

HYDROGEOLOGY BASELINE FOR PROJECT MILLENNIUM

REPORT

TD 195 O38 P964 EIA v.4 c.2

PA 2839.02

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

EXECUTIVE SUMMARY

This report is one of a series that provides input to the environmental impact analysis of Suncor's Project Millennium. Project Millennium consists of an extension towards the south and east of the current Steepbank Mine on the east side of the Athabasca River. The new proposed mine will be called the east bank mine. The impact analysis assesses the four main stages of mine development:

- baseline conditions (1997):
- construction (2000 to 2002):
- operational phase (2002 to 2033); and
- closure and reclamation (far future).

This report describes the current (or baseline) conditions of the groundwater system in the Local Study Area (LSA).

The main surface water bodies in the LSA are the Athabasca River, the Steepbank River, Shipyard Lake, Wood Creek, and McLean Creek. Shipyard Lake is a large wetlands located in the Athabasca River valley.

RESOURCE INVENTORY

The baseline study included both a review of regional geologic and hydrogeologic information, and a detailed investigation of the LSA. The baseline conditions in the LSA are summarized below.

Geology

The site's landforms are divided into uplands, organic plain, valley slopes and floodplain. The organic plain slopes gently toward the Athabasca River. The organic plain is poorly drained, and is covered with peat. The organic plain is cut by the steep valley slopes of the Steepbank and Athabasca Rivers. The stratigraphy of the LSA consists of:

- Drift Deposits
- Clearwater Formation
- McMurray Oil Sands
- · Basal Aquifer
- Upper Devonian limestone

Alberta Environmental Protection

Major Aquifers

Three major aquifers have been identified including sand and gravel within the drift, the Basal Aquifer and the Upper Devonian limestone. In the organic plain, there is an extensive but discontinuous sand and gravel deposit within the drift overlying the Clearwater Formation. This sand and gravel ranges in thickness from 1 m to 10 m over most of the LSA with localized accumulations of 16 to 32 meters. In the Athabasca River valley, there is a thick (up to 40 m) sand and gravel deposit, that is in contact with the Athabasca River. In the bedrock the Basal Aquifer is a discontinuous zone of lean oil sands in the McMurray Formation, that generally rests upon the Upper Devonian surface. The Upper Devonian rock is limestone of the Waterways Formation. The Upper Devonian Surface is highly irregular, consisting of numerous depressions and rises with a total relief of 35 m at some locations.

Direction of Groundwater Flow

Groundwater is recharged in the organic plain, and discharges in lowlands. All groundwater flow is directed to the major rivers, including the Athabasca River and the Steepbank River. A shallow flow system exists in the drift deposits in which groundwater flows horizontally through the more permeable sediment. This groundwater discharges to the surface flow system along deeply incised valleys of the Steepbank River, Leggett Creek, Wood Creek, McLean Creek and in the area of Shipyard Lake. Groundwater flowing horizontally through the Basal Aquifer and the Upper Devonian discharges to the Athabasca River, the Steepbank River and to Shipyard Lake.

Groundwater as a Resource

There are no groundwater users in the LSA other than Suncor. The sand and gravel aquifer in the Athabasca River valley has the potential to be used for water supply purposes. Due to its proximity to the river, wells completed in the aquifer are expected to induce recharge from the Athabasca River.

The sand and gravel aquifer in the drift deposits in the organic plain is locally a viable resource for water supply based on Alberta Environmental Protection guidelines for groundwater quantity and quality for domestic supply. The bedrock aquifers may not be useable for water supply purposes. Although they meet and exceed the minimum required yield for a domestic supply, the water quality in the bedrock is poor. The bedrock groundwater is brackish, and contains organic compounds, including PAHs and napthenic acids.

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

Groundwater Discharge to Surface Waters

The total rate of groundwater discharge from all aquifers to the Athabasca River, Shipyard Creek, Leggett Creek, Wood Creek and McLean Creek has been calculated to be 32 L/s. In comparison, the estimated annual runoff for basins in the LSA are:

- Athabasca River 71 L/s
- Leggett Creek 66 L/s
- Wood Creek 197 L/s
- McLean Creek 130 L/s
- Shipyard Creek 190 L/s

Therefore, the total surface flow originating in the LSA (not including the Steepbank River) is 656 L/s. The groundwater discharge is therefore less than 5% of the minimum recorded surface water flow in the LSA. The groundwater discharge to McLean Creek is approximately 14 % of the total flow. This groundwater originates from an area south of the LSA.

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

......

TABLE OF CONTENTS

PAGE

EXECUTIVE SUMMARYI
1. INTRODUCTION1
2. METHODOLOGY
3. BACKGROUND INFORMATION
3.1 Local Study Area (LSA)5
3.2 Drainage
3.3 Climate
4. REGIONAL GEOLOGY AND HYDROGEOLOGY 10
4.1 Surficial Geology10
4.1.1 Organic Plain10
4.1.2 Uplands
4.1.3 Athabasca and Steepbank Escarpment
4.1.4 Floodplain
4.1.5 Drift Thickness
4.2 Regional Bedrock Geology13
4.2.1 Regional Bedrock Topography13
4.2.2 Regional Bedrock Stratigraphy14
4.3 Regional Hydrogeology17
4.3.1 Regional Hydraulic Conductivity Data17
4.3.2 Regional Groundwater Flow Directions
4.3.3 Regional Groundwater Chemistry21
5. GEOLOGY OF THE EAST BANK MINE AREA
5.1 Surficial Geology28
5.1.1 Organic plain
5.1.2 Valley Slopes
5.1.3 Floodplain
5.1.4 Thickness of Surficial Deposits
5.1.5 Bedrock Geology
5.1.6 Local Bedrock Topography
5.1.7 Clearwater Formation
5.1.8 McMurray Formation Oil Sands

TABLE OF CONTENTS

(continued)

5.1.9 Basal Aquifer
5.1.10 Upper Devonian
6. HYDROGEOLOGY OF THE EAST BANK MINE AREA
6.1 Surficial Materials37
6.1.1 Organic Plain
6.1.2 Valley Slopes
6.1.3 Floodplain53
6.2 Bedrock Materials54
6.2.1 Clearwater Formation54
6.2.2 McMurray Oil Sands55
6.2.3 Basal Aquifer56
6.2.4 Upper Devonian
6.3 Potential for Groundwater Use as a Resource
6.4 Groundwater/Surface Water Interaction64
6.4.1 Methodology64
6.4.2 Athabasca River67
6.4.3 Steepbank River70
6.4.4 Shipyard Lake/Shipyard Creek
6.4.5 Leggett Creek
6.4.6 Wood Creek
6.4.7 McLean Creek
6.4.8 Summary of Groundwater/Surface Water Interaction
7. CONCLUSIONS
7.1 Geology74
7.2 Hydrogeology76
8. REFERENCES
9. GLUSSARY OF TERMS

 (\mathfrak{B})

•

TABLE OF CONTENTS (continued)

+ TABLES

TABLE 1	Major Drainage Basins in the Suncor LSA	7
TABLE 2	Succession of Surficial Geologic Deposits in the	
	Oil Sands Region	11
TABLE 3	Subsurface Stratigraphy of the Northern Part of the	
	Athabasca Oil Sands Area (after Carrigy, 1973 et al)	15
TABLE 4	Summary of Regional Hydraulic Conductivity Data	
	from Surficial Deposits	18
TABLE 5	Summary of Regional Hydraulic Conductivity Data	
	from Bedrock	19
TABLE 6	Regional Chemistry of Groundwater in Surficial Deposits	24
TABLE 7	Regional Bedrock Groundwater Chemistry	25
TABLE 8	Hydraulic Conductivity of Surficial Deposits in the LSA	38
TABLE 9	Water Level Data for the Project LSA	40
TABLE 10	Major Ion Chemistry and Field Measured Parameters of	
	Groundwater in the LSA	44
TABLE 11	Concentrations of Dissolved Metal and Cyanide in	
	Groundwater in the LSA	47
TABLE 12	Concentrations of Organic Compounds in Groundwater	
	in the LSA	48
TABLE 13	Naphthenic Acid and Microtox Test Results in Groundwater	
	In the LSA	50
TABLE 14	Summary of Transmissivity and Hydraulic Conductivity	
	Measured in Bedrock in the LSA	57
TABLE 15	Groundwater Quality Parameters and Exceed CCME	
	Guidelines	62
TABLE 16	Potential for Groundwater Use as a Resource	63
TABLE 17	Average Conditions Surficial Aquifers	66
TABLE 18	Average Conditions Bedrock Aquifers	67
TABLE 19	Summary of Flows to Surface Water	67
TABLE 20	Estimates of the Groundwater Capture Zones of Small	
	Creeks; Unconfined Conditions	68
TABLE 21	Estimates of the Groundwater Capture Zones of Small	
	Creeks; Confined Conditions	69

TABLE OF CONTENTS

(continued)

TABLE 22	Minimum Monthly	v Flows	73
----------	-----------------	---------	----

FIGURES

FIGURE 1	Location Plan
FIGURE 2	Regional Study Area
FIGURE 3	Local Study Area
FIGURE 4	Data Distribution for Mapping
FIGURE 5	Locations of Piezometers and Geophysical Lines
FIGURE 6	Ground Surface Topography; Baseline Conditions
FIGURE 7	Surficial Geology Map, (after McPherson and Kathol, 1977)
FIGURE 8	Drift Thickness (after McPherson and Kathol, 1977)
FIGURE 9	Conceptualised Regional Geology Cross Section,
	(Modified from Carrigy, 1973)
FIGURE 10	Section A
FIGURE 11	Section B
FIGURE 12	Section C
FIGURE 13	Section D
FIGURE 14	Section E
FIGURE 15	Section F
FIGURE 16	TEM Resistivity Profiles
FIGURE 17	Elevation of the Base of the Shallow Sand and Gravel
FIGURE 18	Isopach Map of Surficial Sand and Gravel
FIGURE 19	Locations Where Deep Confined Sand and Gravel Was
	Observed
FIGURE 20	Isopach Map of Surficial Deposits (Drift Thickness)
FIGURE 21	Structure Contour Map of the Top of the Clearwater
	Formation
FIGURE 22	Clearwater Formation Outcrop Area
FIGURE 23	Structure Contour Map of the Top of the McMurray
	Formation
FIGURE 24	McMurray Formation Outcrop Area
FIGURE 25	Isopach Map of the Basal Aquifer
FIGURE 26	Structure Contour Map of the Top of the Basal Aquifer
	Formation

(*)

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

April 20, 1998

TABLE OF CONTENTS

(continued)

FIGURE 27	Basal Aquifer Formation Outcrop Area
FIGURE 28	Structure Contour Map of the Top of the Devonian
FIGURE 29	Upper Devonian Outcrop Area
FIGURE 30	Direction of Groundwater Flow in the Surficial Materials
FIGURE 31	Direction of Groundwater Flow in the Basal Aquifer and
	Upper Devonian
FIGURE 32	Piper Plots for Groundwater Samples
FIGURE 33	Stable Isotope Analysis

APPENDICES

APPENDIX I	BOREHOLE LOGS
APPENDIX II	RISING HEAD TEST RESULTS

1. INTRODUCTION

Suncor's Project Millennium comprises an extension of the Steepbank Mine presently being developed on the east side of the Athabasca River. The Steepbank Mine and Project Millennium collectively comprise the east bank mine. Both projects are located opposite Suncor's existing facilities, as shown on Figure 1.

This report evaluates the environmental baseline conditions relating to the geology and hydrogeology of the Regional Study Area (RSA) shown in Figure 2, and the Local Study Area (LSA) shown in Figure 3. The area directly affected by Steepbank Mine and Project Millennium includes portions of Lease 19 and 25 as well as Fee Lots 3 and 4. Lease 97 and Fee Lot 1 will be affected by the approved Steepbank Mine but not by the proposed Project Millennium. Figure 3 shows the Leases and Fee Lots affected as well as an outline of the east bank mine footprint.

The baseline presented in this report is that before the current development of the Steepbank Mine commenced.

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

2. METHODOLOGY

The hydrogeologic baseline study was conducted in two stages:

- . a literature review of regional data; and
- a detailed investigation of the LSA.

Regional geologic and hydrogeologic information was compiled from sources such as Suncor's Lease 86 and Steepbank Mine, Alsands, OSLO, and Alberta Research Council. In addition, the Muskeg River Mine Project EIA (Shell Canada Ltd., 1998) was reviewed along with the Aurora Mine Project. This information was used to characterize the regional setting of the mine area. A summary of the regional information is provided in Section 4.

The detailed hydrogeologic investigation of the LSA comprised the following:

- . Aerial reconnaissance by helicopter;
- . Interpretation of geologic logs from 740 boreholes (Figure 4);
- . Geophysical survey (transient electromagnetic) (Figure 5);
- Installation of eight standpipe piezometers and five pneumatic piezometers to supplement the existing monitoring network (Figure 5);
- Analysis of groundwater samples for major ions, dissolved metals, organic compounds, and toxicity, and
- Analysis of groundwater flow directions and rates and groundwater discharge rates to surface water bodies.

Two field reconnaissance trips were made to the LSA by Klohn-Crippen staff, in the spring and fall of 1997. The objective of the first trip was to familiarize the EIA team with the general conditions at the site, and to ground-truth interpretations of the site

geology and hydrogeology made from desktop studies. The objective of the second trip was to assess the accessibility of the site for a drilling program. Observations made during the trips have been incorporated in the discussions of results presented in Sections 5 and 6.

Site specific geology data was compiled from 740 borehole logs located in Leases 19, 25 and 97, Fee Lots 1 and 3 (Figure 4). Of these, 60 boreholes were drilled and cored in the area of the Steepbank Mine during the 1996 winter overburden evaluation program. An additional 24 boreholes were drilled and the overburden was logged as part of the Mine Handling Facilities investigation. The balance of the boreholes were drilled and logged as part of the Suncor exploration program throughout the LSA. The information was used to create geologic cross sections (Figures 10 to 15), and structure and isopach maps of geologic units (Figures 17 to 29). The results of the geologic interpretation are discussed in Section 5.

A transient electromagnetic (TEM) survey was conducted on the site in 1997 (Figure 16) to assess areas where the drift deposits could consist of sand and gravel. The results of this survey are presented in Section 5.

Standpipe piezometers were installed in eight locations throughout the LSA (Figure 5). The piezometers were installed in surficial drift deposits to assess hydraulic gradients, hydraulic conductivities and groundwater chemistry.

Five pneumatic piezometers were installed in the bedrock in three locations in the LSA (Figure 5). The piezometers were installed to assess hydraulic head and gradients in the Basal Aquifer and the Upper Devonian.

Groundwater samples were obtained from the standpipe piezometers and analyzed for general chemical parameters, dissolved metals, toxicity, PAH and alkylated PAH, PANH and Alkylated PANH, nutrients and naphthenic acid. The results of these analyses were not available at the time of writing this report, however, groundwater chemistry was compiled from Suncor's annual groundwater monitoring program and is presented in Section 6.

Calculations were made to determine aquifer productivity and the rates of groundwater flow. The productivity of the aquifers in surficial deposits and bedrock was assessed using estimates of their 20-year yield. The rates of groundwater discharge to the Athabsca River, Steepbank River, Shipyard Lake, Leggett Creek, Wood Creek and Unnamed Creek in the LSA were estimated, using hydraulic gradients and values of hydraulic conductivity determined on-site. The results of these calculations are presented in Sections 6.4.

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

3. BACKGROUND INFORMATION

3.1 Local Study Area (LSA)

The Local Study Area (LSA) is approximately triangular in shape. It is bounded by the Athabasca River to the west and Steepbank River to the northeast. Watercourses within the LSA include those draining to Shipyard Lake (the largest of which are Unnamed Creek and Creek 2), Leggett Creek, Wood Creek, and McLean Creek. The McLean Creek watershed forms the south boundary of the LSA (Figure 3).

The topography of most of the LSA is flat to gently rolling. Relief across the LSA is about 190 m; ranging from elevation 235 to 240 mASL in the Athabasca River floodplain to about elevation 425 mASL in the east part of the site (Figure 6). The physiography of the LSA, shown on Figure 6, is divided into four main units: the Athabasca floodplain; Athabasca and Steepbank escarpments; Steepbank organic plain; and Steepbank uplands. The average slope of the Athabasca escarpment is approximately 8%: locally, the slopes are as high as 20% to 40%. In contrast, the Steepbank organic plain has an average gradient of approximately 0.7%.

The Athabasca River has eroded through the surficial soils and bedrock (Crestaceous and Devonian) to form a valley that is approximately 80 m to 100 m deep. The escarpment slopes and floodplain are moderately forested. The river has irregular meanders with occasional islands and bars.

Relatively steep slopes in the lower 35 km long reach of the Steepbank River that bounds the LSA have resulted in a moderately to well defined entrenched valley approximately 80 m deep. At the downstream end of Steepbank River, its valley cuts through the surficial deposits and, close to its confluence with the Athabasca River, the Cretaceous (McMurray Formation) and underlying Devonian bedrock are exposed. The Steepbank escarpment slopes are steep for a distance of approximately 6 km upstream of its confluence with the Athabasca River. Along this reach, gradients are locally in excess of 60%. Further upstream, the escarpment slopes become flatter and the average gradient is about 18%.

Within the LSA Unnamed Creek, Creek 2, Leggett Creek, Wood Creek and McLean Creek are deeply incised into the Athabasca escarpment and tend to flow year-round. The other creeks tend to be ephemeral and the entrenched channel systems are generally limited to the immediate vicinity of the Athabasca escarpment. On the organic plain and uplands, all watercourses are generally poorly drained and covered with muskeg fens and bogs. Here the creeks are not well defined and tend to comprise muskeg channels up to about 100 m to 150 m wide.

There is one large wetland complex on the Athabasca River floodplain within the study area known as Shipyard Lake. It is located approximately 6 km upstream (south-east) of the confluence between the Athabasca and Steepbank Rivers as shown on Figure 3.

3.2 Drainage

The regional drainage is shown on Figure 1 while Figure 6 shows the drainage basins in the LSA. The principle drainage is via the Athabasca River, which forms the western boundary of the LSA. It flows northward past the proposed mine site and eventually discharges through a delta complex into Lake Athabasca. Secondary drainage is by the Steepbank River system which discharges into the Athabasca River opposite the existing Suncor mine, as shown on Figure 1. Within the LSA, a strip of land averaging less than a kilometre wide drains into the Steepbank River. The remainder of the LSA drains directly to the Athabasca River.

Of the Athabasca tributaries, Unnamed Creek, Creek 2 (both of which flow into Shipyard Lake), Leggett Creek and Wood Creek have most or all of their drainage basins entirely within the east bank mine footprint. McLean Creek, in contrast, has a substantial portion of its drainage outside the proposed mine limit. There are also several small drainage basins that drain to the Athabasca River that do not contain any well-defined watercourses or the creeks are ephemeral: these are named Athabasca A through D on Figure 6.

The drainage basin areas for watercourses in the LSA are presented on Table 1.

Basins	Leases and Lots Affected	Total Drainage Area (km²)
Athabasca River		133 000
Steepbank River	Leases 19, 25 and 97; Fee Lot 1	1 320
Shipyard Creek	Leases 19, 25 and 97; Fee Lots 1 and 3	48.4
Unnamed Creek	Leases 25 and 97; Fee Lot 3	8.7
Creek 2	Leases 19 and 25; Fee Lot 3	9.5
Leggett Creek	Lease 19	23.0
Wood Creek	Lease 19: Fee Lot 4	56.5
McLean Creek	Lease 19: Fee Lot 4	43.4
Athabasca A	Leases 25 and 97; Fee Lot 1	6.6
Athabasca B	Leases 19, 25 and 97, Fee Lot 3	6.0
Athabasca C	Lease 19	5.7
Athabasca D	Lease 19	1.0

Muskeg fens and bogs with an average thickness of between 0.8 and 1.5 m cover approximately 60% of the LSA. These soils represent one of the most dominant features controlling surface runoff.

Muskeg is defined (Radforth and Brawner, 1977) as a soil substrate consisting largely of organic residues formed in a water-saturated condition as a result of an incomplete decomposition of plant constituents. The incomplete decomposition is a direct result of an anaerobic conditions. In muskeg, most of the moisture exchange takes place within an "active layer" at the surface. Literature (Radforth and Brawner, 1977) suggests that this layer is approximately 200 mm to 450 mm thick. Although, significant interflow can occur within the active layer, vertical permeability rapidly reduces with depth. At the lower boundary, decomposed and compressed organic material produces a relatively impervious zone. Ivanov (1953) and Boelter (1965, 1972) cite values of hydraulic conductivity of 1 x 10^{-7} m/s, 0.75×10^{-7} m/s and 2.2×10^{-7} m/s for the highly decomposed peat typically found at the lower boundary of an active layer.

When the muskeg is saturated, lateral flow through the more permeable upper strata will predominate. This flow will be fed by precipitation and by the upward flows of groundwater from any underlying fluvial deposits. During dryer periods, vertical flow through the less permeable lower strata will predominate.

Hydrologically, the initial abstraction (absorption to satisfy soil moisture deficit) of rainfall during storm events to these soils will be significant and highly variable. Once saturated, infiltration to lower surficial materials will be low and a large proportion of the rainfall will run off.

3.3 Climate

The climate in the oil sands area is characterized by long cold winters and short cool summers. Mean daily temperatures at Fort McMurray in January, average about -20°C while July temperatures average 17°C. The mean annual temperature at this location is 0.2°C. There are usually less than 120 frost-free days per year (Atmospheric Environment Service, 1993).

The average annual precipitation at Fort McMurray Airport, approximately 30 km south of the LSA, is about 444 mm, of which almost three-quarters falls as rain during the summer and fall.

4. **REGIONAL GEOLOGY AND HYDROGEOLOGY**

4.1 Surficial Geology

The surficial geology of the oil sands region has been mapped by L.A. Bayrock (1971), L.A. Bayrock and T.H.F. Reimchen of the Alberta Research Council (1973) and by R.A. McPherson and C.P. Kathol (1977). The work by R.A. McPherson and C.P. Kathol, because it is the most recent, is accepted here as the most accurate. An excerpt of the surficial geology map from R.A. McPherson and C.P. Kathol is shown in Figure 7. This map shows the type of surficial material that is expected to occur in the shallow subsurface. A summary of the stratigraphic succession of surficial deposits in the region is provided in Table 2. The distribution of surficial sediments in the region can be characterized into three physiographic settings; organic plain, valley slopes and floodplain.

4.1.1 Organic Plain

The majority of the region on the east side of the Athabasca River is an organic plain, with an elevation of 315 mASL or greater. The topography of the organic plain is gently sloped toward the river. Much of the ground in the region is covered with peat. Thin, discontinuous deposits of aeolian sand are also common in the region, particularly where glaciofluvial sand is near the ground surface. The surficial stratigraphy is the result of the advance and retreat of at least three periods of glaciation. With each glacial advance, till was deposited. The till is an assorted mix of clay, silt, sand and cobbles. The three tills that have been identified in the region from the oldest to youngest are known as the unnamed till, the Firebag till and the Fort Hills till. The unnamed and Firebag tills are present in most of the region. The Fort Hills till is not believed to extend south of the Muskeg River (McPherson and Kathol, 1977).

Table 2	Succession	of Surficial	Geologic	Deposits in	the Oil	Sands Region
		OF CREETERS	Concensor Concensor	WAR COMPOSITE AND	CHES CRE	CONTRACT HAS MOUTH

PERIOD	PHYSIOGRAPHIC SETTINGS	DESCRIPTION OF UNITS					
Quaternary	Organic plain	Recent Sediments	Peat; generally less than 3 m thick aeolian deposits; fine to medium grained sand, in dis-continuous thin sheets and dunes outwash deposits; commonly very fine to fine grained sand, with minor coarse sand.				
		Upper Sediments	Stratified sand and gravel layers, till fragments, pebbles and boulders; mixed glacio-lacustrine deposits; stratified clay, silt and sand, with pebbles and till-like layers.				
		Fort Hills Till Low relief till; composed of sand silt and clay (68' commonly with thin lenses of lacustrine clay glaciofluvial sand.					
		Lower Sediments (?)	Stratified glacio-lacustrine deposits; stratified clay, silt and sand.				
			Outwash deposits; commonly very fine to fine grained sand, with minor coarse sand and gravel layers, till fragments, pebbles and boulders.				
			Kames and kame moraine; composed primarily of stratified sand and silt, with minor gravel, clay and till lenses.				
		Firebag Till	Low relief till, composed of sand, silt and clay, with gravel and boulders, usually in contact with bedrock.				
		Unnamed Till					
		Undifferentia ted till and stratified sediments	The existence of these deposits is inferred, based on the presence of very thick drift sequences, and complex geophysical responses in boreholes in areas of thick drift.				
2000-01/00/00/00/00/00/00/00/00/00/00/00/00/0	Valley Slopes	Recent Sediments	Eroded slope and gully; discontinuous colluvial cover on slopes.				
	Floodplains	Recent Sediments	Stream valley; discontinuous alluvial gravel, sand, silt and clay along streams.				
			Alluvial sand; with minor silt and clay, confined mainly to the floodplain of the Athabasca River.				
			Alluvial silt and clay; with minor sand and gravel, common along most streams usually discontinuous and less than 3 m thick.				
		Stratified Sediments	Meltwater channel sediment; fine to coarse-grained sand, with minor silt and clay, overlying thin sand and gravel and lag gravel with boulders, possibly early Athabasca river alluvium.				
Cretaceous		Sandstone, silt-stone and shale					

(Modified from McPherson and Kathol, 1977)

As the glaciers retreated, stratified fluvial and lacustrine sediments were deposited. These deposits included glaciofluvial sands and gravels, and glaciolacustrine sands, silts and clays, which overly the till.

4.1.2 Uplands

The uplands area occupies the eastern edge of the LSA. It is characterized by inorganic soils with pockets of muskeg fens and bogs. The uplands relief is higher and more hummocky than the organic plain (Figure 6).

4.1.3 Athabasca and Steepbank Escarpment

Colluvial slope wash material, discontinuously overlies McMurray formation bedrock along the escarpment valley slopes east of the Athabasca River and along the slopes of the Steepbank River and some of the smaller tributaries. At the downstream end (lower 15 km) of the Steepbank River and at locations along the Athabasca River (where some of the smaller creeks in the LSA have eroded deep channels through the escarpment and where the Athabasca River abuts the escarpment), surficial materials are completely eroded and the bedrock is exposed.

4.1.4 Floodplains

The valley floor of the lower downcut reaches of the local tributaries consists of discontinuous alluvial gravel, sand, silt and clay. Where the McMurray oil sands are exposed the gravels are bitumen covered and bitumen rich sand bars and banks are common. Within the LSA the Athabasca floodplain is covered with an alluvial deposit of fine sand. Meltwater channel sediments, composed primarily of fine to coarse grained sand, are found below the alluvial deposits. The meltwater sediments are more or less continuous throughout the Athabasca River valley. The meltwater channel sediments are in contact with the Upper Devonian limestone.

ų,

4.1.5 Drift Thickness

An excerpt of McPherson and Kathol's (1977) map of the thickness of surficial deposits is shown in Figure 8. In the organic plain, the surficial deposits are commonly 7.5 m to 30 m thick. McPherson and Kathol identified an area south of the Steepbank River, near the middle of Lease 19, (Figure 8) where the surficial deposits are up to 45 m thick.

In the Athabasca River valley, the surficial materials are generally less than 6 m thick with localized deposits of greater than 40 m (McPherson and Kathol, 1977). Outcrops of Upper Devonian and Cretaceous rock are visible in numerous places along the river valley. However, near Suncor's Tar Island Dike, over 40 m of surficial sand and gravel has been logged beneath the floodplain.

4.2 Regional Bedrock Geology

4.2.1 Regional Bedrock Topography

The bedrock surface in the region has been shaped by three main processes:

- glaciation
- · fluvial erosion
- · collapse of karst features

Beneath the organic plain, the bedrock surface slopes gently toward the Athabasca River. On the east side of the Athabasca River, the elevation of the bedrock beneath the organic plain ranges from approximately 460 mASL 20 km from the river, to 315 mASL at the edge of the escarpment. This surface has been incised by both preglacial and postglacial fluvial processes. The most obvious of these incisions are the courses of present-day rivers, including the Athabasca and Steepbank Rivers. In other investigations

(*)

(McPherson and Kathol, 1977), channels in the bedrock surface commonly contain drift sand and gravel. The elevation of the bedrock surface beneath the Athabasca River is approximately 220 mASL.

Throughout the region, depressions in the bedrock surface have been observed, that have been interpreted to reflect collapse structures in the underlying Upper Devonian surface (McPherson and Kathol, 1977; Carrigy, 1973).

The present-day ground surface topography masks all but the most pronounced structural features of the bedrock surface. The bedrock outcrops only in river valleys, where slopes are very steep.

4.2.2 Regional Bedrock Stratigraphy

The Cretaceous and Devonian geology in the oil sands region has been described by Cotterill and Hamilton (1995), Crickmay (1957), Carrigy (1959, 1973) and Norris (1963). Table 3 shows the regional stratigraphy as it applies to the LSA. A simplified geologic cross section of the regional bedrock stratigraphy is shown in Figure 9. The thickness of the Cretaceous and Devonian section decreases toward the east. The depth to the underlying Precambrian surface also decreases to the east.

The Cretaceous deposits in the oil sands area consist of a succession of sandstones and shales that rest upon the eroded surface of the Devonian. Over most of the region, the Cretaceous strata are comprised of the Grand Rapids, Clearwater and McMurray Formations. The Grand Rapids Formation is an un-cemented feldspathic sandstone. It is present only in areas where the bedrock elevation exceeds approximately 410 mASL (Carrigy, 1973). The Clearwater Formation is a glauconitic shale of marine origin. A glauconitic sandstone deposit at the base of the shale is known as the Wabiskaw Member.

Commonly, the Wabiskaw sandstone contains heavy oil. It is therefore frequently considered part of the oil sands. In the Athabasca River valley, the bottom of the Clearwater Formation occurs at approximately 305 mASL elevation.

Table 3	Subsur	face St	ratigraphy	of th	ie N	orthern	Part	of the	Athabas	ca Oil S	Sands
	Area,	After	Carrigy	(197	3),	McPhe	rson	and	Kathol	(1975)	and
	Cotter	ill and	Hamilton	(199	/5)						

System or Series	Formation	Member	Lithology						
Pleistocene and Recent			Clay, silt, sand, silt and gravel						
	Erosional unconformi								
Cretaceous	Smoky Group		Shale						
	LaBiche		Shale						
	Dunvegan		Sandstone, siltstone and shale						
	Shaftesbury		Shale, with sandstone and siltstone						
	Manville Group		Sandstone						
	Grand Rapids		Shale						
	Clearwater	Wabiskaw	Glauconitic Sandstone						
	McMurray	Upper	Sand, very fine, silt						
		Middle	Sand, medium cross-bedded						
		Lower	Sand, coarse, gravel, silt						
	Erosional Unconformity								
Upper	Beaverhill Lake Group								
Devolutar	Waterways	Mildred	Argillaceous Limestone						
		Mobertly	Limestone						
		Christina	Calcareous Shale						
		Calumet	Clastic Limestone						
		Firebag	Argillaceous Limestone						
	Disconformity								
	Slave Point		Wackestone, mudstone and shale						
	Fort Vermillion		Anhydrite, dolostone, minor mudstone						
Middle	Elk Point Group								
Devolitati	Watt Mountain		Dolomitic shale						
	Prairie Evaporite		Salt, anhydride, gypsum, silty shale						
	Winnipegosis		Dolomite, in part reefal						
	(Methy)								
	Contact Rapids		Dolomite, dolomitic siltstone, shale						
			with minor anhydride and gypsum						
Lower	Granite Wash		Arkosic Sandstone						
Devolitati	(La Loche)								
Desservelsiss	Erosional Unconformi	ty I Cronite	00000000000000000000000000000000000000						
rrecambrian	wiciascumentary Rocks and								

The McMurray Formation, commonly referred to as the oil sands, is a series of quartz sandstone units, impregnated with heavy oil. As shown in the cross section in Figure 9, the McMurray Formation is thickest where it has been deposited in depressions and channels in the surface of the underlying Devonian. In Suncor's active lease area, the McMurray Formation typically ranges in thickness from 45 m to 80 m. To the north, in the former Alsands area, the oil sands deposit is as great as 100 m thick.

In the lower portion of the McMurray Formation is a widespread, relatively continuous occurrence of sandstone which contains little or no heavy oil. This is known as the basal water sand, or commonly, the Basal Aquifer.

The Devonian strata form a wedge of westward dipping rock that sits directly on the Precambrian. The Upper Devonian strata consist of the Waterways, Slave Point and Fort Vermillion Formations. The Waterways Formation is also referred to as the Beaverhill Lake Group by some authors (Carrigy, 1973; Hackbarth and Nastasa, 1979). As shown in Table 3, the Waterways Formation has been subdivided into five limestone members. In the Athabasca River valley, the upper-most unit is the Moberly Member, which is a clastic limestone with beds of clastic lime mudstone, skeletal wackestone and shale (Cotterill and Hamilton, 1995). The rock outcrops along the Athabasca River and major tributaries between the Clearwater River and Fort MacKay. Exposures of the rock are described as rubbly and weathered (Carrigy, 1973). The subcrop of the Upper Devonian strata has been eroded, and exhibits a highly irregular surface. Relief on the Upper Devonian is as great as 100 m over distances as short as 1000 m (Hackbarth and Nastasa, 1979).

Below the Waterways Formation is the Slave Point Formation, which consists of wackestone and argillaceous lime mudstone. The Fort Vermillion Formation is made up

of anhydrite, dolostone, and mudstone. Below this, the Middle Devonian deposits are present. As shown in Table 3, the Middle Devonian in the oil sands area is the Elk Point Group, which is comprised of the Watt Mountain, Prairie Evaporite, Methy and Contact Rapids Formations. The Watt Mountain Formation is a thin (10 m) layer of dolomitic shale. The Prairie Evaporite Formation is predominantly an anhydrite deposit. As shown in Figure 9, it is believed to be discontinuous or absent on the east side of the Athabasca River. The Methy Formation is a reefal dolomite. The Contact Rapids Formation consists of dolomite, dolomitic siltstone, shale, anhydride and gypsum.

4.3 **Regional Hydrogeology**

4.3.1 Regional Hydraulic Conductivity Data

Hydraulic conductivity data from the oil sands region has been collected from published sources such as Hackbarth and Nastasa (1979), as well as from Alsands (1978b) and OSLO projects and Suncor's Lease 86. Hydraulic conductivity data from the oil sands region has been collected from the following published sources:

- Hackbarth and Nastasa (1979)
- Alsands Project Group (1978)
- OSLO

兪

- Suncor Lease 86
- Shell Muskeg River Mine (Komex International Ltd., 1997)
- Syncrude Aurora Mine (Bovar, 1996)

4.3.1.1 Surficial Materials

Table 4 provides a summary of hydraulic conductivity values measured in surficial materials in the region. The hydraulic conductivity of till ranges from 5.3×10^{-8} m/s to 6.8×10^{-7} m/s, with a mean of 1.4×10^{-7} m/s.

Deposi	L9				
Hydrogeologic Unit	Minimum Hydraulic Conductivity (m/s)	Maximum Hydraulic Conductivity (m/s)	Mean Hydraulic Conductivity (m/s)		
TILL	5.3 x 10 ⁻⁸	6.8 x 10 ⁻⁷	1.4 x 10 ⁻⁷		
SAND	1.1 x 10 ⁻⁸	1.0 x 10 ⁻⁴	5.0 x 10 ⁻⁵		
SAND AND GRAVEL	7.0 x 10 ⁻⁶	1.0 x 10 ⁻³	3.8 x 10 ⁻⁴		

Table 4Summary of Regional Hydraulic Conductivity Data from Surficial
Deposits

The hydraulic conductivity of sand deposits range from $1.1 \ge 10^{-8}$ m/s to $1.0 \ge 10^{-4}$ m/s, with a mean of $5.0 \ge 10^{-5}$ m/s. The hydraulic conductivity of surficial sand measured by Golder (Shell Canada Ltd, 1997) at the Muskeg River Mine is $1.0 \ge 10^{-4}$ m/s and Bovar (1996) recorded hydraulic conductivities for the sand and gravel up to $1 \ge 10^{-3}$ m/s. The sand and gravel in the area of the Aurora Mine South is distributed along a well defined, meandering pleistocene channel deposit.

The hydraulic conductivity of sand and gravel deposits, measured in the Athabasca floodplain at Suncor, ranges from 7.0×10^{-6} m/s to 1.0×10^{-3} m/s, with a mean of 3.8×10^{-4} m/s.

4.3.1.2 Bedrock Materials

The hydraulic conductivity of bedrock units measured in the oil sands region is summarized in Table 5. Hackbarth and Nastasa (1979) determined the hydraulic conductivity of the Clearwater Formation ranges from 1×10^{-9} m/s to 1×10^{-5} m/s, with a mean of approximately 1×10^{-7} m/s.

Tests conducted in the oil sands indicate that the hydraulic conductivity ranges between 3.5×10^{-9} m/s and 3.2×10^{-7} m/s, with a mean of 1.5×10^{-7} .

Extensive pumping tests have been conducted in the Basal Aquifer by Alberta Research Council (Hackbarth 1977) and others at the Alsands site, north of the Millennium Mine area. The results of these tests are listed in Table 5. The hydraulic conductivity of the Basal Aquifer ranges from 1.5×10^{-7} m/s to 2.4×10^{-4} m/s, with a mean of 4.2×10^{-5} m/s. This value is similar to the value of 3.0×10^{-5} m/s determined at the Muskeg River Mine (Komex International Ltd., 1997). Bovar (1996) measured hydraulic conductivities for the Aurora Mine of between 2×10^{-5} m/s and 2×10^{-4} m/s.

Hydrogeologic Unit	Minimum	Maximum	Mean		
	Hydraulic	Hydraulic	Hydraulic		
	Conductivity	Conductivity	Conductivity		
	(m/s)	(m/s)	(m/s)		
Clearwater Formation	1 x 10 ⁻⁹	1 x 10 ⁻⁵	1 x 10 ⁻⁷		
Oil Sands	3.5 x 10-9	3.2 x 10 ⁻⁷	1.5 x 10 ⁻⁷		
Basal Aquifer	1.5 x 10 ⁻⁷	2.4 x 10 ⁻⁴	4.2 x 10 ⁻⁵		
Upper Devonian (Waterways Formation)	4.0 x 10 ⁻¹¹	3.0 x 10 ⁻⁵	5.1 x 10 ⁻⁷		
Prairie Evaporite Formation	50	903	3.0 x 10 ⁻⁹		
Methy Formation	2.6 x 10 ⁻¹⁰	1.6 x 10 ⁻⁷	1.8 x 10 ⁻⁸		

 Table 5
 Summary of Regional Hydraulic Conductivity Data from Bedrock

The hydraulic conductivity of the Upper Devonian limestone ranges from 4.0 x 10^{-11} m/s to 3.0 x 10^{-5} m/s, with a mean of 5.1 x 10^{-7} m/s. Such a wide range of hydraulic

conductivity in a limestone indicates that the rock is probably fractured. Descriptions of the Upper Devonian Strata in Carrigy (1973) and Cotterill and Hamilton (1995) support this interpretation. In some areas of the region, the Upper Devonian limestone may therefore be nearly as permeable an aquifer as the Basal Aquifer.

Below the Upper Devonian strata, the hydraulic conductivity of the underlying formations is generally very low. The hydraulic conductivity of the salt in the Prairie Evaporite Formation is in the order of 3.0×10^{-9} m/s. The hydraulic conductivity of the Methy Formation has been found to range from 2.6×10^{-10} m/s to 1.6×10^{-7} m/s, with a mean of 1.8×10^{-8} m/s.

4.3.2 Regional Groundwater Flow Directions

The groundwater flow systems conform to the classic principles of regional groundwater flow. Groundwater is recharged in the uplands, and discharges in lowlands. All groundwater flow is directed to the Athabasca and Clearwater Rivers, as well as smaller rivers that have incised into the Upper Devonian strata, such as the Steepbank, Muskeg and MacKay Rivers.

In the surficial deposits in the organic plain, the direction of groundwater flow is controlled by the hydraulic conductivity, and ground surface topography and to a lesser extent to the bedrock topography. A shallow flow system exists in the surficial material, in which groundwater flows more or less horizontally toward the major surface water bodies. Groundwater discharges from the surficial deposits through the colluvium to the river valleys.

In the floodplain of the Athabasca River, the groundwater flow in the surficial deposits is horizontal. The groundwater generally flows toward the river, with a slight downstream component to its direction.

In the Clearwater Formation and oil sands, the direction of groundwater flow is predominantly downward (Hackbarth and Nastasa, 1979). The cause of these gradients is probably due to the fact that these deposits have very low hydraulic conductivity, in comparison to the underlying Basal Aquifer.

The direction of groundwater flow in the Basal Aquifer is toward the Athabasca River, and into any stream valleys and depressions where the aquifer outcrops.

In the upper-most portion of the Upper Devonian rock, the flow is horizontal toward the Athabasca River and deeply incised valleys. This is because the Upper Devonian limestone has a relatively high hydraulic conductivity in comparison to the oil sands above it, and the deeper limestone below it.

There is some evidence that the Upper Devonian Limestone and Basal Aquifer may act as a hydraulically connected unit. During pumping tests conducted by Alberta Research Council, the hydraulic head in the Upper Devonian Strata responded to pumping from the Basal Aquifer (Hackbarth and Nastasa, 1979). This implies that there may be some degree of groundwater flow between the two units.

4.3.3 Regional Groundwater Chemistry

Regional groundwater chemistry has been published by Schwartz (1979, 1980) and Hackbarth (1977). In addition, Suncor collects groundwater samples from its network of monitoring piezometers at its active mine. Table 6 shows a summary of groundwater

chemistry data from peat and surficial deposits. Table 7 summarizes groundwater chemistry from bedrock units. The descriptions of the water quality include the terms fresh, brackish and saline. These descriptions are based on the concentration of total dissolved solids (TDS) found in the water. The descriptions are based on the following ranges of TDS:

TDS (mg/L)

Fresh	0	-	1000
Brackish	1000	-	20 000
Saline	20 000	-	35 000

The chemistry data presented in Table 6 was collected by Schwartz (1979) from the Muskeg River basin, which is several miles north of the LSA. The table shows that the chemistry of water found in peat is generally very fresh, with an electric conductivity (EC) ranging from 50 μ mhos/cm to over 800 μ mhos/cm. The mean EC was found to be 137 μ mhos/cm. The major ions in the peat water tend to be calcium, magnesium and bicarbonate. Peat water that has high levels of EC or sodium concentration probably has been influenced by groundwater discharge from bedrock (Schwartz, 1980).

The groundwater chemistry data has been collected from a variety of surficial deposits, including sand units, and till. The groundwater in the surficial units tends to be fresh. The total dissolved solids (TDS) ranges from 144 mg/L to 754 mg/L, with a mean of 520 mg/L based on the data presented in Table 6. More recent data collected for the Shell Canada Muskeg River Mine Project by Komex International Inc. (1997) shows that the groundwater in the surficial deposits is fresh to brackish, within a range of TDS concentrations from 239 mg/L to 1729 mg/L. Bovar (1996) measured concentrations of TDS at less than 500 mg/L for the Aurora Mine. The major ions are predominantly calcium, magnesium and bicarbonate. Areas in which the groundwater in peat and

surficial deposits has high levels of sodium and chloride are probably receiving water from bedrock units.

Data from chemical analyses of bedrock groundwater are shown in Table 7. Water in the Clearwater Formation is slightly brackish. The concentration of TDS reported in Schwartz (1979) ranged from 971 mg/L to 2762 mg/L, with a mean of 1794 mg/L. The major cations are sodium and potassium. Bicarbonate is the major anion. The sulphate and chloride concentrations in the Clearwater Formation appear to be higher than in the overlying surficial material.

April 20, 1998

SUNCOR ENERGY

Hydrogeology Baseline for Project Millennium

Well ID	Unit	Date	Ca	Mg	Na	К	НСО3	SO4	Cl	TDS ⁱ	EC	Total ALK	Reference
			mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	µmhos/cm	mg/L	
Peat	Minimum		0.7	0.5	1.3	0	0	3.2	1.3		50	0	Schwartz 1980
	Maximum		33.6	9.9	212	2.4	566	15.6	9.1		84		
	Mean		17	4.9	4.1	0.6	80.7	5.9	2.4		137.0		
Surficial De	posits												
HC1	Clay, sandy	77/08/09	74.0	25.0	6.1	2.5	358.0	21.0	10.0	496.6	437.0	293.6	Schwartz 1979
HC2	Sand, clayey	77/08/08	35.5	10.0	3.9	1.3	156.0	7.7	0.3	214.7	256.0	127.9	Schwartz 1979
HC4	Clay	77/08/07	110.0	15.0	8.9	2.7	437.0	0.5	4.0	578.1	600.0	358.3	Schwartz 1979
HC6	Clay, silty	77/08/07	130.0	29.0	5.6	2.1	583.0	0.5	4.0	754.2	680.0	478.1	Schwartz 1979
HC7	Clay, silty	77/08/07	98.0	22.0	4.2	1.0	371.0	0.5	2.0	498.7	570.0	304.2	Schwartz 1979
HC8	Sand	77/08/07	38.7	22.0	12.4	2.7	250.0	0.5	4.0	330.3	363.0	205.0	Schwartz 1979
HC9	Sand	77/08/07	20.0	7.6	5.2	0.6	98.0	9.2	4.0	144.6	165.0	80.4	Schwartz 1979
HC10	Clay	77/08/07	117.0	25.0	7.3	2.0	484.0	3.5	4.0	642.8	695.0	396.9	Schwartz 1979
HC12	Clay	77/08/07	110.0	25.0	7.0	1.9	503.0	0.5	4.0	649.4	670.0	412.5	Schwartz 1979
HC13	Clay	77/08/08	110.0	30.0	16.0	2.2	534.0	9.5	4.0	705.7	690.0	437.9	Schwartz 1979
HC15	Clay	77/08/08	90.0	28.0	15.1	3.2	500.0	0.5	4.0	640.8	665.0	410.0	Schwartz 1979
HC16	Clay	77/08/08	73.4	21.3	7.6	2.0	368.0	0.5	4.0	476.8	508.0	301.8	Schwartz 1979
HC18	Clay, silty	77/08/08	82.0	33.0	14.6	8.9	499.0	0.5	4.0	642.0	650.0	409.2	Schwartz 1979
HC21	Silt and clay	77/08/06	66.0	35.0	7.0	2.1	428.0	0.5	10.0	548.6	550.0	351.0	Schwartz 1979
HC23	Silt	77/08/06	73.4	18.0	41.0	1.4	350.0	0.5	76.0	560.3	650.0	287.0	Schwartz 1979
HC25	Sand	77/08/11	27.0	11.01	36.0	5.8	236.0	15.8	4.0	335.7	375.0	193.5	Schwartz 1979
HC26	Sand	77/08/11	63.1	10.8	7.9	3.2	280.0	0.5	4.0	369.5	392.0	229.6	Schwartz 1979
HC27	Clay	77/08/07	110.0	26.0	10.4	1.1	430.0	10.0	4.0	591.5	625.0	352.6	Schwartz 1979
HC29	Clay	77/08/11	98.0	20.0	38.0	5.0	550.0	0.5	4.0	715.5	720.0	451.0	Schwartz 1979
	Minimum		20.0	7.6	3.9	0.6	98.0	0.5	0.3	144.6	165.0	80.4	
	Maximum		130.0	35.0	41.0	8.9	583.0	21.0	76.0	754.2	720.0	478.1	
	Mean		80.3	21.8	13.4	2.7	390.3	4.4	8.0	520.8	539.5	320.0	

Table 6	Regional	Chemistry o	f Ground	water in	Surficial	Deposits
---------	----------	-------------	----------	----------	-----------	-----------------

 \bigotimes

Well ID	Unit	Date	Ca	Mg	Na	K mg/I	HCO3	SO4	Cl mg/I	TDS ¹	EC umbos/	Total	Reference
			1 mg/10		mg/1.	1112/12	mg/1	mg/12	mg/L		cm	mg/L	
Clearwater Form	ation												
8-114	Clay	75/02/22	19.6	6.6	239.0	13.3	541.8	97.0	54.0	971	1100	444	Schwartz 1979
8-220	Clay	75/03/06	34.0	3.2	700.0	117.0	1898.0	5.7	4.0	2762	1800	1556	Schwartz 1979
8-370	Clay	75/03/23	17.9	7.0	409.0	15.4	1054.0	117.0	27.0	1647	1710	864	Schwartz 1979
	Minimum		17.9	3.2	239.0	13.3	541.8189	5.7	4.0	971	1100	444	
	Maximum		34.0	7.0	700.0	117.0	8.0	117.0	54.0	2762	1800	1556	
	Mean	1	23.8	5.6	449.3	48.6	1164.6	73.2	28.3	1794	1537	955	
McMurray Form	ation	75/00/11	1 21 0	1.60	1 176	1 1 7	1 4 6	1 26	1 120	1 209	1 200	1	Unalthanth 1077
0-21	Oil Sands	75/09/11	31.0	5.2	17.5	1./	4.0	2.5	12.0	208	280	1776	Hackbarth 1977
6-220	Oil Sands	/5/09/11	6.9	21.1	1400.0	1017.0	2165.0	14.0	1600.0	3/181	6500	1//5	Hackbarth 1977
7-135	Oil Sands	75/09/10	9.6	15.0	34520.8	768.9	768.9	0.0	756.7	13922	3390	630	
	Minimum		0.9	5.2	17.3	1.7	4.0	2.3	12.0	200	280	1.000	
	Maximum		31.0	21.1	34520.8	1017.0	2165.0	14.0	1000.0	3/1/1	0000	1005	
00.00/4	Mean	80/07/02	15.8	13.8	11979.4	381.2	768.9	0.0	756.7	13922	3389	030	Haakharth 1077
BP-2WA	Basai Aquifer	80/07/02	74.0	107.0	0281.0	03.0	3304.0	4.0	8550.0	10928	27400	2709	Hackbarth 1977
BP-4WA	Basal Aquiter	80/07/02	3.2	2.2	331.0	19.0	401.0	1.5	1/0.0	1032	1500	329	Hackbarth 1977
Fina 73-6	Basal Aquiter	80/07/02	8.5	20.0	625.0	15.0	1051.0	10.0	446.0	1652	2850	862	Hackbarth 1977
Fina 73-2	Basal Aquifer	80/07/02	11.0	21.0	203.0	11.3	647.0	6.0	49.0	643	1180	531	Hackbarth 1977
Tenneco	Basal Aquifer	79/07/07	9.0	0.6	118.0	6.7	361.0	6.7	2.0	366	525	296	Hackbarth 1977
Tenneco	Basal Aquifer	74/02/27	128.0	84.0	190.0	-	602.0	528.0	-	1532	-	494	Schwartz 1979
Tenneco	Basal Aquifer	74/02/18	42.0	62.0	161.0	-	431.0	344.0	-	1040	-	353	Schwartz 1979
7-337	Basal Aquifer	75/09/10	14.7	28.0	575.0	22.1	1239.0	2.7	218.0	2100	3200	1016	Schwartz 1979
	Minimum		3.2	0.6	118.0	6.7	361.0	2.7	2.0	366	525	353	
	Maximum		128.0	167.0	6281.0	63.0	304.0	528.0	8550.0	16928	27400	1016	
	Mean		36.3	48.1	1060.5	22.9	1004.5	113.6	1573.5	3162	6109	621	
Upper Devonian	Limestone	80/07/01	106.0	1 4510	10781.0	1 101 0	1 1515.0	1 1 0	16750.0	29024	45000	1 1242	Hackbarth 1977
DI-IW DD DW	Limestone	80/07/02	20.0	152.0	7312.0	66.0	1659.0	1700.0	10750.0	10694	31300	1242	Hackbarth 1977
DF-2 W	Limestone	90/07/02	12.0	132.0	075.0	0.0	1639.0	26.0	10250.0	2576	31500	200	Hackbarth 1077
DF+3W	Limestone	04/10/27	72.0	12.0	2570.0	9.0	2028.0	50.0	1290.0	2370	4550	1672	KCCL 1005
Env91-2A	Limestone	74/10/27 04/11/00	21.0	22.5	2555 0	19.0	2030.0	1.4	3540.0	5000	10015	2120	KCCI 1993
Env91-3	Limestone	94/11/09	21.9	122.3	2000	12.1	2007.0	2.1	2540.0	0438	10/52	2138	KCCL 1993
Env92-6	Limestone	94/10/26	110.0	150.0	10626.0	52.4	2/31.8	7.0	15480.0	27791	42508	2241	KCCL 1995
Env94-10A	Limestone	94/10/31	190.0	35.5	2086.0	1.8	/82.0	48.2	3240.0	5999	10340	642	KCCL 1995
Env94-7	Limestone	94/11/03	336.0	105.0	1180.0	12.1	982.5	918.0	1710.0	4753	7670	806	KCCL 1995
Env94-8A	Limestone	94/10/31	171.0	28.0	207.0	6.3	597.3	58.6	338.0	1108	2011	490	KCCL 1995
Env94-9A	Limestone	94/10/31	113.0	25.2	1460.5	2.7	719.0	61.4	1940.0	3962	7183	590	KCCL 1995
	Minimum		13.0	12.0	207.0	2.7	464.0	1.0	338.0	1108	2011	380	
	Maximum		336.0	451.0	10626.0	101.0	2731.8	1700.0	16750.0	29024	45000	2241	
Businia France V	Mean	1	117.3	103.9	4026.0	28.9	1409.6	283.4	5844.8	11807	17733	1156	
rtairie Evaporite	ovnsum	75/02/19	1 380	346	1688	67	422	2500	1 2875	8278	8000+	346	Schwartz 1070
Precambrian	1 5/P30	1	1 200	1 240	1	1. 07	1 766	1 2000	2015	1 02/0	1 0000	1	i Soliward 1979
7-933	Granite	75/03/11	25.4	1.5	251	76	158	134	300	946	1480	130	Schwartz 1979
L			1	1	1	1	<u>I</u>	1	<u>·</u>	<u> </u>	L	<u> </u>	1

Table 7 Regional Bedrock Groundwater Chemistry

' Approximate

PA 2839 0301 (6850)

 \odot

Groundwater in the oil sands ranges from being quite fresh to saline. The value of TDS, as shown in Table 7, ranges from 208 mg/L to 37 181 mg/L. The mean concentration of TDS was 13 922 mg/L. Sodium, chloride and bicarbonate are the major ions in groundwater from the oil sands. Data collected by Komex International Ltd. (1997) falls within this range.

The Basal Aquifer yields water that ranges from fresh to very brackish. The TDS reported by Schwartz (1979) and Hackbarth (1977) ranged from 366 mg/L to 16 928 mg/L. The mean concentration of TDS in the Basal Aquifer was 3162 mg/L. Data collected by Komex International Ltd. (1997) falls within this range. Concentrations of TDS ranged from 1430 mg/L to 7407 mg/L. The TDS concentrations for the Aurora Mine were measured at less than 2000 mg/L. The major ions in the aquifer are sodium, bicarbonate and chloride. The sulphate level was also found to be quite high in two wells in the Alsands area (greater than 300 mg/L). In general, the groundwater in the oil sands and the Basal Aquifer appear to be quite similar. The concentration of dissolved compounds in both units varies by two orders of magnitude. They both have the same major ion chemistry. In one important characteristic, however, they are quite different; the oil sands contains a higher concentration of hydrocarbons.

The chemistry of groundwater in the Upper Devonian formations shown in Table 8 is from sites at Alsands and Suncor's active mine. The groundwater in the Upper Devonian strata is slightly brackish to saline. The concentration of TDS in the limestone ranged from 1108 mg/L to 29 024 mg/L, with a mean of 11 807 mg/L. Sodium, chloride and bicarbonate are the major ions in water in the Upper Devonian strata. In general, the data in Table 7 indicates that the groundwater in the Upper Devonian strata is more brackish than in the Basal Aquifer. Chloride is also more predominant in the Upper Devonian strata than in the Basal Aquifer.

PA 2839 0301 (6850) 980413R.DOC Table 7 also provides chemistry data for groundwater from the Middle Devonian and Precambrian rock. Water from the Prairie Evaporite and Methy Formations is saline, with major ions being sodium, sulphate and chloride. Komex International Ltd. (1997) measured a range of concentrations of TDS from 9824 mg/L to 78 666 mg/L for groundwater from the Methy Formation.
5. GEOLOGY OF THE EAST BANK MINE AREA

5.1 Surficial Geology

An examination of the borehole logs confirms, in general, the interpretation of the surficial geology by McPherson and Kathol (1977). The following discussion describes the surficial deposits found in the organic plain, valley slopes and floodplain in the Project Millennium LSA.

5.1.1 Organic plain

On the organic plain, the simplified stratigraphic column is as follows:

Peat Stratified Sediments Till Deep Undifferentiated Till and Stratifed Sediments Bedrock

Cross sections through the surficial drift deposits in the organic plain have been prepared (Figures 10 to 15).

5.1.1.1 Peat

Peatland consists of an organic soil substrate consisting largely of organic residues formed in a water saturated condition as the result of incomplete decomposition of the plant constituents due to the prevailing anaerobic conditions (Radforth and Brawner, 1977). During a helicopter flight over the site, it was observed that the majority of the organic plain area is covered with peat. This observation was later confirmed by terrestrial mapping presented in Golder (1998). The drift has been logged in a sufficient number of boreholes to indicate that the peat is 0.8 to 1.5 m thick in the LSA.

5.1.1.2 Stratified Sediments

Stratified sediments include sand and gravel interbedded with discontinuous layers of siltier material and glacial till. This sediment was probably deposited through the fluvial reworking of the underlying till deposits.

Below the peat, sand was encountered in over half of the boreholes in which surficial materials were logged. From descriptions on the logs, these sediments are interpreted to be either glaciofluvial outwash or mixed glaciolacustrine sediments. Where they are present, the thickness of the sand units ranges from 1 m to 10 m with local accumulations of up to 36 m as shown in the cross sections (Figures 10 to 15).

The trends of sand and gravel occurrence observed in the borehole logs are reflected by the resistivity profiles determined through the TEM survey (Figure 16). The resistivity contrasts are indicative of changes in the sediment type. Generally, the higher resistivities correspond to the more clay deficient deposits (the sand and gravel deposits). The TEM response is also a function of the electrical properties of the fluid filling the pore spaces. Locally, extremely fresh water such as water found in the peat may cause a high resistivity response that is unrelated to the presence of sand and gravel in the subsurface.

The elevation of the base of the stratified sediments is shown in Figure 17. The net thickness of the sand and gravel above this surface is shown in Figure 18. Both of these maps are based on the borehole data. Resistivity profiles A-A and C-C in Figure 16 show two layers of higher resistivity material within a depth interval of ground surface to about 30 m below ground. These two layers have been identified locally in boreholes and summed as one hydrogeologic unit to account for the thickness represented in the

isopach map (Figure 18). The meandering appearance and continuity of sand and gravel in Figure 18 may have resulted from fluvial reworking of the sediments. The northwesterly trend is parallel to that of the Mildred Lake Aquifer which has been mapped in an area northwest of the LSA.

5.1.1.3 Till

Till has been deposited over nearly the entire organic plain. The descriptions of till in the logs provided by Suncor resemble the Firebag till, as described by McPherson and Kathol (1977). The till is predominantly a sandy loam, increasing in clay content with depth. The composition of the Firebag till bears a resemblance to the bedrock beneath it. In the centre and east portions of the LSA, the till overlies shale of the Clearwater Formation. In these locations, the lower till horizons are clayey, and appear to contain rafted or re-worked Clearwater shale. On the west side of the LSA, where the Clearwater Formation has been eroded, the till is in contact with oil sands. Correspondingly, the borehole logs describe the till as being more sandy, with bitumen odour. Figure 17 represents the elevation of the top of the till (base of stratified sediments). The total thickness of the till ranges from zero to 36 m in the boreholes that have been logged.

Generally, the distribution of the till recorded in the borehole logs agrees with the surficial geology map prepared by McPherson and Kathol (1977) shown in Figure 7, with a few exceptions. In the western portion of the LSA and proximal to the Athabasca River, till is absent locally and the fluvial outwash deposits, lacustrine clay, fill material and peat directly overlies the bedrock. These locations correspond to areas where the fluvial outwash deposits tend to be thick implying that the till has been eroded and reworked locally. This reworking was focused along trends that correspond to the bedrock topographic lows as will be discussed in Section 6.1.6.

5.1.1.4 Deep Undifferentiated Till and Stratified Sediments

McPherson and Kathol (1977) suggested that undifferentiated deposits of till and stratified sediments may exist in areas where surficial deposits are very thick. Their investigation indicates that the drift in portions of Lease 19 may be up to 45 m thick. This was confirmed by the 1996 and 1997 drilling programs for the LSA. The drift ranges in thickness to a maximum of 44 metres in the eastern half of the LSA. Where the drift is thick, deep stratified sand and gravel has been observed beneath the till overlying the bedrock (for example borehole location AA09269109W4-L19). Till was encountered overlying deep sand and gravel in twenty locations distributed through the LSA (Figure 19).

To date the borehole information has not been comprehensive enough to determine whether this deep sand and gravel constitutes a major aquifer in the LSA.

5.1.2 Valley Slopes

The valley slopes along the Steepbank River and the east side of the Athabasca River are covered with colluvium. The colluvium consists mainly of sandy and silty material, with some bituminous sand. The thickness of these deposits is not known. However, it probably ranges from zero to several 10's of metres, where the slopes are less steep. The bedrock is exposed on slopes that are particularly steep.

5.1.3 Floodplain

The Athabasca River valley has been eroded into the Upper Devonian limestone. Valley sediments consist of discontinuous alluvial gravel, sand silt and clay that contact the Upper Devonian surface. The floodplain on the east bank of the Athabasca River is comprised of organic material and alluvial sand silt and clay, with some sand and gravel

deposits. The results from geotechnical drilling in the fall of 1995 indicate that the sand and gravel is very clean, with no silt or clay sized material.

5.1.4 Thickness of Surficial Deposits

A map showing the total thickness of surficial drift deposits is shown in Figure 20. On the organic plain, the thickness of surficial material ranges from 1 m to 45 m. The surficial deposits are thin along the edge of the scarp of the river valleys. The thickest surficial deposits are located in the southeast part of Lease 25, and in Lease 19. The drift thickness map by McPherson and Kathol (1977), shown in Figure 8, is generally consistent with the map prepared for this study.

On the valley slopes, the surficial deposits are generally less than 1 m thick. Along the Steepbank River, in Lease 97 and Fee Lot 1, the valley walls are very steep, and the bedrock outcrops. Beneath the river near Tar Island Dyke, the surficial material has been found to be over 40 m thick.

5.1.5 Bedrock Geology

From the results of the compilation of borehole data, the simplified bedrock stratigraphy of the east bank mine area is as follows:

- · Clearwater Formation;
- McMurray Formation;
- · Basal Aquifer; and
- Upper Devonian Limestone.

The bedrock stratigraphy is presented in six cross sections in Figures 10 to 15. Maps showing structure contours and outcrop areas of each stratigraphic unit are illustrated in Figures 21 to 29.

5.1.6 Local Bedrock Topography

The bedrock surface beneath most of the organic plain in the LSA consists of the Clearwater Formation (Figure 21). The bedrock generally slopes toward the Athabasca River. The bedrock elevation ranges from 260 mASL to greater than 400 mASL.

Superimposed on the westerly sloping surface are local depressions in the bedrock surface. Three such depressions are clearly visible on the structure map in Figure 21. They are located northeast of Leggett Creek, east of the eastern limit of Unnamed Creek, and to the south of Wood Creek. The locations of the depressions correspond with depressions in the surface of the Upper Devonian (Figure 28). A comparison of the site topography (Figure 6), thickness of surficial deposits (Figure 20) and the bedrock structure (Figure 21) reveals that these depressions are filled with thick deposits of surficial material. In addition, from the sand and gravel isopach (Figure 18) it is evident that fluvial reworking of the till occurred in areas where the bedrock surface is deep. This implies that the ground surface during the time of glacial-fluvial outwash reflected the bedrock surface to some extent.

5.1.7 Clearwater Formation

The Clearwater Formation subcrops beneath the drift deposits over most of the area of the organic plain (Figure 21). The zero edge of the formation is locally an erosional edge, where the bedrock has been incised by the river valleys. The Clearwater Formation outcrops along the Athabasca River valley, the Steepbank River valley, and at the mouths of Leggett, Wood and McLean Creeks (Figure 22).

PA 2839 0301 (6850) 980413R.DOC

Ø

As shown in the geologic cross sections in Figures 10 to 15, the deposit forms a wedge of material that thickens from west to east. The thickness of the Clearwater Formation ranges from 0 to 80 m.

5.1.8 McMurray Formation Oil Sands

The thickness of the McMurray Formation (excluding the Basal Aquifer) ranges from 50 m to 85 m. The structure map of the McMurray Formation is shown in Figure 23. The McMurray outcrops below the Athabasca River valley escarpment along the entire LSA (Figure 24). The McMurray also outcrops along the Steepbank River valley up to a point about 12 km from the outflow of the Steepbank to the Athabasca River.

Borehole data indicate that interburden deposits occur sporadically in the McMurray Formation. Borehole logs did not provide enough detail to characterize the interburden deposits.

The oil sands is underlain by the Basal Aquifer in most of the LSA. In some depressions in the Devonian surface, there is oil sands below the Basal Aquifer. This is shown clearly in cross section B, (Figure 11), in which there is nearly 20 m of oil sands between the Basal Aquifer and the underlying limestone.

5.1.9 Basal Aquifer

The distribution and thickness of the Basal Aquifer in the LSA is shown in the isopach map in Figure 25. There are large portions of Leases 97, 19 and 25 where the aquifer is less than 1 meter thick.

The thickness of the Basal Aquifer ranges from zero to 50 m. There are three trends in the LSA along which the Basal Aquifer is thick. The Basal Aquifer is thickest at the northern end of the LSA, immediately south of Unnamed Creek and between Leggett Creek and Wood Creek. As shown in the cross sections (Figures 10 to 15), the Basal Aquifer is thickest where it overlies depressions in the Devonian surface.

Figure 26 is a structure contour map of the top of the Basal Aquifer. Where the aquifer is present, the elevation of its upper surface ranges from 216 mASL to 282 mASL. Where the aquifer is thin, (less than 15 m), the structure of the aquifer reflects the structure of the underlying Devonian.

The Basal Aquifer outcrop areas are localized (Figure 27). Along the Athabasca River valley, mapping indicates possible outcropping or near surface subcropping Basal Aquifer in the vicinity of Shipyard Lake and near Leggett Creek. The Basal Aquifer also outcrops sporadically along the Steepbank River valley from the Athabasca River to a point about 4.5 km upstream along the Steepbank River.

5.1.10 Upper Devonian

A structure contour map of the Upper Devonian surface is presented in Figure 28. The map illustrates the surface of the Devonian is an undulating erosional unconformity, ranging in elevation from 190 mASL to 290 mASL. Several closed depressions are present on the Devonian surface, which suggest that some subsidence due to karstification and collapse have taken place. Topographic highs are also apparent, at numerous locations on the surface. As shown in the cross sections in Figures 10 to 15, the surface of the Upper Devonian subcrops along the Athabasca River and the lower portion of the Steepbank River (Figure 29). In places, outcrops of limestone stand up to 10 m above river level. Observations made on core samples and outcrops revealed that

 \otimes

the Upper Devonian limestone is highly fractured and weathered. Some of the fractures contain clay.

6. HYDROGEOLOGY OF THE EAST BANK MINE AREA

6.1 Surficial Materials

6.1.1 Organic Plain

The main water bearing materials included in the surficial materials are peat and underlying sands and gravels.

Thirteen standpipe piezometers have been constructed in surficial deposits in the organic plain of the LSA. The locations of the piezometers are shown in Figures 5 and 30. Rising head tests have been conducted in ten of the piezometers to determine the hydraulic conductivity of the drift. Piezometer L97-P95-OBS#4 was not tested, because the electrical conductivity of its water was too low to activate a depth sounder. In addition, L19-P98-OB7 was dry at the time of testing and L19-P98-OB8 was frozen. Table 8 presents the hydraulic conductivity of the drift.

6.1.1.1 Hydraulic Conductivity of Surficial Material in Organic Plain

The hydraulic conductivity of the surficial sand ranges from 2.9 x 10^{-7} m/s to 2.0 x 10^{-5} m/s, with a mean of 3.1 x 10^{-6} m/s. This is within the range calculated from piezometer tests elsewhere in the region (shown in Table 4).

The hydraulic conductivity of the till in the LSA was measured in four locations (Table 8). The geometric mean of the hydraulic conductivity is 2.8×10^{-7} m/s. The hydraulic conductivity of the till in the region ranges from 5.3×10^{-8} m/s to 6.8×10^{-7} m/s, with a mean of 1.4×10^{-7} m/s

Monitoring	Suncor 1998		Hydraulic	Analytical
Location	Drilling Program	Geology	Conductivity	Method
	Location		(m/sec)	
		Sand and Gravel Deposits	-	
L97-P95-OBS#1	NA	Sand	4.00E-05	Hvorslev (1951)
L97-P95-OBS#2	NA	Silty sand	6.00E-07	Hvorslev (1951)
L97-P95-OBS#3	NA	Sand	2.00E-05	Hvorslev (1951)
L97-P95-OBS#5	NA	Sand	4.00E-07	Hvorslev (1951)
L25-P98-OB1	98-103	Fine to medium grain sand and cobbles	2.90E-07	Hvorslev (1951)
L25-P98-OB2	98-080	Medium to coarse sand	9.10E-05	Hvorslev (1951)
L19-P98-OB4	98-117	Medium to coarse sand	6.10E-07	Hvorslev (1951)
L19-P98-OB7	98-125	Medium to coarse sand	Dry	Hvorslev (1951)
		Geometric Mean	3.15E-06	an an far an
	######################################	Till Deposits	**************************************	
L25-P98-OB3	98-083	Clay till	7.90E-09	Hvorslev (1951)
L19-P98-OB5	98-074	Clay till and sand layers	2.90E-06	Hvorslev (1951)
L19-P98-OB6	98-115	Clay till	9.60E-07	Hvorslev (1951)
L19-P98-OB8	98-064	Clay till	Frozen	Hvorslev (1951)
		Geometric Mean	2.80E-07	ne ny dre - e remember and totto da da anna a da da anna a da da anna a da anna a da anna a da anna anna anna a

 Table 8
 Hydraulic Conductivity of Surficial Deposits in the LSA

6.1.1.2 Groundwater Flow in Surficial Material in Organic Plain

Due to the differences in hydraulic conductivity with depth in peat, the groundwater flow direction in the peat is also variable with depth. When the active layer of peat is saturated from top to bottom, water flows laterally through the more permeable upper strata, and vertically through the less permeable deeper strata. During dryer seasonal periods when the water table in the peat is closer to the base of the active layer, vertical flow in the less permeable material predominates. The hydraulic gradient between the peat and underlying sands has not been determined from piezometer testing; however, in the areas of fens one would presume that the gradient is directed upward across the low permeability layers. This upward gradient would vary seasonally with the water level in the peat.

The organic plain is discontinuously covered with permeable sand which overlies less permeable till. The groundwater flow in the sand is controlled by two factors: the hydraulic conductivity; and the topography of the ground and underlying geologic units. Figure 30 shows an interpretation of the direction of horizontal flow in the surficial sand and gravel based on the water level data presented in Table 9.

The direction of horizontal flow is controlled by the site topography and by the intersection of fluvial deposits with surface water bodies including streams and fens.

SUNCOR ENERGY Hydrogeology Baseline for Project Millennium

Standpipe	Monitoring	East	North	Ground	Stick-Up	Reference	Date	Depth to	Water Level
Piezometer	Location	NAD83	NAD83	Elevation		Elevation		Water	Elevation
				(mAMSL)	(m)	(mAMSL)		(m)	(mAMSL)
				S	urficial San	ds			
FL1-BRDG-4	FL1-BRDG-4	472934	6317640	246.97	0.91	247.87	3/1/95	4.43	243.44
FL1-BRDG-4	FL1-BRDG-4	472934	6317640	246.97	0.91	247.87	6/25/96	3.47	244.40
FL1-BRDG-4	FL1-BRDG-4	472934	6317640	246.97	0.91	247.87	10/21/96	3.22	244.65
FL1-BRDG-4	FL1-BRDG-4	472934	6317640	246.97	0.91	247.87	7/4/97	3.09	244.78
FL1-BRDG-4	FL1-BRDG-4	472934	6317640	246.97	0.91	247.87	11/27/97	3.10	244.77
FL1-BRDG-AP-4	FL1-BRDG-AP-4	472934	6317640	246.97	NA	NA	3/1/95	NA	243.80
L97-P95-OB-1	L97950B1	475104	6316935	331.20	0.90	332.10	3/1/95	6.90	325.20
L97-P95-OB-2	L97950B2	475399	6315708	330.10	0.56	336.66	3/1/95	1.84	334.82
L9/-P95-OB-2	L97950B2	4/5399	6315708	330.10	0.50	330.00	0/24/90	0.75	335.91
L9/-P95-OB-2	L97950B2	4/5399	6315708	330.10	0.50	330.00	10/18/90	0.75	225.91
L9/-P95-OB-2	L9/950B2	4/3399	6215708	330.10	0.50	330.00	1/2/97	0.80	333.80
L9/-P95-0B-2	L9/950B2	4/3399	6216250	330.10	0.50	330.00	2/1/97	0.72	227.94
L9/-P95-OB-3	L9/950B3	4/3319	0310250	338.20	0.71	338.91	3/1/95	4.10	334.81
L9/-P95-OB-3	L9/950B3	4/5519	0310230	338.20	0.71	338.91	0/23/90	3./8	333.13
L97-P93-OB-3	L9/950B3	4/5519	6216250	330.20	0.71	229.01	6/25/07	3.42	225 56
L9/-P95-OB-5	L9/950B3	475519	6216250	338.20	0.71	228.91	0/23/97	3.33	225.20
L9/-P93-0D-3	L97950B3	475519	6216250	227 42	0.71	220.71	2/1/05	2.05	224 70
L97-P95-0B-4	L9/950B4	475620	6216260	337.43	0.04	228.27	3/1/93	3.40	334.79
L97-P95-0B-4	L9/950B4	475620	6216259	227 /2	0.04	330.27	6/25/07	2.04	225 52
L9/-P93-OD-4	L9/93004	4/3020	6210010	337.43	0.04	227 95	2/1/05	2.74	225 69
L9/-F93-OD-3	L97950B5	4/3440	6210010	236.05	0.90	227.65	5/1/95	2.17	227 05
L9/-P93-OD-3	L97950B5	4/5440	6210010	226.05	0.90	227.65	10/10/06	0.00	227.05
L97-F95-OB-5	L97950B5	475448	6318010	336.05	0.90	337.85	7/3/07	0.00	337.05
L97-P95-OB-5	1 0705085	475448	6318010	336.05	0.90	337.85	10/22/07	0.80	337.03
L97-F95-OD-5	08-103	475440	6311731	330.93	0.90	338.68	2/24/08	2.18	336.50
L23-F98-OB1	98-103	476178	6311731	338	0.84	338.68	2/24/90	2.18	336.08
1 25 PO8-OB1	08 103	476178	6311731	338	0.84	338 68	2/26/08	0.84	337.84
1 25-P08-OB2	98-080	476070	6310362	330	0.54	339 55	2/24/98	1.00	338 55
1 25-P98-OB2	98-080	476070	6310362	330	0.55	339.55	2/26/98	1.00	338 51
L25-P98-OB3	98-083	479178	6310244	352	0.55	352.18	2/24/98	3 44	348 74
L25-P98-OB3	98-083	479178	6310244	352	0.61	352.18	2/25/98	3 80	348.38
L25-P98-OB3	98-083	479178	6310244	352	0.61	352.18	2/26/98	3.57	348.61
L19-P98-OB4	98-117	475934	6307534	340	0.84	340.35	2/25/98	0.84	339.51
L19-P98-OB4	98-117	475934	6307534	340	0.84	340.35	2/26/98	0.87	339.48
L19-P98-OB5	98-074	480205	6304740	354	0.61	354.97	2/25/98	1.03	353.94
L19-P98-OB5	98-074	480205	6304740	354	0.61	354.97	2/26/98	1.03	353.94
L19-P98-OB6	98-115	477495	6307865	344	0.67	344.19	2/25/98	4.45	339.74
L19-P98-OB7	98-125	477123	6304038	349	0.48	349.48	2/25/98	drv	drv
L19-P98-OB8	98-064	479122	6304057	352	0.58	352.24	2/25/98	frozen	frozen
	<u> </u>			E	asal Aquife	r			
L19-AP95-16-KM	L1995003	481144	6309425	369.21	NA	NA	3/1/95	NA	303.00
FL1-P95-13-BA	FL195003	476184	6319805	345.07	0.40	345.47	3/1/95	39.42	306.05
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	3/1/95	58.17	282.04
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	6/24/96	58.34	281.87
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	6/25/96	58.34	281.87
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	10/19/96	58.35	281.86
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	7/3/97	53.77	286.44
FL3-P95-6-BA	FL395004	476074	6313625	339.25	0.96	340.21	10/21/97	28.39	311.82
L97-P95-1-BA	L9795008	475104	6316935	331.20	0.79	331.99	3/1/95	55.09	276.90
L97-P95-1-BA	L9795008	475104	6316935	331.20	0.79	331.99	10/22/96	55.10	276.89
L97-P95-1-BA	L9795008	475104	6316935	331.20	0.79	331.99	6/23/97	55.20	276.79
L97-P95-1-BA	L9795008	475104	6316935	331.20	0.79	331.99	10/23/97	55.23	276.76
L97-P95-3-BA	L9795005	474464	6316925	325.65	0.91	326.56	3/1/95	49.89	276.67

Klohn-Crippen

Table 9Water Level Data for the Project LSA

PA 2839 0301 (6850)

Standpipe	Monitoring	East	North	Ground	Stick-Up	Reference	Date	Depth to	Water Level
Piezometer	Location	NAD83	NAD83	Elevation		Elevation		Water	Elevation
				(mAMSL)	(m)	(mAMSL)		(m)	(mAMSL)
L97-P95-3-BA	L9795005	474464	6316925	325.65	0.91	326.56	6/24/96	49.80	276.76
L97-P95-3-BA	L9795005	474464	6316925	325.65	0.91	326.56	10/22/96	49.50	277.06
L97-P95-3-BA	L9795005	474464	6316925	325.65	0.91	326.56	7/3/97	50.02	276.54
L97-P95-3-BA	L9795005	474464	6316925	325.65	0.91	326.56	10/23/97	50.00	276.56
L97-P95-8-BA	L9795006	474844	6317125	330.66	0.94	331.60	3/1/95	52.47	279.13
L97-P95-8-BA	L9795006	474844	6317125	330.66	0.94	331.60	6/17/96	54.12	277.48
L97-P95-8-BA	L9795006	474844	6317125	330.66	0.94	331.60	10/22/96	54.10	277.50
L97-P95-8-BA	L9795006	474844	6317125	330.66	0.95	331.60	6/27/97	54.30	277.30
L97-P95-8-BA	L9795006	474844	6317125	330.66	0.95	331.60	10/23/97	54.40	277.20
				U	pper Devoni	an			
FL3-AP95-7A-L	FL395005A	475994	6313065	338.61	NA	NA	3/1/95	NA	254.20
FL3-AP95-7B-L	FL395005B	475994	6313065	338.61	NA	NA	3/1/95	NA	270.60
L97-AP95-14A-L	L9795022A	475454	6318905	337.22	NA	NA	3/1/95	NA	305.00
L97-AP95-14B-L	L9795022B	475454	6318905	337.22	NA	NA	3/1/95	NA	302.30
L97-AP95-15-L	L9795024	475984	6318525	343.23	NA	NA	3/1/95	NA	298.30
L97-AP95-4A-L	L9795015A	474644	6315315	318.75	NA	NA	3/1/95	NA	259.50
L97-AP95-4B-L	L9795015B	474644	6315315	318.75	NA	NA	3/1/95	NA	265.00
L97-AP95-5A-L	L9795010A	475404	6316695	337.61	NA	NA	3/1/95	NA	269.50
L97-AP95-5B-L	L9795010B	475404	6316695	337.61	NA	NA	3/1/95	NA	275.40
L97-AP95-9A-L	L9795001A	474014	6317185	315.21	NA	NA	3/1/95	NA	265.20
L97-AP95-9B-L	L9795001B	474014	6317185	315.21	NA	NA	3/1/95	NA	258.80
L97-P95-2-L	L9795014	475104	6315965	332.56	0.81	333.37	3/1/95	53.71	279.66
L97-P95-2-L	L9795014	475104	6315965	332.56	0.81	333.37	6/24/96	53.85	279.52
L97-P95-2-L	L9795014	475104	6315965	332.56	0.81	333.37	10/18/96	53.85	279.52
L97-P95-2-L	L9795014	475104	6315965	332.56	0.81	333.37	7/2/97	53.77	279.60
L97-P95-2-L	L9795014	475104	6315965	332.56	0.81	333.37	10/22/97	53.79	279.58

 Table 9
 Water Level Data for the Project LSA Continued

Note: For the standpipe piezometers installed during 1998, the coordinates and reference elevations were estimated from the original Suncor 1998 survey coordinates for exploration boreholes. The standpipe piezometers were drilled as offset boreholes. The coordinates and reference elevations for these piezometers are therefore approximate.

On the south side the Steepbank River, the majority of the organic plain slopes toward the Athabasca River. As shown on Figure 30, there is a surface flow divide very close to the left bank of the Steepbank River. Therefore, the majority of the shallow groundwater flows toward the Athabasca River. A small percentage of the groundwater flows toward the left bank of the Steepbank River. As it reaches the edge of the organic plain, the groundwater discharges into the colluvium on the valley slopes, and flows into the river valleys. The flux into each of the surface streams is discussed in Section 7.4.

In the till, the hydraulic gradient is probably downward except where the till has been incised by stream channels. This is due to the similarity between the hydraulic conductivity of the till and the hydraulic conductivity of the underlying Clearwater Formation. The rate of flow through the till is probably much less than the flow through the sandier shallow sediments.

6.1.1.3 Groundwater Chemistry in Surficial Materials in the Organic Plain

Water chemistry results for the peat are presented in the hydrologic impact analysis (Klohn-Crippen, 1998).

Groundwater samples were collected from piezometers in the organic plain in the Steepbank Mine area in 1995, 1996 and 1997. Standpipe piezometers installed in 1998 were sampled for groundwater but the analytical results were not available at the time of writing. The analytical results are representative of the groundwater obtained from drift deposits and are tabulated in Tables 10 to 13. A Piper plot, which is a graphical presentation of the major ion chemistry of the water, is shown on Figure 32 for each sampling event for 1997.

The surficial groundwater ranges from extremely fresh (TDS = 17 mg/L) to fresh (TDS = 638 mg/L). The Piper plot in Figure 32 illustrates that there are two types of water in the surficial sand deposits; low TDS water and high TDS water. The low TDS groundwater is generally a calcium-magnesium bicarbonate type water, while the high TDS groundwater is a sodium-bicarbonate type water. The ratio of sulphate to total dissolved solids is higher in the low TDS water than the high TDS water. There is a higher chloride concentration (although still less than 15 mg/L) in the high TDS water. The pH ranges from 5.4 to 8.1, with an average of 6.6 units.

. 4

Trace amounts of organics, including PAH and alkylated PAH's, were measured in the surficial groundwater as shown in Table 12. Naphthenic acid concentrations range from <3 to 7 mg/L, and Microtox toxicity testing indicates the water is non-toxic, as shown in Table 13.

Groundwater samples collected in October 1995 were analyzed for the stable isotopes deuterium and oxygen-18. Grab samples were also collected from the Steepbank River, Shipyard Lake, and La Saline Lake, which is north of the LSA. Stable isotope analyses are used to help understand the source of a water, and the processes that have affected it. A scatter plot of the deuterium and oxygen-18 concentrations in the water samples collected is shown in Figure 33. The groundwater from surficial deposits plots along the meteoric water line. This indicates that the groundwater is meteoric, and has not been affected by any processes such as evaporation.

[Total			Specific		Piper
		Ca	Mg	Na	K	Cl	SO4	Alk	pН	Bicarbonate	Cond	TDS	Group
WELL	DATE	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	pH	(mg/L)	umhos/cm	(mg/L)	
THI DDDG (02/12/05	14.2	2.24	0.0	1.40	4.6	SURFIC	IAL DEP	OSITS	20.47	142	01 21	18.2
FL1-BRDG-4	03/13/95	14.2	3.24	8.9	1.49	4.0	28.8	51,50	0.23	58.47	142	01.21	102
FLI-BRDG-4	07/06/95	17.7	3.4	11.1	1.4	4.2	20.5	51	0.48	62.17	174	90.12	1
FLI-BRDG-4	09/13/95	20.5	3.5	6.2	1.5	4.3	25.5	48	0.0	38.51	175	91.00	
FL1-BRDG-4	06/25/96	17.1	2.86	6.24	1.31	4.3	31.8	22.96	0.19	27.99	139	19.29	3
FLI-BRDG-4	10/21/96	15.7	2.35	1.32	1.10	1./	22.4	23	0.1	28.04	110.7	00.15	1823
FL1-BRDG-4	7/4/97	44,3	6.35	4.36	2.13	2.3	115	27.7	6.15	33.8	321	193	3
FL1-BRDG-4	11/27/97	38.8	6.35	10.9	2.2	4.9	73.7	54.3	6.35	66.1	291	1/1	1823
FL7-BRDG-4	03/13/95	14.2	3.24	8.9	1.49	4.6	28.8	31.56	6.23	38.47	142	81.21	182
FL7-BRDG-4	07/06/95	17.7	3.4	11.1	1.4	4.2	26.5	51	6.48	62.17	174	96.12	
FL7-BRDG-4	09/13/95	20.5	3.5	6.2	1.5	4.3	25.5	48	6.6	58.51	175	91.66	1
L25-P96-OB-1	10/18/96	37.7	8.2	8.07	0.46	0.5	17.8	121	6.54	147.50	266.5	146.51	1
L25-P96-OB-1	6/25/97	34.5	8.22	7.59	0.51	-0.1	18	112	6.48	137	255	137	1
L25-P96-OB-1	11/26/97	38.3	8.82	8.73	0.52	0.8	16.3	125	6.77	152	271	150	1
L97-P95-OB-1	03/17/95	78	22	10.4	1.93	1.2	23.8	305	7.19	371.80	580	323.83	1
L97-P95-OB-1	07/03/95	79.8	19.9	8.8	2.3	0.7	18.3	262	7.68	319.38	514	290.18	1
L97-P95-OB-1	09/12/95	71.9	18.7	9.8	2.6	0.7	16.5	245	7.49	298.66	478	270.34	1
L97-P95-OB-2	03/17/95	25	7.4	186	4.18	9.6	0.7	491	7.56	598.53	873	532.22	4
L97-P95-OB-2	06/29/95	22,8	6.2	189	3.3	14.2	0.8	485	8.1	591.22	883	531.94	4
L97-P95-OB-2	09/13/95	21.4	6.1	195	3.1	10	0.8	481	7.75	586.34	885	529.57	4
L97-P95-OB-2	06/24/96	22.4	6.53	195	3.06	10	1.4	482	7.57	587.56	879.1	532.17	4
L97-P95-OB-2	10/18/96	20.8	6.03	200	3.1	10.4	0.5	483	7.65	588.78	878.5	535.33	4
L97-P95-OB-2	7/2/97	20.6	6.28	194	3.03	12	0.5	470	7.52	573	906	523	4
L97-P95-OB-2	10/21/97	18.8	5.81	181	2.8	10.8	-0.1	499	7.96	608	882	523	4
L97-P95-OB-3	03/17/95	5.1	0.89	1.66	0.51	<0.5	10.2	9.86	5.56	12.02	43	24.49	1&3
L97-P95-OB-3	07/04/95	3.3	0.9	4.2	0.7	<0.5	9.9	7.14	5.65	8.70	35	23.76	1&2
L97-P95-OB-3	09/12/95	3.8	1.1	4.6	1.2	9.7	9	8	5.61	9.75	39	34.38	2&3
L97-P95-OB-3	06/25/96	3.15	0.77	1.92	0.53	<0.5	9.2	7.21	5.51	8.79	35.26	20.10	1&3
L97-P95-OB-3	10/18/96	2.83	0.75	1.57	0.47	<0.5	8.7	7.6	5.39	9.26	36.86	19.04	1&3
L97-P95-OB-3	6/25/97	2.94	0.78	1.61	0.52	-0.1	9.7	5.7	5.60	6.9	39	19	1&3
L97-P95-OB-3	11/26/97	2.4	0.88	1.58	0.6	-0.1	8.2	5.9	5.71	7.2	32	17	1&3
L97-P95-OB-4	03/13/95	4.35	1.29	2.3	1.12	<0.5	9.7	14.72	5.62	17.94	48	28.00	1&3
L97-P95-OB-4	07/03/95	7.7	1.5	3.2	0.8	3.1	11	12.44	5.87	15.16	54	35.02	1&3
L97-P95-OB-4	09/12/95	4.6	1.4	5.2	1.1	2.2	10.5	8.01	5.76	9.76	50.3	30.17	2&3
L97-P95-OB-4	10/18/96	4.14	1.12	1.5	0.49	<0.5	10.4	9.68	5.53	11.80	45.21	23.89	1&3
L97-P95-OB-4	6/25/97	4.34	1.18	1.67	0.61	-0.1	11.5	8.4	5.52	10.2	47	25	1&3
L97-P95-OB-5	03/13/95	64	17.8	159	2.85	7.8	10.2	566	7.13	689.95	1010	606.75	4
L97-P95-OB-5	07/05/95	53.7	14.4	178	2.1	9.3	5.4	576	7.45	702.14	1011	613.97	4
L97-P95-OB-5	09/14/95	52	14	190	2.4	10.2	5	573	7.44	698.49	1048	622.84	4
L97-P95-OB-5	06/25/96	58.3	15.2	179	2.14	9	6.5	575	7.16	700.93	1031	620.62	4
L97-P95-OB-5	10/19/96	53.4	14.5	185	2.57	8.8	6.8	574	7.34	699.71	1024	621.03	4
L97-P95-OB-5	7/3/97	65.7	18.1	174	6.61	9.2	9.9	581	7.62	708	1025	638	3
L97-P95-OB-5	10/22/97	50.6	14.7	171	2.23	10.6	8.6	583	7.73	711	1025	613	4
minimum	L	2.40	0.75	1.32	0.46	-0,10	-0.10	5,70	5.39	6,90	32.00	17.00	L
maximum		70 80	22.00	200.00	6.61	14 20	115.00	583.00	8 10	711.00	1048.00	638.00	
madion		79.00	5 07	8 95	1 50	4 45	10.20	57 65	6 51	64.13	260.75	141 75	
meulan		20.33	5.74 6.00	65 12	1.50		16.43	216.26	6 64	263.61	430 27	254.82	
		27.00	0.90	05.15	1.01	5,55	10.40	210.20	0.04	203.01	730.32	4J7.04	

 Table 10
 Major Ion Chemistry and Field Measured Parameters of Groundwater in the LSA

								Total			Specific		Piper
** ****	D .(777	Ca	Mg	Na	K	Cl	SO4	Alk	pH	Bicarbonate	Cond	TDS	Group
WELL	DATE	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		(mg/L)	рн	(mg/L)	<u>umnos/cm</u>	(mg/L)	
		20	1 240	1760	1 22 0	1950	DOMOA 14		ER 767	1 1 201 02	1 7000	450476	1 2
FL1-P90-2-BA	10/21/90	38 20.0	24.9	1/00	23.9	1850	1.0	14/0	7.51	1/91.93	0200	4394./0	
FL1-P90-2-BA	10/21/90	39.4	28.8	2000	20.1	2270	0.2	1608	7.04	2033.29	9300	5380.95	2
FL1-P90-2-DA	10/21/07	40.7	27.0	2110	10.0	2190		1790	7.50	2009	9303	5422	20.4
FL1-P90-2-DA	10/21/97	21.4	27.0	2010	15.7	2020	-0.1	2045	7.00	2100	9330	9612.59	2024
FL3-P93-13-DA	03/13/93	85 90 1	103	3230	26.3	3920	1.5	2045	7.15	2492.80	14010	8012.38 9545 64	2
FL3-F95-13-DA	07/05/05	07.1 90.1	00.3 01.5	3090	20.2	3920	0.5	2099	7.19	2556.00	12700	0/20 01	2
FL3-F93-13-DA	07/03/93	09.1	01.2	3080	20.4	4000	0.5	2097	7.22	2530.24	14400	9601 40	2
FL3-F95-13-DA	09/14/95	90.0	04.1	3030	24.1	4090	0.0	1451	7.21	17(0 77	20040	10220.02	4
FL3-P95-0-BA	03/13/93	190	158	0720	82.2	10200	112	1451	7.11	1/08.//	30840	18239.82	2
FL3-P95-0-BA	07/10/95	193	209	9140	85.5	12800	11.5	2011	7.15	2451.41	39218	23004.30	
FL3-P93-0-BA	09/15/95	198	223	10700	62	10850	80	2085	1.12	2539.18	43338	29382.02	2
FL3-P95-0-BA	10/10/06	205	222	8990	03.0	14900	0.7	2159	0.88	2031.82	45070	20097.21	2
FL3-P95-6-BA	10/19/96	210	255	11600	14.2	10300	<0.1	2204	1.28	2080.08	44150	29789.07	2
FL3-P93-0-DA	10/02/07	208	249	9830	52.8	13000	0.8	2353	7.37	2808	40130	2/3/0	2
FL3-P95-0-BA	10/22/97	205	301	9820	02.9	17600	0.0	2348	7.31	2862	43540	29480	2
L97-P95-1-BA	03/13/95	/6	105	4880	31.6	6520		2125	6.98	2590.38	21860	12908.92	2
L97-P95-1-BA	06/28/95	87.3	92.6	5040	36.7	6220	0.5	2146	7.44	2615.97	21467	12785.09	2
L97-P95-1-BA	09/12/95	85.4	102	5030	34.8	6685	1	2161	7.19	2634.26	21506	13255.36	
L97-P95-1-BA	06/17/96	95	101	5270	30.9	7310	<0.5	2188	7.1	2667.17	22360	14140.49	2
L97-P95-1-BA	10/22/96	74	112	5150	30	6920	0.7	2181	7.59	2658.64	22880	13616.96	2
L97-P95-1-BA	6/23/97	93.5	110	4980	31.3	6880		2199	7.25	2681	22260	13440	2
L97-P95-1-BA	10/23/97	133	135	4610	33.6	6450	0.1	2210	6.98	2694	20750	12710	2
L97-P95-3-BA	03/13/95	45	57	3290	29.9	3880	1.2	1878	7.2	2289.28	14220	8447.79	2
L97-P95-3-BA	07/04/95	52.3	53.8	3320	25.1	4220	<0.5	1886	7.4	2299.03	14025	8820.86	2
L97-P95-3-BA	09/13/95	47.1	43.3	3140	17.8	4090	30.5	1888	7.33	2301.47	14326	8519.44	2
L97-P95-3-BA	06/24/96	52.8	56.9	3050	18.1	4180	<0.5	1893	7.3	2307.57	14300	8511.58	2
L97-P95-3-BA	10/22/96	50.3	51	2940	20.7	3970	7.4	1866	7.63	2274.65	14520	8176.73	2
L97-P95-3-BA	7/3/97	49.8	56.2	3200	18	3760	-0.1	1952	7.59	2379	14440	8274	2
L97-P95-3-BA	10/23/97	47.9	57.3	3140	17.1	3970	0.1	1940	7.21	2365	14020	8416	2
L97-P95-8-BA	06/28/95	16	8.4	1080	28.6	599	6.9	1445	7.76	1761.46	4238	2619.64	4
L97-P95-8-BA	09/13/95	13.7	7.8	1180	20	678	13	1797	7.45	2190.54	4948	3007.77	4
L97-P95-8-BA	06/17/96	18.2	11.8	1320	19.7	615	0.9	1874	7.3	2284.41	5118	3127.82	4
L97-P95-8-BA	10/22/96	17.7	12.2	1300	19.2	660	9.3	1944	7.74	2369.74	5320	3203.37	4
L97-P95-8-BA	6/27/97	14.9	11.3	1320	15.5	590	0.3	1972	7.50	2404	5261	3154	4
L97-P95-8-BA	10/30/97	20.2	16.6	1320	18.8	615	0.3	2010	7.48	2450	5342	3216	4
minimum		13.70	7.80	1080.00	15.50	590.00	-0.10	1445.00	6.88	1761.46	4238.00	2619.64	*************
maximum		265.00	301.00	11600.00	85.30	17600.00	80.00	2353.00	7.76	2868.00	46150.00	29789.07	
median		74.00	80.50	3200.00	26,40	4090.00	0.85	2010.00	7.30	2450.00	14326.00	8545.64	
mean		87.66	93.56	4335.71	33.38	5927.29	5.89	1974.31	7.33	2406.70	19062.23	11686.15	

Klohn-Crippen

Table 10Major Ion Chemistry and Field Measured Parameters of Groundwater in
the LSA (Continued)

 \circledast

						<i>C</i> !	504	Total		D' 1	Specific	7700	Piper
		Ca	Mg	Na	K	CI (T)	504		рн	Bicarbonate	Cond		Group
WELL	DATE	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	рн	(mg/L)	umhos/cm	(mg/L)	
							UPPEI	R DEVON	IAN				
FL1-P96-1-L	06/25/96	133	32.6	60.9	3.63	21.5	171	352	6.99	429.09	1010	637.28	1
FL1-P96-1-L	10/21/96	144	33.8	89.7	5.85	16.6	243	371	7.3	452.25	1123	759.17	1&3
FL1-P96-1-L	7/2/97	140	34.3	112	4.63	21.3	315	396	7.09	483	1171	869	1&3
FL1-P96-1-L	10/21/97	127	32.6	68.3	2.53	7.4	220	379	7.34	462	1062	689	1
L97-P95-2-L	03/13/95	25.8	20.5	1560	25.8	1440	2.4	1602	7.39	1952.84	6967	4050.99	2&4
L97-P95-2-L	06/29/95	27.7	21.6	1860	24.4	1535	0.5	1826	7.74	2225.89	7860	4582.15	2&4
L97-P95-2-L	09/14/95	26.3	24.7	1870	24.1	1690	16.5	1913	7.65	2331.95	8226	4817.57	2&4
L97-P95-2-L	09/14/95	24.1	20.5	1850	21	1860	<0.5	1901	7.56	2317.32	8261	4934.41	2&4
L97-P95-2-L	06/24/96	24.3	25.7	2000	18.2	1750	<0.5	1954	7.58	2381.93	8621	5009.19	2&4
L97-P95-2-L	10/18/96	23.7	23.8	1 97 0	18.7	1910	0.1	2014	7.57	2455.07	8544	5173.83	2&4
L97-P95-2-L	7/2/97	25.6	23.9	2070	15.2	1830	0.4	1983	7.54	2417	8747	5174	2&4
L97-P95-2-L	10/22/97	28.8	28.6	2040	15.1	1820	0.1	2081	7.42	2537	8698	5201	2&3
minimum		23.70	20.50	60.90	2.53	7.40	0.10	352.00	6.99	429.09	1010.00	637.28	
maximum		144.00	34.30	2070.00	25.80	1910.00	315.00	2081.00	7.74	2537.00	8747.00	5201.00	
median		27.00	25.20	1855.00	16.70	1612.50	9.45	1863.50	7.48	2271.61	8043.00	4699.86	
mean		62.53	26.88	1295.91	14.93	1158.48	96.90	1397.67	7.43	1703.78	5857.50	3491.47	

Klohn-Crippen

Table 10Major Ion Chemistry and Field Measured Parameters of Groundwater in
the LSA (Continued)

Note: Groundwater Piper Groups

Group 1: Fresh Water

Group 2 Saline Water

Group 3 Sulphate Water

Group 4 Alkaline Water

			Surficial Sand				Basal Aquifer				Upper Devonian		
Parameter	Units	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count
S	(mg/L)	0.4	12.100	4.750	32	0.300	25.700	3.884	25	2.500	82.700	21.075	8
AI	(mg/L)	ND	0.500	0.080	32	ND	0.080	0.025	25	ND	0.180	0.038	8
As	(ug/l)	ND	0.500	0.250	6	ND	1.600	0.640	5	0.600	0.600	0.600	1
Ba	(mg/L)	ND	0.210	0.071	29	0.150	3.000	0.987	25	0.140	0.250	0.205	8
Be	(mg/L)	ND	0.030	0.003	32	ND	0.016	0.003	25	ND	0.003	0.001	8
В	(mg/L)	ND	0.790	0.179	32	2.330	4.790	3.954	25	0.340	4.480	3.025	8
Cd	(ug/i)	ND	4.000	0.132	32	ND	3.000	0.148	25	ND	1.400	0.175	8
Cr	(mg/L)	ND	0.013	0.002	29	ND	0.024	0.006	25	ND	0.003	0.001	8
Co	(mg/L)	ND	0.004	0.001	32	ND	0.031	0.006	25	ND	0.008	0.002	8
Cu	(mg/L)	ND	0.013	0.001	32	ND	0.074	0.005	25	0.001	0.007	0.003	8
Fe	(mg/L)	ND	0.500	0.101	32	ND	8.080	1.440	25	ND	0.820	0.485	8
Pb	(mg/L)	ND	0.002	0.000	32	ND	0.040	0.005	25	ND	0.001	0.000	8
Li	(mg/L)	ND	0.420	0.040	32	0.316	1.790	0.859	25	0.066	0.387	0.289	8
Mn	(mg/L)	ND	0.589	0.121	32	0.029	4.020	0.746	25	0.034	0.689	0.147	8
Hg	(ug/l)	ND	0.100	0.007	16	ND	1.600	0.238	9	ND	0.230	0.083	4
Mo	(mg/L)	ND	0.035	0.002	32	ND	0.019	0.003	25	ND	0.010	0.004	8
Ni	(mg/L)	ND	0.018	0.004	30	ND	0.113	0.020	25	ND	0.043	0.010	8
Р	(mg/L)	ND	0.400	0.041	32	ND	0.700	0.164	25	ND	0.300	0.063	8
Se	(ug/l)	ND	0.400	0.068	15	ND	0.800	0.138	8	ND	ND	ND	4
Ag	(ug/l)	ND	3.000	0.228	32	ND	5.000	1.192	25	ND	3.000	0.588	8
Sr	(mg/L)	ND	0.302	0.114	30	0.487	16.100	5.077	25	0.563	1.490	1.204	8
TI	(mg/L)	ND	ND	ND	10	ND	ND	ND	5	ND	ND	ND	2
Ti	(mg/L)	ND	0.053	0.006	32	ND	0.012	0.001	25	ND	ND	ND	8
U U	(mg/L)	ND	ND	ND	29	ND	0.002	0.000	25	ND	0.002	0.001	8
V	(mg/L)	ND	0.008	0.001	29	ND	0.009	0.002	25	ND	0.007	0.003	8
Zn	(mg/L)	ND	0.049	0.013	32	ND	0.092	0.007	25	0.001	0.014	0.005	8
Zr	(ug/L)	ND	1.200	0.133	9	3.500	19.800	13.640	5	2.700	4.000	3.350	2
Cyanide	(mg/L)	ND	0.001	0.001	15	ND	0.002	0.001	11	0.001	0.001	0.001	3

Table 11 Concentrations of Dissolved Metals and Cyanide in Groundwater in the LSA (mg/L)

PA 2839 0301 (6850) 980413R.DOC

Parameter Minimum Maximum			Surfi	cial San	d		Basal	Aquifer		T	U	oper Devoni	an
PAH and Allylade PAPe COL2	Parameter	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count
Nachtanden -0.02	PAH and Alkylated PAH's		l				A.,	<u></u>	d	······································			A
Accenge/Informe -0.02 -0.02 -0.02 -0.02 -0.03 -0.040 -0.	Naphthalene	<0.02	<0.02	<0.02	6	<0.02	0.200	0.057	10	<0.02	0.050	0.033	4
Accongentymen-0.02-0.02-0.02-0.02-0.02-0.02-0.02-0.020.0480.04100.020.0300.0484Disenceding-inne-0.02-0.02-0.02-0.02-0.020.020.0210.0210.0210.0240.0230.0310.0340.0300.4340.0300.4340.0300.4340.0300.4340.031 <td>Acenaphthene</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>6</td> <td><0.02</td> <td>0.200</td> <td>0.057</td> <td>10</td> <td><0.02</td> <td>0.080</td> <td>0.048</td> <td>4</td>	Acenaphthene	<0.02	<0.02	<0.02	6	<0.02	0.200	0.057	10	<0.02	0.080	0.048	4
Fluores - </td <td>Acenaphthylene</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>6</td> <td><0.02</td> <td>0.080</td> <td>0.014</td> <td>10</td> <td><0.02</td> <td>0.030</td> <td>0.008</td> <td>4</td>	Acenaphthylene	<0.02	<0.02	<0.02	6	<0.02	0.080	0.014	10	<0.02	0.030	0.008	4
Description -0.02 -0.02 -0.02 0.08 0.09 0.02 0.08 4 Arethracene -0.02 <th< td=""><td>Fluorene</td><td><0.02</td><td><0.02</td><td><0.02</td><td>6</td><td><0.02</td><td>0.530</td><td>0.081</td><td>10</td><td>0.030</td><td>0.080</td><td>0.065</td><td>4</td></th<>	Fluorene	<0.02	<0.02	<0.02	6	<0.02	0.530	0.081	10	0.030	0.080	0.065	4
Prenembrane -0.02 -0.03 -0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02	Dibenzothiophene	<0.02	<0.02	<0.02	6	<0.02	0.590	0.061	10	<0.02	0.060	0.030	4
Actimace COD2	Phenanthrene	<0.02	<0.02	<0.02	6	0.020	1.700	0.244	10	0.110	0.220	0.168	4
Inverse -0.02 -0.02 0.03 0.013 1.0 -0.02 0.030 0.013 4 Perropio -0.02 -0.02 0.003 6 -0.02 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.002 0.012 0.024 0.024 0.024 <td>Anthracene</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>6</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>10</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>4</td>	Anthracene	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4
pryme c.0.02 0.0.00 6 -0.02 0.047 10 -0.02 0.110 0.608 4 Berzolnahnschwarthen -0.02 -0.02 -0.02 6 -0.02 0.011 0.011 0.011 0.012 10 -0.02 -0.0	Fluoranthene	<0.02	<0.02	<0.02	6	<0.02	0.130	0.013	10	<0.02	0.030	0.013	4
BarcologiaminacemaChrysene -0.02 -	Pyrene	<0.02	0.020	0.003	6	<0.02	0.440	0.047	10	<0.02	0.110	0.050	4
Dency Sympose -0.02 -0.02 -0.02 -0.02 0.011 0.011 0 -0.02	Benzo(a)anthracene/Chrysene	<0.02	<0.02	<0.02	6	<0.02	0.810	0.091	10	<0.02	0.110	0.038	4
BrancyDistribution clo2 cl02 cl02 <thcl02< th=""> cl02 cl02<td>Benzo(a)pyrene</td><td><0.02</td><td><0.02</td><td><0.02</td><td>6</td><td><0.02</td><td>0.110</td><td>0.011</td><td>10</td><td><0.02</td><td><0.02</td><td><0.02</td><td>4</td></thcl02<>	Benzo(a)pyrene	<0.02	<0.02	<0.02	6	<0.02	0.110	0.011	10	<0.02	<0.02	<0.02	4
Instance choice choice <thchoice< th=""> <thchoice< th=""> <thchoice< <="" td=""><td>Benzo(b&k)fluoranthene</td><td><0.02</td><td><0.02</td><td><0.02</td><td>6</td><td><0.02</td><td>0.120</td><td>0.012</td><td>10</td><td><0.02</td><td><0.02</td><td><0.02</td><td>.4</td></thchoice<></thchoice<></thchoice<>	Benzo(b&k)fluoranthene	<0.02	<0.02	<0.02	6	<0.02	0.120	0.012	10	<0.02	<0.02	<0.02	.4
Description 0.02 0.02 0.02 0.02 0.006 0.006 10 0.022 0.02 4.02 Descriptions/service 0.02 0.02 0.02 0.006 100 0.002 0.02 0.02 4.004 Many right haltene 0.02 0.02 0.02 0.02 0.02 0.02 0.020	Indeno(c.d-123)pyrene	<0.02	<0.02	<0.02	6	<0.02	0.040	0.004	10	<0.02	<0.02	<0.02	4
Denzagihiperytene 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04	Dibenzo(a, h)anthracene	<0.02	<0.02	<0.02	6	<0.02	0.060	0.006	10	<0.02	<0.02	<0.02	4
Methy raphthatene 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.02 0.02 0.01 0.03 0.04 0.04 0.02 0.02 0.01 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 <td>Benzo(abi)perviene</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>6</td> <td><0.02</td> <td>0.060</td> <td>0.006</td> <td>10</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>4</td>	Benzo(abi)perviene	<0.02	<0.02	<0.02	6	<0.02	0.060	0.006	10	<0.02	<0.02	<0.02	4
C2 aubit naphtmatene <0.04 <0.04 <0.04 <0.04 <0.170 0.028 6 <0.04 7.300 1.812 10 <0.04 0.310 0.113 4 C3 aubit nghthatene <0.04	Methyl naphthalene	<0.02	<0.02	<0.02	6	<0.02	1.100	0.153	10	<0.02	0.070	0.028	4
C3 subd naphthalene 0.040 0.028 6 0.040 7.300 1.012 10 0.310 0.510 0.440 4 C3 subd naphthalene -0.04 0.200 0.442 6 -0.04 6.800 0.822 10 -0.104 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0.028 10 -0.04 0.030 0.048 4 Methyl aconsphthene -0.04 -0.04 -0.04 1.000 -0.213 10 -0.06 0.030 0.988 4 C2 subd flowene -0.04 -0.04 -0.04 0.067 6 -0.04 1.800 0.228 10 0.069 0.220 0.540 6.390 4 C2 subd fibrenamitmen/anthrea/anthracene -0.04 -0.046 6.004 4.600 0.660 0.616 0.110 0.620 0.623 4 6.400 6.400	C2 subid nanhthalene	<0.04	<0.04	< 0.04	6	<0.04	2.000	0.319	10	<0.04	0.310	0.113	4
Case Sub applications Cose	C3 sub/d nanhthaiene	<0.04	0.170	0.028	6	0.040	7.300	1.012	10	0.310	0.610	0.440	4
Bipsperyl <0.04 <0.04 <0.04 <0.04 <0.04 <0.028 10 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <	C4 sub'd naphthalene	<0.04	0.200	0.042	6	<0.04	6.800	0.852	10	0.100	0.480	0.280	4
Display Constraint	Binhenvi	<0.04	<0.04	<0.04	6	<0.04	0.280	0.028	10	<0.04	<0.04	<0.04	4
manu print Co.04 Co.04 <thco.04< th=""> Co.04 Co.04</thco.04<>	Methyl hinhenyl	<0.04	<0.04	<0.04	6	<0.04	0.220	0.027	10	<0.04	0.040	0.010	4
Cale Structure Co.Det Co.Det <th< td=""><td>C2 sub'd binhend</td><td><0.04</td><td><0.04</td><td></td><td>6</td><td><0.04</td><td>1.800</td><td>0.212</td><td>10</td><td><0.04</td><td>0.130</td><td>0.088</td><td>4</td></th<>	C2 sub'd binhend	<0.04	<0.04		6	<0.04	1.800	0.212	10	<0.04	0.130	0.088	4
Matrix Biochaphineries 0.04 0.0	Method accommoditions	<0.04	<0.04	<0.04	6	<0.04	1 800	0 233	10	<0.04	0 200	0.093	4
matrix matrix matrix counce	Methyl fuorana	<0.04	0.040	0.007	, e	<0.04	1 800	0 248	10	0.060	0.200	0.128	4
Car But Nuclein Cound	C2 subid fluorene	<0.04	0.040	0.007	ě	<0.04	3 500	0.452	10	0.000	0.410	0.203	4
mean product intervention from the state Court	Methyl phonorthrane/onthracene	<0.04	<0.04	<0.010	6	0.050	4 600	0.609	10	0.220	0.540	0.390	4
C 1000 priorial mittere/anth CO.04 Co.04 <th< td=""><td>C2 out/d phononthread/anth</td><td><0.04</td><td>0.050</td><td>0.04</td><td></td><td><0.04</td><td>6 500</td><td>0.815</td><td>10</td><td>0.150</td><td>1 100</td><td>0.620</td><td></td></th<>	C2 out/d phononthread/anth	<0.04	0.050	0.04		<0.04	6 500	0.815	10	0.150	1 100	0.620	
Construction Construction<	C2 subid phononthrone (anth	<0.04	0.080	0.000	6	10.04	5,000	0.010	10	0.130	0.940	0.583	4
Ch Bud printrammerantin CO,04 CO,04 <thco,04< th=""> CO,04 CO,04</thco,04<>	C3 sub d phenanthrene/anth	<0.04	0.0 552	-0.04		<0.04	2.400	0.724	10	0.040	0.260	0.000	
Nethyl (b):(7)-150(0)	4 Method 7 isoppondeboggeth	<0.04	<0.04	<0.04	6	<0.04	<0.04	<0.04	5	<0.040	<0.04	<0.04	
Meetry fluce CO.04 CO.04 <thco.04< th=""> CO.04</thco.04<>	1-Methyl-7-isopropylphenanth	<0.04	<0.04	20.04	6	<0.04	2 000	0.04	10	0.04	0 370	0.04	
C2 sub d luber/contingenere C0.04 C0.007 6 C0.04 F.800 C.809 10 C.100 C.810 C.810 <thc.810< th=""> C.810 <thc.810< t<="" td=""><td>CO subt diber athis horse</td><td><0.04</td><td>~0.04</td><td>0.007</td><td></td><td><0.04</td><td>7 000</td><td>0.944</td><td>10</td><td>0.120</td><td>0.370</td><td>0.273</td><td></td></thc.810<></thc.810<>	CO subt diber athis horse	<0.04	~0.04	0.007		<0.04	7 000	0.944	10	0.120	0.370	0.273	
C3 Bub diber Zohingheine C0.04 C0.04 <thc0.04< th=""> C0.04 C0.0</thc0.04<>	C2 subid dibertrethionhone	<0.04	0.040	0.007		<0.04	7.000 8.600	0.900	10	0.100	1 000	0.510	
CA 800 01benzombene/prene C0.04 C0.04 <thc0.04< th=""> C0.04 <thc0< td=""><td>C3 sub d dibenzothiophene</td><td><0.04</td><td>0.000</td><td>0.010</td><td></td><td><0.04</td><td>5 200</td><td>0.003</td><td>10</td><td><0.160</td><td>0.740</td><td>0.000</td><td></td></thc0<></thc0.04<>	C3 sub d dibenzothiophene	<0.04	0.000	0.010		<0.04	5 200	0.003	10	<0.160	0.740	0.000	
Methyl (Bubarniene)pyrene <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0	Adatust duesanthana/surane	<0.04	<0.04	<0.04		<0.04	1 300	0.002	10	<0.04	0.740	0.335	7
Methyl BiglyChrysene C0.04		<0.04	<0.04	<0.04		<0.04	1.000	0.100	10	<0.04	0.200	0.133	
C2 subs B(a)/Critisere <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.	Methyl B(a)Avchrysene	<0.04	<0.04	<0.04		<0.04	2 600	0.173	10	<0.04	0.170	0.000	
Memory B(Dak)/re(a)P <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04	C2 sub d B(a)Avchrysene	<0.04	<0.04	<0.04		<0.04	2.000	0.290	10	<0.04	0.200	0.070	4
C2 sub's B(0xk)//B(a)P <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.	Methyl B(b&k)F/B(a)P	<0.04	<0.04	<0.04		<0.04	0.610	0.061	10	<0.04	0.090	0.023	4
Phenolic Compounds in water <t< td=""><td>C2 SUD'O B(D&K)F/B(a)P</td><td><0.04</td><td><0.04</td><td>1 -0.04</td><td> ^ </td><td><0.04</td><td>0.200</td><td>0.020</td><td></td><td><0.04</td><td>~0.04</td><td>~0.04</td><td>4</td></t<>	C2 SUD'O B(D&K)F/B(a)P	<0.04	<0.04	1 -0.04	^	<0.04	0.200	0.020		<0.04	~0.04	~0.04	4
Interviol CU,1	IPhenolic Compounds in water	II -0 -		1 -0 4		-0.1	4 400	1 0 4 40	1 40	-0.4	1 -04	-04	
In-Cresol C0.1	Phenol	<0.1	<0.1	<0.1	0	×0.1	0.200	0.140	10	<0.1	<0.1	<0.1	4
o-Cresol <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	m-Cresol	<0.1	<0.1	<0.1	0	<0.1	0.300	0.030	10	<0.1	<0.1	SU.1	4
p-Cresol <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	o-Cresol	<0.1	<0.1	<0.1		<0.1	0.200	0.030	10	<0.1	0.100	0.000	4
2.4-Dimethylphenol <0.1	p-Cresol	<0.1	<0.1	<0.1	6	<0.1	5.300	0.640	10	<0.1	15.000	3.900	4
2.4-Dinitrophenol <2	2,4-Dimethylphenol	<0.1	<0.1	<0.1	6	<0.1	<0.1	<0.1	10	<0.1	0.200	0.076	4
22.Nitrophenol <2	2,4-Dinitrophenol	<2	<2	<2	6	<20	<20	<20	10	<2	<2	<2	4
cl_6-Dinitro-2-methylphenol <td>2-Nitrophenol</td> <td><2</td> <td><2</td> <td><2</td> <td>6</td> <td><2</td> <td><2</td> <td><2</td> <td>10</td> <td><2</td> <td><2</td> <td><2</td> <td>4</td>	2-Nitrophenol	<2	<2	<2	6	<2	<2	<2	10	<2	<2	<2	4
I-Nitrophenol <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <td>4,6-Dinitro-2-methylphenol</td> <td><2</td> <td><2</td> <td><2</td> <td>6</td> <td><20</td> <td><20</td> <td><20</td> <td>10</td> <td><2</td> <td><2</td> <td><2</td> <td>4</td>	4,6-Dinitro-2-methylphenol	<2	<2	<2	6	<20	<20	<20	10	<2	<2	<2	4
PANH and Alkylated PANH's Cuinoline	4-Nitrophenol	<2	<2	<2	6	<20	<20	<20	¹⁰	<2	<2	<2	l 4
Quinoline <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	PANH and Alkylated PANH's			1			1		I /-		I		
7-Methyl quinoline <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <td>Quinoline</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>6</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>10</td> <td><0.02</td> <td><0.02</td> <td><0.02</td> <td>4</td>	Quinoline	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4
C2 Alkyl subst'd quinolines <0.02 <0.02 <0.02 <0.02 6 <0.02 0.320 0.037 10 <0.02 <0.02 <0.02 4 C3 Alkyl subst'd quinolines <0.02	7-Methyl quinoline	<0.02	<0.02	<0.02	6	<0.02	4.000	0.402	10	<0.02	<0.02	<0.02	4
C3 Alkyl subst'd quinolines <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <th<< td=""><td>C2 Alkyl subst'd quinolines</td><td><0.02</td><td><0.02</td><td><0.02</td><td>6</td><td><0.02</td><td>0.320</td><td>0.037</td><td>10</td><td><0.02</td><td><0.02</td><td><0.02</td><td>4</td></th<<>	C2 Alkyl subst'd quinolines	<0.02	<0.02	<0.02	6	<0.02	0.320	0.037	10	<0.02	<0.02	<0.02	4
Acridine <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02	C3 Alkyl subst'd quinolines	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4
	Acridine	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4

Table 12Concentrations of Organic Compounds in Groundwater in the LSA (µg/L)

F							_					
		Surficial Sa	nd	*** <u>*************</u>		Basai /	Aquifer	Protocommencement		Upper C	levonian	
Parameter	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean	Count
Methyl acridine	<0.02	<0.02	<0.02	6	<0.02	<0.02	< 0.02	10	<0.02	<0.02	<0.02	4
Phenanthridine	<0.02	<0.02	<0.02	6	<0.02	0.040	0.004	10	<0.02	<0.02	<0.02	4
Carbazole	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4
Methyl carbazoles	<0.02	<0.02	<0.02	6	<0.02	<0.02	<0.02	10	<0.02	<0.02	<0.02	4
C2 Alkyl subst'd carbazoles	<0.02	<0.02	<0.02	6	<0.02	0.030	0.003	10	<0.02	<0.02	<0.02	4
Volatile Organics (MS):Water								•				
1,1,1-Trichloroethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,1,2,2-Tetrachloroethane	<5	<5	<5	6	<5	<5	<5	10	<5	<5	<5	5
1,1,2-Trichloroethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,1-Dichloroethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	- 5
1,1-Dichloroethene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,2,3-Trichloropropane	<2	<2	<2	6	<2	<2	<2	10	<2	<2	<2	5
1,2-Dichlorobenzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,2-Dichloroethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,2-Dichloropropane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,3-Dichlorobenzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
1,4-Dichlorobenzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
2-Butanone (MEK)	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
2-Chloroethylvinylether	<5	<5	<5	6	<5	<5	<5	10	<5	<5	<5	5
2-Hexanone	<200	<200	<200	6	<200	<200	<200	10	<200	<200	<200	5
4-Methyl-2-pentanone (MIBK)	<200	<200	<200	6	<200	<200	<200	10	<200	<200	<200	5
Acetone	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
Acrolein	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
Acrylonitrile	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
Benzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Bromodichloromethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Bromoform	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Bromomethane	<10	<10	<10	6	<10	<10	<10	10	<10	<10	<10	5
Carbon disulfide	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Carbon tetrachloride	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Chlorobenzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Chloroethane	<10	<10	<10	6	<10	<10	<10	10	<10	<10	<10	5
Chloroform	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Chloromethane	<10	<10	<10	6	<10	<10	<10	10	<10	<10	<10	5
cis-1,3-Dichloropropene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
cis-1,4-Dichloro-2-butene	<2	<2	<2	6	<2	<2	<2	10	<2	<2	<2	5
Dibromochloromethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Dibromomethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Dichlorodifluoromethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Ethanol	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
Ethyl methacrylate	<200	<200	<200	6	<200	<200	<200	10	<200	<200	<200	5
Ethylbenzene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Ethylene dibromide	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
lodomethane	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
m+p-Xylenes	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Methylene chloride	<1	<1	<1	6	<1	3.000	0.300	10	<1	<1	<1	5
o-Xylena	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Styrene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Tetrachloroethvlene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Toluene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
trans-1.2-Dichloroethana	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
trans-1 3-Dichloropropene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
trans-1.4-Dichloro-2-hutena	<5	<5	<5	6	<5	<5	<5	10	<5	<5	<5	5
Trichloroethene	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Trichlorofluoromethana	<1	<1	<1	6	<1	<1	<1	10	<1	<1	<1	5
Vinvl acetate	<100	<100	<100	6	<100	<100	<100	10	<100	<100	<100	5
Vinyl chloride	<20	<20	<20	6	<20	<20	<20	10	<20	<20	<20	5
Hydrocarbona Becoverable (mail)	<1	<1	<1	3	<1	5 000	2.700	3	<1	<1	<1	5
In it was a set was a set a	11 ''	· · · ·	1	I Ŭ	li ''	0.000	64+ F 19-19	Ľ			-1	

Table 12Concentrations of Organic Compounds in Groundwater in the LSA (µg/L)
(Continued)

<u> </u>	Microtox	Microtox	Microtox	Microtox	Microtox	Microtox	Naph-
	IC50 15min	IC50 5min	IC40 15min	IC30 15min	IC20 15min	IC20 5min	thenic
DATE	%	%	%	%	%	%	Acid
07/06/05	100		Surricia	I Sanos 100 1	100		2
00/13/05	100		100	100	100		1
08/15/85	>100	>100	100	100	>100	>100	
10/20/00	-100	-100			- 100	- 100	
02/12/05							
03/13/95	100		100	100	100		2
01/00/95	100		100	100	100		1
40/40/00	100	>100	100		80	05	
10/18/96	>100	>100			02	00	
03/17/95	400		400	100	100		-4
07/03/95	100		100	100	100		-
09/12/95	100		100		100		5
03/17/95	400		400	400	400		
06/29/95	100		100	100	100		6
09/13/95	100	. 100	100	100	100		Э
06/24/96	>100	>100			82	82	
10/18/96				ļ			
03/17/95							
07/04/95	100		100	100	100		<3
09/12/95	100		100	100	100		4
06/25/96	>100	>100			82	82	
10/18/96							
03/13/95							
07/03/95	100		100	100	100		<3
09/12/95	100		100	100	100		4
10/18/96							
03/13/95							
07/05/95	100		100	100	100		6
09/14/95	100		100	100	100		7
06/25/96	>100	>100			75	82	
10/19/96							
<u> </u>			Basal	Aquifer	****		
	Microtox	Microtox	Microtox	Microtox	Microtox	Microtox	Naph-
	IC50 15min	IC50 5min	IC40 15min	IC30 15min	IC20 15min	IC20 5min	thenic
DATE	<u>%</u>	%	%	%	<u> % </u>	%	Acid
6/27/96							
10/21/96	>100	>100			>100	>100	
10/04/07	>100	>100			>/5	/0 _100	
3/12/05	>100	-100			-100	-100	
7/5/95	100		100	100	100		13
7/5/95	100		100	100	100		12
	DATE 07/06/95 09/13/95 06/25/96 10/21/96 03/13/95 07/06/95 09/13/95 07/03/95 09/12/95 03/17/95 06/29/95 09/13/95 06/29/95 09/13/95 06/24/96 10/18/96 03/17/95 07/04/95 09/12/95 06/25/96 10/18/96 03/13/95 07/03/95 07/03/95 07/03/95 07/03/95 07/03/95 07/03/95 07/05/95 07/05/95 07/05/96 10/19/96 DATE	Microtox IC50 15min % 07/06/95 100 09/13/95 100 06/25/96 >100 03/13/95 100 03/13/95 100 03/13/95 100 07/06/95 100 03/13/95 100 07/06/95 100 09/13/95 100 03/17/95 000 03/17/95 100 03/17/95 100 06/29/95 100 03/17/95 100 06/29/95 100 03/13/95 100 06/24/96 >100 03/17/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 03/13/95 100 04/14/95 100	Microtox IC50 15min $07/06/95$ Microtox IC50 5min $009/13/95$ Microtox IC50 5min 000 09/13/95100>10006/25/96>100>10001/21/9600>10003/13/95100>10007/06/95100>10009/13/95100>10003/17/95100>10003/17/95100>10003/17/95100006/29/95100>10003/17/95100>10006/29/95100>10009/13/95100>10006/29/96>100>10007/04/97100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/12/95100>10009/14/95100>10009/14/95100>10006/25/96>100>10007/05/95100>10006/25/96>100>1000/10/21/96>100>1000/119/96>100>1000/12/197>100>1000/12/197>100>1000/12/197>100>1000/12/197>100>1000/12/197>100>100 </td <td>Microtox IC50 15min % Microtox IC40 15min % Microtox IC40 15min % 07/06/95 100 - 100 09/13/95 100 >100 100 06/25/96 >100 >100 100 03/13/95 00 >100 100 03/13/95 100 >100 100 07/06/95 100 >100 100 09/13/95 100 >100 100 03/13/95 100 >100 100 03/17/95 100 100 00 07/03/95 100 100 00 03/17/95 100 100 00 06/29/95 100 >100 100 09/13/95 100 100 00 07/04/95 100 100 00 03/17/95 100 100 00 07/03/95 100 100 00 07/03/95 100 100 00 07/03/95 100 100<td>Microtox IC50 15min Microtox IC50 15min Microtox IC40 15min % Microtox IC30 15min % 07/06/95 100 Surficial Sands 07/06/95 100 100 100 09/13/95 100 >100 100 02/13/95 100 >100 100 03/13/95 100 >100 100 07/06/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 06/29/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/13</td><td>Microtox ICS0 15min Microtox NCS0 5min Microtox ICA0 15min Microtox IC30 15min Microtox IC20 15min % 07/06/95 100 5min 100 100 100 100 09/13/95 100 >100 100 100 100 100 07/06/95 100 >100 100 100 100 100 03/13/95 00 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 09/12/95 100 100 100 100</td><td>Microtox ICS0 15min Microtox VCS0 5min Microtox ICS0 5min Microt</td></td>	Microtox IC50 15min % Microtox IC40 15min % Microtox IC40 15min % 07/06/95 100 - 100 09/13/95 100 >100 100 06/25/96 >100 >100 100 03/13/95 00 >100 100 03/13/95 100 >100 100 07/06/95 100 >100 100 09/13/95 100 >100 100 03/13/95 100 >100 100 03/17/95 100 100 00 07/03/95 100 100 00 03/17/95 100 100 00 06/29/95 100 >100 100 09/13/95 100 100 00 07/04/95 100 100 00 03/17/95 100 100 00 07/03/95 100 100 00 07/03/95 100 100 00 07/03/95 100 100 <td>Microtox IC50 15min Microtox IC50 15min Microtox IC40 15min % Microtox IC30 15min % 07/06/95 100 Surficial Sands 07/06/95 100 100 100 09/13/95 100 >100 100 02/13/95 100 >100 100 03/13/95 100 >100 100 07/06/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 06/29/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/13</td> <td>Microtox ICS0 15min Microtox NCS0 5min Microtox ICA0 15min Microtox IC30 15min Microtox IC20 15min % 07/06/95 100 5min 100 100 100 100 09/13/95 100 >100 100 100 100 100 07/06/95 100 >100 100 100 100 100 03/13/95 00 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 09/12/95 100 100 100 100</td> <td>Microtox ICS0 15min Microtox VCS0 5min Microtox ICS0 5min Microt</td>	Microtox IC50 15min Microtox IC50 15min Microtox IC40 15min % Microtox IC30 15min % 07/06/95 100 Surficial Sands 07/06/95 100 100 100 09/13/95 100 >100 100 02/13/95 100 >100 100 03/13/95 100 >100 100 07/06/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 06/29/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/17/95 100 100 100 03/13/95 100 100 100 03/13/95 100 100 100 03/13	Microtox ICS0 15min Microtox NCS0 5min Microtox ICA0 15min Microtox IC30 15min Microtox IC20 15min % 07/06/95 100 5min 100 100 100 100 09/13/95 100 >100 100 100 100 100 07/06/95 100 >100 100 100 100 100 03/13/95 00 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/13/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 03/17/95 100 100 100 100 100 100 09/12/95 100 100 100 100	Microtox ICS0 15min Microtox VCS0 5min Microtox ICS0 5min Microt

Table 13Naphthenic Acid and Microtox Test Results in Groundwater from the
LSA

Microtox Microtox
WELL DATE IC50 15min IC50 5min IC40 15min IC30 15min IC20 15min IC20 5min th FL1-P95-13-BA 9/14/95 100
WELL DATE % </td
FL1-P95-13-BA 9/14/95 100 100 100 100 FL3-P95-6-BA 3/13/95 100 100 100 100 FL3-P95-6-BA 3/13/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/22/97 100 100 100 100 L97-P95-1-BA 3/13/95 100 100 100 100 L97-P95-1-BA 9/12/95 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/23/97 100 100 100 100
FL1-P95-13-BA 9/14/95 100 100 100 100 FL3-P95-6-BA 3/13/95 100 100 100 100 FL3-P95-6-BA 7/10/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/22/97 100 100 100 100 L97-P95-1-BA 3/13/95 100 100 100 100 L97-P95-1-BA 9/12/95 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/23/97 100 100 100 100 L97-P95-1-BA 6/23/97 100 100 100 100 </td
FL3-P95-6-BA 3/13/95 100 100 100 FL3-P95-6-BA 7/10/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/22/97 100 100 100 100 L97-P95-1-BA 3/13/95 100 100 100 100 L97-P95-1-BA 6/28/95 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 100 L97-P95-1-BA 6/23/97 10/22/96 100 100 100 100 L97-P95-1-BA 6/23/97 10/22/96 100 100 100 100
FL3-P95-6-BA 7/10/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 10/19/96 - - - - FL3-P95-6-BA 10/22/97 - - - - - L97-P95-1-BA 3/13/95 - <
FL3-P95-6-BA 9/15/95 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 6/25/96 100 100 100 100 FL3-P95-6-BA 10/19/96 100 100 100 100 FL3-P95-6-BA 10/22/97 100 100 100 100 L97-P95-1-BA 3/13/95 100 100 100 100 L97-P95-1-BA 6/28/95 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/17/96 100 100 100 100 L97-P95-1-BA 6/23/97 100 100 100 100 100
FL3-F95-6-BA 6/25/96 FL3-P95-6-BA 10/19/96 FL3-P95-6-BA 10/19/96 FL3-P95-6-BA 10/22/97 L97-P95-1-BA 3/13/95 L97-P95-1-BA 6/28/95 100 100 L97-P95-1-BA 6/12/95 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
FL3-F95-6-BA 10/19/96 FL3-F95-6-BA 7/3/97 FL3-F95-6-BA 10/22/97 L97-F95-1-BA 3/13/95 L97-F95-1-BA 6/28/95 L97-F95-1-BA 6/28/95 L97-F95-1-BA 6/28/95 L97-F95-1-BA 6/28/95 L97-F95-1-BA 6/17/96 L97-F95-1-BA 6/17/96 L97-F95-1-BA 6/23/97
FL3-P95-6-BA 7/3/97 FL3-P95-6-BA 10/22/97 L97-P95-1-BA 3/13/95 L97-P95-1-BA 6/28/95 100 100 L97-P95-1-BA 6/28/95 L97-P95-1-BA 6/28/95 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
FL3-P95-6-BA 10/22/97 L97-P95-1-BA 3/13/95 L97-P95-1-BA 6/28/95 100 100 L97-P95-1-BA 9/12/95 100 100 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 3/13/95 L97-P95-1-BA 6/28/95 100 100 100 100 L97-P95-1-BA 9/12/95 100 100 100 100 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 6/28/95 100 100 100 100 L97-P95-1-BA 9/12/95 100 100 100 100 L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 9/12/95 100 100 100 100 L97-P95-1-BA 6/17/96 L97-P95-1-BA 10/22/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 6/17/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 10/22/96 L97-P95-1-BA 6/23/97
L97-P95-1-BA 6/23/97
L97-F95-1-DA 10/23/9/
L97-F95-3-BA 7/4/95 100 100 100 100 100
L97-F95-3-BA 10/22/90
L97-F95-3-BA //3/9/
L97-P95-8-BA 6/28/95 100 100 100 80
L97-P95-6-BA 9/13/95 100 100 91 34
L97-P95-8-BA 10/22/90
L97-P95-8-BA 6/2/197
L97-P95-8-BA 10/30/97
Upper Devonian
Microtox Microtox Microtox Microtox Microtox Microtox Na
IC50 15min IC50 5min IC40 15min IC30 15min IC20 15min IC20 5min the
WELL DATE % % % % % % A
FL1-P96-1-L 6/25/96 >100 >100 30 29
FL1-P96-1-L 10/21/96 >100 >100 64 80
FL1-P96-1-L 7/2/97 >100 >100 >100
FL1-P96-1-L 10/21/97 >100 >100 >100 >100
L97-P95-2-L 3/13/95
L97-P95-2-L 6/29/95 100 100 100 59
L97-P95-2-L 9/14/95 100 100 100 49
L97-P95-2-L 9/14/95 100 100 100 75
L97-P95-2-L 6/24/96
107 205 2 1 10/19/06
L97-P95-2-L 7/2/97

Table 13Napthenic Acid and Microtox Tests Results in Groundwater from the
LSA Continued.

In general, the chemistry of surficial groundwater from the organic plain in the LSA is similar to the regional data presented in Table 6. As a preliminary assessment, it appears that the low TDS groundwater is associated with interaction with water from the peat. The high TDS groundwater in the surficial sand is probably more closely associated with flow from till and bedrock deposits.

6.1.2 Valley Slopes

Groundwater flow in the slope colluvium is expected to be in the direction of the slope. Localized groundwater discharge occurs along some breaks in slope, and where contrasts in hydraulic conductivity occur.

Evidence of groundwater discharge from the surficial deposits was apparent on both the left and right banks of the Steepbank River and on the right bank of Wood Creek. The slopes are locally unstable and three areas of slope failure were observed during a helicopter reconnaissance survey. These areas include:

- the left bank of the Steepbank River approximately 8.5 km upstream of the confluence with the Athabasca River;
- the left bank of the Steepbank River approximately 18 km upstream of the confluence with the Athabasca River; and
- the right bank of Wood Creek approximately 2.5 km upstream of the confluence with the Athabasca River.

In the three areas listed above, one or more of the following characteristics was observed:

- . apparent retrogressive movement with multiple head scarps;
- water ponded behind the heard scarp of apparent rotational/translational movement.; and
- toppled trees.

The groundwater flowing through the colluvium is expected to originate mainly from the surficial deposits on the organic plain. The chemistry of the groundwater in the colluvium is therefore probably similar to the chemistry of water in the surficial deposits in the organic plain. In localized areas, seepage from the oilsands beneath the colluvium is likely to be occurring. Where there is seepage, the groundwater in the colluvium may be brackish, with high concentrations of sodium, chloride, and possibly some organic compounds.

6.1.3 Floodplain

6.1.3.1 Hydraulic Conductivity of Surficial Material in Floodplain

One piezometer was completed in the alluvium in the Athabasca River valley (FL1-BRDG-#4). Unfortunately, as the piezometer could not be adequately developed, tests were not conducted to determine hydraulic conductivity. The colluvium at the site consisted of 85% sand and 15% silt and clay. The hydraulic conductivity of the alluvium is therefore expected to be similar to values measured in sand at Suncor which range from 1.1×10^{-8} m/s to 1.0×10^{-3} m/s, with a mean of 1.1×10^{-5} m/s (Table 4).

The hydraulic conductivity of meltwater sediments in the floodplain has not been measured in the LSA. The expected hydraulic conductivity of sand and gravel at Suncor ranges from 7.0 x 10^{-6} m/s to 1.0 x 10^{-3} m/s, with a mean of 3.8 x 10^{-4} m/s.

6.1.3.2 Groundwater Flow in Surficial Material in the Floodplain

The direction of groundwater flow in the floodplain deposits is toward the Athabasca River, with a slight downstream component reflecting the influence of the gradient of the river. The surficial material is believed to be in hydraulic connection with the slope colluvium, the Basal Aquifer and the Upper Devonian.

6.1.3.3 Groundwater Chemistry in Surficial Material in the Floodplain

The groundwater from FL1-BRDG-#4 is representative of one type of water that will be found in the floodplain. Because the predominant direction of groundwater flow in all hydrogeologic units is toward the Athabasca River, the groundwater in the floodplain probably contains mixtures of freshwater from precipitation and surficial deposits, brackish water from bedrock discharge, and possibly river water from bank storage. The chemistry of groundwater in the floodplain is therefore expected to be quite variable, both spatially and temporally.

The major ion chemistry of groundwater samples collected from piezometer FL1-BRDG#4, screened in the sediments of the floodplain, is shown in Table 10. The water is very fresh, with TDS concentrations ranging from 81 to 96 mg/L. As shown in the Piper plot in Figure 32, the water from FL1-BRDG-#4 is very similar to the low TDS groundwater found in the organic plain. It is probably groundwater from peat and shallow sand deposits that is flowing from the organic plain, down through the colluvium toward the river.

Microtox toxicity testing indicates the groundwater is non toxic. Naphthenic acid values range from 1 to 2 mg/L, as shown in Table 13. The surficial groundwater isotopes from this well plot on the meteoric water line (Figure 33).

6.2 Bedrock Materials

6.2.1 Clearwater Formation

6.2.1.1 Hydraulic Conductivity of Clearwater Formation

The hydraulic conductivity of the Clearwater Formation has not been measured in the LSA. Hackbarth and Nastasa (1979) found that the hydraulic conductivity ranged from 1.0×10^{-9} m/s to 1.0×10^{-6} m/s, with a mean of 1.5×10^{-7} m/s as shown in Table 5. These values are slightly higher than would be expected for a massive shale deposit. They

indicate that fractures and sandstone layers influence the hydraulic conductivity of the formation.

6.2.1.2 Groundwater Flow in Clearwater Formation

The primary direction of groundwater flow in the Clearwater Formation is expected to be downward in the LSA. The hydraulic head in the overlying surficial deposits is near ground surface level. The head in the Basal Aquifer is 30 m to 70 m below ground, as shown in the cross sections A to E (Figures 10 to 15). Therefore, the hydraulic gradient across the Clearwater is downward. Because the Clearwater Formation has relatively low hydraulic conductivity, the rate of flow through the shale is low.

6.2.1.3 Chemistry of Groundwater in Clearwater Formation

No groundwater samples have been collected from the Clearwater Formation in the LSA. The regional data in Table 7 indicates that the groundwater in the Clearwater Formation is slightly brackish, with sodium and bicarbonate being the major ions.

6.2.2 McMurray Oil Sands

6.2.2.1 Hydraulic Conductivity of Oilsands

The oilsands has also not been tested for hydraulic conductivity in the LSA. As shown in Table 5, the hydraulic conductivity of oilsands in the region has been found to range between 3.5 x^{-9} m/s and $3.2 \text{ x} 10^{-7}$ m/s. Hydraulic conductivity in the order of $1.5 \text{ x} 10^{-7}$ m/s is expected to be representative of oil sands in the LSA.

6.2.2.2 Groundwater Flow in McMurray Oil Sands

The direction and rate of groundwater flow in the oilsands is similar to flow in the Clearwater Formation The hydraulic gradient is predominantly downward in the LSA. The rate of flow in the oilsands is low, because of the relatively low hydraulic conductivity of the unit.

Where the oil sands is exposed in the river valleys, some groundwater may seep out of the slope face from zones of lower oil saturation. The amount of water flowing through these zones is expected to be small.

6.2.2.3 Chemistry of Groundwater in McMurray Oil Sands

No groundwater samples have been collected from the oilsands in the LSA. The regional groundwater chemistry data in Table 7 indicates that the groundwater in the oilsands varies widely from fresh to saline. Sodium, chloride and bicarbonate are the major ions in groundwater. Organic compounds are also found in groundwater from the oilsands.

6.2.3 Basal Aquifer

6.2.3.1 Hydraulic Conductivity of the Basal Aquifer

Four piezometers in the Basal Aquifer in the LSA were subjected to short term pumping tests. Table 14 shows the transmissivity calculated from the response in the piezometers. The transmissivity ranged from $0.07 \text{ m}^2/\text{day}$ to $11.2 \text{ m}^2/\text{day}$, with a mean of $2.0 \text{ m}^2/\text{day}$. The hydraulic conductivity range from $8.6 \times 10^{-8} \text{ m/s}$ to $2.6 \times 10^{-5} \text{ m/s}$, with a mean of $4.1 \times 10^{-6} \text{ m/s}$. These values are approximately an order of magnitude less than what was found in the Alsands area (Table 5). This indicates that the Basal Aquifer in the LSA may not be quite as productive as in the Alsands area.

Piezometer/Well Number	Location	Date	Thickness (m)	Flow (Q) (m³/day)	Transmissivity (T) (m²/day)	Hydraulic Conductivity (m/s)
L97-P95-1-BA	7-20-92-9W4	1995/03	5.8	6	11.2	2.2 x 10 ⁻⁵
L97-P95-3-BA	6-20-92-9W4	1995/03	3.6	5	1.8	5.8 x 10 ⁻⁶
FL3-P95-6-BA	12-9-92-9W4	1995/03	9.8	3	0.07	8.6 x 10 ⁻⁸
FL1-P95-13-BA	13-28-92-9W4	1995/03	5.0	11	11.2	2.6 x 10 ⁻⁵
			Geometric Mean	1	2.0	4.1 x 10 ⁻⁶
Waterways Fm.						
L97-P-95-2-L	15-17-92-9W4	1995/03	4.5	6	2.2	5.8 x 10 ⁻⁶

.

Table 14	Summary	of Transmissivity	and H	ydraulic	Conductivity	y Measured in	Bedrock in th	e LSA
	N 10	~		ev				

PA 2839 0301 (6850) 980413R.DOC

. .

 \otimes

6.2.3.2 Groundwater Flow in the Basal Aquifer

The predominant direction of groundwater flow in the Basal Aquifer is west, toward the Athabasca River. The head in the aquifer is 306 mASL in piezometer FL1-P95-13-BA. Closer to the Athabasca River, the head approaches the level of the river. Farther to the east, the head in the aquifer is expected to approach ground level, as has been found at Alsands. Pneumatic piezometers were installed in three locations in the bedrock during the 1998 drilling program to bring the total number of piezometers to 25. The newly installed pneumatic piezometers include L25-AP98-1A, L25-AP98-2A/2B, and LA25-AP98-3A/3B (Figure 31). At the time of writing, geologic information other than the borehole geophysical logs was not available. Therefore, there remains some uncertainty with respect to the presence of Basal Aquifer at these locations. Water levels were calculated from pressure readings taken on February 25. It is unknown whether these readings represent equilibrium conditions. The geology information must be compiled and additional pressure readings recorded and interpreted before these piezometer locations may be incorporated into the overall hydraulic head interpretation of the Basal Aquifer.

A horizontal component of flow in the Basal Aquifer is also expected to be directed toward the Steepbank River. This flow occurs in places where the Steepbank River has incised below the bottom of the oil sands. In places where the Upper Devonian surface is high, and the Basal Aquifer is absent, groundwater may flow from the Basal Aquifer through the Devonian. Therefore, at the west end of the Steepbank River, which has cut into the limestone, groundwater may flow from the Basal Aquifer, through the limestone, and discharge into the river. This interpretation is supported by the fact that both the Basal Aquifer and Upper Devonian have similar hydraulic conductivities and heads in this area. The groundwater flow map presented in Figure 31 shows the direction of flow in the Basal Aquifer and Upper Devonian.

6.2.3.3 Chemistry of Groundwater in the Basal Aquifer

Groundwater from six piezometers (L97-P95-1-BA, L97-P95-3-BA, FL3-P95-6-BA, FL1-P96-2-BA, L97-P95-8-BA and FL3-P95-13-BA) was collected between 1995 and 1997. No standpipe piezometers were installed in this unit in 1998. The data in Table 10 shows groundwater in the Basal Aquifer is brackish to saline. The major ions are sodium, potassium, chloride and bicarbondate. The TDS concentrations in the groundwater ranged from 2620 mg/L to 29 789 mg/L, with a mean of 11 686 mg/L. This is slightly higher than the range of concentrations found in the Basal Aquifer in the Alsands area (Table 7). In general, the water quality in the aquifer in the LSA is very similar to the regional water quality in the Basal Aquifer.

Organic compounds, including PAH, alkylated PAH's, PANH and alkylated PANH's, were detected in groundwater from the Basal Aquifer as shown in Table 12. Naphthenic acid values range from 8 to 36 mg/L with a mean of 20 mg/L (Table 13). Microtox toxicity testing indicates the groundwater is non-toxic. Basal Aquifer groundwater isotopes plot on the meteoric water line, (Figure 33) indicating the water is meteoric.

6.2.4 Upper Devonian

6.2.4.1 Hydraulic Conductivity of the Upper Devonian

Piezometer L97-P95-2-L was subjected to a short pumping test. The transmissivity of the Upper Devonian limestone calculated from the test results was $2.2 \text{ m}^2/\text{day}$, as shown in Table 14. In terms of hydraulic conductivity, this equates to 5.8×10^{-6} m/s. This is within the range of values found for the Upper Devonian elsewhere in the region (Table 5). It is also the same order of magnitude as the hydraulic conductivity of the Basal Aquifer.

6.2.4.2 Groundwater Flow in the Upper Devonian

As has been discussed in Section 6.3.2 groundwater flow in the Basal Aquifer and Upper Devonian may be interconnected. Because the two units may have similar hydraulic conductivity, there is no hydraulic barrier to impede flow between them. Furthermore, as observed in the cross sections, the Upper Devonian surface protrudes above the top of the Basal Aquifer in many locations. Therefore, water flowing horizontally through the Basal Aquifer may flow through the highs in the Upper Devonian surface and back into the Basal Aquifer. This interpretation is consistent with observations made by Hackbarth and Nastasa (1979).

As in the Basal Aquifer, the primary direction of groundwater flow in the Upper Devonian is toward the Athabasca River. There is also a component of groundwater flow toward the lower reach of the Steepbank River, where the river is incised below the bottom of the oil sands. The direction of horizontal flow in the Upper Devonian and Basal Aquifer is illustrated in the groundwater flow map in Figure 31.

Vertical hydraulic gradients, both upward and downward, are also present in the Upper Devonian strata. These gradients were measured in pairs of nested pneumatic piezometers (L97-AP95-4A,B-L, L97-AP95-5A,B-L, L97-AP95-7A,B-L, L97-AP95-9A,B-L, and L97-AP95-14A,B-L). The locations of the piezometers are shown in Figure 31. The pattern of vertical gradients in the Upper Devonian strata is not yet understood.

6.2.4.3 Chemistry of Groundwater in the Upper Devonian

Groundwater samples from the Upper Devonian limestone were collected from piezometer L97-P95-2-L and FL1-P96-1L in June and October 1997. The major ion chemistry of the water is shown in Table 10. The groundwater from the limestone is fresh to brackish, with TDS concentrations ranging from 637 to 5201 mg/L. This is within the range of concentrations from in the Upper Devonian at Alsands and Suncor, but lower than the mean regional level of 11 807 mg/L (Table 7). The major ions in the

groundwater are sodium, chloride and bicarbonate, which is also consistent with what has been found elsewhere in the region.

Organic compounds, including PAH, alkylated PAH's and phenolic compounds, were detected in groundwater from the Upper Devonian limestone (Table 12). Naphthenic acid values range from 47 to 57 mg/L, with a mean of 52 mg/L (Table 13). Microtox toxicity testing indicates the groundwater is non-toxic. Upper Devonian groundwater isotopes plot on the meteoric water line, indicating the groundwater is meteoric (Figure 33).

6.3 **Potential for Groundwater Use as a Resource**

Currently, there are no groundwater users in the LSA aside from Suncor. There are no water wells within 10 km of the LSA on the east side of the Athabasca River or south of the Steepbank River.

The potential for groundwater to be used in the area as a resource is dependent upon the productivity of the aquifers, and the natural quality of the groundwater. The productivity of the aquifers has been assessed on the basis of long term yield. In Alberta, this is commonly quantified by calculating the 20-year yield, or Q_{20} (Alberta Environment 1983). The Q_{20} is an estimate of the maximum rate at which water can be withdrawn from a well for 20 years that will not lower the water level in the well below the top of the aquifer. It is calculated using the following equation:

 $Q_{20} = 0.683 \text{ T H F}$

where,

T = transmissivity of the aquifer, m2/day

H = available drawdown in the aquifer, m

F = a factor of safety, in this case assumed to be 0.7.

The recommended minimum Q_{20} for a single dwelling in Alberta is 1 m³/day (Alberta Environment 1983).

The water quality of the aquifers has been assessed on the basis of a comparison with CCME (1991) criteria (Table 15). The water quality of the aquifers has also been assessed based on the concentrations of naturally occurring organic compounds (Table 12).

The sand aquifer in the organic plain, and the sand and gravel in the Athabasca River valley are the two potential sources of groundwater from surficial deposits.

 Table 15
 Groundwater Quality Parameters Which Exceed CCME Guidelines

	Sodium (mg/L)	Chloride (mg/L)	TDS (mg/L)	Iron (mg/L)	Mercury (mg/L)	Manganese (mg/L)
Median Concentratio	on Found in	Groundwate	r at Steepba	ink Mine		, , , , , , , , , , , , , , , , , , ,
Surficial Aquifer	8.8	4.2	150	0.04	<0.05	0.064
Basal Aquifer	3200	4090	8546	0.26	<0.05	0.194
Limestone	1855	1613	4700	0.38	0.025	0.082
CCME Guidelines	L	L	L	.LL		
Drinking Water	200	250	500	0.3	1	-
Irrigation	-	-	500-3500	5		0.01-0.05
Watering Livestock	-	100-700	3000	-	-	0.5

In the organic plain, the water quality in the sand aquifer is good, as discussed in Section 5.1.

The mean hydraulic conductivity of the surficial sand and gravel is 3.1×10^{-6} m/s (Table 8). This hydraulic conductivity may range to as high as two orders of magnitude higher in the southwest part of the LSA where gravel and cobbles have been observed in

the subsurface. The aquifer ranges in thickness from less than 1 m to 36 m. Based on the isopach map of surficial sand and gravel, the average thickness over the mapping domain is 2 m, and locally this average is about 5 m. The available drawdown, which is the difference between the elevations of the potentiometric surface and the top of the aquifer, is approximately 2 m. This is based on a potentiometric surface near ground surface and the overlying material consisting of about 2 m of peat and/or till. The range of parameters discussed above, were used to calculate an expected range in the Q₂₀ for the surficial sand and gravel (Table 16). The results indicate the surficial sand and gravel locally constitutes a resource suitable for a domestic supply.

TAME TO TACHTAN TALANA ALCO AZAZA TACAAN	Table 16	Potential	for	Groundwater	Use	as a	Resource
--	----------	-----------	-----	-------------	-----	------	----------

K	K	b	T	H	f	Q ₂₀
(m/sec)	(m/day)	(m)	(m²/day)	(m)		(m ³ /day)
3.10 x 10 ⁻⁰⁶	2.68 x 10 ⁻¹	2	0.54	2	0.683	0.73
3.10 x 10 ⁻⁰⁶	2.68 x 10 ⁻¹	5	1.34	2	0.683	1.83
3.10x 10 ⁻⁰⁴	2.68 x 10 ¹	2	53.57	2	0.683	73.17
3.10 x 10 ⁻⁰⁴	2.68 x 10 ¹	5	133.92	2	0.683	182.93

In the Athabasca River valley, the surficial sand and gravel aquifer is expected to be more productive. As has been discussed in Section 5.1, the hydraulic conductivity of the aquifer is expected to be in the order of 3.8×10^{-4} m/s (Table 4). Although the areal extent of the aquifer is limited to the valley, it is hydraulically connected to the river. Therefore, wells can probably be constructed in the aquifer that will induce water from the Athabasca River. The long-term yield from this aquifer is expected to be greater than 780 m³/day.

In the bedrock aquifers (the Basal Aquifer and Upper Devonian limestone), the estimated transmissivity is 2 m²/day, and the available drawdown is approximately 40 m. Therefore, the Q_{20} for the bedrock aquifers is approximately 40 m³/day, which would be
adequate for many water supply purposes. The measured groundwater concentrations of sodium, chloride, mercury, iron, manganese, and total dissolved solids exceed CCME criteria (Table 15). Furthermore, as shown in Tables 12 and 13, the bedrock groundwater contains naturally-occurring organic compounds. The groundwater is therefore not considered suitable as a source for drinking water or agricultural use without treatment, but could be used for industrial water supply.

6.4 Groundwater/Surface Water Interaction

This section discusses the rate of groundwater discharge to the surface water bodies in the LSA: the Athabasca River, the Steepbank River, Shipyard Lake, and the small creeks that drain the LSA; Leggett Creek, Wood Creek, McLean Creek and an unnamed creek (Figure 6).

6.4.1 Methodology

The groundwater discharge to the surface water was estimated for flow from surficial deposits and bedrock. Flow from peat is presented in the hydrology component of the EIA.

The discharge of groundwater has been estimated using the following equations, which are adaptations of Darcy's Law:

from surficial aquifers; Q = K b i Lfrom bedrock aquifers Q = T i L

where;

Q= the rate of discharge into the river

K= the hydraulic conductivity of the aquifer, m/s

b = the thickness of the aquifer, m

T = the transmissivity of the aquifer, m²/day

I = the hydraulic gradient in the aquifer, m/m

L = the length of reach over which the aquifer is exposed to the surface water body, m.

Sandy material is present within the surficial deposits over most of the organic plain in the LSA. Because the hydraulic conductivity of the sand is much higher than that of any other surficial deposits, the sand is the only surficial deposit for which groundwater discharge has been calculated. The mean hydraulic conductivity of the sand is 3.1×10^{-6} m/s (Table 8). The baseline discharge estimates were completed using a mean hydraulic conductivity of 3.7×10^{-6} m/s for all basins north of and including the Wood Creek Basin. It was believed that this value is more representative of the conditions on site. In the area of the McLean Creek Basin a value of 3.7×10^{-4} m/s was used based on the presence of gravel and cobbles. There is not enough water level information from the surficial aquifer to accurately determine the hydraulic gradient. It has therefore been assumed that the hydraulic gradient in the surficial aquifer in the organic plain is equal to the gradient of the land surface.

The surficial sand and gravel is confined by peat and till over most of the organic plain. The sand and gravel is exposed to surface where it has been incised by the creek and river valleys. The length of reach over which the aquifer is exposed was estimated by comparing the sand and gravel isopach map (Figure 18) to the ground topography (Figure 6).

In the bedrock, the two main aquifers are the Basal Aquifer and the limestone in the Upper Devonian strata. The formations that are above these deposits (McMurray Oil Sands and Clearwater shale) are several orders of magnitude less permeable to water than these aquifers. The mean transmissivity of the Basal Aquifer is 2.0 m^2 /day (Table 14). The transmissivity of the limestone has been estimated at 2.2 m^2 /day. The Basal Aquifer is present under about one half of the area that will actually be excavated to mine the ore. The limestone is present over the entire site. As the transmissivities of the two units

appear to be so similar, and the Basal Aquifer is discontinuous, groundwater discharge from bedrock has been calculated using a transmissivity of $2.0 \text{ m}^2/\text{day}$.

The estimated rates of groundwater discharge from the surficial and bedrock aquifers to surface water are shown in Tables 17 and 18 respectively along with the parameters used to determine the rates. A summary of these results is presented in Table 19. Results are reported in terms of the discharge to each surface water basin outflow point identified in the hydrology baseline report (Klohn-Crippen 1998). Surface water basins are shown on Figure 6. The discharge to each surface water body is discussed below.

Drainage	Length	Thickness	Gradient	Hydraulic Conductivity	Q	Q
	(m)	(m)		(m/sec)	(m ³ /sec)	(L/sec)
Steepbank River	35000	3	0.002	3.70 x 10 ⁻⁶	7.8 x 10 ⁻⁴	0.78
Basin A	4690	2	0.01	3.70 x 10 ⁻⁶	3.5 x 10 ⁻⁴	0.35
Shipyard Creek	4410	0.5	0.01	3.70 x 10 ⁻⁶	8.2 x 10 ⁻⁵	0.08
Shipyard Lake	3150	0.5	0.01	3.70 x 10 ⁻⁶	5.8 x 10 ⁻⁵	0.06
Leggett Creek	1400	2	0.002	3.70 x 10 ⁻⁶	2.1 x 10 ⁻⁵	0.02
Basin B	1050	2	0	3.70x 10 ⁻⁶	$0.0 \ge 10^{\circ}$	0.00
Wood Creek	5600	2	0.002	3.70 x 10 ⁻⁶	8.3 x 10 ⁻⁵	0.08
Basin C	1680	6	0	3.70x 10 ⁻⁴	$0.0 \ge 10^{\circ}$	0.00
McLean Creek	4200	6	0.002	3.70 x 10 ⁻⁴	1.9 x 10 ⁻²	18.65
Basin D	700	3	0	3.70 x 10 ⁻⁴	0.0 x 10 ⁰	0.00
Totals					2.0 x 10 ⁻²	20.02

Kiohn-Crippen

Fable 17Average	e Conditions	Surficial	Aquifers
-----------------	--------------	-----------	----------

Drainage	Length	Thickness	Gradient	Hydraulic Conductivity	Q	Q
	(m)	(m)		(m/sec)	(m3/sec)	(L/sec)
Steepbank River	5000	5	0.008	4.10 x 10 ⁻⁶	8.2 x 10 ⁻⁴	0.82
Basin A	4550	26	0.008	4.10 x 10 ⁻⁶	3.9 x 10 ⁻³	3.88
Shipyard Creek	4410	26	0.008	4.10 x 10 ⁻⁶	3.8 x 10 ⁻³	3.76
Shipyard Lake	3220	26	0.008	4.10 x 10 ⁻⁶	2.7 x 10 ⁻³	2.75
Leggett Creek	210	26	0.008	4.10 x 10 ⁻⁶	1.8 x 10 ⁻⁴	0.18
Basin B	1820	26	0.008	4.10 x 10 ⁻⁶	1.6 x 10 ⁻³	1.55
Wood Creek	210	26	0.008	4.10 x 10 ⁻⁶	1.8 x 10 ⁻⁴	0.18
Basin C	2310	26	0.008	4.10 x 10 ⁻⁶	2.0 x 10 ⁻³	1.97
McLean Creek	210	26	0.008	4.10 x 10 ⁻⁶	1.8 x 10 ⁻⁴	0.18
Basin D	1260	26	0.008	4.10 x 10 ⁻⁶	1.1 x 10 ⁻³	1.07
Totals					1.6 x 10 ⁻²	16.34

Table 18 Average Conditions Bedrock Aquifers

Table 19Summary of Flows to Surface Water

	Steepbank	Shipyard	Leggett	Wood	McLean	Athabasca
	River	Creek	Creek	Creek	Creek	River
Length of Reach	35000	4410	1400	5600	4200	8120
(m)	(L/sec)	(L/sec)	(L/sec)	(L/sec)	(L/sec)	(L/sec)
Surficial sand and	0.8	0.1	0.0	0.1	18.6	0.3
gravel						
Bedrock	0.8	3.8	0.2	0.2	0.2	8.5
Total	1.6	3.8	0.2	0.3	18.8	8.8

6.4.2 Athabasca River

The length of reach of the Athabasca River in the LSA that will be adjacent to the mine area is approximately 8 km. This length includes Basin A through Basin D summarized in Tables 17 and 18. This is the length over which groundwater will discharge directly to the Athabasca River.

The gradient of the groundwater surface in the organic plain ranges from .01 in the northwest to .002 in the southeast. Therefore, as explained above, the hydraulic gradient of the surficial aquifer is estimated to range between .01 and .002 in the LSA.

Creek valley capture zones were estimated using trench de-watering equations.

The de-watering equation for flow from an unconfined aquifer to one side of a dewatering ditch of unit length is given by the following equation described by Driscoll (1989).

$$\frac{Q}{x} = \frac{K (H^{2} - h^{2})}{2 L o}$$

where:

=	Hydraulic Conductivity (m/day)
=	Saturated thickness before pumping (m)
	Depth of water in well (ditch) while pumping (m)
=	Distance from point of greatest drawdown to point of no drawdown (m)
=	Unit length; the length of the trench (m) across the width of the basin
	Discharge rate (m^{3} /day), the muskeg discharge across the width of the basin

The trench de-watering equation for the unconfined case (Driscoll, 1989) was used for a range of thicknesses and assuming an average hydraulic conductivity as follows:

Table 20	Estimates	of	the	Groundwater	Capture	Zones	of	Small	Creeks;
	Unconfine	d Ca	ndi	tions					

Creek	K (m/sec)	H (m)	h (m)	Q (m ³ /sec)	x (m)	Lo/x (m)	Lo (m)
Leggett	3.1 x 10 ⁻⁶	2	0.1	1.74 x 10 ⁻⁵	1400	0.36	500
Wood	3.1 x 10 ⁻⁶	2	0.1	3.47 x 10 ⁻⁵	2800	0.18	500
McLean	3.7 x 10 ⁻⁴	6	0.1	9.32 x 10 ⁻³	2100	0.71	1500

The discharge (Q) in the previous calculations is the baseline discharge determined through application of Darcy's Law.

For a confined aquifer :

$$\frac{Q}{x} = \frac{K b (H - h)}{L o}$$

where:

b

= Aquifer thickness (m)

Table 21Estimates of the Groundwater Capture Zones of Small Creeks;
Confined Conditions

Creek	K	b	H	h	Q	X	Lo/x	Lo
	(m/sec)	(m)	(m)	(m)	(m ³ /sec)	(m)	(m)	(m)
Leggett	3.1 x 10 ⁻⁶	2	2	0.1	1.74 x 10 ⁻⁵	1400	0.68	950
Wood	3.1 x 10 ⁻⁶	2	2	0.1	3.47 x 10 ⁻⁵	2800	0.34	950
McLean	3.7 x 10 ⁻⁴	6	6	0.1	9.32 x 10 ⁻³	2100	1.40	2950

The confined aquifer is more consistent with the terrestrial mapping that has been completed to date at the site, and the vertical hydraulic gradients that have been measured at locations instrumented with standpipe piezometers.

Based on the results of the analysis presented above, the zones of capture of the surficial groundwater due to discharge to the Leggett and Wood Creek incised valleys are each about 950 m. Similarly the zone of capture due to discharge to the McLean Creek incised valley is about 2950 m. The distance between the Leggett Creek valley and the Wood Creek valley at the Athabasca River valley escarpment is about 2100 m. Therefore, the combined capture zones of the two valleys (1900 m) is expected to capture all of the water and prevent any discharge directly to Basin C. The gradient for the surficial aquifer discharge to Basin C has therefore been set to zero in Table 17. Similarly, the discharge to Basin B is also zero. Likewise, the distance between Wood Creek and McLean Creek is about 1050 m. The zones of capture of these two valleys

capture all surficial groundwater preventing any groundwater from discharging directly to Basin D.

The total surficial aquifer discharge to the Athabasca River is 0.3 L/s (26 m³/day) and occurs entirely within Basin A under baseline conditions.

6.4.3 Steepbank River

The length of the reach of the Steepbank River that will be adjacent to the proposed mine area is approximately 35 km. The slope of the ground surface, and therefore the hydraulic gradient in the surficial aquifer, is approximately 0.002. Therefore, the rate of groundwater discharge from the surficial aquifer to the Steepbank River is 0.78 L/s (67 m³/day).

The hydraulic gradient toward the Steepbank River from the bedrock aquifers is about 0.008 over a length of about 5 km. Therefore, the groundwater discharge from the bedrock aquifers to the Steepbank River is 0.82 L/s (70 m³/day).

6.4.4 Shipyard Lake/Shipyard Creek

The groundwater discharge from the LSA to Shipyard Lake can be estimated in the same manner as was done for discharge to the Athabasca River. The only change between the two calculations is the length of wetland over which the discharge occurs. Shipyard Lake is approximately 3 km long. Therefore, the rate of groundwater discharge into the wetland from the surficial aquifer is 0.06 L/s ($5.2 \text{ m}^3/\text{day}$). The rate of groundwater discharge into the bedrock aquifers is 2.75 L/s ($237.6 \text{ m}^3/\text{day}$). It is possible that some of the groundwater flowing in the bedrock aquifers may pass under Shipyard Lake, and discharge into the Athabasca River.

The Shipyard Lake catchment is actually a subcatchment within the overall Shipyard Creek catchment. The total discharge for Shipyard Creek is $0.08 \text{ L/s} (6.9 \text{ m}^3/\text{day})$ for the surficial aquifer and $3.76 \text{ L/s} (234.9 \text{ m}^3/\text{day})$ for the bedrock.

6.4.5 Leggett Creek

The length of reach of Leggett Creek that incises into the surficial aquifer is approximately 1400 m. Using a gradient of 0.002 the rate of groundwater discharge from the surficial aquifer to this valley is $0.02 \text{ L/s} (1.7 \text{ m}^3/\text{d})$.

The hydraulic gradient toward the Leggett Creek valley from the bedrock aquifer is about 0.008. Therefore, the groundwater discharge from the bedrock is about 0.18 L/s $(15.6 \text{ m}^3/\text{day})$.

6.4.6 Wood Creek

The length of reach of Wood Creek that incises into the surficial aquifer is approximately 5600 m. Using a gradient of 0.002 the rate of groundwater discharge from the surficial aquifer to this valley is 0.08 L/s ($6.9 \text{ m}^3/\text{d}$).

Likewise, the groundwater discharge from the bedrock is about 0.18 L/s (15.6 m^3/d).

6.4.7 McLean Creek

The length of reach of McLean Creek that incises into the surficial aquifer is approximately 4200 m. Using a gradient of 0.002 the rate of groundwater discharge from the surficial aquifer to this valley is 18.65 L/s (1611 m^3/d).

Likewise, the groundwater discharge from the bedrock is about 0.18 L/s ($15.6 \text{ m}^3/\text{d}$).

6.4.8 Summary of Groundwater/Surface Water Interaction

The rates of groundwater discharge from the surficial and bedrock aquifers in the LSA to surface waters are small in comparison with the minimum monthly flows in the Athabasca River and the Steepbank River. As shown in Table 16, the total rate of groundwater discharge to all surface water bodies in the LSA is estimated to be 33.5 L/s. The rates of groundwater discharge to the Athabasca River, the Steepbank River, and Shipyard Creek are 8.8 L/s, 1.6 L/s and 3.8 L/s, respectively.

These values are compared with the minimum monthly flows in the Steepbank River and the Athabasca River in Table 20. As Table 20 shows, the total groundwater discharge to the Athabasca River and Steepbank River comprises less than 1% of the average flow in these rivers.

Klohn-Crippen

Table 22 - Minimum Monthly Flows

Length of Reach (m)	Steepbank River	Shipyard Creek	Leggett Creek	Wood Creek	McLean Creek	Athabasca River	Total Excluding
Snapshot	(L/sec)	(L/sec)	(L/sec)	(L/sec)	(L/sec)	(L/sec)	Steepbank River
Total Groundwater Discharge in the LSA	1.60	3.84	0.20	0.26	18.83	8.82	31.96
Total Surface Water Discharge in the LSA	-	190	66	197	130	71	654
Groundwater as a Percentage of Surface Water Discharge in the LSA	-	2%	0.3%	0.13%	14.48%	12.42%	4.89%
Minimum Monthly Flows	168	-	-	-	-	101000	
Groundwater as a Percentage of Minimum Monthly Flows	0.95%	-	-	-	-	0.01%	-

 $\boldsymbol{\boldsymbol{\bigotimes}}$

PA 2839 0301 (6850) 980413R.DOC

7. CONCLUSIONS

7.1 Geology

The geology of the surficial deposits is characterized in three physiographic settings; organic plain, valley slopes and floodplain. The stratigraphy of surficial deposits in the organic plain is, from top to bottom:

- · Peat
- Stratified Sediments
- · Till
- · Deep Undifferentiated Till and Stratified Sediments
- · Bedrock

Most of the organic plain is covered with peat, which is 0.8 m to 1.5 m thick. The underlying stratified sediments form a discontinuous layer of sand over the LSA. The sand appears to be glaciolacustrine or glaciofluvial in origin. The sand ranges in thickness from less than 1 m to 36 m. These deposits are elongated in a northwest to southeast direction, similar to the Mildred Lake Aquifer deposit. Beneath the stratified sediments, till rests on bedrock over nearly the entire organic plain. The till ranges from being sandy, where it rests on sandstone, to very clayey, where it is in contact with shale. From its lithology, the till appears to be the Firebag till described by McPherson and Kathol (1977). The thickness of the surficial deposits in the organic plain ranges from 1 m to 45 m. The thickest deposits appear to be in Lease 19.

The valley slopes along the Steepbank River and the Athabasca River are covered with colluvium, which consists mainly of sandy and silty material, with some bituminous sand.

The floodplain on the east bank of the Athabasca River is comprised of organic material and alluvial sand silt and clay, with some sand and gravel meltwater deposits. The thickness of sediments in the floodplain is as great as 45 m. The simplified bedrock stratigraphy in the area is:

- · Clearwater Formation
- McMurray Oil Sands
- · Basal Aquifer
- Upper Devonian

Shale of the Clearwater Formation is the uppermost bedrock unit over most of the organic plain. The shale is approximately 80 m thick in the east portion of the LSA, and thins toward the west.

The oil sands deposit in the LSA is between 50 m and 75 m thick. It subcrops in the Athabasca River valley and outcrops along the lower reaches of the Steepbank River.

The Basal Aquifer is an extensive discontinuous unit within the McMurray Formation. The aquifer is generally positioned at the bottom of the oil sands, and is commonly absent above topographic highs in the surface of the underlying Devonian. The aquifer is up to 50 m thick in Fee Lot 1, and ranges from zero to 30 m thick throughout the rest of the LSA. The Basal Aquifer is absent in the south half of Lease 97, and the northwest of Fee Lot 1.

The Upper Devonian deposit is limestone of the Waterways Formation. The Upper Devonian surface has 100 m of relief, with numerous depressions and topographic highs. The highly irregular surface may be the result of karstification. The rock observed in outcrops and core samples is weathered and highly fractured. The Upper Devonian is exposed along the Athabasca River, and the lower reaches of the Steepbank River.

7.2 Hydrogeology

Groundwater flow in the stratified surficial sediments is toward the Steepbank and Athabasca Rivers. South of the Steepbank, the vast majority of the groundwater in the surficial sand flows toward the Athabasca River. The mean hydraulic conductivity of the sand is 3.1×10^{-6} m/s.

The direction of hydraulic gradients in the till, the Clearwater Formation and the McMurray Oil Sands is predominantly vertically downward. These units have relatively low hydraulic conductivity, in the order of 1×10^{-7} m/s.

The groundwater in the Basal Aquifer and the Upper Devonian is flowing predominantly toward the Athabasca River. In the vicinity of the lower reach of the Steepbank River, where the river has cut below the bottom of the oil sands, a component of the flow in the aquifer is toward the Steepbank River.

Under most of the organic plain area, the hydraulic head in both the Basal Aquifer and the Upper Devonian is above the bottom of the McMurray Oil Sands. The Basal Aquifer and Upper Devonian appear to have similar hydraulic conductivities locally. The mean hydraulic conductivity of the Basal Aquifer is 4.1×10^{-6} m/s. The hydraulic conductivity measured in one piezometer completed in the Upper Devonian is 5.8×10^{-6} m/s.

The groundwater in surficial deposits is quite fresh. The concentration of total dissolved solids ranges from 17 mg/L to 638 mg/L. The freshest water is similar to water found in the peat. The water with higher TDS is associated with till and bedrock. The major ions in the surficial groundwater are calcium, magnesium and bicarbonate. The water with higher TDS levels also tends to have higher concentrations of sodium.

In the oil sands, Basal Aquifer and Upper Devonian, the groundwater chemistry ranges from brackish to saline. The units contain similar water, with the major ions being sodium, chloride and bicarbonate. The water in the oil sands also contains organic compounds, including naphthenic acid. In the Basal Aquifer, the concentration of TDS ranges from 2620 mg/L to 29 789 mg/L. The concentration of naphthenic acid in the Basal Aquifer ranges from 6 mg/L to 36 mg/L. In the Upper Devonian, the concentration of TDS has been found to range from 637 mg/L to 5201 mg/L. In the LSA, the median TDS in groundwater from the one piezometer completed in the Upper Devonian was 4700 mg/L. The median concentration of naphthenic acid in the limestone was 52 mg/L.

In terms of groundwater resources, the surficial aquifer in the organic plain was found to conform to minimum standards for domestic supply. The long-term yield (Q_{20}) from the surficial aquifer is adequate (locally greater than 1 m³/day) and the water quality is suitable for domestic supply. The bedrock aquifers are capable of yielding higher volumes of water. However, the water quality in the bedrock aquifers is poor, and could not be utilized for drinking water or agricultural purposes without pre-treatment.

The surficial aquifer in the Athabasca River valley is expected to be a viable source of groundwater.

The contribution of groundwater discharge to surface water has been found to be very minor. The total rate of groundwater discharge from surficial and bedrock aquifers to all water bodies in the LSA is estimated to be 33.5 L/s. The rates of groundwater discharge are less than 1% of the minimum average surface water flows in the Athabasca and Steepbank Rivers.

Klohn-Crippen

8. **REFERENCES**

Alberta Environment. 1983. Soil Testing and Groundwater Supply Evaluation Guidelines for Residential Subdivisions. Prepared by: Soils Branch, Earth Sciences Division, Environmental Protection Services, and Regional Land Use Branch, Land Reclamation Division, Environmental Co-ordination Services, Alberta Environment, February, 1983.

Alsands Project Group. 1978a. Application to the Alberta Energy Resources Conservation Board for an Oil Sands Mining Project, December 1978.

Alsands Project Group. 1978b. Environmental Impact Assessment, presented to the Alberta Energy Resources Conservation Board for an Oil Sands Mining Project. Applied Groundwater Imaging (AGI) Ltd., 1995. Ground Penetrating Radar Survey for Suncor OSG Inc. February 1995. Vol. 1.

Applied Ground Imaging Ltd. (AGI), 1995. Athabasca River Ground Penetrating Radar Survey, Feb. 1995. Report prepared for Suncor OSG and Klohn-Crippen Consultants Ltd.

Associated Mining Consultants Ltd., 1995. Fixed Frequency Electromagnetic Survey Suncor Inc. - Lease 19, 25, 39 and 97 for Suncor OSG Inc., March, 1995.

Atmospheric Environment Service, 1993. Canadian Climate Normals, 1961-1990, Prairie Provinces, Environment Canada.

Bayrock, L.A., 1971. Surficial Geology of the Bitumount area, Alberta. NTS 74E. Alberta Research Council Map.

Bayrock, L.A., and T.H.F. Reimchen, 1973. Surficial Geology, Waterways, Alberta, NTS 74D. Alberta Research Council Map.

Bovar, 1996. Environmental Impact Assessment for the Syncrude Canada Limited Aurora Mine. Report prepared for Syncrude Canada Limited.

Carrigy, M.A., 1959. Geology of the McMurray Formation Part 111 General Geology of the McMurray Area, Memoir 1, Research Council of Alberta, Edmonton.

Carrigy, M.A., 1973. Guide to the Athabasca Oil Sands Area. Alberta Research Council, Information Series No. 65, prepared for the Canadian Society of Petroleum Geologists Oils Sands Symposium. Editor: M.A. Carrigy, Assoc. Editor: J.W. Kramers.

Klohn-Crippen

CCME. 1991. Interim Canadian Environmental Quality Criteria for Contaminated Sites. Report CCME EPC-CS34, Prepared by: Canadian Council of Ministers of the Environment, CCME Subcommittee on Environmental Quality Criteria for Contaminated Sites. Available from: Environmental Quality Guidelines Division, Water Quality Branch, Environment Canada, Ottawa K1A 0H3.

Cotterill, D.K. and W.N. Hamilton. 1995. Geology of Devonian Limestones in Northeast Alberta, Alberta Geological Survey/Alberta Research Council Open File Report 1995-07, prepared for Canada-Alberta MDA Project M92-04-14, March, 1995.

Crickmay, C.H., 1957. Elucidation of some Western Canada Devonian Formations; published by author, Imperial Oil Ltd., Calgary, Alberta, 14 pp.

Driscoll, F.G., 1989. Groundwater and Wells Johnson Filtration Systems Inc. St. Paul, Minnesota 55112.

Golder (Golder Associates Ltd.), 1998. Terrestrial Vegetation Baseline for Project Millennium Report for Suncor Energy Inc., Oilsands. Fort McMurray, Alberta.

Hackbarth, D.A, 1977. Groundwater Observation Well Network: Athabasca Oil SandssAreas, Alberta Research Council, Information Series No. 69.

Hackbarth, D.A. and N. Nastasa. 1979. the Hydrogeology of the Athabasca Oil Sands Area, Alberta. Alberta Research Council Bulletin 38.

Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations. Bulletin No. 36, Waterways Experiment Station, Corps of Engineers, US Army. Vicksburg, Mississippi.

Klohn-Crippen Consultants Ltd. (KCCL) 1995. 1994 Groundwater Monitoring Program. Report prepared for Suncor Inc., April 1995.

Klohn-Crippen Consultants Ltd., 1996. Hydrogeology Baseline Steepbank Oil Sands Mine. Report for Suncor Inc., Oil Sands Group. Calgary, Alberta

Klohn-Crippen Consultants Ltd. 1998. Hydrology Baseline for Suncor's Project Millennium. Report for Suncor Energy Inc., Calgary, Alberta.

McPherson, R.A. and C.P., Kathol. 1977. Surficial Geology of Potential Mining Areas in the Athabasca Oil Sands Region. Alberta Research Council Open File Report No. 1977-4. Norris, A.W., 1963. Devonian Stratigraphy of Northeastern Alberta and Northwestern Saskatchewan. Geol. Surv. Canada, Mem. 313, 168 pp.

Radforth, N.W. and C.O. Brawner, 1977. Muskeg and the Northern Environment in Canada. By the Muskeg Subcommittee of the NRC Associate Committee on Geotechnical Research. University of Toronto Press.

Schwartz, F.W. 1979. Interim Report on a Hydrogeological Investigation of the Muskeg River Basin, Project HG-1-1. Prepared for Alberta Oil Sands Environmental Research Program, Water Systems.

Schwartz, F.W. 1980. Hydrogeological Investigation of the Muskeg River Basin, Alberta, Project WS-2-2. Prepared for Alberta Oil Sands Environmental Research Program, Water Systems.

Shell Canada Limited, 1998. Muskeg River Mine Project EIA. Prepared by Golder Associates Ltd.

Suncor Inc., 1996. Aquatics Impacts Analysis; Steepbank Mine Environmental Impacts Document.

9. GLOSSARY OF TERMS

- Aquifer A body of rock or soil which contains sufficient amounts of saturated permeable material to yield economic quantities of water to wells or springs.
- Aquitard A lithologic unit that impedes ground water movement and does not yield water freely to wells or springs but that may transmit appreciable water to or from adjacent aquifers. Where sufficiently thick, may act as a ground water storage zone. Synonymous with confining unit.
- Available Drawdown The vertical distance that the equipotential surface of an aquifer can be lowered; in confined aquifers, this is to the top of the aquifer; in unconfined aquifers, this is to the bottom of the aquifer.
- Baseline A surveyed condition which serves as a reference point to which later surveys are coordinated or correlated.
- Bedrock The body of rock which underlies the gravel, soil or other superficial material.
- Borehole Log The record of geologic units penetrated, drilling progress, depth, water level, sample recovery, volumes and types of materials used, and other significant details regarding the drilling of an exploratory borehole or well.
- Confined Aquifer An aquifer in which the potentiometric surface is above the top of the aquifer.
- Consolidated Tailings The portion of ore that is deposited after washing and milling and which has undergone a reduction in volume and increase in density. (See also "Consolidation")
- Consolidation The gradual reduction in volume of a soil mass resulting from an increase in applied load.

Klohn-Crippen

a) Initial consolidation (initial compression): A comparatively sudden reduction in volume of a soil mass under an applied load due principally to release or the squeezing out and compression of gas in the soil voids preceding primary consolidation

	 b) Primary consolidation (primary compression) (primary time effect): The reduction in volume of a soil mass caused by the application of a sustained load to the mass and due principally to a squeezing out of water from the void spaces of the mass and accompanied by a transfer of the load from the soil water to the soil solids. c) Secondary consolidation (secondary compression) (secondary time effect): The reduction in volume of a soil mass caused by the application of a sustained load to the mass and due principally to the adjustment of the internal structure of the soil mass after most of the load has been transferred from the soil water to the soil solids.
Darcy's Law	A law describing the rate of flow of water through porous media. (Named for Henry Darcy of Paris who formulated it in 1856 from extensive work on the flow of water through sand filter beds.)
Deposit	Material left in a new position by a natural transporting agent such as water, wind, ice or gravity, or by the activity of man.
De-pressurize	The process of reducing the pressure in an aquifer, by withdrawing water from it.
Deuterium	A stable isotope of hydrogen, which has two neutrons.
Energy Dissipation	A structure designed to dissipate the excessive structure energy of a high velocity fluid (i.e. water), to establish a safe flow condition and prevent scour or minimize erosion. (See also "Hydraulic structure")
Ephemeral	A phenomena, feature, marriage which only lasts for a short time (ie., an ephemeral stream is only present for short periods during the year.
Equipotential Level	The level on which the potential everywhere is constant; the level at surface which the pressure head of a body of groundwater is the same.
Floodplain	Land near rivers and lakes that may be flooded during seasonally high water levels.
Fluvial	Relating to a stream or river.

Glacial Till	Unsorted and unstratified glacial drift, generally unconsolidated, deposited directly by a glacier without subsequent reworking by water from the glacier, and consisting of a heterogeneous mixture of clay, silt, sand, gravel and boulders varying widely in size and shape.
Glacio-Lacustrine	Relating to the lakes that formed of the edge of glaciers as the glaciers receded. Glacio-lacustrine sediments are commonly laminar deposits of fine sand, silt and clay.
Ground Penetrating	Method of mapping subsurface layer geometry using radar.
Groundwater	Water that is found below the ground surface, in soil and rock.
Groundwater Level	The level below which the rock and subsoil, to unknown depths, are saturated.
Groundwater Regime	Water below the land surface in a zone of saturation.
Groundwater Velocity	The speed at which groundwater advances through the ground. The way that the term is used in this document, it technically refers to the average linear velocity of the groundwater.
Head	The energy, either kinetic or potential, possessed by each unit weight of a liquid, expressed as the vertical height through which a unit weight would have to fall to release the average energy possessed. It is used in various compound terms such as pressure head, velocity head, and loss of head.
Hydraulic Conductivity	The permeability of soil or rock to water.
Hydraulic Gradient	A measure of the force moving groundwater through soil or rock. It is measured as the rate of change in total head per unit distance of flow in a given direction. Hydraulic gradient is commonly shown as being dimensionless, since its units are m/m, ft/ft.
Hydraulic Head	The elevation with respect to a specified reference level at which water stands in a piezometer connected to the point in question in the soil. Its definition can be extended to soil above the water table if the piezometer is replaced by a tensiometer. The hydraulic head in systems under atmospheric

Klohn-Crippen

	pressure may be identified with a potential expressed in terms of the height of a water column. More specifically, it can be identified with the sum of gravitational and capillary potentials, and may be termed the hydraulic potential.
Hydraulic Structure	Any structure which is designed to handle water in any way. This includes the retention, conveyance, control, regulation, and dissipation of the energy of water.
Hydrogeology	The study of the factors that deal with subsurface water, and the related geologic aspects of surface water.
Inorganics	Pertaining or relating to a compound that contains no carbon. (See also "Organic compounds")
Landform	Any physical, recognizable form or feature of the Earth's surface, having a characteristic shape, and produced by natural causes.
Lean Oil Sands	Oil bearing sands, which do not have a high enough saturation of oil to make mining of them economically feasible.
Microtox	A measure of toxicity in a sample. (See also "Toxicity")
Microtox Organic Compounds	A measure of toxicity in a sample. (See also "Toxicity") Chemicals (naturally occurring or otherwise) which contain carbon, with the exception of carbon dioxide (CO^2) and carbonates (e.g., CACO3)
Microtox Organic Compounds Overburden	A measure of toxicity in a sample. (See also "Toxicity") Chemicals (naturally occurring or otherwise) which contain carbon, with the exception of carbon dioxide (CO ²) and carbonates (e.g., CACO3) The soil, sand, silt, or clay that overlies bedrock. In mining terms, this includes all material which has to be removed to expose the ore.
Microtox Organic Compounds Overburden Oxygen-18	 A measure of toxicity in a sample. (See also "Toxicity") Chemicals (naturally occurring or otherwise) which contain carbon, with the exception of carbon dioxide (CO²) and carbonates (e.g., CACO3) The soil, sand, silt, or clay that overlies bedrock. In mining terms, this includes all material which has to be removed to expose the ore. A stable isotope of oxygen which has two more neutrons than the more common oxygen-16.
Microtox Organic Compounds Overburden Oxygen-18 Piezometer	 A measure of toxicity in a sample. (See also "Toxicity") Chemicals (naturally occurring or otherwise) which contain carbon, with the exception of carbon dioxide (CO²) and carbonates (e.g., CACO3) The soil, sand, silt, or clay that overlies bedrock. In mining terms, this includes all material which has to be removed to expose the ore. A stable isotope of oxygen which has two more neutrons than the more common oxygen-16. An instrument for measuring pressure. In groundwater and geotechnical investigations, piezometers are commonly Poly Vinyl Chloride pipe that has been sealed in a drill hole. The height to which groundwater rises in the pipe is a measure of the water pressure at the bottom of the piezometer.

Klohn-Crippen

1

.

SUNCOR ENERGY

Hydrogeology Baseline for Project Millennium

	by the contours is known as a potentiometric or piezometric surface.
Pneumatic Piezometer	A type of piezometer in which the hydraulic head is measured using a compressed gas.
Pore Water	Water that is present between the grains of a soil or rock.
Potentiometric Surface	An imaginary surface representing the static head of groundwater. The water table is a particular potentiometric surface.
Sediment Sampling	A field procedure relating to a methodology for determining the configuration of sediment deposits.
Sedimentation	The process of subsidence and deposition of suspended matter carried by water, wastewater, or other liquids, by gravity. It is usually accomplished by reducing the velocity of the liquid below the point at which it can transport the suspended material.
Stable Isotopes	Isotopes of a particular element have the same number of protons; but different numbers of neutrons. Isotopes are stable if they do not naturally undergo radioactive decay.
Static Water Level	The elevation of the top of a column of water in a monitoring well or piezometer that is not influenced by pumping.
Stratigraphy	The succession and age of strata of rock and unconsolidated material. Also concerns the form, distribution, lithologic composition, fossil content and other properties of the strata.
Surficial Aquifer	A surficial deposit containing water to be considered an aquifer.
Surficial Deposit	A geologic deposit (like clay, silt or sand) that has been placed above bedrock. (See also "Overburden")
Tailings	The portion of ore, after washing and milling, which is too low grade to warrant further processing.
Total Dissolved	The total concentration of all dissolved compounds solids found in a water

Solids (TDS)	sample.
Toxicity	The tendency of a chemical or condition to cause harm to the life process.
Twenty Year	An estimation of the long term rate at which a water well will produce
Safe Yield (Q ₂₀)	water. The Q20 is the rate at which a well can be pumped continuously for 20 years, without the water level dropping below the top of the aquifer. (See also "Available drawdown")
Unconfined Aquifer	An aquifer in the which the water level is below the top of the aquifer.
Water Equivalent	As relating to snow; the depth of water that would result from melting.
Water Table	The shallowest saturated ground below ground level - technically, that surface of a body of unconfined groundwater in which the pressure is equal to atmospheric pressure.
Wetlands	Area of surface water ponding which forms the habitat for a variety of wildlife including water fowl.

 (\mathfrak{A})

5 4

·

APPENDIX I BOREHOLE LOGS

							D 00				
VERTI	CAL SC	$\frac{\text{ALE: } 1}{\Gamma \Gamma}$	cm = 1	.0m	DATE DRILLED: 19 F	EB 98 - 19 FE	в 98	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
SA	MPL	E DA	ATA		DRILL TYPE: Wet	Rotary		그리		NOTES	
HAMM	IER WE	IGHT	kg	1BO	ELEV. GROUND (m): 3.	37.84		ЩE			
DROP :	HEIGHT	Diama	Famula	1	CO-ORDINATES (m): N	6,311,731 E 4	76,178	ЧШ			
(m)	Туре	.15m	No.		DESCRIPTION	OF MATE	RIALS				
				<u> </u>	Muskeg			a e	Steel casing p	protector installed at surfa	ce
				<u>v v v</u> v	0				0.84m of rise	r pipe stick up	
1.0				<u> </u>	1.07				- 2 inch Sch	. 40 PVC	
-					Sand - fine and mediu	m grained			Well Seal (0.0	0 to 1.7m)	
2.0	{				- cobble fragmer	its			- bentonite	7 +0 4 2)	
				· · · · · · · · · · · ·	- brown				; - pea gravel	.7 10 4.5)	
2.0				· · · · · · · · · · · · · · ·				目:	Well Screen ((2.2 to 3.6)	
- 3.0	1							目	- 2 inch Sch	. 40 #10 slot PVC	
-					3.66 Clay Till				1		
- 4.0	ŀ				- low plasticity,	silty, sandy			Backfill (4.3	to 4.57m)	
				\$Z\$	4.57 fine and mediu	m grained gravel, c	ark 🖊	ACC:	of - slough		
					grey		/				
					End of Hole at 4	.5/m					
									Water Level	Measurement:	
									1.70m (0.86	om bgs) on 25 Feb 1998	
	[
		ļ									
	[
		<u> </u>				····					
	30							PA	A 2839.03.0	4	
							PROJECT:	Pr	oject Miller	nnium	
			(]	KLO	HN-CRIPPEN		LOCATION	I: L2	25-P98-OB1		
							LOGGED B	BY:	M.T.	CHECKED BY:	,,,,,
						2010 4 100	PLATE.	1 of 1			13
I						22/04/98	FLAIE:	ιUL	L	HULE NO: 98-1(jS

				TES	T HOLE	LOG		19.000.0000.000		
VERTIC	CAL SC	ALE: 10	cm =	1.0m	DATE DRILL	ED: 19 FEB 98 - 19				
SA	MPL	EDA	TA		DRILL TYPE: Wet Rotary				ဟု	NOTES
HAMM	ER WEJ	IGHT	kg	l d	ELEV. GROU	ND (m): 339.00			AI	
DROP I	HEIGHT	ייייייייייייייייייייייייייייייייייייי	m	μ.	CO-ORDINAT	ES (m): N 6.310.362	E 476.070	E	ĔŢ	
Depth (m)	Туре	Blows 15m	Sample No.	တ	DESCR	IPTION OF MA	FERIALS	-	ii	
<u></u>				<u>M M</u>	Musk	eg		, EQ	120	Steel casing protector installed at surface
				4 24 2		-6	×			0.55 m of riser pipe stick up
1.0				~ ~	1.50				₿ P	Riser Pipe (0.0 to 5.55m)
					Sand			R		- 2 inch Sch. 40 PVC
2.0					- med	ium to coarse grained			R	Backfill (0.0 to 4.04m)
					- trac	e fine gravel			R	- drill cuttings
3.0					- 010	¥11		R	R	
									Ŕ	
4.0								Ø	\mathcal{O}	
								Ø		Well Seal (4.04 to 4.88m)
- 5.0										- bentonite
										Filter Pack (4.88 to 9.14m)
6.0					6.10					- pea gravei
					Sand]::E		Well Screen (5.55 to 8.60m)
70					- med	ium grained, some fine gr	ained sand			- 2 inch Sch. 40 #10 slot PVC
7.0					- brov	vn		L.F	Ξ.,	
				******	/.02 Sand			舒	設	Slough from 7.37 to 8.60m
8.0					- med	ium and coarse grained			彀	
					- trac	e fine gravel		29	-123	
9.0					~ brov	vn		1::::	 	
								66	SA	
- 10.0									36	Peorlefill (0, 14 to 11, 28 m)
									ŠŔ.	- slough
11.0					<u>10.97</u>	n Clay			3E	
-					BIUW	of Hole at 11.28m		16-65	exe-e	
										Water Level Measurement:
										1.04m (0.49m bgs) on 26 Feb 1998
]								
	Ot								PA	2839.03.04
						PROJECT	:	Pro	iect Millennium	
			1	KI O	HN_CDN	PPEN	T OCLATIC	NT.	Y 71	
				V.asa/U				LOCATION: L25-P98-OB2		
						LOGGED	LOGGED BY: M.T. CHECKED BY:			
		0.0000012000.00000000000000000000000000				22/04/	98 PLATE:	1 o	f 1	HOLE NO: 98-080

4• .

	********		400-500	TES	т нс	DLE LOG	****		5-3-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	
VERTI	CAL SC	ALE: 1	cm = 1	1.0m	DATE	DRILLED: 20 FEB 98 - 20 FE				
SA	MPI	F DA	ТА		DRILL	TYPE: Wet Rotary	0 70	1	က္	NOTES
НАММ	ER WE	IGHT	ko	러	FIEV	GROUND (m): 339 51			Ĕ	NOILS
DROP	HEIGHT	[] []	m m	3B	CO.OP	DINATES (m): N 6 307 534 F 4	75 034	Щ	Ē	
Depth	Туре	Blows	Sample	တ်		SCOLDTION OF MATEL	73,734 DIATC	1	Ξ	
(<u>m)</u>		.15m	No.	54 54		SCRIPTION OF MATER	<u>KIALS Ţ</u>	2A	254	Steel cacing protector installed at surface
				4 84 8		Muskeg		Ø,	R	0.84 m of riser pipe stick up
E 1.0					0.91			Ø	R	Backfill (0.0 to 1.27m)
						sand - medium and coarse grained			Ø	- drill cuttings Well Seal (1.27 to 2.58m)
						- some fine grained sand				- bentonite
2.0						- some fine to medium grained grav	el			Riser Pipe (0.0 to 3.40m)
						- subfounded to founded, brown				- 2 men Sen. 40 PVC
- 3.0										Filter Pack (2.58 to 6.10m)
								E		- pea gravel
E 4.0								E		Well Screen (3.40 to 4.93m)
										- 2 Inch Sch.40 #10 slot PVC
- 5.0					5,18	······································			1	
						Clay Till			;;;;;	
- 6.0_					6.10	- low plasticity			 	
_						- trace fine to medium grained grave	el, [
						angular to subangular				
						End of Hole at 6.10m				2 IGPM produced during air lift developing
										Water Level Measurement:
										0.84m (0.0m bgs) on 25 Feb 1998
								ļ		
		1								
					-					
								1		
	L	L	L	1			JOB NO:	11	PA	2839.03.04
		徽					DROWGE	ىر مر		:
						ARD R. R. B. B. B. M. M. A.	PROJECT:		rro	ject Millennium
				KLO	HN-(KIPPEN	LOCATIO	N: 1	L19	D-P98-OB4
							LOGGED	BY:		M.T. CHECKED BY:
								1~	P 1	
**************************************		STOCKER CONTRACTOR	2012/00/00/00/00/00/00/00/00/00/00/00/00/00		*****	22/04/98	LLTUIT:	ı Ol		HULE NO: 98-117

VEDTIC	141 00	AT 12. 1	om - ^) 0	DATE DULLED 01 EED 00 01 FT	D OO		4
C VERLIC	AL SC	ALE: 10	$\frac{\mathrm{cm}}{\mathrm{TA}} = 2$.um	DATE DRILLED: 21 FEB 98 - 21 FE	<u>в 78</u>	ſ	NOTES
				Ч	ELEN CROUND (m) 354.36		ᅴ립	NOTES
DROP H	IEIGHT		<u></u> m	β	ELEV. GROUND (III): 334.30	120 205	ET E	
Depth	Туре	Blows	Sample	S,	DESCRIPTION OF MATE	DIAT C	ā	
(m)		.15m	NO.	<u> 1</u>	0.74 Muskeg			Steel casing protector installed at surface
					1.35 Sand			0.61m of riser pipe stick up
				ZY/	- fine and medium grained, silty, b	rown /		
					Clay Till			Dirar Dira (0.0 to 20.50m)
					- iow plasticity - silty, sandy			- 2 inch Sch.40 PVC
					- some fine and medium grained gr	avel,		$P_{no}(511, (0, 0, 10, 16, 22m))$
				$\Lambda \Lambda$	6.10			- drill cuttings
					Clay Till	i s		
					- some fine and medium grained gr	avel		
					- trace coarse grained gravel, angul	ar to r	<u> </u>	
10.0					9.75 Subangunar, grey	<u>P</u>	A Ø	
					- medium grained, some silt, brown	n ∕~		
					Clay Till	(j		
					- same as 6.1 - 9.75m interval	2		
					13.72			
					- low plasticity, sandy, silty			
					- trace fine grained gravel, angular	to t		
					16.76 suoangular, grey		7	
					Clay Till		1 V	Well Seal (16.23 to 18.36m)
2					- trace fine grained gravel, angular	grey		
20.0					- increased resistance to drilling wi	h		
20.0				ET P	depui			Filter Pack (18.36 to 24.38m)
					21.95		:目::	- pea gravel
					Clay Till		:目::	Well Screen (20.5 to 23.55m)
					- low plasticity - silty trace fine grained gravel, gr	ev	;日;;	- 2 inch Sch.40 #10 Slot PVC
				₽⋏₽⋏	24.38 End of hole at 24.38m			
								4 IGPM produced during air lift developing
								Water Level Measurement:
								1.03m (0.42m bgs) on 25 Feb 1998
		B				JOB NO:	PA Dref	2839.03.04
			1	KLO	HN_CRIPPFN		. ¥ 14	
				asl/U		LUCATION		7°F 70°UB3
		1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -				LOGGED B	Y:	M.T. CHECKED BY:
					22/04/98	PLATE:]	1 of 1	HOLE NO: 98-074

	50000000000000000000000000000000000000	404/04/04/1000000/07/00/07/07		TES	T HOLE LOG	*********			
VERTIC	CAL SC	ALE: 1	cm = 0	1.0m	DATE DRILLED: 19 FEB 98 - 19 FEB 9	98	90000000000000	******	
SA	MPL	E DA	TA	Γ.	DRILL TYPE: Wet Rotary			ဟ	NOTES
HAMM	ER WEI	GHT	kg	l b	ELEV. GROUND (m): 343.52			H	
DROP I	HEIGHT	י ייייייייייייייייייייייייייייייייייי	m	٦. ٣	CO-ORDINATES (m): N 6,307,865 E 477,	,495	Ľ	Ш	
Depth (m)	Туре	Blows .15m	Sample No.	S	DESCRIPTION OF MATERIA	ALS			
				<u> 11 11</u>	Muskeg		A		Steel casing protector installed at surface
				<u>n</u> m n			2	Ŕ	0.67 m of riser pipe stick up
- 1.0				1 27 27			2	P	
				12222				R	
2.0							Ê.	R	Riser Pipe (0.0 to 11.58m)
			ļ				đ	R	- 2 inch Sch. 40 PVC
3.0			•		3.10		Ŕ	X	
					Clay Till		Ø,	A	
4.0					- some sand, some silt	퐄	ġ,	R	$P_{ac} = f_{ac} = 0.5 m$
					- some fine to medium grained angular	to	b)	K	- drill cuttings
- 5.0				A A	subangular gravel - trace coarse grained gravel, grey		Ø	K	U-
				× × × ×			S	X	
60							2	Ø	
							2	X	
70								÷	
£ /.0]		12/			×	Þ	
					7.92		R	R	
5 8.0					Clay Till		1		
					- low plasticity - sandy, trace fine grained gravel angu	ılar			Well Seal (8.05 to 10.08m)
F 9.0					to subangular				- bentonite
					- grey				
- 10.0									
					10.07				
- 11.0					Clay Till				Filter Pack (10.08 to 15.24 m)
					- medium plasticity			:::	- pea gravel
E 12.0					- trace sand, trace silt - some fine to medium grained angular	to	::E		
					subangular gravel		#E		
13.0					- trace coarse grained gravel, grey		ΞĒ		Well Samon (11 59 to 14 (200)
						ŀ	ΞĒ		- 2 inch Sch. 40 #10 slot PVC
- 14.0							::E		
							::E		
- 15.0					15 24				
-				<u>~~~~</u> /~/A	End of Hole at 15.24m		had a de al		
									Water Level Measurement:
									4.45m (3.78m bgs) on 25 Feb 1998
		l							
					JC	OB NO:]	PA	2839.03.04
			0		P	PROJECT:	ject Millennium		
	KI.			KLO	HN-CRIPPEN	OCATION	J. 1	[,10)-P98-OR6
					VILL FILL A AAFA' FILL				
						JOGGED I	IVI. I. CHECKED BY:		
	17001000000000000000000000000000000000	anderskiperioden zurzege	10400005000000100100100	7970-000-000-000-000-000-000-000-000-000	22/04/98 P	PLATE:	1 01	1	HOLE NO: 98-115

	mithelininger of the second second		120009201090200000000000000000000000000						
VERTI	CAL SC	ALE: 1	cm = 1	1.0m	DATE DRILLED: 20 FEB 98 - 20 FEB	98	ûn a fersen fer fe	-	
SA	MPI	EDA	ТА		DRILL TYPE: Wet Rotary			ဟု	NOTES
НАММ	ER WE	IGHT	kø	물	ELEV. GROUND (m): 351.66			Ę	NOILS
DROP	HEIGHT	[m	۲ B	CO-ORDINATES (m): N 6.304.057 E 47	9.122	Ä	Ш	
Depth	Туре	Blows	Sample	တ်	DESCRIPTION OF MATER	IAIS			
- <u>(III)</u> -		.15m	NO.	<u>N/ N/</u>	Musica		$\overline{\Lambda}$	V	Steel casing protector installed at surface
				1 24 2	imuskeg				0.58 m of riser pipe stick up
1.0				<u>N6 N6</u>					
				12 11 1					
2.0				84 84					
				1 27 8		2			
E 3.0				N 10		400		R	
				1 27 2			8		Riser Pipe (0.0 to 11.6m)
E 4 0				11 11	3.96		à		
- 4.0 -					Clay Till	Į.	Ġ,	X	Surface Seal (0.0 to 2.1m)
					- low plasticity, sandy, sitty - trace fine gravel	8	ĠČ	Ø	a - bentonite
E 5.0					- dark grey	C A	Ā	R	Backfill (2.1 to 9.75m)
						2	Â	R.	- drill cuttings
F 6.0							ġ		
							Ø.	X	
E 7.0				1 XX			8		
						2	20		
E 8.0						2			
						2			
E 9,0					9.14	2			
				× 1 × 1	Clay Till	l l			
E 10.0					- low plasticity, silty, sandy	2			
					- trace coarse gravel				Well Seal (9.75 to 10.67m)
					- dark grey				
								_	
F 12.0							E		Filter Pack (10.67 to 15.5m)
							E		- pea gravel
E 13.0									Well Screen (11.6 to 14.66m)
							E		- 2 inch Sch. 40 #10 Slot PVC
- 14.0							E];;;	
							ËĘ	1:::	
- 15.0								· · · · · · · · · · · · · · · · · · ·	
:				<u>~~</u> /	15.50 End of Hole at 15.50m				
									Water Level Measurement: Well was frozen on 25 Feb 1998
****									2020.02.04
							******	ľA	2839.03.04
						PROJECT:]	Pro	oject Millennium
			<u>\</u>	KLO	HN-CRIPPEN	LOCATION	9-P98-OB8		
						LOGGED BY: M.T. CHECKED BY:			M.T. CHECKED BY:
					2010100	PI ATE.			
	n an the state of the	normality of the second second			22/04/98	LALE.	a Oi	a A	HULE NO: 98-004

VERTICA	AL SC	ALE 1	cm = 4	5.0m	DATE DRILLED. 22 FFR 08 - 22 FF	R 08	1	4		
SAN	MPI	F DA	$T\Delta$		DRILL TYPE: Wet Rotary/Corin	a 90		NOTEC		
HAMME	R WEI	GHT	kø	5	ELEV GROUND (m): 333 60	5	- -] E	NOIES		
DROP HI	EIGHT	0111	<u>~_</u> m	ШЩ	CO OPDINATES (m), N 6 312 272 E A	75 0 11				
Depth .	Гуре	Blows	Sample	S	DESCRIPTION OF MATE	DTAT C				
(11)		.15m	INO.	<u> </u>	Material description not available a	KIALS				
				4 54 5	of writing	t time		Surface Seal (0 to 5m)		
				<u> </u>	6.10			- bentonite		
					Drill casing installed to this depth u	sing	BOST			
10.0					wet rotary Coring began after this depth					
					coming began after this deput					
20.0								Backfill (5 to 80m)		
								- borehole collapse		
30.0										
								l B		
	[
40.0										
							ROS			
2							BOS			
							60X			
50.0										
					1A-L on 26 Feb 1998: 54.4m	bgs 🗸				
						• =				
60.0							89			
							2202			
70.0										
					78.00					
80.0					Bedrock contact inferred from geop	hysical		Well Seal (80 to 82m) hontomite		
00.0					log and subject to change			Filter Pack (82 to 85m) - pea gravel		
								Pneumatic Piezometer Tip at 85.85m		
			<u> </u>		86.87		医包括	Slough (85 to 86.87m) - borehole collapse		
					End of Hole at 86.87m					
								Water Level Measurement:		
								310kPa (54.4m bgs) on 26 Feb 1998		
						JOB NO:	PA	2839.03.04		
			P .			PROJECT	PROJECT: Project Millennium			
			<u> </u>	KLO	HN-CRIPPEN	LOCATIO	N: L2	5-AP98-1A		
						LOGGED	BY.	MT CHECKED BY		
						Logon	D	CHECKED DI.		

100 mm		2949 ²⁰⁷ 7777777	TES	T HOLE LOG		*****		
VERTICAL S	CALE: 1	cm = b	5.0m	DATE DRILLED: 25 FFR 98 - 25 FF	'R 98	[4	
SAMP	LE DA	TA		DRILL TYPE: Wet Rotary/Corin	g 2	S	NOTEC	
HAMMER WI	EIGHT	kø	ğ	ELEV. GROUND (m): 366.20	D	빌빌	NUILS	
OROP HEIGH	T	<u>m</u>	۲. E	CO-ORDINATES (m): N 6,312,295 E 480,599		H H L		
Depth Type	Blows	Sample No	N	DESCRIPTION OF MATE	RIALS			
<u>~~</u>		1.0.	<u></u>	0.60 Muskeg	/	1		
				Material description not available a	t time		- bentonite	
				of writing				
10.0								
							2	
							2	
20.0				21.50			\mathbb{B}_{2}	
				Drill casing installed to this depth u	sing		- borehole collapse	
				wet rotary Coring began after this donth			8	
				Coring began and uns ucpui				
30.0								
					ļ			
40.0					1		4	
							Two Pneumatic Piezometers Installed	
			1					
50.0							8	
50.0								
60.0				3B.BA on 26 Eeb 1008: 62 3m	a has 🗸			
				3A-L on 26 Feb 1998: 62.9m	bgs		2	
70.0					ļ			
							2	
80.0								
ļ								
90.0								
		<u> </u>			1	658	8	
				Continued	JOB NO:	PA	2839.03.04	
			KIC	HN_CDIDDEN	PROJECT:	Pro	oject Millennium	
			INLU		LOCATION			
	÷				DI ATE.	$\frac{BY}{1 \text{ of } 2}$		
				22/04/98	FLAIE:	1 01 4	HULE NU: 98-0/0	
	, communication datas		2020620002742AMINISTRANS	TES	T HOLE LOG	2012adaran		
----------------------------	-----------------------	---------------	--------------------------	-------------------------	---	---------------------	---	--
VERTICAL SCALE: 1cm = 5.0m			cm = c	5.0m	DATE DRILLED: 25 FER 98 - 25 FFI	3 98		
SAMPLEDATA			TA		DRILL TYPE: Wet Rotary/Coring		ဟ	NOTES
НАММ	HAMMER WEIGHT kg		5	FLEV GROUND (m): 366 20		NOILS		
DROP I	HEIGHT		8 m	U UUU	$CO_{\text{OPDINATES}}(m)$: N 6 312 205 F 49	20 500	L L L L L L L L L L L L L L L L L L L	
Depth	Туре	Blows	Sample	ගි	DESCRIPTION OF MATER	DIAIC		
(m) -	~ 1	.15m	NO.		DESCRIPTION OF MATER	<u>dals</u>		
Depth (m)	Туре	Blows .15m	Sample No.		113.00 Bedrock contact inferred from geopf log and subject to change 121.00 End of Hole at 121.0m	IALS		Well Seal (109.0 to 111.5m) - bentonite Filter Pack (111.5 to 114.5m) - pea gravel Pneumatic Piezometer Tip at 114.0m - Serial No. 98074 (3B-BA) Well Seal (114.5 to 117.0m) - bentonite Pneumatic Piezometer Tip at 117.5m - Serial No. 98096 (3A-L) Filter Pack (117.0 to 118.0m) - pea gravel Backfill (118.0 to 121.0m) - slough Water Level Measurement: on 26 Feb 1998: 3B-BA (upper): 507kPa (62.3m bgs) 3A-L (lower): 537kPa (62.9m bgs)
						JOB NO: PROJECT:	PA Pro	2839.03.04 ject Millennium
				U LI ZI	22/04/98	LOCATIO LOGGED	N: LZ: BY: 2 of 2	M.T. CHECKED BY: HOLE NO: 98-076

њ. .

APPENDIX II RISING HEAD TESTS

$K = r^2 \ln (L/R)$	r =	0.0254 m
2LTo	L =	1.524 m
where: r = radius of the riser pipe	R =	0.0762 m
L = Monitoring interval length	To =	2200 sec
R = Monitoring interval radius	K =	2.9E-07 m/s
To = Basic time lag		
K = hydraulic conductivity		

PA2839 98103B.XLS

Project Millennium Baseline Hydrogeology

$K = r^2 \ln (L/R)$	r =	0.0254 m
2LTo	L =	1. 524 m
where: r = radius of the riser pipe	R =	0.0762 m
L = Monitoring interval length	To =	7 sec
R = Monitoring interval radius	K =	9.1E-05 m/s
To = Basic time lag		
K = hydraulic conductivity		

PA2839 9880HEAD.XLS

Project Millennium Baseline Hydrogeology

$K = r^2 \ln (L/R)$		r =	0.0254	m
2LTo		L =	1.524	m
where: r = radius of the riser pipe	l	R =	0.0762	m
L = Monitoring interval length	Т	0 =	80400	sec
R = Monitoring interval radius	1	K =	7.9E-09	m/s
To = Basic time lag				
K = hydraulic conductivity				

PA2839 98083A.XLS 0

1

$K = r^2 \ln (L/R)$	r =	0.0254 m
2LTo	L =	1.524 m
where: r = radius of the riser pipe	R =	0.0762 m
L = Monitoring interval length	To =	1040 sec
R = Monitoring interval radius	K =	6.1E-07 m/s
To = Basic time lag		

K = hydraulic conductivity

PA2839 98117A.XLS

Project Millennium Baseline Hydrogeology

$K = r^2 \ln (L/R)$	r =	0.0254 m
2LTo	L =	1.524 m
where: r = radius of the riser pipe	R =	0.0762 m
L = Monitoring interval length	To =	220 sec
R = Monitoring interval radius	K =	2.9E-06 m/s
To = Basic time lag		
K = hydraulic conductivity		

PA2839 98074A.XLS

$K= r^2 \ln \left(\mathrm{L/R} \right)$	r =	0.0254 m
2LTo	L =	1.524 m
where: r = radius of the riser pipe	R =	0.0762 m
L = Monitoring interval length	To =	660 sec
R = Monitoring interval radius	K =	9.6E-07 m/s
To = Basic time lag		
K = hydraulic conductivity		

PA2839 98115A.XLS

FIGURES

,

2839w182.dwg

LEGEN 0	REGIONAL S 10 20 30	TUDY AREA 40 50	km		
REFEF SCANNEI PROTEC 1997, C	RENCE DIMAGE OF ALBERTA ION PROVINCIAL BAS RIGINAL SCALE 1:1,0	ENVIRONMENTA E MAP 00,000	ıl.	_	
	R	¢	Project N	Alliennium rine tie 21st Centery	
	REGIONAL S	TUDY ARE	A		
APRIL 1998	FIGUR	E 2	DRAWN BY:	C.L.F.	

SUNCO	R	¢	Project Millennium Tailing Bursor Into the 21st Centur
SITI	e map and lo	CAL STUDY	(AREA
APRIL 1998	FIGUR	RE 3	DRAWN BY: K.C.B. / C.S

NUCCO I I RIBUS I I MORBU	LEASE	BOUND	ARY	
talikili ilikent tisensi	LOCAL	STUDY	AREA	
	MINE I	DEVELOF	MENT	AREA

MAP PROJECTION: UTM 12

2000n

LEGEND:

	LEASE BOUNDARY
and 1999 and 1999 and	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
	POPEHOLE LOCATIONS

DATA DISTRIBUTION FOR MAPPING

APRIL 1998	FIGURE 4	DRAWN BY: K.C.B. / C.S

NUMBER NOT STRENGTS FOR TT LOCK	LEASE BOUNDARY
NOR LINE HAR SHIE WAR OUT	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	GROUND TOPOGRAPHY
(our of the second of the seco	DRAINAGE BOUNDARY

APRIL	1998
-------	------

	R	Ç	Project Millennium Triding Remor Into the 21st Cashing
SURFICIAL GEOLOG	y map (After	R MCPHERS	ION AND KATHOL 1977)
APRIL 1998	FIGUR	RE 7	DRAWN BY: K.C.B. / C.S.F.

	DISCONTINUOUS MUSICO
	MELTWATER CHANNEL SEDIMENT, a) OVERLAIN BY DISCONTINUOUS MUSKEG
	MIXED GLACIOLACUSTRINE DEPOSITS, a) OVERLAIN BY DISCONTINUOUS MUSKEG
	ALLUVIAL SILT AND CLAY, OVERLAIN BY ALLUVIAL SAND AND GRAVEL
	ALLUVIAL SAND
	MUSKEG
	ERODED SLOPE, STREAM GULLEY
00000	KAMES AND KAME MORAINE

LOW RELIEF TILL, a) OVERLAIN BY DISCONTINUOUS MUSKEG

OUTWASH SAND, a) OVERLAIN BY DISCONTINUOUS MUSKEG

LEGEND:

2839w100.dwg

~	1 4 7 10 1000	FEE LOT	LEASE 2	5 0 E 490,000	
-	SHIDIARO 10 N6,310,004	FEE LOT #3			
		LEASI		The state	12
	N6,300,000				
	LEGEN	D:	PLAN 1:250,000		
	G	ROUND SUF	RFACE		
	S	AND AND G	RAVEL		
	T(T(T(B, B, T(B, B, T(B, B, T(B, B, T(B, T(DP OF TILL DP OF CLEA DP OF McM DP OF BASA ASE OF BASA ASAL AQUIF DP OF UPP YDRAULIC H PPROXIMATE OW DIRECT	ARWATER URRAY AL AQUIF SAL AQUI ER ER DEVO IEAD GROUNI	ER FER MIAN DWATER	
	NOTE:				
	1. STF AVA GEO	ATIGRAPHY ALABLE INFO DLOGY MAY	IS INTER DRMATION VARY FR	RPRETED FROM 1, ACTUAL ROM THAT SHOWN.	
5 20 250 500 2500	10m 2. THE 40m OFf 5000m UP 5000m UP	E COMPLETI SET FROM WITH THE	ON ZONE THE SEC SECTIONS	ES OF PIEZOMETER CTION MAY NOT LI S STRATIGRAPHY.	RS NE
E		R	¢	Project Millenniur Telding Bursor Into the 21st Cent	n שיי
		SECT	ION B		
AF	PRIL 1998	FIGUR	E 11	DRAWN BY: K.C.B. / C.S	S.F.

2839w103.dwg

- ----- GROUND SURFACE
- ----- TOP OF SAND AND GRAVEL
- SAND AND GRAVEL
- ----- TOP OF TILL
- ----- TOP OF CLEARWATER
- ----- TOP OF McMURRAY
- ----- TOP OF BASAL AQUIFER
- BASE OF BASAL AQUIFER
- BASAL AQUIFER
- ----- TOP OF UPPER DEVONIAN
- Y HYDRAULIC HEAD

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE COMPLETION ZONES OF PIEZOMETERS OFFSET FROM THE SECTION MAY NOT LINE UP WITH THE SECTIONS STRATIGRAPHY.

7.5 20 500 1000 2500	40m 1000m 2000m 5000m	NE U	94	WILH	IH	- SEUN	UNS STRATIGRAPHT.
		:01	R)		¢	Project Millennium Tiddag duncor into the 21st Century
				SE	спо	N D	
/	APRIL 1998			FIGL	JRE	13	DRAWN BY: K.C.B. / C.S.F.

- ----- GROUND SURFACE
- ----- TOP OF SAND AND GRAVEL
- SAND AND GRAVEL
- TOP OF TILL
- ----- TOP OF CLEARWATER
- ----- TOP OF McMURRAY
- ----- TOP OF BASAL AQUIFER
- BASE OF BASAL AQUIFER
- BASAL AQUIFER
- ----- TOP OF UPPER DEVONIAN
- Y HYDRAULIC HEAD
- APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTE:

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE COMPLETION ZONES OF PIEZOMETERS OFFSET FROM THE SECTION MAY NOT LINE UP WITH THE SECTIONS STRATIGRAPHY.

2839w104.dwg

SECTION HOR 1:50,000 VERT 1:2,000

LEGEND:

- ----- GROUND SURFACE
- ----- TOP OF SAND AND GRAVEL
- SAND AND GRAVEL
- ----- TOP OF TILL
- ----- TOP OF CLEARWATER
- ----- TOP OF McMURRAY
- ----- TOP OF BASAL AQUIFER
- BASE OF BASAL AQUIFER
- BASAL AQUIFER
- ----- TOP OF UPPER DEVONIAN
- Y HYDRAULIC HEAD
- APPROXIMATE GROUNDWATER FLOW DIRECTION

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- THE COMPLETION ZONES OF PIEZOMETERS OFFSET FROM THE SECTION MAY NOT LINE UP WITH THE SECTIONS STRATIGRAPHY.

SUNCOR		¢	Project Millennium Taking Sunsor into the 21st Canlury	
SECTION F				
APRIL 1998	FIGUR	E 15	DRAWN BY: K.C.B. / C.S.F.	

DATUM: NAD 83

LEGEND:

unders & a close & a stand a a lander & a scored	LEASE BOUNDARY
105 KIR KIR AKI AKI	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
— 352 —	TOP OF TILL (mAMSL)

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 5m

e man e e care è r some e i sante	LEASE BOUNDARY
	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
2	ISOPACH OF SAND AND GRAVEL (m)

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 2m

A

LEGEND:

5	UNCOR		Project Millennium
TRATIGI VAILABI 1AY VAF	RAPHY IS INTERPRETED LE INFORMATION, ACTU/ RY FROM THAT SHOWN.	FROM AL GEOLC	DGY
Γ <u>Ε:</u>			
	DEEP CONFINDED SAN GRAVEL LOCATIONS ES	ID AND SOPACH ((m)
	MINE DEVELOPMENT A	REA	
	LOCAL STUDY AREA		
aan a sook a a dhard	LEASE BOUNDARY		

LOCATIONS WHERE DEEP CONFINED SAND AND GRAVEL WAS OBSERVED

APRIL	1998
-------	------

ENERGY

MAP PROJECTION: UTM 12 DATUM: NAD 83

2000

1:100,000 0 1000

2839w044.dwg

LEGEND:

STARK 2 & BOOK 2 + AUNE C + SING 2 + NORTH.	LEASE BOUNDARY
isin asan kana kana kana isin	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
_ 20	DRIFT THICKNESS (m)

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 5m

legens i a state e a tarre i a parte a a datadi	LEASE BOUNDARY
101 202 1021 1028 1020 1028	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
350	TOP OF THE CLEARWATER FORMATION (mAMSL)
to some water boost source source	APPROXIMATE ZERO EDGE OF CLEARWATER FORMATION

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 5m

2839w112.dwg

1000

2000

LEGEND:

heating a di anana 2 a tabar y 4 minin wa 4 manar	LEASE BOUNDARY
	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
	APPROXIMATE CLEARWATER FORMATION OUTCROP AREA
Name and Solar state	APPROXIMATE ZERO EDGE OF

APPROXIMATE ZERU EDG CLEARWATER FORMATION

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE GREEN STIPPLE REPRESENTS THE AREA WHERE THE TOP OF THE FORMATION WAS INTERPOLATED ABOVE GROUND. THE MAP THEREFORE DEPICTS THE LENGTH OF INCISED VALLEY ALONG WHICH OUTCROP IS MOST LIKELY TO OCCUR.

2000

LEGEND:

	FORMATION (mAMSL)
_ 302	TOP OF THE McMURRAY
	MINE DEVELOPMENT AREA
	LOCAL STUDY AREA
NUMBER FOR CONTRACT OF A STREET FOR A STREET	LEASE BOUNDARY

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 5m

NOTER & CHANGE + C 4214 \$ 1 YOUR + C FUEDE	LEASE BOUNDARY
	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
	APPROXIMATE MCMURRAY FORMATION OUTCROP AREA

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE GREEN STIPPLE REPRESENTS THE AREA WHERE THE TOP OF THE FORMATION WAS INTERPOLATED ABOVE GROUND. THE MAP THEREFORE DEPICTS THE LENGTH OF INCISED VALLEY ALONG WHICH OUTCROP IS MOST LIKELY TO OCCUR.

SUBJECT E VILLES E JUNE S E SUPE Y 2 UNDE	LEASE BOUNDARY
120 1000 1000 1005 100	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
_ 302	TOP OF THE McMURRAY FORMATION (m)

NOTE:

1.	STRA	TIGRA	PHY IS	INTER	RPRETED	FROM
	AVAIL	ABLE	INFOR	MATION	N, ACTUA	L GEOLOGY
	MAY	VARY	FROM	THAT	SHOWN.	

2. CONTOUR INTERVAL - 5m

MAP PROJECTION: UTM 12 DATUM: NAD 83

LEGEND:

state a sister a mark a sind sisteria	LEASE BOUNDARY
TANK SAMA ANDE EMAN HANK MAN	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
_ 302	TOP OF THE BASAL AQUIFER FORMATION (mAMSL)

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. CONTOUR INTERVAL 5m

COME E E SHE E FANE E E SHE E E KOME	LEASE BOUNDARY
	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
	APPROXIMATE BASAL AQUIFER OUTCROP AREA

NOTE:

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE GREEN STIPPLE REPRESENTS THE AREA WHERE THE TOP OF THE FORMATION WAS INTERPOLATED ABOVE GROUND. THE MAP THEREFORE DEPICTS THE LENGTH OF INCISED VALLEY ALONG WHICH OUTCROP IS MOST LIKELY TO OCCUR.

2 680 4 3 Mills 17 AVX 4 1 6092	LEASE BOUNDARY
	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
302	TOP OF THE DEVONIAN (mAMSL)

NOTE:

1.	STRA	TIGRAI	PHY IS	INTER	RPRETED	FROM
	AVAIL	ABLE	INFOR	MATION	N, ACTUA	L GEOLOGY
	MAY	VARY	FROM	THAT	SHOWN.	

2. CONTOUR INTERVAL - 5m

STRUCTURE CONTOUR MAP OF THE TOP OF THE DEVONIAN

APRIL 1998	FIGURE 28	K.C.B. / C.S.F

NAME & COMPANY AND A COMPANY AND	LEASE BOUNDARY
101 202 220 1000 2000 105	LOCAL STUDY AREA
	MINE DEVELOPMENT AREA
	APPROXIMATE DEVONIAN OUTCROP AREA

NOTE:

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. THE GREEN STIPPLE REPRESENTS THE AREA WHERE THE TOP OF THE FORMATION WAS INTERPOLATED ABOVE GROUND. THE MAP THEREFORE DEPICTS THE LENGTH OF INCISED VALLEY ALONG WHICH OUTCROP IS MOST LIKELY TO OCCUR.

Sender FF time of Fach C C band FK linking	LEASE BOUNDARY
tals take usus take take	LOCAL STUDY AREA
THE REPORT OF THE PARTY OF THE	MINE DEVELOPMENT AREA
•	STANDPIPE PIEZOMETERS AND WATER LEVELS
	APPROXIMATE GROUNDWATER FLOW DIRECTION

NOTE:

- 1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.
- 2. WATER LEVELS FOR THE P98 SERIES OF WELLS WERE MEASURED DURING FEBRUARY 1998.
- 3. WATER LEVELS FOR THE P95 SERIES OF WELLS WERE MEASURED DURING MARCH 1995.

2839w127.dwg

MAP PROJECTION: UTM 12 DATUM: NAD 83

LEGEND:

replane & a state of a	LEASE BOUNDARY
199 1990 1991 1995 199	LOCAL STUDY AREA
NUMBER OF THE OWNER OWNER OWNER O	MINE DEVELOPMENT AREA
\Rightarrow	PNEUMATIC PIEZOMETERS
-and the second second	APPROXIMATE GROUNDWATER FLOW DIRECTION
adara sacara sidenia	PIEZOMETRIC SURFACE CONTOUR (MARCH 1995 DATA)

NOTE:

1. STRATIGRAPHY IS INTERPRETED FROM AVAILABLE INFORMATION, ACTUAL GEOLOGY MAY VARY FROM THAT SHOWN.

Monitoring Well Samples - Spring 1997

		Monitor		Total Dissolved	Groundwater
Plot Number	Monitoring Point	Interval (ft)	Material Type	Solids (mg/L)	Piper Group
1	L25-P96-0B-1	8 - 18	Overburden Sand	137	1
2	L97-P95-08-2	9.8 - 17	Overburden Sand	523	4
3	L97-P95-0B-3	6.9 - 17.4	Overburden Sand	19	1-3
4	L97-P95-0B-4	7.9 - 18	Overburden Sand	25	1-3
5	L97-P95-0B-5	5.9 - 12.5	Overburden Sand	638	4
6	FL1-BRDG-4	4.9 - 17	Limestone	193	3
7	FL1-P96-2-BA	180.4 - 190	Sand	5422	2
8	FL3-P95-6-BA	269 - 300	Sand	27370	2
9	L97-P95-1-BA	305 - 315	Sand	13440	2
10	L97-P95-3-BA	283 - 293	Sand	8274	2
11	L97-P95-8-BA	253 - 273	Sand	3154	4
12	FL1-P96-1-L	26 - 35.8	Limestone	869	1-3
1.3	197-P95-2-I	216 - 226	Limestone	5174	2-4

IC		
CV		

PERCENTAGE

Groundwater Piper Groups Group 1: Fresh water Group 2: Saline water Group 3: Sulphate water Group 4: Alkaline water

2839w171.dwg

Monitoring Well Samples - Fall 1997

		Total Dissolved	Groundwater	
	Material Type	Solids (mg/L)	Piper Group	
	Overburden Sand	150	1	
	Overburden Sand	523	4	
	Overburden Sand	17	1-3	
	Overburden Sand		Not Sampled	
	Overburden Sand	613	4	
	Limestone	171	1-3	
	Sand	12710	2	
	Sand	8416	2	
	Sand	3216	2	
)	Sand	5445	2	
	Sand	29480	4	
	Limestone	689	1	
	Limestone	5201	2-4	
	 A sub-standard second se	•		

SCATTER DIAGRAM OF 5D AND 50°, IN SURFACE WATER AND GROUNDWATER IN THE STUDY AREA