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Abstract

Let X/k be a smooth projective geometrically irreducible variety over a field k,

and CHr(X ;Q) := CHr(X)⊗Q the Chow group of codimension r cycles, modulo

rational equivalence. A long standing conjecture, due by S. Bloch and fortified by

A. Beilinson, is the existence of a descending filtration on CHr(X ;Q), whose graded

pieces detect the complexity of CHr(X ;Q). The question then is whether one can

provide an explicit geometric interpretation of this filtration in the situation where

k ⊆ C is a subfield. This will involve a candidate filtration introduced by Lewis,

the concept of cycle induced normal functions, and fields of definition of their zero

locus. Towards this goal, we present some partial results, and new lines of enquiry.
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Chapter 1

Introduction

Like many areas of mathematics, the approach to studying an “object” of interest is
to introduce some invariants associated to it. In algebraic geometry, where a given
space X is the zero set of a finite set of polynomials over a field k, a natural way
to study it is to look at the irreducible subvarieties on X of a given codimension
r, and form the group zr(X) of codimension r algebraic cycles defined on it. That
being said, it is really a ring structure (via intersection) that one is seeking. For
instance, how does one define the self intersection of a variety? If X has no singu-
larities, then we can take quotient group modulo a suitable “minimal” equivalent
relation, which in our situation is rational equivalence. This relation is minimal
in the sense that, for any adequate relation ∼, we have ξ1 ∼rat ξ2 ⇒ ξ1 ∼ ξ2. See
[20] for a proof as well as the proper definition of adequate relation. The resulting
group is denoted by CHr(X), called a Chow group. This will allow for a ring
structure on ⊕r≥0CHr(X). This Chow group will have a continuous part, denoted
by CHk

alg(X) (cycles algebraically equivalent to zero modulo rational equivalence),
and a countable part CHr(X)/CHr

alg(X), which contains a very important sub-
group CHr

hom(X)/CHr
alg(X), called the Griffiths group, which involves a first cycle

class map construction below.

Let us assume, for simplicity, that X/C is a projective algebraic manifold
(= smooth projective variety/C). In the 20th century, there are two well-known
maps used to study CHr(X), namely, the classical betti cycle class map, viewing
X as an oriented manifold,

clr : CHr(X)→ H2r(X,Z(r)),

with kernel CHr
hom(X), and for which the Tate twist Z(r) ≃ Z, will be explained

later. As X is also a compact complex Kähler manifold, there is a Hodge
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(p, q)-decomposition

H2r(X,Z(r))⊗ C =
⊕

p+q=2r

Hp,q(X),

which reflects the complex structure on X/C. Hodge speculated that those classes
in H2r(X,Z(r)), induced by the inclusion Z(r) →֒ C, that map to Hr,r(X), are
precisely the image of clr. This conjecture proved to be false by Atiyah and Hirze-
bruch: they showed that non-analytic torsion integral classes of type (p, p) exist on
certain projective algebraic manifolds, and more recently by others, the existence
of non-analytic, non-torsion integral classes as well. See [20] and the references
cited there. This prompted a revision of the conjecture taking rational coefficients
instead. Even in this case X must be projective algebraic, by a counterexample
due to Mumford in [31], involving a non-algebraic compact torus (a Kähler man-
ifold). The version of the celebrated Hodge conjecture that still survives scrutiny
is:

Conjecture 1.0.1 (Hodge). For smooth projective X/C,

clr ⊗Q : CHr(X ;Q) := CHr(X)⊗Q→ Hr,r(X,Q(r)) := H2r(X,Q(r))∩Hr,r(X),

is surjective.

That clr(⊗Q) does not detect all cycles is well-known, for example, the zero
cycles of degree zero (those whose coefficients in a linear combination of points add
up to zero) belong in the kernel of the cycle class map. This led to a secondary
cycle class map, called the Abel-Jacobi map

AJ : CHr
hom(X)→ Jr(X)

where Jr(X) is a compact complex torus called the Griffiths’ jacobian. This will
capture some cycles missed by the cycle class map (for example, in the previous
case, if X is a curve of genus g > 0, the Abel Jacobi map is an isomorphism). For
our interests, we are mainly interested in working with Q-coefficients. Apart form
torsion considerations, the story doesn’t change much but the reason for the change
has to do with the decomposition of the diagonal class ∆X ∈ CHn(X ×X ;Q) into
it’s Künneth components, which (assuming exists) can only be guaranteed with
Q-coefficients. This is a motivic story that will be explained later. To connect
both of these maps, one introduces the notion of the category of mixed Hodge
structures (MHS) over Q. This will be explained later in the text. But for now,
the situation is that both maps are described as follows:

clr⊗Q : CHr(X ;Q)→ homMHS(Q(0), H2r(X,Q(r)) := Ext0MHS(Q(0), H2r(X,Q(r))),
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AJ⊗Q : ker(clr⊗Q) : CHr
hom(X ;Q)→ Jr(X)⊗Q ≃ Ext1MHS(Q(0), H2r−1(X,Q(r))),

where the isomorphism, even on the level of Z-coefficients,

Jr(X)
∼−→ Ext1MHS(Z(0), H

2r−1(X,Z(r))),

is due to Jim Carlson [5]. The next step then would be to look at a map

CHr
AJ(X ;Q) := ker(AJ ⊗Q)→ Ext2MHS(Q(0), H2r−2(X,Q(r))).

However, it is a given fact that ExtνMHS(Q(0), H2r−ν(X,Q(r))) = 0 for ν ≥ 2,
whereas CHr

AJ(X ;Q) can be highly nontrivial (Mumford [28]).
The category MHS is too coarse, whereas a more refined conjectural category

of mixed motives MM is what Beilinson conjecturally proposed in this situation
(more generally for smooth projective X over a field k), namely,

There is a descending filtration (referred to as a Bloch-Beilinson (BB) filtra-
tion):

F 0 = CHr(X ;Q) ⊃ F 1 = CHr
num(X ;Q) ⊃ F 2CHr(X ;Q) ⊃ · · · ⊃ F rCHr(X ;Q) ⊃ {0},

for which
GrνFCHr(X ;Q) ≃ ExtνMM(Spec(k), h2r−ν(X)(r))), (1.1)

where hr(X) is motivic cohomology. Here conjecturally (e.g. assuming the Hodge
conjecture) CHr

num(X ;Q) = CHr
hom(X ;Q), where CHr

num(X ;Q) is numerical equiv-
alence (defined later), and any candidate filtration seems to indicate that
F 2CHr(X ;Q) ⊂ CHr

AJ(X ;Q) when k ⊂ C is a subfield. It is natural to ask
whether F 2CHr(X ;Q) = CHr

AJ(X ;Q), and the evidence in [24] supports this. So
the natural question is why this expectation is a reasonable one? To answer this,
let us assume given a smooth projective X/C, with ξ ∈ CHr

hom(X ;Q). Now after
adjoining the coefficients of the polynomial equations defining X over say Q, we
can write X = XK ×K C, where K/Q is finitely generated. One can then spread
X to X

ρ−→ S, where X , S are smooth quasi-projective varieties over Q, ρ is
smooth and proper, and if η ∈ SQ is the generic point, then Q(η) ≃ K via a
suitable embedding Q(η) →֒ C, and X/C = Xη×Q(η) C. Likewise, we may assume

(possibly by enlarging S) that ξ defines a class ξ̃ ∈ CHr
rel hom(X ;Q), which means

that for any t ∈ S(C), ξ̃t ∈ CHr
hom(Xt;Q) and that ξ̃η = ξ. The key point here

is that t ∈ S(C) 7→ νξ̃(t) := AJ(ξ̃t) ∈ Jr(Xt(C)) ⊗ Q determines a variational
Abel-Jacobi map called a normal function. It turns out that if in this situation,
the zero locus of νξ̃ is a countable union of algebraic subvarieties of S over Q,
then F 2CHr(X ;Q) = CHr

AJ(X ;Q). More precisely, we adopt the candidate BB
filtration in [23], that uses a Q-spread idea. It turns out that in this situation
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F 2CHr(X ;Q) can be described (via a spread) in terms of normal functions. De-
termining the field of definition of the zero locus is a deep problem; albeit easy to
verify if one restricts to the situation of F 2∩CH2

alg(X ;Q), where one can employ a
result of S. Saito ([29]), in proving that F 2 ∩ CHr

alg(X ;Q) = CHr
alg,AJ(X ;Q). The

filtration ([23]) under consideration, only guarantees that F νCHr(X ;Q) induces
(via a Q-spread), a space of normal functions, which we refer to as “arithmetic
normal functions”1; however we are unable to characterize F νCHr(X ;Q) in terms
of these normal functions for ν > 2. From a conjectural standpoint, we expect this
characterization to still hold. Indeed a clue is that from Beilinson’s formula (1.1),
one can show that

GrνFCHr(X ;Q) ≃ ExtνMM(Spec(k), h2r−ν(X)(r)/N r−ν+1h2r−ν(X)(r))),

an observation first exploited by S. Saito, (op. cit.), and where N• refers to a
coniveau filtration. We explain this in the text. This idea was exploited in [25] in
the situation where X/C = X0×C, X0 being defined over Q, but where the cycles
belong to CHr(X/C;Q). In this situation F νCHr(X/C;Q) can be characterized
in terms of arithmetic normal functions. The difficulty then is to analyze the
zero locus of such normal functions. To handle this, we restrict further to a
subspace F ν ∩ CHr

alg(X ;Q) where we present two arguments showing that the
zero locus of the associated arithmetic normal functions is defined over Q. Finally
we characterize F ν ∩ CHr

alg(X ;Q) in terms of the Abel-Jacobi map of specific
algebraic varieties (just like the case ν = 2), involving the Q-spread.

In summary, here are the conjectural goals, for which we aspire to prove, but
provide only partial answers to:

(i) Prove that F νCHr(X ;Q) can be characterized in terms of arithmetic normal
functions. (What we do is find a suitable class of X for which this is true.)

(ii) Show that the zero locus of such an arithmetic normal function is defined
over Q. (In this case, we restrict to F ν ∩ CHr

alg(X ;Q).)

(iii) Using the above results in (i) & (ii), characterize F νCHr(X/C;Q) in terms
of the kernel of an Abel-Jacobi map of a variety involving the Q-spread.

1.1 Notation

Definition 1.1.1. Let V be an irreducible variety defined over a field k of finite
transcendence degree over Q. A point p ∈ V(C) is said to be very general if

{

σ(p)
∣

∣ σ ∈ Gal(C/k)
}

,

1First introduced in [17].
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is dense in V(C) is the analytic topology.

• Throughout the rest of the thesis, k ⊂ C will denote an algebraically closed
subfield.

• Q(n) = (2πi)nQ is called the Tate twist. Which is a pure Hodge structure of
pure weight −2n and of type (−n,−n).

• We abbreviate the term Q-mixed Hodge structure (defined later) as Q-MHS
or just MHS when the ring of definition Q is understood. Once we define this, for
a given Q-MHS H we put

Γ(H) := homMHS(Q(0), H),

J(H) := Ext1MHS(Q(0), H)

the external classes in the category of Q-MHS not necessarily graded polarizable.

• For a smooth variety over k, H i(X,Q) := H i(X(C),Q) in singular cohomol-
ogy. If Y ⊂ X is a Zariski closed subset, and n = dimX, we can identify Hr

Y (X,Q)
with Hn−r(Y,Q), via Poincaré duality.

• CHr(X) denotes the Chow group of X, that is the groups of codimension r
cycles modulo rational equivalence. CHr

alg(X) then denotes the subgroup of cycles
algebraically equivalent to zero. These concepts will be introduced in the appro-
priate sections later.

• We will also put CHr(X ;Q) := CHr(X)⊗Q and define CHr
alg(X ;Q) We also

define CHr
hom(X ;Q) to be the subgroup of cycles in the kernel of the cycle class

map (or homologous to zero).

• Given the Abel Jacobi map (with a proper definition given later)

AJ ;CHr
hom(X ;Q)→ J(H2r−1(X,Q(r))).

We denote its kernel by CHr
AJ(X ;Q).

• Let K ⊆ C be a subfield, and X smooth and projective over K. The coniveau
filtration, denoted by Nν

KH
i(X,Q), is given by

Nν
KH

i(X,Q) := ker

(

H i(X,Q)→ lim−→
Y⊂X/K,codimXY≥ν

H i(X \ Y,Q)

)

.
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• Given X a smooth variety over C. Let Nν
HH

i(X,Q) denote the largest
sub-Hodge structure in F νH i(X,C) ∩ H i(X,Q). The general Hodge conjecture
(abbreviated GHC) says that Nν

KH
i(X,Q) = Nν

HH
i(X,Q), if K = C, and is also

the case for K ⊆ C, provided that K is algebraically closed.
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Chapter 2

Preliminaries

2.1 Hodge Theory

2.1.1 Cohomology involving forms

Let X be a projective algebraic manifold of dimension n, and Er
X be the C-

space of C∞ r -forms on X, and associated complex (E•
X , d). Since the dif-

ferential d : Er
X → Er+1

X satisfies d2 = 0, we have the de Rham cohomology

Hr
DR(X,C) :=

ker d:Er
X
→Er+1

X

dEr−1

X

.

Recall the decomposition Er
X =

⊕

p+q=r E
p,q
X , and we have Ep,q

X = Eq,p
X . Here,

Ep,q
X are the C∞ (p, q)-forms which in local coordinates (z1, . . . , zn) ∈ X are of the

form
∑

|I|=p,|J |=q

fIJdzI ∧ dzJ fIJ C− valued and C∞,

I = 1 ≤ i1 < · · · < ip ≤ n, J = 1 ≤ i1 < · · · < iq ≤ n,

dzI = dzi1 ∧ · · · ∧ dzip, dzJ = dzj1 ∧ · · · ∧ dzjq
Then, under this decomposition, the differential splits into d = ∂ + ∂, where
∂ : Ep,q

X → Ep+1,q
X and ∂ : Ep,q

X → Ep,q+1
X . Here we have ∂

2
= 0. Then, for a

fixed p, we have the complex (Ep,•
X , ∂) which gives us the Dolbeault cohomology

Hp,q(X,C) or just Hp,q(X).

Since X is projective algebraic (in fact, for all compact Kähler manifolds) we
have the Hodge decomposition:

Hr(X,C) =
⊕

p+q=r

Hp,q(X)

7



and Hq,p(X) = Hp,q(X), where, in fact, from Hodge theory, Hp,q(X) can be iden-

tified with
Ep,q

X,d−closed

∂∂Ep−1,q−1

X

.

Now, given w1, a r form and w2, a 2n− r form over X, we define

(w1, w2) 7→
∫

X

w1 ∧ w2

which induces the following nondegenerate pairings (Poincaré/Serre dualities):

Hr(X,C)×H2n−r(X,C)→ C

Hp,q(X)×Hn−p,n−q(X)→ C

and thus we can make the following identifications with duality:

Hr(X,C) ≃ H2n−r(X,C)∨, Poincaré Duality

Hp,q(X) ≃ Hn−p,n−q(X)∨, Serre Duality

2.1.2 The two cycle class maps and the Hodge conjecture

Now, given a subvariety V of X of codimension r (thus, having real codimension
2r) we assign it the element clr(V ) ∈ H2n−2r(X,C)∨ defined in the following way:
for {w} ∈ H2n−2r(X,C), clr(V )(w) =

∫

V ∗ w (where V ∗ is the smooth part of V ,
that is V ∗ = V/Vsing ). One can see that

∫

V ∗ w is indeed finite by taking a desingu-

larization σ : Ṽ
≈→ V so that σ∗(w) is a C∞ form on Ṽ and thus

∫

V ∗ w =
∫

Ṽ
σ∗(w).

Since Ṽ is smooth and projective (thus compact) this has finite value.

Let zr(X) denote the free abelian group generated from the set of all irreducible
subvarieties of X of codimension k. Extending by linearity, we can define this map
for all elements in zr(X), thus

clr : z
r(X)→ H2r(X,C) ≃ H2n−2r(X,C)∨

which is well defined. clr is called the fundamental class map. Working with
singular homology with Z-coefficients, the argument above and Poincaré duality,
it follows that clr : zr(X) ⊂ H2r(X,Z). We observe that, for {w} ∈ Hp,q(X), with
p+ q = 2n−2r, if (p, q) 6= (n−r, n−r) we have that either p > n−r or q > n−r,
implying we have more than n−r of either dz′s or dz′s and because dimV ∗ = n−r,
we have

∫

V ∗ w = 0. Since we know that clr(zr(X)) ⊂ H2r(X,Z), from the previous
argument we have that clr(zr(X)) ⊂ Hr,r(X) ∩H2r(X,Z). As mentioned earlier,
there are counterexamples to show that this is not an equality. However, if we
change the statement to rational coefficients, we arrive at the celebrated
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Hodge conjecture clr(zr(X)⊗Z Q) = Hr,r(X,Q) := Hr,r(X) ∩H2r(X,Q).

There is another famous class map due to Griffiths. Using the Hodge filtration

F rH i(X,C) =
⊕

p+q=i, p≥r

Hp,q(X)

we can define the rth Jacobian as

Jr(X) :=
H2r−1(X,C)

F rH2r−1(X,C) +H2r−1(X,Z)
≃ H2r−1(X,R)

H2r−1(X,Z)

where the isomorphism comes from the real isomorphism

H2r−1(X,C)

F rH2r−1(X,C)
≃ H2r−1(X,R)

inducing a complex structure on H2r−1(X,R). Each Jacobian defined this way is
thus a compact complex torus (called Griffiths Jacobian). Now, applying Serre
duality to each Hp,q(X) present in H2r−1(X,C)/F rH2r−1(X,C), we see that this
latter term is isomorphic to F n−r+1H2n−2r+1(X,C)∨. By this, and using the iso-
morphism H2r−1(X,Z) ≃ H2n−2r+1(X,Z) between singular cohomology and ho-
mology, we can identify this homology group with its image under:

H2n−2r+1(X,Z)→ F n−r+1H2n−2r+1(X,C)∨

that maps a given {γ} in H2n−2r+1(X,Z) to the map ργ such that, for {w} ∈
F n−r+1H2n−2r+1(X,C) we have ργ({w}) =

∫

γ
w (periods). Hence we ignore torsion

in H2n−2r+1(X,Z). Therefore, we arrive at

Jr(X) ≃ F n−r+1H2n−2r+1(X,C)∨

H2n−2r+1(X,Z)

We define zrhom(X) = ker(clr) ⊂ zr(X). We see that given ξ ∈ zrhom(X), then by
definition we must have that ξ is the boundary of a chain ζ of real dimension 1
greater than that of ξ (thus, of real dimension 2n − 2r + 1). Then, we define the
second cycle class map to be

Φr : z
r
hom(X)→ Jr(X)

that, given {w} ∈ F n−r+1H2n−2r+1(X,C) gives us

Φr(ξ)({w}) =
∫

ζ

w

9



taking quotient over the elements of H2n−2r+1(X,Z) (identified in

F n−r+1H2n−2r+1(X,C)∨

as said before). Here ζ is a chain of real dimension 2n− 2r + 1 such that ξ = ∂ζ .

This map is well defined and is known as the Abel-Jacobi map. Details can be
found for example in [20].

2.1.3 Q-Mixed Hodge Structures and the implementation of

twists

The following definitions will be given in terms of Q but they can also be estab-
lished for any subring A ⊂ R (Z is a common choice as well).

Definition 2.1.4. A Q-Hodge structure (of weight N ∈ Z) consists of a finitely
generated Q-module V and a decomposition VC = V ⊗Q C =

⊕

p+q=N V
p,q such

that V p,q = V q,p (here the bar is denoting complex conjugation).

Remark 2.1.5. For a Q-Hodge structure, one can define a descending filtration

VC ⊃ · · · ⊃ F i ⊃ F i+1 ⊃ · · · ⊃ {0}

as F rVC =
⊕

p+q=N,p≥r V
p,q. We have then VC = F rVC ⊕ FN−r+1VC for all r.

Indeed this filtration datum is equivalent to a Hodge structure of weight N , for we
can set Hp,q := F p ∩ F q.

Example 2.1.6. The main example, due to Hodge, of a Hodge structure is H i(X,Q)
(of weight i) for a X/C smooth projective.

Example 2.1.7. Another example of a Q-Hodge structure is the Tate twist Q(r) =
(2πi)rQ, which is of type (−r,−r).

Example 2.1.8. For smooth projective X/C, H i(X,Q(r)) := H i(X,Q)⊗Q(r) is
a Hodge structure of weight i− 2r.

In his famous work on the cohomology of complex schemes, Deligne [6] formu-
lated the notion of a generalized Hodge structure, called a mixed Hodge structure,
namely,
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Definition 2.1.9. A Q-mixed Hodge structure (Q-MHS) is given by the following
datum:
• A finitely generated Q-module V .
• A finite descending "Hodge" filtration on VC = V ⊗Q C:

VC ⊃ · · · ⊃ F r ⊃ F r+1 ⊃ · · · ⊃ {0}
• An increasing "weight" filtration on VQ:

{0} ⊂ · · · ⊂ Wl−1 ⊂Wl ⊂ · · · ⊂ VQ

such that {F r}r∈Z induces a (pure) Hodge structure of weight l on
GrWl VQ =Wl/Wl−1.

Definition 2.1.10. Let V1 and V2 be Q-MHS. A morphism f : V1 → V2 is a
Q-linear map such that

f(WlV1 ⊗Q) ⊆WlV2 ⊗Q ∀l
f(F rV1,C) ⊂ F rV2,C ∀r

According to Deligne [6], these morphisms satisfy

f(F rV1,C) = f(V1,C) ∩ F rV2,C

f(WlV1 ⊗Q) = f(V1 ⊗Q) ∩WlV2 ⊗Q

In other words

Proposition 2.1.11. The weight W• and Hodge F • functors are exact.

We will only provide the general idea of the proof.
For a given Q-MHS V , Deligne defines a bigrading VC =

⊕

p,q I
p,q where

F rVC =
⊕

p≥r(
⊕

q I
p,q) and WlVC =

⊕

p+q≤l I
p,q, where Ip,q is defined in terms of

weight and Hodge filtration. Then, given a morphism f : V1 → V2, we obtain
f(Ip,q(V1,C)) ⊆ Ip,q(V2,C) for all p, q, and the conclusion is immediate.

The following theorem by Deligne [6] will be stated without proof.

Theorem 2.1.1. The cohomology of a complex scheme X carries a canonical and
functorial MHS, which agrees with the aforementioned Hodge structure H i(X,Q)
in the event that X/C is smooth projecive.

As a blanket statement, Deligne’s ideas extend to cohomology with supports,
homology (singular and Borel-Moore); moreover the localization sequence of a pair
(X,Z) is a LES of MHS. If X/C is smooth projective, then Hi(X,Q) is a Hodge
structure of weight −i; moreover Hi(X,Q(r)) := Hi(X,Q) ⊗ Q(−r) is a Hodge
structure of weight 2r − i.

11



Example 2.1.12. Let X/C be a smooth irreducible complex scheme of dimension
n, and Z ⊂ X a closed subvariety. Then the Poincaré duality isomorphism

H i
Z(X,Q(r)) ≃ H2n−i(Z,Q(n− r)) := H2n−i(Z,Q)⊗Q(r − n),

is an isomorphism of MHS. (Here H2n−i(Z,Q(n − r)) is Borel-Moore homology,
which agrees with singular homology in the event that Z is complete.

Remark 2.1.13. Borel-Moore homology can be defined as follows [19]:
We recall the construction of the simplicial homology. Given a simplicial complex
N with |N | = ⋃

σ∈N σ and triangulation T : |N | → X, we define the space of i-
chains of X with respect to T , denoted by CT

i (X), to be the vector space consisting
of all formal linear combinations ξ =

∑

σ∈N i ξσσ where N i denotes the set of i-
simplices in N and the coefficients ξσ are in the field of definition and only finitely
many of them are non-zero.
A refinement of T is a triangulation T ′ : |N | → X such that for each σ′ ∈ N
there exists some σ ∈ N such that T ′(σ′) ⊆ T (σ). Then, let us define the space
of all piecewise linear i-chains Ci(X) to be the colimit of the spaces CT

i (X) under
refinement. Then, the boundary maps ∂ : CT

i (X) → CT
i−1(X) induce boundary

maps ∂ : Ci(X) → Ci−1(X) with ∂2 = 0. Then, the simplicial homology in X is
defined by

Hsimp
i (X) =

ker∂ : Ci(X)→ Ci−1(X)

im∂ : Ci+1(X)→ Ci(X)

In the definition of CT
i (X) if we ignore the restriction that only finitely many of

the coefficients of the linear combinations are non zero, we can define CT
i ((X))

the space of locally finite i-chains of X with respect to T . We can define Ci((X))
and ∂ : Ci((X))→ Ci−1((X)) in the same way as in the simplicial case. Then, the
Borel-Moore homology is defined by

HBM
i (X) =

ker∂ : Ci((X))→ Ci−1((X))

im∂ : Ci+1((X))→ Ci((X))

When X is compact, any triangulation has N finite and both the Borel-Moore and
the simplicial homology coincide. Since the simplicial homology is isomorphic to
the singular homology, it agrees with the Borel-Moore homology as well.

Example 2.1.14. Let X be a compact Riemann surface (that is, a 1 dimensional
smooth projective variety over C) and ∅ 6= Σ ( X a finite set of points. Let
M = #|Σ| and X := X \ Σ. Then we have the exact sequence:

H1
Σ(X,Z)→ H1(X,Z)→ H1(X,Z)→ H2

Σ(X,Z)→ H2(X,Z)→ 0

where we observe that

H1
Σ(X,Z) ≃ H1(Σ,Z(1)) = 0,

12



H2
Σ(X,Z) ≃ H0(Σ,Z(1)) ≃ H0(Σ,Z(−1)), and H2(X,Z) ≃ Z(−1)

have (pure) weight 2. Then the above exact sequence becomes

0→ H1(X,Z)→ H1(X,Z)→ Z(−1)M−1 → 0.

And, if we put W2 := H1(X,Z), W1 := H1(X,Z), and W0 = 0, we observe that
W2/W1 ≃ ZM−1(−1) is indeed a Hodge structure of weight 2 (and pure type (1, 1)).
Also W1/W0 = H1(X,Z) which has a Hodge structure of weight 1 as noted before.
Thus H1(X,Z) has a MHS (with minimum weight 1).

Example 2.1.15. With the notation of the previous example, if we twisted by Z(1),
then H1(X,Z(1)) would have a MHS of minimum weight of −1 and a maximum
weight of 0.

2.1.16 Alternate take on the Abel-Jacobi map

Given X smooth complex projective variety, let ξ ∈ CHr
hom(X), with support |ξ|.

Then, following the idea behind Example 2.1.14, (with the inclusion of twists that
will be justified later), we have the exact sequence:

H2r−1
|ξ| (X,Z(r))→ H2r−1(X,Z(r))→ H2r−1(X \ |ξ|,Z(r))

→ H2r
|ξ|(X,Z(r))→ H2r(X,Z(r))

But H2r−1
|ξ| (X,Z(r)) ≃ H2n−2r+1(|ξ|,Z(n− r)) = 0 since dimR|ξ| = 2n − 2r. Now

let
H2r

|ξ|(X,Z(r))
◦ := ker(H2r

|ξ|(X,Z(r))→ H2r(X,Z(r)))

We observe that the cycle class [ξ] ∈ H2r
|ξ|(X,Z(r)), and since ξ is homologous to

zero in X we have [ξ] ∈ H2r
|ξ|(X,Z(r))

◦. Then, for this ξ we have the diagram

H2r−1(X,Z(r)) →֒ H2r−1(X \ |ξ|,Z(r)) ։ H2r
|ξ|(X,Z(r))

◦

‖ ↑ ↑

H2r−1(X,Z(r)) →֒ E →֒ Z[ξ]

with {E} ∈ Ext1MHS(Z(0), H
2r−1(X,Z(r))). Note that

H2r
|ξ|(X,Z(r)) ≃ H2n−2r(|ξ|,Z(n− r)),

has (pure) weight 0. We then put Φr(ξ) := {ξ}. Carlson [5] proved that Jr(X) ≃
Ext1MHS(Z(0), H

2r−1(X,Z(r))) and that the two definitions coincide.

13



Explicitly, the isomorphism can be explained as follows:
given {E} ∈ Ext1MHS(Z(0), H

2r−1(X,Z(r))) we have the exact sequence (by defini-
tion):

0→ H2r−1(X,Z(r))→ E → Z(0)→ 0

By exactness of the Hodge filtration, and shifting by −r via twists, we obtain

0→ F 0H2r−1(X,C)→ F 0EC → Z⊗ C = C→ 0

Thus, there exist an element µ ∈ F 0EC which is mapped to 1 in C. Like-
wise, over Z, the exactness of the weight filtration implies there exists ν ∈ W0E
which maps to 1 in Z(0). The difference ν − µ is precisely the retraction im-
age rC : EC ։ H2r−1(X,C). Note that after “untwisting”, µ ∈ F rEC, and by
Hodge type, it’s effect on F n−r+1H2n−2r+1(X,C) is zero. On the other hand,
E ⊂ H2r−1(X \ |ξ|,Z(r)) ≃ H2n−2r+1(X, |ξ|,Z(n− r))∨, and ν corresponds to the
current 1

(2πi)n−r

∫

ζ
(−), where ∂ζ = ξ. This is precisely the Griffiths Abel-Jacobi

map incorporating the Tate twist.

2.1.17 Hypercohomology

Let P•≥0 be a complex of sheaves on a ’nice’ space X. Using the Cech coboundary
operator δ we have the Cech double complex

{C•(U,P•) | d, δ}

where U is an open cover of X. We take the associated single complex

{M•(U) =
⊕

i+j=•

C i(U,Pj), D = d± δ}

with D2 = 0.

Definition 2.1.18. The kth-hypercohomology of the complex P• is given by

Hk(P•) := lim−→
U

Hk
D(M

•)

Double complexes have two associated descending filtrations which are (fil-
tered) subcomplexes of the associated single complex, with two associated Grothendieck
spectral sequences. In this case, we can denote the sequences

′Ep,q
2 = Hp

δ (X,H
q
d(P•))

′′Ep,q
2 = Hp

d(X,H
q
δ (P•))

In the first spectral sequence Hq
d(P•) denotes the cohomology of P•, which gives us

a way to identify when two complexes have the same associated hypercohomology.
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Definition 2.1.19. Two complexes of sheaves K•
1, K•

2 are quasi-isomorphic if there
is a morphism h : K•

1 → K•
2 inducing an isomorphism on cohomology

h∗ : H
q(K•

1)→ Hq(K•
2) for all q.

Therefore, by the first spectral sequence above ′Ep,q
2 , two quasi-isomorphic

complexes yield the same hypercohomology. Moreover, if a complex P• is quasi-
isomorphic to a complex (K•, d) of acyclic sheaves (that is, H i(X,Kj) = 0 for i > 0
and for all j), the second spectral sequence ′′Ep,q

2 tells us that

Hk(P•) := Hk(H0(X,Kj))

Example 2.1.20. The complex of sheaves of holomorphic forms (Ω•
X , d) is defined

by
OX → Ω1

X → Ω2
X → · · ·

Where OX denotes the sheaf of germs of holomorphic functions and ΩlX denotes the
sheaf of germs of holomorphic differential l-forms. By the holomorphic Poincaré
lemma, this complex is quasi-isomorphic to the acyclic complex

C→ 0→ 0→ · · ·

We also have the complex of sheaves of C∞-forms (E•X , d):

E0X → E1X → E2X → · · ·

which, by the C∞ Poincaré lemma, is quasi-isomorphic to (Ω•
X , d).

Therefore, by the previous observations we have

Hk(X,C) ≃ Hk(C→ 0→ 0→ · · · ) ≃ Hk(Ω•
X) ≃ Hk(E•X)

Moreover, if we denote by F rΩ•
X and F rE•X the filtered complexes

0→ 0→ · · · → ΩrX
d→ Ωr+1

X
d→ · · ·

0→ 0→ · · · → ErX
d→ Er+1

X
d→ · · ·

these are quasi-isomorphic as well (see [12]). Then, since E•X is acyclic, we have

Hk(F rΩ•
X) ≃ HkF r(E•X) ≃

kerd : F rEk
X → F rEk+1

X

dF rEk−1
X

≃ F rHk
DR(X)

Example 2.1.21. By GAGA, we have a quasi-isomorphism between Ω•
X and Ω•

X,alg

which is also filtered. Thus we have

Hi(F rΩ•
X) ≃ Hi(F rΩ•

X,alg) =: F rH i
Zar(X,C)
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2.2 Chow groups

2.2.1 Rational and algebraic equivalence

Let zr(X) denote the free abelian group generated from the set of all irreducible
subvarieties of X of codimension r.

Example 2.2.2. Given that X is of dimension n, the only subvariety of codimen-
sion 0, (that is, of dimension n) is X itself. Thus, z0(X) = Z{X} ≃ Z.

Example 2.2.3. The only subvarieties of codimension n (that is, of dimension
0) are the discrete subvarieties, each consisting of a finite set of points. Thus the
irreducible subvarieties are the one-point subvarieties, and we get

zn(X) = {
N
∑

j=0

njpj | N ∈ N, nj ∈ Z, pj ∈ X}

Definition 2.2.4. We say that ξ1, ξ2 ∈ zr(X) are rationally equivalent (denoted
ξ1 ∼rat ξ2 ) if there exists a cycle w ∈ zr(P1 ×X) in "general position", meaning
w(t) := Pr2,∗((t×X) • w) ∈ zr(X) is defined ∀t ∈ P1, such that
ξ1 − ξ2 = w(0)− w(∞).

Definition 2.2.5. We say that ξ1, ξ2 ∈ zr(X) are algebraically equivalent (denoted
ξ1 ∼alg ξ2 ) if there exists a smooth connected curve Γ, a cycle w ∈ zr(Γ ×X) in
"general position", and points p, q ∈ Γ, such that ξ1 − ξ2 = w(p)− w(q).

Let zrrat(X) = {ξ ∈ zr(X) | ξ ∼rat 0} and zralg(X) = {ξ ∈ zr(X) | ξ ∼alg 0}.
The quotient CHr(X) := zr(X)/zrrat(X) is called the Chow group of X of codi-
mension r and the quotient CHr

alg(X) := zralg(X)/zrrat(X) is the algebraic Chow
group of X of codimension r. It is also the case that CHr

hom(X) = CHr
alg(X) for

r = 1 and r = n, but is in general false for 1 < r < n, (that being first demon-
strated by Griffiths [11]).

Another notable group is the group of cycles numerically equivalent to zero,
CHr

num(X).
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Definition 2.2.6. We say that ξ ∈ CHr(X) is numerically equivalent to zero if
deg(ξ · γ)X = 0 for all ξ ∈ CHr(X) (where (·)X is the intersection pairing on X).

We will see that if we assume the Hodge conjecture, a cycle is numerically
equivalent to zero exactly when it is homologous to zero (it is in the kernel of the
Abel Jacobi map). We first recall the hard Lefschetz theorem which will be stated
without proof:

Theorem 2.2.7 (Hard Lefschetz theorem). Let LX denote the operator of taking
cup product with the hyperplane class of X. For all k, the map

Ln−iX : H i(X ;Q)→ H2n−i(X ;Q)

is an isomorphism. The result holds true for complex coefficients as well.

And we also introduce

Conjecture 2.2.8 (hard Lefschetz conjecture). The inverse of the map Ln−iX

Λn−iX : H2n−i(X ;Q)→ H i(X ;Q)

is algebraic

By Hodge theory, we have that the cup product pairing

N r
HH

k(X,Q)×N r+n−k
H H2n−k(X,Q)→ H2n(X,Q) ≃ Q

is nondegenerate. Here N r
H denotes the largest sub-Hodge structure in

F rH i(X,Q) := {F rH i(X,C)} ∩H i(X,Q). If we replace N r
H by the coniveau N r,

then nondegeneracy requires General Hodge Conjecture (GHC). Note that the
GHC (stated later) ⇒ Hodge conjecture ⇒ hard Lefschetz conjecture, where the
latter is enough to guarantee that a cycle ξ is numerically equivalent to zero exactly
when it lies in the kernel of the cycle class map. As part of the construction of the
Bloch Beilinson filtration below, one needs the hard Lefschetz conjecture.

2.2.9 Milnor K- theory

Given a field F, we have the Milnor K-groups KM
n (F), n ≥ 0, with KM

0 (F) := Z,
KM

1 (F) = F× and for n ≥ 2, generated by symbols {a1, . . . , an}, with a1, . . . , an ∈
F× such that

F× × · · · × F× → KM
n (F)

where
(a1, . . . , an) 7→ {a1, . . . , an}
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is a multilinear function, and where {a1, . . . , an} = 0 if ai + aj = 1 for some i 6= j.

Accordingly, we define the Milnor sheaf K M
r,X := (O×

X⊗· · ·⊗O×
X)/J (r times),

where J is the subsheaf of tensor product generated by sections of the form:

{τ1 ⊗ · · · ⊗ τr | τi + τj = 1 , for some i and j, i 6= j}

For example, K M
1,X = O×

X . Then one has a Gersten - Milnor complex, which comes
from a flasque resolution of K M

r,X (see [8], [18]).

K M
r,X → KM

r (F(X))→
⊕

codXZ=1

KM
r−1(F(Z))→ · · ·

→
⊕

codXZ=r−2

KM
2 (F(Z))→

⊕

codXZ=r−1

KM
1 (F(Z))→

⊕

codXZ=r

KM
0 (F(Z))→ 0

where K0(F) = Z, K1(F) = F× and K2(F) consisting of the abelian group gener-
ated by the symbols {a, b} with a, b ∈ F×subject to the Steinberg relations:

{a1a2, b} = {a1, b}{a2, b}

{a, b} = {b, a}−1

{a, 1− a} = {a,−a} = 1 , for a 6= 1

In particular, when the field of definition is C, we have

K M
r,X → KM

r (C(X))→
⊕

codXZ=1

KM
r−1(C(Z))→ · · ·

→
⊕

cdXZ=r−2

KM
2 (C(Z))

T→
⊕

cdXZ=r−1

C(Z)×
div→

⊕

cdXZ=r−2

Z

where div is the divisor map of zeros minus poles of a rational function and T is
the Tame symbol map

T :
⊕

cdXZ=r−2

KM
2 (C(Z))→

⊕

cdXD=r−1

C(D)×

which is defined as follows: for f, g ∈ C(Z)×, we have

T ({f, g}) =
∑

D

(−1)νD(f)νD(g)

(

f νD(g)

gνD(f)

)

D

where (· · · )D means restriction to the generic point of D, and νD(h) is the order of
vanishing of a rational function h along D. (To see more details on this complex,
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one can see [14], [8], [18]). It is a Milnor K-theoretic version of the famous work
of Bloch and Quillen using Quillen K-theory.

The corresponding homologies of this complex define the higher Chow groups,
denoted by CHr(X,m) for the cases 0 ≤ m ≤ 2. Specifically, one has in the given
range of m, and due to flasqueness of the Gersten resolution, (proved by Stefan
Müller-Stach, see [27])

CHr(X,m) ≃ Hr−m
Zar (X,K M

r,X).

We have for example that CHr(X, 1) is represented by the classes of the form
ξ =

∑

j(fj, Dj), where codimXDj = r − 1, fj ∈ C(Dj)
×, and

∑

div(fj) = 0 (and
modulo the image of the Tame symbol).

We observe that CHr(X) := CHr(X, 0) is the free abelian group generated
by subvarieties of codimension r in X, modulo divisors of rational functions on
subvarieties of codimension r − 1 in X.

2.2.10 Twisted version of the cycle class map

We can define the cycle class map with Milnor K-theory as follows:
Recall the d log map K M

r,X → ΩrX , defined by {f1, . . . , fr} 7→
∧

j d logfj. Then,
by the Poincaré holomorphic lemma, this map induces the following morphism of
complexes which is due to Gabber (or Müller-Stach, Elbanz-Vincent, see [8])

(

K M
r,X → 0→ 0→ · · ·

)

→ F rΩ•
X,alg[r],

in the Zariski topology.

This, in turn, induces

CHr(X) = Hr
Zar(X,K

M
r,X) = Hr

(

K M
r,X → 0→ 0→ · · ·

)

→ Hr
(

F rΩ•
X,alg[r]

)

= H2r
(

F rΩ•
X,alg

)

≃ F rH2r(X,C).

Later we will see that the image lies in H2r(X,Q(r)) giving us a twisted version of
the cycle class map. We observe that Gal(C/Q) acts on both Hr

Zar(X,K
M
r,X) and

H2r
(

F rΩ•
X,alg

)

, and hence compatible with this twisted version of the cycle class
map. That explains the need to incorporate twists.
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2.2.11 Image and kernel of the Abel-Jacobi map

It is well known that, for r = 1, the Abel-Jacobi map Φ1 : CH1
hom(X)

∼→ J1(X)
is an isomorphism. It is also known that Φn : CHn

hom(X) ։ Jn(X) is surjective.
However, surjectivity of Φr for 1 < r < n rarely holds in general.
The following result concerning the image of the Abel Jacobi map is due to Grif-
fiths (see [11] ).

Theorem 2.2.1. [ Griffiths ] [11] If X ⊂ P4 is a quintic 3-fold, as a general
hyperplane section of Fermat quintic fourfold in P4, then the image of the Abel
Jacobi map AJ : CH2

hom(X)→ J2(X) contains an infinite cyclic subgroup.

Define Jralg(X) := Φr(CHr
alg(X)), where we recall CHr

alg(X) = zralg(X)/zrrat(X)
is the Chow group of cycles algebraically equivalent to zero, and Φr is the Abel-
Jacobi map. Then, Φr induces a map CHr

hom(X)/CHr
alg(X) → Jr(X)/Jralg(X).

Using Hilbert schemes arguments, we know that the image of this map is count-
able.

Suppose that the degree d of X is large enough (d ≥ 5) so that H3,0(X) 6= 0.
In this case, Griffith showed, by a Lefschetz pencil argument, that J2

alg(X) = 0

for general X, so that the induced map CH2
hom(X)/CH2

alg(X) → J2(X) cannot
be surjective. So in this example, the Abel-Jacobi map Φ2 is nontrivial and has
countable image, thus cannot be surjective.

In general the kernel of Φr is far from trivial, as proven by Mumford:

Theorem 2.2.2. (Mumford) [28] Let X be a smooth complex projective surface
such that H2,0(X) 6= 0.
Then ker(Φ2 : CH2

hom(X) −→ J2(X)) is "enormous".

Outline of proof Note that in this case CH2
hom(X) = CH0(X)deg0. Looking at

the N -th symmetric product S(N)(X), we identify it with the connected compo-
nent of the Chow variety of effective 0-cycles of degree N on X. It is known to be
projective algebraic, with singularities concentrated on {p1 + · · · + pN | not all of
the {p1 + · · ·+ pN} are distinct} . Let κN : S(N)(X)→ CH0(X), A 7→ {A} be the
natural map.
It can be proved that the fibers of this map are c-closed, that is, they are count-
able unions of closed subvarieties. As such, they have a unique decomposition into
irreducibles (as C is uncountable) so we can set dimensions for them. Then we
can define δN := dim κN (S

(N)(X)) = 2N − min{ dimensions of fibers of κN}.
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Using H2,0(X) 6= 0, one can show that this is an unbounded sequence, leading us
to conclude that ker(Φ2) is highly nontrivial.

Looking at the most simple case of the Abel-Jacobi map (Φ1 which turns out
to be an isomorphism as stated above) one would hope for either surjectivity or
injectivity (or both) for the map in general.
Griffiths example shows that, for hypersurfaces of large degree, we can’t expect
surjectivity and Mumford’s Theorem provides that we can’t expect the kernel to
be trivial either. Thus, the Abel-Jacobi map can be very complicated in general.
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Chapter 3

Normal functions and the

Bloch-Beilinson filtration

3.1 Deligne cohomology and normal functions

3.1.1 Definition of Deligne cohomology

Deligne cohomology is defined via the Deligne complex ZD(r) (or more generally,
it can be defined for any subring A ⊂ R ) for a complex manifold, which in our
case will be a smooth projective variety X over C:

ZD(r) : Z(r)→ OX d→ Ω1
X

d→ Ω2
X

d→ · · · d→ Ωr−1
X

Where OX denotes the sheaf of germs of holomorphic functions and ΩlX denotes
the sheaf of germs of holomorphic differential l-forms.

Definition 3.1.2. Deligne cohomology H i
D(X,Z(r)) is defined to be the ith hyper-

cohomology of the Deligne complex, that is H i
D(X,Z(r)) := Hi(ZD(r)).

Alternatively, we can define the Deligne cohomology using the following con-
cept.

Definition 3.1.3. Let h : (A•, d) → (B•, d) be a morphism of complexes. We

define Cone(A• h→ B•) by the formula

[Cone(A• h→ B•)]q := Aq+1 ⊕ Bq, δ(a, b) = (−da, h(a) + db)

Then, Cone(Z(r)⊕ F rΩ•
X

ε−l→ Ω•
X)[−1] is given by:
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Z(r)→ OX d→ ΩX
d→ · · · d→ Ωr−2

X

(0,d)→ (ΩrX ⊕ Ωr−1
X )

δ→ (Ωr+1
X ⊕ ΩrX)

δ→ · · · δ→ (ΩnX ⊕ Ωn−1
X )→ ΩnX

We observe there is a natural morphism of complexes

ZD(r)→ Cone(Z(r)⊕ F rΩ•
X

ε−l→ Ω•
X)[−1]

which is a quasi-isomorphism. Indeed, the cohomology Hi
d(ZD(r)) is obviously

the same as that of Hi−1(Cone(Z(r)⊕ F rΩ•
X

ε−l→ Ω•
X)) are obviously the same for

i < r− 1. Then, any (a, b) ∈ ΩrX ⊕Ωr−1
X is mapped to (−da, db− a) ∈ Ωr+1

X ⊕ΩrX .
We observe then that δ(a, b) = (0, 0) if and only if da = 0 and a = db, but
this is the same as saying just a = db. Now, Im(0, d) = dΩr−2

X so, by the holo-
morphic Poincaré lemma, ker δ/Im(0, d) ≃ Ωr−1

X /dΩr−2
X = Hr−1

d (ZD)(r). Then for
(a, b) ∈ Ωr+jX ⊕Ωr+j−1

X with j ≥ 1, we observe that the elements of ker δ are of the
form (db, b), but these can also be writen as δ(−b, 0). Therefore, the cohomology
of the cone is zero in this case and the result follows.

Since the hypercohomology of two quasi-isomorphic complexes are the same,
we obtain an alternate definition for the Deligne cohomology:

H i
D(X,Z(r)) := Hi(Cone(Z(r)⊕ F rΩ•

X
ε−l→ Ω•

X)[−1])

Let D•
X be the sheaf of currents acting on C∞ compactly supported

(2n−•)-forms, and let Dp,qX be the sheaf of currents acting on C∞ compactly sup-
ported (n− p, n− q)-forms. Then we have the decomposition D•

X =
⊕

p+q=•Dp,qX .
Recall E•X , the complex of sheaves of C-valued C∞ forms. Then we have a mor-
phism of complexes E•X →֒ D•

X induced by ω 7→ (2πi)−n
∫

X
ω ∧ (−) and with

Ep,qX →֒ Dp,qX compatible with ∂ and ∂.
Let us denote by C•X = C2n−•,X(Z(r)) the sheaf of (Borel-Moore) chains of real
codimension •. We identify the constant sheaf Z(r) with the complex

Z(r)→ 0→ · · · → 0

and we have the quasi-isomorphisms

Z(r)
≈→ C•X(Z(r)), Ω•

X
≈→ E•X , E•X

≈→ D•
X

where the latter two are (Hodge) filtered. From this, we obtain

H i
D(X,Z(k)) ≃ Hi(Cone(C•X(Z(r))⊕ F rD•

X
ε−l→ D•

X)[−1])
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We also observe that Hi(F pΩ•
X) ≃ Hi(F pE•X) ≃ F pH i

DR(X). Thus, we have

Hi(Ω•<p
X ) ≃ H i

DR(X)

F pH i
DR(X)

And then, applying hypercohomology to the short exact sequence

0→ Ω•<r
X [−1]→ ZD(r)→ Z(r)→ 0

we obtain the short exact sequence

0→ H i−1(X,C)

H i−1(X,Z(r)) + F rH i−1(X,C)
→ H i

D(X,Z(r))

→ H i(X,Z(r)) ∩ F rH i(X,C)→ 0

3.1.4 The Milnor cycle class map revisited

Let V ⊂ X a subvariety of codimension r in X. Let us denote H0(X,−) by
Γ. Then, from the Gersten-Milnor complex, one has the following commutative
diagram due to Lewis [21] where the 2πi factors enter in, due to Poincaré duality:

ΓKM
r (C(X)) → Γ

⊕

codXZ=1K
M
r−1(C(Z)) → · · · → Γ

⊕

codXV=rK
M
0 (C(X))

∫

X
d logr
(2πi)n

−→

∫

Z

d logr−1

(2πi)n−1 −→ · · ·
∫

V
d log0

(2πi)n−r −→

ΓF rDrX
d→ ΓF rDr+1

X

d→ · · · d→ ΓF rD2r
X

where d logr({f1, . . . fr}) =
∧r
j=1 d log fj, and for {w} ∈ H2n−2r

DR (X,C) the
vertical map in the right hand is

∫

V

d log0w

(2πi)n−r
=

1

(2πi)n−r
δV (w)

where we write δV (w) :=
∫

V ∗ w. Note that 1
(2πi)n−r δV is the same topologically as

the corresponding homology class

(2πi)r−n{V } ∈ H2n−2r(X,Z(n− r)) ≃ H2r(X, ,Z(r))

where the latter isomorphism is Poincaré duality. This recovers the (twisted) de-
scription for the cycle class map for Chow groups through Milnor K-theory.
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3.1.5 Introducing normal functions

Looking at the first and second cycle class maps, we have the following commuta-
tive diagram:

0 −→ CHk
hom(X) −→ CHk(X) −→ CHk(X)

CHk
hom

(X)
−→ 0

↓ Φr ↓ ψr ↓ clr

0 −→ Jr(X) −→ H2r
D (X,Z(r)) −→ Hr,r(X,Z(r)) −→ 0

(3.1)

where we take Hr,r(X,Z(r)) as the inverse image of Hr,r(X) in H2r(X,Z(r))
under the map induced by the inclusion Z →֒ C. Here ψr can be explicitly stated
using the mapping cone cohomology interpretation of the Deligne cohomology ([7]):

H i
D(X,Z(r)) := Hi(Cone(Z(r)⊕ F rΩ•

X
ε−l→ Ω•

X)[−1])

through which we get the long exact sequence

· · · → H i−1(X,Z(r))⊕ F rH i−1(X,C)→ H i−1(X,C)

→ H i
D(X,Z(r))→ H i(X,Z(r))⊕ F rH i(X,C)→ · · ·

Let ξ ∈ CHr(X) with support |ξ|. Then, from the previous long exact sequence
we get the long exact sequence

· · · → H2r−1
|ξ| (X,Z(r))⊕ F rH2r−1

|ξ| (X,C)→ H2r−1
|ξ| (X,C)

→ H2r
D,|ξ|

(X,Z(r))→ H2r
|ξ|(X,Z(r))⊕ F rH2r

|ξ|(X,C)
ε−l→ H2r

|ξ|(X,C)→ · · ·

We can map ξ 7→ {ξ} ∈ H2n−2r(|ξ|,Z(n− r)) ≃ H2r
|ξ|(X,Z(r)) by Poincaré duality.

Here {ξ} − [ξ] corresponds to zero in H2r
|ξ|(X,C) and thus, we have the map

ξ 7→ [(2πi)r−n({ξ}, δξ)] ∈ ker(F rH2r
|ξ|(X,C)→ H2r

|ξ|(X,C))

But because the real dimension of |ξ| is 2n− 2r, we have

H2r−1
|ξ| (X,C) ≃ H2n−2r+1(|ξ|,C) = 0

Then we can define clr(ξ) ∈ H2r
D (X,Z(r)) from the injection

H2r
D,|ξ|(X,Z(r)) →֒ H2r

|ξ|(X,Z(r))⊕ F rH2r
|ξ|(X,C)

25



through the use of the forgetful map

H2r
D,|ξ|(X,Z(r))→ H2r

D (X,Z(r))

In terms of the cone complex, clr(ξ) can be written as ((2πi)r−n{ξ}, (2πi)r−nδξ, 0).
Assume ξ ∼hom 0, that is, ξ = ∂ζ for some ζ and (2πi)r−nδξ = dS for some
S ∈ F rD2r−1(X), then we have

D((2πi)r−nζ, S, 0) = (−(2πi)r−n∂ζ,−dS, (2πi)r−n
∫

ζ

(−)− S)

and therefore

D((2πi)r−nζ, S, 0) + ((2πi)r−n{ξ}, (2πi)r−nδξ, 0) = (0, 0, (2πi)r−n
∫

ζ

(−)− S)

which is an element not in the image of the cycle class map as previously defined.
Moreover, given ω ∈ F n−r+1H2n−2r+1(X,C), we see that S(ω) must be zero (since
S doesn’t act on this Hodge type) and thus, the third element in the previous
expression is

1

(2πi)n−r

∫

ζ

ω

which is the Abel-Jacobi map (twisted version) .

Combining these results, we obtain the map ψr depicted in the diagram 3.1
rather explicitly.

In the second row of the diagram 3.1, by Carlson’s isomorphism, we can identify
Jr(X) with Ext1MHS(Z(0), H

2r−1(X,Z(r))) = J(H2r−1(X,Z(r))), andHr,r(X,Z(r))
with homMHS(Z(0), H

2r(X,Z(r))) = Γ(H2r(X,Z(r))).

Now, given a smooth and proper morphism ρ : X → S, with S a smooth quasipro-
jective variety, we set Xt = ρ−1(t) for t ∈ S. Using the restriction of this morphism
to each fiber and the previous observations, from the previous diagram we obtain:

CHr(X) ←− CHr
relhom(X)

↓
0 −→ J(H2r−1(X,Z(r))) −→ H2r

D (X,Z(r)) −→ Γ(H2r(X,Z(r))) −→ 0

↓ ↓ ↓
0 −→ J(H2r−1(Xt,Z(r))) −→ H2r

D (Xt,Z(r)) −→ Γ(H2r(Xt,Z(r))) −→ 0
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Where CHr
relhom(X) := {ξ ∈ CHr(X) | ξ ∩Xt ∼hom 0 in Xt}.

For any ξ ∈ CHr
relhom(X), using this diagram, it maps to zero in Γ(H2r(Xt,Z(r))).

Thus, we can assign it a function νξ : S(C)→
∐

t∈S(C) J(H
2r−1(Xt,Q(r))).

Definition 3.1.6. νξ is called a (cycle-induced) normal function.

3.2 Bloch-Beilinson filtration

3.2.1 Q-spreads

Given a smooth projective variety X over C, we can always write X/C = XK×KC

for some finitely generated K over Q, where XK denotes the underlying smooth
projective variety over K. Now we can write K = Q(S) for some smooth quasipro-
jective variety S. Then, a Q-spread is a smooth and proper morphism ρ from
quasiprojective variety X (over Q) to S (over Q), ρ : X → S.
The generic point η of the scheme S/Q is the "point" of S such that Q(S) = Q(η)
is the residue field at η, thus K = Q(η), so the fiber Xη of the morphism ρ

can be identified with XK , via the embedding Q(η)
≃−→ K ⊂ C, and satisfies

Xη ×K C = X/C, again with respect to the embedding Q(η)
≃−→ K ⊂ C defining

K as a subfield (hence X/C).

Example 3.2.2. : Let

X/C = Spec

(

C[x, y, z]

(πx3y +
√
πy2 + ex+

√
2)

)

where, Spec(A) := { prime ideals in A} for a ring A, and put K = Q(π,
√
π, e,
√
2).

Observe that X/C = XK ×K C.
Let

R =
Q[t, s, u, v]

(t− s2, v2 − 2)

and put S = Spec(R). Taking K̃ = Quot(R) = Q(S), we can inject it in K ⊂ C

via the "evaluation" map: (t, s, u, v) 7→ (π,
√
π, e,
√
2).

Now take

X = Spec

(

Q[x, y, z, t, s, u, v]

tx3y + sy2 + ux+ v, t− s2, v2 − 2

)
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so we get the map ρ : X → S (induced by the inclusion). Then, given a generic
point η ∈ S, the fiber Xη satisfies Xη ×K C = X/C, and K̃ = Q(η) which is
injected onto K ⊂ C.

In general, we can extend this definition to k-spreads using the same argu-
ments, where k is any algebraically closed subfield of C.

The following result is useful:

Proposition 3.2.3. Let X/k be a smooth projective variety defined over an alge-
braically closed subfield k ⊆ C. Assume the Hodge conjecture, specifically

CHr(X/C;Q) ։ Hr,r(X(C),Q(r)).

Then CHr(X/k;Q) ։ Hr,r(X(C),Q(r)) is likewise surjective.

Proof. We have X/C = Xk×kC. Let ξ ∈ CHr(X/C;Q). Then from the coefficients
of ξ we have ξ = ξK ∈ CHr(XK ;Q) for some finitely generated field K/k. Note
that K = k(S) for some smooth k-variety S. Since X is already defined over k,
we can define a k spread X = S ×k X, with spread cycle ξ̃ ∈ CHr(S ×k X ;Q).
Choose a k point t0 ∈ S(k), which is possible since k is algebraically closed. Then,
applying the Künneth formula to H2r({S ×X}(C),Q), ξt0 and ξK take the same
image in Hr,r(X(C),Q(r)). By the Hodge conjecture for X/C, we are done.

3.2.4 Bloch-Beilinson filtration and arithmetic normal func-

tions

Let us return to the cycle class and Abel Jacobi maps

clr : CHr(X ;Q)→ ΓH2r(X,Q(r)) := homMHS(Q(0), H2r(X,Q(r))

:= Ext0MHS(Q(r), H2r(X,Q(r))),

AJ : CHr
hom(X ;Q)→ Jr(X) ≃ Ext1MHS(Q(0), H2r−1(X,Q(r))),

If we write CHr
AJ(X ;Q) for the kernel of AJ , we might (naively) think we can get

a filtration on Chow groups following this pattern with a new element coming from
the kernel of some map of the form CHr

AJ(X ;Q)→ Ext2MHS(Q(r), H2r−2(X,Q(r))).
However this can’t be the case as for any Q-MHS H1, H2, ExtiMHS(H1, H2) = 0
for i > 1. This fact was proved by Beilinson [3]. For the benefit of the reader,
the following argument should suffice. Carlson’s formula for Ext1MHS(H1, H2) show
that Ext1MHS(H1,−) is right exact. If we assume for the moment that the category
of Q-MHS has enough injectives, then the vanishing of ExtiMHS(H1, H2) for i > 1
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is clear. In general, one still gets the vanishing via a Yoneda-Ext argument. To
define a candidate BB filtration, we need the Bloch-Beilinson conjecture:

Conjecture 3.2.5. Let X be a smooth projective variety over Q. Then the Abel-
Jacobi map

AJ : CHr
hom(X/Q;Q) →֒ J(H2r−1(X(C),Q(r)))

is injective.

We need a slight variant of this conjecture. Namely,

Proposition 3.2.6. Let us assume the Hodge conjecture. Then X in the above
conjecture can be replaced by a smooth quasi-projective variety over Q.

Proof. Let X/Q be smooth projective, and U/Q ⊂ X/Q an open subset, we want
to show that the Abel-Jacobi map CHr

hom(U ;Q)→ J
(

H2r−1(U,Q(r))
)

is injective.
Put Y = X\U . By a proper modification of X along Y (using blow-ups if nec-
essary), we can assume that Y is of pure codimension one in X (which simplifies
the notation). From the localization sequence on Chow groups, and after applying
Q-coefficients, one has an exact sequence

CHr−1(Ỹ ;Q)→ CHr(X ;Q)→ CHr(U ;Q)→ 0, (3.2)

where Ỹ
≈−→ Y is a desingularization. Correspondingly from Deligne’s mixed Hodge

theory, the sequence with twists

H2r−2(Ỹ ,Q(r − 1))→ H2r(X,Q(r))→ H2r(U,Q(r)) (3.3)

is exact. From the Hodge conjecture, one shows that

CHr
hom(X ;Q)→ CHr

hom(U ;Q),

is surjective. Here is how it works. We combine (3.2) and (3.3) in a commutative
diagram:

CHr−1(Ỹ ;Q) → CHr(X ;Q) → CHr(U ;Q) → 0







y







y







y

H2r−2(Ỹ ,Q(r − 1)) → H2r(X,Q(r)) → H2r(U,Q(r))
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So if ξ ∈ CHr
hom(U ;Q), then we know that ξ′ 7→ ξ for some ξ′ ∈ CHr(X ;Q).

Now [ξ′] ∈ H2r(X,Q(r)) 7→ 0 ∈ H2r(U,Q(r)), hence we can find an element of
H2r−2(Ỹ ,Q(r − 1)) mapping to [ξ′] and by semi-simplicity issues, [ξ′′] 7→ [ξ′] for
some [ξ′′] ∈ Hr−1,r−1(Ỹ ,Q(r)). By the Hodge conjecture, we may assume that
ξ′′ ∈ CHr−1(Ỹ ;Q). Thus ξ′ − ξ′′ 7→ ξ, and ξ′ − ξ′′ ∈ CHr

hom(X ;Q). Now, one
defines CHr−1(Ỹ ;Q)◦ ⊂ CHr−1(Ỹ ;Q) such that

CHr−1(Ỹ ;Q)◦ → CHr
hom(X ;Q)→ CHr

hom(U ;Q)→ 0, (3.4)

is exact. (Explicit:

CHr−1(Ỹ ;Q)◦ = {w ∈ CHr−1(Ỹ ;Q) | σ∗(w) ∈ CHr
hom(X ;Q)},

where σ : Ỹ → X is the natural morphism.) Next, consider the short exact
sequence:

0→ H2r−3(Ỹ ,Q(r − 1))

ker σ∗

σ∗−→ H2r−1(X,Q(r))→ H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r − 1))
→ 0,

(3.5)
from which, through the long exact sequence of extension classes of MHS (and
recalling that Ext2MHS is zero) we obtain the diagram

CHr−1

hom
(Ỹ ;Q)

ker σ∗
→֒ CHr

hom(X ;Q) → CHr
hom

(X;Q)

σ∗CHr−1

hom
(Ỹ ;Q)

→ 0

↓ ↓ ↓

J

(

H2r−3(Ỹ ,Q(r−1))
kerσ∗

)

→֒ J(H2r−1(X,Q(r))) → J

(

H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r−1))

)

→ 0

(3.6)
where the vertical arrows are given by the Abel Jacobi map, and by the Bloch-
Beilinson conjecture for smooth projective X/Q, the middle arrow is injective.
Next we observe that the short exact sequence 3.5 is split exact; in particular σ∗
has a left inverse (call it λ∗), which by the Hodge conjecture, is cycle induced. We
now argue as follows: Suppose that

ξ ∈ ker

[

CHr
hom(X,Q)

σ∗CHr−1
hom(Ỹ ,Q)

→ J

(

H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r − 1))

)]

.

We know that ξ′ 7→ ξ for some ξ′ ∈ CHr
hom(X ;Q), and so

AJ(ξ′) 7→ 0 ∈ J
(

H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r − 1))

)

,
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hence

AJ(ξ′) ∈ J
(

H2r−3(Ỹ ,Q(r − 1))

ker σ∗

)

,

and so
λ∗ ◦ σ∗(AJ(ξ′)) = AJ(ξ′).

By functoriality of the AJ map,

AJ(ξ′) = AJ(λ∗ ◦ σ∗(ξ′)).

Interpreted appropriately, this means that if we set ξ′′ = λ∗◦σ∗(ξ′), then ξ′−ξ′′ 7→ ξ
and ξ′ − ξ′′ ∈ lies in the kernel of the middle AJ map of the diagram 3.6. Thus
ξ = 0, and the map in the AJ map on the right hand side of the diagram 3.6 is
injective. Finally, there is a short exact sequence:

0→ H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r − 1))
→ H2r−1(X,Q(r))→ H2r

Y (X,Q(r))◦ → 0.

where H2r
Y (X,Q(r))◦ denotes the appropriate kernel. We observe that this is a

pure Hodge structure of weight 0 and we recall that for a MHS V , J(V ) can be
identified with (using the extension class interpretation by J.Carlson, [5])

W0VC
F 0W0VC +W0V

so the AJ maps H2r
Y (X,Q(r))◦ to zero. This gives us the commutative diagram

CHr−1(Ỹ ;Q)◦

CHr−1

hom
(Ỹ ;Q)

→ CHr
hom

(X;Q)

σ∗CHr−1

hom
(Ỹ ;Q)

→ CHr
hom(U ;Q) → 0







y







y







y

ΓH2r−2(Ỹ ;Q(r − 1))◦ → J

(

H2r−1(X,Q(r))

σ∗H2r−3(Ỹ ,Q(r−1))

)

→ J(H2r−1(U,Q(r))) → 0

where we identify the images of the maps. By the Hodge conjecture, the left
vertical map (cycle class map) is surjective and the middle arrow is injective as
shown before. The proposition follows.

The concept of Q-spreads is used by Lewis ([24], [25]) to construct a candidate
for a Bloch-Beilinson filtration for Chow groups CHr(X ;Q) (for all r).
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Theorem 3.2.1. [ Lewis ] [25] Let X be a smooth projective variety over C of
dimension d. Then for all r, there is a filtration

CHr(X ;Q) = F 0 ⊃ F 1 ⊃ · · · ⊃ F ν ⊃ F ν+1 ⊃ · · · ⊃ F r ⊃ F r+1 = F r+2 = · · ·

which satisfies the following
(i) F 1 = CHr

hom(X ;Q)
(ii) F 2 ⊂ CHr

AJ(X ;Q)
(iii) F ν1CHr1(X ;Q) • F ν2CHr2(X ;Q) ⊂ F ν1+ν2CHr1+r2(X ;Q), where • is the in-
tersection product.
(iv) F ν is preserved under the actions of correspondences between smooth projec-
tive varieties over C.
(v) Let GrνFCHr(X ;Q) := F νCHr(X ;Q)/F ν+1CHr(X ;Q) and assume that the
Künneth components of the diagonal class

[∆] =
⊕

p+q=2d

[∆X(p, q)] ∈ H2d(X ×X,Q(d)))

are algebraic. Then

∆X(2d− 2r + l, 2r − l)∗ |Grν
F
CHr(X;Q)= δl,ν · Identity

(vi) Let Dr(X) := ∩νF ν, and k = Q. If the Bloch-Beilinson Conjecture together
with the Hodge conjecture holds, then Dr(X) = 0.

The idea of the construction is as follows: given a spread ρ : X → S, analogous
to the situation of Deligne cohomology, there is a short exact sequence:

0→ J
(

H2r−1(X ,Q(r))
)

→ H2r
H (X ,Q(r))→ Γ

(

H2r(X ,Q(r))
)

→ 0,

and morphism CHr(X ;Q) → H2r
H (X ,Q(r)) which is injective, under the as-

sumption of the Bloch-Beilinson and Hodge conjectures. We use the Leray spec-
tral sequence associated to ρ on cohomology to induce a decreasing filtration
FνCHr(X /Q;Q). Here, H2r

H (X ,Q(r)) denotes the Beilinson’s absolute Hodge
cohomology, which is an analogous to the Deligne cohomology for quasiprojective
varieties, which involves "weights". The graded pieces of this filtration, denoted
by GrνFCHr(X /Q;Q), map injectively to Eν,2r−ν

∞ (ρ) ([2], [17]), the ν-th graded
piece of a Leray filtration associated to ρ. This term fits in a short exact sequence:

0 → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞ (ρ) → Eν,2r−ν

∞
(ρ) → 0

where

Eν,2r−ν

∞
(ρ) = Γ(Hν(S(C), R2r−νρ∗Q(r)))
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Eν,2r−ν
∞ (ρ) =

J(W−1H
ν−1(S(C), R2r−νρ∗Q(r)))

Γ(Gr0WH
ν−1(S(C), R2r−νρ∗Q(r)))

⊂ J(Hν−1(S(C), R2r−νρ∗Q(r)))

Recalling here that W stands for the increasing weight filtration with correspond-
ing GrlW := Wl/Wl+1. The sheaf Riρ∗Q(r) is the direct image Leray sheaf associ-
ated to the presheaf that associates U ⊂ S open to H i(ρ−1(U),Q(r)).

The latter inclusion comes from the short exact sequence:

W−1H
ν−1(S(C), R2r−νρ∗Q(r)) →֒W0H

ν−1(S(C), R2r−νρ∗Q(r))

։ Gr0WH
ν−1(S(C), R2r−νρ∗Q(r)).

Now, taking the direct limit over open subsets of S/Q we define

F νCHr(XK ;Q) = lim−→
U⊂S/Q

FνCHr(XU/Q;Q)

where XU := ρ−1(U).
We also define

Eν,2r−ν
∞ (ηS) = lim−→

U⊂S/Q

Eν,2r−ν
∞ (ρ)

and in the same way we define Eν,2r−ν

∞
(ηS) and Eν,2r−ν

∞ (ηS), explicitly

Eν,2r−ν

∞
(ηS) = Γ(Hν(ηS , R

2r−νρ∗Q(r)))

Eν,2r−ν
∞ (ηS) =

J(W−1H
ν−1(ηS , R

2r−νρ∗Q(r)))

Γ(Gr0WH
ν−1(ηS , R2r−νρ∗Q(r)))

giving us the short exact sequence

0 → Eν,2r−ν
∞ (ηS) → Eν,2r−ν

∞ (ηS) → Eν,2r−ν

∞
(ηS) → 0

and the injection

GrνFCHr(XK ;Q) →֒ Eν,2r−ν
∞ (ηS)

Then, taking the direct limit over all finitely generated subfields K ⊂ C over
Q we arrive at

F νCHr(X/C;Q) = lim−→
K⊂C

F νCHr(XK ;Q)
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which is a candidate Bloch-Beilinson filtration on CHr(X ;Q).

We will check that this filtration truncates. Let m := dimXη be the dimension
of the generic fiber. Then, by the hard Lefschetz theorem we have, for all i, the
isomorphisms

Lm−i
X : Riρ∗Q(r)

∼→ R2m−iρ∗Q(m− i+ r)

Which induces isomorphisms

Lm−2r+ν
X : Eν,2r−ν

∞
∼→ Eν,2(m−2r+ν)−ν

∞

Lm−2r+ν
X : Eν,2r−ν

∞

∼→ Eν,2(m−2r+ν)−ν

∞

and thus inducing the isomorphism

Lm−2r+ν
X : Eν,2r−ν

∞
∼→ Eν,2(m−2r+ν)−ν

∞

through the diagram

0 → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞ (ρ) → Eν,2r−ν

∞
(ρ) → 0

Lm−2r+ν
X ↓ ∼ Lm−2r+ν

X ↓ ∼ Lm−2r+ν
X ↓ ∼

0 → Eν,2m−2r+ν
∞ (ρ) → Eν,2m−2r+ν

∞ (ρ) → Eν,2m−2r+ν

∞
(ρ) → 0

Now, with the cycle class map, we define

ψ0 : F0CHr(XU/Q;Q) := CHr(XU/Q;Q)→ E0,2r
∞ (ρ) = E0,2r

∞
(ρ)

where the last equality comes from the fact that E0,2r
∞ (ρ) = 0. Then set

F1CHr(XU/Q;Q) = kerψ0

through Lewis’s construction [23] we can define an induced map

ψ1 : F1CHr(XU/Q;Q)→ E1,2r−1
∞ (ρ)

and set again
F2CHr(XU/Q;Q) = kerψ1

Proceeding recurrently, we obtain maps

ψi : F iCHr(XU/Q;Q)→ Ei,2r−i
∞ (ρ)
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where
F i+1CHr(XU/Q;Q) = kerψi

Now, with this setting, for any j ≥ 1 we have the commutative diagram

F r+jCHr(XU/Q;Q)
ψr+j→ Er+j,r−j

∞ (ρ)

Lm−2r+ν
X ↓ Lm−2r+ν

X ↓ ∼

F r+jCHm+j(XU/Q;Q) → Er+j,2m−k+j
∞ (ρ)

where we observe that

lim−→
U⊂S

CHm+r(XU/Q;Q) = CHm+j(Xη,Q) = 0

And since F r+j+1CHr(XU/Q;Q) = kerψr+j, we have

F r+jCHr(XK ;Q) = F r+j+1CHr(XK ;Q) ∀ j ≥ 1

Now, assume S is affine and let V ⊂ S(C) be a smooth, irreducible, closed
subvariety of dimension ν − 1. Let ρV : XV → V be the restriction of ρ. We have
the following commutative diagram:

XV →֒ X (C)

ρV ↓ ↓ ρ
V →֒ S(C)

From which we construct the commutative diagram:

GrνFCHr(X ;Q) 7→ GrνFCHr(XK ;Q)

↓
0 → Eν,2r−ν

∞ (ρ) → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞
(ρ) → 0

↓ ↓ ↓
0 → Eν,2r−ν

∞ (ρV ) → Eν,2r−ν
∞ (ρV ) → Eν,2r−ν

∞
(ρV ) → 0

We observe that the sheaf R2r−νρV,∗Q(r) is locally constant, and the weak
Lefschetz theorem for locally constant systems over affine varieties tells us that
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Hν(V,R2r−νρV,∗Q(r)) = 0 (since the dimension of V is below the cohomology de-
gree). Thus Eν,2r−ν

∞ (ρV ) ≃ Eν,2r−ν
∞ (ρV ), so for any ξ ∈ GrνFCHr(X /Q;Q) we can

define a "normal function" νξ that, to any smooth irreducible closed V ⊂ S(C)
of dimension ν − 1, assigns an element νξ(V ) ∈ Eν,2r−ν

∞ (ρV ). That is, νξ treats
the smooth irreducible closed subvarieties of S(C) as points of an open subset of
a paramterizing space (open smooth subvariety of a Chow variety) that form a
domain for νξ.

Definition 3.2.7. νξ, as defined above, is called an arithmetic normal function.

Remark 3.2.8. We note that, when ν = 1 (and V = {t} of dimension 0) , νξ
defines a traditional normal function:

E1,2r−1
∞ (ρt) ⊂ J(H0({t}, R2r−1ρ∗Q(r))) = J(H2r−1(Xt,Q(r)))

This next result due to Lewis [24], points toward the main line of enquiry of
my thesis:

Proposition 3.2.2. The following statements are equivalent:
(i) F 2CHr(X ;Q) = CHr

AJ(X ;Q) for all smooth projective varieties X over C,
where CHr

AJ(X ;Q) denotes the kernel of the Abel-Jacobi map.
(ii) For any smooth and proper morphism ρ : X → S of smooth quasiprojective
varieties over Q, and a normal function

νξ : S(C)→
∐

t∈S(C)

J(H2r−1(Xt,Q(r)))

defined by a cycle ξ ∈ F1CHr(X /Q;Q), the zero locus

Z(νξ) = {t ∈ S(C) | νξ(t) = 0}

is a countable union of algebraic subvarieties over Q.
(iii) For any smooth and proper morphism ρV : XV → V of smooth quasiprojective
varieties over a subfield L ⊂ C finitely generated over Q and cycle induced normal
function

νξ : V (C)→
∐

t∈V (C)

J(H2r−1(Xt,Q(r)))

defined by a cycle ξ ∈ F1CHr(XV /L;Q), the zero locus Z(νξ) of νξ is a countable
union of algebraic subvarieties over L.
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Given the techniques used in this thesis, it is instructive to provide a proof.

Proof. To prove (i) ⇒ (ii), we know that Z(νξ) is a countable union of analythic
subvarieties. For p ∈ Z(νξ), we can use its Q closure {p} to define X{p} → {p},
which, using (i), satisfies F 2CHr(X{p},η;Q) = CHr

AJ(X{p},η;Q). Thus, νξ is zero

over all points of {p}, so {p} ⊂ Z(νξ). Since the set of all Q subvarieties of S/Q
is countable, we conclude (ii).

For (ii) ⇒ (i), let ξ ∈ F 1CHr(X ;Q) = CHr
hom(X ;Q). It is obvious that if

ξ ∈ F 2CHr(X ;Q), by the definition of normal function, νξ must be zero and thus
Φr(ξ) = 0 (that is ξ ∈ CHr

AJ(X ;Q)). Therefore F 2CHr(X ;Q) ⊂ CHr
AJ(X ;Q).

We now observe that given σ ∈ Aut(C/Q), the action of σ on CHr(X /Q;Q) is
the identity. But in the limit for a finitely generated subfield K ⊂ C, we get
σ(FνCHr(XK ;Q)) = FνCHr(XσK ;Q). Thus, σ : FνCHr(X ;Q)→ FνCHr(Xσ;Q)
is an isomorphism. Now if we suppose Φr(ξ) = 0, it means that the image νξ(t) = 0
in J(H2r−1(Xt,Q(r)) for some t ∈ S(C). But applying the isomorphisms given
by Aut(C/Q), we can map t to a generic point t0. Then if t ∈ Z(νξ), t0 is
also in Z(νξ), but there cannot be an algebraic subvariety over Q containing t0,
so νξ must be a zero normal function. Thus ξ ∈ F 2CHr(X ;Q). We conclude
F 2CHr(X ;Q) = CHr

AJ(X ;Q).

For (ii) ⇒ (iii) we take ρV : XV → V with both quasiprojective varieties over
L as required. Let now S → T be a Q-spread of V . Consider the following generic
points: ηT ∈ T /Q (so that SηT = V/L and Q(ηT ) = Q(T ) = L), and η ∈ S/Q
(so that Q(η) = Q(S) = Quot(Q(ηT )(SηT )) = L(V )). Then we have a Q-spread
X → S that fits in the following commutative diagram

XV →֒ X

↓ ↓
SηT →֒ S → T

So that XηT = XV (where the fiber is taken over the composite and XV is identi-
fied in X ), and Xη = XηV , where ηV is a generic point of V (so that L(ηV ) = L(V )
).
With this construction, we see that for a cycle ξ ∈ F1CHr(XV /L;Q) is the restric-
tion of a cycle ξ̃ ∈ F1CHr(X /Q;Q), and if Σ ⊂ S/Q is an irreducible component
of Z(νξ̃), then ΣηT corresponds to a component of Z(νξ) over L in V/L.

Finally, (iii) ⇒ (ii) is direct, taking L = Q and V = S.

37



One objective in this thesis is to arrive at a version of Proposition 3.2.2 for
arithmetic normal functions, i.e., regarding F νCHr(X ;Q) for ν > 2.
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Chapter 4

Working with arithmetic normal

functions

4.1 Product case

We follow the ideas in Lewis [25] rather carefully. Let K ⊆ C be a subfield, and
X smooth and projective over K. We recall the coniveau filtration, which is given
by

Nν
KH

i(X,Q) := ker

(

H i(X,Q)→ lim−→
Y⊂X/K,codimXY≥ν

H i(X \ Y,Q)

)

Consider the coniveau subspace N r−ν+1
K H2r−ν(X,Q(r)) ⊂ H2r−ν(X,Q(r)).

After possibly shrinking S, this subspace determines a corresponding sub VHS
N r−ν+1
K R2r−νρ∗Q(r) ⊂ R2r−νρ∗Q(r), giving rise to the corresponding coniveau at

general points of S, and which by semisimple considerations is a direct summand.
Now let Y ⊂ X/K be of (pure) codimension r − ν + 1 such that

H2r−ν
Y (X,Q(r)) ։ N r−ν+1

K H2r−ν(X,Q(r))

is surjective, with desingularization Ỹ → Y and composite map σ : Ỹ → X.
Then (ignoring twists) we have

Hν−2(Ỹ ,Q)→ H2r−ν
Y (X,Q) ։ N r−ν+1

K H2r−ν(X,Q)

since 2r − ν − 2 dim Y = 2r − ν − 2(r − ν + 1) = ν − 2. Let us assume there
is a K -cycle induced map

P̃ : H2r−ν(X,Q)→ Hν−2(Ỹ ,Q)
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such that

P := σ∗ ◦ P̃ : H2r−ν(X,Q(r)) ։ N r−ν+1
K H2r−ν(X,Q(r)) ⊂ H2r−ν(X,Q(r))

is a projector.

With this setting, we have

Proposition 4.1.1. (i) P∗Gr
ν
FCHr(XK ,Q) = 0.

(ii) Im(GrνFCHr(XK ,Q)→ Eν,2r−ν

∞
(ηS))

⋂

Γ(Hν(ηS , N
r−ν+1
K R2r−νρ∗Q(r))) = 0.

(iii) {GrνFCHr(XK ,Q)
⋂

Im(J(W−1H
ν−1(ηS , N

r−ν+1
K R2r−νρ∗Q(r)))→ Eν,2r−ν

∞ (ηS))} = 0.

Proof. (i) Let [ξ] ∈ GrνFCHr(XK ,Q), so we have

P∗([ξ]) = [P∗(ξ)] = [σ∗ ◦ P̃∗(ξ)] ∈ GrνFCHr(XK ,Q)

Now, P̃∗ lies in

homMHS(H
2r−ν(XK ,Q), Hν−2(ỸK ,Q)) ≃ H2r−ν(XK ,Q)∨ ⊕Hν−2(ỸK ,Q)

≃ H2r−ν(XK ,Q)⊕Hν−2(ỸK ,Q) ≃ H2d−2r+ν(XK ,Q)⊕Hν−2(ỸK .Q)

so is induced by a cycle in CHd−r+ν−1(XK × YK ;Q).
Therefore, P̃∗CHr(XK ;Q) ⊂ CHν−1(ỸK ;Q). Then, since P̃∗ is compatible with
GrνF by Theorem 3.2.1, we have that [σ∗◦P̃∗(ξ)] factors through [P̃∗(ξ)] ∈ GrνFCHν−1(ỸK ;Q)
which is zero since F νCHν−1(ỸK ;Q) = F ν+1CHν−1(ỸK ;Q) by Theorem 3.2.1 as
well.
Now for (ii) we observe that, since P projects over N r−ν+1

K H2r−ν(X,Q(r)), we have

Im(GrνFCHr(XK ,Q)→ Eν,2r−ν

∞
(ηS))

⋂

Γ(Hν(ηS , N
r−ν+1
K R2r−νρ∗Q(r)))

= Im(P∗Gr
ν
FCHr(XK ,Q)→ Eν,2r−ν

∞
(ηS))

⋂

Γ(Hν(ηS , N
r−ν+1
K R2r−νρ∗Q(r)))

which is zero by (i).
(iii) can be proved in a similar fashion.

For the following result we recall the GHC: Nν
CH

i(X,Q) is the largest sub-
Hodge structure in F νH i(X,C) ∩H i(X,Q).
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Remark 4.1.1. Hr,r(X,Q) is naturally the largest Hodge structure in F rH2r(X,Q).
Since the image of the cycle class map clrCHr(X,Q) coincides with N r

KH
2r(X,Q),

GHC (with ν = r, i = 2r) implies the classical Hodge conjecture.

Remark 4.1.2. As in the case for the classical Hodge conjecture, when X is
defined over K algebraically closed, the GHC can be taken substituting C by K.

Let X be a smooth projective variety of dimension n over an algebraically closed
field K. There exists Y a possibly reducible subvariety of X of codimension r such
that

N r
KH

i(X,Q(r)) = image(H i
Y (X,Q(r)) −→ H i(X,Q(r)))

with Y over C and X over K. If Ỹ denotes a desingularization of Y , since
both X and Ỹ are pure HS, the images of H i

Y (X,Q(r)) ≃ H2n−i(Y,Q(n − r))
and H i−2r(Ỹ ,Q(0)) (given by the composition with the desingularization map and
Poincaré duality) are the same in H i(X,Q(r)). Thus, we can work with the smooth
variety Ỹ .

We can form a K spread Y → S of Ỹ with ρ smooth and proper, we can see this
as a C∞ fiber bundle over S as complex spaces. There is a point t1 ∈ S(C) such
that ρ−1(t1) = Ỹ , and since K is algebraically closed we can find a point t0 ∈ S(K).
Since the fibers of the fiber bundle are diffeomorphic, the image H i−2r(ρ−1(t)) →
H i(X) is independent of t.

Returning to our situation, we have a cycle induced P̃ as stated above for
K = C. Thus, from the previous proposition we get

Corollary 4.1.2. If we assume the GHC, we have P∗Gr
ν
FCHr(XC,Q) = 0

Observation: If X is a variety defined over k = k, we can arrange P̃ to be
induced by a cycle over k by using a spread argument.

In the case where X is a product (X a variety over k) we can arrive at a
characterization of F νCHr(XK ,Q) through arithmetic normal functions:

Consider then the product situation with X = S × X defined over k, with
K = k(S). Let ηS be the generic point of S/k and set:

H0 =W−1

(

Hν−1(ηS ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

)

where Nν
HH

i(X,Q) denotes the largest sub-Hodge structure in
F νH i(X,C) ∩H i(X,Q).
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Lemma 4.1.3. There is a natural map

Eν,2r−ν
∞ (ηS)→ J(H0)

Proof. We assume S/k is affine, and put

Wj = Wj(H
ν−1(S,Q)⊗H2r−ν(X,Q)(r)),

WH
j =Wj(H

ν−1(S,Q)⊗N r−ν+1
H H2r−ν(X,Q)(r))

We observe that, since H2r−ν(X,Q)(r) is a pure Hodge structure of pure weight
−ν (and thus Wj(H

2r−ν(X,Q)(r)) = δj,−ν), we get

Gr0W =
W0(H

ν−1(S,Q)⊗H2r−ν(X,Q)(r))

W−1(Hν−1(S,Q)⊗H2r−ν(X,Q)(r))

=

⊕

p+q=0Wp(H
ν−1(S,Q))⊗Wq(H

2r−ν(X,Q)(r))
⊕

p+q=−1Wp(Hν−1(S,Q))⊗Wq(H2r−ν(X,Q)(r))

=
Wν(H

ν−1(S,Q))⊗W−ν(H
2r−ν(X,Q)(r))

Wν−1(Hν−1(S,Q))⊗W−ν(H2r−ν(X,Q)(r))

=
Wν(H

ν−1(S,Q))

Wν−1(Hν−1(S,Q))
⊗H2r−ν(X,Q)(r)

= GrνWH
ν−1(S,Q)⊗H2r−ν(X,Q)(r)

Let V = GrνWH
ν−1(S,Q). We "untwist" things by observing that, with the

previous observation, Γ(Gr0W ) can be identified with

homMHS(Q(−r), V ⊗H2r−ν(X,Q))

which in turn we identify with {V ⊗H2r−ν(X,Q)}(r,r).

Next, we observe that F νHν−1(S) = 0, since there are no closed ν-forms in
Hν−1(S) together with Deligne’s Hodge theory description of F ν involving holo-
morphic forms with simple poles along S \ S. Thus F νVC = 0 as well.

We know that the minimum weight of Hν−1(S,Q) is ν − 1 so this holds true
for V as well, and thus

{

V ⊗H2r−ν(X,Q)
}(r,r) ⊂ V ν−1,1⊗Hr−ν+1,r−1(X)⊕ · · · ⊕ V 1,ν−1⊗Hr−1,r−ν+1(X)

But since F νVC = 0, we have
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VC = V ν−1,1 ⊕ · · · ⊕ V 1,ν−1

Let V ∨ be the dual space of V , which is a Hodge sructure of weight −(ν − 1).
The dual action of V ∨ on V leads to a corresponding action on {V ⊗H2r−ν(X,Q)}(r,r),
whose image must be a Hodge structure and hence lies in N r−ν+1

H H2r−ν(X,Q).
Therefore,

{

V ⊗H2r−ν(X,Q)
}(r,r) ⊂ V ⊗N r−ν+1

H H2r−ν(X,Q)

From which we obtain Γ(Gr0W ) ⊂ Γ(Gr0WH). Since the other containing is
obvious, we get Γ(Gr0W ) = Γ(Gr0WH).

Using WH
j →֒ Wj , we have the following commutative diagram:

0 −→WH
−1 −→ WH

0 −→ Gr0WH −→ 0

←֓ ←֓ ←֓
0 −→ W−1 −→W0 −→ Gr0W −→ 0

Then, from the long exact sequences that arise after applying the Ext operator,
we obtain the commutative diagram:

Γ(Gr0WH) −→ J(WH
−1)

‖ ↓

Γ(Gr0W ) −→ J(W−1)

From which we get the natural map

Eν,2r−ν
∞ (ηS) =

J(W−1)

Γ(Gr0W )
−→ J(W−1)

J(WH
−1)

= J(H0)

Where the last equality comes form applying the Ext operator to the short
exact sequence

0 −→WH
−1 −→W−1 −→ H0 −→ 0
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Now let ξ ∈ F νCHr(XK ,Q) with its corresponding class in the chow group
also denoted by ξ ∈ CHr(S ×k X,Q) for some affine S. For a smooth affine closed
V ⊂ S(C) we restrict ourselves to ηV := ”V ∩ηS”, and let λξ be the corresponding
arithmetic normal function where

λξ(V ) ∈
J(W−1 [H

ν−1(ηV ,Q)⊗H2r−ν(X,Q)(r)])

Γ(Gr0W [Hν−1(ηV ,Q)⊗H2r−ν(X,Q)(r)])

We denote by λξ the so called reduced arithmetic normal function, which has
the characteristic property that its values lies in

λξ(V ) ∈ J
(

W−1

[

Hν−1(ηV ,Q)⊗ H2r−ν(X,Q)

N r−ν+1H2r−ν(X,Q)
(r)

])

which via lemma 4.1.3 is the image of λξ(V ).

Theorem 4.1.3 (Lewis). In the case where X is a smooth projective variety over
k, and under the assumption of the GHC, the filtration {F νCHr(XK ,Q)}ν≥0 is
characterized by the germs of reduced arithmetic normal functions.

Proof. It is obvious that if 0 = ξ ∈ GrνFCHr(XK ,Q) we have λξ = 0, so we aim to
prove the converse.

Since k = k, the GHC tells us that N r−ν+1
k H2r−ν(X,Q) = N r−ν+1

H H2r−ν(X,Q).
If λξ = 0, ξ must lie in N r−ν+1

H H2r−ν(X,Q) so, using the terminology from
Proposition 4.1.1, ξ = P∗ξ. But then, by part (i) of the same Proposition 4.1.1,
λξ = λP∗ξ = 0. Therefore λξ = 0⇔ λξ = 0.

Now, recall that λξ = 0 implies 0 = [ξ] ∈ Eν,2r−ν

∞
(ηS). Thus, [ξ] ∈ Eν,2r−ν

∞ (ηS),

and when its value is zero, we have 0 = ξ ∈ GrνFCHr(XK ,Q). But from the proof
of lemma 4.1.3 and reusing its terminology, we have J(W−1)

J(WH
−1

)
= J(H0), which to-

gether with part (iii) from Proposition 4.1.1 tells us that [ξ] = 0 ∈ J(H0) implies
0 = [ξ] ∈ Eν,2r−ν

∞ (ηS). Since the converse is obvious, we get [ξ] = 0 ∈ J(H0) ⇔
0 = [ξ] ∈ Eν,2r−ν

∞ (ηS).

From the affine Lefschetz theorem, we see that

V1 := Hν−1(ηS ,Q)⊗ H2r−ν(X,Q)

N r−ν+1H2r−ν(X,Q)
(r)

→֒ Hν−1(ηV ,Q)⊗ H2r−ν(X,Q)

N r−ν+1H2r−ν(X,Q)
(r) =: V2

44



is injective. From this we have the short exact sequence

0→ W−1V1 →W−1V2 →W−1(V1/V2)→ 0

Then, applying the Ext operator, together with Γ(W−1(V1/V2)) = 0 (since Γ maps
to zero weight ) we obtain an injection

J(H0) = J(W−1V1) →֒ J(W−1V2)

Thus, if λξ = 0, we have that [ξ] is mapped to zero in J(H0).

Therefore, for ξ ∈ F νCHr(XK ;Q), λξ = 0 if and only if the image of ξ in
Eν,2r−ν

∞ (ηS) is zero. But the latter implies that ξ is zero in GrνFCHr(XK ,Q), which
is the same as saying ξ ∈ F ν+1CHr(XK ;Q)

4.2 An assumption for a more general case

Let us now consider a more general case with ρ : X → S over k = k, K = k(S)
and generic fiber XK . Let ηS be the generic point of S/k.

Proposition 4.1.1 still works in this case, but for Lemma 4.1.3 I will add an
additional restriction:

Let

H0 =W−1

(

Hν−1(ηS , R
2r−νρ∗Q(r))

Hν−1(ηS , N
r−ν+1
K R2r−νρ∗Q(r))

)

,

Wj = WjH
ν−1(ηS , R

2r−νρ∗Q(r)),

WH
j = WjH

ν−1(ηS , N
r−ν+1
K R2r−νρ∗Q(r)).

During the rest of this work, we will often use the following

Assumption 4.2.1. With the above notation, let us assume that

ΓGr0WW
H
0 = ΓGr0WW0, in J(W−1) ∀ ν

Remark 4.2.2. This assumption holds if X = S × X as shown in the proof of
lemma 4.1.3, but this might not hold true in general since for the general assump-
tion involving higher Chow groups Lewis provided a counterexample. Yet, there
are still cases outside the product case in which this assumption holds true like the
following:
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Let PN parameterize all hypersurfaces of degree d and dimension n in Pn+1, and
X := {(t, x) ∈ PN×Pn+1 | x ∈ Xt}, the universal family of hypersurfaces of degree
d and dimension n. Put ρ = Pr1 : X → PN =: S. Note that Pr2 : X → Pn+1

is a PN−1-fibered projective bundle. Therefore H2r−1(X ,Q(r)) is zero (since 2r-1
is odd). Note that H2r−1(X ,Q(r)) maps surjectively to W−1H

2r−1(X ,Q(r)), and
that non-canonically as MHS ([1]), H2r−1(X ,Q(r)) ≃ ⊕p+q=2r−1H

p(S, Rqρ∗Q(r)).
Thus W−1H

ν−1(S, R2r−νρ∗Q(r)) = 0.

Obviously ΓGrW0 H
ν−1(S, N r−ν+1R2r−νρ∗Q(r)) and ΓGrW0 H

ν−1(S, R2r−νρ∗Q(r))
are zero in J(W−1H

ν−1(S, R2r−νρ∗Q(r))), so assumption 4.2.1 holds in this case.

Lemma 4.2.3. With the above notation, if we assume assumption 4.2.1, then
there is a natural map

Eν,2r−ν
∞ (ηS)→ J(H0)

Proof. The proof is basically the same as the second part of the proof for Lemma
4.1.3
Since WH

j →֒ Wj , we have the following commutative diagram:

0 −→ WH
−1 −→ WH

0 −→ Gr0WH −→ 0

←֓ ←֓ ←֓

0 −→ W−1 −→ W0 −→ Gr0W −→ 0

Then, from the long exact sequences that arise after applying the Ext operator,
we obtain the commutative diagram:

Γ(Gr0WH) −→ J(WH
−1)

‖ ↓

Γ(Gr0W ) −→ J(W−1)

From which we get the natural map

Eν,2r−ν
∞ (ηS) =

J(W−1)

Γ(Gr0W )
−→ J(W−1)

J(WH
−1)

= J(H0)

Where the last equality comes form applying the Ext operator to the short
exact sequence

0 −→WH
−1 −→W−1 −→ H0 −→ 0
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Now let ξ ∈ F νCHr(XK ,Q) with its corresponding class in the chow group
also denoted by ξ ∈ CHr(X ,Q) for some affine S. For a smooth affine closed
V ⊂ S(C) we take ηV to be the generic point of V , with the diagram

XV →֒ X (C)

ρV ↓ ↓ ρ
V →֒ S(C)

and let λξ be the corresponding arithmetic normal function where

λξ(V ) ∈
J(W−1 [H

ν−1(ηV , R
2r−νρ∗Q(r))])

Γ(Gr0W [Hν−1(ηV , R2r−νρ∗Q(r))])

We again denote by λξ the so called reduced arithmetic normal function, which
has the characteristic property that its values lies in

λξ(V ) ∈ J
(

W−1

[

Hν−1(ηV , R
2r−νρ∗Q(r))

Hν−1(ηV , N
r−ν+1
K R2r−νρ∗Q(r))

])

which via lemma 4.2.3 is the image of λξ(V ).

Theorem 4.2.1. In the case where X is a smooth projective variety over k, and
given Assumption 4.2.1, together with the GHC, the filtration {F νCHr(XK ,Q)}ν≥0

is characterized by the germs of reduced arithmetic normal functions.

Proof. It is obvious that if 0 = ξ ∈ GrνFCHr(XK ,Q) we have λξ = 0, so we aim to
prove the converse.

Since k = k, the GHC tells us thatN r−ν+1
K R2r−νρ∗Q(r)) = N r−ν+1

H R2r−νρ∗Q(r)).
If λξ = 0, ξ must lie in N r−ν+1

H H2r−ν(X,Q) so, using the terminology from
Proposition 4.1.1, ξ = P∗ξ. But then, by part (i) of the same Proposition 4.1.1,
λξ = λP∗ξ = 0. Therefore λξ = 0⇔ λξ = 0.

Now, recall that λξ = 0 implies 0 = [ξ] ∈ Eν,2r−ν

∞
(ηS). Thus, [ξ] ∈ Eν,2r−ν

∞ (ηS),

and when its value is zero, we have 0 = ξ ∈ GrνFCHr(XK ,Q). But from the proof
of lemma 4.1.3 and reusing its terminology, we have J(W−1)

J(WH
−1

)
= J(H0), which to-

gether with part (iii) from Proposition 4.1.1 tells us that [ξ] = 0 in J(H0) implies
[ξ] = 0 in Eν,2r−ν

∞ (ηS). Since the converse is obvious, we get [ξ] = 0 ∈ J(H0) if and
only if 0 = [ξ] ∈ Eν,2r−ν

∞ (ηS).
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Now, by semisimplicity considerations, we can write R2r−νρ∗Q(r) as
[N r−ν+1R2r−νρ∗Q(r)] ⊕ [N r−ν+1R2r−νρ∗Q(r)]⊥ (where [N r−ν+1R2r−νρ∗Q(r)]⊥ de-
notes the orthogonal complement), so we write:

V1 :=
Hν−1(ηS , R

2r−νρ∗Q(r)))

Hν−1(ηS , N r−ν+1R2r−νρ∗Q(r))
= Hν−1(ηS , [N

r−ν+1R2r−νρ∗Q(r)]⊥)

and similarly, for very general V ,

V2 :=
Hν−1(ηV , R

2r−νρ∗Q(r)))

Hν−1(ηV , N r−ν+1R2r−νρ∗Q(r))
= Hν−1(ηV , [N

r−ν+1R2r−νρ∗Q(r)]⊥)

Thus, from the affine Lefschetz theorem, we see that

V1 = Hν−1(ηS , [N
r−ν+1R2r−νρ∗Q(r)]⊥) →֒ Hν−1(ηV , [N

r−ν+1R2r−νρ∗Q(r)]⊥) = V2

is injective. From this we have the short exact sequence

0→ W−1V1 →W−1V2 →W−1(V1/V2)→ 0

Then, applying the Ext operator together with Γ(W−1(V1/V2)) = 0 (since Γ maps
to zero weight ) we obtain an injection J(H0) = J(W−1V1) →֒ J(W−1V2). Thus, if
λξ = 0, we have that [ξ] is mapped to zero in J(H0).

Therefore, for ξ ∈ F νCHr(XK ;Q), λξ = 0 if and only if the image of ξ in
Eν,2r−ν

∞ (ηS) is zero. But the latter implies that ξ is zero in GrνFCHr(XK ,Q), which
is the same as saying ξ ∈ F ν+1CHr(XK ;Q)

4.3 Working with F 2CHr
alg(X ;Q)

Let, F 2CHr
alg(X ;Q) := F 2CHr(X ;Q) ∩ CHr

alg(X ;Q). The following is due to S.
Saito, [29].

Proposition 4.3.1. F 2CHr
alg(X ;Q) = ker(AJ : CHr

alg(X ;Q)→ J(H2r−1(X,Q(r))))

Proof. We know F 2CHr(X ;Q) ⊆ ker(AJ : CHr
hom(X ;Q)→ J(H2r−1(X,Q(r))) by

Theorem 3.2.1 part (ii). Thus, we have

F 2CHr
alg(X ;Q) ⊆ ker(AJ : CHr

alg(X ;Q)→ J(H2r−1(X,Q(r)))

48



thus we just need to prove the "⊇" inclusion.

For this, we first observe that, by Theorem 3.2.1 part (i),

F 1CHr
alg(X ;Q) = CHr

alg(X ;Q)

Let ξ ∈ ker(AJ : CHr
alg(X ;Q) → J(H2r−1(X,Q(r)))). By definition of alge-

braic equivalence, there exists a smooth projective curve C and w0 ∈ CHr(C ×X)
such that ξ = w0,∗(P

′) − w0,∗(Q
′) for some P ′, Q′ ∈ C, where we remember that

w0,∗(t) = Pr2,∗((t×X) • w0). Thus, ξ ∈ w0,∗(CHalg
0 (C)). We observe that

CHalg
0 (C) ≃ CH1

alg(C) ≃ CH1
hom(C)

and that the Abel Jacobi map is an isomorphism in this case.

(Indeed, if g is the genus of C, CHalg
0 (C) can be “identified” with S(g) :=

Cg/Sym(g), where Sym denotes the action of the symmetric group on g let-
ters. Then, fixing p0 in C, we can map each element p1 + · · · + pg ∈ S(g) to
p1 + · · ·+ pg − g • p0 ∈ J(C) which can easily be checked to be a birational mor-
phism, via the Riemann-Roch theorem).

Using this, (P ′ × X) • w0 and (Q′ × X) • w0 correspond to (P × X) • w
and (Q × X) • w for some P,Q ∈ J(C) and some w ∈ CHr(J(C) × X). Thus
ξ ∈ w0,∗(J(C)) and ξ = w∗(P )− w∗(Q). But since J(C) is an abelian variety, we
have ξ = w∗(P −Q).

Let B be the connected component of the identity in the kernel of

[w]∗ : J(C)→ J(H2r−1(X,Q(r)))

which is given by the composition of w∗ with the Abel Jacobi map. If dimB = 0,
then [w]∗ has finite kernel. Since we supposed that [w]∗(P − Q) = AJ(ξ) = 0,
taking P −Q ∈ B we conclude that P −Q = 0 and thus ξ = 0 ∈ F 2CHr

alg(X ;Q).
Assume b := dimB ≥ 1, and let wB := w|B×X , so we have

ξ ∈ wB,∗(CHalg
0 (B;Q)) ⊂ CHr

alg(X ;Q)

This is preserved on the graded level with

CHalg
0 (B;Q) = CHhom

0 (B;Q) = F 1CH0(B;Q)

that is
{ξ} ∈ Image([wB]∗ : Gr

1
FCH0(B;Q)→ Gr1FCHr(X ;Q)).
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Since w has codimension r, we see that [wB] ∈ CHr(B × X) and we can
decompose it into it’s Künneth components: [wB] =

⊕2r
l=0[wB](l, 2r − l) where

[wB](l, 2r − l) ∈ H l(B)⊗H2r−l(X)

≃ homMHS(H
l(B)∨, H2r−l(X)) ≃ H2b−l(B)⊗H2r−l(X)

We see that by Theorem 3.2.1 part (v) the Künneth components depend only
on cohomology and when restricting to Gr1F we have

∆X(2d− 2r + l, 2r − l)∗ |Gr1
F

CHr(X;Q)= δl,1 · Identity

and similarly for Gr1FCH0(B;Q) ≃ Gr1FCHb(B;Q) :

∆B(2b− 2b+ l, 2b− l)∗ |Gr1
F

CH0(B;Q)= ∆B(l, 2b− l)∗ |Gr1
F

CH0(B;Q)= δl,1 · Identity

Thus
[wB]∗ = [wB]∗ ◦ (∆B(1, 2b− 1)∗ |Gr1

F
CH0(B;Q))∗

= (∆X(2d− 2r + 1, 2r − 1) |Gr1
F

CHr(X;Q))∗ ◦ [wB]∗ = [wB](1, 2r − 1)∗

But since B is in the kernel of [w]∗, at least the Künneth component from the
induced [wB]∗ that maps over J(H2r−1(X,Q(r))) must be zero. This Künneth
component is

[wB](1, 2r − 1)∗ ∈ H1(B)⊗H2r−1(X)

≃ homMHS(H
1(B)∨, H2r−1(X)) ≃ H2b−1(B)⊗H2r−1(X)

as we see that

H2b−1(B)
Pr∗

1−→ H2b−1(B ×X)
∩[wB]−→ H2b−1+2r(B ×X)

≃ H2d+2b−(2b−1+2r)(B ×X)
Pr2,∗−→ H2d−2r+1(X) ≃ H2r−1(X)

so [wB]∗ = 0 and thus {ξ} = 0. Therefore ξ necessarily lies in F 2CHr
alg(X ;Q).

For any V ⊂ S(C) smooth, irreducible, closed subvariety of dimension ν − 1,
we have that the minimum weight of Hν−1(V,Q) is ν−1 and we have the sequence:

Hν−1
V̄ \V

(V̄ ,Q)→ Hν−1(V̄ ,Q) ։Wν−1H
ν−1(V,Q)

which taking direct limit gives us

0→ N1Hν−1(V̄ ,Q)→ Hν−1(V̄ ,Q)→Wν−1H
ν−1(ηV ,Q)

50



so we obtain

Wν−1H
ν−1(ηV ,Q) ≃ Hν−1(V̄ ,Q)

N1Hν−1(V̄ ,Q)

Let a smooth variety M/k parametrize a family {Vt}t∈M ⊂ S(C) of smooth,
irreducible, closed subvarieties of dimension ν − 1.

Such an M arises naturally. For example, the universal family of smooth com-
plete intersections in any Pm is defined over Q: recall that any homogeneous
hypersurface F contained in Pm of degree d in the coordinates [z] = [z0, ..., zm] is
of the form

∑

α∈Zd
+
,[α]=d

aαz
α

where [α] denotes the sum of the coordinates of α and aα denotes the α indexed

coordinate of a ∈ CN(d), with N(d) =
(m+ d− 1

d

)

. In the variables a, z, it is

defined over Z. Now, let S/k ⊂ Pm be a complete intersection that doesn’t lie
inside some Pm−1. We can then write X = V (F1, F2, ..., Fr), where the Fi are
homogeneous hypersurfaces of degree di in the coordinates [z] = [z0, ..., zm]. Then,
if we write Fi =

∑

α∈Zd
+
,[α]=d ai,αz

α with ai ∈ CN(di) we can consider the product

variety W ′ := PN(d1)−1× ...×PN(dr )−1 which is defined over Z as well. We identify
Pm × PN(d1)−1 × · · · × PN(dr)−1 with Pm ×W ′ and consider

W := {([z], [a1], ..., [ar]) ∈ Pm ×W |
∑

α∈Zm,[α]=m

ai,αz
α = 0 ∀i}

which is defined over Z. Then, intersecting W with S ×W ′ defines the universal
family of degree m complete intersections of S, with W ∩ {S ×W ′} →W ′ all de-
fined over k, and it can shown it is smooth and proper over an open subset U ⊂ W ′.

We can then define an arithmetic normal function νξ for any cycle
ξ ∈ FνCHr(S ×X ;Q):

νξ :M −→
∐

J(H2r−1(Vt ×X,Q(r)))

and each Jacobian by lemma 4.1.3 can be written as

J(W−1

(

Hν−1(ηVt ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

)

)
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Now, consider the kernel of

CHr
alg(V̄t ×X,Q)→ J(W−1

(

Hν−1(ηVt ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r))

)

(4.1)

where V t can be assumed to be a smooth projective closure of Vt. The map in
(4.1) factors through CHr

alg(Vt ×X,Q); moreover the restriction
CHr

alg(V̄t ×X,Q)→ CHr
alg(Vt ×X,Q) is surjective. In general, we have:

Lemma 4.3.1. Let U ⊂ W be an inclusion of smooth varieties of the same di-
mension. Then the restriction CHr

alg(W )→ CHr
alg(U) is surjective.

Proof. Let j : U →֒ W denote the inclusion map. We observe that if ξ ∈ CHr(U)
is algebraically equivalent to zero, then there exists a smooth connected curve Γ
and a cycle w ∈ zr(Γ×U) such that ξ = w(p)−w(q) for some p, q ∈ Γ. Now take
the closure w ∈ zr(Γ ×W ), and put ξ = w(p) − w(q). Then j∗(ξ) = ξ and the
result is immediate. Therefore, CHr

alg(W ) ։ CHr
alg(U).

From this, we conclude

Corollary 4.3.2. A class ξt ∈ CHr
alg(V̄t×X,Q) is in the kernel of the Abel-Jacobi

map in (4.1) iff it’s restriction ξt ∈ CHr
alg(Vt ×X,Q) is.

Now consider ξ ∈ FνCHr(S × X ;Q), with corresponding ξt. Let us assume
for a given such fixed t ∈ M , ξt ∈ CHr

alg(Vt × X ;Q). Assume its closure ξt ∈
CHr

alg(V̄t × X,Q) is in the kernel of the Abel-Jacobi map in (4.1). We want to
prove that it belongs to F 2CHr

alg(V t × X,Q). This is based on semi-simplicity
considerations.

We observe that

W−1

(

Hν−1(ηVt ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

)

≃ Wν−1H
ν−1(ηVt ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

≃ Hν−1(V t,Q)

N1Hν−1(V̄t,Q)
⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

where

Hν−1(V t,Q)

N1Hν−1(V t,Q)
⊂ Hν−1(V t,Q),

H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r) ⊂ H2r−ν(X,Q)(r)
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Thus, by semi-simplicity considerations we have

J(W−1

(

Hν−1(ηVt ,Q)⊗ H2r−ν(X,Q)

N r−ν+1
H H2r−ν(X,Q)

(r)

)

) →֒ J(H2r−1(V t ×X,Q(r))),

which by the Hodge conjecture, is cycle induced.

Therefore, we can consider the Abel Jacobi mapping to J(H2r−1(V t×X,Q(r)))
since this doesn’t alter the kernel. Thus νξ(t) = 0 ∈ J(H2r−1(V t × X,Q(r))),
hence by Proposition 4.3.1, ξt ∈ F 2CHr

alg(V t × X,Q). Consider the case k = Q.
We observe that, from Proposition 3.2.2, together with Corollary 4.3.2, this result
tells us that for any arithmetic normal function

νξ :M →
∐

J(H2r−1(Vt ×X,Q(r)))

defined by the aforementioned cycle ξ, νξ(t) is zero as in (4.1) iff νξ(σ(t)) is zero
as in (4.1), for all σ ∈ Gal(C/Q).

Proof. Observe that, since F 2CHr
alg(V t×X,Q) is compatible with Gal(C/Q), the

kernel of the Abel-Jacobi map on CHr
alg(V t ×X,Q) is Galois invariant. This also

applies to the projectors defining the inclusions above.

In summary, we arrive at

Theorem 4.3.2. Let X be a smooth projective variety with Q-spread ρ : S ×X =
X → S. For any arithmetic normal function

νξ :M →
∐

J(H2r−1(Vt ×X,Q(r)))

defined by a cycle ξ ∈ FνCHr(S × X/Q;Q) satisfying ξt ∈ CHr
alg(Vt × X ;Q) for

all t ∈ M , the zero locus of νξ is a countable union of algebraic subvarieties over
Q.

4.4 Studying the zero locus of arithmetic normal

functions

The nature of the zero locus of the normal functions have been studied in several
papers by Brosnan, Pearlstein and Schnell, for example in their work together [4].
The following is essentially taken from [15].
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Theorem 4.4.1. Let ξ ∈ F 1CHr(XS ,Q), with the zero locus of the associated
normal function Z(νξ) defined over K/k (finitely generated).Then Z(νξ) is defined
over a finite extension of k.

Remark 4.4.1. Note if V = t ∈ S(C) is a point, then H0(V,R2r−1ρV,∗C) = 0
means that H2r−1(Xt,C) = 0, which would imply that all normal functions over S
are zero. Thus this theorem is most useful when dimV ≥ 1.

Proof. By [4], we know the zero locus is an algebraic subset of S. Let V ∈ Z(νξ)
be an irreducible component.

We recall the Gauss-Manin connection ▽ = ∂ ⊗ 1 which gives rise to the
following flask resolution of sheaves:

R2r−1ρ∗C →֒ OS ⊗ R2r−1ρ∗C
▽−→ Ω1

S ⊗ R2r−1ρ∗C
▽−→ · · ·

From which we obtain the Gauss-Manin cohomology (For V , H i(V,R2r−iρ∗C)),
which can be described algebraically as follows:

Let {Ω•
X/S , d} be the complex defined inductively by the sequence

0→ ρ∗Ω1
S ⊗ Ω•−1

X/S → Ω•
X → Ω•

X/S → 0

where we can write ΩpX =
∧pΩ1

X and similarly ΩpX/S =
∧pΩ1

X/S .

We can define the de Rham cohomology groups as

H i
DR(X) := Hi(XZarΩ

•
X) = H i(SZar,Rρ∗Ω

•
X),

H i
DR(X/S) := Hi(XZarΩ

•
X/S) = H i(SZar,Rρ∗Ω

•
X/S)

where XZar and SZar denote the respective spaces in the Zariski topology. Now,
if we define FmΩpX := Im(ΩmS ⊗ Ωp−mX → ΩpX), by the short exact sequence previ-
ously presented, we deduce that

FmΩpX
Fm+1ΩpX

≃ ΩmS ⊗
Ωp−mX

Ω1
S ⊗ Ωp−m−1

X

≃ ΩmS ⊗ Ωp−mX/S

And we have

0 −→ F 1Ω•
X

F 2Ω•
X

−→ Ω•
X

F 2Ω•
X

−→ Ω•
X

F 1Ω•
X

−→ 0

≃ = ≃

0 −→ Ω1
S ⊗ Ω•−1

X/S −→ Ω•
X

F 2Ω•
X

−→ Ω•
X/S −→ 0
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From which, taking hypercohomology, we obtain the connecting homomor-
phism

▽ : H i
DR(X/S)→ Ω1

S ⊗H i
DR(X/S)

which is the Gauss-Manin connection. It can be extended to get

▽ : ΩmS ⊗H i
DR(X/S)→ Ωm+1

S ⊗H i
DR(X/S)

Note that Ω•
X/S is a filtered complex with Fm. The corresponding spectral se-

quence is Ep,q
1 = ΩpS⊗Hq

DR(X/S)⇒ Hp+q
DR (XS/k). This is really the Leray spectral

sequence. We have analogously Ep,q
1 = ΩpS ⊗ F r−pHq

DR(X/S)⇒ H2r(XZarΩ
•≥r
XS/k

).

Since the Gauss-Manin connection is algebraic, it commutes with the elements
of Gal(C/k), that is, for any σ ∈ Gal(C/k) we have ▽ ◦ σ = σ ◦ ▽. Now given
a cycle ξ we denote by ξV its restriction to V , and by [ξV ] the corresponding
fundamental class. Then, if we denote the action of σ over V by V σ. By the
compatibility of the Gauss-Manin connection with Gal(C/k) we see that, since
the invariant part of [ξV ] is zero (because V is in the zero locus), the invariant part
of [ξV σ ] is also zero. We must show that V σ is in the zero locus as well. But before
doing so, see remark in passing that another possible way to prove that [ξV σ ] is
zero is by using the fact that the Leray spectral sequence is motivic, which was
proved by Arapura [1]. With this we have that Gal(C/k) acts naturally on the
Leray filtration with C-coefficients as described above and we proceed similarly
from here.

Now, for a given ξ ∈ F 1CHr(XS ,Q) we have the following commutative dia-
gram:

F 1CHr(XS ,Q)

↓
0 → E1,2r−1

∞ (ρ) → E1,2r−1
∞ (ρ) → E1,2r−1

∞
(ρ) → 0

↓ ↓ ↓
0 → E1,2r−1

∞ (ρV ) → E1,2r−1
∞ (ρV ) → E1,2r−1

∞
(ρV ) → 0

where ρ : XS → S is the spread with which the normal function associated to
ξ is defined, and ρV denotes the restriction to V .

By hypothesis, there are no global sections over V , and thus E1,2r−1
∞ (ρV ) ≃

J(H0(V,R2r−1ρV ∗Q(r))) is zero.

55



We also have E1,2r−1

∞
(ρV ) = Γ(H1(V,R2r−1ρV ∗Q(r))) and thus the lower part

of the diagram gives us the short exact sequence

0→ J(H0(V,R2r−1ρV ∗Q(r)))→ E1,2r−1
∞ (ρV )→ Γ(H1(V,R2r−1ρV ∗Q(r)))→ 0

with the left term being zero, from which we see that (by our construction of
normal functions) the restriction of the normal function νξ to V takes values on
Γ(H1(V,R2r−1ρV ∗Q(r))).

By our previous observations, and since the actions of the elements of Gal(C/k)
take flat sections to flat sections, we get the exact sequence:

H0(V σ, R2r−1ρV σ
∗
C)→ E1,2r−1

∞ (ρV σ)→ Γ(H1(V σ, R2r−1ρV σ
∗
Q(r)))→ 0

where the left term is zero again. Then, the action of σ takes V to another
component V σ ∈ Z(νξ). But since we are working with Q (or a finitely gener-
ated k), Z(νξ) has only a finite number of components, and since Gal(C/k) is
uncountable, Z(νξ) must necessary be defined over a finite extension of k.

For the general case involving arithmetic normal functions, if we substitute the
hypothesis that H0(V,R2r−1ρV ∗C) = 0 for V in the zero locus (in other words,
that there are no global sections over the zero locus) with a similar condition,
then we can carry the proof in a similar way. Let us assume given a smooth
morphism π : S → M over k, and where π−1(t) is smooth affine for t ∈ M(C).
Then technically speaking, V ⊂ M(C). We put V := π−1(V ) ⊂ S(C), and set
ρV = ρ

∣

∣

V
: XV → V ⊂ S(C). Our assumption then is Hν−1(V, R2r−νρV∗C) = 0.

For a given ξ ∈ F νCHr(XS ,Q) we have the following commutative diagram:

F νCHr(XS ,Q)

↓
0 → Eν,2r−ν

∞ (ρ) → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞
(ρ) → 0

↓ ↓ ↓
0 → Eν,2r−ν

∞ (ρV) → Eν,2r−ν
∞ (ρV) → Eν,2r−ν

∞
(ρV) → 0

where, again, ρ : XS → S is the spread with which the normal function asso-
ciated to ξ is defined, and ρV denotes the restriction to V.

56



Since Eν,2r−ν
∞ (ρV) ⊂ J(Hν−1(V, R2r−νρV∗Q(r))) where, by hypothesis, the lat-

ter part is zero, and recalling that Eν,2r−ν

∞
(ρV) = Γ(Hν(V, R2r−νρV∗Q(r))), the

bottom part of the previous diagram becomes

Hν−1(V, R2r−νρV∗C)→ Eν,2r−ν
∞ (ρV)→ Γ(Hν(V, R2r−νρV∗Q(r)))→ 0

with the left term being zero, from which we see that (by our construction of
arithmetic normal functions) the restriction of the arithmetic normal function νξ
to V takes its value in Γ(Hν(V, R2r−νρV∗Q(r))), which must be zero as V is a
component of the zero locus of νξ.

By our previous observations, Hν−1(Vσ, R2r−νρVσ
∗
C) = 0 and since the ac-

tions of the elements of Gal(C/k) take flat sections to flat sections we have
Eν,2r−ν

∞ (ρVσ) ≃ Γ(Hν(Vσ, R2r−νρVσ
∗
Q(r)). As with the earlier case, another ap-

proach to this uses the fact that the Leray spectral sequence is motivic ([1]), with
the Galois action being natural on the Leray filtration. Then, on M(C), the action
of σ takes V to another component V σ of Z(νξ). But since we are working with
Q (or a finitely generated k/Q), Z(νξ) has only a finite number of components,
and since Gal(C/k) is uncountable, Z(νξ) must necessary be defined over a finite
extension of k. Thus, we conclude the proof as in Theorem 4.4.1.

Proposition 4.4.2. For ξ ∈ F νCHr(XK ,Q), with zero locus of the associated
normal function Z(νξ) defined over K/k (finitely generated) and assume that
Hν−1(V, R2r−νρV∗C) = 0 for any V ∈ Z(νξ). Then Z(νξ) is defined over a fi-
nite extension of k.

4.5 The situation restricting to a particular sub-

space

We recall our setting of an arithmetic normal function νξ for any cycle ξ ∈
GrνFCHr(XK ;Q):

νξ :M(C) −→
∐ J(W−1 [H

ν−1(ηVt , R
2r−νρVt,∗Q(r))])

Γ(Gr0W [Hν−1(ηVt , R
2r−νρVt,∗Q(r))])

where M is the aforementioned family of {Vt}t∈M(C) ⊂ S(C) of smooth, irreducible,
closed subvarieties of dimension ν − 1.
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Let

CHr
alg(XK ;Q) := image

(

lim−→
U∩V, U⊂S

CHr
alg(XU ;Q)→ CHr(XK ;Q)

)

Lemma 4.5.1.

CHr
alg(XK ;Q) = image

(

CHr
alg(X ;Q)→ CHr(XK ;Q)

)

,

where X is any smooth compactification of X .

We first use the well-known:

Lemma 4.5.2. Let W1, W2 be smooth projective varieties of the same dimension
over k = k, and f : W1 → W2 a generically finite morphism of degree N . Then
f∗ : CHr

alg(W1)→ CHr
alg(W2) is surjective.

Proof. We have f∗f ∗CHr
alg(W1) = N · CHr

alg(W2). Indeed, we can guarantee that
there is a nonempty Zariski open subset U of W2 for which F−1(y) consist of N
points for every y ∈ U , in particular, for U small enough we have f∗(1) = N .
Then, by the projection formula, f∗f ∗(ξ) = ξf∗(1) = Nξ. Using divisibility of
CHr

alg(W ) for any smooth projective W/k, we have CHr
alg(W2) = N · CHr

alg(W2).
We conclude

CHr
alg(W2) = N · CHr

alg(W2) = f∗f
∗CHr

alg(W2) = f∗CHr
alg(W1).

Proof of lemma 4.5.1 . Now let X 1 and X2 be two smooth compactifications
of X . Then we can find a smooth compactification X

′
that dominates them.

The push-forward maps then induce φ∗,1 : CHr
alg(X

′
) → CHr

alg(X 1) and φ∗,2 :

CHr
alg(X

′
)→ CHr

alg(X 2). By the above lemma, these maps are surjective. Then
for i = 1, 2 we have

image
(

CHr
alg(X

′
;Q)→ CHr(XK ;Q)

)

= image
(

CHr
alg(Xi;Q)→ CHr(XK ;Q)

)

And the result follows.

Now we want to prove

Theorem 4.5.1.

F νCHr
alg(XK ;Q) =

ker

(

AJ : F ν−1CHr
alg(XK ;Q)→ J(W−1 [H

ν−1(ηV , R
2r−νρ∗Q(r))])

Γ(Gr0W [Hν−1(ηV , R2r−νρ∗Q(r))])

)
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for a very general V of dimension ν − 1 corresponding to a very general point
t ∈M(C). Moreover this is independent of any Galois conjugate of V .

Proof. Since W• is an exact functor, we observe that

W−1

(

Hν−1(ηV , R
2r−νρ∗Q)

Hν−1(ηV , N
r−ν+1
K R2r−νρ∗Q)

(r)

)

=
W−1(H

ν−1(ηV , R
2r−νρ∗Q(r)))

W−1(Hν−1(ηV , N
r−ν+1
K R2r−νρ∗Q(r)))

and thus, we see that

W−1

(

Hν−1(ηV , R
2r−νρ∗Q)

Hν−1(ηV , N
r−ν+1
K R2r−νρ∗Q)

(r)

)

) →֒ W−1(H
ν−1(ηV , R

2r−νρ∗Q(r)))

by weight and semi-simplicity reasons. Now, since the minimum weight of
Hν−1(ηV , R

2r−νρ∗Q(r)) is −1, we can deal with this in a similar way: that is, for
any V ⊂ S(C) smooth, irreducible, closed subvariety of dimension ν − 1, we have
the sequence:

Hν−1
V \V

(V ,R2r−νρ∗Q(r))→ Hν−1(V ,R2r−νρ∗Q(r)) ։W−1H
ν−1(V,R2r−νρ∗Q(r))

which taking direct limit gives us

0→ N1Hν−1(V̄ , R2r−νρ∗Q(r))→ Hν−1(V̄ , R2r−νρ∗Q(r))→ W−1H
ν−1(ηV , R

2r−νρ∗Q(r))

so we obtain

W−1H
ν−1(ηV , R

2r−νρ∗Q(r)) ≃ Hν−1(V ,R2r−νρ∗Q)

N1
V
Hν−1(V ,R2r−νρ∗Q)

(r)

where we observe, by semi-simplicity reasons, that

Hν−1(V ,R2r−νρ∗Q)

N1
V
Hν−1(V ,R2r−νρ∗Q)

(r) →֒ H2r−1(X V ,Q(r))

and so we have

J(W−1

(

Hν−1(ηV , R
2r−νρ∗Q)

Hν−1(ηV , N
r−ν+1
K R2r−νρ∗Q)

(r)

)

) →֒ J(H2r−1(X V ,Q(r))).

The rest of the proof follows from the ideas behind Theorem 4.3.2.
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4.6 Incidence equivalence

Given a cycle ξ ∈ CHr
alg(X), we say that it is incident equivalent to zero if for

all smooth projective varieties S and all cycles w ∈ CHn−r+1(S × X) we have
Pr1((S × ξ) • w) = 0. We observe that this induces the commutative diagram

CHr
alg(X)

w∗

−→ CH1
alg(S)

AJ ↓ ↓ ≃

Jr(X)
[w]∗−→ J(S)

From which we see that CHr
alg(X)AJ is contained in CHr

alg(X)inc, where CHr
alg(X)inc

and CHr
alg(X)AJ denote the elements of CHr

alg(X) that are incident equivalent to
zero and Abel-Jacobi equivalent to zero (that is, contained in the kernel of AJ)
respectively.

We can find a complete curve C and a cycle z ∈ CHr(C ×X,Q) such that its
composition with the Abel-Jacobi map

AJ ◦ [z]∗ : CH1
alg(C,Q)→ Jalg(H

2r−1(X,Q(r)))

is surjective. This produces the following commutative diagram.

CH1
alg(C,Q)

z∗−→ CHr
alg(X,Q)

AJ և AJ և

J1(C)
[z]∗−→ Jalg(H

2r−1(X,Q(r)))

where the horizontal map in the bottom is induced byH1(C,Q)→ H2r−1(X,Q).

Let LX be the operator of taking cup product with the hyperplane class on X.
The strong Lefschetz theorem tells us that Ln−iX : H i(X,Q)

∼→ H2n−i(X,Q), for
i ≤ n. Now, assuming that the inverse Λn−iX : H2n−i(X,Q)

∼→ H i(X,Q) is alge-
braic, we have the isomorphism Ln−iX : NpH i(X,Q)

∼→ Np+n−iH2n−i(X,Q) with
inverse Λn−iX .
It follows from this (by Hodge-Riemann bilinear relations, using the fact that
it is closed under the Lefschetz decomposition) that the cup product pairing
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NpH i(X,Q) × Np+n−iH2n−i(X,Q) → H2n(X,Q) ≃ Q is nondegenerate and we
can write (NpH i(X,Q))∨ ≃ Np+n−iH2n−i(X,Q).

Now, focusing on the (1, 2r − 1) Künneth component of z we have the map

[z]∗ : H
1(C,Q(1)) ։ N r−1H2r−1(X,Q(r))

that when dualized gives us

[z]∗ : Nn−rH2n−2r+1(X,Q(n− r)) →֒ H1(C,Q)

Tensoring with Q(1) this becomes

[z]∗ : Nn−rH2(n−r+2)−1(X,Q(n− r + 1)) →֒ H1(C,Q(1))

Then we observe that

Jalg(H
1(C,Q(1))) = J(H1(C,Q(1))) = J(N0H1(C,Q(1)))

and Jalg(H
2r−1(X,Q(r))) = J(N r−1H2r−1(X,Q(r))), so we construct the following

commutative diagram:

CHn−r+1
alg (X,Q)

z∗−→ CH1
alg(C,Q)

և AJ AJ ↓≃

J(Nn−rH2(n−r+1)−1(X,Q(n− r + 1)))
[z]∗→֒ J(H1(C,Q(1)))

And since n−r+1 depends only on r, we can construct this diagram replacing
n− r + 1 with r:

CHr
alg(X,Q)

z∗−→ CH1
alg(C,Q)

և AJ AJ ↓≃

J(N r−1H2r−1(X,Q(r)))
[z]∗→֒ J(H1(C,Q(1)))

Then, any ξ ∈ CHr
alg(X,Q)inc will be mapped algebraically to zero in CH1

alg(C,Q).
Thus, ξ is mapped to zero in Jalg(H

2r−1(X,Q)) meaning that ξ ∈ CHr
alg(X)AJ .
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We conclude that CHr
alg(X)inc = CHr

alg(X)AJ .

Now, like in the previous sections, let ρ : XS → S be the spread with which
the normal function associated to ξ ∈ F 1CHr(XS ,Q) is defined. Then, if t ∈ S(C)
we can write ξt ∈ CHr

alg(Xt;Q) for the corresponding intersection.

Suppose that νξ(t) = 0 for a general t, in other words, that the Abel-Jacobi map
is zero for the general fiber. Then ξt is mapped to zero in J(H0({t} , R2r−1ρ∗Q(r)))
and thus ξt ∈ CHr

alg(Xt)AJ .

It is known that Gal(C/k) acts on CHr
alg(X)inc so, for σ ∈ Gal(C/k) we have

CHr
alg(Xt)inc

∼−→ CHr
alg(Xσ(t))inc with the correspondence ξt 7→ ξσ(t). If V denotes

the k-Zariski closure of t in S, we see that νξ(t) = 0 for all general t ∈ V and
therefore νξ will be the zero normal function.

We conclude that if the general fiber of ξ is in the kernel of the Abel-Jacobi
map, then the associated normal function is zero. Since the converse is obvious
(recalling that the image of the normal function lands on a variation of jacobians),
we have that the general fiber is in the kernel of AJ iff the normal function is zero.
We recall that ξ comes from a class in CHr

alg(X ;Q) so this gives an alternate proof
that F 2CHr

alg(X ;Q) = CHr
alg(X ;Q)AJ , based on the hard Lefschetz conjecture

assumption. Since the BB filtration already requires the hard Lefschetz conjecture
assumption, this becomes a moot issue.

4.7 Incidence equivalence and product case (revis-

ited)

Let X be a projective algebraic variety of dimension n. To simplify notation, for
general t ∈ M let us write V = Vt. We can find a complete curve C and a cycle
z ∈ CHn+ν−r(C × V ×X ;Q) such that its composition with the Abel-Jacobi map
AJ ◦ [z]∗ : CH1(C;Q)→ Jalg(H

2(n−r+ν)−1(V ×X,Q(n+ν− r))) is surjective. This
produces the following commutative diagram.

CH1
alg(C;Q)

z∗−→ CHn−r+ν
alg (V ×X,Q)

AJ և և AJ

J(H1(C,Q(1)))
[z]∗
։ Jalg(H

ν−1(V ,Q)⊗H2(n−r)+ν(X,Q)(n− r + ν))
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where the bottom map is induced by H1(C,Q)→ H2(n−r+ν)−1(V ×X,Q).

We see that the map

[z]∗ : H
1(C,Q(1)) ։ Nn+ν−r−1H2(n−r+ν)−1(V ×X,Q(n− r + ν))

when dualized gives us

[z]∗ : N r−1H2r−1(V ×X,Q(r − 1)) →֒ H1(C,Q)

Tensoring with Q(1) this becomes

[z]∗ : N r−1H2r−1(V ×X,Q(r)) →֒ H1(C,Q(1))

By the Künneth formula, we arrive at:

N r−1
(

Hν−1(V ,Q)⊗H2r−ν(X,Q)(r)
)

→֒ H1(C,Q(1))

and observing that

Jalg(H
ν−1(V ,Q)⊗H2r−ν(X,Q)(r)) = J

(

N r−1
(

Hν−1(V ,Q)⊗H2r−ν(X,Q)(r)
))

,

we construct the following commutative diagram:

CHr
alg(V ×X,Q)

z∗−→ CH1
alg(C,Q)

և AJ AJ ↓≃

J(N r−1H2r−1(V ×X,Q(r))
[z]∗→֒ J(H1(C,Q(1)))

We observe that, by Lemma 4.3.1, the map V × X
closure−−−−→ V × X induces

CHr
alg(V ×X,Q) ։ CHr

alg(V ×X,Q). Thus, we can extend the diagram as follows:

CHr
alg(V ∩ ηS ×X,Q) և CHr

alg(V ×X,Q) −→ CH1
alg(C,Q)

AJ ↓ և AJ AJ ↓≃

Jalg(Λ)
→֒
և J

(

N r−1
(

H2r−1(V ×X,Q)(r)
))

→֒ J(H1(C,Q))

where AJ is the composition of the Abel-Jacobi map with the (2n−2r+ν, 2r−ν)
Künneth projector,
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Λ := N r−1

(

Hν−1(V ,Q)

N1
S/Q

Hν−1(V̄ ,Q)
⊗ H2r−ν(X,Q)

N r−ν+1H2r−ν(X,Q)
(r)

)

,

and where we view

Hν−1(V ,Q)

N1
S/Q

Hν−1(V ,Q)
⊗ H2r−ν(X,Q)

N r−ν+1H2r−ν(X,Q)
(r)

imbedded in
H2r−1(V ×X,Q(r)),

via semi-simplicity considerations.

Now consider ξ ∈ CHr
alg(V ∩ηS×X ;Q) as arising from a class in F νCHr

alg(XK ;Q).
It naturally maps to Jalg(Λ) via AJ . ξ is also in the image of some
ξ ∈ CHr

alg(V × X ;Q), and we observe that AJ(ξ) = AJ(ξ) ∈ Jalg(Λ). Indeed,
using the same construction as the projector in Proposition 4.1.1 we get the map

Hν−1(V ,Q)⊗H2r−ν(X,Q)(r)→ N r−1
(

Hν−1(V ,Q)⊗H2r−ν(X,Q)(r)
)

which is cycle induced if we assume the Hodge conjecture. Then applying the
Abel-Jacobi maps takes AJ(ξ) to the algebraic Jacobian

J
(

N r−1
(

H2r−1(V ×X,Q)(r)
))

Similarly, AJ(ξ) lies inside Jalg(Λ). Then, using the (2n− 2r+ ν, 2r− ν) Künneth
projector, we can identify Jalg(Λ) embedded in J

(

N r−1
(

H2r−1(V ×X,Q)(r)
))

so
by cycle induced projectors and left inverses, we can assume the image of both
AJ(ξ) and AJ(ξ) is the same in J(H2r−1(V ×X,Q(r))) and thus in Jalg(Λ). With
this arrangement, we see that AJ(ξ) = 0 if and only if AJ(ξ) = 0, but the right
side of the diagram implies that this is equivalent as ξ ∈ CHr

inc(V ×X ;Q).
Since ξ comes from a class in F νCHalg(XK ;Q), Gal(C/k) acts on all these objects.

Now let t ∈ M with Vt ⊂ S(C). Let us write ξt ∈ CHr
alg(Vt × X ;Q) for the

corresponding intersection. Suppose that νξ(Vt) = 0 for a general t, in other words,
that the Abel-Jacobi map is zero for the general fiber. Then ξt is mapped to zero
in J(Hν−1(Vt × X,Q(r))) and thus ξt ∈ CHr

alg(Vt × X,Q)AJ . But then we have
ξt ∈ CHr

alg(Vt × X,Q)inc ≃ CHr
alg(Vσ(t) × X,Q)inc ∋ ξσ(t). Let Z denote the k-

Zariski closure of Vt in the zero locus of the arithmetic normal function. We see
that νξ(Vt) = 0 for all general Vt ∈ Z and therefore νξ will be the zero normal
function.
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In the same way that in the previous section, we have that a general fiber is
in the kernel of AJ iff the normal function is zero. Since ξ comes form a class in
F νCHr

alg(XK ;Q), we conclude that a general fiber of ξ is in the kernel of AJ if and
only if ξ ∈ F ν+1CHr

alg(XK ;Q).

Proposition 4.7.1. Given ξ ∈ F νCHr
alg(XK ;Q), we have that ξ ∈ F ν+1CHr

alg(XK ;Q)
if and only if any given general fiber of ξ is in the kernel of AJ .
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Chapter 5

Summary results and the bigger

picture

We focus in the following diagram:

X →֒ X

ρ







y







y

ρ

S →֒ S,

(5.1)

where all varieties are defined over Q, Fix a polarization OS(1) of S, and for
integers {d1 ≤ d2 ≤ · · · ≤ dN−1 ≤ dN}, where N := dimS, consider the variety of
full flags:

F(S) :=
{

V0 ( V1 ( · · · ( Vj ( VN−1 ( S(C)
}

,

where VN := S(C) and for j < N , Vj ⊂ S(C) is a j-dimensional complete inter-
section of multi-degree (d1, ..., dN−j). With this setting, F(S) is defined over Q.
We can restrict F(S) to define F(S), as well as at the generic point F(ηS), where
ηS denotes the generic point. Observe that very general points of F(S), survive
under restriction to F(ηS). For such a very general point, each Vj is irreducible
and smooth (Bertini’s theorem states this for any general hyperplane section not
equal to S), except possibly for V0. By Bezout theorem, the number of intersec-
tion points of the hypersurfaces is equal to the product of their degrees (counting
multiplicities), so V0 will consist of deg S ·∏N

j=1 dj distinct and very general points.

Now let X/C be a smooth projective variety and ξ ∈ CHr(X/C;Q). Recall
that there is a finitely generated field extension K with C ⊃ K ⊃ Q, such that
X/C = XK ×K C and ξ ∈ CHr(XK ;Q).
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Also note that CHr(XK ;Q) →֒ CHr(X/C;Q) with

F νCHr(XK ;Q) =
{

F νCHr(X/C;Q)
}

∩ CHr(XK ;Q)

Now spread XK out as in diagram (5.1), and accordingly let ξ̃ ∈ CHr(X /Q;Q) be
the spread of ξ such that ξ̃ 7→ ξ ∈ CHr(XK ;Q). Then K is given by an embedding
Q(S) →֒ C, defined by evaluation at a very general point p, and hence XK = Xp.

Now choose a very general point in F(S) corresponding to a sequence:

p ∈ V0 ( V1 ( V2 ( · · · ( VN−1 ( VN := S(C).

For simplicity, let us take p = V0, and put V•<0 = ∅. Then, by definition,
XηS∩V0 = Xp = XK . Next, it is clear that by restriction,

γ = 0 ∈ H2r(XηS∩Vj ,Q(r))⇒ γ = 0 ∈ H2r(XηS∩Vi,Q(r)) for i < j.

and using the functoriality of the Abel-Jacobi map, we have

[γ] = 0 ∈ J(H2r−1(XηS∩Vj ,Q(r)))⇒ [γ] = 0 ∈ J(H2r−1(XηS∩Vi ,Q(r))) for i < j.

And regarding the converse,

Conjecture 5.0.2 (Lewis). Let ξ ∈ CHr(XK ;Q).
Then ξ ∈ F νCHr(XK ;Q)⇔
(i)
[

ξ̃
∣

∣

XηS∩Vν−1

]

= 0 ∈ H2r(XηS∩Vν−1
,Q(r)), and

(ii) AJ
(

ξ̃
∣

∣

XηS∩Vν−2

)

= 0 ∈ J
(

H2r−1(XηS∩Vν−2
,Q(r))

)

.

But, using the fact that a topological invariant is defined by its normal function,
and

Assumption 5.0.3. Assume the zero locus of a cycle induced normal function
respects the field of definition of the cycle.

we can write instead:

Conjecture 5.0.4 (Lewis, Version II). Put F 0CHr(XK ;Q) = CHr(XK ;Q) and
F 1CHr(XK ;Q) = CHr

hom(XK ;Q). Let ξ ∈ CHr(XK ;Q). Then for ν ≥ 2,
ξ ∈ F νCHr(XK ;Q)⇔
(i) ξ ∈ F ν−1CHr(XK ;Q), and

(ii) AJ
(

ξ̃
∣

∣

XηS∩Vν−2

)

= 0 ∈ J
(

H2r−1(XηS∩Vν−2
,Q(r))

)

.
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Proposition 5.0.5. Assuming the above assumption, then both conjectures are
equivalent.

Proof. For ν = 0, and ν = 1, the result is immediate by Theorem 3.2.1, so we
proceed by induction. Assume the conjectures are equivalent for ν − 1, and we
have ν ≥ 2. If we have

[

ξ̃
∣

∣

XηS∩Vν−1

]

= 0 and AJ
(

ξ̃
∣

∣

XηS∩Vν−2

)

= 0 then, as noted

before, we have
[

ξ̃
∣

∣

XηS∩Vν−2

]

= 0 and AJ
(

ξ̃
∣

∣

XηS∩Vν−3

)

= 0, which by induction

hypothesis implies ξ ∈ F ν−1CHr(XK ;Q).
Now, let ξ ∈ F νCHr(XK ;Q). Theorem 4.2.1 implies that the corresponding

reduced normal function (and thus the normal function itself) associated with ξ̃ is
zero over XηS∩Vν−1

. Under Assumption 5.0.3, the image under the normal function
is defined over the same field of definition as ξ̃. Therefore,

[

ξ̃
∣

∣

XηS∩Vν−1

]

= 0.

Thus, Conjecture 5.0.2 and 5.0.4 are equivalent.

We prove the following theorem:

Theorem 5.0.6. Assume given the product situation, and the GHC. Then the
conjectures hold for CHr(XK ;Q) replaced by CHr

alg(XK ;Q).

Proof. Let ξ ∈ CHr
alg(XK ;Q) and suppose we have (i) and (ii) of Conjecture 5.0.4

in terms of CHr
alg. Observe that the fibers of the corresponding arithmetic normal

function of ξ can be identified in X with inverse images of smooth subvarieties of
S of dimension ν − 2. Then, by Proposition 4.7.1 the result is immediate.

Example 5.0.7. For ν = 2, we have ηS∩Vν−2
= p and since Xp = XK, this

conjecture states that ξ ∈ F 2CHr(XK ;Q) if and only if ξ ∈ F 1CHr(XK ;Q) and
AJ
(

ξ̃Xp

)

= 0 ∈ J
(

H2r−1(XK ,Q(r))
)

, that is, the general fiber is in the kernel of
the Abel Jacobi map. This is Proposition 4.7.1.

Example 5.0.8. For ν = 3, the conjecture involve varieties V of dimension 1.
We say that ξ ∈ F 3CHr(XK ;Q) if and only if ξ ∈ F 2CHr(XK ;Q), and
AJ
(

ξ̃
∣

∣

XηS∩V

)

= 0 ∈ J
(

H2r−1(XηS∩V
,Q(r))

)

for a choice of general V ∋ p of

dimension 1.
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