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Abstract 

In aging, executive function (EF) performance (level) and change (trajectory) are linked 

to multiple interacting risk factors. Structurally, EFs have previously been represented as either a 

unitary (e.g., unidimensional) or diverse (e.g., multidimensional) set of abilities that change 

across the lifespan. With EF trajectory data from the Victoria Longitudinal Study (VLS), we 

investigated four key characteristics of EF change and variability in non-demented aging: 

trajectories, classification, structure, and biomarker predictors. The source sample characteristics 

included: N = 914; baseline M age = 71.91 (SD = 9.18, range = 53.24 – 100.16); % female = 

66.2; M education (years) = 15.09. In two sequential studies, longitudinal analyses were 

conducted on three waves spanning over a 40-year band of aging (53-95). Study 1 investigated 

EF trajectory distributions, classification of subgroups based on level and slope, and biomarker 

risk predictors that discriminated these groups. Study 2 investigated subgroups associated with 

different structural characteristics (e.g., factor solutions) and biomarker risk predictors that 

discriminated EF subgroups of different dimensionality. For Study 1, we found the following 

results: (a) significant variability in EF trajectories over a 40-year band of aging; (b) relatively 

gradual overall EF decline; (c) two continuous quantitatively and distinct classes (higher/stable, 

lower/declining); (d) EF status classification was discriminated, in order of importance, by 

education, novel cognitive activity, BDNF polymorphism, and age. For Study 2, we found (a) 

individual differences within a two-factor EF solution characterized by two classes (compressed 

EF aging/unidimensional, complex EF aging/multidimensional); (b) EF dimensionality was 

discriminated, in order of importance, by age, novel cognitive activity, education, body mass 

index, pulse pressure, sex, balance, and physical activity. Clinical interventions that aim to 

promote functional maintenance and delay cognitive decline may benefit by identifying factors 
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that affect not only EF performance and structure, but also individualized trajectory patterns in 

late life. 
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Introduction 

Executive function (EF) refers to mental control processes, associated with 

neuroanatomical integrity of the brain, that monitor aspects of action and cognition in humans 

(Luszcz, 2011; Miyake & Friedman, 2012). Much empirical and theoretical work pertains to EF 

performance and change throughout the lifespan. One prominent theory has direct implications 

for research on brain and cognitive aging (Luszcz, 2011; McFall, Sapkota, Thibeau, & Dixon, 

2017; West, 2017). The de/differentiation theory suggests that across the lifespan EFs are 

structurally differentiated (two or three dimensions) for older children, adolescents and mature 

young adults (Chevalier & Clark, 2017; Lee, Bull, & Ho, 2013; Miyake et al., 2000; Wiebe & 

Karbach, 2017), but as adulthood progresses there may be dedifferentiation that culminates in a 

unidimensional structure in both non-demented and impaired aging (de Frias, Dixon, & Strauss, 

2006; Li, Vadaga, Bruce, & Lai, 2017; McFall et al., 2014). However, recent research has 

indicated that selected neurologically healthy and cognitively advantaged aging adults may retain 

EF differentiation (de Frias, Dixon, & Strauss, 2009). The three dimensions of EFs are: shifting 

(switching flexibly between tasks or mental sets), updating (monitoring and adding/deleting 

working memory representations), and inhibition (inhibit dominant, prepotent, or dominant 

responses; Miyake et al., 2000; Miyake & Friedman, 2012).  

In adulthood, the three EF dimensions show a pattern described as “unity and diversity” 

due to their shared but distinct functions (Friedman & Miyake, 2017). In other words, the three 

dimensions are moderately correlated with one another, but are clearly separable and contribute 

differentially to EF performance. Evidence of the unity and diversity of EFs in older adults has 

been replicated in multiple studies (e.g., Fisk & Sharp, 2004; Hedden & Yoon, 2006; Hull, 

Martin, Beier, Lane, & Hamilton, 2008; Vaughan & Giovanello, 2010). The unity/diversity 
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model assumes that multiple brain regions support the same EF processes in all individuals 

(Friedman & Miyake, 2017). However, individuals may also have different levels or profiles of 

abilities, leading to differences in performance, structure, brain activation, volume, and 

connectivity.  

The present research uses data from the Victoria Longitudinal Study (VLS), which 

includes multiple indicators of each of the three dimensions on participants followed over 

multiple years of aging. From the VLS archives, a series of two longitudinal studies were 

designed to examine four key characteristics of EF change and variability in non-demented 

aging. For Study 1, the aim was directed at examining trajectories, classification, and biomarker 

risk predictors that discriminated EF classification. For Study 2, the aim was directed at 

examining structural changes (unidimensional, multidimensional) of EF and biomarker risk 

predictors that discriminated these structural changes. 

Background 

Executive Function and the Aging Brain 

Clinical studies have shown strong associations between EFs and the prefrontal cortex 

(PFC) when examining patients with executive dysfunction after PFC damage (Alvarez & 

Emory, 2006; Clark et al., 2008; Manes et al., 2002; Zelazo & Muller, 2002). Neuroimaging 

research has also shown support of the strong connection between EF and the PFC, with more 

specific activation in the lateral prefrontal cortex during EF tasks (Aron, Robbins, & Poldack, 

2014; Konishi et al., 1998; Laird et al., 2005). However, there are also other areas of the brain 

associated with EF. For instance, areas of the fronto-parietal network, including posterior parietal 

cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and subcortical regions are 
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connected to EF (Buchsbaum, Greer, Chang, & Berman, 2005; Kim, Cilles, Johnson, & Gold, 

2012; Moriguchi, 2017).  

Developments in moderate to high density electroencephalogram (EEG) and functional 

magnetic resonance imaging (fMRI) have been useful in enhancing our knowledge of the effects 

of aging on the neural basis of EF (West, 2017). EEG has been used to measure the spatial and 

temporal distribution of neural activity when performing EF tasks in young and aging adults 

(Finnigan & Robertson, 2011; Sauseng, Klimesch, Schabus, & Doppelmayr, 2005; West, 2016, 

2017). Functional MRI studies on EF have found that older adults have less PFC activity on 

inhibition tasks (e.g., Chadick, Zanto, & Gazzaley, 2014; Jonides et al., 2000). However, older 

adults have greater increased activity in bilateral frontal and parietal regions when performing 

shifting tasks than younger adults (Jimura & Braver, 2009; Madden et al., 2007; Methqal et al., 

2017; Townsend, Adamo, & Haist, 2006). These results suggest that there may be neuroplasticity 

occurring in some brain regions in healthy older adults to compensate for white matter 

degradation in other areas. 

In the broader context of cognition, diffusion tensor imaging studies have found the 

following conclusions especially relevant to EF aging: (a) white matter integrity declines in 

healthy aging, (b) increased white matter is associated with better cognitive performance, (c) age 

mediates the effect of white matter integrity on cognitive performance, and (d) cortical 

disconnection contributes to cognitive decline in healthy older adults (Bennett & Madden, 2014). 

Specific to EF is the growing evidence showing how this cognitive ability is among the most 

age-sensitive due to age-related neurodegeneration in EF brain regions (Glisky, 2007; Peters & 

Morrison, 2012; Raz, Dahle, Rodrigue, Kennedy, & Land, 2011; Raz & Rodrigue, 2006). 

However, cognitively normal older adults are able to maintain stable EF performance and can 
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retain a multidimensional EF structure (de Frias et al., 2009). This suggests that there may be 

other factors such as genetic, health, and lifestyle that moderate EF decline. In contrast, EF 

decline may be exacerbated by genetic risk, functional health decline, and unhealthy lifestyle 

such as lack of physical activity (e.g., Erickson, Hillman, & Kramer, 2015; Ferencz et al., 2014; 

McFall et al., 2014; Small, Dixon, McArdle, & Grimm, 2011; Thibeau, McFall, Wiebe, Anstey, 

& Dixon, 2016).  

EF and Genetic Factors 

Two genetic variants that have received sustained attention for their role in age-related 

differences in EF performance are the catechol-O-methyltransferase (COMT) and the brain-

derived neurotrophic factor (BDNF; e.g., Bilder, Volavka, Lachman, & Grace, 2004; Miyajima 

et al., 2008; Payton, 2009). COMT is essential in the clearing of dopamine in the PFC (Chen et 

al., 2004). The Val158Met COMT polymorphism at codon 158 on chromosome 22q11 increases 

COMT enzymatic activity, causing a decrease in dopamine levels mostly in the PFC; this results 

in COMT homozygotes for the Met allele to have greater dopamine levels than the homozygotes 

for the Val allele. Therefore, in non-demented older adults, there may be a greater risk for EF 

impairment for those with Val allele combinations (Val-Val, Val-Met) than Met-Met 

combinations (Nagel et al., 2008; Sapkota, Vergote, Westaway, Jhamandas, & Dixon, 2015; 

Wishart et al., 2011). BDNF is a molecule also present in the PFC and helps modulate brain 

plasticity (Komulainen et al., 2008). Furthermore, it supports the health and functioning of 

glutamatergic neurons, which are major projection neurons that connect cognitive brain regions. 

The BDNF Val66Met polymorphism is characterized by an amino acid substitution from valine 

to methionine at codon 66; substitution of Val to Met may result in disruption of neuronal 

trafficking and processing (Egan et al., 2003; Liu et al., 2014; Ventriglia et al., 2002). Research 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R51
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R62
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has found that BDNF concentration declines in late adulthood. (Cotman & Engesser-Cesar, 

2002; Erickson, Prakash et al., 2010). In addition, secretion of BDNF is higher in Val 

homozygotes than in Met carriers, which may place the Met homozygotes at greater risk of 

selective cognitive deficits (Nagel et al., 2008; Sapkota et al., 2015). Research exploring the 

synergistic effects of COMT and BDNF has shown that COMT Val carriers have lower EF 

performance when they are also BDNF Met carriers and the effects are magnified with older age 

(McFall et al., 2017; Nagel et al., 2008). 

A polymorphism that has received attention in relation to cognitive decline and dementia 

is the apolipoprotein E (APOE; rs429358 and rs7412) genotype. ApoE plays an important role in 

repair and transport of cholesterol to tissues and cells. The APOE genotype consists of three 

alleles: ε2, ε3, and ε4. The ε4 allele (both homozygosity and heterozygosity) has been found to 

be a risk factor for age-related cognitive decline, mild cognitive impairment, and dementia (e.g., 

Brainerd, Reyna, Petersen, Smith, & Taub, 2011; Elias-Sonnenschein, Viechtbauer, Ramakers, 

Verhey, & Visser 2011; Wisdom, Callahan, & Hawkins, 2011). The ε2 allele has been found to 

confer a reduced risk of Alzheimer’s disease (AD), increased longevity, and sustained cognitive 

health (e.g., de-Almada et al., 2012; Panza et al., 2000; Suri, Heise, Trachtenberg, & Mackay, 

2013). The mechanisms underlying the risk effect of the ε4 allele and the protective effect of the 

ε2 allele may be found in the intrinsic difference of the apoE protein that result from these 

alleles. The apoE2 and apoE4 proteins differentiate by a single amino acid substitution (Suri et 

al., 2013). These substitutions may not only affect protein conformation and stability, but also 

activity (Hatters, Peters-Libeu, & Weisgraber, 2006; Mahley & Huang, 2012). For instance, in 

mouse models, research has shown that ε2 mice are more effective at clearing amyloid-β 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R61
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R50
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(hallmark of AD pathology) from the bloodstream than ε4 mice, as well as promoting amyloid-β 

degradation more effectively than ε4 mice (Jiang et al., 2008; Sharman et al., 2010). 

In relation to APOE non-ε4 carriers, APOE ε4 carriers perform significantly poorer on EF 

measures in healthy cognitive aging (Wisdom et al., 2011). Recent evidence suggests that the 

synergistic effects of COMT and BDNF risk alleles on EF may be modified by the presence or 

absence of APOE ε4 (Sapkota et al., 2015). Specifically, EF performance is significantly 

predicted when examining additive effects of COMT + BDNF + age as stratified by APOE risk 

and non-risk groups. Therefore, APOE may act directly or as a moderator of other gene-

cognition associations in aging. However, what is not yet known is whether APOE has direct 

effects or acts as a moderator when examining differences in EF structure.  

The insulin degrading enzyme (IDE; rs6583817) polymorphism has also been shown to 

affect EF performance and change in aging. In terms of function, IDE is responsible for the 

degradation of hormones and bioactive peptides (McFall et al., 2013). It is the most important 

proteolytic enzyme for insulin and it is involved in the processing of amylin, glucagon, and 

amyloid beta (Bennett, Duckworth, & Hamel, 2000; Kurochkin & Goto, 1994; Shen, Joachimiak, 

Rosner, & Tang, 2006). The IDE gene variants have been linked to increased risk of dementia 

and AD (Bartl et al., 2011; Belbin et al., 2011; Carrasquillo et al., 2010). Independent IDE 

effects in older adults show that those with the major IDE G allele perform better on EF and have 

better protection for normal cognitive functioning than homozygotes for the minor IDE A allele 

(McFall et al., 2013; McFall et al., 2014). Interestingly, IDE not only affects EF performance but 

is also able to moderate EF change in older adults. Longitudinal research has shown that those 

individuals who possess the G allele exhibit reduced EF decline compared to those who do not 

possess the G allele (McFall et al., 2013). 
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Effects of Functional Biomarkers on EF 

In general, vascular health tends to decline with age and may contribute to cognitive 

decline and dementia (e.g., Gorelick et al., 2011; Qiu, Winblad, & Fratiglioni, 2005). A 

particular indicator of vascular health that has been commonly used is pulse pressure (PP; Dahle, 

Jacobs, & Raz, 2009; McFall et al., 2014; Waldstein et al., 2008). PP is a proxy for arterial 

stiffness and is calculated as systolic minus diastolic blood pressure. Research has found 

associations between PP and EF deficits in healthy young and older adults (Raz et al., 2011). 

More recent research has shown that worse PP (e.g., 72 mmHg) in older adults produces poorer 

EF performance and increased EF decline (McFall et al., 2014). Protective alleles from 

polymorphisms associated with EF may not protect against the detrimental effects of PP on EF. 

For instance, adults with the IDE G allele and less healthy levels of PP show decrements in EF 

performance and steep EF decline over 9-year trajectories (McFall et al., 2014). 

Although there are biological reasons to believe that body fat predicts cognitive function, 

growing evidence shows that elevated body mass index (BMI) increases the risk of cognitive 

impairment, including poor EF performance and greater EF decline (e.g., Anstey, Cherbuin, 

Budge, & Young, 2011; Gunstad et al., 2007; Taki et al., 2008). MRI studies have shown that 

young, middle-aged, and older adults with elevated BMI have reduced gray matter volume in 

brain regions associated with EF (Taki et al., 2008). This may account for the association 

between lower EF performance and elevated BMI. Evidence from cross-sectional research 

showed that across a broad range of adulthood (20-82 years), overweight and obese adults (BMI 

> 25) exhibit poorer EF performance than adults with normal weight (BMI 18.5-24.9) and the 

relationship does not vary with age (Gunstad et al., 2007). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069225/#R52
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069225/#R17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069225/#R17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069225/#R76
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Another factor that may also be associated with EF is peak expiratory flow. Peak flow 

has been suggested to be a measure of lung function, overall vitality, and a sensitive index of 

general physical and cognitive functioning in older adults (e.g., Aleman, Muller, de Haan, & van 

der Schouw, 2005; Cook et al., 1995; Roberts, & Mapel, 2012; Simons, Simons, McCallum, & 

Friedlander, 2006). Peak flow has mostly been associated with general cognitive status (e.g., 

Allaire, Tamez, & Whitfield, 2007) and direct links with EF are still unclear. However, brain 

regions associated with EF may be affected due to a decreased amount of oxygen in the brain 

caused by poor lung function.  

Aging has a detrimental effect on overall hand function, especially hand and finger 

strength (Ranganathan, Siemionow, Sahgal, & Yue, 2001). This negative effect may be 

attributed to deterioration of muscle coordination and degeneration of the central nervous system 

(Hunter, White, & Thompson, 1998; Ranganathan et al., 2001). A hand-held dynamometer is 

commonly used to measure grip strength. Grip strength is a useful indicator of frailty and general 

muscle strength (Mirelman et al., 2012). Research has found links between muscle strength and 

cognitive decline, including EF, in older adults (e.g., Boyle, Buchman, Wilson, Leurgans, & 

Bennett, 2009). A stable relationship has been found between decreased grip strength and 

decreased performance in aspects related to EF (e.g., processing speed) starting after 65 years of 

age (Sternäng et al., 2015). Greater decline and individual differences may also be observed as 

the aging process intensifies and accelerates.  

Lifestyle Factors and EF 

There is extensive evidence showing the positive effects that fitness training and exercise 

interventions have on healthy brain aging and overall health (e.g., Erickson, Raji et al., 2010; 

Kelly et al., 2014; Voss et al., 2013). However, everyday physical activity (EPA) has received 
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particular interest due to its impact on cognition, including EF. In general, EPA is a modifiable 

lifestyle factor that may increase gray matter volume in the brain; it encompasses a wide range of 

activities such as walking, jogging, exercising, and gardening (Erickson, Leckie, & Weinstein, 

2014; Thibeau, McFall, Camicioli, & Dixon, 2017). Longitudinal studies examining middle-aged 

and older adult populations have shown that higher baseline EPA is associated with 

improvements and better EF performance and less EF decline (e.g., Blasko et al., 2014; Thibeau 

et al., 2016; Wang et al., 2012). In contrast, passive activity such as high frequency of TV 

viewing with little to no EPA predicts lower EF performance and may lead to further EF decline 

in young and older adults (Meijers, Harte, Jonker, & Meynen, 2015; Wang et al., 2006). 

Engagement in cognitive activity such as reading books/newspapers, writing, solving 

crossword puzzles, and studying have shown to protect against cognitive impairment leading to 

dementia (e.g., Valenzuela & Sachdev, 2009; Wang, Karp, Winblad, & Fratiglioni, 2002; 

Wilson, Scherr, Schneider, Tang, & Bennett, 2007). An explanation for this may be attributed to 

the cognitive reserve theory which states that environments stimulating physical, cognitive, and 

social interactions may help compensate for neurodegeneration, thereby delaying the onset of 

dementia (Blasko et al., 2014). The exact mechanisms in which cognitive reserve may work on 

include improving cerebral blood flow, stimulating neurogenesis, and potentiating synaptic 

strength. Results demonstrate that cognitive activity (a) consistently correlates with parameters 

of EF, (b) is associated with better EF performance, and (c) reduces EF decline in older adults 

(Mueller, Raymond, & Yochim, 2013).  

Mobility Markers and EF 

Studies have hypothesized that cognitive decline affects mobility, especially when there 

is impairment in EF (e.g., Ble et al., 2005). Evidence suggests that this occurs because numerous 
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EF components are needed when particular mobility tasks are performed in everyday 

environments. For instance, response inhibition is needed to allow an individual to focus on gait 

when walking in an environment with numerous distractors. Research has found associations 

between gait speed and better EF performance in older adults (Holtzer, Verghese, Xue, & Lipton, 

2006; Watson et al., 2010). EF decline has been found to be related to disturbances in gait 

stability and increases in fall risk (Mirelman et al., 2012; Springer et al., 2006). EF deficits also 

contribute to poor locomotion and difficulties performing a turn; these deficits may also be 

reflected in cognitive EF performance (e.g., Coppin et al., 2006; Giladi, Huber-Mahlin, Herman, 

& Hausdorff, 2007; Kearney, Harwood, Gladman, Lincoln & Masud, 2013). 

 Effects of Age, Sex, and Education on EF 

The topic of age-related changes in EF has been extensively investigated in the past two 

decades (e.g., Luszcz, 2011; Rabbitt, 1997; Reuter-Lorenz, Festini, & Jantz, 2015). A recent 

compendium presents new research and perspectives on lifespan changes in EF performance and 

structure (Wiebe & Karbach, 2017). With the development of newer techniques in neuroscience, 

recent evidence has linked cortical thinning and volumetric loss in the PFC with chronological 

age, and poor EF performance (Li et al., 2017; Yuan & Raz, 2014). Evidence showing cognitive 

training affecting local brain structure (e.g., Engvig et al., 2010) may explain the relationship 

between age-related brain changes and EF performance. For instance, cortical thinning and 

volumetric loss may disrupt the response to increased cognitive activity (Yuan & Raz, 2014). 

Research examining age-related EF decline has found that the most common affected functions 

involve inhibition, abstraction, mental flexibility, and concept formation (e.g., Bielak, Mansueti, 

Strauss, & Dixon, 2006; Harada, Natelson Love, & Triebel, 2013; Hasher, Lustig, & Zacks, 

2007; McFall et al., 2017). However, age-related deficits have also been found in the updating 
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and shifting domains of EF (Bopp & Verhaeghen, 2005; Kray & Lindenberger, 2000; Mayr, 

2001; Wasylyshyn, Verhaeghen, & Sliwinski, 2011). In general, advancing age is associated 

with accelerated longitudinal decline in EF performance (e.g., McCarrey, An, Kitner-Triolo, 

Ferrucci, & Resnick, 2016). 

Structurally, EFs undergo changes across the lifespan from EF differentiation in children 

and young adults (Chevalier & Clark, 2017; Lee et al., 2013; Miyake et al., 2000; Wiebe & 

Karbach, 2017; Wiebe et al., 2011) to EF dedifferentiation in older adults (Adrover-Roig, Sesé, 

Barceló, & Palmer, 2012; de Frias et al., 2006, 2009; Li et al., 2017; McFall et al., 2017; McFall 

et al., 2014). However, structural changes in EF may not affect the older adult population 

equally. In normal cognition, longitudinal invariance testing shows a multidimensional (three-

factor) and unidimensional (one-factor) model of EF structure (de Frias et al., 2009; McFall et 

al., 2017), suggesting that EF structure in normal cognitive aging is variable and depends on 

other factors (e.g., genetic, lifestyle).  

Sex and gender are conceptually distinct terms, with sex relating to biological and 

physiological (e.g., anatomy, hormones, chromosomes) differences between males and females, 

and gender relating to cultural or societal roles and aspects (e.g., socioeconomic status, 

occupation) that are used in a society to differentiate masculinity from femininity (Johnson, 

Sharman, Vissandjee, & Stewart, 2014; Ritz et al., 2014; Tierney, Curtis, Chertkow, & Rylett, 

2017). The confusion between these terms may explain why past research encountered mixed 

results about differences in EF performance between males and females in brain and cognitive 

aging (e.g., Moering, Schinka, Mortimer, & Graves, 2003; van Boxtel, ten Tusscher, 

Metsemakers, Willems, & Jolles, 2001). Recent research examining cognitive function 

trajectories in both young (female mean age: 20.7 ± 0.3 years; male mean age: 21.2 ± 0.3 years) 
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and aging (50 years and over) groups has found the following results regarding sex or gender 

differences: (a) women have significantly less decline than men in memory, executive function, 

and global cognitive function; (b) at baseline, men outperform women in visuospatial ability; (c) 

cognitive change over time indicates steeper rates of decline for men on measures of 

perceptuomotor speed and integration, mental status, and visuospatial ability; (d) women 

improve more than men after practice on inhibitory tasks (Mansouri, Fehring, Gaillard, 

Jaberzadeh, & Parkington, 2016; McCarrey et al., 2016; Zaninotto, Batty, Allerhand, & Deary, 

2018). An explanation for these findings is that women are less vulnerable to macrostructural 

and age-related changes in the brain, as supported by research showing males not only having 

less cortical thickness, but also experiencing cortical thinning at a greater rate than females 

(Luders et al., 2006; Pacheco, Goh, Kraut, Ferrucci, & Resnick, 2015; Sowell et al., 2007). 

Interestingly, genetic research has provided evidence of improved cognitive performance from 

physical activity in male BDNF Met non-carriers, but not in Met carriers, and no effect in 

females regardless of genotype (Watts, Andrews, & Anstey, 2018), suggesting gene-lifestyle 

interactions in determining sex differences in cognitive performance. Relating to cultural or 

societal aspects, recent research has found that childhood middle socioeconomic status is related 

to lower baseline levels of EF in women but not men (Zaninotto et al., 2018). 

Having a high level of education appears to be a strong predictor of optimal cognitive 

functioning in older age and may also be a factor that protects against age-related cognitive 

decline in some cognitive domains (Alley, Suthers, & Crimmins, 2007; Bento-Torres et al., 

2017; Bosma, van Boxtel, Ponds, Houx, & Jolles, 2003; Guerra-Carrillo, Katovich, & Bunge, 

2017; Wilson et al., 2009). Those individuals with more education may have the advantage of 

possessing greater cognitive reserve capacity than those with less education (Stern, 2003; Tucker 
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& Stern, 2011; Tucker-Drob, Johnson, & Jones, 2009; Ward, Summers, Saunders, & Vickers, 

2015). Cognitive impairment is delayed when there is a larger cognitive brain reserve capacity 

(Stern, 2003, 2012). Therefore, education helps in building reserve capacity to protect against the 

damaging effects that aging has on brain functions. In addition, early education may promote 

aspects of cognitive development during important stages of childhood that protect against 

cognitive decline in late-life (Zahodne, Stern, & Manly, 2015). These perspectives are supported 

by results that show EF decline with age is more pronounced in individuals with less education, 

specifically in shifting and inhibition tasks (Dorbath, Hasselhorn, & Titz, 2013; Tun & Lachman, 

2008; van der Elst, van Boxtel, van Breukelen, & Jolles, 2006; van Hooren et al., 2007; Wecker, 

Kramer, Hallam, & Delis, 2005). In relation to sex or gender, recent research has suggested that 

lower baseline levels of EF are related to educational attainment in men, but not women 

(Zaninotto et al., 2018). As previously mentioned, in women, childhood middle socioeconomic 

status was related to lower baseline levels of EF. 

Research Goals 

The purpose of this research was to examine and predict longitudinal change in level of 

performance and structure of EF in a cognitively normal aging group. Two longitudinal studies 

were designed to integrate four key characteristics of EF change and variability in non-demented 

EF aging: trajectories, classification, structure, and biomarker predictors. A 3-wave VLS data set 

was assembled covering over a 40-year age span (53-95 years). Preliminary analyses were 

conducted to (a) confirm a one-factor EF latent variable for the whole sample and (b) test the 

measurement invariance of the EF latent variable model across the three waves. Three research 

goals were examined for Study 1 and two for Study 2. Study 1 goals were: (1a) use results 

obtained from preliminary analyses and determine an EF latent growth curve from trajectory 
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distributions, (1b) establish objective stable and declining groups of EF change, and (1c) test 

biomarker risk predictors (e.g., genetic, vascular, functional, lifestyle) that discriminate these 

groups. Study 2 goals were: (2a) identify subgroups associated with different structural 

characteristics (e.g., factor solutions or dimensions) and (2b) test biomarker risk predictors that 

discriminate EF subgroups of different dimensionality (unidimensional vs. multidimensional). 

 Method and Materials 

Participants  

Participants were community-dwelling adults of the Victoria Longitudinal Study (VLS). 

The VLS is an ongoing large-scale, multi-cohort, longitudinal sequential study of cognitive, 

neuropsychological, genetic, biomedical, and lifestyle aspects of human aging (Dixon & de 

Frias, 2004). Participants were originally recruited by using advertisement through the public 

media and requests from community groups. All participants provide written informed consent 

and are paid nominal fees for their participation. Data collection procedures are in full and 

certified compliance with human research ethics guidelines and boards. Using standard 

procedures (e.g., Dixon, Small, MacDonald, & McArdle, 2012; McFall et al., 2014; Small, 

Dixon, & McArdle, 2011), a longitudinal data set consisting of three sequential samples and all 

available waves since the early 2000s was assembled. The EF tasks used for this project were 

added to the VLS neuropsychological battery at this point. We assembled and merged (a) Sample 

1 (S1) Waves 6, 7, and 8; (b) Sample 2 (S2) Waves 4, 5, and 6; and (c) Sample 3 (S3) Waves 1, 

2, and 3. For terminological purposes, the earliest wave of each cohort is specified as Wave 1 

(W1 or baseline) and the second and third wave as Wave 2 (W2) and Wave 3 (W3). The wave-

to-wave retention rates were as follows: (a) S1 W1-W2 = 60%; (b) S1 W2-W3 = 80%; (c) S2 

W1-W2 = 67%; (d) S2 W2-W3 = 66%; (e) S3 W1-W2 = 71%; (f) S3 W2-W3 = 77%. The initial 
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source sample included 914 persons (baseline M age = 71.91, SD = 9.18, range = 53.24 – 100.16, 

66.2% female, M years of education = 15.09).  

We applied multiple exclusionary criteria. Participants were excluded if they had (a) EF 

data missing from all three waves, (b) reported diagnosis of mild to very serious Alzheimer’s 

disease or other forms of impairment and dementia, (c) self-reported history of very serious head 

injury (e.g., in a coma, hospitalized), epilepsy, and depression, (d) self-reported moderately 

serious to very serious stroke (either side of the brain), (e) self-reported history of moderate-to-

severe Parkinson’s disease, (f) Mini-Mental Status Examination (MMSE) score less than 24, and 

(g) use of anti-psychotic medication. After applying these exclusionary criteria, we established 

an EF trajectory sample comprised of 781 participants (baseline M age = 71.42, SD = 9.07, range 

= 53.24 – 95.25, 66.6% female). Table 1 shows descriptive statistics for the trajectory sample, 

including mean performance and standard deviation for each of the EF measures used. We used 

this sample for our preliminary analyses and to examine research goals 1a, 1b, and 2a. 

Given the necessity of genetic data for the prediction analyses, a sub-sample of 570 

(baseline M age = 70.10, SD = 8.50, range = 53.24 – 95.25, 66.5% female) participants who 

contributed genetic data during collection occurring from 2009 – 2011 was used. This cohort 

comprised our prediction sample and was used to examine research goals 1c and 2b. Table 2 

shows baseline descriptive statistics for this sample, including the biomarker predictor variables. 

Measures  

Executive function (EF). Eight standard neuropsychological measures were used as 

indicators of three dimensions of EF: two each for inhibition and updating and four for shifting. 

The first six tests listed below have been used in previous studies (e.g., de Frias et al., 2006, 

2009; McFall, Sapkota, McDermott, & Dixon, 2016; Thibeau et al., 2016) and represent 
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inhibition (Hayling, Stroop), shifting (Brixton, Color Trails), and updating (Computational Span, 

Reading Span). The last two non-verbal tests (Letter Series, Letter Sets) were tested in this 

research for their contribution to measuring the shifting domain. Overall, these tests have been 

included in multiple studies and their psychometric properties have been reported in both clinical 

and healthy populations (e.g., Bielak et al., 2006; de Frias & Dixon, 2014; McFall et al., 2014; 

McFall et al., 2013; Quereshi & Seitz, 1993; Sapkota et al., 2015). 

Hayling sentence completion test. This test is associated with the inhibition domain and 

consists of two sections (Burgess & Shallice, 1997). Each section has a set of 15 sentences and 

each sentence has the last word missing. In Section 1, the participant listens as the examiner 

reads the sentence aloud and when the examiner finishes reading, the participant completes the 

sentence as fast as possible. For example, “the dispute was settled by a third . . . [participant 

says] party.” The first section is used to measure response speed. In Section 2, the examiner 

reads the sentence aloud and the participant completes the sentence with a word that is 

completely unrelated or unconnected to the sentence in every way. For example, “none of the 

books made any . . . [participant says] computer.” In this part, the participant has to restrain a 

strongly activated (automatic) response and, before answering, has to generate a new response. A 

response would be coded as an error if the participant fails to inhibit an automatic response (i.e., 

completing a sentence with a word that is connected to the sentence). The task yields two 

measures of response speed (from Section 1 and 2) and one error score (from Section 2). Scaled 

scores range from 1 to 10, with 1 being “impaired” and 10 being “very superior”. 

Stroop test. This test is associated with the inhibition domain. It requires the participant 

to inhibit the automatic response of reading a printed word and instead name the color in which 

the word is printed as fast as possible (Regard, 1981; Taylor, Kornblum, Lauber, Minoshima, & 
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Koeppe, 1997). The test consists of three parts. In Part A, the participant names, row by row, 

from left to right, and as fast as possible, the color of 24 dots printed in either red, blue, green, or 

yellow ink. The participant continues naming the color of each dot until the entire card is 

completed. The dots are arranged in a random order across the card. In Part B, the participant 

names the color in which the word is printed as fast as possible, ignoring the verbal content. In 

Part C, words are replaced by actual color words printed in red, blue, green, or yellow. For 

example, the word “blue” may be printed in red ink or the word “green” may be printed in blue 

ink. The participant names the color in which the word is printed as fast as possible. The 

performance score is based on the interference index (Part C – Part A / Part A).  

Brixton test. The Brixton Spatial Anticipation Test (Burgess & Shallice, 1997) is a 

shifting task and consists of a booklet of 56 pages with numbers and circles that have the same 

basic design: There are 10 circles in two rows of 5, numbered 1-10 for the position, and one 

position is always colored blue. As the pages are turned, the blue dot moves around according to 

various patterns that come and go without warning. The participant is shown one page at a time 

and is asked to decide where the blue dot is going to be on the next page, based on the pattern 

shown on the previous page. Total errors are recorded based on the test manual: maximum of 54 

errors and converted to a scaled score of 10. For the analysis, a standard scale score was used 

ranging from 1 (impaired) to 10 (very superior).  

Color Trails Test (CTT). The CTT (D’Elia, Satz, Uchiyama, & White, 1996) was 

designed to measures shifting as an executive process and it consists of two parts. In Part 1, the 

participant makes pencil lines and connects encircled numbers in order from 1 to 25. The 

encircled numbers are scattered randomly throughout the page and the participant finds the 

numbers and connects them in order. The circles are arranged in pink and yellow background 
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with odd numbers having a pink background and even numbers a yellow background. In Part 2, 

there is a sequence of repeated encircled numbers from 1 to 25 and each sequence has alternating 

yellow and pink colors. For example, the encircled number 1 is shown twice, but one circle is 

pink and the other one is yellow. Similar to Part 1, the participant is still required to connect the 

circles from 1 to 25, but this time the participant has to alternate between pink and yellow circles 

and choose the circle with the number sequence that is the alternate version of the previous color 

circle (see D’Elia et al., 1996). The time to complete the task for both Part 1 and Part 2 is 

recorded in seconds. For the analysis, the latency score of Part 2 was used.  

Computational span. This working memory task is used to tap the updating domain 

(Salthouse & Babcock, 1991). Participants are asked to solve a series of arithmetic problems 

while remembering the last digit of each problem they solve in order to be recalled later. There is 

an increase in the number of problems in a series from one to seven, with three trials at each 

series length. The measure used was the highest span correctly recalled for two out of three trials. 

Reading span. This task is associated with the updating domain and requires participants 

to answer questions about orally presented sentences while remembering the final word of each 

sentence for later recall. There is an increase in the number of sentences in the passage from one 

to seven, with three trials at each series length. The measure used was the highest span correctly 

recalled for two out of three trials. 

Letter series test. This task was used for its contribution to the shifting domain. In the 

letter series test (Thurstone, 1962), participants are required to identify the pattern of a series of 

letters. Participants have to decipher the pattern in the target string and then match the letter in 

the string that is congruent with the pattern presented. The last letter of the series of letters has to 
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be placed in such a way that it would continue the established pattern. The outcome measure 

used was the total number correct out of 20 patterns. 

Letter sets test. This task was used for its contribution to the shifting domain. Each 

problem in this test (see Ekstrom, French, Harman, & Dermen, 1976) has five sets of letters with 

four letters in each set. Four of the sets of letters are alike in some way. Participants are required 

to find the rule that makes the four sets alike. One of the sets of letters is different from the 

others and will not fit the rule. Participants circle the set of letters that is different. The outcome 

measure used was the total number correct out of 15 problems. 

DNA extraction and genotyping. Saliva samples were collected according to Oragene 

DNA Genotek technology protocol, including preparation and stabilization (see McFall et al., 

2013). Genotyping was carried out by using a Polymerase Chain Reaction Restriction Fragment 

Length Polymorphism strategy to analyze the allele status for APOE (determined by the 

combination of the SNPs rs429358 and rs7412), BDNF (rs6265), IDE (rs6583817), and COMT 

(rs4680). For the genetic analyses, a dichotomous genotype categorization was conducted based 

on the presence or the absence of the risk allele. For APOE genotype, we used ε4- (non-risk; 

composed of ε2ε2, ε2ε3, ε3ε3 allele combinations), and ε4+ (risk; composed of ε4ε4 and ε3ε4 

allele combinations). For BDNF genotype, we used Met- (non-risk; composed of the Val/Val 

allele combination), and Met+ (risk; composed of the Met/Met and Val/Met allele combinations). 

For IDE genotype, we used G- (risk; composed of the AA allele combination), and G+ (non-risk; 

composed of the GG and GA allele combinations). For COMT genotype, we used Val- (non-risk; 

composed of the Met/Met allele combination), and Val+ (risk; composed of the Val/Val and 

Val/Met allele combinations). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882330/#R11
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Fifteen biomarker risk factor predictors. A total of 15 predictors were used to 

discriminate EF status classification (stable vs. declining) and structural dimensionality 

(unidimensional vs. multidimensional). Demographic factors were collected at baseline and 

included participants’ (a) age (in years), (b) education (total years), and (c) sex (male or female). 

Functional biomarkers included baseline (a) pulse pressure [PP; equals systolic blood pressure 

(BP) - diastolic BP, in mmHG] based on an average of eight BP readings, (b) body mass index 

(BMI; equals weight/height 2, in kilograms/meters2), (c) peak expiratory flow (PEF; largest 

volume of air expired over three attempts, in litres/minute), and (d) grip strength (average hand 

strength, in kilograms/force). Genetic factors from DNA extraction and genotyping were (a) 

APOE, (b) BDNF, (c) IDE, and (d) COMT. Mobility markers included (a) balance or timed turn 

(360 degree turn, in seconds) and (b) gait or timed walk (20 feet, in seconds). Lifestyle factors 

were (a) everyday physical activity (based on n = 4 self-report questions), and (b) everyday novel 

cognitive activity (n = 27 self-report questions). These lifestyle variables are part of the VLS 

Activities Lifestyle Questionnaire (e.g., Hultsch, Hertzog, Small, & Dixon, 1999; Runge, Small, 

McFall, & Dixon, 2014) and are based on a 9-point scale (e.g., never = 0, daily = 8) that rates 

frequency of participation. 

Statistical Analyses 

Mplus 7 (Muthén & Muthén, 2010) was used to perform (a) confirmatory factory analysis 

and invariance testing for preliminary analyses, (b) latent growth modeling and growth mixture 

modeling for goals 1a and 1b from Study 1, and (c) factor mixture modeling for goal 2a from 

Study 2. R 3.3.2 (R Development Core Team, 2015) was used to perform random forest analysis 

(RFA) for biomarker predictions on goals 1c and 2b from Studies 1 and 2, respectively. Results 

from measurement invariance may be used to examine if data are missing completely at random 
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(MCAR) or at random (MAR). For instance, data may be MAR if the multi-group invariance 

constraints do not fit well, for example, by producing a significant χ2 result (see McArdle, 2009). 

Missing data and attrition were estimated in growth models using maximum likelihood. For 

prediction analyses, the missForest package was used to estimate missing data. The missForest 

algorithm works as a nonparametric imputation method, fitting a random forest on the observed 

data and then predicting the missing data for each variable (Stekhoven, 2011). This process is 

repeated until reaching a maximum number of iterations. The algorithm assesses the 

performance between iterations by distinguishing between the previous and new iteration results. 

An imputation error is also estimated based on the out-of-bag (OOB) error estimate of random 

forest. A normalized root mean squared error (NRMSE; see Oba et al., 2003) and a proportion of 

falsely classified entries (PFC) are provided as part of the OOB error rate, indicating bad 

performance (values closer to 1) or good performance (values closer to 0). For our prediction 

sample, the following characteristics for missing data were observed: M percentage = 1.2% 

(range = 0.4% – 4%). For RFA using EF status classification groups, our OOB error was as 

follows: NRMSE = 0.233, PFC = 0.07. For RFA using structural dimensionality groups, our 

OOB error was as follows: NRMSE = 0.231, PFC = 0.08. 

Preliminary analyses. Two sets of preliminary statistical analyses were performed. The    

first preliminary analysis involved testing and confirming a one-factor EF latent variable 

(previously observed: McFall et al., 2014; McFall et al., 2013; Sapkota et al., 2015; Thibeau et 

al., 2016) for the trajectory sample, based on eight indicators. For the second preliminary 

analysis, we tested the measurement invariance of the EF latent variable model across three 

waves. Measurement invariance for each model was tested, including (a) configural invariance 

(same indicator variables load onto the latent variable at each wave of data collection), (b) metric 
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invariance (factor loadings are constrained to be equal for each latent variable to indicate it 

measures the same construct), and (c) scalar invariance (indicator intercepts are constrained to be 

equal and allow mean differences to be evident at the latent mean level). Model fit for 

confirmatory factor analysis and invariance testing was determined using standard indices: (a) χ2 

for which a good fit would produce a non-significant test (p > .05), indicating the data are not 

significantly different from the model estimates, (b) comparative fit index (CFI) for which a 

value of ≥ .95 is good and ≥ .90 is an adequate fit, (c) root mean square error of approximation 

(RMSEA) for which a value of ≤ .05 is good and ≤ .08 is an adequate fit, (d) standardized root 

mean square residual (SRMR) for which a good fit is determined by a value of ≤ .08, (e) Akaike 

Information Criterion (AIC) for which a lower value indicates better fit, and (f) Bayesian 

Information Criterion (BIC; sample-size adjusted value of AIC) for which a lower value 

indicates better fit (Kline, 2011; Little, 2013). EF factor scores for a one-factor EF latent variable 

were estimated in Mplus and used in all other latent growth models. 

Study 1. 

Analyses for RG 1a: Latent growth modeling of EF. Latent growth modeling was used 

to establish an EF latent growth curve. It is important to note that although wave was used to 

organize the demographic data, it was not used in the analyses as the metric of longitudinal 

change. Instead, age (in years) was used as the metric of change. Using age as the metric of 

longitudinal change in the statistical models can account for the variability of age as well as, or 

better than, if it were only used as a covariate (McFall et al., 2016). Age was centered at 75 

years, which is the approximate mean over a 40-year span of data ranging from 53-95 years. 

Previous studies have found 75 years to be a common inflection point in cognitive aging (e.g., 

Dixon et al., 2012; Small et al., 2011). The best fitting model was established by testing (a) fixed 
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intercept model (assumes no inter- or intra-individual variability), (b) random intercept model 

(models interindividual variability, but no intraindividual change), (c) random intercept fixed 

slope model (allows interindividual variability in level, but assumes the rate of change is the 

same in all individuals), and (d) random intercept random slope model (allows interindividual 

variability in both level and change; see Singer & Willett, 2003).  

Analyses for RG 1b: Growth mixture modeling on EF. Growth Mixture Modeling 

(GMM) on individualized EF trajectory data was used to determine EF status classification 

(stable or declining) on the basis of level and slope of the EF latent variable. GMM uses latent 

trajectory classes (e.g., categorical latent variables), which enables post hoc classification of 

individual EF trajectories based on EF performance level and change with the underlying 

assumption that each individual belongs to a latent class (Jung & Wickrama, 2008; Ram & 

Grimm, 2009; Wang & Bodner, 2007). Model fit was determined using conventional indices, 

including AIC, BIC, -2LL, and entropy. 

Analyses for RG 1c: Biomarker risk predictors of EF status classification (stable vs. 

declining). Random Forest Analysis (RFA; Kuhn & Johnson, 2013) was used to determine the 

most important predictors of stable vs. declining EF status classification (from the pool of 15 

demographic, functional, genetic, mobility, and lifestyle risk factors). RFA (in R 3.3.2; R 

Development Core Team, 2015) is a recursive multivariate data exploration method that 

combines the predictions of many classification and regression trees (ntree), each based on 

random sampling of participants and predictor variables (mtry). RFA was selected over logistic 

regression due to the interest in obtaining a ranking of the predictors in terms of importance. 

Additionally, RFA produces a conservative estimate of its predictive ability (out-of-bag error 

rate) and copes with a large number of predictor variables, restricting the number of variables 
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used in each ntree, which can show important predictors that could have been overshadowed by 

a stronger competitor (Strobl, Malley, & Tutz, 2009).  

RFA was conducted using the “Party” package (Hothorn, Bühlmann, Dudoit, Molinaro, 

& van der Laan, 2006). Each forest was comprised of a number of ntrees, sufficient for good 

model stability, and an optimal mtry number of predictors at each potential split. Generally, mtry 

is set at √# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 (Genuer, Poggi, & Tuleau-Malot, 2010). Permutation accuracy 

importance was used to assess relative level of importance with the cforest function in the Party 

package. Model strength was assessed as the area under the receiver operation characteristic 

curve (c- statistic), with values closer to 1 indicating better model strength (see Hajian-Tilaki, 

2013). Variables have an importance rank composed of their permutation accuracy importance, 

which is a measure of the relative strength of each variance in predicting outcomes. Those 

variables with values that are negative, zero, or are a small positive were not considered 

important predictors of EF status classification. Descriptive ranking of the predictor variables 

was used to define importance (McDermott, McFall, Andrews, Anstey, & Dixon, 2017; Strobl et 

al., 2009).  

Study 2. 

Analyses for RG 2a: Factor mixture modeling on EF. Factor Mixture Modeling (FMM) 

was used for subgroup classification of EF structure (unidimensional and multidimensional). 

FMM is a hybrid of latent class (or latent profile for continuous data) and factor analysis 

(Muthén, 2008). Within the FMM model, the latent class variable classifies individuals into 

groups and the latent continuous factor models the heterogeneity of the construct within latent 

class (Clark et al., 2013; Masyn, Henderson, & Greenbaum, 2010). The factor loadings, factor 

means, factor covariance matrix, and residual variances have the potential to be class-specific. 
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Therefore, the factor structure of the model can be different in each class. FMM models were 

tested with class-varying and class-invariant parameters (e.g., factor loadings) and model 

selection was based on fit indices, including: AIC, Sample-Size Adjusted BIC (SSABIC), Lo-

Mendell-Rubin test (LMR), and Bootstrapped Likelihood Ratio Test (BLRT; see Bernstein, 

Stickle, & Schmidt, 2013; Clark et al., 2013; Muthén, 2008). A systemic approach to FMM 

involved testing and selecting the best models for classes (latent profile analysis), best factor 

structure models (factor analysis), and best FMM model.  

A total of five FMM models were tested within classes and factors (FMM-1 to FMM-5). 

FMM-1 had class-invariant factor loadings, intercept means, and residual variance, class-varying 

factor means, and class covariance matrix fixed to zero. FMM-2 was different from the previous 

model in that it had a class-varying factor covariance matrix. FMM-3 was different from the 

previous model in that it had class-varying residual variance. FMM-4 was different from the 

previous model in that it had class-varying intercept means. FMM-5 was different from the 

previous model in that it had class-varying factor loadings.  

Analyses for RG 2b: Biomarker risk predictors of EF structural dimensionality 

(unidimensional vs. multidimensional). Random Forest analysis was used to determine the most 

important predictors of unidimensional vs. multidimensional EF structural dimensionality (from 

the pool of 15 demographic, functional, genetic, mobility, and lifestyle risk factors). Procedures 

were used as previously described. 

Results 

Preliminary Analyses 

Confirmatory factor analysis was used to test the structure of the eight indicators of EFs 

(Table 3). The one-factor EF model fit the longitudinal data well, χ2 (219, N = 781) = 360.644, p 
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<.000, RMSEA = .029, CFI = .978, SRMR = .039. We then conducted measurement invariance 

testing (Table 3). Based on criteria to evaluate model fit and selection (see Chen, 2007; 

Rutkowski & Svetina, 2014), results supported metric invariance (Δχ2 = 61.414, Δdf = 14, p 

<.001, ΔRMSEA = .003, ΔCFI = .008, ΔSRMR = .017). Model fit criteria were not met for 

scalar invariance (Δχ2 = 371.205, Δdf = 16, p <.001, ΔRMSEA = .021, ΔCFI = .056, ΔSRMR = 

.035) and thus we proceeded to test a model with partial scalar invariance (Δχ2 = 42.485, Δdf =4, 

p <.001, ΔRMSEA = .003, ΔCFI = .006, ΔSRMR = .01). This partial scalar model with 

intercepts constrained to be equal across time for Hayling and Stroop resulted in the optimal 

model and showed good fit indices, χ2 (237, N = 781) = 464.543, p <.000, RMSEA = .035, CFI = 

.964, SRMR = .066). Because we did not observe full scalar invariance, residual invariance was 

not tested. Multi-group invariance constraints results indicated that the data were missing at 

random due to the loss of fit associated with scalar invariance. Measurement invariance results 

indicated that the EF model measured the same construct over time and the same indicator 

variables marked EF at each wave. Partial scalar results allowed comparison of latent variable 

means.  

Study 1 

RG1a: Latent growth modeling on EF. Using age (centered at 75) as the metric of 

change, latent growth modeling was performed using estimated EF factor scores. The best fitting 

model was a random intercept, random slope latent growth model (Table 4), and showed 

multiple results. First, the model indicated that older adults significantly vary in EF performance 

at age 75 (b = 1.084, p < .001) with a level of EF significantly different from 0 (M = .122, p = 

.003). Second, the model revealed a significant decline in EF performance across time (M = -

https://www.sciencedirect.com/science/article/pii/S0273229716300351#bib0270


 
 

27 

 

.003, p = .02). Third, older adults showed significantly variable patterns of decline (b = .001, p < 

.001). Figure 1 shows the individualized trajectories. 

RG1b: Growth mixture modeling on EF. Growth Mixture Modeling (GMM) was 

performed to identify latent subpopulations with different latent trajectories (Table 5). Initial 

results showed a maximum of six classes to be tested for GMM. Empirical results revealed that 

the four-class model fit the data best (AIC = 2944.666, BIC = 3009.914, ENTROPY = .834). 

Although both the five- and six-class models fit the data better than the four-class model, both 

resulted in a class with proportion < 10%. Research has suggested disregarding models with 

class proportions < 1% (e.g., Jung & Wickrama, 2008). However, since our purpose was to use 

the classes obtained for further analyses, we did not consider models with class proportions < 

10% (Uher et al., 2010). Therefore, the five- and six-class models were not considered further. 

GMM research suggests that model selection should be based on both statistical results and 

theory-based hypotheses from previous research in order to avoid the risk of capitalizing on 

chance (Muthén, 2004; Wang & Bodner, 2007). Previous VLS research on EF has suggested that 

there are two latent subpopulations: stable and declining (de Frias et al., 2009). Following 

statistical results and previous research, a two-class GMM model was obtained by a simple 

merging of neighboring and phenotypically similar classes. For the stable group, the top two 

classes from the four-class model were combined (higher level and slightly declining slope, 

moderate level and more moderately declining slope). For the declining group, the bottom two 

classes from the four-class model were combined (low level and more steeply declining slope, 

very low level and declining slope). Figure 2 shows this merged two-class model. The stable 

group is characterized by a higher level (intercept) and less declining slope, n = 397 (50.8%), 

intercept = .65 (SE = .022), slope = -.03 (SE = .002). The declining group is characterized by low 
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intercept (i.e., factor scores below 0) and steeper declining slope, n = 384 (49.2%), intercept = -

.72 (SE = .019), slope = -.05 (SE = .002). 

RG1c: Biomarker risk predictors of EF status classification (stable vs. declining). 

Using random forest analysis, the relative predictive importance of 15 risk and protective 

markers in discriminating stable from declining EF status classification was computed (Figure 

3). EF decline was predicted by less education, less everyday novel cognitive activity, BDNF 

genotype Met+ (risk), and older age. Model classification performance (c-statistic) was 0.70, 

95% CI [.66 - .75], mtry = 4, ntree = 5000. Overall, the important predictors represented 

demographic, lifestyle, and genetic domains. 

Study 2 

RG2a: Factor mixture modeling on EF. Using Factor Mixture Modeling (FMM), 

subgroup classification of EF structure (unidimensional and multidimensional) was established. 

Table 6 shows the systematic approach taken for FMM, the models tested, and the fit indices for 

each model (see Clark et al., 2013 for systematic example). First, latent profile analysis was 

conducted to determine the maximum number of classes/groups to use for FMM. Results 

revealed a maximum of three classes to be feasible for FMM due to small sample size proportion 

and non-significant LMR and BLRT p values (> .1) with the addition of more classes. Therefore, 

we used the two-class and three-class models for FMM analysis. Second, factor analysis was 

conducted to determine the maximum number of factors to use for FMM. Results revealed a 

maximum of two factors for FMM analysis. Therefore, we used the one- and two-factor models 

for FMM. Third, FMM models were tested based on the following characteristics obtained from 

previous steps: two classes, one factor; three classes, one factor; two classes, two factors; three 

classes, two factors. The FMM-4 model with two classes and two factors was the best fitting 
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model, AIC = 15681.1, SSABIC = 15743.3, ENTROPY = .803, LMR and BLRT < .001. Some 

information criteria (Log-likelihood, AIC, SSABIC) from model FMM-4 for three classes and 

one factor were smaller than model FMM-4 for two classes and two factors. However, model 

FMM-4 for two classes and two factors had fewer parameters (42) and thus resulted in a more 

parsimonious model. FMM-5 models were either unidentified or did not replicate and models 

FMM-2 to FMM-4 for three classes and two factors were either not positive definite or were not 

replicated. 

Overall, for the FMM analysis, we selected the model characterized by two classes and 

two factors. These classes (subgroups of factor patterns) differed in the following characteristics: 

lower intercept means and no significant variability (unidimensional), and higher intercept means 

and significant variability (multidimensional). 

RG2b: Biomarker risk predictors of EF structural dimensionality (unidimensional 

vs. multidimensional). Using random forest analysis, the relative predictive importance of 15 

risk and protective markers in discriminating unidimensional from multidimensional EF structure 

was computed (Figure 4). Multidimensionality (differentiation) was predicted by younger age, 

more everyday novel cognitive activity, higher education, lower body mass index, lower pulse 

pressure, being female, better balance, and more everyday physical activity (marginally). Model 

classification performance (c-statistic) was 0.80, 95% CI [.75 - .85], mtry = 4, ntree = 5000. 

Overall, the important predictors represented demographic, lifestyle, functional, and mobility 

domains. 

Discussion 

We performed a set of two longitudinal studies designed to integrate four key 

characteristics of EF change and variability in non-demented aging: trajectories, classification, 
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structure, and biomarker predictors. We distributed this overall aim into three research goals for 

Study 1 and two research goals for Study 2. 

The preliminary analyses involved confirmatory factor analysis and invariance testing. 

For the preliminary analyses, two main and expected findings were observed: (a) a one-factor 

model provided good fit to the data for this large group of normal aging adults, and (b) this one-

factor model demonstrated both metric and partial scalar invariance over the three longitudinal 

waves. The unidimensional structure has been observed in previous work with normal aging and 

provides partial evidence for the de/differentiation theory (e.g., Li et al., 2017; McFall et al., 

2014; McFall et al., 2013; Thibeau et al., 2016). The evidence is not conclusive because 

multidimensionality (two and three factors) has also been observed in healthy aging (Adrover-

Roig et al., 2012; de Frias et al., 2009; Hull et al., 2008; Vaughan & Giovanello, 2010). These 

mixed results may be explained by individual differences in cognitive status and performance. 

Cognitive structure is not only associated with age, but also with performance ability and 

neuronal integrity (Anstey, Hofer, & Luszcz, 2003; McFall et al., 2017). Therefore, when 

different profiles of cognitive abilities are examined and EF de/differentiation is analysed based 

on these cognitive profiles, EF structures of varying dimensionality may be observed (de Frias et 

al., 2009). In addition, age-related structural changes in EF may be reduced or elevated by 

protection or risk biomarkers, including genetic, health, and functional factors (Anstey, 

Cherbuin, & Herath, 2013; Dodge et al., 2014; Harada et al., 2013; McFall et al., 2017). Our 

results supporting metric and partial scalar invariance indicated that the EF latent variable was 

unified and stable across the three waves. One contribution to the literature on de/differentiation 

in EF in aging is that it is essential to establish invariance in order to assess the psychometric 

equivalence of the EF construct across repeated measurement occasions. Measurement 
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noninvariance suggests that a construct cannot be tested meaningfully across different 

measurement occasions because it does not possess equivalency of structure or meaning for the 

same group when tested across time (Putnick & Bornstein, 2016).  

For Research Goal 1a (latent growth modeling of EF), we demonstrated significant 

individual variability in level and slope of EF performance (Figure 1). This means that although 

there was significant longitudinal decline, older adults showed variable patterns in EF level and 

change. In other words, the change-related variability and the general trajectory of decline 

demonstrate substantial variability in the aging of EF over a 40-year band. A general declining 

slope is evident; however, individual differences in onset age and rate of decline are substantial, 

indicating preserved EF ability in some individuals. These findings are consistent with previous 

studies that have examined EF performance and trajectories of change (e.g., Goh, An, & 

Resnick, 2012; Lin, Wang, Wu, Rebok, & Chapman, 2017). The individual differences in EF 

aging and stability suggest the possibility that differential, potentially and selective biological, 

environmental and lifestyle risk or protective factors may contribute to individualized trajectories 

of performance change. These factors could act independently or in combination to produce 

differential EF performance and long-term change patterns in normal aging (de Frias & Dixon, 

2014; Dixon, 2011; Fotuhi, Hachinski, & Whitehouse, 2009; Lindenberger et al., 2008; McFall 

et al., 2016; Sapkota et al., 2015). The observed variability in performance and decline of EF 

allowed us to explore our next research goal: classifying stable and declining EF groups. 

For Research Goal 1b (growth mixture modeling on EF), two classes were empirically 

distinguished from the observed individualized trajectories. The observed trajectories and the 

GMM-produced classes are shown in Figure 2. First, a stable class was identified with a higher-

level intercept and less declining slope (see red color, Figure 2). Second, a declining class (blue 
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color, Figure 2) was identified with low intercept and steeper declining slope. The trajectory, 

including the intercept (baseline level) and slope (rate of change over time), was used to 

distinguish those participants who maintained relatively stable EF performance from those with 

more pronounced decline. These results indicate that at least two coexisting latent growth 

trajectory curves, representing a maintaining and declining pattern of EF performance, are 

present in normal aging. Corresponding to these classes of latent growth curves, individuals may 

be classified into stable and declining groups. Furthermore, the results obtained add to emerging 

literature showing similar subgroup classification of EF performance (de Frias et al., 2009; Lin et 

al., 2017) and contribute to theory-based hypotheses for studies searching for the longitudinal 

change trajectories of EF. Once we established objective stable and declining groups, our next 

question was: can we identify protective or risk biomarkers that distinguish these groups? 

For Research Goal 1c (biomarker predictors of EF status classification), we observed (in 

order of importance) that EF decline was predicted by less education, less everyday novel 

cognitive activity, BDNF genotype Met+ (risk), and older age (Figure 3). The c-statistic showed 

an index of accuracy of 0.70, indicating good model performance in discriminating EF status. 

These predictors represented demographic, lifestyle, and genetic risk domains. Less education 

may be detrimental in retaining stability in EF performance in older adults because it diminishes 

cognitive reserve (Tucker-Drob et al., 2009; Ward et al., 2015). As previously mentioned, 

cognitive impairment is delayed when there is greater cognitive brain reserve capacity (Stern, 

2003). Therefore, education may be a factor that helps maintain cognitive reserve capacity and 

protect against age-related changes in the brain. Recent research has also found that early 

childhood education may promote developmental changes that are essential to protect against 

cognitive decline in late-life (Zahodne et al., 2015). Engagement in cognitive activity has shown 
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to protect against cognitive impairment leading to dementia by enhancing cognitive reserve or 

plasticity (e.g., Blasko et al., 2014; Lachman, Agrigoroaei, Murphy, & Tun, 2010; Runge et al., 

2014; Valenzuela & Sachdev, 2009; Wang et al., 2002; Wilson et al., 2007). Cognitive reserve 

may work to improve cerebral blood flow, stimulating neurogenesis, and potentiating synaptic 

strength (Barulli & Stern, 2013; Blasko et al., 2014; Esiri & Chance, 2012; Whalley, Deary, 

Appleton, & Starr, 2004). Research has suggested that the increase in brain volume in response 

to cognitive training may be due to increased neural activity and the ability of the brain to 

develop neural scaffolding (Park & Bischof, 2013). Individuals with the BDNF genotype Met+ 

(risk) have shown to secrete less BDNF compared to Met- (non-risk) individuals (Nagel et al., 

2008; Sapkota et al., 2015). As previously mentioned, BDNF is a molecule that modulates brain 

plasticity in the PFC, is expressed also in the hippocampus (structure for learning and memory), 

and supports the functioning of cognitive brain regions (Bird & Burgess, 2008; Erickson, 

Prakash et al., 2010; Komulainen et al., 2008). Met+ carriers are at a greater risk of cognitive 

deficits than Met- carriers. Furthermore, BDNF Met+ may influence neurodegenerative disease 

progression through neuronal dysfunction and cognitive impairment associated with 

neurofibrillary tangles (Lim et al., 2016). The detrimental effects of older age on EF performance 

may be explained by age-related cortical thinning and volumetric loss, in regions such as the 

PFC, which disrupt the response of cognitive activity in the brain (Li et al., 2017; Yuan & Raz, 

2014).  

In sum, the results for Research Goal 1 were (a) significant variability in EF level and 

slope, (b) variability contributing to classification of stable and declining groups, and (c) EF 

decline is predicted, in order of importance, by less education, less everyday novel cognitive 

activity, BDNF genotype Met+ (risk), and older age. These results are significant because they 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4268316/#R47
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emphasize that not all individuals show the same decline in EF performance as they age; 

substantial individual differences suggest the action of other factors. The results contribute new 

information to the literature on EF aging in that they present important risk predictors that 

differentiate stable vs. declining EF performance. Some of these predictors (e.g., everyday novel 

cognitive activity) are modifiable and therefore may be integrated in clinical interventions. 

For Research Goal 2a (factor mixture modeling on EF), we aimed to examine a gap in 

our understanding of differential EF change and variability, namely individual differences in 

factorial structure. Therefore, we investigated differences in factor patterns of EF performance 

by establishing a latent class variable that classified individuals into groups, and a continuous 

factor that modeled the heterogeneity of the construct within latent classes (See Table 6; Clark et 

al., 2013; Masyn et al., 2010). Within a two-factor EF solution, we tested for subgroups of factor 

patterns. We found two classes that were observed to differ in the following characteristics: (a) 

lower intercept means and non-significant variability and (b) higher intercept means and 

significant variability. The pattern of low means with no variability is suggestive of a 

compressed EF aging class, and this could be the result of overall EF dedifferentiation (from 

multidimensional to unidimensional EF structure with aging). This class could represent typical 

EF dedifferentiation that the literature has reported on normally aging older adults (e.g., 

Adrover-Roig et al., 2012; de Frias et al., 2006; Li et al., 2017). The pattern of high means and 

significant variability is suggestive of a complex EF aging pattern in which there is retention of 

EF differentiation (multidimensional EF structure) into late life. This new analytic approach adds 

to the literature in that it represents a novel and promising method of examining EF structural 

variability in aging. The results further confirm that researchers must be careful in asserting 

dedifferentiation without qualification. Given these promising results, we next aimed to 
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contribute further to the literature by identifying biomarker predictors of EF factorial 

dimensionality (unidimensional, multidimensional). 

For Research Goal 2b (biomarker risk predictors of EF structural dimensionality), we 

observed (in order of importance) that multidimensionality (differentiation) was predicted by 

younger age, more everyday novel cognitive activity, higher education, lower body mass index, 

lower pulse pressure, being female, more balance, and more everyday physical activity (Figure 

4). The c-statistic showed an index of accuracy of 0.80, which means good model strength in 

discriminating EF structural dimensionality. These predictors represented demographic, lifestyle, 

functional, and mobility domains. The effects of age, everyday novel cognitive activity, and 

education on EF structure may operate through mechanisms previously discussed in Study 1. 

Interestingly, more predictors that distinguished unidimensionality vs. multidimensionality of EF 

structure emerged compared to those that distinguished stability vs. decline of EF performance.  

Within the functional domain, lower body mass index and lower pulse pressure (PP) 

predicted EF multidimensionality. Elevated BMI increases the risk of cognitive impairment 

through mechanisms causing pathophysiologic changes in vascular health, impaired insulin 

regulation, systemic inflammation, and poor cardiovascular fitness (Anstey et al., 2011; 

Colcombe & Kramer, 2003; Convit, Wolf, Tarshish, & de Leon, 2003; Gunstad et al., 2007; 

Rahmouni, Correia, Haynes, & Mark, 2005; Taki et al., 2008; Teunissen et al., 2003; Ylikoski et 

al., 2000). Therefore, maintaining lower BMI may be an indicator of underlying physiological 

contributions to EF differentiation. PP is commonly used as a proxy for arterial stiffness and is 

calculated as systolic minus diastolic blood pressure. Research has found associations between 

PP and EF deficits in healthy young and older adults (McFall et al., 2014; Raz et al., 2011). 

Specifically, lower values of PP (indicating better vascular health) may promote EF 
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differentiation by (a) preventing negative effects of hypertension, such as mini-infarcts and 

cerebral vascular damage (Cooper et al., 2016), and (b) reducing AD-related pathophysiology 

and other neurodegenerative processes (Nation et al., 2013; Warsch & Wright, 2010).  

Within the demographic domain, we observed that being female predicted—less robustly 

when compared to predictors from the functional domain—EF differentiation. Recent research 

has reported women performing better and having significantly less decline in EF than men 

(Mansouri et al., 2016; Zaninotto et al., 2018). This difference may be partially explained by sex 

differences in regional brain structures during aging. For instance, a female advantage has been 

reported in relation to proportion of grey matter volume (Good et al., 2001; Leonard et al., 2008) 

and decreased rate of cortical thinning (Pacheco et al., 2015). Therefore, women may be less 

vulnerable to age-related brain changes that make them less susceptible to age-related EF decline 

(McCarrey et al., 2016).  

We also noted that within the mobility domain, more balance was the only mobility 

marker that emerged as an important predictor (but less robust) of EF differentiation or 

multidimensionality. Research has suggested mobility impairment in gait and balance to be 

consequences of EF deficits, due to many EF components required during mobility tasks, and to 

be predictive of EF performance and change (Ble et al., 2005; Thibeau et al., 2017). This may 

explain the interaction between EF and balance as an important mobility marker. However, more 

recent evidence has suggested that performance on mobility tasks that assess gait and balance 

may reflect physical health (Laudani et al., 2013). In light of this evidence, it may be plausible 

that our balance performance measure reflects some of our functional and lifestyle (physical 

activity) markers that assess physical health. Neurogenesis and angiogenesis are some biological 
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mechanisms that may be engaged when actively maintaining physical health and enhancing 

cognition (Bherer, Erickson, & Liu-Ambrose, 2013; Nokia et al., 2016). 

Within the lifestyle domain, differentiation of EF structure was predicted by more 

everyday physical activity. The effect was marginal, but it may be important to discuss it for 

future replication purposes. Studies have reported that everyday physical activity is associated 

with improvements and better EF performance and less EF decline (e.g. Thibeau et al., 2016; 

Wang et al., 2012). Engagement in more physical activity may promote EF differentiation by 

improving the molecular and cellular structure and function of the brain (Kramer & Erickson, 

2007). Research has shown that engagement in more physical activity is positively associated 

with increases in gray matter volume and other neuroprotective effects in the prefrontal cortex, 

enhancing the planning/execution of responses and counteracting neural overactivity in older 

adults (Berchicci, Lucci, & Di Russo, 2013; Erickson et al., 2015; Phillips, Baktir, Srivatsan, & 

Salehi, 2014; Ruscheweyh et al., 2011).  

In sum, the main results for Research Goal 2 were (a) within a two-factor EF solution, 

individual differences in factor patterns may indicate de/differentiation and suggest subgroups of 

compressed and complex EF aging, and (b) differentiation of EF was predicted by younger age, 

more everyday novel cognitive activity, higher education, lower body mass index, lower pulse 

pressure, and less robustly by being female, more balance, and more everyday physical activity. 

These results are significant in that they caution against asserting dedifferentiation without 

qualification because there may be individual variability in factor patterns of EF in healthy 

aging. They contribute to the literature in that they provide insight on biomarkers that predict the 

variability in EF structure, specifically de/differentiation. Clinical interventions may assess the 

extent to which some of these markers may be modifiable. 
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There are several limitations associated with this two-part study. First, by design the 

participants were selected to be relatively healthy and cognitively normal. As a group, they may 

not represent the broader population of aging adults. Additional contributors to prediction 

patterns could be revealed if participants were taken from a broader sample of aging adults, 

including impaired and diverse groups. Nonetheless, our sample reflects a portion of older adults 

in western or developed countries where there is rapid older population growth. Second, 

predictors were taken from baseline performance. The predictive importance of a predictor may 

change if tested at different time points. Therefore, testing time-varying predictors may yield 

interesting results. However, this reflects a different research question and a different approach 

to the analyses; specifically, the goal of the alternative approach would be interesting, but would 

be aimed at predicting actual performance changes and whether they are coupled with predictor 

changes. In these studies, our aim was to examine prediction of EF change classes as rendered 

across multiple waves of data. Third, the effectiveness of the proposed factor mixture model 

method in evaluating structural dimensionality of EF in class membership could be limited by (a) 

convergence problems (Gagné, 2006) and (b) recovery of spurious latent classes in nonnormal 

data and/or nonlinear variable relationships (Bauer & Curran, 2004). More clear guidelines (e.g., 

sample size requirements) are still being researched (Leite & Cooper, 2010; Lubke & Muthén, 

2005, 2007). Nevertheless, the present analytic method is the latest one available and is useful in 

that it allows researchers to examine differences in factor patterns or parameters within classes, 

providing more information about the differences in factor structure in subgroups than other 

methods.    

There are also several strengths associated with this research. First, we used a relatively 

large, well-characterized sample spanning over 40 years of aging. This was important in order to 
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capture the substantial variability we found in the EF level and change data. Second, using age as 

the metric of change through an accelerated design allowed us to examine EF trajectories over a 

40-year band of aging. This accelerated longitudinal approach was essential because it enabled 

us to cover a wide age range of interest in a shorter period of time, which would not be possible 

with a single cohort longitudinal design (Galbraith, Bowden, & Mander, 2017). Third, we used 

standard, reliable neuropsychological manifest variables to create our EF latent variable. This is 

valuable because with a latent variable approach (e.g., latent growth modeling), we can examine 

individual change trajectories and patterns of variability among individuals, which is not possible 

with other conventional methods (see Duncan & Duncan, 2009). With this, we were able to 

classify individuals by their trajectories over time. Fourth, we introduced a new approach to 

examine individualized patterns of EF structure among classes. Specifically, we used factor 

mixture model, which allowed us to examine individual differences in factor patterns within a 

two-factor solution. In turn, this allowed us to evaluate differences in factor structure within 

classes. Fifth, we used contemporary statistical methods, including machine learning, to 

systematically analyse our research goals. Specifically, random forest analysis was used to 

capture the relative level of importance of each variable, which in turn allowed us to establish a 

rank order of variable importance. 

In conclusion, results from Study 1 indicate that (a) there is significant variability in level 

and slope of EF performance in healthy aging, (b) two continuous and quantitatively distinct 

classes (higher/stable, lower/declining) of EF aging trajectories may be established, and (c) 

decline in EF performance is predicted most importantly by less education, less everyday novel 

cognitive activity, BDNF genotype Met+ (risk), and older age. Results from Study 2 indicate that 

individual differences within a two-factor EF solution could be classified in two latent subgroups 
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of EF structure: (a) compressed EF aging with overall de-differentiation (unidimensional) with 

lower EF profiles and no significant variability and (b) complex EF aging with retention of EF 

differentiation (multidimensional) with higher EF profiles and significant variability. This is a 

new portrait of EF aging de/differentiation that helps characterize cognitive status groups. 

Furthermore, these compressed and complex EF aging subgroups are discriminated by a 

combination of 8 risk/protective factors from demographic (age, education, sex), lifestyle 

(everyday novel cognitive activity, everyday physical activity), functional (body mass index, 

pulse pressure), and mobility (balance) domains. Complex EF aging was predicted by younger 

age, more everyday novel cognitive activity, higher education, lower body mass index, lower 

pulse pressure, being female, more balance, and more everyday physical activity. Overall, these 

results may provide useful insight for future clinical interventions. For instance, more specific 

clinical interventions for EF deficits may be developed with this new understanding about the 

risk and protective factors that produce differential effects in the individual growth trajectories of 

EF performance and structure in aging, leading to better and faster recovery.   
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Table 1 

Descriptive Statistics for Trajectory Sample by Longitudinal Wave 

 W1 W2 W3 

n 778                              541  407                    
Age                                           71.42 (9.07)                      74.94 (8.70) 78.12 (8.19) 
Range 53.24-95.25                      57.27-94.53              62.44-97.26 

Gender (% Female)                 66.6                                   66.0                         67.6 

HAY 5.43 (1.50)                         5.43 (1.48)               5.50 (1.40) 

STRP b 1.28 (.75)                           1.39 (1.10)              1.36 (.90) 
Color trails b                                           98.01 (33.87)                     101.56 (38.62)        110.24 (46.10) 

Brixton 4.72 (2.18)                          5.32 (2.01)              5.35 (2.04) 

LSER 11.33 (4.44)                        11.19 (4.38)            10.97 (4.29) 
LSET 8.36 (2.89)                           8.34 (2.95)             8.26 (3.00) 

CSPAN 3.05 (1.27)                          2.97 (1.27)              2.88 (1.15) 

RSPAN 2.88 (1.02)                          2.74 (.99)                2.63 (1.03) 

Note. Results presented as Mean (Standard Deviation) unless otherwise stated. HAY = Hayling; 

STRP = Stroop; LSER = Letter Series; LSET = Letter Sets; CSPAN = Computational Span; 

RSPAN = Reading Span; W1 = Wave 1; W2 = Wave 2; W3 = Wave 3; b Lower scores indicate 

better performance.  
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Table 2 

Baseline Descriptive Statistics for Prediction Sample 

 W1 

n 570 

Age                                           70.10 (8.50) 

Range 53.24 – 95.25 

Gender (% Female)                 66.5 

Education (Years) 15.32 (2.96) 

BDNF (% Met+) 34.9 

IDE (% G-) 13.3 

APOE (% ε4+) 23.0 

COMT (% Val+) 77.4 

Pulse Pressure 52.06 (10.30) 

Body Mass Index 26.91 (4.17) 

Gait 6.33 (1.64) 

Balance 2.78 (1.01) 

Peak Expiratory Flow 426.02 (119.06) 

Grip Strength 29.63 (9.44) 

Everyday Physical Activity 15.95 (5.15) 

Everyday Novel Cognitive Activity 75.81 (16.78) 

Note. Results presented as Mean (Standard Deviation) unless otherwise stated; W1 = Wave 1; 

BDNF = Brain Derived Neurotrophic Factor; IDE = Insulin Degrading Enzyme; APOE = 

Apolipoprotein E; COMT= Catechol-O-Methyl Transferase; Met+ = risk allele combinations; G- 

= risk allele combination; ε4+ = risk allele combinations. Val+ = risk allele combinations. 
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Table 3 

Goodness of Fit Indices for Executive Function Confirmatory Factor Analysis One-Factor 

Model and Measurement Invariance Testing 

Model χ2                                                df p RMSEA CFI SRMR 

One-factor EF (W1)                     23.708      18 .165       .020 (.000-.040)        .995         .020 

One-factor EF (W2)                     30.044      18 .037       .035 (.009-.057)        .987         .025 

One-factor EF (W3)                     23.532      18 .171       .027 (.000-.055)        .992         .030             

One-factor EF  

(W1, W2, W3)     

360.644    219 <.000     .029 (.023-.034)        .978         .039 

Metric 422.058 233 <.000 .032 (.027-.037) .970 .056 

Scalar 793.263 249 <.000 .053 (.049-.057) .914 .091 

Partial Scalar a 464.543 237 <.000 .035 (.030-.040) .964 .066 

Note. RMSEA = Root Mean Square Error of Approximation; CFI = Comparative Fit Index; 

SRMR = Standardized Root Mean Square Residual; EF = Executive Function; W1 = Wave 1; 

W2 = Wave 2; W3 = Wave 3; a Preferred model. 
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Table 4 

Absolute Fit Indices for Executive Function Latent Growth Models 

Model -2LL                   AIC BIC D                 Δdf   

Fixed intercept                                  2472.391        4952.782        4971.424            - - 

Random intercept                              933.360          1876.719        1900.022        1539.0             1* 

Random intercept  

fixed slope           

918.817          1849.634        1877.597         14.5                1* 

Random intercept 

random slope a 

364.757          745.514           782.798          554.0              2*                   

Note. -2LL = -2 log likelihood; AIC = Akaike information criterion; BIC = Bayesian information 

criterion; D = deviance statistic; df = degrees of freedom; a Preferred model. * p<.001 
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Table 5 

Fit Indices and Entropy for Estimated Growth Mixture Models 

Model Log Likelihood             AIC BIC Entropy 

One-class                            -2213.383                4436.767        4460.070                -                                      

Two-class                           -1859.812                3735.624        3772.908               .733 

Three-class                         -1614.991                3251.981        3303.248               .821 

Four-class a                         -1458.333                2944.666        3009.914               .834 

Five-class                           -1297.685                2629.369         2708.599              .863 

Six-class                             -1297.685                2635.369         2728.581              .877 

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; a Preferred 

model. 
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Table 6 

Model Comparison Results 
Model -2LL Par. AIC BIC SSABIC ENTROPY LMR  

(p-value) 

BLRT  

(p-value) 

RMSEA CFI SRMR 

Latent Profile Analysis 

One-Class        -8739.2    16 17510.4   17584.9   17534.1              -      

Two-Class        -8180.5    25 16411.0   16527.4   16448.1         .774         0 0    

Three-Class     -8039.2     34 16146.4   16304.8 16196.8          .740       .001 0    

Factor Analysis 

One-Factor      -7969.3      26 15990.6    16111.7    16029.1                                                     - - - .017 .997 .018    

Two-factor      -7968.5      27 15991.1    16116.8    16031.1                                                    - - - .016             .998                    .017 

Factor Mixture Analysis 

2-Class,  1-Factor 

FMM-1          -8180.5       25 16411.0     16527.4     16448.1   .832      .239       0    

FMM-2 -8006.4       27 16066.9     16192.6    16106.9    .317    .002       0    

FMM3
* -7878.5      34 15825.1     15983.4     15875.5     .777   .011       0    

FMM4
* -7841.6       41 15765.3     15956.2     15826.0    .796     0 0    

3-Class,  1-Factor 

FMM-1 -8058.4       27 16170.9     16296.6   16210.9     .750      .000     0    

FMM-2
* -8004.3       29 16066.6     16201.6 16109.5    .586     .038   .030    

FMM-3
** -7802.9      44 15693.8      15898.7   15758.9    .788    .001   0    

FMM-4
** -7768.6        58 15653.2     15923.3    15739.1    .794    .165 0    

2-Class, 2-Factor 

FMM-1 -8180.5       25 16411.0       16527.4    16448.1          .832 0 0    

FMM-2 -7954.2        31 15970.4      16114.8    16016.3      .483 .008 0    

FMM-3
* -7849.6         36 15771.8         15938.9    15824.6             .790 .006 0    

FMM-4
* a -7798.5        42 15681.1        15876.7    15743.3           .803 0 0    

3-Class, 2-Factor 

FMM-1 -8056.0        28 16168.1        16298.1   16209.6       .750 .000 0    

Note. -2LL = -2 log likelihood; Par. = number of estimated parameters; AIC = Akaike information criterion; BIC = Bayesian information criterion; SSABIC = 

sample-size adjusted BIC; LMR = Lo-Mendell-Rubin test; BLRT = Bootstrapped Likelihood Ratio Test; RMSEA = Root Mean Square Error of Approximation; 

CFI = Comparative Fit Index; SRMR = Standardized Root Mean Square Residual; * Variance fixed in 1 class; ** Variance fixed in 2 classes; a Preferred model  
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Figure 1. Executive function trajectory distribution. The black lines show the individualized 

trajectories and the red line show the group-level mean of individualized trajectories based on 

factor scores from latent growth model.  
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Figure 2. Executive function classification status. Two statuses were identified based on 

executive function level and slope. Red lines represent stable executive function performance 

and blue lines represent declining executive function performance. The thick lines represent 

mean group change. Black line represents overall change.  
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Figure 3. Relative importance of predictors of stable versus declining executive function status 

classification. 
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Figure 4. Relative importance of predictors of unidimensional versus multidimensional 

executive function structure. 
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