing
rate, except on low density human datasets; nevertheless,
on low density human datasets, all the six methods did
not seem to perform better than BaseLine anyway. We
had tested several other variations of weighting scheme
including using the linakge disequilibrium r2 (obtained
from the HapMap project, file name “ld chr17 ASW.txt.
gz”), but none seemed to work out well. We leave such a
contradictory phenomenon for future investigation.

An alternative genotype encoding scheme
Besides the orthogonal genotype encoding scheme
{(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)}, see Methods, we had
also used an additive scheme, {0, 1, 2, ?}, interpreting the
number of minor (or any fixed) alleles in the genotype,
with ? indicating a missing value. This scheme has been
used in the literature, and is considered adequate when
imputation is done by regression. In our experiments, the
orthogonal encoding scheme showed slightly better, as our
imputation is viewed as a classification task.

Other imputation measures
We use accuracy, the proportion of correctly imputed
genotypes, to measure the imputation performance. Sev-
eral previous works adopt the same performancemeasure,
but in the form of error rate — the proportion of incor-
rectly imputed genotypes [8]. For imputation by regres-
sion under the additive encoding scheme, some works use
the Pearson correlation R2 as the performance measure
[19]. In this work, we do not calculate R2 since we do not
have “partially” correct imputation.

ld_chr17_ASW.txt.gz
ld_chr17_ASW.txt.gz


Wang et al. BMC Research Notes 2012, 5:404 Page 9 of 12
http://www.biomedcentral.com/1756-0500/5/404

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

1

0.1-hum
an-0.1

0.1-hum
an-0.2

0.1-hum
an-0.3

0.1-hum
an-0.4

0.1-hum
an-0.5

0.1-m
ouse-0.02

0.1-m
ouse-0.04

0.1-m
ouse-0.06

0.1-m
ouse-0.08

0.1-m
ouse-0.1

ld-cattle-0.02

ld-cattle-0.04

ld-cattle-0.06

ld-cattle-0.08

ld-cattle-0.1

hd-cattle-0.2

hd-cattle-0.4

hd-cattle-0.6

hd-cattle-0.8

hd-cattle-1.0

Im
pu

ta
tio

n 
A

cc
ur

ac
y

Genetic: density-species-genetic distance threshold(cM)

NN
fPH

WNN
SVM

MC
NeuN

BL

Figure 4 This figure shows that the average imputation accuracy of most of the local imputation methods was not affectedmuch by the
genetic distance threshold. For the medium density human, medium density mouse, high density cattle, and low density cattle datasets with
missing rate 0.5%, the average imputation accuracies of most methods are nearly flat across all five thresholds, respectively, except SVM and
NeuralNet were in favor of larger genetic distance thresholds on the two cattle datasets.

Other imputation methods
In the literature, there are a number of othermissing geno-
type imputation methods which are not compared against
in this paper. Yu and Schaid [19] reviewed a number of
direct imputation methods and compared them to fast-
PHASE on masked HapMap data. They found that fast-
PHASE provided better results, which is largely consistent
to our results. The other the most promising haplotyping-
based methods than fastPHASE, including MaCH [21],
Impute [6] and Beagle [5], were reviewed in [23] and
they perfrom comparably well to each other in terms of
both efficiency and accuracy; though Beagle was shown
faster and more accurate than fastPHASE on very large
datasets [5]. For all these reasons, we chose to compare
our methods NN and WNN against only fastPHASE, as
the representative of the most promising haplotyping-
based methods, and Npute, as the representative of the
most recent direct imputation methods.

Methods
We deal with bi-allelic SNPs, and use 0 and 1 to denote
the two distinct alleles at each SNP site. We use ? to indi-
cate a missing allele. Since it is very rare for a genotype
value 0? or 1? to pass the quality control, each SNP will
have one of the following four values 00, 11, 01, and ??,
i.e. two homozygous, one heterozygous, and missing. A
genotype dataset of n SNP loci and m samples is repre-
sented as an n × mmatrixM, in whichM(i, j) records the
genotype of sample j at locus i. Aside from this matrix,
we assume a genetic map which records the genetic dis-
tance for each locus from the start of the corresponding

chromosome.When the genetic map is absent, we adopt a
rough mapping of one million basepairs per centi-Morgan
(cM).
In the following, our target missing value isM(i, j) = ??.

We further assume that every other sample has a known
value at locus i, for otherwise it is excluded from the impu-
tation but to be imputed in exactly the same way as sample
j. All our proposed imputation methods in the following
perform local imputation, in the sense that only geno-
type values at nearby SNP loci are used in the inference of
M(i, j). Here “nearby” is characterized as a window center-
ing at locus i, whose radius is set to a fixed genetic distance
threshold δ. In other words, only SNP loci within distance
δ to the target locus i are used in the inference. For ease of
presentation, suppose they are loci i− L, i− L+ 1, . . . , i−
1, i+1, i+2, . . . , i+R. We will later present the range of δ.

The genotype encoding scheme
We treat the imputation as a classification problem in
which the three genotype values represent three classes.
To this goal, we use the orthogonal encoding, where
(0, 0, 1), (0, 1, 0), and (1, 0, 0) represent the three known
genotype values respectively and (0, 0, 0) indicates a miss-
ing value. Such an encoding scheme eliminates the cor-
relation between any two genotype values. Consequently,
every missing genotype is either imputed correctly or
wrongly, but never partially correct.

One nearest neighbor (NN) and its weighted variant (WNN)
In the one nearest neighbor method, the key issue is to
define the distance between a training sample and the
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target sample, both represented as 3(L + R)-dimensional
binary vectors. We adopted the Hamming distance. Such
a distance function differs slightly from the one used in
Npute, where the entry distance between two missing
values is set to 1 [18] — while we set it to 0.
After all the distances are calculated, the classical one

nearest neighbor method selects a closest training sam-
ple to the target for inference. We do slightly differently in
our NN method, to use all training samples that are the
closest to the target sample. By checking the known geno-
type values at SNP locus i for all these closest neighbors,
the missing value M(i, j) is imputed as the majority geno-
type; when there are ties, our NN method continues to
recruit the training samples that are the second closest to
the target, then the sample majority vote applies, and so
on. In the worst case where all training samples are used
for inference, we break ties arbitrarily.
In the weighted variant WNN, the weight of SNP locus

i′ in the covering window is set to the reciprocal of the
genetic distance from locus i′ to i, and that all the L + R
weights are scaled into the range [ 0, 100]. In fact, multiple
ranges have been tested in our preliminary experiments,
and [ 0, 100] is chosen for its the most stable performance.
Afterwards, the distance between two samples are anal-
ogously calculated, so does the modified majority voting
scheme.

Support vector machine (SVM)
Support vector machines (SVMs) are a useful algorithm
for classification tasks. We use the SVM software package
LIBSVM [27] for our genotype imputation.
Similar as in NN, each training sample k (k �= j) is repre-

sented as a 3(L+R)+1-dimensional binary vector (xk , yk),
in which yk ∈ {0, 1, 2} is the genotype value (or the class
label) at locus i. The target sample j is also represented as a
3(L+R)+1-dimensional binary vector, with its yj value to
be settled. The support vector machine is a minimization
problem on the training dataset [28]:

minimize
α

1
2
α�Qα − e�α

subject to y�α = 0,
0 ≤ αk ≤ c, k = 1, 2, . . . ,
j − 1, j + 1, j + 2, . . . ,m,

where c > 0 is the penalty term of the errors, e =
(1, 1, . . . , 1)� is an (m − 1)-dimensional vector, y =
(y1, y2, . . . , yj−1, yj+1, yj+2, . . . , ym)� is the (m − 1)-
dimensional class label vector, Q�k = y�ykK(x�, xk), and
K(x�, xk) = φ(x�)

�φ(xk) is the kernel function. For
each training sample xk , function φ maps it into a higher
dimensional space. SVM can be viewed as a minimization
problem that tries to find a hyperplane with maximal
margin in this higher dimensional space. In our imple-
mentation, we adopt the radial basis function (RBF) in

which K(x�, xk) = exp(−γ ||x� − xk||2) and γ > 0. It has
been reported that the RBF kernel is able to handle the
case where the relation between the class label and the
attributes is nonlinear. The target sample class label yj is
calculated by fitting its attribute vector xj into the trained
model.
As seen from the above, there are two parameters to

be learned for the SVM with an RBF kernel, c and γ ,
for which no known best values exist for our imputation
problem. We used a 10-fold cross-validation to search for
their values out of a pre-defined grid {2−5, 2−3, . . . , 215} ×
{2−15, 2−13, . . . , 23} [27]. Note that we do not try to
achieve a high training accuracy on the training dataset
but rather to find a model that is general enough to work
well for real imputation. In the 10-fold cross-validation,
the training samples are divided into 10 subsets of equal
size, each subset is tested using the classifier trained on
the remaining 9 subsets. The cross-validation accuracy is
the percentage of samples which are correctly classified.

Neural network (NeuralNet)
We employ a standard three-layer feed-forward network
with a gradient descent training algorithm [29]. The sam-
ple representation xk is the same as in SVM, except that
the class label is no longer a single digit but a three-
dimensional vector yk ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Con-
sequently, our neural network has exactly 3(L + R) input
neurons and 3 output neurons. The number of neurons
in the hidden layer is M, which is set to L + R in our
implementation.
Let W = {α0,α1,α2, . . . ,αM,β0,β1,β2,β3} denote the

set of network weights to be trained, where α0, β1, β2,
and β3 are M-dimensional vectors, αm is a 3(L + R)-
dimensional vector for m = 1, 2, . . . ,M, and β0 =
(β01,β02,β03) is a 3-dimensional vector. For each training
sample xk , we have

hkm = α0m + α�
mxk , m = 1, 2, . . . ,M;

zkm = σ(hkm) = 1
1+exp(−hkm)

, m = 1, 2, . . . ,M;
tk� = β0� + β�

� zk , � = 1, 2, 3.

In the above, σ(·) is the softmax function. The training
phase is to minimize the error function

E(W ) =
∑

k �=j

3∑

�=1
(−tk� log(yk�)),

for which we use a batch version of the gradient descent
algorithm starting with a random guess of W, a learning
rate η, and a momentum μ all in the range [ 0, 1]. The
training process is iterated for 20 times to avoid over-
fitting. Afterwards, the class label vector of the target
sample yj is calculated by fitting its attribute vector xj into
the network. The final class label is set by checking which
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one of the three entries has the largest value, with ties
broken arbitrarily.

First order Markov chains (MC)
Markov chains are also able to capture sequential depen-
dencies. We build two first order local Markov chains
(MC) using the L up-stream SNPs and the R down-stream
SNPs inside the covering window, respectively, together
with locus i, to predict the most likely genotype values
for M(i, j), and then combine them to vote for the final
value.
In the up-stream MC, the initial genotype probability

distribution is for locus i-L, and the transition probabili-
ties from locus k to k+1, for k = i−L, i−L+1, . . . , i−1,
are taken as the conditional probabilities P(Xk+1|Xk). A
care is paid to the place where some genotype frequency
at a locus is 0 counted from the training samples, for
which we use an add-one smoothing scheme to lift it to
a non-0 value. During the imputation phase, in case of
a missing value in the target sample j, we enumerate all
possible genotype values using their frequencies in the
training samples. At the end, for each genotype value, we
obtain a probability of occurrence from the up-stream
MC. Analogously, another probability is obtained from
the down-stream MC. The product is taken as the likeli-
hood of this genotype value at locus i, and the final value
is set to the one with the largest likelihood.

Conclusions
We have presented fast and accurate missing SNP geno-
type andmissing haplotype allele imputationmethods NN
and WNN, based on the Mendelian inheritance rule but
to avoid the complex and time-consuming phasing step.
Our methods are local, such that only the SNPs within
a short genetic distance vicinity are taken into the impu-
tation process. Extensive simulation experiments showed
that our methods performed very well compared to previ-
ously the best methods, fastPHASE for missing genotype
imputation and Npute for missing haplotype allele impu-
tation. Our methods lost to fastPHASE slightly onmissing
genotype imputation, but competitively well on missing
haplotype allele imputation. In terms of imputation time,
our methods outperformed fastPHASE several orders of
magnitude.
We have applied our NN method to impute the ASW

human genotype dataset and the Perlegen mouse dataset.
The imputed datasets, the simulated datasets, more
detailed imputation result statistics, and source codes of
our implemented imputation methods (NN, WNN, SVM,
MC, NeuralNet, BaseLine) are available in the supplemen-
tary materials [26].
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