Golder Associates Ltd.

10th Floor, 940 6th Avenue S.W. Calgary, Alberta, Canada T2P 3T1 Telephone (403) 299-5600 Fax (403) 299-5606

This document has been digitized by the Oil Sands Research and Information Network, University of Alberta, with permission of Alberta Environment and Sustainable Resource Development.

REPORT ON

1997 SYNTHESIS

OF ENVIRONMENTAL INFORMATION ON

CONSOLIDATED / COMPOSITE TAILINGS (CT)

Submitted to:

Suncor Energy Inc. Oil Sands

April 1998

972-2205.6045

Golder Associates Ltd.

10th Floor, 940 6th Avenue S.W. Calgary, Alberta, Canada T2P 3T1 Telephone (403) 299-5600 Fax (403) 299-5606

April 23, 1998

Proj. No. 972-2205

Mr. Martin Holysh Senior Environmental Specialist Sustainable Development Suncor Energy Inc., Oil Sands P.O. Box 4001 Fort McMurray, AB T3H 3E3

RE: Final Report on "Synthesis of Environmental Information on Consolidated Tailings"

Dear Martin

Attached are five copies of the "Synthesis of Environmental Information on Consolidated Tailings". This report summarizes the available chemistry and toxicology data for CT materials. Data sources have included Suncor, Syncrude, consultants, government agencies and universities.

If you have any additional questions about the report, please contact either Farida Bishay (299-4656), Munir Jivraj at 299-4624 or me at 299-5640.

Yours very truly

GOLDER ASSOCIATES LTD.

Shan Mikeon

John R. Gulley, M.Sc., P. Biol. Oil Sands Project Director

attachments (5)

R:\1997\2200\972-2205\5000\SUN0422.DOC

EXECUTIVE SUMMARY,

This document provides a summary of the chemical and toxicological information available as of October 1997 from laboratory (bench scale), prototype (field scale) and commercial scale CT operations at both Suncor and Syncrude. It focuses on CT materials produced with 800 to 1,600 mg/L of added gypsum. This information can be used as baseline data to address the environmental issues related to the large-scale deposition of this material.

Consolidated (a term used by Suncor) / Composite (a terms used by Syncrude) Tailings, or CT, is a new technology that increases the rate of settling of fine particles to reduce the amount of fines segregation (i.e., the formation of non-segregating tailings). This process increases the rate of dewatering. CT is a mixture of of fresh tailings, MFT, sands and a coagulant (currently gypsum or calcium sulphate $[CaSO_4]$). The gypsum acts to reduce the separation of the fines from the larger sand particles, resulting in a deposit with more solids than conventional MFT. This process provides a relatively "rapid" conversion from the fluid tailings to a trafficable landscape.

Implementation of the CT technology on a commercial scale was initiated by Suncor in 1996. Commissioning of this process required detailed monitoring of operating conditions. Of primary concern were inorganic chemistry balances coupled with sands and fine ratios dynamics. Therefore, the majority of available chemistry is for inorganics. The available organic chemistry and toxicological data for CT waters and solids are limited and cover a wide range of "process recipes", which include different sources of tailings materials, different sources of calcium sulphate coagulant, and varying coagulant concentrations.

Physical and chemical characteristics of CT materials discussed herein include: a) the physical characteristics including low dissolved oxygen and fine grain size that may restrict plant root growth; and b) the chemical characteristics including inorganic constituents such as salts, ammonia and metals, and organic constituents such as naphthenic acids, polycyclic aromatic hydrocarbons and volatile organic compounds. The data described in this report are relevant primarily to the leaching release mechanism and groundwater, surface water and sediment quality issues.

Although CT technology is a relatively new, various iterations of the process have been implemented since its derivation. Some of the precursor studies began as early as 1980; and focused on obtaining tailings that were suitable for vacuum or pressure filtration, or for building slopes and beaches (FTFC 1995). Since 1990, research topics included segregation boundaries, sedimentation and consolidation characteristics and chemical properties of the release water from non-segregating tailings (FTFC 1995). The most recent research has been directed at assessing the toxicity of CT release waters.

EXECUTIVE SUMMARY

Some of the data presented reflect that chemical equilibrium has not yet been established. With continued recycling (i.e., the reuse of CT release water in the extraction process) conservative ions, such as chloride, sodium and sulphate will increase. However, it is expected that metals and organics (e.g., naphthenic acids) will reach equilibrium quickly and will not increase beyond levels recorded in current active tailings ponds.

On the other hand, time (i.e., aged compared with fresh CT release water) is expected to decrease the chemical concentration of ammonia and organic parameters and toxicity via biological processes (e.g., nitrification/denitrification, bacterial mineralization), photo-oxidation and volatilization. For example in Suncor and Syncrude field trials, naphthenic acids decreased with time, although at different rates. Any coincident effect on major ions or metals is not expected.

Regardless, CT release water quality is expected to be variable depending on operational processes and storage/treatment options. However, the same directional trends have been observed with both Suncor and Syncrude CT materials.

TABLE OF CONTENTS

<u>SECTION</u>

<u>PAGE</u>

1. INTRODUCTION 1.1 OBJECTIVES 1.2 CHARACTERISTICS AND CONSTITUENTS OF CT MATERIALS	. 1
2. HISTORY OF CT	3
 CHEMICAL PROPERTIES OF CT	5 5 6 7 8
4. TOXICOLOGICAL PROPERTIES OF CT 1 4.1 SOLID TOXICITY OF GYPSUM CT 1 4.2 RELEASE WATER TOXICITY OF GYPSUM CT 1 4.2.1 Bench Scale Trials 1 4.2.2 Field Scale Trials 1 4.2.3 Commercial Scale Trial 1	15 15 15
5. OPERATIONAL AND ENVIRONMENTAL CONTEXT - SUMMARY 1	9
6. CLOSURE	1
7. REFERENCES CITED	22

LIST OF TABLES

Table 1	Summary of CT Solids Inorganic Chemistry	. 6
Table 2	Summary of CT Solids Prganic Chemistry	. 7
Table 3	Summary of Inorganic Chemistry for CT Release Water From Suncor Trials	. 9
Table 4	Summary of Inorganic Chemistry for CT Release Water From Syncrude Trials	10
Table 5	Suncor CT Release Water Chemistry During Generation ^(a)	11
Table 6	Summary of CT Release Water Organic Chemistry From Suncor Trials	12
Table 7	Summary of CT Release Water Organic Chemistry for Syncrude Trials	13
Table 8	Naphthenic Acids (mg/L) in Suncor and Syncrude Field Scale Trials Over Time	13
Table 9	CT Release Water Acute Toxicity	17
Table 10	CT Release Water Chronic Toxicity	18
Table 11	Trends Matrix of Factors Affecting CT Release Water Quality	19

LIST OF FIGURES

Figure 1	Recent NST and CT Research	. 4
Figure 2	Decay of Naphthenic Acids Over Time	20

阶

LIST OF APPENDICES

APPENDIX I	ANNOTATED BIBLIOGRAPHY
APPENDIX II	AVAILABLE CHEMISTRY DATA
APPENDIX III	AVAILABLE TOXICITY DATA
APPENDIX IV	CT WORKSHOP MEETING MINUTES
APPENDIX V	GLOSSARY OF TOXICOLOGICAL TERMS

Golder Associates

.

1 INTRODUCTION

The major waste product from the Clark Hot Water Extraction (CHWE) process is a slurry consisting of water, unprocessed bitumen, sand and a fines fraction which is approximately 10% of the waste stream. This waste slurry is deposited in tailings ponds on both Suncor Energy Inc. (Suncor) and Syncrude Canada Ltd. (Syncrude) leases. The majority of the sand particles in the oil sands tailings stream segregate from the slurry. The remaining materials slowly settle to a semi-fluid deposit called "fine tailings". Over time (approximately five years), the fine tailings densifies slightly to form mature fine tails or MFT. This large volume of stored fine tailings provides both economic (i.e., operational costs) and environmental (i.e., reclamation) challenges, particularly related to dewatering (i.e., separating the water from the solids) of the produced fine tailings (Fine Tailings Fundamentals Consortium [FTFC] 1995).

Consolidated (a term used by Suncor) / Composite (a terms used by Syncrude) Tailings, hereafter referred to as CT, is a new technology that increases the rate of settling of fine particles and reduces the amount of fines segregation (i.e., the formation of non-segregating tailings). CT is a mixture of fresh tailings, MFT, sands and a coagulant (currently gypsum or calcium sulphate[CaSO₄]).

Although the CT process has the potential to decrease the economic and environmental challenges, it is a relatively new technology that is still under development and commercial trial. The available chemistry and toxicological data for CT waters and solids are limited and cover a wide range of "process recipes", which include different sources of tailings materials, different sources of calcium sulphate coagulant, and varying coagulant concentrations. Information about the chemical and toxicological properties of CT was previously summarized in the FTFC, 1995.

This document provides a summary of the chemical and toxicological information available as of October 1997 from laboratory (bench scale), prototype (field scale) and commercial scale CT operations at both Suncor and Syncrude. It focuses on CT materials produced with 800 to 1,600 mg/L of added gypsum. This information can be used as baseline data to address the environmental issues related to the large-scale deposition of this material.

1.1 **OBJECTIVES**

The purpose of this document is to summarize the available chemical and toxicological data of gypsum CT. The report includes:

• a review of the available gypsum CT data;

- an annotated bibliography of the available CT reports (Appendix I); and
- a compilation of the available chemistry and toxicological data for CT materials made with gypsum as a coagulant (Appendices II and III).

1.2 CHARACTERISTICS AND CONSTITUENTS OF CT MATERIALS

Potential characteristics of CT materials that are presented herein include:

- Inorganic Constituents may act as stressors or toxicants
 - salts
 - ammonia
 - metals
 - hydrogen sulphide
- Organic Constituents may act as toxicants or carcinogens
 - naphthenic acids (NA)
 - polycyclic aromatic hydrocarbons (PAH)
 - volatile organic compounds (VOC)
 - methane

These characteristics and constituents may impact the biological receptors in aquatic, wetlands and terrestrial ecosystems. Within these systems, various types of biota/receptors may be exposed to the chemicals of concern including: microbes, plants, invertebrates, vertebrates and humans.

2 HISTORY OF CT

Although CT technology is relatively new, various iterations of the process have been tested since its derivation. Non-segregating tailings studies began as early as 1980; and focused on obtaining tailings that were suitable for vacuum or pressure filtration, or for building slopes and beaches (FTFC 1995). Since 1990, research has focused on segregation boundaries, sedimentation and consolidation characteristics, and chemical properties of the release water from non-segregating tailings (FTFC 1995). The most recent research has been directed at assessing the toxicity of CT water.

The term, non-segregating tailings (NST), was used in studies prior to 1994, during which lime or acid and lime were generally used to reduce segregation. More recently, different forms of gypsum have been used as the coagulant, and the terminology has changed to CT. Some of the non-gypsum studies are included in the annotated bibliography (Appendix I) for completeness.

The initial NST bench-scale research was conducted by:

- Caughill (1992; summarized in FTFC 1995), to determine sedimentation and consolidation rates and hydraulic conductivity of tailings treated with the optimum lime concentration for Syncrude tailings;
- University of Alberta (1992-93; summarized in FTFC 1995), to determine the segregation and sedimentation characteristics, consolidation rates and in-line mixing and initial pumpability for nine categories of solids and fines content for Syncrude tailings; and
- University of Alberta (1993-95; summarized in FTFC 1995), to determine various segregation and sedimentation characteristics and consolidation rates for three types of tailings using a series of coagulant chemicals for Suncor tailings.

The 1993-95 work conducted by the University of Alberta initiated the use of calcium-rich flyash as a coagulant. This led to the concept of using the calcium sulphate-rich by-product from the Suncor flue gas desulphization plant. The initial NST field-scale research was conducted by:

- Suncor (1993-94; summarized in FTFC 1995), to determine geotechnical behaviour, deposit characteristics, deposition procedures, material management and cyclone operation, additive mixing procedures, pumpability, and release water chemistry for Suncor and Syncrude tailings; and
- Syncrude (1994-95; summarized in FTFC 1995), to test three combinations of tailings with differing sands: fines ratios under two coagulant treatments (i.e., acid lime and CaSO₄) for Syncrude tailings.

Golder Associates

Studies on acid/lime NST and gypsum CT are summarized in Figure 1. These recent studies, as well as some earlier studies are noted in the annotated bibliography in Appendix I. The research switched focus from acid/lime NST to gypsum CT due to improved operations efficiency, decreased costs and improved release water quality. These studies provide the most information on CT deposit and release water chemistry and toxicity, and make up the majority of the data summarized in Sections 3 and 4.

Chemistry and toxicity data summarized herein were obtained from the available literature including sources such as Suncor, Syncrude, CANMET and various consultants and universities. The data sources are limited to those discussed in the September 8, 1997 CT Workshop (documented in the minutes that are provided in Appendix IV). Only data from gypsum CT and NST research are included (see Appendix II for chemistry data and Appendix III for toxicity data). In general, solid and water chemistry and toxicology are discussed separately with regard to the operator (i.e., Suncor or Syncrude) and scale (i.e., bench, field, commercial).

Figure 1 Recent NST and CT Research

3 CHEMICAL PROPERTIES OF CT

Many different types of chemical analyses have been conducted on both CT solids and produced water. These include: conventional parameters (e.g., pH, conductivity, total suspended solids, alkalinity), major ions (e.g., sodium, chloride, sulphate), total and dissolved metals (e.g., boron, cadmium, molybdenum, zinc), organic parameters (e.g., total organic carbon, naphthenic acids, polycyclic aromatic hydrocarbons, volatile organic compounds, phenolics). The available data are provided in Appendix II and are summarized below.

3.1 CHEMISTRY OF THE SOLIDS ASSOCIATED WITH GYPSUM CT

There are limited solids chemistry data from field and commercial scale trials at Suncor and bench scale trials at Syncrude. Four (total) sets of CT solids chemistry data are available (Appendix II - Table II-A). At the time of this report, Suncor is the only plant operating at a commercial scale, and one set of CT solid sample results was available from the process (Appendix II - Table II-A).

3.1.1 Inorganic Constituents

A summary of selected inorganic constituents, divided into conventional parameters and metals, is provided in Table 1. Complete results of all parameters analysed are provided in Table II-A of Appendix II.

3.1.1.1 Conventional Parameters

Conventional parameters were generally not measured during the Syncrude testing; and hence, a detailed comparison of the two processes is not possible. Conductivity was comparable among the limited samples, though Suncor samples tended to be lower than Syncrude's bench scale results. This difference may be due to the differences between Suncor and Syncrude ore deposits, although the study scale or gypsum source or concentration may also contribute to the differences observed.

3.1.1.2 Metals

Metal levels in the Suncor field-scale solid deposits were generally lower than those in the Syncrude bench and Suncor commercial scale trials (Table 1). However, metal concentrations in Syncrude bench and Suncor commercial trials were very similar. These differences may be due to the different tailings (e.g., scavenger tails were used in the Suncor field trial rather than conventional plant 3 whole tailings) and different ore deposits used in each trial.

Golder Associates

	-	-		_							
	I	Syncri	Jde	Suncor							
					Commercial						
		Bench S	Scale	Field Scale	Scale						
		NST Deposit	Low		ann ann a fhann ann ann ann ann ann ann ann ann ann						
		in Flume	Gypsum								
Parameter	Units	Test	СТ	RW160-1 ^(a)	CT0108-2						
	Conventional Parameters and Nutrients										
Bicarbonate ppm 683 -											
Calcium	ppm	er		67	***						
Chloride	ppm	-	-	57							
Conductivity	µS/cm	**	2,440	1,536	1,750						
pH	units	69	7.3	-	8.7						
Sodium	ppm	-	-	352	and a second						
Sulphate	ppm	-	•••	127	660						
Total Suspended Solids	ppm	**		12,700	-						
Nitrogen - Ammonia	ppm	60.	-	4.3	-						
Total Metals											
Arsenic	ppm	5	<20	0.04	<0.2						
Boron	ppm		~	4.4	9						
Cadmium	ppm		<0.3	0.01	<0.3						
Chromium	ppm		15.4	0.5	6.2						
Copper	ppm	409	2.7	0.2	3.8						
Lead	ppm	00000000000000000000000000000000000000	4.4	0.3	4						
Mercury	ppm	***	<20	0.05	<20						
Molybdenum	ppm	**	1.1	1.1	1.2						
Nickel	ppm	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	14.4	1.2	10.8						
Selenium	ppm	-	<4	0.01	<0.2						
Zinc	ppm	599	13.6	0.9	11.9						

Table 1	Summarv	of	CT	Solids	Inorganic Chemistry

^(a) analysis based on leachate sample.

- no data.

3.1.2 Organic Constituents

A summary of test results for selected organic constituents is provided in Table 2. Complete results of all parameters analysed are provided in Table II-A of Appendix II.

Naphthenic acids were only analysed in the Suncor field trial (107 mg/L). Polycyclic aromatic hydrocarbons (PAH) were at, or near, the detection limit in the Syncrude bench-scale trials and slightly higher in the Suncor field trials. These differences may be due to the different tailings (e.g., scavenger tails were used in the Suncor field trial) and different ore deposits used in each trial.

Golder Associates

		Syncrude		Sı	incor
		Bench S	Scale	Field Scale	Commercial Scale
Parameter	Units	NST Deposit in Flume Test	Low Gypsum CT	RW160-1 ^(a)	CT0108-2
	1	Organic		<u>, , , , , , , , , , , , , , , , , , , </u>	
Total Organic Carbon	ppm	-	**	395.0	-
Naphthenic Acids	mg/L		-	107.0	-
Naphthelene (PAH)	ppb	<0.01	<0.04	0.02	-
Benzo(a)pyrene (PAH)	ppb	0.02	0.05	0.45	-
Phenanthrene (PAH)	ppb	0.46	<0.04	0.17	-
Total Detectable PAHs	ppb	8.6	15.3	116.5	
Phenol	ppb	-	<0.02	1.3	-

Table 2Summary of CT Solids Prganic Chemistry

^(a) analysis based on leachate sample.

- no data.

3.2 CHEMISTRY OF THE RELEASE WATER FROM GYPSUM CT

There are release water chemistry data from bench, field and commercial scale trials at Suncor and bench and field scale trials at Syncrude. The available chemistry data are provided in Appendix II and include:

- Suncor bench scale tests which include conventional parameters, major ions, metals and general organics (Table II-B.1).
- Syncrude bench scale tests which include conventional parameters, major ions, metals, general organics, PAHs, polycyclic aromatic nitrogen heterocycles (PANH) (Table II-B.2).
- Suncor field and commercial scale tests which include analyses from all parameter groups (Tables II-C.1 and II-D.1).
- Syncrude field scale tests which include conventional parameters, major ions, metals and general organics (Table II-C.2).

However, the constituents analyzed within each parameter group were not necessarily the same for the different test programs. The available data are summarized below (Tables 3 to 5).

3.2.1 Inorganic Constituents

3.2.1.1 Conventional Parameters

Bench Scale Trials

Samples for bench scale trials from both Suncor (Table II-B.1 in Appendix II) and Syncrude (Table II-B.2 in Appendix II) were taken from May 1994 to June 1995. The Suncor bench scale data set consists of a large sample size (i.e., 1 to 44 samples) of inorganic analyses, while the Syncrude data set was smaller (i.e., 1 to 5 samples) (Table 3 and 4). There were some differences between Suncor and Syncrude CT release water; for example, chloride and sodium were higher and ammonia and calcium were lower in Syncrude release water compared with Suncor release water. These differences may be due to different ore deposits or the source of gypsum. Ammonia is typically higher in oil sands process-affected waters at Suncor than Syncrude. Syncrude ore is typically higher in sodium than Suncor ore (MacKinnon and Sethi 1993). Suncor used gypsum from the Flue Gas Desulphurization Plant (FGD) or DOMTAR's Commercial Grade Gypsum (CGG); while Syncrude used Sherritt's Agricultural Grade Gypsum (AGG) in their bench-scale trials. Some differences in these coagulant sources have been observed (e.g., more metals were found to be of potential concern in FGD compared with AGG; Golder 1997).

Kaperski and Mikula (1994) monitored CT release water chemistry in various Suncor streams mixed with FGD over the period of release water generation (i.e., sampled with a frequency of 1, 2, 4, 9, 10 and 28 days). During this generation period, sulphate often doubled after 28 day generation period (Table 5; Appendix II - Table II-B.1). This increase was due to continued exchange of ions that allows the generation of release water. However, if the release water is separated from the solids and then assessed, ions such as sulphate remain comparable (e.g., for about 5 month old CT release water only $\pm 10\%$ variation over a 10 week period was observed; EVS 1995a).

Field Scale Trials

CT generation for Suncor field scale trial began in summer of 1994 and continued in summer of 1995 as part of Lease 86 reclamation study (Appendix II - Table II-C.1). Syncrude on the other hand set up its NST field trials in summer of 1995 (Appendix II - Table II-C.2). Chloride, sodium and sulphate were much higher in the Syncrude samples compared with those from Suncor (Table 3 and 4). Again, these differences may be due to:

- 9 -

Parameter ^(b)		Bench Scale				Field Scale			Commercial Scale					
		All Data	-	Fresh ^(*)		All Data		Fresh ^(*)	F	ond 5 Comp	osite	Fresh ^(*)		
		# of				# of				# of			# of	
	Mean	Analyses	Range	L	Mean	Analyses	Range		Mean	Analyses	Range	Mean	Analyses	Range
					Co	onventional P	arameters							
Bicarbonate	425	(38)	162 - 754	-	422	(23)	239 - 2787	-	673	(84)	383 - 1046	786	(6)	685 - 1046
Carbonate	1.3	(38)	0 - 32	-	4.4	(23)	<dl -="" 34<="" td=""><td>-</td><td>0.78</td><td>(83)</td><td><dl -="" 28<="" td=""><td>7</td><td>(6)</td><td>0 - 28</td></dl></td></dl>	-	0.78	(83)	<dl -="" 28<="" td=""><td>7</td><td>(6)</td><td>0 - 28</td></dl>	7	(6)	0 - 28
Conductivity (µS/cm)	3160	(2)	3090 - 3230	3090	2133	(6)	1891 - 2880	2100	2346	(34)	1380 - 2810	-	-	
Chemical Oxygen Demand	254	(2)	216 - 292	-	230	(1)		-	1	-		-	-	1
pH (units)	8	(26)	7.6 - 8.8	8.2	8.3	(20)	7.9 - 9.1	7.8	7.8	(84)	6.8 - 8.8	8.2	(6)	7.7 - 8.8
Sulphur (total)	627	(24)	158 - 1204	-	220	(6)	186 - 387	-		-		-	-	1
						Major lo	ns							
Calcium	394	(44)	20 - 776	129	116	(23)	33 - 542	100 .	82	(80)	8 - 157	32	(6)	8 - 53
Chloride	154	(40)	50 - 366	54	54	(23)	42 - 72	-	60.9	(99)	27 - 163	56	(6)	42 - 94
Magnesium	132	(42)	12 - 379	44	20	(23)	7 - 80	-	24.7	(80)	26 - 46	14	(6)	6 - 17
Sodium	484	(42)	298 - 746	520	455	(23)	332 - 982	-	446	(81)	354 - 514	439	(6)	354 - 514
Sulphide	<0.02	(1)		-	-			-		-		-	-	T
Sulphate	1546	(44)	487 - 3555	1270	868	(23)	555 - 2530	640	691	(99)	140 - 980	373	(6)	140 - 519
						Nutrier	ts							
Nitrogen - Nitrate + Nitrite	0.5	(2)		0.05	0.01	(15)	0.003 - 0.08	-	0.06	(32)	0.003 - 0.84	-	-	-
Nitrogen - Ammonia	<u> </u>	(2)	5.7 - 8.4	5.7	0.89	(15)	0.1 - 2.41	-	6.37	(3)	6.31 - 8.20	-	-	-
Phophorus (Total)	0.002	(1)			<dl< td=""><td>(5)</td><td></td><td></td><td>0.01</td><td>(3)</td><td>0.01 - 0.02</td><td></td><td>1</td><td>1</td></dl<>	(5)			0.01	(3)	0.01 - 0.02		1	1
						Total Me	tals							
Boron	6.0	(26)	2.8 - 11	3	3.26	(6)	2.7 - 4.51	-	3.44	(4)	2.63 - 3.62	-	-	-
Copper	0.03	(11)	0.01 - 0.24	0.02	0.00	(6)	<dl -="" 0.03<="" td=""><td>-</td><td></td><td>(2)</td><td><dl -="" 0.004<="" td=""><td>-</td><td>-</td><td>-</td></dl></td></dl>	-		(2)	<dl -="" 0.004<="" td=""><td>-</td><td>-</td><td>-</td></dl>	-	-	-
Iron	0.24	(25)	<dl -="" 1.7<="" td=""><td>0.1</td><td>0.24</td><td>(6)</td><td><dl -="" 1.01<="" td=""><td>-</td><td>0.41</td><td>(4)</td><td><0.001 - 1.17</td><td>-</td><td>-</td><td>-</td></dl></td></dl>	0.1	0.24	(6)	<dl -="" 1.01<="" td=""><td>-</td><td>0.41</td><td>(4)</td><td><0.001 - 1.17</td><td>-</td><td>-</td><td>-</td></dl>	-	0.41	(4)	<0.001 - 1.17	-	-	-
Molybdenum	0.43	(5)	0.15 - 0.84	0.84	1.23	(6)	1.08 - 1.42	-	1.07	(4)	0.99 - 1.14	-	-	1 -
Zinc	0.12	(11)	0.01 - 0.24	0.08	0.04		<dl -="" 0.16<="" td=""><td>-</td><td>0.026</td><td>(3)</td><td>0.021 - 0.028</td><td>-</td><td>-</td><td>-</td></dl>	-	0.026	(3)	0.021 - 0.028	-	-	-

Table 3 Summary of Inorganic Chemistry for CT Release Water From Suncor Trials

^(a) Fresh refers to CT release water analysed as it was generated.

 Data sets that were clearly identified as such: Suncor bench scale - EVS (1995), Suncor field scale - EVS (1996), Suncor commercial scale - Kot et al. (1997).
 ^(b) Units are mg/L except where noted otherwise.

7

Notes: - = no data available.

DL = Detection Limit.

.

	Field Scale									
	All Data		Fresh ^(b)	All Data				sh ⁽⁶⁾		
Parameter ^(a)	Mean	n	Range		Mean	<u>n</u>	Range	Mean	n	Range
			Conve	entional Pa	rameters					
Bicarbonate	932		800 - 1093	800	859	3	671-1133	759		554-834
Carbonate	59		20 - 112	20	-			-		~
Chemical Oxygen Demand	280		260 - 300	260	-		~	-		-
Conductivity (µS/cm)	3575		3550 - 3600	3600	4603	3	3970-5180	4370		4270-4590
рН	8.8		8.4 - 9.2	8.4	8.3	3	8-8.6	8		8.3-8.5
Sulphur (total)	329		316-352	~	~		-		1	-
				Major lor	IS		a water water strand and a strand			
Calcium	18.3		7.6 - 36	36	56	3	36.2-78.6	63	Γ	52.9-76.6
Chloride	367		52 - 523	365	535	3	471-624	499		484-509
Magnesium	10.7		5.5 - 19	19			-	**		
Sodium	1091		910 - 1221	910	1118	3	998-1230	981		945-1050
Sulphate	1017		897 - 1114	1040	1182	3	1043-1322	1099		1043-1172
Sulphide	< 0.0			<0.01	-			-		-
				Nutrient	S					
Nitrogen - Nitrate + Nitrite	0.06		0.05 - 0.06	0.05	-		-	-		-
Nitrogen - Ammonia	0.42		0.35 - 0.49	0.49			-	**		
Phosphorus (Total)	0.2		-		-		-			-
				Total Meta						
Boron	3.00		2.26-3.6	2.26	3.5	5	2.91-4.2	4		3.16-4.18
Copper	0.09		0.001-0.27	0.004	-		-	-		-
Iron	0.04		<dl-0.04< td=""><td>0.04</td><td>-</td><td></td><td></td><td>**</td><td></td><td></td></dl-0.04<>	0.04	-			**		
Molybdenum	0.18		0.134-0.24	0.15	0.2	3	<0.01-0.3	**		60
Zinc	0.05		<dl-0.16< td=""><td>0.003</td><td>-</td><td></td><td>~</td><td>-</td><td></td><td></td></dl-0.16<>	0.003	-		~	-		

Summary of Inorganic Chemistry for CT Release Water From Table 4 Syncrude Trials

(a) Fresh refers to CT release water analysed as it was generated. - Data sets that were clearly identified as such:

Syncrude bench scale - Golder (1995b)

Syncrude field scale - Syncrude (1995) -

no data available.

^(b) mg/L except where noted otherwise. Notes: DL = detection limit.

n number of analysis.

Parameter	Unit	Day 2	Day 10	Day 28					
Conventional Parameters and Major Ions									
Bicarbonate	mg/L	516	306	269					
Calcium	mg/L	553	541	533					
Chloride	mg/L	90	109	112					
Fluoride	mg/L	1.2	1.5	10.8					
Magnesium	mg/L	94	109	132.					
pН		7.62	7.86	7.82					
Potassium	mg/L	28	36	41					
Sodium	mg/L	538	640	714					
Sulphate	mg/L	1203	1331	2457					
Sulphur	mg/L	676	898	940					
······	· · · · · · · · · · · · · · · · · · ·	Total Meta	ls						
Aluminum	mg/L	1.3	1.3	1.2					
Arsenic	mg/L	<dl< td=""><td>0.02</td><td></td></dl<>	0.02						
Barium	mg/L	0.055	0.036	0.043					
Boron	mg/L	4.6	5	7.4					
Copper	mg/L	0.006	<dl< td=""><td></td></dl<>						
Iron	mg/L	0.14	0.049	0.016					
Lithium	mg/L	0.25	0.34	0.38					
Magnesium	mg/L	94	109	132					
Manganese	mg/L	0.5	0.22	•••••••••••••••••••••••••••••••••••••••					
Silicon	mg/L	2.9	2.4	3.6					
Strontium	mg/L	2.5	2.8	3.1					
Vanadium	mg/L	-	0.001	-					
Zinc	mg/L	0.082	0.1						

Table 5	Suncor CT	Release W	ater Chemistry	Durina	Generation ^(a)
		11010000 44	weer enclinery	Sanng	SOUCIARIA

^(a) Scavenger Tails/FGDS trial; Kasperski and Mikula, 1994*a*; data set available in Appendix II.

- gypsum grade (FGD vs. CGG).
- gypsum source (DOMTAR vs. Sherritt);
- gypsum dosage (~900-1200 mg/L by Suncor vs. 1400 mg/L by Syncrude); and
- differences in ore deposits mined.

Porewater was also assessed in Syncrude's field scale trial (Appendix II - Table II-E.1). Porewater collected about 1 week after discharge ceased was comparable (for the major ions analysed) with porewater collected one month after active discharge.

Commercial Scale Trial

The commercial scale trial for CT production to Pond 5 was initiated by Suncor in November 1995 and continues to operate (Appendix II - Table II-D.1). The sample size for conventional parameters range from 3 to 113 samples (Table 3). Although these data have been collected since the Pond's inception, they are not applicable to assess any changes over time since fresh CT was continually added to Pond 5. The levels of major ions in fresh CT release water to Pond 5 were comparable with composite samples collected from Pond 5, being except for sulphate which was much lower in the composite samples.

Although generally comparable, there were some differences across scale for Suncor, most notably calcium and sulphate. This may be due to different dosages of gypsum among the different trials. Syncrude was generally similar among trials.

3.2.1.2 Metals

Metals analysed in Suncor and Syncrude CT release water samples were comparable regardless of field scale (Table 3 and 4; Appendix II).

3.2.2 Organic Constituents

Many organic constituents were not consistently analysed at either Suncor or Syncrude or across scales. When these constituents were measured (e.g., Suncor field and commercial scales and Syncrude bench scale) they were low (i.e., less or near detection limits; see Appendix II), with the exception of parameters that are a measurement of a group of constituents (e.g., naphthenic acids; see Tables 6 and 7).

Table 6 Summary of CT Release Water Organic Chemistry From Suncor Trials

	Bench Scale	Field Scale	Commercial Scale		
	All Data	All Data		Pond 5 Composite	
Parameter	Mean (# of analyses)	Mean (# of analyses)		Mean (# of analyses)	
(mg/L)	Range	Range	Fresh ^(a)	Range	
	Gen	eral Organics			
Dissolved Organic	60 (1)	m	-	50 (3) 48.5-51.7	
Carbon	AN				
Naphthenic Acids	66 (1)	78 (27) 62-100	76	69 (19) 50-87	
	~			~	
Total Inorganic Carbon	99 (3) 69 - 129	64 95) 42-139	~		
	-				
Total Organic Carbon	95 (3) 62 - 116	76 (11) 56-236		ni.	
	-				

^(a) Fresh refers to CT release water analysed as it was generated.

- Data sets that were clearly identified as such:

Suncor bench scale - EVS (1995)

Suncor field scale - EVS (1996)

Suncor commercial scale - Kot et al. (1997).

no data available.

Table 7Summary of CT Release Water Organic Chemistry for SyncrudeTrials

Bench Scale			Field Scale		
All Data Parameter Mean (# of (mg/L) analyses) Range		Fresh ^(a)	All Data Mean (# of analyses) Range	Fresh ^(a)	
	General C	Drganics			
Dissolved Organic Carbon	61 (2) 55 - 66.9	55	-		
Naphthenic Acids	76 (1)	76	82 (17) 68-99	75 (1)	
Total Inorganic Carbon	160 (3) 113 - 187	-	-		
Total Organic Carbon	212 (3) 191 - 252	-	-		

^(a) Fresh refers to CT release water analysed as it was generated.

- Data sets that were clearly identified as such:

Syncrude bench scale - Golder (1995b) Syncrude field scale - Syncrude (1995).

no data available.

Naphthenic acids were comparable (Table 6 and 7). The Suncor field scale trial illustrates the decrease in naphthenic acids over time (Table 8). A similar trend was observed in Syncrude field scale trial, although the decay rate was lower. This difference may be due to the length of the studies and the season in which they were conducted, rather than ore or process differences.

Table 8 Naphthenic Acids (mg/L) in Suncor and Syncrude Field Scale Trials Over Time Over Time

Time (days)	Sunce	or ^(a)	Sync	rude ^(b)
	Pit 1	Pit 2	Pond 2	Pond 5
0	95	95	81	84
21	89	94	-	-
35	83	87	-	-
50	78	79	-	-
56	70	73	-	-
63	62	62	-	-
78	63	63	-	-
91	68	69	-	-
92	-	-	86	-
327	-	-	50	63
381	-	-	48	58

^(a) CT Wetlands study in 1995; June 17 to September 18, 1995; EVS 1996.

^(b) November 23, 1995 to December 8 1996; Syncrude 1995.

no data collected.

4 TOXICOLOGICAL PROPERTIES OF CT

A variety of toxicity tests have been conducted on CT release waters from laboratory and field studies. Some toxicity testing is also being initiated on different mixtures of CT solids.

Aquatic toxicity tests are used to detect and evaluate the potential toxicological effects of substances on aquatic organisms. Since these effects are not necessarily harmful, a principal function of these tests is to identify chemicals or whole effluents that can have adverse effects at low exposure concentrations. These tests can provide information that can be used to assess the risk associated with exposure of an organism to a known concentration of a substance.

Aquatic toxicity tests consist of exposure of test organisms to a number of dilutions of the test water for a specified period. At the end of the exposure period, survival (acute tests) or other, non-lethal endpoints (e.g., growth, reproduction; chronic tests) are quantified and a dose-response relationship is developed. Standard statistics are calculated based on the dose-response curve.

The standard statistic used to describe acute toxicity is the median lethal concentration (LC50), which is the concentration of test water that causes 50% mortality. Statistics used to describe sublethal toxicity are the IC50 and the IC25 (for "inhibition concentration"). The inhibition concentration is the concentration causing a given percent reduction in growth or reproduction.

Toxicity tests were conducted with CT water at both the acute and chronic levels. Acute toxicity tests were conducted with the following organisms:

- bacteria (Microtox);
- two water flea species (crustaceans): Daphnia magna and Ceriodaphnia dubia; and
- two fish species: rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas).

Chronic toxicity tests were conducted with the following organisms:

- the freshwater alga *Selenastrum capricornutum* (endpoint is growth);
- the water flea Ceriodaphnia dubia (endpoint is reproduction); and
- the fathead minnow (*Pimephales promelas*) (endpoint is growth).

Toxicity tests were first conducted with laboratory produced CT water (bench scale trials). Next, tests were conducted with water from field scale experiments and commercial scale trials. The available data are provided in Appendix III and summarized below. Definitions for toxicological terms are provided in Appendix V.

4.1 SOLID TOXICITY OF GYPSUM CT

Acute and chronic toxicity data for CT solids were not available, although some research using CT solids as a soil (i.e., amended with various materials such as muskeg or tailings sand) for growing various plants has been conducted. The results from bench scale trials (Renault and Zwiazek 1996) and field scale trials (Xu 1997) indicated that different plants have different tolerances to the CT deposits. Further work is being conducted to assess the cause of the effects observed and mode of plant tolerance.

4.2 RELEASE WATER TOXICITY OF GYPSUM CT

The toxicity data available for CT release water (Table 9 and 10; Appendix III). Although much of the data were comparable between Suncor and Syncrude and across test scales, there were some differences (see below). These differences may be attributed to various characteristics of the test material (e.g., ore, gypsum source, gypsum concentration); however, there is insufficient data to support any conclusions at this time.

4.2.1 Bench Scale Trials

Microtox, rainbow trout and alevin survival and *Ceriodaphnia dubia* survival were conducted for bench scale trials (Table 9; Appendix III - Table III-A). There is no clear relationship between test organisms that can be derived as yet; responses vary greatly from one organism to the next. However, a decrease in toxicity has been observed over time. For example, rainbow trout survival was assessed for Suncor gypsum CT under different treatments in the laboratory in 1994-95, and found to vary from 0% to 100% for fresh to older CT, respectively (EVS 1995a). Similarly, *C. dubia* 7 day survival ranged from 13% (~5 months after CT production) to 100% (older CT) for 8 different test samples (EVS 1995a).

4.2.2 Field Scale Trials

Toxicity tests were conducted at the field level (Table 9 and 10; Appendix III - Tables III-A and III-B). Also, toxicity tests were conducted with different types of CT water, originating from enclosures, pits and trenches, and produced at different times. These release waters were treated with various substances (e.g., nutrients) which can probably account for some of the variability in the results. For example, rainbow trout LC50 varied from 10% to >100% for 12 different samples showing the wide range of responses in the field scale trials (EVS 1996).

A decrease in toxicity has been observed over time for certain test species. For example, rainbow trout survival improved from an LC50 of 60% to 100% (n=6) (Syncrude 1995). At the chronic level, *C. dubia* reproduction improved from an IC50 of 32% to 83% over 11 months (Syncrude 1995). Acute toxicity to other organisms (e.g., *C. dubia*, *D. magna*) was variable and the number of samples were insufficient to allow for an analysis of trends. Chronic testing with *S. capricornutum* (n=4) indicated that toxicity increased over time, from an IC50 of 93% to 56% (Syncrude 1995).

4.2.3 Commercial Scale Trial

Toxicity test results from Suncor's commercial scale trial tended to be comparable with those from field scale trials (Table 9 and 10; Appendix III, Tables III-A and III-B). A decrease of the acute toxicity over time was observed for all test species (i.e., rainbow trout, fathead minnow, *D. magna* and *C. dubia*) (Table 9).

Chronic toxicity testing for reproduction and growth inhibition of *C. dubia* and fathead minnow, respectively, seemed to show a similar decrease in toxicity over time (i.e, from fresh to older CT samples) as observed with the acute tests. A decrease of toxicity over time was observed, except for *S. capricornutum* where values increased over time (Table 10). However, it is important to note that the number of samples ranged from 3 to 5 for all test species.

		Sunco	r ^(a)	Syncrud	e ^(b)
Toxicity Test	Endpoint	Range	n	Range	<u>n</u>
	Bencl	n Scale			
Microtox	IC50		-	58 - 72	2
				[58] ^(c)	[1]
	IC20	53	1	12-13	2
Rainbow Trout	LT50	4 - >96	8	-	-
		[4 -9]	[2]		
	% Survival	0 - 100	9	-	-
Alevin	% Survival	0 - 100	7	•	-
Ceriodaphnia dubia (7 day)	% Survival	13-100	8	-	-
	Field	Scale			
Microtox	IC50	59 - >100	25	54 - >100	39
				[>100]	
	IC40	36 - 95	19	-	-
	IC30	22 - 45	19	-	-
	IC20	12->100	25		
Rainbow Trout	LC25	31	1	-	-
	LC50	<10 - >100	15	60-100	6
				[60]	[[1]
	NOEC	25	1	-	-
	LOEC	50	1	-	-
	% Survival	0 - 100	12	0-100	5
Fathead Minnow	LC50	-	-	75->100	4
				[75]	[1]
	Survival	**		0-100	4
Daphnia magna (48 h)	LC25	>100	1	-	•
	LC50	>100	5	100->100	4
	NOEC	>100	1		-
	LOEC	>100	1	-	1
	% Survival	-		100->100	4
Ceriodaphnia dubia (7 days)	LC25	44	1	-	
	LC50	64	1	50-100	4
	NOEC	50	1		
	LOEC	100	1	50-100	4
	% Survival	0 - 63	6		
***************************************		I Scale Trial	0		L
Microtox	IC50	90->100	18	-	-
MICIOLOX	1050	[>91]	[1]	-	-
	IC20	18->9	18	an	
	1020	[32]	[1]		
Rainbow Trout	LC50	50 - 100	4	na -	
	% Survival	0	1		
Fathead Minnow	LC25	33-62	3	N.	<u> </u>
r auroau withitow	1025	[33]	[1]	-	-
	LC50	41-74	3		+
	2000	[41]	[1]		-
	NOEC	13-100	3	es	
	NOLO	[13]	[1]	-	
	LOEC	25-50	3		
		[25]			-
Daphnia magna Survival (48 h)	LC25	>100	3	**	
Duprinia magna Survivar (+011)	1020	[>100]		-	
	LC50	>100	3	50 CONTRACTOR OF CONTRACTOR	
		[>100	[1]		
	NOEC	100	3	54 Juni 1994 - Calendra Calendra - San	+
	NUEU	[100]	[1]	· ·	-
	LOEC		<u> </u>	+	+
	LUEU	>100	3		
		[>100			L

Table 9 CT Release Water Acute Toxicity

		Suncor ^(a)		Syncrude ⁽⁶⁾	
Toxicity Test	Endpoint	Range	n	Range	n
Ceriodaphnia dubia (7 days)	LC25	27-95 [27]	5 [1]	-	-
	LC50	35->100 [35]	5 [1]	-	-
	NOEC	25-100 [25]	5 [1]	-	-
	LOEC	50->100 [50]	5 [1]	•	-

^(a) Suncor data from Suncor EVS Report 1995a, Suncor, Lease 86 (EVS-Wetlands 1996 Report), Suncor Pond 5 East Studies and data from Suncor Project Millennium EIA.
 ^(b) Syncrude data from 1995 bench and field tests.
 ^(c) Data in [square brackets] are for fresh CT release water samples only.

- no data available.

Table 10 **CT Release Water Chronic Toxicity**

		Suncor ^(a)		Syncrude (b)	
Toxicity Test	Endpoint	range	n	range	n
		d Scale			
Ceriodaphnia dubia Reproduction (7 day)	IC25	14	1	-	-
	IC50	20	1	32-83 [32] ^(c)	4 [1]
	NOEC	13	1	13-60 [13]	4 [1]
	LOEC	25	1	-	-
Selanastrum Growth (72 hrs)	IC25	45	1	10 - 72 [72]	2 [1]
	IC50	78	1	56 - 93 [93]	4 [1]
	NOEC	25	1	6 - 50 [50]	2 [1]
	LOEC	50	1	13 - 100 [100]	4 [1]
	Commercia	al Scale Trials			
Ceriodaphnia dubia Reproduction (7 day)	IC25	16-63 [63]	5 [1]	-	-
	IC50	22-75 [75]	5 [1]		
	NOEC	13-50 [50]	5 [1]		
-	LOEC	25-100 [100]	5 [1]		
Selanastrum Growth (72 hrs)	IC25	25-74 [25]	3 [1]	-	-
	IC50	41-50 [41]	3 [1]	-	-
	NOEC	25 [25]	3 [1]	-	-
	LOEC	50 [50]	3	-	-
Fathead Minnow Growth (7 days)	IC25	26->50 [26]	3		
	IC50	36->50 [36]	3 [1]		
	NOEC	13-50 [25]	3		
	LOEC	25->50 [50]	3 [1]		

(a) Suncor data from Suncor, Lease 86 data, Suncor Pond 5 East and from Suncor Project Millennium EIA.

^(b) Syncrude data from Syncrude 1995 field tests.
 ^(c) Data in [square brackets] are for fresh CT release water samples only.

no data available -

5 OPERATIONAL AND ENVIRONMENTAL CONTEXT -SUMMARY

Process options and treatment techniques may act positively or negatively to affect water quality as defined in terms of chemistry and toxicity (Table 11). Process options include sand:fines ratio and recycling of CT release water. Treatment techniques affect the CT release water once generated and include decay over time once isolated from operations(i.e., retention of CT water) and treatment by wetlands.

Table 11 Trends Matrix of Factors Affecting CT Release Water Quality

				Parameter		
Variable	Major Ions	Ammonia	Metals	Naphthenic Acids	Polycyclic Aromatic Hydrocarbons	Toxicity
Increasing Sand:Fines Ratio	\$	short term:û long term: ⇔	short term:û; long term: ⇔	short term:압; long term: ⇔	short term:û long term: ⇔	short term:û; long term: ⇔
Recycling of CT release water	Û	₽⇔	谷谷	û¢	Û¢	û?
Time (Decay)	\$	Û	\$	Û	Û	Ŷ
Wetlands	\$	Û	Û	Û	Û	Û

û increase

4 decrease

⇔ stable; no change; equilibrium

In general, the higher the sand and lower the fines content (to a maximum ratio) the faster the CT deposit will consolidate. Assuming the majority of the chemical constituents are associated with the fines (rather than the sands), then the higher the sands:fines ratio the fewer chemical constituents are present to be released. However, release water from acid/lime treatment of 6:1 and 4:1 sand:fine ratio materials was comparable with respect to major ions, naphthenic acid and microtox (Syncrude 1995). The ratio affects the rate at which water is released and consequently the release rate/concentration of a chemical constituent. However, the total load of a given chemical to the reclamation landscape (and ambient environment) will likely be the same in the end because this release is dependent on the total fines volume to be handled.

Recycling (i.e., the reuse of CT release water in the extraction process) will increase conservative ions, such as chloride, sodium and sulphate. However, it is expected that metals and organics (e.g., naphthenic acids) will reach equilibrium quickly and will not increase beyond certain levels (Syncrude 1995).

Time (i.e., aged compared with fresh CT release water) is expected to decrease the chemical concentration of ammonia and organic parameters and toxicity via biological processes (e.g., nitrification/denitrification, bacterial mineralization), photo-oxidation and volatilization. For example, in Suncor and Syncrude field trials naphthenic acids decreased with time, although at different rates. In contrast, a 70 day bench-scale experiment using Suncor CT, which was about 5 months old did not show any significant decrease (Figure 2). Although there are limited PAH data, similar decreasing trends over time are expected. Decreases are expected to be slower due to the higher complexity of PAHs compared with naphthenic acids. Any coincident effect on major ions or metals is not expected.

Similarly, toxicity tended to decrease with time in these same studies, although not for all organisms or trials. *Ceriodaphnia dubia* survival increased from 0% to 60% in the Suncor bench-scale trials and the LC50 increased from 50% to >100% in the Syncrude field-scale trials. Although there were differences between organisms and trials with respect to changes in CT toxicity with time, the overall trend is a decrease in toxicity with time. This is expected since most of the toxicity is associated with naphthenic acids and ammonia, which tended to decrease with time during these same studies.

Figure 2

Decay of Naphthenic Acids Over Time

Regardless, CT release water quality is expected to be variable depending on operational processes and storage/treatment options. However, directional trends have been observed with both Suncor and Syncrude CT materials (Table 11) and with further research should become better defined.

6 CLOSURE

We trust this report presents the information you require. Should any portion of the report require clarification, please contact the undersigned.

GOLDER ASSOCIATES LTD.

Report prepared by:

Munir Jivraj, P.Biol. Environmental Scientist

16 ha aida

Farida Bishay, M.Sc., R.P.Bio. (BC) Environmental Scientist

Report reviewed by:

'CKer

Shawn McKeown, P.Eng. Project Manager/Principal

John Gulley, M.Sc., P.Biol. Oil Sands Project Director

Golder Associates

7 REFERENCES CITED

[NOTE: Additional references in Appendix I.]

- EVS Environment Consultants (EVS). 1995a. Biological Treatment Options for Consolidated Tails Release Water. Prepared for Suncor Inc., Oil Sands Group by EVS Environment Consultants, North Vancouver, BC. 69 pp. + appendices.
- EVS. 1995b. Constructed Wetlands for Treatment of Oil Sands Wastewater: Technical Report #4. Prepared for Suncor Inc., Oil Sands Group by EVS Environment Consultants, North Vancouver, BC. 386 pp. + appendices.
- EVS. 1996. Constructed Wetlands for Treatment of Oil Sands Wastewater: Technical Report #5. Prepared for Suncor Inc., Oil Sands Group by EVS Environment Consultants, North Vancouver, BC. 12 chapters + appendices.
- FTFC (Fine Tailings Fundamentals Consortium). 1995. Volume III: Reduction of Clark Hot Water Extraction Fine Tailings. In: Advances in Oil Sands Tailings Research. Alberta Department of Energy, Oil Sands and Research Division, Publisher.
- Golder. 1995. Lab Flume Tests Result. Data provided by Mike MacKinnon of Syncrude on August 1996.
- Golder. 1997. Environmental Implications of Different Sources of Gypsum. Prepared for Syncrude Canada Ltd. by Golder Associates Ltd. Project # 962-2522.
- Kaperski, K.L. and R.J. Mikula. 1994. Effects of Addition of Flue Gas Desulphurization Slurry on Tailings Water Chemistry. Prepared for Suncor Inc., Oil Sands Group by CANMET. Report # WRC 94-40. 42 pp. + appendices.
- Kot, J.J., R.J. Mikula and K.L. Kasperski. 1997. Suncor CT Trial: Water Chemistry Monitoring Program (1995-1996). CANMET WRC 97-05(CF). Prepared for Suncor Inc. Prepared by CANMET. 26 pp.
- MacKinnon, M. pers. com. Research Scientist, Syncrude Canada Ltd. Overheads prepared for a presentation on "Natural Aging of CT Release Water: 1995 Field Test".
- MacKinnon, M. pers. com. Research Scientist, Syncrude Canada Ltd. Comments made at September 8, 1997 CT workshop and documented in the minutes distributed September 16, 1997.
- MacKinnon, M. and A. Sethi. 1993. A Comparison of the Physical and Chemical Properties of the Tailings Ponds at the Syncrude and Suncor Oil Sands Plants.
 In: J.K. Lieu (ed). Proceedings of the Fine Tails Symposium: Oil Sands - Our Petroleum Future Conference, April 4-7, 1993, Edmonton, AB. pp. 1-15.

- Renault, S. and J.J. Zwiazek. 1996. Phytotoxicity of Reclaimed Fine Tails and Tailings Sands: Annual Report 1995/1996. Prepared for Suncor Inc., Oil Sands group by University of Alberta. 17 pp.
- Syncrude. 1995. Field NST Field Demonstration. Appendix Q. Presentation Material provided by Mike MacKinnon. Vol 4/4.
- Xu, J.G. 1997. Plant Growth and Metal Uptake From Oil Sands Fine Tails and Tailings: a Progress Report on the 1996 Field Experiment. Prepared for Suncor Inc., Oil Sands Group by Alberta Environmental Centre. 48 pp.

x

APPENDIX I

.

ANNOTATED BIBLIOGRAPHY

ANNOTATED BIBLIOGRAPHY OF AVAILABLE CT REPORTS

NOTE TO THE READERS:

Concurrent with bench and field scale studies (i.e., 1993 - 1994) the term non-segregating tails (NST) was used. Subsequently, the term "Consolidated Tailings" (CT) was adopted by Suncor, while Syncrude adopted the term "Composite Tailings" (CT) to refer to NST. Both terms are synonymous and widely accepted to replace the term NST. The term NST or CT is used below to reflect the term used in the original reference material.

1982

San, R.H.C. 1982. Mutagenicity Potential of Syncrude Wastewaters. Prepared for Syncrude Canada Ltd. Prepared by B. C. Cancer Research Centre. 18 pp. plus figures and tables.

Source of CT:	Does not deal with CT samples
Methodology:	<i>In vitro</i> short-term bioassays were used on Syncrude's recycle water, coke storage and tailings water to assess mutagenicity on Syncrude wastewaters.
Chemistry:	not assessed
Toxicity:	Salmonella Mutagenicity Test, Chromosome Aberration Test, DNA Repair and Inhibition Test
Bioaccumulation :	Not assessed
Data used:	None

1993

EMA. 1993. Oil Sands Dry Landscape Reclamation: Phase 1 Study Report. Prepared for Suncor Inc., Oil Sands Group and Syncrude Canada Ltd. Prepared by EMA. 72 pp. plus figures and diagrams.

Source of CT: Methodology:	Suncor, acid/lime NST Generated NST leachate by mixing NST solids with reagent grade water/ or acetic acid. Leachate and solids were examined for toxicity and general chemistry.
Chemistry:	Unleached solids - pH, conductivity, major ions and other conventional, as well as nutrients
Toxicity:	leachate - metals, nutrients and conventional unleached and leached solids - seedling emergence using <i>Latuca sativa</i> unleached solids - earthworm survival leachate - algal growth, seed germination and root elongation using <i>Latuca</i> <i>sativa</i> , nematode survival and growth, SOS-Chromotest using <i>E.coli</i> and Microtox [®]
Bioaccumulation Data use:	: Not assessed None used

Suncor 1993 NST Program

Source of CT:	Suncor, acid/lime NST; and Syncrude, gypsum and acid/lime NST
Methodology:	NST collected from Suncor's test pits and tanks, as well as bench-scale
	experiments at U of A were analyzed for various chemical parameters.
Chemistry:	Solids and water - metals, conventional, nutrients and limited organics (test
	results appended to James 1994)
Toxicity:	Microtox [®]
Bioaccumulation	Not assessed
Data use:	Some for field scale

1994

James, W. 1994. Water Quality Review and Treatment Recommendations for Water Released from Suncor's Tailings: Interim Draft. Prepared for Suncor. Published by Alberta Environmental Centre.

Source of CT:	Suncor, acid/lime NST; and Syncrude, gypsum and acid/lime NST
Methodology:	Using data describing various wastewater flows from Suncor's mine site,
	James examined in-stream concentrations for various individual chemical
	parameters.
Chemistry:	Solids and water - metals, conventional, nutrients and limited organics
Toxicity:	Microtox®
Bioaccumulation	: Not assessed
Data used:	Some for field scale

Kasperski, K.L. and R.J. Mikula. 1994*a*. Effects of Addition of Flue Gas Desulphurization Slurry on Tailings Water Chemistry. CANMET WRC 94-40(CF). Prepared for Suncor Inc. Prepared by CANMET. 42 PP. plus appendices.

Source of CT:	Suncor Flue Gas Desulphurization Slurry(FGDS) (18.6 wt%)
Methodology:	Lab-scale suspensions of tailings (scavenger, pond 2/3, recycle water) and
	FGDS were made to assess tailings release water chemistry and impact on
	extraction process
Chemistry:	conventional, metals
Toxicity:	N/A
Bioaccumulation	: N/A
Date used:	Metals at different sampling period

Kasperski, K.L. and R.J. Mikula. 1994b. Modelling the Effects of Gypsum Addition on Suncor Plant Water Chemistry: Interim Report. CANMET WRC 95-13(CF). Prepared for Suncor Inc. Prepared by CANMET. 20 pp.

Source of CT:	Suncor's FGDS (250 mg/L and 850 mg/L CaSO ₄ -2H ₂ O)
Methodology:	Modelling was performed on Stream 12 tailings going to dyke 8 with 250
	and 850 ppm gypsum for summer and winter conditions.
Chemistry:	Conventional, metals
Toxicity:	Not assessed
Bioaccumulation	Not assessed
Data use:	None

1995

*

EVS. 1995. Biological Treatment Options for Consolidated Tailings Release Waters. Project number 3/144-30. Prepared for Suncor Inc., Oil Sands Group. Prepared by EVS Environment Consultants. 69 pp. plus tables and figures.

Source of CT:	Suncor, acid/lime and gypsum CT
Methodology:	Examined treatability of CT release waters using different scenarios over
	10 week period:
	• basic - water in tank containing trickling filter media + Suncor wetland sediments
	• enhanced - basic + PO_4 + aeration
	 inoculated - enhanced + nitrifying bacteria
	• open - inoculated without trickling filter media
	• recirculated - water moving between open and wetland tanks
Chemistry:	Conventional, metals, nutrients and limited organics (pre-treatment only)
	naphthenic acids and DOC (pre & post-treatment)
Toxicity:	Microtox [®] , <i>Daphnia magna</i> and rainbow trout survival (juveniles, eggs
	and alevins)
Bioaccumulation:	Not assessed
Data use:	Some for bench and field scale trials

Golder. 1995*a*. Oil Sands Dry Landscape Reclamation: Phase 2: Toxicity and Chemistry of Leachates from various reclamation materials. Project number 932-7196. Prepared for Suncor Inc. Prepared by Golder Associates Ltd. 43 pp. plus tables and figures.

Source of CT:	Suncor, acid/lime NST		
Methodology:	Bench-scale experiments examining toxicity and chemistry of leachates generated by rinsing NST with Suncor mine water (note: other oil sands materials were rinsed with de-ionized water). A total of 10 porewater volumes were put through each sample, and sample columns were kept anaerobic throughout the experiment.		
Chemistry:			
	• Solids - nutrients, pH conductivity, major ions and other conventional		
	Leachate - metals and conventional		
Toxicity:			
	• Solids - 5 day seedling emergence using lettuce, and 14 day earthworm survival		
	• Leachate - algal growth, SOS-Chromotest using <i>E.coli</i> , Microtox [®] , and nematode survival and growth		
Bioaccumulation: Not assessed			
Data use:	Some for bench scale studies		

Golder. 1995b. Lab Flume Tests Result. Data provided by Mike MacKinnon of Syncrude on August 1996.

Source of CT:	Syncrude, gypsum CT, 900 g/m ³ gypsum
Methodology:	Samples collected from bench scale u-shaped design.
Chemistry:	Conventional, metals and organics
Toxicity:	Microtox®
Bioaccumulation:	Not assessed
Data use:	Data used for solids

Kasperski, K.L. and R.J. Mikula. 1995. Tailings Release Water Chemistry and Toxicity: Comparison of Tailings Treatments. CANMET WRC 95-11(CF). Prepared for Suncor Inc. and Fine Tails Fundamentals Consortium. Prepared by CANMET. 30 pp. plus appendices.

Source of CT:	Syncrude/ Suncor - OSLO Hot Water Extraction (OWHE)/Clark Hot
	Water Extraction (CHWE) Drum Test
Methodology:	Study the chemical composition and toxicity of water produced in lab by
	University of Alberta and CANMET; and field tests for various mature
	fine tails (MFT) and beach runoffs. Samples collected were representative
	from NST, Freeze-thaw, NST and Fine Tails Test Pits. These samples
	went back to 1993/1994 field and bench scale studies.
Chemistry:	Conventional, metals
Toxicity:	Microtox [®] , 96 h trout (<i>Oncorhynchus mykiss</i>), 48 h Daphnia magna
	mortality
Bioaccumulation	: Not assessed
Data use:	CaSO ₄ related NST samples were used

Mikula, R.J. and K.L. Kasperski. 1995. Nonsegregating Tailings Release Water Chemistry: Preliminary Report. CANMET WRC 95-26(CF). Prepared for Suncor Inc. Prepared by CANMET. 31pp. plus appendix.

Source of CT:	Suncor's FGDS, 600 mg/L agricultural grade gypsum (AGG)
Methodology:	Studies on the effect of added cations and anions on bitumen recovery,
	tailings settling and recycle water chemistry for the Clark Hot Water
	Extraction Process.
Chemistry:	some metals
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	Chemistry for NST release water

Suncor, Inc., Oil Sands Group. 1995. CT field pilot study (continued in 1996 and 1997 as Commercial Demonstration Project). Various lab reports held in-house at Golder.

Source of CT:	Suncor, 1000 mg/kg gypsum CT (1995)	
Methodology:	Samples collected from the production line and the pond at different times	
	from Dec. 19, 1995 to Jan. 8, 1996.	
Chemistry:	Mix of conventional, metals and organics	
Toxicity:	see Golder 1997 Pond 5 Study	
Bioaccumulation: Not assessed		
Data use:	Pond 5 and other CaSO ₄ related data	
	+	
Syncrude. 1995. Field NST Field Demonstration. Appendix Q. Presentation Material provided by Mike MacKinnon. Vol 4/4.

Source of CT:	Syncrude, different doses of acid/lime and gypsum samples
Methodology:	Presentation summary of different NST experiments including acid/lime
	and gypsum; standpipe tests and field studies.
Chemistry:	Metals and conventional chemical parameters, naphthenic acid
Toxicity:	Microtox®
Bioaccumulation	: Not assessed
Data use:	For Syncrude's field scale experiments

Shaw, B., G. Cuddy, G. McKenna, M. MacKinnon. 1995. Non-segregating Tailings: 1995 NST Field Demonstration Summary Report. Prepared by Syncrude Canada Ltd. 200 pp. plus figures and tables.

Source of CT:	Syncrude, plant 5 tails plus Mildred Lake Settling Basin (MLSB) MFT
	with 1400 g/m ³ AGG gypsum from DOMTAR
Methodology:	CT placed in U-shaped pit; release water placed in 5 NST holding test pits.
Chemistry:	Major ions and cations of release and porewater, naphthenic acid
Toxicity:	Microtox®
Bioaccumulation:	Not assessed
Data use:	Release water and porewater chemistry for field scale comparison

Wastewater Technology Centre. 1995. Preliminary Evaluation of Options for Treatment of Tailings Pond Effluents for Discharge to the Northern Rivers Basin.

Source of CT:	Suncor, acid/lime NST; and Syncrude, gypsum and acid/lime NST
Methodology:	Review of treatment technologies available to treat CT and other oil sands
	wastewaters.
Chemistry:	Solids and water - metals, conventional, nutrients and limited organics
	(test results appended to James 1994)
Toxicity:	Microtox®
Bioaccumulation:	Not assessed
Data use:	Some for field scale

Xu, J.G., R.L. Johnson, P.Y.P. Yeung and S. Wu. 1995. Plant growth and metal uptake by plants from two oil sand fine tailings. Prepared for Suncor Inc., Oil Sands Group. Prepared by Alberta Environmental Centre.

Source of CT:	Suncor, acid/lime CT
Methodology:	Examined 1) plant growth on CT solids, CT + nitrogen (N), phosphorus
	(P) and potassium (K), $CT + N$, P and K + micro-nutrients and $CT + N$, P
	and K + peat, 2) plant metal uptake, and 3) microbial activity within CT
	deposits. These experiments were done in greenhouses using reed canary
	grass and willow seedlings.
Chemistry:	Solids - metals, conventional and nutrients
Toxicity:	Plant growth, and microbial activity
Bioaccumulation	Metal uptake in plants
Data use:	None

1996

EVS. 1996. Constructed Wetlands for the Treatment of Oil Sands Wastewater, Technical Report #5. Project number 3/144-31. Prepared for Suncor Inc., Oil Sands Group by EVS Environment Consultants. 12 chapters + appendices.

•

Source of CT:	Plant 3 MFT plus gypsum (900 to 1000 g/m ³)
Methodology:	Three part study.
	• Part 1, Wetland treatability - water from the different CT pits was pumped into 4 constructed wetlands to examine ability of wetlands to treat CT release waters
	• Part 2, Biofilters - CT water was poured into 200L barrels to assess effectiveness of biofilm reactors.
	• Part 3, Bioaccumulation - exposed mallard ducklings to CT waters for 4 weeks to examine bioaccumulation potential of CT toxins.
Chemistry:	Part 1 - metals, conventional, organics, nutrients and naphthenic acids (pre & post-treatment)
	Part 2 - nutrients and naphthenic acids (pre & post-treatment)
Toxicity:	Part 1 - phytoplankton and zooplankton abundance within the wetlands, Microtox [®] , and survival of <i>Daphnia magna</i> , fathead minnows, sticklebacks and trout (pre & post-treatment) Part 2 - rainbow trout survival rates
Bioaccumulation	: Measured survival, growth and gross pathology of ducklings, as well as, metal and PAH levels in various body tissues
Data use:	Toxicity data for field scale

Golder. 1996. Toxicity and Bioaccumulation Potential of Fine Tails and Tailings Water from Oil Sands Extraction. Project number 942-2287. Prepared for Syncrude Canada Ltd. and Suncor Inc. Prepared by Golder Associated Ltd. 24pp.

٢

Source of CT:	Suncor, acid/lime CT from pilot test
Methodology:	Part 1 focused on CT toxicity using, undiluted CT solids, CT solids mixed
	with Mildred Lake Sediments (MLS) and aged CT solids.
	Part 2 was a bioaccumulation study using CT solids diluted with MLS and
	covered with Mildred Lake water. Lipid sacs were used as substitutes for
	living subjects due to toxicity problems associated with the CT samples.
Chemistry:	Not assessed
Toxicity:	Microtox [®] , monitored survival rates for midge larva, mayfly nymph,
·	bristle worm, leech, snail and amphipod
	limited testing of CT release water toxicity to amphipods
Bioaccumulation	a: Measured PAH levels in lipid sacs
Data use:	None

Kasperski, K.L. and R.J. Mikula. 1996. Modelling Suncor Recycle Water Chemistry: Impact of Consolidated Tails. CANMET WRC 96-16(CF). Prepared for Suncor Inc. Prepared by CANMET. 30 pp.

Source of CT:	Suncor FGDS (to give 900 mg/L CT)
	River water and CT water chemistry are simulated via model to predict
	several water management scenarios at the Suncor Operation
Chemistry:	conventional
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	Conventional parameters

Li, X., J. Storey, P. Yeung, M. Fung. 1996. Plant Growth on Aggregated Oil Sands Processing Wastes. Prepared for Syncrude. Presented in 21st Annual Meeting, Canadian Land Reclamation Association, Calgary. Sept. 18 - 20, 1996.

Source of CT:	Syncrude, Domatar AGG
Methodology:	Aggregates were made with mixtures of MFT, CT and Tailing Sands to
	assess seedling.
Chemistry:	Not assessed
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	None

Li, X., M. Fung. 1996. Creating a Soil-like Profile for Plant Growth Using Tailings Sand and Fine Tails. Prepared for Syncrude. Prepared by Alberta Environmental Centre. Presented Petroleum Society of CIM's 47th Annual Technical Meeting, Calgary. June 10 - 12, 1996.

Source of CT:	Syncrude, Domtar AGG
Methodology:	Different reclamation materials like MFT, TS, CT and Tailing sands were
	used to make aggregates. The test looked at different soil-like properties.
Chemistry:	Soil chemical parameters
Toxicity:	Not assessed
Bioaccumulation	: Not assessed
Data use:	None

Mikula, R.J. 1996. Suncor Pond Survey 1995. CANMET WRC 96-24(CF). Prepared for Suncor Inc. Prepared by CANMET. 35 pp.

Source of CT:	Suncor FGDS
Methodology:	Suncor Pond 1, Pond 1A, Pond 2, Pond 3 and Pond 4 were characterized
0.	by several methods including sieve analysis, methylene blue, BSW
	(bitumen, solids and water), viscosity and gel strength. The reason for
	characterization was to accurately reflect the consolidation behavior of the
	clays as function of depth.
Chemistry:	Not assessed
Toxicity:	Not assessed
Bioaccumulation	: Not assessed
Data use:	None

Mikula, R.J., K.L. Kasperski and R.D. Burns. 1996. Consolidated Tailings Release Water Chemistry. In Conservation and Reclamation Issues, 1995-1996. Prepared for Suncor Inc. Prepared by CANMET.

Source of CT:	600 ppm gypsum, source is unclear - assume Suncor
Methodology:	Not mentioned
Chemistry:	Major ions in release waters
Toxicity:	Microtox [®] , <i>Daphnia magna</i> and trout survival
Bioaccumulation: Not assessed	
Data use:	None

Renault, S. and J.J. Zwiazek. 1996. Phytotoxicity of Reclaimed Fine Tails and Tailings Sands. Prepared for Suncor Inc. and Syncrude Canada Ltd. Prepared by Dept. of Renewable Resources, University of Alberta. 63 pp.

Source of CT:	Suncor, gypsum CT
Methodology:	Part 1 - CT solids were placed on top of dry capping material and mixed with capping material to depth of 20 cm. Mixture was then planted with aspen, dogwood and poplar cutting, as well as conifer, raspberry, rose and
	blueberry seedlings.
	Part 2 - monitored willow, aspen, poplar and white spruce in Suncor's
	Hummoch-wetlands, which was fed CT release water.
Chemistry:	Not assessed
Toxicity:	Measured survival, water potentials and transpiration rates
Bioaccumulation	: Not assessed
Data use:	Phytotoxicity for CT mix

Xu, J.G. and R.L. Johnson. 1996. Plant growth, dewatering and contaminant uptake from oil sands fine tails and tailings. Alberta Environmental Centre, Vegreville, Alberta. Prepared for Suncor Inc., Oil Sands Group.

Source of CT:	Suncor, acid/lime CT
Methodology:	Examined 1) plant growth on CT solids, CT + muskeg and CT + muskeg +
	tailings sand, 2) the ability of plants to dewatering CT, 3) changes in CT
	moisture and nutrient content with plant growth, 4) plant metal uptake, and
	5) microbial activity within CT deposits. These experiments were done
	using reed canary grass, poplar, willow and cattail.
Chemistry:	Solids - metals, conventional, nutrients and PAHs
Toxicity:	Plant growth and microbial activity
Bioaccumulation	: Metal uptake in plants
Data use:	None

1997

Bendell-Young, L.I., A.P. Farrell, C.J. Kennedy, A. Kermode, M.M. Moore and A.L. Plant. 1997. Ecological viability of wetlands receiving oil sands effluent. *Abstract in* Proceedings of the 23rd Annual Aquatic Toxicity Workshop: Oct. 7-9, 1996, Calgary, Alta. Goudey, J.S., S.M. Swanson, M.D. Treissman and A.J. Miimi (eds.). Canadian Technical Report of Fisheries and Aquatics Sciences No. 2144.

Source of CT:	Suncor, gypsum CT
Methodology:	examined community health in wetlands receiving CT release water and
	dyke drainage water.
Chemistry:	Non assessed
Toxicity:	benthic community structure, chironomid density and biomass, plant
	growth, fish stress and mutagenic potential of bottom-dwelling
	chironomids
Bioaccumulation	Not assessed
Data use:	None

Golder. 1997a. Environmental Implications of Different Sources of Gypsum. Project number 962-2522 Produced for Syncrude Canada Ltd.

Source of CT:	No CT assessed, just gypsum sources such as 1000 g/m ³ Domtar, Agrium, Westrock, Suncor's FGDS
Methodology:	Preliminary screening on envrionmental concerns and health impacts of various CT deposits. Contribution of metals from each source was also calculated.
Chemistry:	Metal chemistry
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	None

Golder. 1997b. Field-scale Trials to Assess Effects of Consolidated Tails Release Water on Plants and Wetlands Ecology. Project number 962-1881. Prepared for Suncor Inc. Prepared by Golder Associates Ltd.

Source of CT: Methodology:	Suncor Pond 5, gypsum CT Part 1, Hummock - Wetland Study - surface waters from Pond 5 were pumped into a hummock-wetland area to assess release water treatability. Part 2, Sulphate effects on plant growth - potted plants were placed in trenches, which were then filled with CT water; sulphate was added where needed to produce levels of 350, 1600 and 3500 ppm sulphate Part 3, Sulphate effects con't - plants in a greenhouse were exposed to 1 of
	5 treatments: control, CT water, post-wetland treatment CT water, and CT water with sulphate levels of 1250 and 2500 ppm.
Chemistry:	Parts 1 and 2 - metals, nutrients, naphthenic acids, PAHs (Part 1 only) and conventional in water, sediments and porewater
Toxicity:	Part 1 - diversity and biomass of phytoplankton, zooplankton and benthic invertebrates, general plant biomass, fathead minnow survival, percent cover, species distribution and abundance Part 2 - diversity and biomass of zooplankton and benthic invertebrates, and survival and growth using beaked willow, sandbar willow, balsam poplar and reed canary grass Part 3 - seed viability and germination rates in barley and reed canary grass
Bioaccumulation:	
Data use:	Some rollu 5 data

Golder. 1997c. A Limnological Survey of Suncor's Pond 5 East. Project number 962-2341. Prepared for Suncor Inc. Prepared by Golder Associates.

Source of CT:	Suncor, gypsum CT from Suncor Commercial Trials
Methodology:	Pond 5 water was collected from 1 m depth and near pond bottom.
Chemistry:	PAHs, metals, conventional, naphthenic acids and nutrients
Toxicity:	Diversity of phytoplankton, zooplankton and benthic invertebrates,
	identification of surrounding vegetation, and survival of trout and
	Ceriodaphnia dubia
Bioaccumulation:	Metal content in surrounding cattails
Data use:	Pond 5 water quality and toxicity data

Kasperski, K.L., R. J. Mikula. 1997. Modelling Suncor Recycle Water Chemistry: Impact of Consolidated Tails, Part 2. CANMET WRC 97-14 (CF). Prepared for Suncor Inc. Prepared by CANMET. 19 pp.

Source of CT:	Simulation on FGDS 900 to 1400 g/m ³
Methodology:	Computer simulations of several scenarios (i.e., year 2021) at Suncor with
	CT production with FGDS. Assessment of CT release water chemistry and
	effect on extraction and plant process was also assessed.
Chemistry:	Conventional parameters
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	None

Kot, J.J., R.J. Mikula, K.L. Kasperski. 1997. Suncor CT Trial: Water Chemistry Monitoring Program (1995-1996). CANMET WRC 97-05(CF). Prepared for Suncor Inc. Prepared by CANMET. 26 pp.

Source of CT:	Suncor, FGDS
Methodology:	Pond 5 CT release water chemistry was monitored from November 1995 to
	September 1996.
Chemistry:	Conventional parameters
Toxicity:	Not assessed
Bioaccumulation	: Not assessed
Data use:	

Mikula, R.J., V.A. Munoz, K.L. Kasperski and D. Omotoso. 1997. Consolidated Tailings: Technical Support For the Suncor Commercial Trial. CANMET WRC 97-13(CF). Prepared for Suncor Inc. Prepared by CANMET. 41 pp.

Source of CT:	FGDS 900 ppm gypsum (or 1400 ppm wt/CT vol)
Methodology:	A rapid test methods were developed by CANMET to assess segregation
	behavior during CT production at field and commercial scale.
Chemistry:	Not assessed
Toxicity:	Not assessed
Bioaccumulation:	Not assessed
Data use:	None

Parrott, J.L., M.D. MacKinnon, T. Van Meer and D.A. Birkholz. 1997. Assessment of (sub)lethal toxicity of oil sands reclamation waters using standard and biochemical indicator bioassays on waters and SPMD extracts. Abstract in Proceedings of the 23rd Annual Aquatic Toxicity Workshop: Oct. 7-9, 1996, Calgary, Alta. Goudey, J.S., S.M. Swanson, M.D. Treissman and A.J. Miimi (eds.). Canadian Technical **Report of Fisheries and Aquatics Sciences No. 2144.**

Source of CT:	Syncrude, AGG Domatar
Methodology:	examined chronic and acute toxicity of various release oil sands release
	waters to host of indicator species; semi-permeable membrane devices
	(SPMDs), exposed for 7 weeks, were also used to examine toxicological
	responses in fish cells
Chemistry:	SPMDs - PAHs
Toxicity:	rainbow trout, fathead minnow, Daphnia magna and Ceriodaphnia dubia
-	survival, Microtox [®] , and algal growth
Bioaccumulation	: partially assessed with SPMDs; examined the influence of SPMD extracts
	on mixed function oxygenase activity in fish cells
Data use:	None

Renault, S. and J.J. Zwiazek. 1997. Phytotoxicity of Reclaimed Fine Tails and Tailing Sands. Prepared for Suncor Inc., OSG and Syncrude Canada Ltd.

	Syncrude and Suncor's 1995 CT (dose 900 - 1400 g/m^3) Greenhouse study on effects of CT and fine tails on plants found in boreal forest of the Athabasca region. Different kinds of CT and FT mixtures were used as soil treatments.
Chemistry:	Plant physiological parameters, hydrocarbon uptake
Toxicity:	Seed survival, plant growth
Bioaccumulation:	Not assessed
Data use:	None

ν.

APPENDIX II

AVAILABLE CHEMISTRY DATA

- Table II A. Summary of CT solids chemistry
- Table II B.1 Summary of Suncor CT release water chemistry from bench scale trials.
- Table II B.2 Summary of Syncrude CT release water chemistry from bench scale trials.
- Table II C.1 Summary of Suncor CT release water chemistry from field scale trials.
- Table II C.2 Summary of Syncrude CT release water chemistry from field scale trials.
- Table II D.1 Summary of Suncor CT release water chemistry from commercial scale trials.
- Table II E.1 Summary of porewater chemistry.

Table II-A Summary of CT Solids Chemistry Page 1 of 2

	-		incor	Syncrude			Ţ	+	I
		Commercial	Field ¹	NST DEPOSIT IN	ench				┼────
Parameter	Units	<u>СТ0108-2</u> 18-Јан-96	RW160-1 16-Jun-95	FLUME TEST' May-95	LOW GYPSUM CT ⁴ 30-Oct-95	MIN	MAX	MEAN	<u>N</u>
				tional Parameters				· · · · · · · · · · · · · · · · · · ·	,
Biochemical Oxygen Demand Chlorophyll "a"	μ <u>g/g</u> μg/g		16.7				16.7		1
Conductance	μS/cm	1750	1536		2440	1536	2440	1909	3
эН	units	8.7			7.3	7.3	8.7	8	2
Sulphide	µg/g		0.01				0.01		1
Fotal Alkalinity Fotal Dissolved Solids	μ <u>g/g</u> μg/g		560 894				560 894		1
Fotal Suspended Solids	μ <u>8/8</u>		12700				12700	1	1
		<u></u>		Major loas					
Bicarbonate (HCO3)	μg/g		682.6				682.6		1
Calcium Carbonate (CO3)	μ <u>g/g</u> μ <u>g/g</u>		67.1 0.5				67.1 0.5		1
Chloride	μ <u>8/8</u> μ <u>8/</u> 8		57				57		
Magnesium	μ <u>8</u> /g		1.9				1.9		1
Potassium	μg/g		46.5				46.5		1
Sodium	µg/g		352				352	<u> </u>	<u> </u>
Sulphate	μ <u>β/</u> β		127	Natriante	1		127		<u> </u>
Vitrate + Nitrite	μg/g	1 · · · · · · · · · · · · · · · · · · ·	0.112			<u> </u>	0.112	<u>}</u>	1
Vitrogen - Ammonia	µg/g		4.26				4.26		1
Nitrogen - Kjeldahl	<u> </u>		26				26		1
Phosphorus, Total	<u>µg/g</u>	50	4.7	l Totali Miciala' - 1 - 1		4.7	50	27.35	2
Aluminum (A})	μ <u>β/g</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	149		1	,	149	T	1
Arsenic (As)	μ <u>β/β</u>	<0.2	0.036		<20	<0.2	0.036		3
Barium (Ba)	µg/g	17	1.27		19.1	1.27	19.1	12.46	3
Beryilium (Be)	µg/g	0.3	0.028		0.3	0.028	0.3	0.21	3
Boron (B) Cadmium (Cd)	μ <u>g/g</u> μ <u>g/g</u>	9 <0.3	4.43	ļ	<0.3	4.43	9	6.7	2
Calcium (Ca)	μ <u>β/8</u>	1140	0.01		-0.0	~0.5	1140	<u> </u>	1
Chromium (Cr)	μ <u>g/g</u>	6.2	0.5		15.4	0.5	15.4	7.37	3
Cobalt (Co)	µg/g	3.7	0.307		2.0	0.307	3.7	2.00	3
Copper (Cu)	μ <u>g/g</u>	3.8	0.164		2.7	0.164	3.8	2.22	3
ron (Fe) .ead (Pb)	<u>нв/в</u> нв/в	4240 4	235		4.4	235 0.32	4240	2238	2
lithium (Li)	μ <u>β/8</u>	3.6	0.426		4.4	0.426	3.6	2.013	2
dagnesium (Mg)	µg/g	530					530		1
Manganese (Mn)	µg/g	123	8.1			8.1	123	65.6	2
dercury (Hg)	<u>µg/g</u>	<20 1.2	0.05	<u> </u>	<20	<20	0.05	1.12	3
Aolybdenum (Mo) lickel (Ni)	<u>μg/g</u> μg/g	1.2	1.05		1,1 14.4	1.05	1.2 14.4	8.8	3
Potassium (K)	μ <u>g/g</u>	390					390		1
clenium (Se)	µg/g	<0.2	0.012		<4	<0.2	0.012		3
ilicon (Si)	<u>µg/g</u>	1360	157			157	1360	759	2
ilver (Ag) odium (Na)	μ <u>g/g</u> μ <u>g/g</u>	<u><0.2</u> 450	0.002			<0.2	0.002	<u> </u>	2
itrontium (Sr)	μ <u>β/g</u>	14.9	1.52			1.52	14.9	8.2	2
sulphur (S)	µg/g		61.2				61.2		1
litanium (Ti)	µg/g	41.6	0.64			0.64	41.6	21.1	2
Jranium (U) /anadium (V)	μ <u>g/g</u>	<50 19.6	0.5		23.7	<50 4.43	0.5	15.9	2
Zinc (Zn)	μ <u>g/g</u> μg/g	19.6	0.933		13.6	0.933	13.6	8.8	3
	1.000			eral Organics					
Dissolved Organic Carbon	µg/g		372				372		1
otal Organic Carbon	µg/g		395				395		1
Vaphthenic acids otal Petroleum Hydrocarbons	μ <u>g/g</u>		107		2480	18	2480	1249	- 1
otal retroieum nydrocarbons	µg/g			s and Alkylated PAI	2480 [10		1247	<u> </u>
laphthalene	ppb	I	0.02	<0.01	<0.04	<0.01	0.02		2
Aethyl naphthalenes	ppb		0.02		<0.04	<0.04	0.02		2
22 Subst'd naphthalenes	ppb		0.78	0.02	<0.08	< 0.08	0.78		3
C3 Subst'd naphthalenes C4 Subst'd naphthalenes	ppb ppb		1.8	0.22	<0.08 <0.08	<0.08	1.8		3
Acenaphthene	ppb		0.69	0.05	<0.08	<0.08	0.69		3
fethyl acenaphthene	ppb		1.6	<0.01	<0.08	<0.01	1.6		2
cenaphthylene	ppb		0.02	<0.01	<0.04	< 0.01	0.02	<u> </u>	2
Anthracene Dibenzo(a,h)anthracene	ppb ppb	i	0.02	<0.01 <0.01	<0.04 <0.04	<0.01 <0.01	0.02	+	2
Benzo(a)Anthracene/Chrysene	ррб		4.3		0.32	0.32	4.3	2.31	2
Senz(a)Anthracene	ppb			0.02			0.02		ł
Chrysene	ppb			0.02			0.02		1
dethyl Chrysene/Benz(a)Anthra. 22-Subst'd Chrysene/Benz(a)Anthra.	ppb ppb			0.12			0.12	+	
Acthyl benzo(a)anthracene/chrysene	ppb ppb		7.8	U.12	0.42	0.42	7.8	4.11	2
2 Subst'd benzo(a)anthracene/chrysene	ppb ppb		9.6		0.46	0.46	9.6	5.03	2
lenzo(a)pyrene	ppb		0.45	0.02	0.05	0.02	0.45	0.17	3
Aethyl Benzo(a) Pyrene/Benzo (b&k) Flu				<0.02			<0.02		0
2 Subst'd Benzo(a) Pyrene/Benzo (b&k) dethyl benzo(b&k) fluoranthene/methyl b			3.1	<0.02	0.29	0.29	<0.02	1.70	0
2 Subst'd benzo(b& k) fluoranthene/ben			1.3		0.12	0.12	1.3	0.71	2
······································	ppb		0.51	0.02	0.12	0.02	0.51	0.22	3
	ppb		0.02	< 0.01	<0.04	< 0.01	0.02	ļ	2
enzo(g,h,i)perylene			0.05	<0.02 <0.02	<0.08 <0.08	<0.02	0.05	+	2
lenzo(g,h,i)perylene liphenyl	ppb ppb		0.21		<0.08	<0.02	0.21	<u> </u>	2
ienzo(g,h,i)perylene liphenyl lethyl biphenyl	ppb			0.19	NU.U8				à
lenzo(g,h,i)perylene liphenyl Aethyl biphenyl 22 Substituted biphenyl			1.2 0.02	0.19	<0.08	<0.08	0.02		3
tenzo(g.h.i)perylene hiphenyl Aethyl biphenyl 22 Substituted biphenyl Dienzothiophene Aethyl dibenzothiophene	ppb ppb ppb ppb		1.2 0.02 3	0.02 0.28	<0.04 <0.08	<0.04 <0.08	0.02		3
tenzo(g,h.i)perylene iphenyl 4 ethyl biphenyl 22 Substituted biphenyl 3 benzothiophene 4 ethyl dibenzothiophene 22 Substituted dibenzothiophene	ppb ppb ppb ppb ppb		1.2 0.02 3 11	0.02 0.28 0.51	<0.04 <0.08 0.27	<0.04 <0.08 0.27	0.02 3 11	3.93	3
lenzo(g,h.i)perylene iphenyl Acthyl biphenyl 2 Subsituted biphenyl Dibenzothiophene Acthyl dibenzothiophene 2 Subsituted dibenzothiophene 23 Subsituted dibenzothiophene	ppb ppb ppb ppb ppb ppb		1.2 0.02 3 11 14	0.02 0.28 0.51 0.53	<0.04 <0.08 0.27 1.7	<0.04 <0.08 0.27 0.53	0.02 3 11 14	5.41	3 3 3
Jenzo(g.h.i)perathene Benzo(g.h.i)perylene Siphenyl A ethyl biphenyl 22 Substituted biphenyl Dibenzothiophene 4 ethyl dibenzothiophene 23 Substituted dibenzothiophene 23 Substid dibenzothiophene 24 Substid dibenzothiophene 24 Substid dibenzethiophene	ppb ppb ppb ppb ppb ppb ppb		1.2 0.02 3 11 14 10	0.02 0.28 0.51 0.53 0.83	<0.04 <0.08 0.27 1.7 4.5	<0.04 <0.08 0.27 0.53 0.83	0.02 3 11 14 10		3 3 3 3
Benzo(g,h.i)perylene Jiphenyl Aethyl biphenyl 22 Subsituued biphenyl Dibenzothiophene Aethyl dibenzothiophene 22 Subsituited dibenzothiophene 23 Subsit dibenzothiophene	ppb ppb ppb ppb ppb ppb		1.2 0.02 3 11 14	0.02 0.28 0.51 0.53	<0.04 <0.08 0.27 1.7	<0.04 <0.08 0.27 0.53	0.02 3 11 14	5.41	3 3 3
tenzo(g,h.i)perylene iphenyl 4ethyl biphenyl 2 Substituted biphenyl bienzothiophene 4ethyl dibenzothiophene 2 Substituted dibenzothiophene 3 Subst'd dibenzothiophene 4 Subst'd dibenzothiophene luoranthene	ppb ppb ppb ppb ppb ppb ppb ppb		1.2 0.02 3 11 14 10 0.32	0.02 0.28 0.51 0.53 0.83	<0.04 <0.08 0.27 1.7 4.5 <0.04	<0.04 <0.08 0.27 0.53 0.83 <0.04	0.02 3 11 14 10 0.32	5.41 5.11	3 3 3 3 3

Table II-A Summary of CT Solids Chemistry Page 2 of 2

I	r	e	icor	¢	ıcrude		T	T	T
		Commercial	Field ¹		ench				
		Commercial	FICIG	NST DEPOSIT IN	EN L 11				<u> </u>
Parameter	Units	CT0108-2	RW160-1	FLUME TEST'	LOW GYPSUM CT	MIN	MAX	MEAN	N
* NIAMOUN	0	18-Jan-96	16-Jun-95	May-95	30-Oct-95				
Indeno(c,d-123)pyrene	ppb		0.02	<0.01	<0.04	< 0.01	0.02		5
Phenanthrene	ppb		0.17	0.46	<0.04	<0.04	0.46		3
Methyl phenanthrene/anthracene	ррь		4.3	0.75	0.15	0.15	4.3	1.7	3
C2 Subst'd phenanthrene/anthracene C3 Subst'd phenanthrene/anthracene	ppb ppb		8.2	1.4	0.29	0.29	8.2	3.2	3
C4 Subst'd phenanthrene/anthracene	ppb		6.3	1.1	4.3	1.1	6.3	3.9	3
1-Methyl-7-isopropyl-phenanthrene (Reter			0.04		<0.08	<0.08	0.04		2
Pyrene	ррь	[0.46	<0.1	0.16	< 0.01	0.46		2
			Ts	rger PANHs			·····		
quinoline	ppb		0.02		<0.04	<0.04	0.02		2
7-Methyl quinoline	ppb		0.02		<0.04	< 0.04	0.02		2
C2 Subst'd quinoline C3 Subst'd quinoline	ppb		0.02		<0.04 <0.04	<0.04 <0.04	0.02		2
Acridine	ррь ррь		0.02		<0.04	<0.04	0.02		2
Methyl acridine	ppb		0.02		<0.04	< 0.04	0.02		2
Phenanthridine	ppb		0.02		<0.04	<0.04	0.02		2
Carbazole	ppb		0.02		<0.04	<0.04	0.02		2
Methyl carbazole	ppb		0.02		<0.04	< 0.04	0.02		2
C2 Subst'd carbazole	ppb	L	0.02	L	<0.04	<0.04	0.02	L	2
	· · · · · · · · · · · ·			Fuenolics		<0.02		1 0.44	
Phenol	ppb ppb		1.3		<0.02 <0.02	<0.02	0.1	0.66	2
o-Cresol m-Cresol	ppb ppb		0.1		<0.02	<0.02	0.1	0.06	2
p-Cresol	ppb		0.4		<0.02	<0.02	0.4	0.21	2
2.4-Dimethylphenol	ppb		0.1		< 0.02	< 0.02	0.1	0.06	2
2-Nitrophenol	ppb		2		<0.04	<0.04	2	1.02	2
4-Nitrophenol	ppb		20		<1	<1	20	10.5	2
2,4-Dinitrophenol	ppb		20		<1	<1	20	10.5	2
4.6-Dinitro-2-methyl phenol	ppb		20 Vol		<1	<1	20	10.5	2
			100	atile organics	r		100	r	
Acetone	ppb ppb		100				100		1
Acrylonitrile	ppb		100			·····	100	<u> </u>	
Benzene	ppb		1				1		i
Bromodichloromethanc	ppb		1				1		i
Bromoform	ppb		1				1		1
Bromomethane	ррь		10				10		1
2-Butanone (MEK)	ррь		100				100		<u> </u>
Carbon disulfide	<u>ppb</u>		1				<u> </u>		1
Carbon tetrachloride Chlorobenzene	ppb		1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	<u> </u>	1
Chlorocthane	ppb ppb		10				10		l
2-Chloroethyl vinyl ether	ppb		5				5		
Chioroform	ppb		1				1		1
Chloromethane	ppb		10				10	[1
Dibromochloromethane	ppb		1				1		1
Dibromomethane	ppb		1				1		1
1.2-Dichlorobenzene	ppb		1				1		1
1.3-Dichlorobenzene	ppb		1				<u> </u>		1
1.4-Dichlorobenzene cis-1.4-Dichloro-2-butene	ppb ppb		2				2	<u> </u>	1
trans-1.4-Dichloro-2-butene	ppb ppb		5				5	<u> </u>	
Dichlorodifluoromethane	ppb		1				1		1
1,1-Dichloroethane	ppb		1				i		1
1,2-Dichloroethane	ppb		1				I		1
1.1-Dichloroethene	ppb				L		1		1
trans-1,2-Dichloroethene	ppb		1				1		1
1.2-Dichloropropane	ppb		1				<u> </u>	<u> </u>	1
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ppb ppb		1				 1		1
Ethanol	ppb ppb		100				100		<u> </u>
Ethylbenzene	ppb		I				1		1
Ethylene dibromide	ppb		1				1	L	1
Ethyl methacrylate	ppb		200				200		1
2-Hexanone	ppb		200				200		1
lodomethane	ppb		1				1		<u> </u>
4-Methyl-2-pentanone (MIBK) Methylene chloride	քքե քքե		200				200		1
Methylene chloride Styrene	ppo ppb						1		1
Tetrachloroethylenc	pp0 ppb		1						1
1,1,2,2-T ctrachloroethane	ppb		5				5	ĺ	1
Toluenc	ppb		1				1	1	1
1,1,1-Trichloroethane	ppb		1				1		i
1,1,2-Trichloroethane	ppb		1			-	1		1
1.2.3-Trichloropropane	ppb		2	L			2		1
Trichloroethene	ppb		<u> </u>		[<u> </u>	<u> </u>	1
Trichlorofluoromethane	ppb		1				1	<u> </u>	1
Vinyl acetate Vinyl chloride	ppb ppb	<u> </u>	100 20				100 20		1
X ylenes	ppo ppb	<u> </u>	1				20		1
Note:		1	tanan an	<u> </u>	1	L	horacione de la companya de la comp	1	<u></u>

.

.

Mote: Mean, maximum and standard deviations are based on detectable results

¹Commercial CT data obtained from Suncor's Pond 5 survey (Golder 1997c).

²Field data obtained from Suncor's Lease 86 Wetland studies (EVS 1996); leachate. ³Syncrude solids data was obtained from Golder's flume tests (Golder 1995b).

⁴Low gypsum CT data received from Mike MacKinnon (Syncrude 1995).

Table II-B.1

Page 1 of 3

Summary of Suncor CT Release Water Chemistry From Bench Scale Trials

1	T	1		<u> </u>				1				T	Recycle	T		r	1				1
		Consol.Su	2M Su	Scavenger tails CT Day	Scavenger	Scavenger	Pond 2/3	Pond 2/3	B		Recycle water		water	Recycle water		Recycle water			Pond 2/3 CT	Pond 2/3 CT	Pond 2/3 Ct
SAMPLE ID/Date		CPW+Ca ¹	PW+C ²	z'	tails CT Day 10	tails CT Day 28	tails CT Day 2	tails CT Day 10	Pond 2/3 CT Day 28	suspension CT Day 2	Day 10	suspension CT Day 28	suspension CT Day 2	suspension CT Day 10	Suspension CT Day 28	suspension CT Day 1	suspension CT Day 4	suspension CT Day 9	suspension Day 1	suspension Dav4	suspension Day 9
	Unit	May-94	Jun-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94	Oct-94
Conventional Parameters	µS/cm		<u></u>					·····	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			·····			<u></u>	<u></u>			·····		•.•.•.•.•.•.•
Hardness	mg/L	99.3	183.5	·····																	}
pH	units	8.7	8.1	7.62	7.86	7.82	7.64	7.78	7.68	7.6	7.8	7.85	7.68	7.85	7.89	7.91	7,77	8.04	8.3	8.23	8.26
Sulphide Total Alkalinity	mg/L mg/L															ļ	ļ				
Total Inorganic Carbon	mg/L	69.4	129.4														<u> </u>				
Turbidity	mg/L																				
Biochemical Oxygen Demand Chemical Oxygen Demand	mg/L mg/L	<u> </u>					· · · · · · · · · · · · · · · · · · ·										ļ				
Major Ion																					
Bicarbonate (HCO3)	mg/L	437	623	516	306	269	372	314	286	474	202	162	417	173	171	540	364	189	754	727	717
Calcium Catarata (CO3)	mg/L	20.3 17	48.4	553 0	<u>541</u> 0	533	536	692 0	776	556	741	651	644	751	616	701	622	595	23	36	35
Carbonate (CO3) Chloride	mg/L mg/L	318	305	90	109	112	101	157	197	106	120	153	163	222	310	255	301	0 289	0 66	0	0 63
Fluoride	mg/L	29.7	<dl< td=""><td>1.2</td><td>1.5</td><td>10.8</td><td>2.4</td><td>3.3</td><td>0</td><td>2.4</td><td>3.3</td><td>12</td><td>3.9</td><td>3.7</td><td>0</td><td>48</td><td>0</td><td>0</td><td>0</td><td>18</td><td>0</td></dl<>	1.2	1.5	10.8	2.4	3.3	0	2.4	3.3	12	3.9	3.7	0	48	0	0	0	18	0
Magnesium	mg/L	11.8	15.2	94	109	132	104	146	223	108	128	182	176	223	360	379	356	353	19	18	19
Potassium Sodium	mg/L mg/L	13.1 728.6	15.1 745.9	28 538	36 640	<u>41</u> 714	26 443	37 614	41 690	298	408	18	12 300	16 418	24 598	18 360	<u>19</u> 341	19 341	20 457	21 438	20 438
Sulphate	mg/L	887	822	1203	1331	2457	1205	1514	3555	1055	1063	2211	1227	1524	3183	2594	3289	2746	608	438	438
Fe ^{2+/3+}	mg/L							_													
H ₂ CO,	mg/L											1	1								
Nutrients Nitrate + Nitrite	ma/l		<u></u>											+		<u> </u>	1				
Nitrogen - Ammonia	mg/L mg/L												1								
Nitrogen - Kjeldahl	mg/L																				
Phosphorus, Total	mg/L						· · · · · · · · · ·				····				 .	.	<u> </u>				
Total Metals	mg/L	1.7	0.52	1.3	1.3	1.2	1.3	1.3	1.8	1.4	1.5	1.5	1.4	1.5	1.6	1.4	1.4	1.2	0.49	10.3	8.8
Antimony (Sb)	mg/L				1														0.15	10.5	0.0
Arsenic (As)	mg/L			0	0.02	na	0.017	0.02	na	0.02	0.029	na	0.025	0	na						
Barium (Ba) Beryllium (Be)	mg/L mg/L	0.03	0.064	0.055	0.036	0.043	0.053	0.04	0.049	0.029	0.03	0.043	0.024	0.029	0.042	0.034	0.034	0.033	0.17	0.27	0.2
Bismuth	mg/L											· · · · · · · · · · · · · · · · · · ·		1			1				<u> </u>
Boron (B)	mg/L	3.4	3.1	4.6	5	7.4	4.9	5	10.4	4.6	5.2	7.03	6.5	7	14	11	11	11	3.8	3.9	3.9
Cadmium (Cd) Calcium (Ca)	mg/L mg/L	20.3	48.4							ļ				 							
Chromium (Cr)	mg/L	20.3	40.4									<u> </u>							· · · · · · · · · · · · · · · · · · ·		
Cobalt (Co)	mg/L																				
Copper (Cu)	mg/L	<dl< td=""><td><dl< td=""><td>0.006</td><td>0.049</td><td>na 0.016</td><td>0.002</td><td>0.049</td><td>na 0.12</td><td>0.0032</td><td>0.0017</td><td>na 0.32</td><td>0.0031</td><td>0.00028</td><td>na 0.27</td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td>0.006</td><td>0.049</td><td>na 0.016</td><td>0.002</td><td>0.049</td><td>na 0.12</td><td>0.0032</td><td>0.0017</td><td>na 0.32</td><td>0.0031</td><td>0.00028</td><td>na 0.27</td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>	0.006	0.049	na 0.016	0.002	0.049	na 0.12	0.0032	0.0017	na 0.32	0.0031	0.00028	na 0.27						
lron (Fe) Lead (Pb)	mg/L mg/L	<0.34	<0.08	0.14	0.049	0.016	0.19	0.049	0.12 na	0.07	0.009	0.32 na	0.009	0.0008	0.27 na	0.05	0.16	0.45	0.11	1.73	1.5
Lithium (Li)	mg/L	0.22	0.26	0.25	0.34	0.38	0.19	0.35	0.41	0.13	0.22	0.24	0.138	0.24	0.32	0.23	0.25	0.23	0.21	0.23	0.2
Magnesium (Mg)	mg/L	11.8	15.2	94	109	132	104	146	223	108	128	182	176	223	360	379	356	353	19	18	19
Manganese (Mn) Mercury (Hg)	mg/L mg/L	0.017	0.019	0.5	0.22	na	0.23	0.22	na	0.17	0.22	na	0.18	0.26	na		1			<u> </u>	
Molybdenum (Mo)	mg/L mg/L	0.18	0.15	1												1	1				
Nickel (Ni)	mg/L												ļ								
Potassium (K)	mg/L	13.1	15.1				<u> </u>									ļ	L				ļ
Selenium (Se) Silicon (Si)	mg/L mg/L	4.3	3	2.9	2.4	3.6	5.9	5.4	8.9	3.2	2.8	5.6	3	2.6	5.8	3.1	3.9	4.5	3.7	21	19
Silver (Ag)	mg/L																	7.0		*1	
Sodium (Na)	mg/L												L								
Strontium (Sr) Sulphur (S)	mg/L mg/L	0.6 268.1	0.9	2.5 676	2.8 898	3.1 940	2.9	2.8 898	4.9	0.83	845	1.2 945	0.9	1.2 995	1.5	1.3 885	1.3 895	1.2 924	0.87	0.95	0.95
Thallium	mg/L mg/L	200.1 <dl< td=""><td>234.4 <dl< p=""></dl<></td><td>0/0</td><td>070</td><td></td><td>002</td><td>0,0</td><td>1644</td><td>0.00</td><td>045</td><td></td><td></td><td>775</td><td>110/</td><td>- 005</td><td>075</td><td>724</td><td>10/</td><td>138</td><td>105</td></dl<>	234.4 <dl< p=""></dl<>	0/0	070		002	0,0	1644	0.00	045			775	110/	- 005	075	724	10/	138	105
Titanium (Ti)	mg/L										· · · · · · · · · · · · · · · · · · ·										
Tungsten	mg/L				0.001			0.029			0.007										
Vanadium (V) Zinc (Zn)	mg/L mg/L	<dl< td=""><td><dl< td=""><td>0.082</td><td>0.001</td><td>na na</td><td>0.081</td><td>0.029</td><td>na na</td><td>na 0.084</td><td>0.006</td><td>na na</td><td>0.13</td><td>0.005</td><td>na na</td><td></td><td></td><td></td><td></td><td></td><td> </td></dl<></td></dl<>	<dl< td=""><td>0.082</td><td>0.001</td><td>na na</td><td>0.081</td><td>0.029</td><td>na na</td><td>na 0.084</td><td>0.006</td><td>na na</td><td>0.13</td><td>0.005</td><td>na na</td><td></td><td></td><td></td><td></td><td></td><td> </td></dl<>	0.082	0.001	na na	0.081	0.029	na na	na 0.084	0.006	na na	0.13	0.005	na na						
General Organics	1										····	<u></u>	1								
Dissolved Organic Carbon	mg/L																				
Total Organic Carbon	mg/L	116.3	62.2	 													ļ				ļ
Total Phenolics	mg/L	I		leviations are cal	L	L		<u>t.,</u>		ليستم من الم		1	1	1		L	L	L		1	ا

note: Mean and standard deviations are calculated for detectable results (with n>2).

¹Data obtained from CANMET Report (WRC 95-11), sample 53

²Data obtained from CANMET Report (WRC 95-11), sample 52 ³ Day 1 to 28 CT data were obtained from CANMET Division Report WRC 94-40 (CF).

Seven sets of CT suspensions were made using Suncor Pond 2/3, Scavenger tails and plant release water with FGDS.

Data obained from 1994 EVS Lab study

⁵Data obtained from April 1995 CANMET report.

Table II-B.1

Page 2 of 3

Summary of Suncor CT Release Water Chemistry From Bench Scale Trials

		Demrela wotor	Recycle water	Recycle water	Scavenger tails Ct	Scavenger tails CT	Pond 2/3 CT	Pand 2/3 CT	Decycle water	Recycle water	Decucie mater	Recycle water	Damicla watar	Parricla water	Pond 2/3 CT	Pond 2/3 CT	Recycle water	Recycle water		[]
		CT suspension		CT suspension	suspension	suspension	suspension					CT suspension			suspension	suspension	suspension	suspension		
SAMPLE ID/Date		Day 1	Day 4	Day 9 Oct-94	Day 2 Oct-94	Day 28 Oct-94	Day 2 Oct-94	Day 28 Oct-94	Day 2 Oct-94	Day 28 Oct-94	Day 2 Oct-94	Day 28 Oct-94	Day 2 Oct-94	Day 28 Oct-94	Day 2	Day 28 Oct-94	Day 2	Day 28	1994 EVS4	1994 EVS*
Conventional Parameters	Unit	Oct-94	Oct-94	061-94	00-94	001-94	001-94	000-94	00-94	00-94	0a-94	001-94	001-94	UCI-94	Oct-94	001-94	Oct-94	Oct-94	Oct-94	Nov-94
Conductance	µS/cm																		3090	3230
Hardness	mg/L																			
pH	units	7.86	7.94	8.12															8.2	8.22
Sulphide Total Alkalinity	mg/L mg/L							<u> </u>								<u> </u>	<u> </u>		354	<0.02 387
Total Inorganic Carbon	mg/L					1						<u> </u>								
Turbidity	mg/L		ļ																12	3.24
Biochemical Oxygen Demand Chemical Oxygen Demand	mg/L mg/L	<u> </u>																	8 216	<5 <292
Major lons	MIQ L																	••••••		
Bicarbonate (HCO3)	mg/L	639	569	438	516	269	372	286	474	162	417	171	540	189	754	717	639	438		
Calcium	mg/L	180	140	82	553	533	536	776	556	651	644	616	701	595	23	35	180	82	129	139
Carbonate (CO3)	mg/L mg/L	0	0 60	0 62	90	0	0	0	0 106	153	0	0 310	0 255	0 289	66	63	0 58	0 62	54	52.1
Fluoride	mg/L	0	0	0												<u> </u>	<u>+</u>			
Magnesium	mg/L	19	18	18	94	132	104	223	108	182	176	360	379	353	19	19	19	18		
Potassium	mg/L	10	10	10	28	41	26	<u>41</u> 690	11	18 500	12	24 598	18 360	19 341	20 457	20	10	10	27.6	28.7
Sodium Sulphate	mg/L mg/L	<u>351</u> 644	346 677	346 543	538 1203	714 2457	1205	3555	298 1055	2211	<u>300</u> 1227	3183	2594	2746	457 608	438 496	351 644	346 543	1270	1320
Fe ²⁺³⁺	mg/L		0,7		0.14	0.016	0.19	0.12	0.07	0.32	0.009	0.27	0.05	0.45	0.11	1.5	0.13	0.13	12/0	
H,CO,	mg/L			1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		I
Nperlents			1		·····								<u></u>							
Nitrate + Nitrite	mg/L	ļ	ļ			ļ											<u> </u>		0.05	0.05
Nitrogen - Ammonia Nitrogen - Kjeldahl	mg/L mg/L		<u> </u>																5.72	8.4
Phosphorus, Total	mg/L		1					1												0.002
Total Metals						<u></u>	· · · · · · · · · · · · · · · · · · ·		•••••		· · · · · · · · · · · · · · · · · · ·		<u></u>						<u></u>	
Aluminum (Al)	mg/L	0.69	0.41	0.24	0.13	1.2	1.3	1.8	1.4	1.5	1.4	1.6	1.4	1.2	0.49	8.8	0.69	0.24	0.33	<0.20 <0.20
Antimony (Sb) Arsenic (As)	mg/L mg/L			<u> </u>					<u> </u>			1				<u> </u>			0.0018	<0.20
Barium (Ba)	mg/L	0.064	0.051	0.039															0.03	0.037
Beryllium (Be)	mg/L			ļ				ļ								Į			<0.001	<0.005
Bismuth Boron (B)	mg/L mg/L	3	3.1	3.1		<u> </u>													2.8	<0.10
Cadmium (Cd)	mg/L																		<0.003	<0.010
Calcium (Ca)	mg/L	1	1				[
Chromium (Cr)	mg/Ľ		Į				<u> </u>	}								Į			0.009	<0.015
Cobalt (Co) Copper (Cu)	mg/L mg/L	<u> </u>									••••••			<u> </u>					0.009	<0.015 <0.010
Iron (Fe)	mg/L	0.13	0.017	0.013												1			0.11	0.04
Lead (Pb)	mg/L					ļ	ļ					ļ							<0.02	<0.050
Lithium (Li)	mg/L	0.18	0.17	0.17				<u> </u>						<u> </u>			╞────┤		0.165	0.268
Magnesium (Mg) Manganese (Mn)	mg/L mg/L	17	10	<u>⊢</u>								<u>├</u> -				<u> </u>	<u> </u>		0.05	44.8 0.008
Mercury (Hg)	mg/L	<u> </u>														1			<0.05	<0.00005
Molybdenum (Mo)	mg/L			ļ															0.84	0.823
Nickel (Ni)	mg/L mg/L	<u> </u>		<u> </u>										 			<u> </u>		0.01	0.021
Potassium (K) Selenium (Se)	mg/L	<u> </u>							<u> </u>			1		t			<u>├</u> ───┤		0.0006	<0.20
Silicon (Si)	mg/L	4 2	3.3	3.3												1			4.5	3.69
Silver (Ag)	mg/1.	ļ	<u> </u>	L		ļ			<u> </u>							ļ	<u> </u>		< 0.01	<0.015
Sodium (Na) Strontium (Sr)	mg/L mg/L	0.4	0.37	0.31												├	╂────┤		520 2.09	525 2.47
Sulphur (S)	mg/L.	175	185	176		l		((1							2.05	
Thallium	mg/L		<u> </u>			[<u> </u>				<0.10
Titanium (Ti)	mg/L		<u> </u>]			<u> </u>		ļ					ļ	ļ	ļ	<u> </u>		0.017	< 0.01
Tungsten Vanadium (V)	mg/L mg/L	<u> </u>		├			}					├ ───┤		┟────┤					0.02	<0.10 <0.030
Zinc (Zn)	mg/L mg/L	<u> </u>										1					1		0.02	0.014
General Organics			<u></u>				[<u></u>	<u>[::::::::::::::::::::::::::::::::::::</u>			<u></u>		····				[· <u>···</u> ·····		<u></u>
Dissolved Organic Carbon	mg/L	L					ļ									ļ	ļ			60
Total Organic Carbon Total Phenolics	mg/L mg/L			<u> </u>													Į		0.015	0.023
rotar r nenones		Land Manager	1	tions are calculat	ad for detectabl	- reculto (with -	>2\					<u></u>		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		l	<u></u>		0.015	0.023

Data obtained from CANMET Report (WRC 95-11). sample 53

²Data obtained from CANMET Report (WRC 95-11). sample 52

¹ Day 1 to 28 CT data were obtained from CANMET Division Report WRC 94-40 (CF). Seven sets of CT suspensions were made using Suncor Pond 2/3, Scavenger tails and plant release water with FGDS.

Data obained from 1994 EVS Lab study

'Data obtained from April 1995 CANMET report

Table II-B.1

Page 3 of 3

Summary of Suncor CT Release Water Chemistry From Bench Scale Trials

<table-container>UnitApr.Apr.Apr.Apr.Apr.Apr.BAP.B</table-container>	SAMPLE ID/Date		Suncor (CANMET1995) ⁵	Suncor (CANMET1995) ⁵	Suncor (CANMET1995) ⁵	Suncor (CANMET1995) ⁵	Consol.Su PW+Ca ¹	<u> </u>				
Caracterize Control Contro Control Control	SAMPLE ID/Date	Unit						MIN	MAX	MEAN	STD. DEV	N
Hadesengl	Conventional Parameters											
all min min <td>Conductance</td> <td>µS/cm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3090</td> <td>3230</td> <td>3160</td> <td></td> <td>2</td>	Conductance	µS/cm						3090	3230	3160		2
Supplies mg/L	Hardness	mg/L							184	144	42.4	3
Tail AlkaninymgL							8.8	8	9		0.3	26
Total Lorgenia Carbon mpl.												1
Tability mpl.												2
Bickermid Corgen Damad mpt. mpt							98.9					3
Chemical Oxygen Demaid mg/L num										8		2
Might Gas. Non-												2
Bicarbane (HCO) mg/L	Chemical Oxygen Demand				• • • • • • • • • • • • •							2
Calcian mg/L 150 125.5 113.4 81.43 81.43 23.6 20 77.6 134.4 23.2 Cabraic (COS) mg/L	Major loss		·····	<u></u>	· · · · · · · · · · · · · · · · · · ·	<u></u>						
Carboarde (025) gg/L Image: Carboarde (025) gg/L			150	120.5	112.4	81.42						38 44
Charide ng/L - - 2,66 50 156 154 95,3 Magnetism ng/L 33,42 28,55 33,8 28,8 15,5 12 379 192 193 112 106 464 416.0 102 192 193 112 106 465 82.5 104 102 102 103 112 106 0.009 2 0.23 0.4 10<			150	129.5	115.4	81.43						44 38
Pinorial mg/L sec. mg/L 12 377 132 133 Potastium mg/L 334 28.8 15.9 10 41 21 9.6 Soldium mg/L 573 495.1 568.8 527.7 722.2 298 7.46 484 140.6 Solphat mg/L 152.6 1192 1531 11123 1016 487 5555 154.6 923.6 $e_{0}^{2,0}$ mg/L 122 1016 487 0.0 0												40
Mignetion mg/L 33.4 28.9 33.8 28.8 15.9 112 379 132 123.4 Sodium mg/L 578.8 496.1 568.8 523.7 722.2 298 74.6 48.4 140.6 Sodium mg/L 1526 1192 1531 112.3 1016 447 3555 1546 923.6 R_CO mg/L 1526 1192 1531 112.3 1016 447 3555 1546 923.6 Netritexit mg/L 0.00 0												23
Production mg/L Total 10 41 21 96 Solighan mg/L 1526 1192 1531 1122 106 487 3253 1546 923.6 Solphate mg/L 1526 1192 1531 1122 106 487 3253 1546 923.6 <td></td> <td></td> <td>33.42</td> <td>28.59</td> <td>33.8</td> <td>28.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>42</td>			33.42	28.59	33.8	28.8						42
Solime mg/L 578.8 496.1 568.8 523.7 722.2 298 746 484 10.6 Selphate mg/L 153 1123 1016 487 3555 1546 923.6 Fe ^{3/s} mg/L 123 1016 487 3555 1546 923.6 Settreat												40
Subjetc ng/L 132 1123 1016 487 3555 1546 5216 R_CO, ng/L 0			579.8	496.1	568.8	523.7						42
$p_{CD}^{e^{int}}$ mgL mgL 0.009 2 0.23 0.4 Nitrogen												44
H.CO, mg/L								0.009				14
Settlest Control Contro Control <thcontrol< th=""> <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.7</td><td>14</td></th<></thcontrol<>											0.7	14
Nitute - Nitrite mg/L 0.05 0.05 0.01 Nitogen - Ammonia mg/L 6 8 7 Nitogen - Spiddah mg/L 0.02 0.02 0.02 Tridi Metals. 0.02 0.01 10 2.33 Autinum (A) mg/L 0.02 0.01 10 2 2.3 Autinum (A) mg/L 0.02 0.02 0.01 2 2.3 Autinum (A) mg/L 0.00 0.02 0.03 0.1 Bariun (B) mg/L 0.07 0.02 0.03 0.1 Bariun (B) mg/L 0.001 0.005 0.003 0.01 Bariun (B) mg/L 3.5 3 14 6 3.2 Cadmine (Ca) mg/L 1 0.003 0.01 0.007 0.22 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01	Netriente			• • • • • • • • • • • • • • • • • • • •							*******	
Nitoger - Anmonin mg/L 6 8 7 Nitoger - S(ide) mg/L 10 10 10 10 10 10 10 10 10 10 10 10 10 10 2 2.3 Aiminory (8) mg/L 0.02 0.01 10 2 2.3 Aiminory (8) mg/L 0.02 0.01 10 2 2.3 Aiminory (8) mg/L 0.001 0.002 0.01 10 2 2.3 Aiminory (3) mg/L 0.01 0.002 0.01 10 2 3.3 14 6 3.2 C Aiminor (3) mg/L 3.3 14 6 3.2 C Aiminor (3) mg/L Cabinor (C1) mg/L Cabinor (C1) mg/L	Nitrate + Nitrite			·····				0.05	0.05	0.1	·····	2
Ninogar. Kjeldah mg/L Image								6				2
Phosphors, Total mg/L												1
Aluminar (A) mg/L 0.12 0.1 10 2 2.3 Auminory (Sb) mg/L 0.002 0.2 0.01 - Assenic (As) mg/L 0.07 0.02 0.03 0.11 Barsime (Ba) mg/L 0.07 0.02 0.03 0.01 Beryline (Bc) mg/L 0.07 0.02 0.07 0.02 0.03 0.01 Beryline (Bc) mg/L 0.03 0.01 0.007 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.002</td> <td></td> <td>1</td>										0.002		1
Aluminar (A) mg/L 0.12 0.1 10 2 2.3 Auminory (Sb) mg/L 0.002 0.2 0.01 - Assenic (As) mg/L 0.07 0.02 0.03 0.11 Barsime (Ba) mg/L 0.07 0.02 0.03 0.01 Beryline (Bc) mg/L 0.07 0.02 0.07 0.02 0.03 0.01 Beryline (Bc) mg/L 0.03 0.01 0.007 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>····</td> <td>·····</td> <td></td> <td></td> <td></td>								····	·····			
Arsenic (As) mg/L 0 0.2 0.03 0.1 Barium (Ba) mg/L 0.07 0.02 0.27 0.06 0.1 Barium (Bc) mg/L 0.001 0.005 0.003 0.003 Bismuth mg/L 3.5 3 14 6 3.2 Cadmium (Cd) mg/L 3.6 20 48 34 14.1 Cadmium (Cd) mg/L 0.01 0.022 0.01 0.007 0.02 Cadmium (Cd) mg/L 0.01 0.02 0.01 0.007 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 </td <td></td> <td>mg/L</td> <td></td> <td></td> <td></td> <td></td> <td>0.12</td> <td></td> <td>10</td> <td>2</td> <td>2.3</td> <td>40</td>		mg/L					0.12		10	2	2.3	40
Barium (Ba) mg/L 0.07 0.02 0.27 0.06 0.1 Berylliam (Be) mg/L 0.001 0.005 0.003 0.001 0.005 0.003 0.01 0.005 0.003 0.01 0.005 0.003 0.01 0.007 0.02 0.01 0.007 0.02 0.01 0.007 0.02 0.01 0.007 0.02 0.01 0.007 0.02 0.01 0.007 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.024 0 0.24 0 0.24 0 0.24 0 0.24 0.03 0.1 10	Antimony (Sb)	mg/L										2
Berylliam (Be) mg/L 0.001 0.005 0.003 \sim Bianath mg/L -												10
Binnuth mg/L col col col Born (B) mg/L 3.5 3 14 6 3.2 Cadrium (Ca) mg/L 33.6 20 48 34 14.1 Cadrium (Ca) mg/L 33.6 20 48 34 14.1 Chronium (Cr) mg/L 0.01 0.02 0.01 0.02 0.01 Cobat (Co) mg/L 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0			l				0.07				0.1	26
Boron (B) mg/L 3.5 3 14 6 3.2 Cadrium (Ca) mg/L 0.003 0.01 0.007 1 Calcium (Ca) mg/L 33.6 20 48 34 14.1 Chronium (Cr) mg/L 0.01 0.02 0.01 0.02 0.01 Cobalt (Co) mg/L 0.01 0.02 0.01 0.02 0.01 Copper (Cu) mg/L 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.001</td> <td>0.005</td> <td></td> <td>L</td> <td>2</td>								0.001	0.005		L	2
												1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							3.5				3.2	26
Chromium (C) mg/L 0.01 0.02 0.01 0.02 0.01 Cobat (Co) mg/L 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 Utilitaria 0.01 0.02 0.02 Utilitaria 0.01 0.04 0.02 0.02 Utilitaria 0.01 0.04 0.02 0.02 Utilitaria Utilitaria 0.01 0.04 0.02 0.02 Utilitaria			······				17.6					2
Cobatt (Co) mg/L 0.01 0.02 0.01 0.02 0.01 Coper (Cu) mg/L 0.24 0 0.24 0.03 0.1 Iron (Fe) mg/L CDL CDL 1.7 0.239 0.4 Lead (Pb) mg/L 0.04 0.24 0.0 0.06 0.02 0.02 Lithiam (Li) mg/L 0.24 0.1 0.4 0.2 0.1 Magnesium (Mg) mg/L 0.074 0.01 0.5 0.2 0.1 Magnesium (Mg) mg/L 0.074 0.01 0.5 0.2 0.1 Marcause (Ma) mg/L 0.074 0.01 0.5 0.2 0.1 Molybdenum (Mo) mg/L 0.16 0.2 0.8 0.4 0.4 Nickel (Ni) mg/L 0.16 0.2 0.2 0.1 Seleinum (Sc) mg/L 3.2 2 1.1 1.1 Seleinum (Sr) mg/L 0.99 0.3							33.0				14.1	2
Copper (Cu) mg/L 0.24 0 0.24 0.03 0.1 Iron (Fc) mg/L - - - - 0.0 0.03 0.1 Lead (Pb) mg/L - 0.0 0.06 0.02 0.02 Lithiam (Li) mg/L - 0.24 0.1 0.4 0.2 0.1 Magnesse (Mn) mg/L - 0.24 0.1 0.4 0.2 0.1 Magnesse (Mn) mg/L - 0.074 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L - <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>												2
Iton (Fc) mg/L			·				0.24				01	11
Lead (Pb) mg/L 0 0.06 0.02 0.02 Lifhium (Li) mg/L 0.24 0.1 0.4 0.2 0.1 Magnesim (Mg) mg/L 15.9 12 379 128 11.7 Manganese (Mn) mg/L 0.074 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L 0.074 0.01 0.5 0.2 0.1 Mojodemun (Mo) mg/L 0.16 0.2 0.8 0.4 0.4 Nickel (Ni) mg/L 0.16 0.2 0.8 0.4 0.4 Scioum (Sc) mg/L 0.16 0.2 0.02 0.2 Potassium (K) mg/L 0.01 0.02 0.02 0.2 Silicon (Si) mg/L 3.2 2 21 5 4.6 Solium (Na) mg/L 0.99 0.3 5 2 1.1 Solum (Na) mg/L 0.2 0.1 0.2 1.1						·····						25
Lithium (Li) mg/L 0.24 0.1 0.4 0.2 0.1 Magness(Mn) mg/L 15.9 12 379 128 121.7 Magness(Mn) mg/L 0.014 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L 0.014 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L 0.016 0.2 0.8 0.4 0.4 Molydemum (Mo) mg/L 0.16 0.2 0.8 0.4 0.4 Nickel (Ni) mg/L 0.01 0.02 0.02 0.02 0.02 Potassium (K) mg/L 15 13 15 14 1.1 Sclenium (Sc) mg/L 3.2 2 2.1 5 4.6 Silver (Ag) mg/L 3.2 2.01 5 4.6 Sodium (Na) mg/L 252.0 52.5 52.3 1.1 Suprotium (Sr) mg/L 0.2 -0.1 0.2												8
Magnesium (Mg) mg/L 15.9 12 379 128 121.7 Margness (Ma) mg/L 0.074 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L 0.074 0.01 0.5 0.2 0.1 Molybdenum (Mo) mg/L 0.01 0.5 0.2 0.1 Molybdenum (Mo) mg/L 0.01 0.2 0.8 0.4 0.4 Nickel (Ni) mg/L 0.01 0.02 0.02 0.02 0.02 Potassium (K) mg/L 15 13 15 14 1.1 Seleniem (Sc) mg/L 3.2 2 21 5 4.6 Silver (Ag) mg/L							0.24					26
Marganese (Mn) mg/L 0.074 0.01 0.5 0.2 0.1 Mercury (Hg) mg/L <000005												26
Mercury (Hg) mg/L < < < < < < <td></td> <td>13</td>												13
Molyberum (Mo) mg/L 0.16 0.2 0.8 0.4 0.4 Nickel (Ni) mg/L 0.01 0.02 0.02 1 1 Potassium (K) mg/L 15 13 15 14 1.1 Seleniem (Se) mg/L 0.0006 0.2 0.1 1 1 Silicon (Si) mg/L 3.2 2 21 5 4.6 Silver (Ag) mg/L 20.01 <0.02		mg/L										2
Nickel (Ni) mg/L 0.01 0.02 0.02 Potassium (K) mg/L 15 13 15 14 11 Selenium (Sc) mg/L 0.0006 0.2 0.1 15 13 15 14 11 Silicon (Si) mg/L 0.0006 0.2 0.1 15 13 15 14 11 15 Silicon (Si) mg/L 0.0006 0.2 0.1 15 13 15 14 11 16 13 15 14 11 16 15 13 15 14 11 16 15 13 15 14 11 15 13 15 14 11 16 15 13 15 14 16 15 13 15 14 16 15 13 15 14 11 15 13 15 14 11 15 13 15 14 11 15 13 15							0.16				0.4	5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												2
Silicon (Si) mg/L 3.2 2 21 5 4.6 Silver (Ag) mg/L <0.01							15				1.1	3
Silver (Ag) mg/L <0.01 <0.02 0.01 Sodium (Na) mg/L 520 525 523 520 525 523 520 525 523 520 525 523 52 1.1 52 1.1 52 523 <												2
Sodium (Na) mg/L 520 523 523 Storitum (Sr) mg/L 0.99 0.3 5 2 1.1 Stophur (S) mg/L 259.6 158 1204 627 360.1 Thallium mg/L 0.2 <0.1			L				3.2				4.6	26
Strontium (Sr) mg/L 0.99 0.3 5 2 1.1 Staphur (S) mg/L 259.6 158 1204 627 360.1 Thallium mg/L 0.2 -0.1 0.2 - 1 1 Titanium (Ti) mg/L 0.2 -0.1 0.2 - 1												2
Sulphur (S) mg/L 259.6 158 1204 627 360.1 Thallium mg/L 0.2 40.1 0.2 60.1 1 Tianium (Ti) mg/L 0.2 40.1 0.2 0.1 1 Yandium (Y) mg/L 0.001 0.02 0.01 1 1 Zingsten mg/L 0.001 0.02 0.01 1 1 Zing (Zn) mg/L 0.001 0.03 0.02 0.01 1 1 Dissolved Organic Carbon mg/L 0.24 0.01 0.24 0.12 0.07												2
Titalium mg/L 0.2 <0.1 0.2 Titalium (Ti) mg/L <0.01												26
Titanium (Ti) mg/L <<0.01 0.02 0.01 Tungsten mg/L 0.1 0.1 0.1 Vanadium (V) mg/L 0.001 0.03 0.02 0.01 Zinc (Zn) mg/L 0.01 0.24 0.12 0.07 Dissolved Organic Carbon mg/L 0.01 0.24 0.12 0.07					· · · · · · · · · · · · · · · · · · ·					627	300.1	24
Tungsten mg/L 0.1 L Vanadium (V) mg/L 0.001 0.03 0.02 0.01 Zinc (Zn) mg/L 0.24 0.1 0.24 0.12 0.07 Dissolved Organics 0.550/ved Organic Carbon mg/L 0.24 0.01 0.24 0.12 0.07			<u> </u>			<u> </u>	0.2			0.01		3
Vanadium (V) mg/L 0.001 0.03 0.02 0.01 Zinc (Zn) mg/L 0.24 0.01 0.24 0.12 0.07 General Organic								~v.01	0.02			2
Zinc (Zn) mg/L 0.24 0.01 0.24 0.12 0.07 General Organics								0.001	0.03		0.01	6
General Organics 60 Dissolved Organic Carbon mg/L 60							0.74					11
Dissolved Organic Carbon mg/L 60											h	· · · · · · · · · · · · · · · · · · ·
					······							1
	Total Organic Carbon	mg/L mg/L					105.3	62.2	116.3	94.6	28.6	3
Inclusion Inclusion <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.0</td><td>2</td></t<>											20.0	2

note: Mean and standard deviations are calculated for detectable results (with n>2).

¹Data obtained from CANMET Report (WRC 95-11), sample 53

²Data obtained from CANMET Report (WRC 95-11), sample 52

¹ Day 1 to 28 CT data were obtained from CANMET Division Report WRC 94-40 (CF). Seven sets of CT suspensions were made using Suncor Pond 2/3. Scavenger tails and plant release water with FGDS.

Data obained from 1994 EVS Lab study

Data obtained from April 1995 CANMET report.

Page 1 of 2

Summary of Syncrude CT Release Water Chemistry from Bench Scale Trials

l.				Syncrud	e					
2 2011/0/10/00/00/00/00/00/00/00/00/00/00/0	ľ	Consol.Sy C	Consol Sy C	2M Sy	Flume Test	NST Bench	*********			
SAMPLE ID		PW+Ca1	PW+Ca1	PW+Ca ¹	Sample ²	Test ²	MIN	MAX	MEAN	N
DATE	Units	May-94	Jun-94	Jun-94	May-95	Jun-95				
			Con	ventional Pa	rameters					
Chemical Oxygen Demand	mg/L				260	300	260	300	280	2
Conductance	μS/cm	L		****	3600	3550	3550	3600	3575	2
Hardness	mg/L	41.6	62.1	64.2			41.6	64.2	56	3
pH	units	9	9.2	8.5	8.4	8.81	8.4	9.2	8.8	5
Sulphide	mg/L				<0.01	< 0.01		< 0.01		2
Total Alkalinity	mg/L		122.0		688	567	567	688	628	2
Total Inorganic Carbon	mg/L_	113.1	180.8	187.1		L	113.1	187.1	160.3	3
	T	T 025	000	Major Joi	and the faith of the second	T	000	T 1002		
Bicarbonate (HCO3)	mg/L	925	908 14	1093	800	19.1	800 7.6	1093 36	932	4
Calcium Carbonate (CO3)	mg/L mg/l	80	14	24	20	19.1	20	112	<u>18.3</u> 59	5
Chloride	mg/L mg/L	523	51.5	455	365	442	51.5	523	367.3	4 5
Cyanide	mg/L mg/L	<u> </u>	51.5	455	0.055	<0.001	<0.001	0.055	507.5	2
Fluoride	mg/L mg/L	29.8	24.6	<dl< td=""><td>0.055</td><td>~~.001</td><td><0.001 <dl< td=""><td>29.8</td><td>27.2</td><td>ź 3</td></dl<></td></dl<>	0.055	~~.001	<0.001 <dl< td=""><td>29.8</td><td>27.2</td><td>ź 3</td></dl<>	29.8	27.2	ź 3
Magnesium	mg/L	5.5	6.6	6.5	19	15.8	<u>_DL</u> 5.5	19	10.7	5
Potassium	mg/L	11.7	12.8	12.3	22	21.3	11.7	22	16	5
Sodium	mg/L	1221	1202	1197	910	925	910	1221	1091	5
Sulphate	mg/L	1114	1080	953	1040	897	897	1114	1017	5
		*****	,	Notrient	5					
Nitrate + Nitrite	mg/L				0.050	0.060	0.05	0.06	0.06	2
Nitrogen - Ammonia	mg/L			******	0.49	0.35	0.35	0.49	0.42	2
Phosphorus, Total	mg/L					0.2	************************	0.2		1
Phosphorus, Total Dissolved	mg/L	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.033</td><td>0.19</td><td><dl< td=""><td>0.19</td><td>0.11</td><td>5</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.033</td><td>0.19</td><td><dl< td=""><td>0.19</td><td>0.11</td><td>5</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.033</td><td>0.19</td><td><dl< td=""><td>0.19</td><td>0.11</td><td>5</td></dl<></td></dl<>	0.033	0.19	<dl< td=""><td>0.19</td><td>0.11</td><td>5</td></dl<>	0.19	0.11	5
	·····		Genera	l Organics a	nd Toxicity		•••••••••••••••••••••••••••••••••••••••			
Dissolved Organic Carbon	mg/L				55	66.9	55	66.9	61	2
Microtox IC20	%				13	12	12	13	13	2
Microtox IC50	%				58	72	58	72	65	2
Naphthenic acids	mg/L_			****	76			76		1
Oil and Grease	mg/L			*****	15	14.4	14.4	15	14.7	2
Surfactants (MBAS)	mg/L				1.9	2	1.9	2	2.0	2
Total Organic Carbon	mg/L	251.7	192.6	190.6			190.6	251.7	211.6	3
Total Phenolics	mg/L	L	Í rin a sur a sur a sur a l	··· <u>··</u> ·······························	0.016	0.017	0.016	0.017	0.0165	2
				Total Meta						
Aluminum (Al)	mg/L	1.1	0.04	0.22	0.52	0.12	0.04	1.1	0.4	5
Barium (Ba)	mg/L	0.09	0.1	0.16	0.1	0.1	0.09	0.16	0.11	5
Beryllium (Be)	mg/L		2.6	2 1	0.001	0.001 2.75	0.001	0.001 3.6	0.001 3.06	2
Boron (B)	mg/L	3.6	3.6	3.1	<0.003	<0.003	2.26	<0.003	3.00	<u>5</u> 2
Cadmium (Cd) Calcium (Ca)	mg/L mg/L	7.6	14	15	0.003	<0.003	7.6	15	12.2	3
Chromium (Cr)	mg/L mg/L	1.0		1.7	0.002	0.004	0.002	0.004	0.003	2
Cobalt (Co)	mg/L mg/L	1			<0.002	0.004	<0.002	0.003	0.005	2
Copper (Cu)	mg/L	<dl< td=""><td>0.27</td><td><dl< td=""><td>0.004</td><td>< 0.005</td><td><0.005</td><td>0.005</td><td>0.09</td><td>5</td></dl<></td></dl<>	0.27	<dl< td=""><td>0.004</td><td>< 0.005</td><td><0.005</td><td>0.005</td><td>0.09</td><td>5</td></dl<>	0.004	< 0.005	<0.005	0.005	0.09	5
Iron (Fe)	mg/L	<0.21	<dl< td=""><td><0.09</td><td>0.04</td><td><0.01</td><td><dl< td=""><td>0.04</td><td></td><td>5</td></dl<></td></dl<>	<0.09	0.04	<0.01	<dl< td=""><td>0.04</td><td></td><td>5</td></dl<>	0.04		5
Lead (Pb)	mg/L	1		······	<0.02	< 0.02		< 0.02		2
Lithium (Li)	mg/L	0.19	0.21	0.24	0.205	0.214	0.19	0.24	0.21	5
Magnesium (Mg)	mg/L	5.5	6.6	6.5	Ι	0.001	0.001	6.6	4.65	4
Manganese (Mn)	mg/L	<dl< td=""><td>0.016</td><td><dl< td=""><td>< 0.001</td><td></td><td>< 0.001</td><td>0.016</td><td></td><td>4</td></dl<></td></dl<>	0.016	<dl< td=""><td>< 0.001</td><td></td><td>< 0.001</td><td>0.016</td><td></td><td>4</td></dl<>	< 0.001		< 0.001	0.016		4
Molybdenum (Mo)	mg/L	0.24	0.21	0.18	0.150	0.134	0.134	0.24	0.183	5
Nickel (Ni)	mg/L				0.014	0.015	0.014	0.015	0.015	2
Potassium (K)	mg/L	11.7	12.8	12.3	Ļ		11.7	12.8	12.3	3
Silicon (Si)	mg/L	3.8	3.4	4.9	ļ	Ļ	3.4	4.9	4.0	3
Silver (Ag)	mg/L	ļ			<0.002	<0.002		< 0.002		2
Strontium (Sr)	mg/L	0.33	0.43	0.4	1.09	0.94	0.33	1.09	0.64	5
Sulphur (S)	mg/L	351.8	318.5	316.1			316.1	351.8	328.8	3
Titanium (Ti)	mg/L	4			0.016	< 0.003	< 0.003	0.016	L	2
Uranium (U)	mg/L				<0.5	<0.5		<0.5		2
Vanadium (V)	mg/L				0,006	<0.002	<0.002	0.006	0.004	2
Zinc (Zn)	mg/L	<dl< td=""><td>0.16</td><td><dl< td=""><td>0.003</td><td>0.001</td><td><dl< td=""><td>0.16</td><td>0.055</td><td>5</td></dl<></td></dl<></td></dl<>	0.16	<dl< td=""><td>0.003</td><td>0.001</td><td><dl< td=""><td>0.16</td><td>0.055</td><td>5</td></dl<></td></dl<>	0.003	0.001	<dl< td=""><td>0.16</td><td>0.055</td><td>5</td></dl<>	0.16	0.055	5

Page 2 of 2

Summary of Syncrude CT Release Water Chemistry from Bench Scale Trials

				Syncrud	e					********
		Consol.Sy C	Consol Sy C	2M Sy	Flume Test	NST Bench		T		
SAMPLE ID		PW+Ca ¹	PW+Ca ¹	PW+Ca ¹	Sample ²	Test ²	MIN	MAX	MEAN	N
DATE	Units	May-94	Jun-94	Jun-94	May-95	Jun-95				
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	Target P	AHs and All	ylated PAHs					
Naphthalene	ppb				< 0.02	< 0.02		<0.02		2
C1 Subst'd napthalenes	ppb				< 0.02			< 0.02		1
C2 Subst'd naphthalenes	ppb				< 0.04	< 0.04	************	< 0.04		2
C3 Subst'd naphthalenes	ppb	1			< 0.04	< 0.04		< 0.04		2
C4 Subst'd naphthalenes	dqq				< 0.04	< 0.04		< 0.04		2
Acenaphthene	ppb	1			< 0.02	< 0.02		< 0.02		2
Methyl acenaphthene	ppb				< 0.04	< 0.04		< 0.04		2
Acenaphthylene	ppb				< 0.02	< 0.02		< 0.02	1	2
Anthracene	ppb				< 0.02	< 0.02		< 0.02	1	2
Dibenzo(a,h)anthracene	ppb				< 0.02	< 0.02		< 0.02	<u> </u>	2
Benz(a)Anthracene	ppb				<0.02	-0.02		<0.02	<u> </u>	1
Chrysene	ppb ppb	1			<0.02			<0.02	<u>† – – – †</u>	1
Methyl Chrysene/Benz(a)Anthra.	ppb ppb				<0.02	< 0.04		<0.02	<u>† – – – †</u>	2
C2 Subst'd Chrysene/Benz(a)Anthr	ppb ppb	1			<0.04	<0.04		<0.04		2
Benzo(a)pyrene	ppb ppb	1			<0.02	<0.04		< 0.04	<u> </u>	2
Methyl Benzo(a)Pyrene/Benzo(b&	ppb				<0.02	<0.02		< 0.02	<u> </u>	2
C2 Subst'd Benzo(a)Pyrene/Benzo(ppb				<0.04	<0.04		<0.04	<u> </u>	2
Benzo(b&k)fluoranthene	ppb				<0.04	<u> </u>		<0.04		
Benzo(g,h,i)perylene					<0.02	<0.02		< 0.02		2
Biphenyl	ppb				<0.02	<0.02		<0.02	<u> </u>	2
	ppb				<0.04	< 0.04		< 0.04	<u> </u>	2
Methyl biphenyl	ppb				<0.04	<0.04		<0.04		2
C2 Substituted biphenyl	ppb				<0.04					
Dibenzothiophene	ppb				<0.02	<0.02		< 0.02		2
Methyl dibenzothiophene	ppb					<0.04		<0.04		2
C2 Substituted dibenzothiophene	ppb				<0.04	< 0.04		<0.04	ļ	2
C3 Subst'd dibenzothiophene	ppb				<0.04	<0.04		<0.04	ļ	2
C4 Subst'd dibenzothiophene	ppb			·	<0.04	<0.04		<0.04		2
Fluoranthene	ppb				<0.02	< 0.02		<0.02		2
Methyl fluoranthene/pyrene	ppb				<0.04	<0.04		<0.04	ļ	2
Fluorene	ppb				< 0.02	<0.02		< 0.02	ļ	2
Methyl fluorene	ppb				<0.04	<0.04		<0.04		2
C2 Substituted fluorene	ppb				<0.04	< 0.04		< 0.04		2
Indeno(c,d-123)pyrene	ppb				<0.02	< 0.02		<0.02	ļ ļ	2
Phenanthrene	ppb		 		< 0.02	< 0.02		< 0.02	ļ	2
Methyl phenanthrene/anthracene	ppb				< 0.04	< 0.04		< 0.04	ļ	2
C2 Subst'd phenanthrene/anthracen	ppb				<0.04	< 0.04		< 0.04	ļ	2
C3 Subst'd phenanthrene/anthracen	ppb				<0.04	<0.04		< 0.04		2
C4 Subst'd phenanthrene/anthracen	ppb	 			< 0.04	<0.04		< 0.04		2
Pyrene	ppb				< 0.02	<0.02		< 0.02	<u> </u>	2
	<u></u>		<u></u>	Target PAN						
Quinoline	ppb				< 0.02			< 0.02		1
7-Methyl quinoline	ppb	ļ			<0.02			< 0.02		1
C2 Subst'd quinoline	ppb				<0.02			< 0.02		1
C3 Subst'd quinoline	ppb				< 0.02			< 0.02		1
Acridine	ppb				<0.02			< 0.02	L [1
Methyl acridine	ppb				< 0.02			< 0.02		1
Phenanthridine	ppb				< 0.02			<0.02		1
Carbazole	ppb				<0.02			< 0.02		1
Methyl carbazole	ppb				<0.02			< 0.02		1
C2 Subst'd carbazole	ppb				< 0.02			< 0.02		1

¹Data obtained from 1995 CANMET DIVISION REPORT WRC 95-11 (CF)

²Data obtained from Syncrude's Mike MacKinnon.

Page 1 of 4

Summary of Suncor CT Release Water Chemistry From Field Scale Trials

	T	NST -1 pool	NST 2-pool	NST	NST-2 pool	NST1-pool						RW162(W054		·····		<u></u>	r	11	RW162W0404		RW163(W005
SAMPLE ID and Date		low Ca	high Ca	swimpool	high Ca	low Ca	RW161-1	RW161-2	RW161-5	RW161-T002				RW162T0033	RW162T0065	DW162W602	RW162W028.		7	RW162W061	· ·
	Units	Nov-94	Oct-94	Oct-94	Nov-94	Oct-94	Jul-95	Jul-95	Jul-95	Jul-95	Jul-95		Jul-95	Aug-95	Sep-95	Jul-95	Aug-95	KW102W030	Aug-95	Sep-95	Sep-95
Conventional Parameters							our ye	00170	04175	1 001.70						001/95		L		<u></u>	
Chemical Oxygen Demand	mg/L	<u> </u>				<u> </u>		I		T 1		1				0.001	T T				and a second
Chlorophyll "a"	mg/L									+						0.001			0.008		
Conductance	µS/cm									1						2337			2154		·
Hardness	mg/L	505.6	1411	306	1681.3	503				11			······							·····	······
pH	units	8.2	8	8.4	7.9	8.2						8.37			**************************************	8.1	8.2		8.34	8.43	8.37
Sulphide	mg/L									1		0.01				0.01	0.01		0.01	0.01	0.01
Total Alkalinity	mg/L						410	504	524	· [356				496	387		363	351	308
Total Dissolved Solids	mg/L						1380	1613	1650	1		1404				1595	1 506		1435	1512	1288
Total Inorganic Carbon	mg/L	82.5	42.4	64.3	50.7	80.3				11							[······				
Total Suspended Solids	mg/L															3			9		
Major Ions																	1			<u></u>	
Bicarbonate (HCO3)	mg/L	375	239	362	283	432	499.8	614,4	638.8	T		412.7				604.6	471.8		430.2	406.2	360.7
Calcium	mg/L	123.8	453	57.4	542	129	105	122	127			51.2				100	57.5		46.3	55.8	42,6
Carbonate (CO3)	mg/L	0	<dl< td=""><td>8</td><td>0</td><td><dl< td=""><td>0.5</td><td>0.5</td><td>0.5</td><td></td><td></td><td>10.5</td><td></td><td></td><td>·····</td><td>0.5</td><td>0.5</td><td></td><td>6.1</td><td>10.7</td><td>7.2</td></dl<></td></dl<>	8	0	<dl< td=""><td>0.5</td><td>0.5</td><td>0.5</td><td></td><td></td><td>10.5</td><td></td><td></td><td>·····</td><td>0.5</td><td>0.5</td><td></td><td>6.1</td><td>10.7</td><td>7.2</td></dl<>	0.5	0.5	0.5			10.5			·····	0.5	0.5		6.1	10.7	7.2
Chloride	mg/L	55	53	47	42	54	48.1	55.7	57.2	†		55				55.2	59		57.6	53.5	55
Fluoride	mg/L	12.5	1.6	14.5	13	2.1				<u> </u>			• • • • • • • • • • • • • • • • • • •								
Magnesium	mg/L	47.7	68	39.4	79.6	44	6.9	11	11.4			12				12.8	12.6		12	13.6	10.1
Potassium	mg/L	29	33.5	26.5	38.4	27.6	13.1	19	18.6			16.1				18.8	18		17	19.3	14.1
Sodium	mg/L	498.9	600	643.2	630.5	520	332	456	437			417				471	449		441	460	392
Sulphate	mg/L	1191	2530	1044	2376	1270	625	642	679			636				635	674		640	696	586
Nutrients														<u> </u>							
Nitrate + Nitrite	mg/L	T.		1	1	T				1	1	0.012		I		0.006	0.006	1	0.006	0.009	0.021
Nitrogen - Ammonia	mg/L									1		0.33		·		2.38	0.725		0.71	0.16	0.24
Nitrogen - Kjeldahl	mg/L									<u> </u>		1.92	······································			4.6	2.75		2	1.72	1.2
Phosphorus, Total	mg/L									†		0.05				0.019	0.096		0.076	0.035	0.053
Phosphorus, Total Dissolved	mg/L	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dl<>															
General Organics and Toxicit	y									- <u></u>	(*************************************		<u></u>				<u> </u>				
Biochemical Oxygen Demand	mg/L		T T	T	J					T						2.8	The second s	T.	6.9		
Daphnia LC50	%	>100	NM	NM	>100	NM				1			·····								
Dissolved Organic Carbon	mg/L								•	†						53.6			65		
Microtox (%light output)	%	84			67					<u> </u>											
Naphthenic acids	mg/L						98			86	100	77	85	87	69	76	76	87	68	69	63
Rainbow Trout LC50	%	71	NM	NM	71	NM				<u> </u>							tt				
Total Organic Carbon	mg/L	86.6	91.9	90.9	92.5	96.7				<u> </u>						56.1			65		
	No	ote:																			

NM = not measured

Mean and standard deviation calculation is based on detectable results

Page 2 of 4

Summary of Suncor CT Release Water Chemistry From Field Scale Trials

	1		1	RW163W001-	RW163W028,	RW163W039	P-	RW164	1			[[RW164W040	4	<u> </u>			T
SAMPLE ID and Date		RW163T0017	RW163T0032	W014	29,30	46	RW163W060	(W054,5,6)	RW164T0018	RW164T0033	RW164W002	RW164W028,	47	RW164W062	MIN	MAX	MEAN	N
	Units	Jul-95	Aug-95	Jul-95	Aug-95	Aug-95	Sep-95	Sep-95	Jul-95	Aug-95	Jul-95	Aug-95	Aug-95	Sep-95				<u> </u>
Conventional Parameters																		
Chemical Oxygen Demand	mg/L		[T				Γ					0.001		1
Chlorophyll "a"	mg/L			0.001		0.0024					0.001		0.0032		0.001	0.008	0.003	5
Conductance	µS/cm			2402		1891					2109		1902		1891.000	2402.000	2132.5	6
Hardness	mg/L								1						306.0	1681.3	881.4	5
pH	units			8.16	8.54	8.49	8.38	8.27			8.17	8.22	8.35	8.34	7.9	8.5	8.3	20
Sulphide	mg/L			0.01	0.01	0.01	0.01	0.01			0.01	0.01	0.01	0.01	0.0	0.0	0.0	15
Total Alkalinity	mg/L			472	325	289	343	277			407	318	284	295	277.0	524.0	372.7	18
Total Dissolved Solids	mg/L			1670	1486	1254	1513	1229			1600	1376	1245	1433	1229.0	1670.0	1454.9	18
Total Inorganic Carbon	mg/L]				42.4	82.5	64.0	5
Total Suspended Solids	mg/L			10		17					0.4		3		0.4	17.0	7.1	6
Major Ions															and the second			
Bicarbonate (HCO3)	mg/L		1	575.4	367,9	330.8	401.6	337.7	T		496.1	387.6	333	347.7	239.0	638.8	422.1	23
Calcium	mg/L			82.1	33.3	35.8	58.6	72.3			118	84.5	76.1	88.1	33.3	542.0	115.7	23
Carbonate (CO3)	mg/L			0.5	13.9	10,6	8.1	0.5			0.5	0,5	6.5	5.9	0.0	13.9	4.4	21
Chloride	mg/L			67	66.5	54,4	55	46.5			51.7	50.5	48.9	45.4	42.0	67.0	53.6	23
Fluoride	mg/L													1	1.6	14.5	8.7	5
Magnesium	mg/L			12.5	11.7	9.9	12	7.9			8.5	8.4	7.2	9.5	6.9	79.6	20.4	23
Potassium	mg/L			20.2	18,3	14.8	16.1	13.1			15.4	15.1	11.5	15.5	11.5	38.4	19.5	23
Sodium	mg/L			500	468	408	457	347			399	380	353	405	332.0	643.2	455.0	23
Sulphate	mg/L			700	690	555	705	573			614	644	575	690	555	2530	868.3	23
Nutrients		<u> </u>			·						1							
Nitrate + Nitrite	mg/L		1	0.004	0.004	0.003	0.01	0.025	T		0.038	0.02	0,019	0.019	0.00	0.04	0,0	15
Vitrogen - Ammonia	mg/L			2.41	0.098	0.12	0.36	0.7			2.28	1.362	1.05	0.41	0.10	2.41	0.9	15
Nitrogen - Kjeldahl	mg/L			4.15	1.16	0.95	1.28	1.46			4.05	2.75	1.5	1.43	0.95	4.60	2.2	15
hosphorus, Total	mg/L			0.024	0.073	0.05	0.023	0.039			0.021	0.06	0.025	0.006	0.01	0.10	0.0	15
hosphorus, Total Dissolved	mg/L															<dl< td=""><td></td><td>5</td></dl<>		5
General Organics and Toxicit					Land and the second second								<u></u>					
Biochemical Oxygen Demand	mg/L	Т	Т	2.5	<u>г</u>	3	T		1		1.6		4.1	T	1.6	6.9	3.5	6
Daphnia LC50	- mg/L %			4.5		J					1.0		7.1	++	1.0		>100	2
Dissolved Organic Carbon	mg/L			65.3		65	++				57.1		64		53.6	65.3	61.7	6
Aicrotox (%light output)	- mg/L %			05.5		05									67	84	75.5	2
laphthenic acids	mg/L	87	73	- 94	79	62	69	63	83	70	89	78	62	68	62	100	77.6	26
ainbow Trout LC50	111g/L %					02	07	0.5	0.5	10		/0	02		71	71	71.0	2
otal Organic Carbon	mg/L			65.7		68	++				57,7		64	++	56.1	96.7	75.9	11
		Note:	l		L	00	1		I		57.7	11	FU		50.1			

NM = not measured

Mean and standard deviation calculation is based on detectable results

Page 3 of 4

Summary of Suncor CT Release Water Chemistry From Field Scale Trials

]	NST -1 pool	NST 2-pool		NST-2 pool	NST1-pool low	1	RW162W040		_						
SAMPLE ID and Date	<u> </u>	low Ca	high Ca	NST swimpool	high Ca	Ca	RW162W002-	7	W163W001-W0	RW163W039-4	RW164W002	RW164W040-4	MIN	MAX	MEAN	<u>N</u>
Total Metals																
Aluminum (Al)	mg/L						0.14	0.03	0.1	1.92	0.01	0.05	0.01	1.92	0.38	6
Arsenic (As)	mg/L						0.003	0.0008	0.0028	0.0007	0.0058	0.0025	0.001	0.01	0.003	6
Barium (Ba)	mg/L						0.18	0.11	0.14	0.05	0.13	0.09	0.05	0.18	0.12	6
Beryllium (Be)	mg/L						0.001	0.001	0.001	0.001	0.001	0.001		0.001		6
Boron (B)	mg/L						3.5	3.37	3.74	3.19	3.06	2.7	2.70	3.74	3.26	6
Cadmium (Cd)	mg/L						0.003	0.003	0.003	0.003	0.003	0.003		0.003		6
Chromium (Cr)	mg/L						0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.003	0.002	6
Cobalt (Co)	mg/L						0.003	0.003	0.007	0.003	0.006	0.003	0.003	0.01	0.004	6
Copper (Cu)	mg/L						0.002	0.001	0.001	0.002	0.001	0.003	0.001	0.003	0.002	6
Iron (Fe)	mg/L						0.12	0.04	0.15	1.01	0.04	0.06	0.04	1.01	0.24	6
Lead (Pb)	mg/L						0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	6 -
Lithium (Li)	mg/L						0.173	0.198	0.189	0.188	0.156	0.156	0.16	0.20	0.18	6
Manganese (Mn)	mg/L						0.032	0.016	0.015	0.058	0.035	0.027	0.02	0.06	0.03	6
Mercury (Hg)	mg/L						0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	6
Molybdenum (Mo)	mg/L						1.19	1.15	1.37	1.08	1.42	1.19	1.08	1.42	1.23	6
Nickel (Ni)	mg/L						0.009	0.005	0.023	0.007	0.019	0.018	0.01	0.02	0.01	6
Selenium (Se)	mg/L						0.0007	0.0028	0.0016	0.0014	0.0005	0.0036	0.001	0.004	0.002	6
Silicon (Si)	mg/L						2.96	2.32	2.82	5.58	2.85	3.01	2.32	5,58	3.26	6
Silver (Ag)	mg/L						0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	6
Strontium (Sr)	mg/L						1.02	0.934	1.09	0.752	0.996	0.865	0.75	1.09	0.94	6
Sulphur (S)	mg/L						236	229	249	207	215	186	186	249	220	6
Titanium (Ti)	mg/L		······································				0.003	0.003	0.003	0.009	0.003	0.003	0.003	0.01	0.004	6
Uranium (U)	mg/L						0.5	0.5	0.5	0.5	0.5	0.5	0.50	0.50	0.50	6
Vanadium (V)	mg/L						0.007	0.002	0.002	0.002	0.17	0.131	0.002	0.17	0.05	6
Zinc (Zn)	mg/L						0.043	0.044	0.056	0.043	0.051	0.025	0.03	0.06	0.04	6
Dissolved Metals				<u> </u>			<u> </u>							hann ann ann an ann an an an an an an an		
Aluminum (Al)	mg/L	<dl< td=""><td>0.1</td><td><dl< td=""><td><dl< td=""><td>0.33</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.33</td><td>0.22</td><td>5</td></dl<></td></dl<></td></dl<></td></dl<>	0.1	<dl< td=""><td><dl< td=""><td>0.33</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.33</td><td>0.22</td><td>5</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.33</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.33</td><td>0.22</td><td>5</td></dl<></td></dl<>	0.33	1						<dl< td=""><td>0.33</td><td>0.22</td><td>5</td></dl<>	0.33	0.22	5
Barium (Ba)	mg/L	0.02	0.02	0.03	0.02	0.03	· · · · · · · · · · · · · · · · · · ·						0.02	0.03	0.03	5
Boron (B)	mg/L	3.19	3	4	3.6	2.8							2.80	4.00	3.35	5
Calcium (Ca)	mg/L	123.8	453	57.4	542	129				hannan an a			57	542	295.35	5
Copper (Cu)	mg/L	<dl< td=""><td>0.023</td><td><dl< td=""><td><dl< td=""><td>0.022</td><td></td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.02</td><td>0.02</td><td>5</td></dl<></td></dl<></td></dl<></td></dl<>	0.023	<dl< td=""><td><dl< td=""><td>0.022</td><td></td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.02</td><td>0.02</td><td>5</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.022</td><td></td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.02</td><td>0.02</td><td>5</td></dl<></td></dl<>	0.022							<dl< td=""><td>0.02</td><td>0.02</td><td>5</td></dl<>	0.02	0.02	5
Iron (Fe)	mg/L	<dl< td=""><td>0.06</td><td><dl< td=""><td><dl< td=""><td>0.11</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.11</td><td>0.09</td><td>5</td></dl<></td></dl<></td></dl<></td></dl<>	0.06	<dl< td=""><td><dl< td=""><td>0.11</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.11</td><td>0.09</td><td>5</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.11</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.11</td><td>0.09</td><td>5</td></dl<></td></dl<>	0.11	· · · · · · · · · · · · · · · · · · ·						<dl< td=""><td>0.11</td><td>0.09</td><td>5</td></dl<>	0.11	0.09	5
Lithium (Li)	mg/L	0.32	0.185	0.34	0.37	0.165							0.17	0.37	0.27	5
Magnesium (Mg)	mg/L	47.7	68	39.4	79.6	44							39.40	79.60	57.75	5
Manganese (Mn)	mg/L	<dl< td=""><td>0.21</td><td><dl< td=""><td>0.06</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.21</td><td>0.11</td><td>5</td></dl<></td></dl<></td></dl<>	0.21	<dl< td=""><td>0.06</td><td>0.05</td><td></td><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>0.21</td><td>0.11</td><td>5</td></dl<></td></dl<>	0.06	0.05							<dl< td=""><td>0.21</td><td>0.11</td><td>5</td></dl<>	0.21	0.11	5
Molybdenum (Mo)	mg/L	0.8	0.892	0.3	0.8	0.84			-				0.30	0.89	0.71	5
Potassium (K)	mg/L	29	33.5	26.5	38.4	27.6							26.50	38.40	31.50	5
Silicon (Si)	mg/L	5.82	3.9	2.3	5	4.5	·····						2.30	5.00	3.93	5
Sodium (Na)	mg/L	498.9	600	643.2	630.5	520				·			520	643	598.4	5
Strontium (Sr)	mg/L	2.35	4.3	1.6	4.92	2.09							1.60	4.92	3.23	5
Sulphur (S)	mg/L	479.8	875	394.4	1012	411							394	1012	673	5
Zinc (Zn)	mg/L		0.093	<dl< td=""><td>0.17</td><td>0.08</td><td>·</td><td></td><td></td><td><u></u></td><td></td><td> </td><td><dl< td=""><td>0.17</td><td>0.11</td><td>5</td></dl<></td></dl<>	0.17	0.08	·			<u></u>			<dl< td=""><td>0.17</td><td>0.11</td><td>5</td></dl<>	0.17	0.11	5
lote.	<u> </u>															<u></u>

Note:

<DL = less than detection limit

Mean and standard deviation calculation is based on detectable results

.

Page 4 of 4

Summary of Suncor CT Release Water Chemistry From Field Scale Trials

Target PAHs and Alkylated PAH Naphthalene	ppb		<0.02	1 -0.02	1 -0.00	1	1 -0.0			·
Methyl naphthalenes	ррь ррь	<0.01	0.02	<0.02	<0.02	<0.02	<0.02	-0.01	<0.02	
C2 Subst'd naphthalenes	ppb	-0.01	<0.03	<0.02	<0.04	<0.02	0.05	<0.01	0.05	0.04
3 Subst'd naphthalenes	ppb	0.02	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.04	0.02
4 Subst'd naphthalenes	ppb	0.22	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.02	0.02
cenaphthene	ppb	0.4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.40	0.22
ethyl acenaphthene	ppb	0.05	<0.04	<0.04	0.04	<0.04	<0.04	<0.04	0.05	0.05
cenaphthylene	ppb	<0.01	0.08	<0.02	0,06	<0.02	0.07	<0.01	0.08	0.06
ibenzo(a,h)anthracene	ppb ppb	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	0.01
enzo(a)Anthracene/Chrysene	ppb	<0.01	<0.02	<0.02 <0.02	<0.02	<0.02	<0.02	<0.01	<0.02	0.01
enz(a)Anthracene	ppb		<0.02	<0.02		<0.02	<0.02	<0.01	<0.02	0.01
2 Subst'd Chrysene/Benz(a)Anthi			<0.04						<0.04	
lethyl benzo(a)anthracene/chryse	n ppb		<0.04	<0.04	<0.04	<0.04	<0.04		<0.04	
2 Subst'd benzo(a)anthracene/chr	ррь		<0.04	< 0.04	<0.04	<0.04	<0.04		<0.04	<u> </u>
enzo(a)pyrene	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
fethyl benzo(b&k) fluoranthene/n			<0.02	<0.04	<0.04	<0.04	<0.04	<0.02	<0.04	
2 Subst'd benzo(b& k) fluoranthe	· · · · · · · · · · · · · · · · · · ·		<0.02	<0.04	<0.04	<0.04	<0.04	<0.02	<0.04	
enzo(b&k)fluoranthene enzo(g,h,i)perylene	ррь ррь	0.02	0.08	<0.02	<0.02	<0.02	<0.02	<0.02	0.08	0.08
iphenyl	ppb	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02 <0.04	<0.02	0.02	0.02
lethyl biphenyl	ppb	<0.02	<0.02	<0.04	<0.04	<0.04	<0.04	<0.01	<0.04	0.01
2 Substituted biphenyl	ppb	<0.02	<0.04	<0.04	<0.04	<0.04	<0.04	<0,02	<0.04	0.02
ibenzothiophene	ppb	0.19	<0.04	<0.02	<0.02	<0.02	<0.02	<0.04	0.19	0.19
lethyl dibenzothiophene	ppb	0.02	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	0.02	0.02
2 Substituted dibenzothiophene	ppb	0.28	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.28	0.28
3 Subst'd dibenzothiophene 4 Subst'd dibenzothiophene	ppb	0.51	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.51	0.51
4 Subsl'a dibenzothiophene	ppb ppb	0.53	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.53	0.53
lethyl fluoranthene/pyrene	ррь ррь	<0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.83	0.83
luorene	ppb		<0.02	<0.04	<0.04	<0.04	<0.04		<0.04	
lethyl fluorene	ppb	0.06	<0.04	<0.02	<0.02	<0.02	<0.02	<0.04	0.02	0.06
2 Substituted fluorene	ppb	0.28	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.28	0.28
ideno(c,d-123)pyrene	ppb	0.25	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.25	0.25
henanthrene	ppb	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	0.01
lethyl phenanthrene/anthracene	ppb	0.46	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.46	0.46
2 Subst'd phenanthrene/anthracen 3 Subst'd phenanthrene/anthracen	ppb ppb	0.75	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.75	0.75
4 Subst'd phenanthrene/anthracen	<u> </u>	1.4	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	1	1.00
Methyl-7-isopropyl-phenanthrene		1.1		<0.04	<0.04	<0.04	<0.04	<0.04	1.4	1.40
yrene	ppb	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02	<0.01	<0.02	0.01
arget PANIIs				<u></u>						
ainoline	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
Methyl quinoline	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
2 Subst'd quinoline	ppb	-	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
3 Subst'd quinoline cridine	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
1ethyl acridine	ppb ppb		<0.02	<0.02	<0.02	<0.02	<0.02 <0.02	·	<0.02	
henanthridine	ppb	····	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
arbazole	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
fethyl carbazole	ppb		<0 02	<0.02	<0.02	<0.02	<0.02		<0.02	
2 Subst'd carbazole	ppb		<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	
henolics	T			·					r	
-Cresol	ppb ppb		<0.4	1	<0.4	0.2	<0.4	<0.4	1	
-Cresol	ppb		<0.4		<0.4	0.1	<0.4	<0.4	1	
-Cresol	ppb		<0.4	1	<0.4	0.1	<0.4	<0.4	1	
,4-Dimethylphenol	ppb	_	<0.4	1	<0.4	0.2	<0.4	<0.4	1	
-Nitrophenol	ppb	-	<2	<2	<2	<2	<2		<2	
-Nitrophenol	ppb		<20	<20	<20	<20	<20		<20	
,4-Dinitrophenol	ррб		<20	<20	<20	<20	<20		<20	
,6-Dinitro-2-methyl phenol	ррв	=	<20	<20	<20	<20	<20		<20	
olatile organics	1		<100	~100	<100	~100	<100		~100	r
Accetone	ppb ppb	······	<100	<100 <100	<100	<100	<100 <100		<100	
crylonitrile	pp0 ppb	·	<100	<100	<100	<100	<100	·······	<100	
lenzene	ppb	******	<1	<1	<	<1	<100	<u></u>	<100	
Iromodichloromethane	ppb		<1	<1	<1	<1	<1		<1	
romoform	ppb		<1	<1	<1	<1	<1		<1	
romomethane	ppb		<10	<10	<10	<10	<10		<10	
-Butanone (MEK)	ppb		<100	<100	<100	<100	<100		<100	
arbon disulfide	ррб ррб		<1	<1	<	<	<1		<1	
arbon tetrachloride	ppb ppb	·····	<1	<	<1	<	<1	· ·····	<1	
hloroethane	ppb		<10	<10	<10	<10	<10		<10	
-Chloroethyl vinyl ether	ppb ppb		<5	<5	<5	<5	<5		<5	
hloroform	ppb		<1	<1	<1	<1	<1		<1	
hloromethane	ppb		<10	<10	<10	<10	<10		<10	
Dibromochloromethane	ppb		<1	<1	<1	<1	<1		<1	
libromomethane	ppb		<1	<1	<1	<1	<1		<1	
2-Dichlorobenzene	ppb		<1	<	<1	<1	<1		<1	
,3-Dichlorobenzene	ppb	·	<1	< <i< td=""><td>< </td><td><1</td><td><1</td><td></td><td><1</td><td></td></i<>	<	<1	<1		<1	
4-Dichlorobenzene	ppb		<1	<1	<1	<1	<1		<1	
is-1,4-Dichloro-2-butene	 		<2 <5	<2 <5	<2 <5	<2	<2 <5		<2 <5	
ichlorodifluoromethane	ppb ppb		<1	<>	<5	<	<>		<1	
I-Dichloroethane	ppb ppb	·	<1	<1	<1	<i< td=""><td><1</td><td>· · · · · ·</td><td><1</td><td></td></i<>	<1	· · · · · ·	<1	
,2-Dichloroethane	ррб ррб		<	<1	<1	<	<1		<1	····
,I-Dichloroethene	ppb		<1	<1	<1	<1	<1		<1	
	рръ		<1	<1	<1	<1	<1		<1	
	ppb		<1	<1	<1	1>	<1		<1	
,2-Dichloropropane	ppb		<1	<1	<1	<	<1		<1	
,2-Dichloropropane is-1,3-Dichloropropene	++		1 41	<[<1	<	<		<1	
2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene	ррб		<							
2-Dichloropropane is-1,3-Dichloropropene ans-1,3-Dichloropropene thanol	ppb ppb		<100	<100	<100	<100	<100		<100	
rans-1,2-Dichloroethene ,2-Dichloropropane is-1,3-Dichloropropene rans-1,3-Dichloropropene thanol thylbenzene thylbenzene thylene dibromide	ррб						<100 <1		<100 <1 <1	

t

Page 1 of 1

Summary of Syncrude NST Release Chemistry From 1995 NST Field Trials

			NST RE	LEASE V	VATER			cc	MPOSI	TION OF POP	REWAT								7
													• •	oper subst				Porewat	
		Wat				2	Grat			luring operat	tions	after acti		rge had ce	ased	quali	ty one r	nonth ai	ter
			deposite	d in the l	MFT cell			(\$	Surface	Nater)		ļ	(Porewa	ater)		a	ctive dis	charge	
					Standard					Standard									
		MIN	MAX	MEAN	Deviation	Ν	MIN	MAX	MEAN	Deviation	N	MIN	MAX	MEAN	N	MIN	MAX	MEAN	N
								Conven	tional P	arameters									
pH	1	8	8.6	8.3	0.2	39	8.34	8.54	8		4	8.33	8.38	8	3	8.25	8.61	8	8
Conductivity	µS/cm	3970	5180	4603	264	39	4270	4590	4370	148	4	4560	4780	4640	3	3850	6060	4553	8
								Major Io	ns										
Bicarbonate	(mg/L)	671	1133	859	84	39	554	834	759	170	4	535	746	625	3	500	1162	689	7
Calcium	(mg/L)	36.2	78.6	56	8	39	52.9	76.6	63	10	4	62.4	73.4	67	3	32.1	109	61	8
Chloride	(mg/L)	471	624	535	29	39	484	509	499	12	4	509	535	519	3	485	719	584	8
Magnesium	(mg/L)	16.6	26.2	20	2.1	39	18.2	25.4	20	3	4	21.7	23.3	22	3	11.5	30.1	19	8
Potassium	(mg/L)	19.7	31.7	26	2.5	39	22.2	30.9	25	4	4	26.1	28.9	27	3	15.7	26.1	20	8
Sodium	(mg/L)	998	1230	1118	58	39	945	1050	981	48	4	1010	1110	1057	3	914	1330	1039	8
Sulphate	(mg/L)	MINMAXMEANDeviationN88.68.3 0.2 390 (cm) 397051804603264394 g/L 671113385984394 g/L 36.278.6568394 g/L 16.626.2202.1394 g/L 16.626.2202.1394 g/L 19.731.7262.5394 g/L 19431322118263394 g/L 2.914.243.50.3394 g/L <0.01					1043	1172	1099	58	4	1285	1312	1295	3	406	2076	943	8
	deposited in the MFT cell MIN MAX MEAN Stand Devia 8 8.6 8.3 0.2 μS/cm 3970 5180 4603 264 (mg/L) 671 1133 859 84 (mg/L) 671 1133 859 84 (mg/L) 667 78.6 56 8 (mg/L) 36.2 78.6 56 8 (mg/L) 16.6 26.2 20 2.1 (mg/L) 19.7 31.7 26 2.5 (mg/L) 998 1230 1118 58 (mg/L) 1043 1322 1182 63 (mg/L) 2.91 4.24 3.5 0.3 (mg/L) 2.01 0.32 0.1 0.1 (mg/L) 2.01 0.32 0.1 0.1 (mg/L) 4.24 3.5 0.3 0.3 (mg/L) 0.01 0.32 0.1						<u></u>	<u> </u>	otal Me	tals									
Aluminum	(mg/L)	Water released from the NST mix deposited in the MFT cell Gra MIN MAX MEAN Standard Deviation N MIN 8 8.6 8.3 0.2 39 8.34 S/cm 3970 5180 4603 264 39 4270 ng/L) 671 1133 859 84 39 554 ng/L) 36.2 78.6 56 8 39 52.9 ng/L) 16.6 26.2 20 2.1 39 18.2 ng/L) 19.7 31.7 26 2.5 39 22.2 ng/L) 1043 1322 1182 63 39 1043 ng/L) 2.91 4.24 3.5 0.3 39 3.16 ng/L) <0.01							<0.01		4	0.389	0.697	0.5	3	0.237	11.8	3	8
Boron	(mg/L)	2.91	4.24		0.3		3.16	4.18	4		4	3.72	4.01	4	3	2.85	3.74	3	8
Iron	(mg/L)			<0.01			<0.01	0.042	<0.01		4	0.052	0.113	0.074	3	0.192	2.46	1	8
Manganese	(mg/L)	<0.01	0.32	0.1	0.1														$[_]$
Molybdenum	(mg/L)	<0.01	0.38	0.2															
Nickel	(mg/L)	<0.01			0.1	39													
Silicon	(mg/L)	2	4.2	2.5			1.97	2.94	2	0	4	2.61	3.06	3	3	5	24	10	8
Titanium	(mg/L)	<0.01	0.24	0.1	0.1	39													
Vanadium	(mg/L)	<0.01	0.25	0.1	0.1	39									Τ				
·····							Ge	eneral O	rganics	and Toxicity									
IC50					15			100	100		4	82	100	91	2	73	100	94	8
IC20	%	10	19		2	39	18	23	21	2	4	15	20	18	2	13	26	20	8
Toxic Units						39													
Naphthenic Acid	(mg/L)	68	99	82	7	17			75		1			94	1				

Data summarized from Syncrude Canada Ltd. (1995).

Page 1 of 7

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

		1			Fresh CT							1													Pond 5 10	D15 10	Pond 5 10	Pend 5 10	Pond 5 10	Pond 5 10	Pond 5 10	Pond 5 1	10 Por
	1	1		mix POND	mix POND	mix POND	mix POND	mix POND	mix POND		1	1		1				1			Pond 5 10 feet	Pond 5 10 feet	Pond 5 10 feet	Pond 5 10 feet	feet	Pond 5 10	feet	feet	feet	feet	feet	feet	
AMPLE ID		CT0108-1		5	5	5	5	5	5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5			t			reet	feet	icet	icet	icci	icei	L		
ATE		Jan-96	Jan-96	Jan-96	Jan-96	Mar-96	Jul-96	Jui-96	Sep-96	Aug-95	Dec-95	Jun-96	Sep-96	Mar-97	Mar-97	May-97	Jul-97	Sep-97	Sep-97	Oct-97	Jan-96	Jan-96	May-96	May-96	Jul-96	Jul-96	Jul-96	Jul-96	Aug-96	Aug-96	Sep-96	Sep-96	
onventional Parameters																					_												
ochemical Oxygen Demand	mg/L							1	1	1	1	l			1						T				1			1				Ι	
onductance	µS/cm	2370	2580					•		2220		2810	2408	2306	2364	2424	2281	2338	2381	2375											~		
ardness	mg/L	401	362							311			434	323	326	438	323	356	411	391					1								
1	units	7,83	7.91	7.7	8.2	7.9	8.5	8.8	8.1	8.3			8,19	8.07	8.03	8,01	8.1	7.97	8.19	8.14	7.8						8,1						
Alkalinity	mg/L							1					0.1	0,01	0.1	0.1	0,1	0,1	0,1	0.1					1	[
otal Alkalinity	mg/L		550					1	1	438			521	485	507	539	451	464	520	518					1								
tal Dissolved Solids	mg/L		1780						1	1610			1575	1459	1503	1626	1468	1638	1548	1509	1												
otal Suspended Solids	mg/L									6																							
ajor lons																																	
carbonate (HCO3)	mg/L	758	670	708	750	1046	685	750	774	535			635	591	618	657	550	566	634	631	639			T T	1]	651	1			1	1	T
lcium	mg/L			41	28	53	23	8	41	74.6		157									62	60	72	71	71	66	52	56	59	64	62	70	T
rbonate (CO3)	mg/L	0.5	0.5	0	0	0	14	28	0	<5			0,5	0,5	0.5	0.5	0.5	0.5	0.5	0.5	<dl< td=""><td></td><td></td><td></td><td></td><td></td><td><dl< td=""><td>1</td><td></td><td></td><td></td><td></td><td>T</td></dl<></td></dl<>						<dl< td=""><td>1</td><td></td><td></td><td></td><td></td><td>T</td></dl<>	1					T
loride	mg/L	44,4	57,4	52	42	58	94	46	45	57.8			58	55.8	56	54.1	63.4	58	57.2	56.2	56	57	50	50			54	1	56	56	58		T
uoride		5.84	5.16												3.3	2.96																	
droxide	mg/L												0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1				1								
agnesium	my/L			17	17	17	11	6	17	30.4					1						25	26	27	27	26	25	22	23	24	23	25	26	
tassium	mg/L			17	18	23	20	15	21	18.5													26	26	24	23			26	26	25	26	
dium	mg/L			402	390	514	504	354	467	471		510			1						374	374	501	497	464	443	383	418	455	442	459	486	
iphate strients	mg/l.	658	745	360	292	429	500	140	519	772		980	615	555	594	665	592	694	600	570	791		685	683			766		701	707	804		
itrients																																	
trate + Nitrite	mg/L	0.043	0,030		1			[1	< 0.05			0.07	0.84	0,036	0.013	0.15	0.025	0.05	0.05					1			1			1	T	T
trogen - Ammonia	mg/L		•						1	8.20											1												T
osphorus, Total	mg/L								1	0.015					1																		T
osphorus. Total Dissolved	mg/L mg/L mg/L	<0.1	<0.1							0.004					0,1	0.1					1						·					1	T
neral Organics and Toxicity	and and a second		THE REAL PROPERTY AND A		Competence of the second s									· · · · · · · · · · · · · · · · · · ·		ter in state of the									· · · · · · · · · · · · · · · · · · ·	·					Concernance of the co		
solved Organic Carbon	mg/L	III.	·······	1	1				T	48					T			<u> </u>		[T			[1	1		1			1	}	T
crotox IC50 d. 15 min	%					· · · · · · · · · · · · · · · · · · ·						100			t						1				+							1	-
phthenic acids	mg/L		····							78	83	50									1										1	1	+
al Recoverable Hydrocarbons	mg/L								t	0.9					t						*****				· · · · · · · · · · · · · · · · · · ·						+	1	-

Notes: Mean and standard deviations were calculated based on detectable results

.....

Table II - D.1 Page 2 of 7

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

		Pond 5	Pond 5		T	Dende		. [1 1		T		1	1	D 1.6	D 16		Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pend 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5
		average of	water (Jul-	Pond 5	Pond 5 water		Pond 5 water surface	Pond 5 water	Pond 5 water	Pond 5 water	Pond 5 water	Pond 5 water	Pond 5 water	Pond 5 water		Pond 5 water	Pond 5 water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water	water
SAMPLE ID		depths	Sept.)	water 10 ⁴	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface
DATE		Jul-96	Aug-96	Mar-96	Nov-95	Jan-96	Jan-96	Jan-96	Mar-96	Mar-96	Mar-96	Mar-96	Mar-96	Apr-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	May-96	Jun-96	Jun-96	Jun-96	Jun-96	Jun-96	Jun-96	Jun-96	Jun-96
Conventional Parameters		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													Server and a server the server server	**************************************				A 10 A 4 4 4 1 1 4 4	· · · ·			terror and the terror of		••••••								
Biochemical Oxygen Demand	mg/L					1	1		1		ſ	1									Γ				l									
Conductance	µS/cm					· · · ·			1				1																					
Hardness	mg/L units																																	
		7.94	7.8	7.7	8,5	7.9		7.2	7.7	7.7	7.6	8	7.6	7.8			7.9	7.8	6.8	6.9	7,3	7.5	7.5	7.4	7.5	7,6	7.9	7.8	7.8	7.7	7,7	7.7	7.3	7.6
PP Alkalinity	mg/L mg/L mg/L mg/L														_										1									
Total Alkalinity	mg/L						ł						1			1																		
Total Dissolved Solids	mg/L																																	
Total Suspended Solids	mg/L														_										I			,						
Major lons																												and a second sec						
	mg/L	600	640	838	436	635		509	838	874	727	745	813	820			835	715	692	752	685	761	722	740	747	747	691	722	731	692	716	792	610	619
Calcium	mg/L	71.5	62	118	45	47	51	143	118	119	92	97	125	116	69	73	119	94	120	119	113	107	105	106	105	101	121	101	100	79	87	104	97	69
Carbonate (CO3)	mg/L	<dl< td=""><td><dl< td=""><td>0</td><td>3</td><td><dl< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0</td><td>3</td><td><dl< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></dl<></td></dl<>	0	3	<dl< td=""><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></dl<>		0	0	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chloride	mg/L	68.2	57	81	120	57	43	163	81	83	58	46	62	62	50	51	83	56	83	57	56	56	57	56	55	56	83	55	55	75	75	78		69
Fluoride																								· · · · · · · · · · · · · · · · · · ·										
Hydroxide	mg/L							1																										
	mg/L	24.5	24	25	46	21	23	29	25	25	25	25	25	25	26	27	26	29	26	26	25	25	26	25	25	25	26	28	28	25	25	25	24	23
Magnesium Potassium	mg/L mg/L	22.75	24	27	19			24	27	28	27	27	24	26	25	26	28	32	30	30	29	29	28	28	27	27	28	32	32	29	27	27	25	22
Sodium	mg/L	430	438	453	510	375	356	463	453	435	437	452	463	434	489	498	442	492	461	433	415	435	430	430	431	437	447	481	483	437	422	431	432	438
Sodium Sulphate Nutrients	mg/L	690.6	737	776	818	799	597	704	776	792	779	608	666	753	693	713	802	762	795	782	771	767	787	768	751	765	779	753	757	842	869	903		746
Nutrients																																		
Nitrate + Nitrite	mg/L						Ι		1				l					I			1		Ī	l	1		1			1	T.			
Nitrogen - Ammonia	mg/L																																	
Phosphorus. Total	mg/L mg/L																				1										·			
Phosphorus. Total Dissolved	mg/L								[
General Organics and Toxicity									2000 CONTRACTOR 1000																									
Dissolved Organic Carbon	mg/L	T	T T	T				1	1					[l l	I	l	1		1			1	1			
Microtox IC50 (a) 15 min	%							1																	<u> </u>	I								
Naphthenic acids	mg/L						l	1													1													
Total Recoverable Hydrocarbons	mg/L						<u> </u>																											

Table II - D.1 Page 3 of 7

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

		Pond 5	Pond 5	Pond 5	Pond 5	Beadford		n		T			1		1	1		1	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	Pond 5	1					1
0		water	water	water	water	Pond 5 water	1 .	1	r Pond 5 water	Pond 5 water	Pond 5 water		Pond 5 water	Pond 5 water	Pond 5 water	Ι		Pond 5 water	water	water	water	water	water	water	water	water	water						
SAMPLE ID		surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface	surface		Pond 5-1	Pond 5-2	POND 5W	POND 5W	POND 5W	POND 5W
DATE	1.	Jun-96	Jun-96	Jul-96	Jul-96	Jul-96	Jul-96	Jul-96	Jul-96	Aug-96	Aug-96	Aug-96	Sep-96	Sep-96	Sep-96	Sen-96	Sep-96	Oct-96	Oct-96	Oct-96	Oct-96	Oct-96	Oct-96	Nov-96	Dec-96			Aug-96			Feb-97	Mar-97	
Conventional Parameters							- Accessor (Accessor (Acces) (Accessor (Accessor (Accessor (Accessor (Accessor (Access						deserved and the second		<u> </u>	1	de la constance									1 1/10/ 21							1
Biochemical Oxygen Demand	mg/L				T		Ţ	1	1	1			1		1	1	[1	T		1		T	1		T	T	2.1	6,1		1		T
Conductance	μS/cm															1							1			1		2296	2280	2303	2300	2505	2501
Hardness	mg/L															1				-						1		334	326	337	320	442	448
рН	units			7,8	7.8			7.9		7.7			8	7.4		1	1	7.8	7.8	7.4	7.4			8.1	7,4	7.6	7.5	8.18	8.18	8.06	7.94	7.6	7.67
PP Alkalinity	mg/L																						1			1	1			0.1	0.1	0,1	0.1
Total Alkalinity	mg/L				1													1					1			1		487	488	475	456	534	539
Total Dissolved Solids	my/l																						1			1	1	1579	1498	1572	1538	1610	1623
Total Suspended Solids	mg/L					1																				1		<0,4	48				
Major lons																																	
Bicarbonate (HCO3)	mg/L			734	744	[T	633	T	625	1		670	759	1	1	T	730	731	632	662			524	696	752	697	594	595	579	556	651	657
Calcium	mg/L mg/L	70	82	106	110	59	59	48	52	83	64	66	118	120	63	69	67	103	104	60	60	62	61	102	114	115	118		85				1
Carbonate (CO3)	mg/L			0	0			<dl< td=""><td></td><td>0</td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.5</td><td>0,5</td><td>0.5</td><td>0.5</td><td>0.5</td><td>0.5</td></dl<>		0			0	0				0	0	0	0			0	0	0	0	0.5	0,5	0.5	0.5	0.5	0.5
Chloride	mg/L	58	68	55	56			51		27	55	53	85	61	57			57	56	69	69	69	69	66	60	56	83	52	44	56.4	55.7	56.8	. 56
Fluoride																										1	1			4,2	3.4		
Hydroxide	mg/L															1	1													0.5	0.5	0.5	0.5
Magnesium Potassium	mg/L	24	24	28	29	26	25	22	23	31	24	24	26	26	25	25	25	27	28	22	22	24	23	30	25	25	26	28.1	27.5				
	mg/L,	23	24	32	32	24	23			25	27	26	28	29	26	26	24	32	32	21	22	22	22	25	26	29	29	19.6	18.2				
Sodium	mg/L	438	435	505	498	467	430	404	404	465	445	445	436	442	456	484	441	489	495	405	416	434	410	492	442	447	464	441	422				
Sulphate Nutrients	mg/L	577	749	759	760			715	1	689	694	668	821	753	797			768	763	744	743	743	745	835	713	767	802	654	604	659	664	674	680
Nutrients																	Sector Sector Sector Sector					Street States and the st					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						
Nitrate + Nitrite	mg/L								T	1	I		1			ł	1	T	1							1	1	0.016	0.016	0.02	0.023	0.089	0.026
Nitrogen - Ammonia	mg/L				1																					1	1	6.31	6.42				
Phosphorus, Total	mg/L									<u> </u>						t	1.									1		0,008	0.020				
Phosphorus, Total Dissolved	mg/L				1				1														· · · · · · · · · · · · · · · · · · ·				+			0.1	0.3		
General Organics and Toxicity										*			Contraction of the second second						to the second	******			A			A		and the second					
Dissolved Organic Carbon	mg/L	T	I	MONTH A					T	I THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERT	T		1			T	1	T	1				I	<u> </u>		T	1	48.5	51.7				1
Microtox 1C50 /a 15 min	%				1					[1								<u> </u>	1						1
Naphthenic acids	mg/L															l	1									+	1						
Total Recoverable Hydrocarbons	mg/L				1				1								<u> </u>									+	1	<1	<				

Table II - D.1 Page 4 of 7

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

	T		T				1							[T	
SAMPLE ID		POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND SW	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	Pond 5W2	MIN	мах		STD.DEV	
DATE	+	Apr-97	Apr-97	May-97	May-97	Jun-97	Jun-97	Jul-97	Jul-97	Jul-97	Jul-97	Aug-97	Aug-97	Sep-97	Sep-97	Nov-97	Oct-97	MILLA	MAA	MEAN	SID.DEV	
Conventional Parameters	1	1 Apr-57	<u>1 Apr-97</u>		(via)-97	1 341-37	1 3011-27		301-77	301-77	J Jul-77	Aug	Aug-77	1 301-27	SCIPIT	1101-57		1		1	<u>L</u>	
Biochemical Oxygen Demand	me/L	1	1	1	1	1	r estation and the					r		T			Г Т	2.1	6.1	4.1	TT	
Conductance	uS/cm	2448	2354	2394	2428	2314	2270	2390	2342	2305	2330	2424	2296	1380	2298	2322	2315	1380	2810	2346	203.46	34
Hardness	mg/L	420	369	418	428	296	351	386	337	305	310	316	2270	228	335	365	416	228	448	360.9	53.5	33
au	units	7,73	7.87	7.62	7.9	8.02	7.94	8.04	7.99	8.02	8.05	8.09	8.08	7.93	8,13	8.07	7.9	6.80	8.80	7.82	0.32	84
PP Alkalinity	mg/L	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	01	0.1	0.1	0.1	0.1	0.00	0.10	0.10	0.02	28
Total Alkalinity	mg/L	516	503	555	539	472	494	531	482	469	467	482	479	314	481	503	524	314	622	499.0	49.1	32
Total Dissolved Solids	mg/L	1530	1550	1577	1607	1525	1558	1603	1558	1402	1476	1571	1515	856	1604	1537	1628	856	1780	1541.3	144.5	32
Total Suspended Solids	mg/L				1007	1525		1005										<0.4	48.00			1
Major lons				L			1			Water Barrister				1	11 C 214 Web 1997		Lesson and the second second	-				
Bicarbonate (HCO3)	mg/L	629	613	677	657	575	602	647	588	572	569	588	584	383	586	613	639	383.00	1046	673	97.7	84
Calcium	mg/L	(12)		0//		575	002		500					505				8.00	157	82.4	29.4	80
Carbonate (CO3)	mg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	<0L	28	0.78	3.5	83
Chloride	mg/L	54.3	56.4	53	51.8	61.8	55,8	59.3	59.8	58	56.9	57	53.2	31.6	57.8	56.6	53,4	27.00	163	60.6	16.29	99
Fluoride		27,2	2.011	3.68	3.52	3,5	3.08		3.52	4.3	3.8	4.1	3.4		3.9	2.84	42	2.84	5.84	3.84	0.77	17
Hydroxide	mg/L	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.50	0.50	0.50	0	28
Magnesium	me/L				-10													6	46	24.7	4,40	80
Potassium	mg/L																	15	32	25.6	3.78	72
Sodium	mg/L																· · · · · · · · · · · · · · · · · · ·	354	514	445.6	36.11	81
Sulphate	mg/L	617	658	636	674	624	650	678	644	535	628	656	633	322	694	628	654	140	980	691.1	123.28	99
Nutrients																					the second second	And in case of the local division of the loc
Nitrate + Nitrite	mg/L	0,003	0,003	0.015	0.007	0.037	0,01	0.003	0,029	0.031	0.032	0.047	0.01	0.107	0.022	0.012	0.015	0.003	0,84	0.06	0.15	32
Nitrogen - Ammonia	mg/L																	6.31	8.20	6.37	tt	3
Phosphorus, Total	mg/L																	0.01	0.02	0.01	1	3
Phosphorus, Total Dissolved	mg/L			0.1	0.1	0.1	0.1		0.1	0.1	0,1	0,1	0,3		0,1	0.1	0.1	0.00	0.30	0.12	0.06	19
General Organics and Toxicity	internet internet			THE PROPERTY OF THE PARTY OF													1 - 0 - 1					
Dissolved Organic Carbon	mg/L	I	2000 C		1			1]								1	48.50	51.70	50,10	T	3
Microtox IC50 'a'; 15 min	%																		100	1	11	3
Naphthenic acids	mg/L		- 17-17-17-17-17-17-17-17-17-17-17-17-17-1															50	83	67		3
Total Recoverable Hydrocarbons	mg/L																	0.9	<1	1	1	3
	·				******								tucount and the state	<u> </u>			terrent terrent open			· · · · · · · · · · · · · · · · · · ·	desperation of some stark	

Page 5 of 7

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

SAMPLE ID		CT0108-1	CT1219	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	POND 5	Pond 5-1	Pond 5-2	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W
DATE		Jan-96	Jan-96	Aug-95	Sep-96	Mar-97	Mar-97	May-97	Jul-97	Sep-97	Sep-97	Oct-97	Aug-96	Aug-96	Jun-96	Feb-97	Mar-97	Mar-97	Apr-97	Apr-97	May-97	May-97
Total Metals						L		1							-L							
Aluminum (Al)	mg/L	T	0.02	0.420	1	1	<u> </u>						0.08	0.53	T	1		1	T			1
Arsenic (As)	mg/L		0.0046	0.0060	1	1	1						0.007	0.059								
Barium (Ba)	mg/L		0.06	0.121	1			,					0.16	0.16				l				
Bervllium (Be)	mg/L	1	0.003	< 0.001	1	-							0.006	0.006								
Boron (B)	mg/L		3.19	2.63									3.62	3.39		1						
Cadmium (Cd)	mg/L		0.0066	0.0016	1	+							< 0.003	< 0.003								
Chromium (Cr)	mg/L		< 0.002	0.0007									0.023	0.021				<u> </u>				
Cobalt (Co)	mg/L		0.0045	0.0020									< 0.003	< 0.003			·····			<u></u>		
Copper (Cu)	mg/L		0.003	0.0035																		<u> </u>
Iron (Fe)	mg/L	1	< 0.01	0.19	1								0.06	1.17								
Lead (Pb)	mg/L	1	< 0.0003	0.0108									< 0.02	< 0.02		1						
Lithium (Li)	mg/L		0.201	0.185									0.19	0.175								[
Manganese (Mn)	mg/L		0.024	0.0260			 						0.065	0.116			······································					
Mercury (Hg)	mg/L		< 0.05	<0.0001								-	<0.05	< 0.05			······································				-	[
Molybdenum (Mo)	mg/L		1.14	0.739									1.08	0.99							······	
Nickel (Ni)	mg/L		0.0295	0.0108									0.022	< 0.005								
Strontium (Sr)	mg/L			1.07									1.59	1.49								
Vanadium (V)	mg/L			0.0269									0.005	0.007								
Zinc (Zn)	mg/L			0.018									0.021	0.024								
Dissolved Metals																						
Aluminum (Al)	mg/L	0.09	ſ	0.0397			0.06	0.01							0.01	0.04		[l l		0.01	0.01
Arsenic (As)	mg/L	0.0038		0.0057																		
Barium (Ba)	mg/L	0.07		0.118			0.14	0.13							0.12	0.16					0.13	0.13
Beryllium (Be)	mg/L	< 0.001		<0.0005		[0.001	0.001		· · · · · ·					0.12	0.001					0.001	0.001
Boron (B)	mg/L	2.63		2.57			2.84	2.66							2.78	2.79					2.58	2.57
Cadmium (Cd)	mg/L	< 0.003		0.0015			0.001	0.008							0.0245	0.0256					0.0044	0.0051
Calcium (Ca)	mg/L	109	98.7		125	83	84.1	124	83.6	90.5	117	110	87.2		86.9	83.3	126	128	120	101	119	122
Chromium (Cr)	mg/L	0.010		<0.0004			0.014	0.002							0.002	0.007					0.002	0.002
Cobalt (Co)	mg/L	< 0.003		0.0013			0.0024	0.0038							0.0087	0.0007					0.0026	0.0029
Copper (Cu)	mg/L	0.002		0.0070			0.007	100.0							0.001	0.005					0.001	0.001
Iron (Fe)	mg/L	<0.01		<0.01	0.01	0.01	0.01	0.01	0.02	0.06	0.01	0.01			0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Lead (Pb)	mg/L	<0.02		0.00065			0.0003	0.0003							0.0003	0.0003					0.0003	0.0003
Lithium (Li)	mg/L	0.229					0.196	0.19							0.207	0.201					0.178	0.178
Magnesium (Mg)	mg/L	31.2	28		29.6	28	28.1	31.1	27.8	31.6	28.8	28.3	28.1		29.1	27.1	30.8	31.1	29.2	28.4	29.2	29.9
Manganese (Mn)	mg/L	0.052		0.0061	0.094	0.003	0.049	0.109	0.001	0.001	0.09	0.056			0.001	0.005	0.025	0.109	0.114	0.042	0.111	0.114
Mercury (Hg)	mg/L	< 0.05		<0.0002							·											
Molybdenum (Mo)	mg/L	0.893		0.955			0.837	0.819							0.847	0.895					0.768	0.782
Nickel (Ni)	mg/L	0.017		0.0101			0.029	0.0478					10.5		0.128	0.0792					0.032	0.0345
Potassium (K)	mg/L	20.2	21.3		17.2	17.4	16.5	16.2	16.3	17.7	16.8	16.8	19.6		16.7	16.3	15.2	15.4	15.1	14.7	14.9	15.1
Selenium (Se)	mg/L	0.0043	<0.0002	0.0034											2.40	3 10					2.26	2.00
Silicon (Si)	mg/L	2.87	2.61				3.49	3.28							3.49	3.48					3.26	3.08
Silver (Ag)	mg/L	0.003	< 0.0002	<0.0002			0.0008	0.0001	- 102						0.0001	0.0001				285	0.0001	0.0001
Sodium (Na)	mg/L	459	490	- 1 60	414	420	415	407	409 .	463	411	412	441		434	414	381	384	380	385	387	386
Strontium (Sr)	mg/L	1.74	1.57	1.06			1.22	1.36						a	1.21	1.25	·····				1.27	1.3
Sulphur (S)	mg/L	242	266	0.0007			228	249							230	215					235	242
Titanium (Ti)	mg/L	< 0.003	< 0.003	0.0007			0.003	0.003							0.003	0.007					0.003	0.003
Uranium (U)	mg/L	< 0.5	0.0068	0.00465			0.0024	0.0064							0.0126	0.0048			L		0.0056	0.0061
Vanadium (V)	mg/L	0.028	0.052	0.0247			0.009	0.025		·					0.023	0.032			ļ		0.002	0.002
Zinc (Zn)	mg/L	0.002 Notes:	0.004	0.028	l		0.011	0.001						allah - tirra tirabah ar	0.001	0.146				l	0.001	0.001

Notes:

Mean and standard deviations were calculated based on detectable results

Golder Associates Ltd.

Summary of Suncor CT Release Water Chemistry From Commercial Se

SAMPLE ID		POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	POND 5W	Pond 5W2	MIN	MAX	MEAN	STD.DEV	N
DATE		Jun-97	Jun-97	Jul-97	Jul-97	Jul-97	Jul-97	Aug-97	Aug-97	Sep-97	Sep-97	Nov-97	Oct-97					
Total Metals			1	1	1			1	1			1	1		L	1	11	
Aluminum (Al)	mg/L		r	1	T	T	Γ	T	T	T	r	T	1	0.02	0.53	0.21	0.28	4
Arsenic (As)	mg/L mg/L								·		<u> </u>			0.02	0.53	0.02	0.03	4
Barium (Ba)	mg/L mg/L													0.00	0.00	0.13	0.05	4
Beryllium (Be)	mg/L				ļ									<0.00	0.10	0.13	0.002	4
[ļ	ļ			+			[2.63	3.62	3.40	0.002	4
Boron (B) Cadmium (Cd)	mg/L		}		<u> </u>									0.0016		0.007	0.22	4
	mg/L					ļ									0.0066	1	0.01	
Chromium (Cr)	mg/L													0.001	0.02	0.02	0.01	4
Cobalt (Co)	mg/L				 									< 0.003	0.005	0.0045		4
Copper (Cu)	mg/L								ļ					0.00	0.004		0.00	2
Iron (Fe)	mg/L	·····												< 0.01	1.17	0.41	0.66	4
Lead (Pb)	mg/L								<u> </u>	 				< 0.0003	<0.02			4
Lithium (Li)	mg/L											l		0.18	0.20	0.19	0.01	3
Manganese (Mn)	mg/L								ļ					0.02	0.12	0.07	0.05	4
Mercury (Hg)	mg/L								ļ					<0.0001	<0.05			4.
Molybdenum (Mo)	mg/L													0.99	1.14	1.07	0.07	4
Nickel (Ni)	mg/L													<0.005	0.03	0.03		4
Strontium (Sr)	mg/L													1.07	1.59	1.54		3
Vanadium (V)	mg/L													0.01	0.03	0.00		3
Zinc (Zn)	mg/L													0.02	0.02	0.02		3
Dissolved Metals																		
Aluminum (Al)	mg/L	0.05	0.01	1	0.02	0.06	0.01	0.6	0.04		0.02	0.02	0.03	0.01	0.60	0.06	0.14	18
Arsenic (As)	mg/L				0.02		0.01	0.0						0.00	0.006			2
Barium (Ba)	mg/L	0.14	0.12		0.14	0.13	0.12	14	0.13		0.22	0.12	0.17	0.07	14.00	0.95	3.36	18
Beryllium (Be)	mg/L	0.001	0.001		0.002	0.002	0.003	0.001	0.002		0.001	0.001	0.001	<0.0005	0.12	0.01	0.03	18
Boron (B)	mg/L	2.85	2.7		2.83	2.73	2.73	2.88	2.76		2.88	2.71	2.95	2.57	2.95	2.76	0.11	18
Cadmium (Cd)	mg/L	0.0002	0.0002		0.0065	0.0409	0.0639	0.0002	0.002		0.0064	0.0073	0.0039	< 0.003	0.06	0.01	0.02	18
Calcium (Ca)	mg/L	71.3	93.7	107	86.7	76.5	78.9	78.2	74.5	63	85.8	97.6	115	63.00	128.00	97.63	18.92	31
Chromium (Cr)	mg/L mg/L	0.003	0.002	107	0.002	0.006	0.002	0.014	0.013		0.002	0.002	0.002	< 0.0004	0.01	0.01	0.005	18
Cobalt (Co)	mg/L	0.0145	0.002		0.002	0.0054	0.002	0.0222	0.0003		0.0019	0.002	0.0018	0.0003	0.02	0.005	0.01	18
Copper (Cu)	mg/L mg/L	0.003	0.003		0.0024	0.0034	0.0040	0.001	0.0005		0.002	0.0021	0.0010	0.000	0.02	0.003	0.00	18
Iron (Fe)		0.003	0.003	0.01	0.007	0.004	0.001	0.01	0.004	0.01	0.002	0.002	0.58	0.001	0.58	0.03	0.11	30
Lead (Pb)	mg/L	0.0003	0.0003	0.01	0.0003	0.002	0.0003	0.0003	0.0003	0.01	0.0003	0.0016	0.0003	0.0003	<0.02	0.002	0.005	18
	mg/L	0.208	0.198				0.0003	0.0003	0.205		0.201	0.183	0.204	0.0003	0.23	0.20	0.000	17
Lithium (Li)	mg/L			20.0	0.204	0.184		29.2	26.8	17.1	29.3	29.3	31.2	17.10	31.60	28.65	2.50	31
Magnesium (Mg)	mg/L	28.5	28.3	28.8	29.1	27.6	27.4		0.023	0.096	0.001	0.005		0.001	0.11	0.05	0.04	30
Manganese (Mn)	mg/L	0.014	0.017	0.099	0.017	0.005	0.013	0.026	0.023	0.096	0.001	0.003	0.014			0.05	0.04	2
Mercury (Hg)	mg/L	0.0()	0.027			0.022	0.027	0.071	0.042		0.004	0.001	0.02	<0.0002	< 0.05	0.95	0.04	18
Molybdenum (Mo)	mg/L	0.866	0.837		0.876	0.833	0.837	0.871	0.842		0.904	0.881	0.92	0.77	0.92	0.85	0.04	18
Nickel (Ni)	mg/L	0.012	0.0445		0.0364	0.104	0.0956	0.022	0.0005	0.66	0.0096	0.0356	0.0306	0.001	0.13	0.04		
Potassium (K)	mg/L	17.1	15.9	14.8	17	15.6	15.4	17.3	16.4	8.66	17.4	15.4	17.3	8.66	21.30	16.38	2.10	31
Selenium (Se)	mg/L													<0.0002	0.004	0.002	0.003	3
Silicon (Si)	mg/L	3.56	3.37		3.52	3.48	3.41	3.54	3.33		4.31	3.31	3.74	2.61	4.31	3.40	0.35	18
Silver (Ag)	mg/L	0.0001	0.0022		0.0001	0.0001	0.0001	0.0006	0.0001		0.0001	0.0001	0.0001	0.0001	0.003	0.0005	0.001	19
Sodium (Na)	mg/L	434	413	391	427	403	385	439	419	222	426	403	438	222.00	490.00	409.42	43.48	31
Strontium (Sr)	mg/L	1.2	1.22		1.21	1.14	1.12	1.26	1.18		1.29	1.27	1.46	1.06	1.46	1.29	0.16	19
Sulphur (S)	mg/L	233	223		242	226	228	234	207		235	236	248	207.00	266.00	234.39	13.29	18
Titanium (Ti)	mg/L	0.01	0.004		0.003	0.003	0.003	0.011	0.013		0.003	0.003	0.004	<0.003	0.01	0.005	0.003	19
Uranium (U)	mg/L	0.0004	0.0071		0.0051	0.0077	0.0004	0.0079	0.0024		0.0067	0.0046	0.0075	0.0004	<0.5	0.03	0.12	19
Vanadium (V)	mg/L	0.017	0.033		0.033	0.027	0.024	0.002	0.014		0.029	0.035	0.044	0.002	0.05	0.02	0.01	19
Zinc (Zn)	mg/L	0.002	0.009		0.011	0.017	0.005	0.002	0.008		0.015	0.005	0.043	0.001	0.15	0.02	0.03	19

Golder Associates Ltd.

cale :	Γr	ia	ls
--------	----	----	----

Page 7 of 7

9 - 1.1.11

Summary of Suncor CT Release Water Chemistry From Commercial Scale Trials

Type / Max Advand State Value of the second state of the second st	SAMPLE ID DATE		CT1219 Jan-96	POND 5 Aug-95	POND 5 Dec-95	Pond 5-1	Pond 5-2	MIN	MAX	MEAN	STD.DEV	N
Maxim definitionApp of the part of the p	Target PAHs and Alkylated PAHs		JAN-90	1 Vu8-22	Dec-95	Aug-96	Aug-96			l	L	
Signed protectingpp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp<pp< <td></td>												
Skaped and skaped and 	C2 Subst'd naphthalenes											
Anderbance AntipersonalApp.6-92											-	
Antale and and and a set of a	Acenaphthene		<0.02									
addmentadd<												
BodyB									the second s	0.02	0.01	
Control<									and the second se	0.45		
Damage matppday <td></td> <td>0.23</td> <td></td>											0.23	
Migh Lesson 										0.26	0.38	
IntrodeImageOut										0.17	0.18	
Board Alphanepp400401403404<						<0.04	<0.04			0.08	0.07	
Machinglengim Index index interval Schwarter Johnson De 100 Columner Johnson De 100 De 100 Columner Johnson De 100 <pde 100<="" p=""> <pde 100<="" <="" td=""><td></td><td></td><td></td><td></td><td></td><td><0.02</td><td><0.02</td><td></td><td></td><td>·</td><td>+</td><td></td></pde></pde></pde></pde></pde></pde></pde></pde>						<0.02	<0.02			·	+	
Chalandal paramepp0.010.010.000.030.00					and the second se							
Mach J. BandbardsheipePp0.50 <th< td=""><td></td><td></td><td></td><td><0.4</td><td></td><td></td><td></td><td><0.04</td><td><0.4</td><td>0.11</td><td></td><td>5</td></th<>				<0.4				<0.04	<0.4	0.11		5
C Solutional diversition of a set of a s											0.30	the second se
Schart Absochasisherph0.00.00.000.												5
namepicesigns	•											
Internet ppb 6.05 6.02 6.03 6.07 6.04 6.07 6.04 6.04 6.07 6.04 6.04 6.07 6.04 6.04 6.07 6.04 6.07 6.04 6.07										1.44	1.90	
Stabil Stabil Other <										<u></u>	0.29	
Index.d. 2.10 yrea 902 902 902 902 902 902 902 902 902 903											0.12	
Internetionpp6.666.026.026.026.026.026.026.056.056.056.05C3 Sole of point or constrained from the point of the point or constrained from the point of the point o	C2 Substituted fluorene	ррЬ	1.1	<0.4	0.14	0.50	0.54	0.14	1.10	<u> </u>		5
MachMachMathM										0.06		
C3 book Oct Sole <	Methyl phenanthrene/anthracene	ppb	0.79	<0.4	<0.04	<0.04	<0.04	<0.04	0.79	0.23	1	5
C5 Shell phonumber optime mph 17 C7-4 0.01 0.04 1.00 1.00 0.05 0.76 2 Yrine mph 60.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.01 0.03 0.03 0.01 0.03 0.01 0.03 0.01 0.01 0.02 0.02 0.03 0.01 0.01 0.03 0.03 0.01 0.01 0.03 0.01 0.01 0.03 0.01 <th0.01< th=""> 0.01 <th0.01< th=""></th0.01<></th0.01<>												
Nume (ph) 6 60.2 60.2 60.20 </td <td>C4 Subst'd phenanthrene/anthracene</td> <td>ppb</td> <td>1.7</td> <td></td> <td>0.38</td> <td></td> <td></td> <td>0.04</td> <td>1.70</td> <td></td> <td></td> <td>5</td>	C4 Subst'd phenanthrene/anthracene	ppb	1.7		0.38			0.04	1.70			5
Target Arbit Unit				<0.2	-	<0.02	<0.02			0.03		
Material particle rph 4902 4002 0.16 0.15 4002 0.19 0.00 0.00 4 C3 Mart quincline rph 402 402 402 4014 0.18 4002 0.03 </td <td>Target PANHs</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td>	Target PANHs									·		
C3 Solie diponible ppb 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 <th0.03< th=""> 0.03 0.03</th0.03<>												
Acadim (p) 000 000 0.00 0.00 0.00 0.01 4 Methy and law (p) 0.00 0.00 0.01 4 Methy and law (p) 0.02 0.02 0.03 0.01 4 Caluation (p) 0.02 0.02 0.03 0.01 4 Caluation (p) 0.02 0.02 0.03 0.01 4 Methy and law (p) 0.01 0.02										1	1	
Methy isonaline ppb 4002 40.02 40.03 40.05												
Cartasole ppb 40.02 40.2 40.02 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Medyl achaola pb 40.02												
Phends pp 4 2 4002 002 020 2 -Cenal pp 40 2 42 0.02 0.002 0.00 2 -Cenal pp 41 42 0.5 1.00 42 2 0.Creal pb 45.5 42 0.02 0.00 2 2-Nonphylenel pb 4.5 4.04 0.40 2.00 2 2-Nonphylenel pb 4.50 4.00 4 4.4 2.00 2 Apbility-Senthylphenol pb 4.500 4.40 4.4 2.00 2 Applaining pb 4.150 4.150 2 2 2 Applaining pb 4.150 4.150 2 2 2 Carolening pb 4.150 4.15 4.15 2 2 Carolening pb 4.150 4.15 2 2 2 2 2 2 2	WINGLE COMPANY AND A STREET OF A							and the second sec				
Phene pp 02 -2 -0.02 D.02 D.02 <thd.02< th=""> D.02</thd.02<>		ррб	<0.02	<0.2	<0.02	<0.03	<0,05	<0.02	<0.05	0.03	0.01	4
of Creati ppb des.		ppb	0.2	<2	<0.02	1	<u> </u>	<0.02	0.20	T	T	2
pCread gpb do.5 dQ do.02 d0.02 d0.02 d0.02 d0.02 2-Ninerphend gpb dQ d4 d0.4 d0.04 2.0 2-Ninerphend gpb qQ d40 d4 d44 qQ0 2.2 2-A-Dinerphynemol gpb qQ0 d40 d4 d44 qQ0 2.2 2-A-Dinerphynemol gpb qQ0 d40 d4 d44 qQ0 2.2 2-A-Dinerphynemol gpb qQ0 d40 d4 d40 qQ0 2.2 2-Acrolen gpb q1500 <1500		ppb										
24-Dimetrybined ppb 0.5 42 1.0 0.50 1.00 . 2 Atticeptend ppb 430 440 44 420 2 Atticeptend ppb 430 440 44 420 2 Atticeptend ppb 430 440 44 420 2 Attice spend ppb 430 440 44 420 2 Actorian ppb 4150 4150 4150 2 2 Actorian ppb 4150 4150 415 415 2 Benzoe ppb 4150 415 415 2 2 Bunnoform ppb 4150 415 415 2 2 Dumoform ppb 4150 415 415 2 2 Dumoform ppb 415 415 415 2 2 Dumoform ppb 415 415 415				1								
4-Ninophand ppb 2-00 4-40 4-4 2-20 2-2 4-Diniroz-methyl phan0 ppb 2-20 4-40 4-4 4-20 2 4-Diniroz-methyl phan0 ppb 2-20 4-40 4-4 4-20 2 4-Colini-z-methyl phan0 ppb 4-1500 4-1500 2 2 Acrolein ppb 4-1500 4-1500 4-1500 2 Acroleini-or ppb 4-1500 4-1500 4-1500 2 Branacichizoranchane ppb 4-150 4-15 4-15 4-15 Branacichizoranchane ppb 4-150 4-15 4-15 2 Choronemachane ppb 4-150 4-15 4-15 2 Choronemachane ppb 4-150 4-15 4-15 2 Choronemachane ppb 4-15 4-15 4-15 2 Choronemachane ppb 4-15 4-15 2 2 Choronemachane ppb			0.5	<2	1.0			0.50	1.00			2
24-Dim/ophenel phon ppb -200 -440 -44 -200 -2 Value cranics -440 420 2 Value cranics -440 420 2 Value cranics ppb -1500 41500 2 Acrolen ppb -1500 41500 2 Acrolen ppb -1500 41500 2 Bransdelhoronethane ppb -151 415 4150 2 Bransdelhoronethane ppb -151 415 2 2 Bransdelhoronethane ppb 4150 415 2 2 Bransdelhoronethane ppb 4150 415 2 2 Bransdelhoronethane ppb 4150 415 2 Caboat stard ppb 4150 415 2												
Vinitia ppb (150) <th< td=""><td>2,4-Dinitrophenol</td><td>ppb</td><td><20</td><td><40</td><td><4</td><td></td><td></td><td><4</td><td><20</td><td></td><td></td><td>2</td></th<>	2,4-Dinitrophenol	ppb	<20	<40	<4			<4	<20			2
Action pph Arrolin pph Arrolinitic pph Parame pph Berazie pph		ррб	<20	<40	<4	1	<u> </u>	<4	<20		<u> </u>	2
Acrybanikie ppb 41500 41500 41500 41500 Branzen ppb 415 415 415 2 Bromoform ppb 415 415 2 Bromoform ppb 415 415 22 Bromoform ppb 4150 415 22 Bromoform ppb 4150 4150 22 Domoform ppb 4150 4150 22 Carbon drashufe ppb 4150 415 22 Chorokarane ppb 415 415 22 Chorokarane ppb 415 415 22 Dichorocharane ppb 415 415 22 Dichoro		ppb	<1500	<u> </u>	<1500	T	1	r	<1500	T	1	2
Batzane ppb <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15												
Brondschorenchane ppb <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15 <15			<u> </u>									
Brommerkane oph <150 <150 <150 <150 <150 <150 <150 <150 <150 <150 <150 <150 <150 <122 Carbon disslifids pph <151		ррЪ							<u> </u>			
2-Burance (MEK) ppb <1500												
Carbon tranchorde ppb <15 <15 <16 <12 Chloroethare ppb <15	2-Butanone (MEK)	ppb	<1500		<1500				<1500			2
Charobenzene ppb <15 <15 <15 2 Chlorobenzene ppb <150	· · · · · · · · · · · · · · · · · · ·											
2Chooreshy vinje eher ppb <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75 <75			<15		<15				<15			2
Chloroform ppb <15 <15 <15 2 Chloromethane ppb <150						ļ						
Dibromachlane ppb <15 <15 <15 22 Dibromonentane ppb <15	Chloroform	1	<15		<15				<15			2
Dibmonethane ppb <15 <15 <15 21 1.2.Dichloroberzene ppb <15									<u> </u>		+	
1.3-Dichlorobenzene ppb <15 <15 21 1.4-Dichlorobenzene ppb <15	Dibromomethane	ppb	<15		<15		İ		<15	1	1	2
1.4-Dichloros-2-butene ppb <15											1	
rans-1,4-Dichloro-2-butene ppb <75 <75 <75 2 Dichlorodifluoromethane ppb <15	1,4-Dichlorobenzene	ppb	<15		<15		· · · · ·		<15	·		2
Dicklorodifluoromethane ppb <15 <15 <15 <15 21 1,1-Dickloroethane ppb <15					<u> </u>			 	1		+	
1.2-Dichloroethane ppb <15 <15 <15 2 1,1-Dichloroethane ppb <15	Dichlorodifluoromethane	ррб	<15		<15	ļ			<15	1	1	2
1,1-Dichloroethene ppb <15 <15 <15 <15 2 trans-1,2-Dichloroptine ppb <15					<u> </u>				1	<u> </u>		
1.2-Dichloropropane ppb <15 <15 <15 2 cis-1,3-Dichloropropene ppb <15	I,I-Dichloroethene	ppb	<15		<15		1		<15			2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						1						
Ethanol ppb <1500 <1500 <1500 2 Ethylbenzene ppb <15	cis-1,3-Dichloropropene		<15		<15				<15	<u>.</u>		2
Ethylbenzene ppb <15 <15 <15 2 Ethylene dibromide ppb <15		ppb			· · · ·		ļ					
Ethylene dibromideppb<15<15<152Ethyl methacrylateppb<3000	Ethylbenzene		<15			<u> </u>	<u> </u>		<15			2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ppb		1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>						<u> </u>		2
Methylene chloride ppb <15 <15 <15 2 Styrene ppb <15		рръ			<15		<u> </u>					<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1		+	1	<u> </u>		1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Styrene	ppb	<15		<15	ļ	ļ	ļ	<15			2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ppb ppb										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Toluene	ppb	<15	1	<15	1	1	1	<15	1	-	2
1,2,3-Trichloropropane ppb <30 <30 2 Trichloropropane ppb <15		1		<u>+</u>	- 1		 .	+		+	+	
Trichlorofluoromethane ppb <15 <15 2 Vinyl acetate ppb <1500	1,2,3-Trichloropropane	ppb	<30	1	<30	1		1	<30		1	2
Vinyl acetate ppb <1500 <1500 2 Vinyl chloride ppb <300						<u> </u>	+		the second s			
Vinyl chloride ppb <300 <300 2 m+p xylenes ppb <15	Vinyl acetate	+		1		1	·					
		ppb	<300	1	<300			1	<300			2
no-xyiene i ppb i <15 i i 15 i i 15 i 15 i i 2	m+p xylenes o-xylene	ppb ppb	<15	+	15			15	<15 <15			2

Mean and standard deviations were calculated based on detectable results

Table II-E.1

Summary of CT Porewater Chemistry

	1	Sur	ncor Bend	h Scale Tr	ial ¹		Syn	crude Fiel	d Sca	le Trial ²			
		Sı	uncor (CA	NMET 199	5)	1	• •	oper substi rge had cea iter)			-	ewater qu after activ arge	- 11
	Units	MIN	МАХ	MEAN	N	MIN	МАХ	MEAN	N	MIN	MAX	MEAN	N
				Co	nventio	nal Parame	ters						
pН						8.33	8.38	8	3	8.25	8.61	8	8
Conductivity	µS/cm					4560	4780	4640	3	3850	6060	4553	8
					Maj	or lons							
Bicarbonate	mg/L					535	746	625	3	500	1162	689	7
Calcium	mg/L	130	150	140	2	62.4	73.4	67	3	32.1	109	61	8
Chloride	mg/L					509	535	519	3	485	719	584	8
Magnesium	mg/L	28.6	33.4	31	2	21.7	23.3	22	3	11.5	30.1	19	8
Potassium	mg/L					26.1	28.9	27	3	15.7	26.1	20	8
Sodium	mg/L	496	580	538	2	1010	1110	1057	3	914	1330	1039	8
Sulphate	mg/L	1192	1526	1359	2	1285	1312	1295	3	406	2076	943	8
					Tota	I Metals							
Aluminum	mg/L		_			0.389	0.697	0.5	3	0.237	11.8	3	8
Boron	mg/L					3.72	4.01	4	3	2.85	3.74	3	8
Iron	mg/L					0.052	0.113	0.074	3	0.192	2.46	1	8
Silicon	mg/L					2.61	3.06	3	3	5	24	10	8
····				Gene	eral Orga	nics and T	oxicity						
IC50	%					82	100	91	2	73	100	94	8
IC20	%					15	20	18	2	13	26	20	8
Naphthenic Acid	mg/L							94	1				

Note: Mean and standard deviation calculations are based on detectable results

¹Suncor bench scale porewater data obtained from April 1995 CANMET Report (WRC 95-26).

²Data summarized from Syncrude Canada Ltd. 1995. Non-segregating Tailings: 1995 NST Field Demonstration Summary Report. Table 4.6.4, 7.2.4

APPENDIX III

...

AVAILABLE TOXICITY DATA

Table III-A Summary of Suncor and Syncrude Acute Toxicity Data Page 1 of 4

3000000							P	age 1 of	4												
Incale	Source	Sample ID	Approx.	Approx.	Water Qu	ality Para									, and the second se		99999999999999999999999999999999999999	****			
			Sample	Age of CT	DO	рН	Conductivity	BOD5		Sulphate	Calcium			c (15 min)						6-hr acute)	
ļ			Date		(mg/L)		(µS/cm)		Acids (mg/L)	(mg/L)	(mg/L)	IC50 (%)	IC40 (%)	IC30 (%)	IC20 (%)	NOEC(%)	LOEC(%)	LC50 (%)	LC25(%)	LT50(hr)	survival(%)
	SUNCOR									·····	r	T		·····					·····		
L L	EVS -Untreated (week 10)		Aug-94	5 mnts + 10 wks																>96	100
SCALI	EVS- Basic (Suncor sediments+TFM) (week 10)		Aug-94	5 mnts + 10 wks																96	50
S(EVS- Basic+P+aeration (week 10)		Aug-94	5 mnts + 10 wks																>96	100
۲ ^۱ د	EVS-Inoculated (Basic+P+aeration+bacteria) (week 10)		Aug-94	5 mnts + 10 wks																>96	100
BCN	EVS-Open (week 10)		Aug-94	5 mnts + 10 wks																>96	100
ā	EVS-Recirculated (week 10)		Aug-94	5 mnts + 10 wks													}			>96	100
	Gypsum- 1994 bench-scale tests		Sep-94			8.2	3230		66	1320	139				53						0
	EVS-Baseline (week 0)		Aug-94	5 months																4	0
.	EVS-Baseline (week 0)		Aug-94	5 months								ļ								9	0
	SYNCRUDE																			[[
	Flume Test Sample		May-95			8.4	3600		76	1040	36	58			13						
	NST Bench Test		Jun-95			8.8	3550			897	19	72			12						
	High CaSO4-WRC (Nov-95)		Jun-95	wks to mnts		•						73						71			
ALF	High CaSO4-WRC (Oct-95)		Jun-95	wks to mnts								74									
	Lower CaSO4-WRC (Nov-95)		Jun-95	wks to mnts								91						71			
s S	Lower CaSO4-WRC (Oct-95)		Jun-95	wks to mnts						ļ		73									
2	NST swim pool (Oct-95)		Jun-95	wks to mnts								71						1			[
ricLD	NST swim pool (Aug-95)		Jun-95	wks to mnts								82									
	Lease 86 (CT made June 95)	RW160-T0013	F C C C C C C C C C C C C C C C C C C C	wks to mnts	6.3	7.8	2100		76	640	100	72	43	25	15			<10			30
	CT Pit 3 (nutrients)	RW162-T0018	Jun-95	wks to mnts					85			64	38	23	13						
		RW162-T0031	Jul-95	wks to mnts					76			100	59	29	15					-	
		RW162-T0033		wks to mnts					87			89	50	28	16						
		RW162-T0057	Sep-95	wks to mnts	8.7	8.5	2200		77	700	56	100	76	36	17			18			20
	CT Pit 2 (no nutrients)	RW163-T0013	Jun-95	wks to mnts	7.1	8	2100		94	700	82	65	38	22	13			<10			0
		RW163-T0017	Jul-95	wks to mnts					87			59	36	22	13						
		RW163-T0030	Aug-95	wks to mnts					79			95	49	25	13						
l í		RW163-T0032	Aug-95	wks to mnts					73			100	57	30	15				ſ	1	
		RW163-T0038	Sep-95	wks to mnts					62			100	84	42	21						
		RW163-T0056	Sep-95	wks to mnts					63			100	91	43	20						
		RW163-T0065	Oct-95	wks to mnts		8.5	2200		69	710	59	81	49	30	18			>100			60
	CT Pit 1 (reservoir)	RW164-T0014	Jun-95	wks to mnts	8.5	8	2100		89	614	120	76	41	22	12		ļ	<10	1		30
1		RW164-T0018	Jul-95	wks to mnts					83			100	77	37	18						
		RW164-T0031	Aug-95	wks to mnts			•		78			100	52	26	13						
		RW164-T0033		wks to mnts					70			100	57	27	13						
		RW164-T0039		wks to mnts					62			100	66	35	18						
		RW164-T0057	· · ·	wks to mnts					63			100	95	45	22						
	offers to construct of such as the	RW164-T0067		wks to mnts	10.7	8.3	2200		68	690	88	93	47	24	12			<10		1	0
	nflow to constructed wetlands		Jun-95	wks to mnts	8.7	8	600		4	73.3	50.4	>100		1	>100			>100			100 100
	Dutflow to constructed wetlands CT composite of above samples	DIAMER	Jun-95	wks to mnts	6.5	7.4	620		5.2	63.2	58.2	>100			>100	0.0	50	>100	24		100
	CT Wetland (95)- Trench 1	RW159	Jun-95	wks to mnts		<u> </u>			~~	504	70	100			0.5	25	50	37	31		100
	CT Wetland (95)- Trench 9		Jun-95	wks to mnts	10	8.1	1700		66 67	564	72	100	{	1	25			>100]		100
	CT Wetland (95)- Trench 5		Jun-95	wks to mnts	6.4	7.8	1860		67 71	581 608	61.5	100			15			>100			100 50
	CT Wetland (95)- Trench 8		Jun-95	wks to mnts	7.5	7.9	1920		71	608	69.3	100			18			55			50 100
	SYNCRUDE	<u> </u>	Jun-95	wks to mnts	7	7.8	1580		54	454	61.5	95	l	1	23		l	>100	L	<u> </u>	100
- L-	995 CT water (fresh)	·	Aug OF T				4705	т	75	1286	102	100	I	<u> </u>	1 20	m	r	60	r	r	
	995 CT water (8 months)		Aug-95 Jun-96	Fresh 8 months			4785		10	1200	102	100			28 26		1	60 100			90
	995 CT water (11 months)		Aug-96	1														100			100
	995 CT water (21 months)			11 months								1			49			100	1		100
	CT Oct. 95 (NSTPD1)		Aug-97	21 months											55			60			0
	CT June 96 (NSTPD1)		Oct-95	composite?											28			60			90
	T Aug. 96 (NSTPD1)		Jun-96	composite?	1							ļ			26			100		ļ	90 100
	IST release water (from NST mix deposited in MFT cell) ¹		Jun-96	composite?		0.0	4000		07	1190	56	01			49			100	[100
	Porewater deposited in NST cell (grab sample-surface) ¹	1 1	Aug-Oct 95	composite?		8.3	4603		82 75	1182 1099	56 63	81 100			13						
	Porewater deposited in NST cell (grab sample-surface)	1 1	Aug-Oct 95	composite?		8	4370		75 94	1	63	100 91			21			1]		
	orewater deposited in NST cell (grab -porewater)		Aug-Oct 95 Aug-Oct 95	composite?		. 8	4640		94	1295 943	67	91			18 20				-		
L	erenator depended in nor cell (porewater profile)	1	Aug-Oct 95	composite?		<u> </u>	4553			543		34	L	<u>I</u>	<u> </u>	1	l	1	L	L	

				C			d Supar		vicity Dat	10									
				5u	mmary			ude Acute To	Nony Dat	La									
Coole	Source Sample ID	Anna		1141-1 0			age 2 of				T				-			******	
Call	Source Sample D	Approx. Sample	Approx.	Water Qu		Conductivity	BOD5	Naphthenic	Sulphate	Calcium		Microtox	(15 min)			Trout	Survival (9	6-br acuto)	
1		Date	Age of CT	DO (mg/l)	pH	(µS/cm)	6003	Acids (mg/L)	(mg/L)	(mg/L)	10.50 (%)		IC30 (%) IC20 (%)	NOFC(%)	LOFC(%)				
μ	SUNCOR			(mg/L)		(µ3/cm)	+		((mg/m)		1040 (70)		1020(70)	2020(70)	2000 (707		<u></u>	
	Pond 5	Aug-96	composite?	+	7.83	2750	<u> </u>	83			100		30						
SUA	Pond 5	Aug-96	composite?		7.87	2560		87			100		18						1
	Pond 5	Aug-96	composite?		7.75	2330		79	1		90		18						(
, AL	Pond 5- surface	Aug-96	composite?		7.19	2570		64			100		36						1
Ľ	Pond 5- 3 m depth	Aug-96	composite?		7.11	2650		65			100		33						
Σ	Pond 5- 5.8 m depth	Aug-96	composite?		7.06	2650		66			100		35						ı
MMO.	Pond 5- Catwalk #3 (porewater)	Aug-96	composite?		8.93			53			100		42						1
د	Pond 5- #3	Aug-96	composite?		8.39	2140		65			100		29						
	Pond 5- Catwalk#1 (surface)	Aug-96	composite?		8.45	2200		75			100		28						ı
	Pond 5- Catwalk#1 (bottom)	Aug-96	composite?		8.64	2180		70			100		32						1
	Pond 5- Catwalk#2 (2 m depth)	Aug-96	composite?		8.64	2180		76			100		23						
	Pond 5- Catwalk#3 (2 m depth)	Aug-96	composite?		8.61	2210		75			100		31						1
	Pond 5- Drain #1	Aug-96	composite?		8.15	2230		66			100		42						i
	Pond 5- Drain #2	Aug-96	composite?		8.34	1924		64			100		26						1
	Pond 5- Catwalk #3 (porewater)	Aug-96	composite?		8.17	2150		63			100		41						
	Pond 5- Catwalk #3	Aug-96	composite?		7.76	2240		57			100		20						1
	Pond 5- Catwaik #1 (all depths)	Aug-96	composite?		8.4	2020						[]		[50-100			0
	Pond 5- Catwalk #1 (all depths)	Aug-96	composite?																1
	Pond 5- CT Grab (in Aug. 21)	Aug-97	composite?	7.4	8.3	2190	3.4				>91		32			71			(İ
	Pond 5- CT water	Oct-97	composite (fresh)	8.6	7.7	2410					>91		>91			62			(I
	Pond 5- CT water (composite)	Oct-97	aged 3 wks	8.6	7.7	2410										-		*	.
	Pond 5- CT water (composite)	Oct-97	aged 6 wks	6.4	8.2	2730	3.7									71			i

Table III-A

Data summarized from Syncrude Canada Ldt. 1995 NST Field Demonstration Summary Report. Table 4.6.4, 7.2.4

.

Table III-A Summary of Suncor and Syncrude Acute Toxicity Data Page 3 of 4

				Page	e 3 of 4								
Source	Trout	Fatbe	ad Minnow (7 day)		D	aphnia Sur	vival (48-hr	acute)		Cerii	odanhnia S	urvival test (7 day)	Reference
			_OEC (%) NOEC (%) sur						NOEC(%)	1 OFC(%)	1 C25 (%)	LC50 (%) Surviva	1/%)
SUNCOR	1(,	1 (() 1 2000 () 3) [// =====(////	1				LO23 (70)	2030 (78) 501 4148	(1/0)
EVS -Untreated (week 10)	100	Т		T			Τ	[Г			60	Suncor EVS report 1995a
EVS- Basic (Suncor sediments+TFM) (week 10)	68											100	
EVS- Basic+P+aeration (week 10)	35											100	
EVS-Inoculated (Basic+P+aeration+bacteria) (week 10)	64											1	
EVS-Open (week 10)	30											100	•
EVS-Recirculated (week 10)	68											100	
	00								1			100	
Gypsum- 1994 bench-scale tests													Suncor EVS report 1995a
EVS-Baseline (week 0)	0											13	Suncor EVS report 1995a
EVS-Baseline (week 0)		<u> </u>							ļļ	+		13	Suncor EVS report 1995a
SYNCRUDE		ļ											· · · · · · · · · · · · · · · · · · ·
Flume Test Sample												1	Syncrude 1995 Field test
NST Bench Test													Syncrude 1995 Field test
High CaSO4-WRC (Nov-95)							>100						CANMET WRC 95-11
High CaSO4-WRC (Oct-95)							>100		Į				CANMET WRC 95-11
Lower CaSO4-WRC (Nov-95)							>100						CANMET WRC 95-11
Lower CaSO4-WRC (Oct-95)							>100						CANMET WRC 95-11
NST swim pool (Oct-95)				1									CANMET WRC 95-11
NST swim pool (Aug-95)													CANMET WRC 95-11
Lease 86 (CT made June 95)						1							Suncor, Lease 86 (EVS-Wetlands 1996 report)
CT Pit 3 (nutrients)				ł									Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
						1							Suncor, Lease 86 (EVS-Wetlands 1996 report)
CT Pit 2 (no nutrients)				}			{						Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
							[1	ſ			Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
CT Pit 1 (reservoir)					1		1						Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
													Suncor, Lease 86 (EVS-Wetlands 1996 report)
							1						Suncor, Lease 86 (EVS-Wetlands 1996 report)
									·				Suncor, Lease 86 (EVS-Wetlands 1996 report)
Inflow to construct during the de													Suncor, Lease 86 (EVS-Wetlands 1996 report)
Inflow to constructed wetlands Outflow to constructed wetlands				[[57	Suncor, Lease 86 (EVS-Wetlands 1996 report)
												63	
CT composite of above samples				>100) >100	>100	>100		50	100	44	64	Suncor, Lease 86 (EVS-Wetlands 1996 report)
CT Wetland (95)- Trench 1							1					16	
CT Wetland (95)- Trench 9						1						51	
CT Wetland (95)- Trench 5											х.	0	Suncor, Lease 86 (EVS-Wetlands 1996 report)
CT Wetland (95)- Trench 8						1		l				33	Suncor, Lease 86 (EVS-Wetlands 1996 report)
SYNCRUDE			· · · · · · · · · · · · · · · · · · ·										
1995 CT water (fresh)		75		0			>100	>100		50		50	Syncrude 1995 Field test
1995 CT water (8 months)													Syncrude 1995 Field test
1995 CT water (11 months)		100		100]]	>100	>100		100		100	Syncrude 1995 Field test
1995 CT water (21 months)													Syncrude 1995 Field test
CT Oct. 95 (NSTPD1)		75		0			100	100		50		50	Syncrude 1995 Field test
CT June 96 (NSTPD1)													Syncrude 1995 Field test
CT Aug. 96 (NSTPD1)		100		100			100	100		100		100	Syncrude 1995 Field test
NST release water (from NST mix deposited in MFT cell) ¹										,			Syncrude 1995 Field test
Porewater deposited in NST cell (grab sample-surface) ¹					1								Syncrude 1995 Field test
Porewater deposited in NST cell (grab sample-surface)				1					· ·				Syncrude 1995 Field test
Porewater deposited in NST cell (grab -porewater)								1					Syncrude 1995 Field test
<u>1. district deposited in No Feel (polewater profile)</u>						1	1	L					

Table III-A Summary of Suncor and Syncrude Acute Toxicity Data Page 4 of 4

Source						nanangen kanangen ka	and a subscription of the										Reference
	Trout		Fathe	ad Minnov	/ (7 day)					ival (48-hr			Ceri	odaphnia S	urvival tes	st (7 day)	
	Alevin survival (%)	LC25 (%)	LC50 (%)	LOEC (%)	NOEC (%)	survival(%)	NOEC(%)	LOEC(%)	LC25(%)	LC50 (%)	survival(%)	NOEC(%)	LOEC(%)	LC25 (%)	LC50 (%)	Survival(%)	
SUNCOR																	
Pond 5																	Suncor Pond 5 East
Pond 5																	Suncor Pond 5 East
Pond 5																	Suncor Pond 5 East
Pond 5- surface																	Suncor Pond 5 East
Pond 5- 3 m depth																	Suncor Pond 5 East
Pond 5- 5.8 m depth																	Suncor Pond 5 East
Pond 5- Catwalk #3 (porewater)																	Suncor Pond 5 East
Pond 5- #3																	Suncor Pond 5 East
Pond 5- Catwalk#1 (surface)			·														Suncor Pond 5 East
Pond 5- Catwalk#1 (bottom)																	Suncor Pond 5 East
Pond 5- Catwalk#2 (2 m depth)																	Suncor Pond 5 East
Pond 5- Catwalk#3 (2 m depth)																	Suncor Pond 5 East
Pond 5- Drain #1																	Suncor Pond 5 East
Pond 5- Drain #2																	Suncor Pond 5 East
Pond 5- Catwalk #3 (porewater)																	Suncor Pond 5 East
Pond 5- Catwalk #3														1			Suncor Pond 5 East
Pond 5- Catwalk #1 (all depths)																	Suncor Pond 5 East
Pond 5- Catwalk #1 (all depths)												50	100	81	>100		Suncor Pond 5 East
Pond 5- CT Grab (in Aug. 21)		62	74	100	50		100	>100	>100	>100		100	>100	95	>100		Project # 972-2205-6045
Pond 5- CT water		33	41	13	25		100	>100	>100	>100		25	50	27	35		Project # 972-2205-6045
Pond 5- CT water (composite)							100	>100	>100	>100		50	100	60	74	1	-
Pond 5- CT water (composite)		61	74	100	50							50	100	41	58		

vata summarized from Syncrude Canada Ldt. 1995 NST Field Dem

Table III-B Summary of Suncor and Syncrude Chronic Toxicity Data

Туре	Source	Sample ID	Approx. Sample Date				Test (7 day) LOEC(%)							rowth Inhibiti NOEC(%)	on (7 days) LOEC(%)	References
щ	SUNCOR	<u> </u>														
SCALE	CT water (composite from pits)	RW159	Jun-95	14	20	13	25	45	78	25	50			<u> </u>		Suncor, Lease 86 data
FIELD	SYNCRUDE				ana an An thu											
1	1995 CT water (fresh)				32	13		72	93	50	100					Syncrude 1995 field tests
	1995 CT water (8 months)															Syncrude 1995 field tests
	1995 CT water (11 months)				83	60		10	56	6	13					Syncrude 1995 field tests
	1995 CT water (21 months)															Syncrude 1995 field tests
	CT Oct. 95 (NSTPD1)				32	13			93		50					Syncrude 1995 field tests
	CT June 96 (NSTPD1)															Syncrude 1995 field tests
	CT Aug. 96 (NSTPD1)				83	50			56		13					Syncrude 1995 field tests
	SUNCOR		la Bergell Brite Bergell		ar.			100			at set					
SCALE	Pond 5- Catwalk#1 (all depths)		Aug-96	30	42	25	50									Suncor Pond 5 East
	Pond 5- CT Grab (Aug. 21)		Aug-97	16	22	13	25	74	50	25	50	>50	>50	50	>50	Suncor Pond 5 East
COMMERCIAL	Pond 5- CT water		Oct-97	63	75	50	100	25	41	25	50	26	36	25	50	Project # 972-2205-6045
õ	Pond 5- CT composite (aged 3 wks)		Oct-97	32	39	25	50									Project # 972-2205-6045
L	Pond 5 -CT composite (aged 6 wks)		Oct-97	24	33	25	50	27	40	25	50	32	48	13	25	Project # 972-2205-6045

APPENDIX IV

CT WORKSHOP MEETING MINUTES

Golder Associates Ltd.

10th Floor, 940 6th Avenue S.W. Calgary, Alberta Canada T2P 3T1 Telephone (403) 299-5600 Fax (403) 299-5606

September 16, 1997

972-2205/6045

Suncor Energy Inc. Sustainable Growth P.O. Box 4001 Fort McMurray, Alberta T9H 3E3

Attention: Mr. Martin Holysh

RE: CT WORKSHOP MEETING NOTES - SEPTEMBER 8, 1997

Dear Mr Holysh:

This letter contains notes taken during the CT workshop held on September 8, 1997 at Golder Associates' office in Calgary. These notes synthesize the major topics of discussion and may not define the comments and ideas of individual participants.

Attendees:

Martin Holysh, Don Klym, Don Sheeran - Suncor Mike Rogers, Mike MacKinnon, Terry Van Meer, John Ellingsen, Martin Fung - Syncrude Randy Mikula - CANMET Randy Shaw, John Gulley, J.P. Bechtold, with appearances from Zsolt Kovats, Ian Mackenzie, Farida Bishay, Mike Rankin - Golder Associates

- 1. John Gulley opened the meeting with a review of the workshop purposes, which included:
 - a review of existing information,
 - update the knowledge base described in the "Silver Bullet",
 - identify on-going studies and expected completion dates, and
 - highlight data gaps in the existing information base.
- 2. Suncor requested copies of Randy Shaw's projected impact slides detailing relative chemical concentrations in the Athabasca and Muskeg Rivers in 2040.

Review of CT Chemistry

3. Review of CT chemistry data held by Golder revealed that Golder does not have all of the available information on hand. Suncor, Syncrude and CANMET agreed to furnish Golder with the following reports and/or data:

Individual	<u>Report/study results</u>
Martin Fung	2 studies by Li (1996) concerning plant growth on CT
Mike MacKinnon	studies by Bill Shaw at UofA (1993-1995) detailing lab
	experiments using acid/lime and gypsum CT

R:\1997\2200\972-2205\6000\6045\MIN908.DOC

	UofA studies (1991?) detailing acid/lime CT chemistry and toxicity
	multi-volume NST report detailing results from Syncrude's 1995 field testing
	monthly/quarterly progress reports from Syncrude's commercial demo project, as they become available
	studies by Brian Brownell at CCIW examining the potential soluble components of PAHs associated with fine tails
Randy Mikula	reports produced by Suncor - believe these describe both lab and field studies
Don Sheeran	monthly/quarterly commercial trail reports (1995 to present)

4. There was general agreement that CT water data has to categorized as follows:

Bench Scale	
Field Scale	
On Line (controlled), which includes	
Syncrude's 1995 NST field test	
Suncor's pump tests	
Commercial Trails, which includes	
Suncor's Commercial Demonstration Project, Oct '95 and ongoing	
Syncrude's Commercial Demonstration Project, Aug '97 and ongoing.	
Operational	
Reclamation	

- 5. There was general agreement that the influence of CT aging, operational water recycling, decay rates, sand to fines rations and reclamation landscape designs need to be considered. Towards this end, Golder will prepare a matrix detailing the directional influence of these factors on CT water chemistry (i.e., whether decay, aging, etc. is expected to increase, decrease or have no effect on chemical concentrations in CT release waters).
- 6. Mike MacKinnon stressed the fact that only conservative ions such as chloride, sodium and sulphate will build up in the recycle waters; metals, PAHs and other organics reach an equilibrium relatively quickly, and will not accumulate beyond equilibrium concentrations. However, Syncrude has not observed an increase in sulphate levels in their Mildred Lake Settling Basin. Where the missing sulphate is remains unclear.
- 7. Mike MacKinnon informed the attendees that the deeper layers of CT solid deposits (i.e., > 30 cm below the upper crust) turn anaerobic within several months. Redox potentials in the upper 30 cm will remain positive, while lower levels are negative. Sulphides form, but remain in the deposit. Should the buffering capacity of the deposit be exhausted, then solubilization of the sulphide could occur.

-3-

- 8. Mike MacKinnon also indicated that sources of bioavailable carbon in CT deposits could include naphthenic acids and other hydrocarbons tied up within the solid matrix, hence the conversion of sulphates to sulphides described above.
- 9. Although some individuals feel that lab studies are the best example of what to expect from the CT process, Suncor and Syncrude agreed that once Golder has synthesized all of the available lab and operational CT data, Mike MacKinnon and Don Sheeran will sit down with Golder representatives and decide what numbers will be used as representative CT data.

Review of CT Toxicity

- 10. Generally agreed that when reporting toxicity results, one must indicate whether we are discussing fresh, aged, diluted and/or treated CT. These results should also be subdivided into the categories previously discussed in (4)
- 11. As with CT chemistry, Golder is missing several reports detailing CT toxicity which the following individuals have agreed to supply to us:

<u>Individual</u> Terry Van Meer	<u>Report/study findings</u> report by Kevin Shirwin (UofW) describing zooplankton and
	phytoplankton abundance/growth under chronic conditions
	will e-mail Lisa Peters (UofW grad. student) and direct her to release progress report detailing her work with fish
	hatchability and growth in CT environment
	will e-mail Paula Sivic (UofA grad. student) and direct her to release progress report detailing her work with fathead minnows in South Bison Pond
	reports/study findings detailing macrophyte growth and
	microbial profiles in CT ponds
Mike MacKinnon	report detailing Joanne Parrott's fish MFO study
	study results describing CT soil characterization
Martin Fung	report detailing work done at Vegreville examining earthworm survival and seedling emergence tests

Terrestrial Issues

12. General agreement that ecosystems can be established on CT reclamation surfaces. However, we still lack a field demo to confirm this hypothesis. Issues of possible concern include:

i) whether the CT capping layer will remain saturated or will local hydrology result in dry tailings sand overlain with a thin layer of topsoil. Dry sand would prohibit plant growth.

ii) root growth may be limited if the underlying CT matrix becomes anoxic, which, according to (3) is likely to occur.

Golder Associates

Air Issues

- 13. General agreement that methane production will not occur so long as sulphate levels remain high. Sulphates will likely change to sulphides, but they will not volatilize unless buffering capacity of CT deposits exhausted (which is unlikely to occur).
- 14. Gord Kemp from Suncor is monitoring emissions from existing tailings ponds. His findings are to be forwarded to Golder by Don Sheeran.
- 15. Volatile organic carbons (VOCs) are presently being monitored at both Suncor and Syncrude. Work at Suncor completed by Concord, while Jacques Whitford surveyed Syncrude site. Results are to be forwarded to Golder by Don Sheeran and Mike MacKinnon.
- 16. Dust not likely to be an issue, since CT solidifies to cement-like solid which will experience very little wind erosion.

Aquatics Issues

- 17. Golder highlighted potential problems in far future scenarios when CT and sand seepage will make up the bulk of water flowing though the Muskeg River and other small tributaries in the oil sands leases. This could have significant toxicity issues which may require mitigation.
- 18. Although fish studies have been done using refinery and other process affected waters, no study has yet been done to investigate the potential for CT water to result in fish tainting. General agreement that one should be done.

Health Issues

- 19. Syncrude has completed a study of naphthenate toxicity. It was designed by Deib Berkholz, from ETL, and used bacterial enzymes to screen for mutagenic and other cellular effects. Although membrane transfer and general cellular processes where affected, no mutagens were identified. Similarly, very low PAH levels were observed to accumulate in SPMDs (semi-permeable membrane devices) exposed to CT.
- 20. Mike MacKinnon is to furnish Golder with Dr. Richard San's 1980 report on pond water toxicity. It was produced by the B.C. Cancer Society.
- 21. General agreement that Golder should initiate a simple mutagenic test on whole effluent CT to determine whether or not mutagens are present.

Proposed CT Document

- 22. General agreement that proposed document should have a general focus, and act as a reference paper for CT chemistry and toxicity. As a result:
 - Chapter 3 will incorporate matrix discussed in (5),
 - Chapter 4 will be reduced to several paragraphs included in Chapter 1, and
 - Chapters 5 and 6 will be eliminated.

Golder Associates

September 16, 1997 972-2205.6045

General Issues

- 23. Mike Rogers stressed the need to clearly indicate the influence of the CT process on final water and solids chemistry. The CT process should not become the "scape-goat" for reclamation and disposal problems which would have occurred in any case. We are simply adding calcium sulphate to a mixture of tailings sand and mature fine tails, two substances which have been well defined and already exist at the plant.
- 24. South Bison Pond and High Sulphate Wetland identified as possible surrogates for CT water and solids, respectively, due to their high sulphate content.

We hope these meeting notes are sufficient for your purposes and would be pleased to discuss any comments you may have.

Yours very truly,

GOLDER ASSOCIATES LTD.

J.P. Bechtold, M.A.Sc. Water Quality Specialist

cc: Don Klym (Suncor) Don Sheeran (Suncor) Mike MacKinnon (Syncrude) Randy Mikula (CANMET) Randy Shaw (Golder) Mike Rankin (Golder) Zsolt Kovats (Golder)

John Gulley, M.Sc., P. Biol. Oil Sands Project Director

Terry Van Meer (Syncrude) John Ellingsen (Syncrude) Martin Fung (Syncrude) Mike Rogers (Syncrude) Ian Mackenzie (Golder) Farida Bishay (Golder)

APPENDIX V

GLOSSARY OF TOXICOLOGICAL TERMS

- Acute Toxcicity Mortality that is produced within a short exposure period (e.g., within 24 to 96 h).
- Chronic Toxicity Toxicity marked by a long duration, that produces an adverse effect on organisms. The end result of chronic toxicity can be death although the usual effects are sublethal (e.g., inhibiting reproduction or growth).
- IC50 The median inhibitory concentration; that is the concentration of a substance (toxicant, stimulant etc.) that causes a specified effect (i.e., inhibition of bioluminescence) to a level equal to 50% less than the control tested in a laboratory toxicity test of specified duration. The effect as well as the exposure-time must be specified (e.g., 15 min IC50). An IC20 would mean that there was inhibition of bioluminescence to a level 20% less than the control. The IC20 will always be lower (or the same if \geq 100%) than the IC50.
- LC50 The median lethal concentration; that is, the concentration of material in water to which test organisms are exposed that is estimated to be lethal to 50% of the test organisms. The LC50 is usually expressed as a time-dependent value (e.g., 24-h or 96-h LC50).
- LT50 The median lethal exposure period; that is, the time (exposure period) it takes for the undiluted sample (i.e., 100% concentration) to be lethal to 50% of the toxicity test organisms.
- Microtox An automated (Beckman Instruments Inc.) rapid screening assay which determines the EC50 concentration of a material in water based on the reduciton of the amount of incident light emitted by a culture of fluorescent bacteria.
- NOEC No Observed Effect Concentration. That is, the concentration at which no effect on the toxicity test organism is observed.
- LOEC Lowest Observed Effect Concentration. That is, the concentration at which effects on the toxicity test organism are first observed.

This material is provided under educational reproduction permissions included in Alberta Environment and Sustainable Resource Development's Copyright and Disclosure Statement, see terms at http://www.environment.alberta.ca/copyright.html. This Statement requires the following identification:

"The source of the materials is Alberta Environment and Sustainable Resource Development <u>http://www.environment.gov.ab.ca/</u>. The use of these materials by the end user is done without any affiliation with or endorsement by the Government of Alberta. Reliance upon the end user's use of these materials is at the risk of the end user.