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Abstract 

The increasing needs for safety and productivity improvement in the field of 

construction engineering and project management have stimulated research 

interests in developing cost-effective resource tracking and positioning solutions 

for challenging indoor or partially covered site environments. This thesis has 

proposed a robust positioning architecture called IntelliSensorNet that relies on an 

integrated environment of Wireless Sensor Networks and Artificial Neural 

Networks for construction resource localization. The wireless sensor network 

(WSN) based component of the architecture determines the location of mobile 

sensor nodes (“tags”) by evaluating radio signal strengths (RSS) received by 

stationary sensor nodes (“pegs”). Only a limited quantity of reference points with 

known locations and pre-calibrated RSS in relation to the pegs are used to 

determine the most likely coordinates of a tag.  Moreover, to effectively reduce 

uncertainty and improve accuracy, an on-line error correction approach based on a 

Radial Basis Function Neural Network (RBF NN) model is embedded in the 

proposed architecture. In short, this localization technique produces a cost-

effective solution to positioning and tracking critical construction resources such 

as laborers and equipment for challenging indoor environments or partially 

covered site environments in construction, thus lending itself well to potential 

deployment in real-world construction sites. 
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CHAPTER 1: INTRODUCTION 

1.1 Resource Tracking in Construction 

Construction projects, by their nature, have dynamic environments with constant 

movement of resources including laborers, materials, and equipment. Locating 

and tracking these resources is critical in construction applications for achieving 

productivity and safety on site (Goodrum et al., 2011).  For instance, in 

construction sites significant time is spent on searching for required materials 

within the lay down yard. An example of material handling is the delivery of the 

steel components from the fabrication shop to a temporary lay down yard during 

structural steel erection process. In the assembly process of steel components, the 

components are stored in the lay down area. This provides a temporal buffer to 

ensure parts availability when needed. However, recent studies have revealed that 

the current process of material handling on industrial job sites is inefficient 

(Navon and Sacks, 2006). Moreover, production control procedures in the 

construction industry are still labor intensive, often manual, and error prone. 

It is generally accepted that resource management practices have been gradually 

improved in recent years. In order to improve resource management, many 

research studies focus primarily on the improvement of material management in 

order to increase labor productivity and construction performance. The main 

purposes of material management in construction sites includes receiving, 

warehousing, tracking, locating, finding, and distributing the right materials in the 
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right quantity to the right locations at the right time. However, material 

management on construction projects still entails tedious manual processes and, in 

reality, remains a challenge.  

A large number of construction resources, including equipment, tools and 

workforces, are involved in the process of design, fabrication, delivery, storage, 

installation and inspection. The functions of resource management should be 

efficiently performed in order to prevent material shortage, surplus, cash flow 

problems and labor delay. For example, if materials are purchased and delivered 

early, capital may be tied up and interest charges may be incurred on the 

excessive inventory of materials. Moreover, special care should be taken in order 

to prevent material deterioration or theft during storage. 

The current practice of tracking resources in construction is still largely dependent 

on manual systems, which often results in errors and delays jeopardizing entire 

projects. Therefore, inefficiency of the manual operations in reporting, recording 

and transferring field data in current tracking systems, which in turn adds to field 

overhead costs, is still an important management function especially on large 

construction projects. The performance of materials management can be further 

improved if information about materials can be collected in time, with ease and 

accuracy. This calls for development of more effective resource positioning and 

tracking solutions based on emerging automated technologies. 

Furthermore, in terms of safety, knowing the locations of workers within a tunnel 

being built or a hazardous structure (burning or partially collapsed) is very 
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critical. According to the U.S. Bureau of Labor Statistics’ (BLS) Census of Fatal 

Occupational Injuries, construction has historically been the most hazardous 

industry in the United States in terms of the number of fatalities. Therefore, 

considerable time and economic resources are lost when workers are injured or 

even killed by equipment or loads during work tasks (Teizer et al., 2007a; Teizer 

and Allread, 2010; Hinze and Teizer, 2011). 

However, current safety practices are not sufficient to prevent worker injuries and 

fatalities on a daily basis when they are in too close proximity to heavy equipment 

or loads of materials. Recent developments in remote sensing and automated data 

acquisition technology have the potential to improve upon existing productivity 

and safety management strategies (Song et al., 2006a; Song et al., 2006b; Song et 

al., 2007; Akini and Anumba, 2008; Grau et al., 2009a; Grau and Caldas, 2009b). 

For instance, a safety warning system with mobile tracking devices attached to 

construction workers can trigger a warning when the workers are in hazardous 

areas or working in an unsafe manner (Kim et al. 2007). 

In general, timely information about construction resources can assist in fast and 

effective real-time decision making. Emerging localization and tracking 

technologies have spurred research efforts leading to automated resource tracking 

and data acquisition for control and improvement of construction processes (Jang 

and Skibniewski, 2009). Due to the need for reliable solutions for real-time asset 

localization and resource tracking in the dynamic environment of construction 

sites, many have attempted to develop a reliable framework for enabling the 
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application of these technologies (Goodrum et al., 2006; Song et al., 2006a; Ergen 

et al., 2007; Teizer et al., 2007; Behzadan et al., 2008; Chin and Yoon, 2008; 

Khoury and Kamat, 2009; Torrent and Caldas, 2009).  

In recent years, the need for indoor localization has also been rapidly increasing 

on construction sites (Khoury and Kamat, 2009), presenting opportunities for 

research in this area. Construction tasks, such as inspection and progress 

monitoring, should have access to project information, especially in indoor or 

partially covered environments, like tunnels and buildings that are under 

construction. The Global Positioning System (GPS) is an attractive option for 

outdoor environments, but is not suitable for indoor applications because its 

positioning mechanism requires that any location to be fixed should have line-of-

sight with at least three satellites. While outdoor localization techniques have 

been developed and deployed, indoor resource positioning solutions remain a 

research challenge. In addition, due to the complexity of indoor environments, the 

development of an indoor localization technique is always impeded by a set of 

hurdles such as dense multipath effect, lack of line-of-sight, noise interference 

and building material dependent propagation effects (Zhang et al., 2010). 

1.2 Research Objectives and Scope 

The objective of this study is to propose a new positioning framework called 

IntelliSensorNet on the basis of relating the distances between sensor nodes in a 

wireless sensor networks with the strengths of received radio frequency signals, 

so as to facilitate the localization of construction resources in both indoor and 
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outdoor environments. This study attempted to create a framework for integrating 

advances in Wireless Sensor Networks (WSN) and Artificial Neural Networks 

(ANN) in an attempt to automate tracking and monitoring construction resources. 

Advancements in low power microelectronic devices and sensor network 

technologies provide the capability to automate tracking and monitoring resources 

in the construction industry. However, there has been a lack of interdisciplinary 

research activities among different areas of expertise such as Computing science, 

Electrical engineering and Construction management, resulting in less efficient or 

effective use of emerging technologies for increasing the cost-effectiveness of 

resource tracking in construction.  

Therefore, in order to bridge the gap between the emerging technologies and their 

implementations, an RSS-based indoor localization scheme recently developed in 

the computing science field by Haque et al.(2009a) has been utilized for 

customizing cost effective wireless sensor network-based solutions for resource 

positioning and tracking applications in construction sites. The simplicity and 

accuracy of this positioning approach has made it a good candidate to achieve the 

desired “meter level” localization error in indoor environments. In addition, 

consistent performances and low cost of the equipment have made the solution 

highly viable and very practical. However, this new indoor positioning 

architecture has not yet been convincingly substantiated by experiments in 

realistic site environments or under practical application scenarios, which consist 

of metallic facilities, walls and feature constant changes over the time. Hence, 
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indoor experiments in a car park simulating a reinforced-concrete building 

construction site were designed and conducted in order to evaluate and confirm 

the capability and limitation of the proposed RSS-based positioning architecture 

in construction. 

Indoor experiments have revealed that acceptable position estimation of one to 

two meter accuracy can be obtained with this flexible sensor network architecture. 

However, construction sites inevitably involve the movement of equipment, 

materials and laborers. The construction environment changes dynamically, which 

would mean that localization results might no longer be accurate in the 

continually modified environment. To address this problem, a systematic 

approach to perform error calibration by an efficient form of artificial neural 

networks and re-profiling by re-measuring the received signal of the tags on 

profiled points is proposed to create more accurate localization results. 

To confirm the viability and limitations of the proposed solution and to evaluate 

the effect of environment variations due to the presence of a metal object the size 

of a car, the prototyped WSN-based localization system was assessed in an 

underground parking lot. To simulate the dynamic setting of a construction site, 

controlled experiments were conducted by parking a car at various locations in the 

testing environment in order to evaluate the impact of the imposed metallic object 

on location estimation performance. The results demonstrated that a car-size 

metallic object can change the environment and generally increase the localization 

error. After conducting the re-profiling solution, it was observed that re-profiled 
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localization remains within the degree of accuracy attained prior to the 

introduction of the car. This is a promising finding since re-profiling does not add 

to the cost of the localization system. Considering the fact that the effort for re-

profiling an entire area is quite demanding, we also explored the idea of only 

determining a possible small subset of locations to be re-profiled so as to improve 

achievable localization accuracy. 

The feasibility of a WSN-based positioning system was also evaluated in an 

underground tunnel construction site in an attempt to locate the workers inside the 

tunnel for safety management. The results indicated that the system could lock 

onto the position of the workers with one to two meters accuracy. The tunnel site 

provides a “linear” test bed due to the unique design of the tunnel. Thus, to further 

improve the feasibility of our system in a “non-linear” indoor environment, we 

designed experiments to test the system in a car park setting, with particular 

emphasis on evaluation of the localization error calibration approach based on 

artificial neural networks. 

To effectively reduce the uncertainty and the error of the location estimation 

system in real-time and to improve the location accuracy and data communication 

efficiency, a real-time error calibration approach was proposed based on a Radial 

Basis Function Neural Network (RBF NN) model. The difficulty in quantifying 

the impact of indoor wireless signal propagation on localization accuracy has 

made RBF NN an appropriate technique for quantifying such impact and reducing 

localization errors. The proposed framework was then prototyped and tested in 
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indoor scenarios in order to examine its positioning performance, its precision and 

its robustness in a dynamic construction environment. This study showed that 

RBF could decrease the localization error from 1.11 m to 0.57 m on average. This 

localization technique was found to produce consistent positioning accuracies 

based on lab testing scenarios simulating realistic construction sites, thus paving 

the way for potential deployment in real-world construction sites. 

Finally, by designing experiments we investigated the smallest number of 

reference points and pegs that are sufficient for an acceptable positioning 

accuracy. This would help reduce the time and labour requirements for re-

profiling the WSN-based positioning system and control the application cost of 

the localization system particularly in covering a large scale construction site. 

Figure 1-1 shows the flowchart of the positioning framework. 

 

 

 

 

 

Figure 1-1: Flowchart of the positioning framework 
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The proposed system architecture and results of the experiments are then 

presented. This framework is expected to deliver cost effective automation 

solutions for resources positioning and tracking on construction sites with 

acceptable accuracy and reliability in a wide range of construction applications. 

Future work on how to further improve accuracy and robustness is discussed in 

the conclusion. 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows: 

Chapter 2 first provides a background to localization technologies employed in 

construction industries and presents a literature review on resource localization. 

Chapter 3 describes the architecture of the proposed positioning system of 

IntelliSensorNet. The IntelliSensorNet is prototyped as a tool for resource 

localization on construction projects. The development of the IntelliSensorNet is 

also elaborated. Next, in chapter 4, practical applications of the proposed system 

are illustrated through a lab testing example in an attempt to locate a tracked 

object in an underground parking lot.. Chapter 5 explains the impact of sensor 

node placement and profile point selection on indoor localization accuracy. 

Finally, chapter 6 provides conclusions and summarizes the contributions of this 

thesis; limitations and ideas for future research are also addressed in this final 

chapter.   
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CHAPTER 2: LITERATURE REVIEW ON POSITIONING 

TECHNOLOGIES AND APPLICATIONS IN CONSTRUCTION 

2.1 Introduction 

This chapter reviews the literature on the previous related research to provide a 

background and to justify the need for developing a positioning technique by 

integrating Wireless Sensor Networks and Artificial Neural Networks for critical 

construction resource tracking. A brief background in these areas is provided in 

Section 2.2.  

2.2 Resource Tracking Systems in Construction Industry 

Over the past decades, construction industries have expressed an increasing 

interest in location-aware systems and services (Kim et al., 2010; Cho et al., 

2010). Field data collection and communication techniques have become more 

efficient in construction with the help of advanced computer and localization 

methods. The information enables construction managers to be aware of the 

current states of construction resources. At present, Radio Frequency 

Identification (RFID) systems and the Global Positioning System (GPS) are the 

predominant technologies for automated tracking and monitoring of construction 

resources and assets (Jaselskis and El-Misalami 2003; Goodrum et al., 2006; Song 

et al., 2006a; Ergen et al., 2007; Lu et al., 2007; Wang et al. 2008; Behzadan et 

al., 2008; Chin et al., 2008; Khoury and Kamat 2009), outperforming previous 

technologies (such as barcode) in resource positioning, tracking and automated 
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data collection in construction. However, limitations of current positioning 

methods have been identified; these limitations impede their wide application in 

the construction field. The application of radio frequency technologies, such as 

Radio Frequency Identification (RFID) and Ultra-Wide Band (UWB), has, to 

date, been proposed for dynamic indoor resource tracking. However, they have 

not yet been proven viable as cost-effective tracking frameworks for large-scale 

dynamic construction projects.  RFID does not meet application requirements in 

harsh construction conditions due to inaccurate positioning (Pradhan et al. 2009) 

inflexible and limited networking capabilities, and the high cost of RFID readers 

(Skibniewski and Jang 2009). Moreover, the communication distance between 

RFID tags and readers decreases significantly with the existence of metals, 

concrete and moisture in their vicinity, reducing the performance of the 

technology (Ergen et al., 2007). Current stand-alone GPS can lock positions in 

open areas with accuracy of around 10 m.  Real-Time Kinematic GPS (RTK GPS) 

can further improve positioning accuracy to centimeters (and even a few 

millimeters), by applying special algorithms to process the measurements of 

satellite signal carrier phases from both base and rover receivers. Nonetheless, the 

performance of a GPS-based localization system can be substantially 

compromised on the dynamic construction site due to blockage and the multipath 

effect, which is caused by deflection and distortion of satellite signals in highly 

dense areas or by temporary structures or facilities such as hoarding, scaffold and 

formwork (Lu et al. 2007). 
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Ekahau is another technology that has been developed based on the Wi-Fi 

technology for tracking and positioning applications. Although Ekahau is reported 

to result in position accuracy up to 1 m (Shen et al., 2008), it needs an already 

installed Wi-Fi network infrastructure, which may not be available on many 

construction sites. In addition, many studies have attributed the low accuracy of 

Wi-Fi localization to the multipath errors in complex environments (Ekahau Inc., 

2010). Similar to Wi-Fi, Bluetooth can also provide positioning accuracy of a few 

meters and is vulnerable to multipath interferences. For instance, field tests in 

complicated site conditions found that the communication range of Bluetooth can 

be reduced from a nominal range of 100 m to an actual range of 20 m (Lu et al., 

2007). Besides, the UltraWideBand (UWB) technologies confer the advantages of 

high immunity to interference and multipath, thus leading to higher accuracy in 

localizing objects. Khoury and Kamat (2009) performed some indoor experiments 

as a part of robot performance evaluation using a UWB-based positioning system. 

The results indicated that the tracking system could obtain an accuracy of 10 to 50 

cm. On the other hand, the UWB technology is still expensive and requires a 

dense and expensive network of fixed receivers. UWB can be difficult to deploy 

in a crowded construction environment and its performance may suffer from 

harsh weather conditions such as high humidity (Torrent et al., 2009).  

In order to overcome the limitations of traditional monitoring systems, the interest 

of utilizing Wireless Sensor Networks (WSN) in recent construction research has 

been growing. A WSN is a self-organizing network composed of a large number 

of sensor nodes which closely interact with the physical world. It features low-
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cost sensors and extensible networking capability, thus making it cost effective 

and straightforward to deploy a large quantity of sensor nodes so as to increase 

the network coverage, stability, and communication reliability. In addition, low 

power consumption facilitates operation and maintenance of the system (Shen et 

al., 2008). And the ad-hoc network architecture supports flexible implementation 

and adjustment of the network (Shen et al., 2008; Baronti et al., 2007). WSN can 

also provide context-aware and application-specific sensing data in a ubiquitous 

computing environment (Sugano et al., 2006; Kim et al., 2010; Shin et al., 2011).  

Jang et al (2008) demonstrated the steps as needed to make use of advanced 

ZigBee based wireless sensor network technology to monitor situations inside and 

around buildings. Based on this preliminary study, a new tracking architecture 

was implemented using wireless sensor modules by combining radio frequency 

signals (RF) and Ultrasound (US), delivering an acceptable measurement 

accuracy (Jang and Skibniewski 2009; Skibniewski and Jang 2009; Shin and Jang 

2009). However, traditional ultrasound positioning has some disadvantages 

including line-of-sight requirement, multipath, high cost and power consumption; 

these factors all hinder potential applications in complicated construction 

environments (Purushothaman, and Abraham 2007; Shen et al., 2009; Wu et al., 

2010). According to the technological and economical constraints and 

management application requirements, various combinations of RFID and 

Zigbee-based sensor networks have also been applied for materials tracking and 

supply chain management (Cho et al., 2010; Cho et al., 2011). RFID tags were 

attached to and used to identify various kinds of construction materials, and the 
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Zigbee communication technology was used to wirelessly transfer such 

information. These studies confirmed that WSN can improve wireless 

communication and network flexibility.  

Moreover, to address the limitations of RF (Radio Frequency) technologies, 

recent construction research has investigated the possibility of developing cost-

effective positioning solutions by measuring the received signal strength (Luo et 

al., 2010). In particular, with the advent of the low-cost WSN technology, RF-

based real-time positioning solutions can be easily designed and deployed (Haque 

et al., 2009a). 

In conclusion, based on the literature, there is a recognizable need for WSN-based 

location sensing in construction industry due to technical and economical 

drawbacks of aforementioned approaches. The practical goal of this research is to 

find a cost-effective and fully automated solution that satisfies the practical 

requirements of a reliable and stable system for tracking and monitoring of 

construction resources. 
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CHAPTER 3: ARCHITECTURE AND SYSTEM DESIGN OF 

“INTELLISENSORNET”  

3.1 Introduction 

This chapter introduces the positioning framework called IntelliSensorNet as a 

tool for resource localization in construction projects. IntelliSensorNet consists of 

a Wireless Sensor Network (WSN) based localization architecture and a Radial 

Basis Function Neural Network (RBF NN) based error calibration algorithm. In 

section 3.2 the WSN based localization technique is introduced. The system 

architecture of the WSN-based positioning technique is discussed in section 3.3. 

Section 3.4 provides a state of the art review regarding techniques that have been 

used to date to improve the accuracy of location-aware systems based on 

Received Signal Strength (RSS). This review justifies the application of RBF NN 

for reducing localization errors. The error correction algorithm using RBF NN 

modeling is also provided in this section. The system architecture is further 

clarified with a sample experiment in Section 3.5. 

3.2 Wireless Sensor Network Localization Techniques 

The localization research attempts to solve the problem of determining the 

location of a sensor node within its environment. The approach chosen to solve 

the localization problem depends on the assumptions about capabilities of 

particular networks and devices, including configurations of the hardware device, 

signal propagation models, timing and energy requirements, the network 
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structure, the nature of the environment (indoor vs. outdoor), node or beacon 

density, time synchronization of devices, communication costs, error 

requirements, and device mobility. Localization algorithms can generally be 

divided into three categories: range-based, range-free and RSS profiling.  

The range-based algorithms (Khalid and Gulliver 2010) estimate the distance 

between nodes using measurements such as time of arrival (ToA), time difference 

of arrival (TDOA), received signal strength (RSS), or angle of arrival (AoA). For 

GPS, triangulation analysis requires being in range of at least four known 

satellites in order to find the 3D coordinates of the receiver, entailing the removal 

of the clock bias of the receiver. GPS systems require energy-consuming 

electronics to precisely synchronize the receiver’s clock with the satellite’s clock. 

AOA, TOA, and TDOA methods (Shen et al., 2008) depend greatly on line-of-

sight communication and require expensive infrastructure. They are also 

negatively affected by the presence of different materials, equipment, and 

building structures at construction sites. The hardware limitations and the energy 

constraints along with the need to synchronize clocks presents a cost barrier to 

implementing the range-based approach necessary for realizing localization 

through WSN. On the other hand, RSS-based techniques require less complex and 

low cost RF hardware (Haque et al., 2009b). As such, RSS is considered to be 

more suitable for localization applications on construction sites. Past studies 

verified that the majority of positioning systems employed the RSS-based 

technique because of its broad accessibility in connection with wireless radio 

signal communication (Lymberopoulos, 2006). RSS-based localization has the 
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advantage of using the same hardware for providing both communication and 

localization functionalities, resulting in a simple design framework (Elnahrawy et 

al., 2004). However, it is commonly acknowledged that the correlation of RSS 

with distance can be poor and unpredictable due to the multi-path effect of radio 

waves, which is typically much more serious inside a building than in an open 

area. It is also indicated that practical performances of the Zigbee-based WSN 

using RSS and geometric trilateration decrease under realistic construction 

environments (Shen et al., 2011). However, as already mentioned, performances 

of the other two techniques tend to drastically deteriorate under multiple paths as 

well. Therefore, considering the complexity and cost of the required hardware, 

RSS-based schemes outperform the other two schemes in indoor environments. 

Finally, the solutions in the range-free localization are being identified as a more 

cost-effective alternative to the range-based approaches for large scale sensor 

networks (He et al., 2003). The range-free algorithms depend on proximity 

sensing or connectivity information to estimate the node locations. The principle 

of these algorithms is a sensor being in the transmission range of another sensor, 

which defines a proximity constraint between both sensors. This constraint can be 

utilized for localization (Mao et al., 2007). With the range-free approach, the 

localization problem is easy to solve, but the estimated locations tend to be 

inaccurate. Additionally, utilizing a RSS profiling method will help to compensate 

for the effect of environment on the reliability of estimated locations, which is 

obtained from correlating distances with strengths of received RF signals (Haque 

et al., 2009a). 
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RSS profiling-based localization techniques first develop a map of the radio 

signal strength behavior in the coverage area. The map is constructed either 

offline by pre-collected measurements or online using sniffing devices (Krishnan 

et al., 2004) placed at known locations. Such techniques have been mainly used 

for location estimation in Wireless Local Area Network (WLAN), but are also 

applicable to Wireless Sensor Networks. In addition to a finite quantity of 

stationary sensor nodes (e.g., access points in WLANs) and mobile sensor nodes, 

a large quantity of sample points are distributed throughout the monitored area 

covered by the sensor network. At each sample point, a vector of signal strengths 

is obtained by reading all stationary nodes. Of course, many entries of the signal 

strength vectors may be zero or very small, indicating the stationary sensor nodes 

are fixed at longer distances (relative to the transmission range or sensing radius) 

from the sample point. The collection of all these vectors provides (by 

extrapolation in the vicinity of the sample points) a map of the whole region. The 

collection of RSS vectors at all the profiled points make up the RSS model, which 

is ad hoc with respect to the node locations and the states of the environment. The 

RSS model is stored in a database maintained on a central server. By referencing 

the RSS model, the location of a mobile node can be estimated by comparing the 

RSS measurements at all the fixed nodes against those on the profiled points of 

the RSS model. 
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3.3 Architecture of the Positioning System  

The localization architecture of IntelliSensorNet implements an RF-based 

localization scheme (Haque et al., 2009a) similar to the RSS-profiling 

methodology, which operates based on sensing the strengths of the received RF 

signals. This architecture is a combination of a range-free method and RSS 

profiling. It is simpler and more accurate than other approaches and the 

uniformity and low cost of devices makes it a highly viable and very practical 

solution for construction. The infrastructure nodes of the proposed localization 

architecture are low-cost, low-power wireless devices [EMSPCC11 by Olsonet 

Communications (2011)]. The node makes use of the CC1100 RF module from 

Texas Instruments operating within the 916MHz band. The RF module of 

EMSPCC11 proposes several settings (Haque et al., 2009a) of the packet bit rate, 

transmitted power level, and the channel number. The bit rate alternatives are 5 

kbps, 10 kbps, 38 kpbs, and 200 kbps. The transmission power can differ from -30 

dBm to 10 dBm, and there are 256 different channels with 200 kHz spacing. All 

combinations are possible and, in principle, sensible. From an operational point of 

view, the node is called a “peg” when it captures signal strength. The pegs’ 

locations are fixed (static nodes) and their precise location need not be known. A 

monitored device, which is a node of the same type as a peg, is called a tag. See 

Figure 3-1. 
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Figure 3-1: EMSPCC11 wireless nodes by Oslonet Communications Corporation 

The task of location estimation in this architecture consists of two phases: 

profiling and actual localization. Generally, during operation in both phases, a 

tracked tag periodically emits RF packets. In the profiling stage, tags are located 

at predetermined known locations called reference points. In this phase, all the 

pegs that can “hear” the RF packets emitted by the tags will forward a report 

consisting of its own ID, the Tag ID, the packet number and class to the central 

server. This system maintains a database of signal strength readings from tags on 

a central server. Collecting samples of the profiling phase may involve a person 

moving around the monitored area equipped with a clickable map and a number 

of tag nodes. The database consists of samples which are stored as Triplets 

>Ω< τ;;C  in which C  represents  the known coordinates of the sampled point, Ω  

stands for the association set (which comprises peg ID and the RSS value 

received by that Peg), and τ symbolizes the class of sample, identifying the RF 

parameters of the transmitter (such as transmission power, bit rate, and channel 

number).The process of actual localization of the tracked tag is similar to the 

profiling stage with the only difference being that, in the profiling stage, the 
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association set of tag profiling reports also includes the known coordinates of the 

sampled point; but in the actual localization stage, the location of the tracked tags 

needs to be estimated based on the location of profiled points.  

In the localization stage, the server compares the perception of the tracked tag's 

RSS measured by all the pegs in the monitored area and the RSS of each profiled 

reference point and evaluates the difference between the tag and all the profiling 

points. If ),...,{ 1 kww=Ω  and ),...,{ 1 kψψ=Ψ  are assumed to be two association’s 

sets, the distance between these sets will be: 

2

1

))()((),( jRjRD
N

j

ΨΩ

=

−=ΨΩ ∑                   

(1) 

where N is the total number of pegs in the network and )( jRΩ  is defined as jr  , 

which is the pair >< jj rp ,  occurs in Ω  , and 0 otherwise. Therefore, the server 

evaluates the distance of each pre-selected sample (its association set) from the 

tag’s association set, representing the combined momentary perception of the tag's 

RSS by all the pegs that can hear it. Then it selects an arbitrary K number of 

profiled samples with the smallest distance from the tracked tag, which is called a 

best matched set of profiled points. Subsequently, the coordinates of the selected 

samples are averaged to produce the estimated coordinates of the tag. The 

averaging formula biases the samples in such a way that the ones with a smaller 

distance contribute with a proportionally larger weight. If maxD  is the maximum 
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distance among the best k  selected samples and ∑
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where )( ii yx −  are the coordinates associated with sample i . Note that in this 

approach, RSS is only used as a numerical attribute of a profile sample whose 

value should be close to the perceived value.  

It is also noteworthy the current system design is concerned with positioning on a 

2-D domain. Positioning in a 3D building space can be converted into a system of 

2D domains by defining walls and ceilings. For instance, once pegs have been 

established and reference points profiled in different areas on different floors, the 

system should be able to decide on which side of a wall or in which floor (in a 

multistory building) a tracked tag is currently located. As such, a particular area 

on a particular floor can be identified with measured signal strengths of relevant 

pegs. 
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3.4 Applying Radial Basis Function Neural Networks to Reduce 

Localization Error 

Inside the building, radio signal propagation follows a complex model due to non-

line-of-sight multi-path effects caused by the building materials, human body 

absorption, neighboring devices, metallic materials and the dynamic nature of the 

environment. Due to these limitations, indoor location estimation becomes a 

complex problem and is difficult to engineer using classical mathematical 

methods. Therefore, RSSI alone does not provide sufficient accuracy for location 

systems due to high fluctuations of the received signal over measuring time 

(Lymberopoulos et al. 2006). 

To improve the accuracy of the location-aware systems based on RSS, several 

techniques have been employed, including Bayesian classification and filtering, 

K-Nearest Neighbors, GPS-like triangulation and Kalman Filtering. However, 

these approaches have not yet been proved for indoor localization applications 

(Ahmad et al., 2006) since indoor wireless signal propagation is so complex and 

indefinable that it is still hard to attain a steady accuracy level. Traditionally, 

many researchers have used Nearest Neighbors based pattern recognition 

technique and its derivatives. This technique requires a database of sample RSS 

readings at the estimation time for pattern matching. As the region and number of 

target locations grow, this size of the database dramatically increases and it 

becomes impractical to achieve sufficient scalability. On the other hand, GPS like 

triangulation methods present poor performance because of multi-path 
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propagation effects in covered environments. Probabilistic approaches such as 

Bayesian networks based solutions achieve better performance but they are 

computationally exhaustive and difficult to scale. As the area and quantity of 

target locations and wireless access points increase, the computational complexity 

of Bayesian structures increases (Ahmad et al., 2006). In general, noises must be 

detected, modeled, and filtered out to improve the accuracy of the developed 

system. The signal reception rate can be adjusted to cope with environmental 

variations. Such environmental changes can incur signal loss and reduction, 

exerting a negative effect on signal and noise distributions. So, it is necessary to 

model and remove noises from signals while minimizing signal losses. Kalman 

filtering is applicable to error correction on the next position in addressing 

“inertial navigation” problems which generally apply instrumentation for 

positioning (gyroscope or compass): time-dependent patterns in positioning errors 

on previous positions can be represented by a steady noise distribution. Shareef et 

al. (2008) conducted an RSS-based localization method using Kalman filtering 

and Neural Networks, observing better performances with RBF Neural Networks 

in terms of accuracy based on experimental results. Compared with Neural 

Networks, Kalman filter made fewer mistakes but produced larger magnitude of 

errors especially on the boundaries of the testing area.  

Ahmad et al. (2006) compared the results of previous research in indoor 

positioning techniques and found Neural Networks provides a better solution to 

the location determination problem. For instance, Note, in contrast with the 

Kalman filters, Neural Networks perform well only for the area in which they 
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have been trained. In other words, if the tracked object passes beyond the 

boundaries of the area where the Neural Network model has covered, the Neural 

Network will not be able to localize the tag with reliability. However, the 

proposed WSN based positioning method provides an “ad hoc” solution for a 

particular application purpose. The WSN coupled with RBF NN provides a cost 

effective infrastructure for real-time re-profiling and re-calibration of the 

positioning solution on a continuous, real-time basis without the need to model 

the noise distribution explicitly as required in Kalman filtering. For instance, to 

cope with the dynamic nature of the working environment, the WSN-RBF can be 

automatically recalibrated at a preset frequency (once per ten minutes or every 

half an hour). 

The Kalman filtering technique iteratively refines the position estimates of an 

object in a continuous motion path over time based on the noise parameters that 

follow a Gaussian distribution. The Kalman filter uses the laws of kinematics to 

predict the location of the tracked object, requiring several iterations before it 

begins to reach the accuracy of the Neural Network (Shareef et al., 2008). For 

Radio Frequencies based positioning (RSS), the position errors may not exhibit 

continuity over time and space as the collected RSS data are likely to contain 

many “outliers”. This can render the application of the Kalman filtering to be 

ineffective. The proposed RBF NN method for error correction is more tolerant of 

potentially substantial fluctuations in the RSS results (which can be classified as 

noises contained in the data) associated with two consecutive positions of a 

moving object. 
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The difficulty in quantifying the impact of indoor wireless signal propagation on 

localization accuracy has made Neural Network (NN) an excellent technique for 

quantifying this effect, to reduce the localization error. Radial Basis Function 

(RBF) NN is preferred over the classic back-propagation (BP) algorithm due to 

two factors: 1) RBF’s training time is short and deterministic; and 2) the RBF 

algorithm is free from local minimum trap and overtraining (Shareef et al., 2008). 

Localization performance in indoor environments can be improved by utilizing a 

premeasured map of estimated locations base on RSS measurements. In this case, 

a set of predefined locations is associated with vectors containing estimated 

locations values determined by the positioning system. These vectors, referred to 

as location fingerprints, are collected offline and stored in a database followed by 

the location coordinates. The unknown location can then be estimated online from 

the current estimated location fingerprint by finding the best match in the 

database. Matching is based on a distance measure between the current and 

collected fingerprints. 

Radial Basis Function Neural Network is proposed as a solution to the location 

determination problem. We adopt RBFNNs in a function approximation scheme 

to map estimated location of the mobile node by the WSN-based positioning 

fingerprints in the input space to locations in the physical space In the envisioned 

indoor localization system, data collected offline is used to train the RBFNN. 
Subsequently, when a mobile device enters a building, its WSN-based location is 

estimated in a server running a location-based application associated with 
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RBFNN, and its actual location will be determined by finding the best match in 

the trained NN database. 

3.4.1 Problem Formulation 

The theoretical framework is introduced for localization techniques based on 

location fingerprints, assuming WSN-based architecture and availability of WSN. 

Let � ⊂	ℝ�	be a 2-dimensional physical space indicating the area of interest. The 

predetermined set of locations ℛ ⊂ 	� can be defined as reference points, 

where	ℛ = �r
 ∈ �ǀr
 = x� , y��, � = 1,… ,ℛ�. At each location of 	r
 ∈ ℛ, a 

mobile tag is used to collect the WSN-based estimated location. Thus, a 2-

dimensional input space is formed represented by �. A reference fingerprint x ∈ S 

is a vector of WSN-based locations collected at locations	r
. The reference points 

can be placed over a uniform grid to cover the whole area with the preferred 

resolution. However, the grid is usually non uniform due to building walls, 

temporary facilities and other objects that limit the area where measurements can 

be performed. During localization the goal is to obtain an estimate represented as 

r�	, given a fingerprint x� that is measured at the unknown location. 

3.4.2 Error Correction Algorithm Using Radial Basis Function 

(RBF)  

The Radial Basis Function (RBF) Neural Networks consist of neurons which are 

locally tuned and attractive due to their fast training and simplicity (Fasshauer, 

2007). Figure 3-2 shows the basic RBF Neural Networks that consist of three 
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layers: an input layer, hidden layer and output layer. The RBF network with m-

dimensional real vector input and real output can be considered as a 

mappingFx�:ℝ� → ℝ. We examine a fully connected RBF network to 

approximate Ϝx�: X → � and use the normalized Gaussian function for neurons 

in a single hidden layer. 

 

 

Input X Radial Basis Functions Output F(X) 

Figure 3-2: Architecture of a radial basis function network. 

The network has two inputs and two outputs.  

 !� = "w
	φ∥ x − c

(


)*
∥� (4) 

where x	 ∈ ℝ� is the input vector of a sample record, N is the number of hidden 

neurons, w
 are the weights to the output layer, φ is the basis function and c
 is 

the center of the i-th basis function. ∥ x − c
 ∥ is the Euclidean distance between x 

and the c
 and w, is the bias weight with input  φ∥ x − c, ∥� = 0. The weights 
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w
 can be estimated using the matrix methods of linear least squares, because the 

approximating function is linear in the weights. The Gaussian function and thin-

plate-spline function are two popular choices. Usually the Gaussian radial basis 

function is used, i.e.  φ∥ x − c
 ∥� = exp	−β ∥ x − c
 ∥��. We can use RBF 

networks to approximate any continuous function by fitting the values of the 

function	 !
� = b
, i = 1,… , C at known points !
. 

In the proposed method, the network has two inputs and two outputs. The initial 

stage entails the deployment of the wireless sensor network in the actual working 

environment and the collection of a “calibration” data set containing both the 

actual position data and the estimated position data resulting from WSN-based 

positioning algorithm for the known points. Presented with the “calibration” set, 

RBF NN will be trained to decipher hidden relationships and complex patterns on 

the positioning errors of the wireless sensor network. Once trained, RBF NN will 

be used to recall the actual position of a mobile node when presented with a new 

positioning scenario. In order to achieve high accuracy, the RBF NN will be 

continuously updated by adding new training cases to the underlying calibration 

set. A major benefit of a Neural Network model is that prior knowledge of the 

noise distribution is not required. Noisy location measurements can be used 

directly to train the network with the actual coordinate locations. The resulting 

NN model is capable of characterizing the noise and compensating for it to obtain 

the accurate position. This differs from the Kalman filtering technique, which 

depends upon the knowledge of noise distribution to enhance localization 

accuracies (Shareef et al. 2008).  
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3.5 System Illustration 

The system architecture will be further clarified by the following illustrative case. 

Figure 3-3 shows a node distribution layout for an experiment carried out in an 

outdoor area at the University of Alberta.  

 

 

Figure 3-3: Experiment Layout 

The grid was 6×4 m in which all marks represent nodes. 4 solid circles (on the 

corners) were pegs, while 8 crosses provided profile samples. The diamonds acted 

as tags whose locations were to be determined by the positioning system.  

Table 3-1 is a simplified format of profiling data in the positioning database, 

which shows Received Signal Strengths of tags perceived by the pegs located on 

the profiling points in the profiling stage. It is noteworthy that the local 

coordinates of the profiling points were also recorded together with the signal 
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strengths. This information was saved in a database on a central server, which in 

this case was a laptop.  

Table 3-1: Received Signal Strengths perceived by pegs collected from profiling 

points 

Profiling 

Point ID 

Profiling  

Coordinate 
Peg ID 

X Y 1 2 3 4 

1 0 2 121.82 146.33 114.36 143.05 

2 2 2 107.19 135.00 123.93 129.61 

3 2 0 121.23 140.87 89.13 120.62 

4 2 4 96.51 126.66 118.88 135.09 

5 4 4 129.14 110.15 138.60 105.73 

6 4 2 121.41 107.20 134.36 116.57 

7 4 0 137.63 127.51 122.32 96.15 

8 6 2 140.79 118.58 139.90 109.95 

       
 

After the profiling stage, tags were located at the center of each square, for the 

sake of localization and error evaluation. In the localization stage, the same data 

was collected as during the profiling stage, except for the location of the tags that 

were yet to be determined. Table 3-2 shows the Received Signal Strength of the 

tracked tags received on the pegs.  

Table 3-2: Received Signal Strengths of different tags by pegs 

Tag 

ID 

 Peg ID 

 1 2 3 4 

1  119.26 147.69 95.82 131.04 

2  115.97 123.89 119.90 109.28 

3  148.68 124.95 132.23 97.23 

4  139.65 108.34 157.77 102.72 

5  108.38 117.46 124.49 122.60 

6  109.13 136.24 117.39 151.21 
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After the data became available for the tags, the tag locations were calculated for 

a given number of k. First, the Euclidean distance of all tags’ RSS were calculated 

from all profiled points’ RSS to find the closest profiling points to the tags. For 

instance, the Euclidean distance of the Tag #1 with the first profiling point 

(located at (0, 2)) is calculated as follows: 

4119.26 − 121.82�� + 147.69 − 146.33�� + 95.82 − 114.36�� + 131.04 − 143.05��
= 22.28 

In the same way, the Euclidean distances between all of the tags’ RSS and the 

profilings’ RSS were calculated (see Table 3-3 for the results). 

Table 3-3: Euclidean distances between Profiling Points’ RSSI and Tags’ RSSI 

Profiling 

Point ID 

Tags' Location 

1 2 3 4 5 6 

1 22.28 41.34 59.98 72.61 39.18 18.41 

2 33.15 25.10 54.22 60.27 18.93 22.69 

3 14.27 37.31 58.41 80.18 44.36 43.61 

4 38.83 32.46 65.85 68.96 20.32 22.65 

5 63.07 26.92 26.72 22.14 31.12 60.00 

6 57.78 23.88 37.91 32.76 20.22 49.82 

7 51.61 25.70 15.10 40.88 40.76 62.80 

8 60.81 32.32 17.99 21.86 38.07 59.36 
 

Then k was selected as 5, meaning five profiled samples with the smallest 

distance from the tracked tag were selected. Subsequently, the coordinates of the 

selected samples were averaged according to Eq.2. and Eq.3. to produce the 

estimated coordinates of the tag. Here, 61.51max =D  is the maximum distance 

among the best k  selected samples and 14.160=dS  is the sum of all those 

distances. Table 3-4 shows the actual location, the estimated location and the 
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localization error of this experiment. It is noteworthy that the localization error is 

the Euclidean distance between the estimated and actual locations, which is 

shown in Figure 3-4. 

Table 3-4: Estimated local position of the tags for K=5 

Tag ID 
Tag Location (m) 

Actual 

(x,y) 

Estimated 

(x,y) 
Error(m) 

1 (1,1) (1.40,1.50) 0.64 

2 (3,1) (3.48,1.91) 1.03 

3 (5,1) (4.61,1.81) 0.90 

4 (5,3) (4.62,2.30) 0.79 

5 (3,3) (2.80,2.80) 0.28 

6 (1,3) (1.32,2.46) 0.63 
 

 

Figure 3-4: Localization error vectors of the tracked tags 

 

In the error calibration phase, if we assume the locations 1, 3, 4, 6 as a set of 

predefined locations, their associated vectors containing both estimated location 

values determined by WSN and their actual locations can be used to train the RBF 

NN. These vectors are collected offline and stored in a database as shown in Table 

3-5. 
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Table 3-5: Training samples of the experiment in RBF NN 

Training samples 

Input  

(Estimated Location) 
 

Output 

(Actual Location) 

(1.40,1.50)  (1,1) 

(4.61,1.81)  (5,1) 

(4.62,2.30)  (5,3) 

(1.32,2.46)  (1,3) 
 

 

Consequently, when the tags are located on positions 2 and 5, their WSN-based 

locations will be provided to the RBF NN. Therefore their actual locations will be 

retrieved by finding the best matches in the trained RBF NN database as 

illustrated in Table 3-6. 

 

Table 3-6: Expected error calibration of the experiment in RBF NN 

Expected Locations 

Input 

(Estimated Location) 

Output 

(Actual Location) 

  

(3.48,1.91) (3,1) 

(2.80,2.80) (3,3) 
 

  



 

35 

 

CHAPTER 4: SYSTEM VALIDATION  

4.1 Introduction 

Construction sites are dynamic environments which inevitably involve the 

movement of equipments, materials and laborers. To confirm the viability and 

limitations of the proposed solution and to evaluate the environment variation due 

to the presence of an obstacle, a prototype WSN-based localization system was 

assessed in an underground parking lot on the University of Alberta campus, 

which resembles an indoor area. The indoor experiments and their results are 

presented in section 4.2. A experimental design to evaluate the sensitivity of 

localization errors to the changing environmnet is then proposed in section 4.3 to 

address the problem of continuous changes of the construction environments 

which affect the accuracy of the location estimation. Additionally, to check the 

feasibility of a WSN-based positioning system at an actual indoor construction 

site, the wireless sensors were installed to evaluate the location of the workers 

inside the tunnel, which is discussed in section 4.4. A dynamic error test using a 

prototype IntelliSensorNet combining the WSN-based localization scheme and 

RBF NN based error calibration was performed in an underground parking lot to 

evaluate the proposed localization system’s performance for tracking mobile 

assets that frequently travel from one location to another, such as construction 

laborers and material delivery systems. The experiment and the results are then 

provided in section 4.5. 
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4.2 Indoor Experiments 

The absence of interior finish features in the underground parking lot makes it a 

reasonably good approximation of a structure being built; the space consists of 

concrete floor, ceiling and pillars and metal beams to support the loading of the 

structure. Thus, the car park can mimic the challenges and complex characteristics 

found on a real construction site with random and continuous movement of 

vehicles and people. In the data collection phase, the central node was connected 

via a USB dongle to a laptop, where all the data collected by the network were 

stored and processed. During the data collection, some of the collected readings 

were saved in the system profile database, while others were stored and used as 

tracking data for method verification.  

The experiment began by deploying a certain quantity of nodes (10) within the 

monitored area. Figure 4-1 shows a sample distribution of nodes for the 

experiment. The grid was 12×8 m (consisting of 24 (2×2 m) squares), in which 10 

solid squares (all around the grid) were pegs, while the 25 crosses marked with 

asterisks provided profiling samples whose pre-defined locations were known. 

The circles acted as tags whose locations were to be determined. Tags were 

placed in the centers of the grid squares to compare their exact locations with the 

estimated ones in order to evaluate the accuracy of the system.  
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Figure 4-1: Experiment layout 

The objective of this test was to check the performance of the WSN-based 

localization system under a traffic flow-controlled setup including four different 

cases: without any car, with the car on the right side of the monitored area, with 

the car in the middle, and with the car on the left. All the profiling points or tag 

locations, even those obstructed by the car, were considered. In the four “car 

parking” scenarios, tags were located using the profiling data, which was 

collected at reference points from the original setup (without any parked car in the 

grid), in order to identify changes in the environment. The experiments were 

carried out at power level 2 with 5 kps transmission rate using channel 0 of the 

prototyped WSN system.  

In this experiment, the localization error magnitude is the Euclidean distance 

between the estimated and actual locations of a point. The average magnitude of 
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error given different k  (number of best-matched samples) of the locations of all 

the points in each case were investigated in order to find the best k  (Figure 4-2). 

A k of 6 was selected as it resulted in the smallest average localization error. 

Once an appropriate k  was decided and applied in all subsequent experiments, we 

turned our attention to the question of how an obstacle, which was a medium 

sized automobile in this case, could degrade the localization accuracy. The 

inclusion of an automobile (or any other movable metallic facilities) is used to 

mock the situations of imposing metallic objects commonly encountered in 

construction sites. 

 

Figure 4-2: Average localization errors for different k  (no car) 

We try to determine how the localization has changed qualitatively and 

quantitatively. To this end, we use localization error vectors to express the 

localization error. We note that such error vectors are plotted in the case when no 

obstacle is present in order to serve as a baseline case. The goal is to understand if 

the inclusion of a metallic object the size of a car has a tendency to distort the 

localization in certain areas (relevant to the car) and in what ways and by much 
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magnitude. The results are plotted in Figure 4-2, confirming our expectation to 

see more discrepancies close to the car, albeit not exhibiting any systematic 

patterns. In Figure 4-3, for visual clarity, arrows are scaled to half, and the tags 

whose location error vectors have been changed considerably either in error 

magnitude (more than 1m) or in terms of angle (more than 90
o
) are marked, 

respectively, by a solid circle and an outer ring (some points may exhibit both 

features). Noticeable differences in localization error magnitude and angle are 

shown with different icons. 

The results from the experiments (Figure 4-4) indicate that the system is able to 

precisely locate all the tags with the accuracy between roughly 0.8 meters and 1.9 

meters (with the approximate standard deviation of 1 meter for the case of the car 

in the middle of the grid and 0.5 meter for the other three). It also demonstrates 

that a metallic object can change the environment and generally increase the 

localization error. The desired accuracy as needed to locate mobile laborers in 

construction sites is 1.5 to 4 meters (Khoury and Kamat 2009, Torrent and Caldas 

2009). Therefore, for the prototype system, a localization accuracy of less than 2 

meters is acceptable and the localization error we observed in the presence of a 

simple car object was marginally around the original localization error determined 

in the absence of the obstacle. The “robust” nature of this localization technique 

thus implies its potential for deployment in real dynamic construction sites which 

are by nature prone to the introduction of permanent as well as of temporary 

metallic objects. It is noteworthy that the limits of the positioning accuracy can be 

further enhanced by applying a finer grid setup in RSSI profiling or applying real-
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time error correction algorithms. The second alternative is more cost effective and 

appealing to construction applications and will be addressed in the following 

chapter. 

 

a) Without any obstacle b)  Car at right side 

c) Car at middle side d) Car at left side 

Figure 4-3: Localization error vector for different position of the car in the grid 

for K=6. 

Additionally, RSS values might not be available at some locations all the time. 

Since the positioning reliability and accuracy is directly affected by the quality of 

wireless signal sample data collected at target locations, we managed to collect an 

adequate quantity of RSS samples at each target location. In our experiments, we 

observed that the cases of inaccessible points were rare. In such cases, the 
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inaccessibility at a given access point could also occur on adjacent profiling 

points. Thus, the proposed methodology employed a statistical learning approach 

(RBF NN) in order to tolerate a certain amount of noise (such as unavailable RSS 

signals) in fixing a tag’s position. 

4.2.1 Localization Error Enhancement Utilizing Complete and 

Partially Re-profiling 

The construction environment changes dynamically, which would mean that 

localization results might no longer be accurate in the (continuously) modified 

environment. To address this problem, two approaches could be tried out: (a) a 

systematic analytical characterization of the localization distortions created by 

modifications, and/or, (b) a systematic approach to perform re-profiling, on an as-

needed basis, to create more accurate localization results. 

 

 
Figure 4-4: Average error magnitude for different car location in the grid for K=6 
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We note that option (a), apart from being a demanding task that entails some form 

of wireless propagation characteristic modeling, would still not be sufficient 

because we would still have to, first, identify that the environment has indeed 

changed, before applying any analytical/computational localization correction 

model. If this requires re-measuring signal strengths then it turns effectively into a 

form of option (b). Hence (b) is an unavoidable step, even if it does not imply the 

re-measuring/re-sampling of all the points in the space of interest.  

Re-profiling has the merit of cancelling the effects of changes in the environment. 

We conducted the following experiment: in each test bed, each time an 

automobile was introduced at any of the three locations, new reference point 

measurements were collected and used to localize the tags. Figure 4-4 shows the 

localization in the modified environments using the previous profiling data, while 

Figure 4-5 shows the localization accuracy using the new profiling data. Both 

result in similar accuracy (Figure 4-4). The standard deviations are 0.47m for car 

on right, 0.71m for car in the middle and 0.66m for car on the left side of the 

monitored area. 

Note that the effort for re-profiling an entire area is quite demanding. To this end, 

we would like to "stage" the re-profiling task in two steps: (i) to understand what 

observations could trigger the re-profiling so only necessary re-profiling is 

performed and (ii) to determine a possible small subset of locations that, upon 

being re-profiled, improved localization can be obtained. In other words, we 

imply a semi-automatic process whereby task (i) is performed automatically and 
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then a set of points to-be-re-profiled is identified (again automatically) and 

provided to either human operators to conduct the task (ii) or, even, without an 

operator in the loop, selecting points to re-profile are given and acted upon.   

 
Figure 4-5: Average error magnitude utilizing new profiling data for different car 

location in the grid for K=6 

If the localization pegs are part of a fixed (or rarely changing) infrastructure, then 

preference could be given to using them as profile points as well (we will explore 

this idea in the following experiment), with the advantage being that the re-

profiling for those particular points can be performed without on-site human 

intervention (such as surveying and re-profiling points by walking in a 

construction area). 

To address point (i), as previously seen, a significant increase of magnitude and 

angle change in localization errors is an indication of a new object being 

introduced to the environment. In this case, if it goes beyond a certain threshold 

(in our experiments the thresholds were set 1 meter and 90º), re-profiling can be 

indicated as necessary. To perform task (ii) in an automatic way, we treat the pegs 

as profiled points (with their exact locations known, so they can inform on precise 



 

44 

 

localization error figures). Note the research prototype system of WSN does not 

have the ability to interchange the roles of a peg and a tag on the fly. It is feasible 

we place a tag very close to the peg and measure the signal strengths that the other 

pegs receive from this tag so as to correlate those strengths with the location of 

the peg. In our experiments We identified the one peg (representative profiled 

point) which showed the most significant localization error (according to criterion 

(i)) when a car object was introduced. This operation is captured in Figure 4-6. 

Note the location of the so called "most distorted" localization is based on k 

measurements which could fall on any positions throughout the area of interest. 

At that point, we dispatched a human operator to re-profile the k points that had 

contributed to this most distorted localized peg. We also compared the results of 

this partial re-profiling to the results of a complete re-profiling.  

 

Figure 4-6: Selected tags whose profiling points need to be re-profiled 

 

Table 4-1 shows that localization average error magnitude utilizing a limited 

quantity of partially re-profiled reference points (6), which resulted in nearly the 

same improvement on localization errors as a complete re-profiling undertaking. 
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These empirical results suggest that the proposed approach can be used to monitor 

construction resources on a typical dynamic job site with changing locations of 

metallic objects. With less effort in performing partially re-profiling, the effect of 

imposing temporary metallic objects on the job sites can be controlled and the 

accuracy can be maintained to a certain degree.  

 

Table 4-1: Localization average error magnitude using a) original profiling 

samples in absence of obstacle b) partially and complete re-profiled reference 

points 

Car position Using 

Original 

reference 

points 

Using re-profiled reference 

points 

Partial(6) Complete(25) 

Car at Right 1.13 1.08 1.09 

Car at Left 1.12 1.09 1.1 

Car at Middle 1.46 1.4 1.35 

Average 1.24 1.19 1.18 
 

 

4.3. Validation of the WSN-based Localization System for Labour 

Tracking in the Tunnel 

The inherent nature of underground tunnels and the working environment for the 

workers present challenges in addressing the safety issue in the tunnel 

construction. Tunnel construction generally faces high risks and a wide range of 

safety hazards to workers, including toxic gas emission, fire, mud slides, and 

active faults in geological structure, water breakage, roof collapses.. All of these 

safety hazards could lead to catastrophic incidents such as the loss of human lives 
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as trapped workers. Lack of real time positional and environmental information 

inside the tunnel hinders the rescuers’ ability to react promptly and accurately in 

the event of a disaster. Companies know only who is in the tunnel at a given time, 

but have little knowledge of each individual's location.  

Current monitoring systems in underground tunnels employ wires to connect 

sensors to the processing server and require a great amount of wire deployment, 

which is complex and difficult due to poor working conditions and high 

maintenance costs. Moreover, the wired communication method reduces the 

scalability of the system; as the tunnel extends, more sensors and wires need to be 

deployed. In addition, wire-based systems are expensive because of the initial cost 

associated with laying out the wire and the maintenance costs associated with the 

system. The utilization of the Wireless Sensor Network (WSN) system being 

proposed to monitor the locations of labourers in the underground environment 

benefits from the characteristics of WSN in terms of wireless communication and 

flexible deployment. Moreover, the scalability of system construction can be 

realized by the multi-hop wireless data communication scheme of WSN. A multi-

hop network is dynamically self-organized and self configured, with the nodes in 

the network automatically establishing and maintaining mesh connectivity among 

themselves. In other words, a wireless multi-hop network is a collection of 

wireless nodes that dynamically form a temporary network without an 

infrastructure. This feature brings many advantages to multi-hop networks such as 

low upfront cost, easy network maintenance, robustness, and reliable service 

coverage.  
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4.3.1. Field Experiment in the Tunnel Project 

Tunnels being constructed in the underground space are long, narrow and closed 

environments that are generally 2 to 6 meters wide and several hundred meters to 

several kilometers long. Experiments were conducted at a shield tunnel site being 

constructed by the City of Edmonton in Edmonton, Canada (Figure 4-7). The 

tunneling project, in which the proposed system was deployed, was a 2 meter in 

diameter underground sewer tunnel project using a Tunnel Boring Machine 

(TBM) excavation method. 

 

Figure 4-7: Positioning system deployment on tunnel construction site   

The objective of the study was to check the feasibility of the proposed WSN-

based positioning system at an actual “indoor” construction site. In this case, the 

wireless sensors were used to evaluate the location of the workers inside the 

tunnel. A tag was attached to a worker’s safety helmet so as to reduce the body's 
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interference with the Radio Signal Strength, as shown in Figure 4-7. Nineteen 

pegs were installed every 8 meters along the tunnel ceiling with the same antenna 

directions, using fabric hook-and-loop fasteners. 120 meters of the tunnel was 

surveyed by profiling every two meters. Tracked tags were assumed to be located 

every 2 meters interpolated between the reference points. A laptop computer was 

used as the server. The computer received, processed and stored the signal 

information from the tag through the wireless network. 

The environmental conditions of the tunnel construction site were generally harsh 

in comparison with laboratory conditions: for instance, lower temperature, 

dampness and many obstacles to signal processing. Tunneling construction also 

involved disposal of dirt and material handling processes which included the 

transportation of spoil, materials and workers from the tunnel face to the shaft and 

vice versa using trains. This may interfere with WSN sensor operations and the 

system performance. 

The results showed that the WSN based indoor positioning system could locate 

the worker with a average location error of 1.88 meters and standard deviation of 

1.40 meters for k=3 as shown in Figure 4-8, thus proving the utility of the system 

for tracking the approximate locations of laborers on practical tunnel construction 

sites. It is found that the system delivers consistently a localization accuracy of 1-

2 meters. The software automatically dispatches worker positioning information 

to the managers and ensures that immediate action can be taken if a worker is 

identified to be near any hazardous locations in the tunnel.  
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Figure 4-8: Average errors of the worker locations 

An integrated labour position monitoring system with graphic user interface can 

be installed at a construction manager's office or other sites where the monitoring 

of labour locations is crucial to the company's overall operation. The system is a 

potential replacement for conventional labour safety monitoring and job costing 

systems. In addition, the system could also be used for monitoring of the locations 

of other construction resources such as vehicles and materials. This system is 

capable to operate in the event of an emergency, after power is shut off inside the 

tunnel. In the event of a disaster, the last known location of the miners will be 

mapped, even if hardware of the wireless sensor network has partially collapsed 

inside the tunnel. 

To guarantee a safer environment for tunneling crews, dust, oxygen, water level 

and temperature of the tunnel can also be monitored through relatively simple 

physical/chemical sensors. For instance, the underground tunnel has a problem of 

air circulation. So it is necessary to inspect the amount of poisonous gas to 

prevent accidents. The flexibility to attach gas sensors to the wireless sensor 
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network allows for detecting toxic gasses at certain locations such as Carbon 

monoxide, Carbon dioxide, Methane ,and Sulphur dioxide and subsequently 

transmitting that information in real time to a monitoring station on the surface. 

This would create the critical visibility of the underground tunnel environment for 

safety management.  

4.4 Implementation of WSN-Based System Integrated with RBF 

NN 

The tunnel site provided a “linear” test bed due to the unique design of the tunnel. 

To further examine the feasibility and limitations of our system and to evaluate 

the performance of our system in a “non-linear” indoor environment, a dynamic 

error test using a prototype IntelliSensorNet system was performed in an 

underground parking lot at the University of Alberta. Construction sites are 

dynamic environments, which are exposed to movement of equipment, materials 

and laborers. Therefore, we intended to evaluate the proposed localization 

system’s performance for tracking mobile resources that frequently travel from 

one location to another, such as human and material delivery systems; e.g., a 

moving laborer or an indoor crane. The objective of the dynamic error test was to 

evaluate the difference between the true traveling path and the estimated path to 

find the level of accuracy of the system. An underground parking lot was selected 

for this purpose because it can simulate the challenges and complex 

characteristics posed by the construction environment. The building is built with 

concrete and has steel access doors, metallic cages, concrete columns and power 
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cables located near the test area that may cause interference with the WSN 

communication system. In addition, heavy pedestrian and vehicle traffic in this 

area can cause signal communication errors because human bodies can absorb the 

signal, while metallic obstacles tend to reflect the signal. 

The proposed WSN based positioning method provides an “ad hoc” solution for a 

particular application purpose and application setting. The experiments were 

designed to mimic the movement of a laborer on a building construction site who 

performs repetitive wall form working activities. Note the laborer’s movement 

generally follows certain patterns instead of being totally random). Such patterns 

make it possible to carefully design and deploy a layout of pegs, which ensures 

the radio signals are available at the majority of peg sensor locations. 

 

 

Figure 4-9: Tag placement in the parking lot 
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The experiment was conducted by deploying a number of nodes within the 

monitored area. Figure 4-9 shows a sample distribution of nodes for the 

experiment and describes the test area layout with 18 receivers at fixed locations 

(marked as solid squares) and a remote node (marked as solid circle) which is set 

to move along a square-shaped path of 8×6 meters. Profile samples are marked as 

× every 2 meters whose pre-defined local locations are known. A path was 

determined and a tag was carried by a person who walked along the path at a 

speed that is lower than normal walking. During the data collection process, some 

of the collected readings were saved in a profile database of the IntelliSensorNet, 

while others were stored as tracking data. The experiments were carried out at 

power level 2 with a 5 kps transmission rate using channel 0.  

The position of the tag was measured every 1 meter. The localization error vector 

is assumed to be the Euclidean vector connecting the actual and estimated 

location in the Euclidean space (Figure 4-8). As such, the localization error 

magnitude is the Euclidean distance between the two points. The average errors’ 

magnitudes for different k (the quantity of best-matched samples) were 

investigated in order to find the best k (Figure 4-10). k=7 was selected as it results 

in the smallest average localization error. The standard deviation of the errors was 

determined to be from 0.42 to 0.76 meters, demonstrating that the greater the 

number of k, the smaller the standard deviation. 
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Figure 4-10: Average localization errors for different k 

 

The results from the experiment (Figure 4-10) indicate that the system is able to 

locate the tracked tag with an accuracy of 1.11 meters only by using WSN-based 

positioning architecture. Considering the application requirements, a localization 

of less than 2 meters is acceptable to locate mobile resources in construction sites. 

Therefore, these findings may attract application interests and provide motivation 

for possible deployment in construction, because an average error of 1 meter 

could provide a sufficient level of accuracy for many large-scale construction 

sites. 

Figure 4-11 shows the true path and the estimated path resulting from the WSN 

positioning system. The observed path agrees closely with the true path with an 

acceptable level of accuracy. However, the introduction of significantly bigger (or 

many) obstacles is bound to downgrade the localization performance. In an 

extreme situation, the wireless signals used can be drastically attenuated. 
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Figure 4-11 Observed points versus true points on traveling path before 

applying RBF NN 

Therefore, for many applications in the construction site, there is a need for a 

robust positioning system with higher localization accuracy. In the following 

section, an error enhancement approach utilizing RBF NN is described and the 

results are discussed. 

In the calibration phase, we collected samples of estimated locations by WSN 

every 2 meters on the desired path. The locations are measured in two 

dimensional coordinates and are stored in a database called “Location Map”. 

Later, this Location Map was used to provide training samples for the RBF NN 

model. The training phase was used to train different Neural Networks and 

analyze their comparative performance. The Radio Map generated in the 

calibration phase was used to train RBF NN. After the training phase, additional 

data collected from the environment were used to test the performances of the 

trained RBF NN model. 



 

55 

 

 

Figure 4-12 Observed points versus true points on traveling path after applying 

RBF NN 

In the estimation phase, the WSN-based estimated location captured on the 

mobile device was presented to the input layer of RBF NN model. Thus, RBF NN 

was used to recall the actual position of the mobile node when presented with 

estimated positions of the rest of the points on the path. Results are presented as 

estimation errors in terms of meters. We employed Euclidean distances between 

estimated and actual locations to represent errors. The results demonstrated that 

the average localization error and the standard deviation on the testing data is 

reduced from 1.10 meters and 0.92 meters to 0.57 meters and 0.55 meters, 

respectively, for 14 positions (See Figure 4-12). The accuracy enhancement 

resulting from RBF NN modeling for the proposed localization technique in a 

True path  

Observed path by 

RB NN 
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dynamic environment thus implies its potential for deployment in real dynamic 

construction sites. 
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CHAPTER 5: IMPACT OF NODE PLACEMENT AND 

PROFILE POINT SELECTION ON INDOOR LOCALIZATION 

The proposed WSN-based positioning system can easily be applied to in-building 

localization using inexpensive devices and can provide an average localization 

error well below 2 meters. We previously noted that the received signal strength 

(RSS) is the simplest form of information that can be reasonably extracted from 

real time measurements of WSN. This is because RSS measurements do not 

require specialized additional hardware, as they are normally available from most 

RF transceivers. However, the disadvantage of RSS lies in its poor and irregular 

correlation with distance resulting from the multi-path effect, which is typically 

quite serious inside a building. In the proposed WSN-based localization method, 

location fingerprinting was utilized. In this method, the received signals of the 

tags are compared against a pre-collected set of samples from known reference 

points - a process called profiling. Profiling can help to decrease the impact of the 

environment on the transformation of the RF signals into distances. For this 

purpose, it seems that we would need to measure a large number of profiled 

points to offset the imprecise nature of the RF measurements. Therefore, it is 

important to determine the smallest number of reference points that are sufficient 

for an acceptable positioning accuracy in order to reduce the time consuming and 

labour intensive task of profiling. In addition, whenever the environment changes 

significantly, e.g., when a big obstacle is introduced to the environment, re-

profiling (re-measurement of the received signal of the tags from profiled points) 
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would be necessary. Therefore, the smaller the number of required profiling 

points, the less effort in reprofiling and model updating.  

5.1 Effect of Reference Points 

In this section, we explore the effect of the number of reference points and their 

arrangement on localization errors. For this purpose, we removed reference points 

from the parking lot database in a way such that the density of reference points 

remained roughly the same across the grid. Figure 5-1(a) shows the layout of 

reference points after removing 10 points. The resulting setup consists of 

measurements from 20 reference points. By further removing points in the same 

fashion, i.e., one at a time, we achieve the new layouts with 12 profiled points 

(see Figure 5-1(b) and 5-1(c)). 

The average error for the WSN-based positioning system with all the initial 30 

reference points was 1.11 meters, but we could remove points in a regular fashion 

and end up with 12 points while the error distance was still less than 2 meters. 

The localization errors of the system are as follows respectively: 1.16m with 20 

profiling points in 5-1(a), 1.36 m with 19 profiling points in 5-1(b) and 1.40 m 

with 12 profiling points in 5-1(c). This indicates that it is possible to have a less 

complex deployment of reference points without degrading the performance 

significantly. Overall, we have observed that the more the reference points the 

better the localization (Figure 5-2). Yet, the number of reference points alone is 

not sufficient, as their placement matters as well (see for example the case of 5-

1(c) vs. 5-1(d). In both layouts, 12 profiling points contributed to the location 
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estimation problem. However, the case of 5-1(c) resulted in 1.40 m of localization 

accuracy, hence, the localization error for the case layout in 5-1(d) is 3.09 m).  

 

  

(a) (b) 

    

(c) (d) 

Figure 5-1: Layouts of profiled placements: (a) 20 profiled points, (b) 19 profiled 

points, (c) 12 profiled points and (d) 12 profiled points 

The localization error for Figure 5-1(d) demonstrates that limiting the localization 

to a subset of reference points to track the mobile nodes could result in losing 

information essential to localization, i.e., the adjacent reference points are also 

important. This is because the final accuracy of estimation substantially depends 

on the information collected from distant reference points. 
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Figure 5-2: Localization error for different layout of reference points 

5.2 Effect of Peg Placement 

In this part of the study, we examine the impact of the number and placement of 

the fixed nodes called pegs on localization. In essence, this study is motivated by 

cost considerations. In the proposed WSN-based system, the decision about the 

number of pegs is flexible and they can be used as needed without any restrictions 

on numbers. However, the placement of the pegs might affect the location 

estimation. For instance, we may not need 18 pegs (see Figure 4-9) for a 10×8 

grid to keep the error distance below 2 meters. Thus we conducted another 

experiment to obtain an arrangement with fewer pegs that could still provide a 

localization error less than 2 meters. Figure 5-3 shows two such layouts with 10 

and 9 pegs with the corresponding average localization error 1.64 meters and 1.89 

meters respectively. As we can see, in Figure 5-3(a) and 5-3(b), it is possible to 

eliminate a large number of pegs (here almost half of the pegs) and still maintain 

error distance well below 2meters. 
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(a) 
(b) 

 

(c) 

Figure 5-3: Layouts of peg placements: (a) 10 pegs , (b) 9 pegs and (c) 7 pegs 

However, it is found that removing a large number of the pegs from the 

surrounding area may not be a good idea and would result in higher localization 

error, for instance, 2.23 meters for only 7 pegs in Figure 5-3(c)). Generally, it is 

noteworthy that the WSN-based positioning system is relatively much less 

sensitive to the peg layout, compared to the impact that the layout and the 

quantity of reference points could have. 
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Therefore, peg placement is not as critical of an issue as the density of reference 

points in the area. This is a promising finding, as the placement of pegs is likely to 

be constrained or even dictated by external factors, e.g., placement of walls and 

obstacles etc. Therefore, it can be concluded that a smaller set of reference points 

or a smaller set of fixed pegs can provide good localization, in particular if their 

layout has been carefully designed. Based on lab experiments, this holds 

principally valid in terms of the layout and quantity of reference points. In fact, 

for a choice between having more reference points or more pegs, the answer 

appears to be in favor of more reference points. This optimization solution may 

guide real-life deployments of pegs and the ways of collecting reference points 

(profiling points) so as to minimize the system’s complexity or cost while 

attaining the required accuracy of localization. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusion  

The construction industry is currently willing to introduce new technologies in 

order to reduce project time and cost, and improve safety, productivity and 

performance (Aziz et al., 2004). Automated tracking of project related resource 

entities in construction sites (e.g. personnel, equipment, and materials) is 

necessary for main construction management functions such as productivity 

monitoring, progress measurements, locating resources, and safety management. 

Effective management of construction resources is critical to project success. 

Completion of project tasks on schedule, safely, and within the planned budget 

needs a coordinated planning effort that allocates adequate availability of project 

resources (Teizer, 2008). Thus, successful deliveries of construction projects are 

often determined by the level of awareness of resource status and tracking and 

control of project performances. 

Research studies show that supervisors spend 30% to 50% of their time manually 

collecting data to manage resources (Jang, 2007). In terms of cost savings, 

inefficient manual handling operations associated with field data collection in 

current tracking systems present urgent issues to address as the size and the 

complexity of construction projects increase. However, advanced methodologies 

that would increase the efficiency of material tracking in construction have not 

been developed since there has been a lack of interdisciplinary research activities 
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among different areas of expertise resulting in inefficient use of emerging 

technologies. In addition, current safety practices are also not sufficient in 

preventing worker fatalities or injuries on a daily basis when they are in too close 

proximity to heavy equipment or material loads. Based on this motivation, the 

proposed research examines a hypothesis that the integrated and practical resource 

management systems will have the potential to improve the productivity and 

safety of project performance. The research approach is intended to bridge the gap 

between manual and automated construction resource management. 

To this aim, the presented study introduces a new framework called 

IntelliSensorNet for automating the identification and localization of construction 

resources in industrial projects. In this approach, a methodology associated with 

Wireless Sensor Networks (WSN) was used to facilitate an indoor data collection 

process. The localization approach utilizes a database of signal strength readings 

from tags located at known positions within the monitored area which were 

obtained during a profiling phase. Subsequently, a best matched set of profile 

points was selected to determine the location of the closest reference points to a 

tracked tag emitting an RF signal from an unknown place. The average 

coordinates of those points will be an approximate location of the tracked sender. 

A error calibration approach based on a Radial Basis Function Neural Network 

was then proposedto reduce the localization errors, and the experimental results 

indicated potentially significant performance improvement in localization with 

only limited training data. An indoor experiment was designed and conducted in 

order to assess the feasibility of this automated methodology in a realistic 
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construction scenario. The localization approach resulted in good estimated 

locations that could facilitate the efficient localization of the tagged components. 

Employing a WSN based positioning system as the infrastructure coupled with 

RBF NN as an error filter construction resource positioning and tracking is a 

prudent choice due to its low cost and pervasive coverage. In comparison with the 

other technologies used for resource tracking in indoor or partially covered 

construction environments, site resources and assets can be cost-effectively 

located on large industrial or building projects utilizing the proposed system. 

6.2 Future Direction 

One of our goals for the future is to investigate the placement of the pegs in the 

monitored area in order to identify a peg layout design that features a smaller set 

of fixed points (pegs) while still resulting in good localization performance in a 

particular experimental setting. Moreover, the method being proposed will be 

refined into a self-adaptive, self-calibrating, real-time positioning solution based 

on frequent, dynamic RSS re-profiling. We observed from the testing patterns that 

the changes in the RSS map are insignificant with the introduced one “car” 

obstruction; however, the proposed methodology will remain feasible and 

computationally efficient for re-profiling and recalibrating the positioning 

solution on a preset time frequency. As such, the added profiling points in the 

testing area can be removed; instead, each peg node fixed on a known location 

can be taken as a profiling reference point. The RSS between one peg node and 

other pegs in the system will be collected and mapped onto the location 
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coordinates of the peg from time to time. This helps address the dynamic working 

environment changes on a practical construction site. 
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APPENDIX A. WSN_BASED POSITIONING ALGORITHM IN 

C++ 

 

#include <cstdlib> 

#include <iostream> 

#include <stdio.h> 

#include <conio.h> 

#include <string.h> 

#include <math.h> 

 

using namespace std; 

 

` 

struct signal{ 

        int id; 

        double strength; 

        int count; 

}; 

 

struct position{ 

        double x,y; 

        int signalcount; 

        signal s[sensorarray]; 

        double D[cornerarray]; 

        int sortedD[cornerarray]; 

        int Dcount; 

}; 

 

position corner[cornerarray]; 

int cornercount = 0; 

 

position tag[tagarray]; 

int tagcount = 0; 

 

 

 

void calcXY(){ 

     for(int l = 0; l < tagcount; l++){ 

         double SSumX = 0; 

         double SSumY = 0; 

         double Sd = 0; 

         double Dmax = tag[l].D[tag[l].sortedD[0]]; 

         for(int i = 0; i < K; i++){ 

               Sd += tag[l].D[tag[l].sortedD[i]]; 

               Dmax = max(Dmax, tag[l].D[tag[l].sortedD[i]]); 

         } 

         for(int i = 0; i < K; i++){ 

               SSumX += corner[tag[l].sortedD[i]].x * (Dmax - 

tag[l].D[tag[l].sortedD[i]]); 

               SSumY += corner[tag[l].sortedD[i]].y * (Dmax - 

tag[l].D[tag[l].sortedD[i]]); 

         } 
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         tag[l].x = SSumX / ((K * Dmax) - Sd); 

         tag[l].y = SSumY / ((K * Dmax) - Sd); 

     } 

} 

 

void sort(){ 

     for(int l = 0; l < tagcount; l++){ 

         for(int i = 0; i < tag[l].Dcount -1; i++){ 

             for(int j = tag[l].Dcount -1; j > i; j--){ 

                 if(tag[l].D[tag[l].sortedD[j]] < 

tag[l].D[tag[l].sortedD[j-1]]){ 

                    int tmp = tag[l].sortedD[j-1]; 

                    tag[l].sortedD[j-1] = tag[l].sortedD[j]; 

                    tag[l].sortedD[j] = tmp; 

                 } 

             } 

         } 

     } 

} 

 

int findbyxy(double x, double y, position *p, int pcount){ 

    for(int i = 0; i < pcount; i++){ 

            if(p[i].x == x && p[i].y == y){ 

                      return i; 

            } 

    } 

    return -1; 

} 

 

int findbyid(int id, signal *s, int scount){ 

    for(int i = 0; i < scount; i++){ 

            if(s[i].id == id){ 

                      return i; 

            } 

    } 

    return -1; 

} 

 

void calcD(){ 

     for(int l = 0; l < tagcount; l++){ 

         tag[l].Dcount = cornercount; 

         for(int i=0;i< tag[l].Dcount; i++) 

                tag[l].sortedD[i] = i; 

         for(int i = 0; i < tag[l].Dcount; i++){ 

                 tag[l].D[i] = 0; 

                 for(int j = 0; j < corner[i].signalcount; j++){ 

                         int signalindex = 

findbyid(corner[i].s[j].id, tag[l].s, tag[l].signalcount); 

                         if(signalindex > -1){ 

                                       tag[l].D[i] += 

pow(corner[i].s[j].strength - tag[l].s[signalindex].strength, 2); 

                         } 

                 } 

                 tag[l].D[i] = pow(tag[l].D[i], 0.5); 

         }     

     } 
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} 

 

void loadcornerdata(){ 

    FILE *fp; 

    char line[1024]; 

    int index = 0; 

    fp=fopen(CornerFile, "r"); 

    while(fgets (line, sizeof line, fp) != NULL){ 

        int len; 

        char *p = line; 

        sscanf(p, "%le%le%*d%n", &corner[index].x, 

&corner[index].y, &len); 

        p += len; 

 

        int sindex = 0; 

        while(sscanf(p, "%d%le%n", &corner[index].s[sindex].id, 

&corner[index].s[sindex].strength, &len) == 2){ 

                        corner[index].s[sindex].count = 1; 

                        sindex++; 

                        p += len; 

        } 

        corner[index].signalcount = sindex; 

        int cornerindex = findbyxy(corner[index].x, 

corner[index].y, corner, index); 

        if(cornerindex > -1){ 

                       for(int i = 0; i < 

corner[index].signalcount; i++){ 

                       int signalindex = 

findbyid(corner[index].s[i].id, corner[cornerindex].s, 

corner[cornerindex].signalcount); 

                       if(signalindex > -1){ 

                                      

corner[cornerindex].s[signalindex].strength += 

corner[index].s[i].strength; 

                                      

corner[cornerindex].s[signalindex].count++; 

                       } 

                        

               } 

        }else{ 

               index++; 

        } 

    } 

    cornercount = index; 

    for(int i = 0; i < cornercount; i++){ 

            for(int j = 0; j < corner[i].signalcount; j++){ 

                    if(corner[i].s[j].count > 0){ 

                                         corner[i].s[j].strength 

/= corner[i].s[j].count; 

                                         corner[i].s[j].count = 

1; 

                    } 

            } 

    } 

    fclose(fp); 

} 
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void loadtagdata(){ 

    FILE *fp; 

    char line[1024]; 

    fp=fopen(TagFile, "r"); 

    int index = 0; 

    while(fgets (line, sizeof line, fp) != NULL){ 

        int len; 

        char *p = line; 

 

        sscanf(p, "%d%d%*d%n", &tag[index].x, &tag[index].y, 

&len); 

        p += len; 

         

        int sindex = 0; 

        while(sscanf(p, "%d%le%n", &tag[index].s[sindex].id, 

&tag[index].s[sindex].strength, &len) == 2){ 

                        tag[index].s[sindex].count = 1; 

                        sindex++; 

                        p += len; 

        } 

        tag[index].signalcount = sindex; 

        int tagindex = findbyxy(tag[index].x, tag[index].y, tag, 

index); 

        if(tagindex > -1){ 

                       for(int i = 0; i < tag[index].signalcount; 

i++){ 

                       int signalindex = 

findbyid(tag[index].s[i].id, tag[tagindex].s, 

tag[tagindex].signalcount); 

                       if(signalindex > -1){ 

                                      

tag[tagindex].s[signalindex].strength += 

tag[index].s[i].strength; 

                                      

tag[tagindex].s[signalindex].count++; 

                       } 

               } 

        }else{ 

               index++; 

        } 

    } 

    tagcount = index; 

    for(int i = 0; i < tagcount; i++){ 

            for(int j = 0; j < tag[i].signalcount; j++){ 

                    if(tag[i].s[j].count > 0){ 

                                         tag[i].s[j].strength /= 

tag[i].s[j].count; 

                                         tag[i].s[j].count = 1; 

                    } 

            } 

    } 

    fclose(fp);      

} 

 

int main(int argc, char *argv[]) 
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{ 

    loadcornerdata(); 

    loadtagdata(); 

    calcD(); 

    sort(); 

    calcXY(); 

    for(int i = 0; i < tagcount; i++){ 

            printf("Tag: %d -> Xest=%g Yest=%g\n", i+1, tag[i].x, 

tag[i].y); 

    } 

    system("PAUSE"); 

    return EXIT_SUCCESS; 

} 
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APPENDIX B. RBF NN ALGORITHM IN MATLAB 

%% 

clc,clear 

x = 1:9; 

y = 1:7; 

X=[x,ones(1,length(y)-2)*x(end),x,ones(1,length(y)-2)*x(1)]; 

Y=[ones(1,length(x)),y(2:end-1),ones(1,length(x))*y(end),y(2:end-

1)]; 

%% 

load data 

N=length(X); 

z{1}=zeros(1,N); 

z{2}=z{1}; 

for i=1:N 

    for j=1:N 

        if X(i)==data(j,1)&&Y(i)==data(j,2) 

            z{1}(i)=data(j,3); 

            z{2}(i)=data(j,4); 

            break; 

        end 

    end 

end 

figure;quiver(X,Y,z{1}-X,z{2}-Y) 

%% 

ind=1:2:N; 



 

79 

 

indTest=2:2:N; 

  

% T=[X(ind);Y(ind)]; 

T=[X(ind)-z{1}(ind);Y(ind)-z{2}(ind)]; 

P = [z{1}(ind);z{2}(ind)]; 

net1 = newrb(P, T,2,2); 

a= sim(net1,[z{1}(:) z{2}(:)]'); 

% a=a+[z{1};z{2}]; 

%% 

figure 

  

hold on;plot(a(1,:),a(2,:),'ro');plot(X,Y,'o') 

%% 

disp(sqrt(mean((X-z{1}).^2+(Y-z{2}).^2))) 

disp(sqrt(mean((X(indTest)-a(1,indTest)).^2+(Y(indTest)-

a(2,indTest)).^2))) 

figure;quiver(X,Y,-a(1,:),-a(2,:)) 

 

  

 

 

 


