
It is far better to foresee even without certainty than not to foresee at all.

- Henri Poincare, The Foundations of Science.

The only function of economic forecasting is to make astrology look respectable.

- John Kenneth Galbraith.

University of Alberta

VALUING SOFTWARE SERVICES: THE REAL OPTIONS-BASED MODULARITY

ANALYSIS FRAMEWORK

by

Brendan Michael Tansey CCy

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful
fillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-45893-8
Our file Notre reference
ISBN: 978-0-494-45893-8

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

As the demands of a market change, software services can rapidly evolve to suit

emerging conditions. Yet rapid evolution risks producing hasty, suboptimal, deci

sions: decisions that, if optimized, could maximize resource efficiency and profit for

the business. Leveraging a structured framework for evaluating possible evolution

alternatives would reduce the quantity of income lost to uninformed choices. To this

end, I describe the Real Options-based Modularity Analysis (ROMAN) Framework

for evaluating the net value of a prospective service. ROMAN combines traditional

software valuation with flexibility analysis, using real option theory, to produce a

value estimate for a service. To make this process more accessible to practition

ers, I also implement the framework in a decision support system that can be used

to inform the decision-making process. I also perform a study to determine de

fault maintenance parameters for the COCOMO II cost estimation model using a

publicly available set of open source applications.

Table of Contents

1 Introduction 1
1.1 The Problem of Valuation 1
1.2 Why Study Software Services? 3

1.2.1 A Service Economy 3
1.2.2 Software-based Service Oriented Architecture 4

1.3 Approach Overview 7
1.4 Contributions of this Thesis 9
1.5 Thesis Organisation 9

2 Software Cost Estimation Models 11
2.1 Size Metrics 11

2.1.1 Source Lines of Code 12
2.1.2 Function Points 13

2.2 Cost Model Background 14
2.3 COCOMO 11.2000 Details 16

2.3.1 Required Inputs 17
2.3.2 Effort Estimation 18
2.3.3 Schedule Estimation 21
2.3.4 The COCOMO Suite of Models 22

2.4 Summary 23

3 Valuation Approaches 24
3.1 Project Valuation 24

3.1.1 Net Present Value 25
3.1.2 Internal Rate of Return 26

3.2 Real Options Primer 27
3.3 Real Option Valuation 28

33.1 Black-Scholes 29
3.3.2 Black's Approximation 30
3.3.3 Binomial Lattice 31

3.4 Volatility Estimation 33
3.5 Summary 35

4 Related Work 37
4.1 Software Economics 37
4.2 Architectural Models 40
4.3 Software Service Valuation 42
4.4 Summary 44

5 Methodology 45
5.1 Case Study Introduction 45
5.2 ROMAN Framework 46

5.2.1 Step 1: Estimate Basic NPV of Alternatives 47
5.2.2 Step 2: Model Project Uncertainty 48
5.2.3 Step 3: Identify General Project Flexibility 49
5.2.4 Step 4: Identify Modular Flexibility 52
5.2.5 Step 5: Calculate NPV Including Flexibility 57
5.2.6 Alternative Calculation Procedure for Step 5 - Risk Neutral

Valuation 59
5.3 RomanDSS - The ROMAN Framework Decision Support System . 60
5.4 Default COCOMOII Maintenance Parameters 63

5.4.1 Experiments with a Controlled CM 65
5.4.2 Experiments with a Controlled DM 67

5.5 Summary 69

6 Conclusions 71
6.1 Summary 71
6.2 Future Work 73

Bibliography 76

A Acronym Reference Guide 82

List of Tables

2.1 Simple algorithmic software cost models using SLOCs [54] 14
2.2 Simple algorithmic software cost models using FPs 15

3.1 Input variables for value models 36

5.1 Initial development COCOMOII input variables for Movielnfo movie
information web service 48

5.2 Projects and their statistics used in the COCOMO II default main
tenance parameter study 64

5.3 Experimental results of CM tests 66
5.4 Experimental results of DM tests 67

List of Figures

1.1 GDP composition of the 15 global entities with the greatest GDP,
in order of descending GDP from left to right 5

1.2 Labour force compositions of the same global entities as presented
in Figure 1.1 5

3.1 Profitability of call and put options 28
3.2 A binomial lattice for asset valuation, as in [15] 31
3.3 The binomial lattice for the value of a call option based on the asset

in Figure 3.2, as in [15] 31

5.1 General event lattice 49
5.2 Event lattice for Movielnfo. 50
5.3 Profitable option exercise points 53
5.4 Profitable option exercise points including overlapping options. . . . 58
5.5 Final decision lattice with optimal option exercise times 59
5.6 RomanDSS execution graph 61
5.7 IM and DM values for given values of CM 66
5.8 IM and CM values for given values of DM 68

Chapter 1

Introduction

1.1 The Problem of Valuation

As the number of services delivered through software infrastructures increases, so

too must our understanding of these systems. Software services are unlike tradi

tional software products: they can evolve rapidly to meet the changing needs of a

market, and they can do so without the time- and money-consuming processes of

installation and maintenance associated with conventional products. This leads not

only to a rapid response time for the addition of required features, but also to the

possibility of innovation, as services from multiple sources can be easily composed

together to form a larger more functional service (such as many web application

hybrids, or "mashups", seen on the Internet today). However, the primary goal of

a business is to maximize profit; to achieve that goal, companies need to possess a

method of determining which evolutions of their software services will produce the

greatest expected value in the future. These decisions should be based on more fac

tors than traditionally considered: along with software cost and quality attributes,

value created through system flexibility needs also to be taken into account. Areas

of the service that can be modified, replaced, removed, or built upon may not pro

vide any direct income in the short term, but in the long term they can be used to

alter the service to hone the functionality to consumer requirements. Not only will

this allow for profit optimisation, it could also have the positive side effect of fos

tering the development of innovative new services; the price of initial development

could be as low as that associated with combining existing services, allowing for

1

new offerings at a low cost. In order to determine which out of a set of possible

alternative new services should be created, each prospect needs to be valuated in

this manner.

Valuation is the process of assessing or estimating the net worth of an entity.

In the context of modern businesses, valuation is used extensively to determine

the positive or negative effect strategic decisions or new offerings will have on a

company. At the highest level of abstraction, two basic components constitute net

value: cash outflows (cost) and cash inflows (revenue). Calculating net value at

this point is trivial; simply subtract cash outflows from inflows to obtain expected

profit. However, these quantities are rarely known with certainty, especially when

estimating future cash flows. In order to perform this estimation, one must predict

the future positive and negative cash flows that will result from a given business

operation.

To maximize accuracy, these predictions require domain-specific information;

therefore, any fine-grained estimation problem needs to be constrained to a partic

ular field. This thesis examines the estimation of net value in relation to software

service projects; that is, software projects that provide functionality on an ongoing

basis to the customer, usually in the form of a web service. Businesses generally

generate income from this type of offering on a per-usage basis, as opposed to

traditional software or licence sales. A prediction model in this context would be

valuable in two primary ways. First, it would allow businesses to determine whether

or not a proposed service would be profitable. As an extension of this concept, it

would also permit companies to choose the most profitable out of a set of possi

ble projects given a finite resource set, improving resource consumption efficiency.

Second, the model could inform a business on the profitability of evolving an exist

ing project to meet additional customer demands or desires. Again, this would also

enable developers to make informed choices between multiple evolution scenarios

for an existing service in order to maximize profit.

In addition to traditional estimation components, i.e., most likely costs and rev

enues, services create large amounts of flexibility for their owners. As market de

mands shift, developers can add or remove modules from a service to meet current

2

requirements, or new services can be created through an amalgamation of smaller

services to facilitate rapid development. This flexibility has value, but this value

is often hard to quantify, which leads to many interesting questions. How much

does flexibility add to the value of a project? Will designing a project with the

intention of providing flexibility generate a positive return on investment? Will it

increase profits? When faced with the choice of developing one out of a set of pos

sible projects or project evolutions, each of which has its own flexible value, these

questions require answers in order to maximize expected value. To fully investigate

these questions, we require a complete financial model to account for both costs

and sources of revenue, including the value of flexibility, and this model needs to

be domain-specific to software services.

1.2 Why Study Software Services?

This question has two parts: the general question of "why study services at all?",

and the more direct "why study services that are implemented in software?" In

essence, the answer to both of these questions is that we can't afford not to, as both

services in general and software-based services in particular are where industry is

migrating. This section provides details of this migration and the overall importance

of services.

1.2.1 A Service Economy

Services in general are the single largest aspect of the world's economy. As of 2007,

services generate 64% of the world's GDP1, industry creates 32%, and agriculture

produces a scant 4% [2]. Figure 1.1, which shows the GDP composition of the top

15 global entities, clearly reveals that services are the dominant economic contrib

utor in all cases, save for China. In contrast, services account for only 38.8% of the

world's labour force, with industry representing 20.5% and agriculture the majority

at 40.7%. Figure 1.2 shows the same entities as Figure 1.1, but provides labour

force breakdowns.
1 GDP based on PPP (purchasing power parity) figures, not OER (official exchange rates), as PPP

is a better representation of a society's effective wealth.

3

Notably, the graph for all but four entities is quite similar, with the majority of

the workforce of the top countries by GDP employed in services. The four oddities

are Brazil, India, China, and the world as a whole. The latter is a sobering fact, as

the vast majority of agricultural-based economies are also among the poorest in the

world2. However, among the major world economies, there has been a recent push

towards a greater and greater portion of the labour force in services. In the last 25

years Brazil has seen a 20% growth in its service labour force; similarly, India has

increased 28% and China 191% [53].

Clearly, services are increasingly becoming the dominant feature of the econ

omy. As further evidence, many business models are shifting from the traditional

goods-oriented sale model to a continuing service-oriented usage or licensing model.

Telephone companies commonly offer free or discounted cellular phones with a

service agreement to use that phone. Movie rental companies such as Zip.ca offer

plans based not on the number of movies you rent, but on your desired level of ser

vice (i.e., the number of movies you can have checked out at any one time). Many

massively multi-player online games such as World of Warcraft and Eve Online are

either free to acquire through download or sold as trial versions extremely cheaply,

but require the user to pay a monthly fee to use the online environment on a contin

uing basis. It is this pervasive style of business model, concentrated in the realm of

software, that is relevant to this thesis.

1.2.2 Software-based Service Oriented Architecture

In the general sense, the concept of a Service Oriented Architecture (SOA) is not

limited solely to software, but is "a paradigm for organizing and utilizing distributed

capabilities that may be under the control of different ownership domains" [52].

The idea behind SOA is satisfying the needs of an entity that it cannot meet itself by

matching these needs with the capabilities offered by other entities. This is achieved

with the three key concepts of SOA: visibility, interaction, and real world effects.

Capabilities offered by an entity are visible to other interested entities; an entity

2Burundi: agriculture = 93.6% of labour, GDP = 5.8B; Niger: agriculture = 90% of labour, GDP
= 12.3B; Rwanda: agriculture = 90% of labour, GDP = 13.7B; Burkina Faso: agriculture = 90% of
labour, GDP = 18.9B; Malawi: agriculture = 90% of labour, GDP = 8.3B [2, 58]

4

90.0%

World United European China Japan India Germany United France Italy Russia Brazil South Canada Mexico
States Union Kingdom Korea

l Agriculture * Industry i Services

Figure 1.1: GDP composition of the 15 global entities with the greatest GDP, in
order of descending GDP from left to right.

World United European China Japan India Germany United France Italy Russia Brazil South Canada Mexico
States Union Kingdom Korea

1 Agriculture • Industry 1 Services

Figure 1.2: Labour force compositions of the same global entities as presented in
Figure 1.1.

5

with needs matching a visible capability will interact with the offering entity to

make use of that capability; this interaction causes real-world effects, which satisfy

the requirements of the needy entity. Services facilitate this process: a service

description allows capabilities to be visible to needs, describes the necessities for

communication such as required inputs and expected outputs, and lists what effect

the capability will have upon successful invocation.

Software-based SOA implements these concepts with software services, which

are most commonly presented as web services. Numerous technologies have been

created to handle every aspect of software SOA implementation. UDDI (Universal

Description, Discovery, and Integration) and WSIL (Web Service Inspection Lan

guage) are used for visibility by listing the capabilities of services in a searchable

directory. Interaction is handled by SOAP3, which is an XML-based messaging pro

tocol for communication between web services. The effects, inputs, and outputs of

services are described in a WSDL (Web Service Description Language) document.

Also of particular interest is BPEL (Business Process Execution Language), which

can be used to create service compositions in order to produce a service based on

numerous sub-services. These aggregations create a vast amount of flexibility when

designing and maintaining services; at any time, new components can be added, ex

traneous components can be removed, and outdated components can be replaced or

upgraded as the market demands. This complexity is a major contributing factor to

the problem of service valuation.

In 2005, the technology research and advisory company Gartner published a re

port containing three interesting predictions: "by 2008, most application software

revenue will come from products that were built using SOA", "by 2008, SOA will

provide the basis for 80 percent of development projects", and "by 2010, 80 per

cent of application software revenue growth, including licenses and subscription

fees, will come from products based on SOA" [22]. Consultants Forrester Research

provide similar assessments, and in 2006 stated that "53% of enterprises are us

ing SOA now or will use it by the end of 2006" [37]. In 2007 they updated this
3SOAP was originally an acronym for Simple Object Access Protocol, but was renamed to simply

SOAP by the XML Protocol Working Group. See h t t p : //www.w3 . o r g / 2 0 0 0 / x p / G r o u p /
l / 0 6 / f 2 f - p m i n u t e s

6

http://www.w3

information, stating "62% of enterprises are using or will use SOA by the end of

2007" [38], implying that the industry is well on its way to a major SOA integra

tion. With this quantity of industry interest in software-based SOA, research into

applicable valuation frameworks is imperative.

1.3 Approach Overview

To assist with this problem, I introduce the Real Options-based Modularity ANal-

ysis (ROMAN) framework. This work extends the general valuation framework of

McKinsey [55], and tailors it to specifically apply to software services. At the core

of this framework is real option analysis, which can place a numeric value on intan

gibles such as flexibility. An option is the right, but not the obligation, to purchase

or sell an asset at a fixed price for a limited time [28]. This fixed price is referred

to as the 'strike price', while the current market value of the asset is referred to as

the 'spot price'. A real option is a refinement of this definition that only deals with

real assets, not financial derivatives. In this context, the strike price is no longer

the exercise price for the option, but the development cost of the action associated

with embedding the option in the project. Similarly, the spot price is not the current

value of the stock, but the total additional revenue afforded by the option. There

are two basic categories of options: 'call' and 'put' options. With a call option,

the owner has the right to acquire an asset for a fixed price, and conversely a put

option gives the owner the right to sell an asset for a fixed price. Various styles of

options exist, such as European options, which can only be exercised at the date of

expiration, and American options, which can be exercised prior to expiration. All

of the options discussed in this thesis will be treated as American options.

Multiple methods exist for placing a value on such options; popular models

include Black-Scholes [17] and the binomial model [24]. In this thesis I use the

binomial model, as it allows for early execution of options, can easily handle mul

tiple interacting options, and provides the user with a clearer idea of possible future

states for the project.

ROMAN also assists the user in identifying locations where real options could

7

exist or be intentionally embedded in a project. These can be either at the gen

eral project level, or at the design level. I relate options at the design level to the

six modular operators developed by Baldwin and Clark [13]: splitting a system

into sub-modules, substituting one module for another, augmenting the system with

a new module, excluding a module from the system, inverting to create new de

sign rules and standard components, and porting a module to another system. The

framework spurs the valuator to question how each operator can provide flexibility

to each proposed system under consideration, based on currently available infor

mation. This flexibility is then related to real options for the purposes of numerical

assessment.

As the overall goal of the ROMAN framework is to facilitate comparison be

tween alternative future services, the final stage of the framework involves esti

mating the net present value (NPV) of each alternative system, including the value

provided by flexibility. The costs for creating each system are analyzed at this stage

as well; this task is performed by the COCOMOII cost estimation model [19]. With

these values calculated, the concerned party can choose to develop the service (or

services) which will produce for them the greatest future return on their investment.

As many of the calculations involved in determining the final NPV of a system

are complex, given that some inputs are not known for certain and can be proba

bilistic distributions, I have developed RomanDSS, a decision support system, to

assist with the calculation process. This DSS also automates some of the steps in

the framework, making the process more accessible to interested parties. Uncer

tain input parameters are modeled as distributions, which are evaluated with Monte

Carlo simulation [70].

In essence, the ROMAN framework provides a structured approach to software

service valuation. For the predicted value of possible future projects to be compa

rable with each other, the same process must be taken to valuate each. ROMAN

presents a set of steps to undertake, complete with details of how these steps could

apply to a project, and uses cost and value models to present a comparable NPV for

each alternative.

8

1.4 Contributions of this Thesis

This thesis makes three main contributions to the field:

1. The first contribution is a complete net valuation framework. The ROMAN

framework is complete in the sense that it incorporates both the cost of creat

ing software and the value that owning the software will likely produce for its

creator. The framework also contains guidelines for its systematic application

to a proposed software service. While related work has been concerned with

architectural quality [59] and architectural stability [9], this work focuses on

architectural profitability.

2. The second major contribution is the RomanDSS tool, which allows its users

to quickly and easily analyze a proposed system under the ROMAN frame

work. Performing NPV calculations with probabilistic inputs requires an

automated system, and the Monte Carlo simulation abilities of RomanDSS

provide just that. As an added benefit, the DSS allows users to estimate the

value of a project without requiring knowledge of the underlying models or

processes.

3. Finally, the third contribution stems from development of RomanDSS. In an

attempt to simplify the set of inputs to the system I performed research into

default values for common inputs. Notably, given the percent of code modi

fied in a system, I calculate the average level of design modification that takes

place (i.e., the percentage of methods changed) and the average retest impact

of that change (which is the percentage of a system that has to be retested if

a section of code is altered).

1.5 Thesis Organisation

Each stage of this research is discussed in more detail herein. As such, the remain

der of this thesis is organized as follows. Chapter 2 provides background informa

tion on software cost models and provides details of the model that this thesis uses.

To complete the economic calculations, Chapter 3 gives background on valuation

techniques, both general and real options based. Chapter 4 discusses other research

in this field, including related studies of this problem. Chapter 5 describes the steps

of the ROMAN framework and the associated DSS, as well as provides an example

case study to help illustrate the process. This chapter also contains the experimen

tal results of my study on default COCOMOII input parameters which can be used

in the framework. Chapter 6 summarizes the important points of this research and

outlines a future research agenda for this area.

10

Chapter 2

Software Cost Estimation Models

Cost prediction is one of the two cornerstones of net value estimation. Fortunately,

this subject area has been researched for roughly three decades, with significant

progress being made in the late 70s and early 80s. This section provides an overview

of this research, including an in-depth explanation of the model that is primarily

used for calculating cost in this thesis, COCOMO II. However, prior to discussing

cost models, this section provides background information on a major input into

all cost models: the size of the service oriented application to be developed, which

relies on software size metrics.

2.1 Size Metrics

The cost of developing a piece of software, quite obviously, depends heavily on the

size of the project to be undertaken. All other factors constant, a larger project will

cost more to develop than a smaller project, both in terms of time and capital.

There are two main size metrics that are generally applied to software develop

ment projects: source lines of code (SLOCs) and function points (FPs). Each of

these has its own benefits and weaknesses, which are described herein. Other size

methods have been proposed over the years, such as judging the size of the project

by the number of files it contains [39] and offshoots of FPs such as Object Oriented

FPs [6], but no other metrics have reached the widespread usage level of SLOCs

and FPs.

11

2.1.1 Source Lines of Code

Source lines of code, or SLOCs, are perhaps the simplest of the popular size met

rics. As an evolution from delivered executable machine instructions (DEMI) and

delivered source instructions (DSI) [18], SLOCs measure the number of instruc

tions present in a collection of code. As the amount of code produced to perform

a task can vary greatly between programming styles and individual programmers,

SLOCs are categorized as either physical or logical. Physical SLOCs are a simple

count of the actual lines of text in a source code document; this measure is rarely,

if ever, used as a size metric in modern estimation systems due to its high vari

ance. Logical SLOCs are lines of program functionality, composed of executable

statements, variable and function declarations, and compiler directives that are not

automatically generated. Each logical SLOC can be composed of multiple physical

SLOCs, and one physical SLOC can contain multiple logical SLOCs. In 1992 the

Software Engineering Institute published a checklist for counting logical SLOCs in

source code [60], which has become the standard method of determining logical

SLOCs. This set of rules has been adopted by COCOMOII as the basis of its sizing

algorithm [19].

Developers have written many tools to count SLOCs, both physical and logical.

CodeCount [72] is quite popular, and counts logical lines of code in adherence to

the SEI standards. Its main weakness is that, in its current revision, it cannot handle

source files written in Java 5. LOCC [25] handles modern languages such as Java

5, but does not adhere to SEI standards for logical SLOC counting. However, as

LOCC is open source, with minor modifications it can be adapted to achieve this

goal. This thesis uses just that: a version of LOCC modified to a) count logical

SLOCs according to the SEI standard, and b) count SLOCs on a per-method basis

instead of the default per-class basis.

Though the use of logical SLOCs as a size measure is commonplace and fairly

intuitive, it is not without problems. While the tools mentioned above make count

ing SLOCs in existing source code nearly trivial, SLOCs are quite difficult to esti

mate early on in the lifecycle of a software project, which is when predictions are

most important [7]. There are other counting methods that are less affected by this

12

shortcoming, such as function points.

2.1.2 Function Points

Function points (FPs), invented by A.J. Albrecht in 1983 [4], are composed of five

factors: external input types, external output types, logical internal file types, exter

nal interface types, and external inquiry types. External input and output types are

interactions with the user that result in a change of a logical internal file or the pro

duction of a report. Logical internal file types are logical collections of user data

or control information. External interface file types are files shared between ap

plications, and external inquiry types are user requests that generate an immediate

output [51]. Since these concepts are higher level than their source code imple

mentations, they can be determined earlier in the development cycle, such as at

the requirements stage. This is a significant advantage over using SLOCs, as esti

mations should optimally be performed as early as possible to reduce unprofitable

development.

FPs are not without problems either though. They are significantly less straight

forward to count than SLOCs, and are open to more subjectivity on the part of the

counter [47]. Not all function points are created equal either: developing a function

point in a lower-level language such as assembly will take considerably more effort

than creating a function point in a higher-level language such as BPEL. However,

while there are cost estimation models that natively handle FPs as input [26], all of

these models are either simple formulas with constants based on a limited training

set size, or are only applicable to specific languages such as C and COBOL [54].

FPs are generally most useful in estimation models when converted back to an

equivalent SLOC count, using a conversion ratio specific to the language used for

the project. The company SPR maintains an updated list of conversion ratios for

modern programming languages, and currently lists over 500 languages [66].

In principle, one should calibrate this FP-to-SLOC ratio in the context of their

own development environment to obtain the most accurate estimate of effort. This

can be done by using a method known as "backfiring", which involves counting the

function points of a previously completed piece of code developed in the same en-

13

vironment and comparing this count to the logical lines of code of that project [44].

Recently, Aggarwal et al. have researched estimating SLOCs of a project using

neural networks, with FPs and programming language as inputs. The results of

this work look quite promising, yielding a mean absolute percentage error of 14.65

using Bayesian regularization [3].

Since FPs were first defined they have undergone many refinements, with the

evolution currently being controlled by the International Function Point Users Group

(IFPUG). The most recent counting practices manual, as of the time of this writing,

was published in January 2005 [41].

2.2 Cost Model Background

Barry Boehm, in his seminal book Software Engineering Economics, defines seven

techniques for estimating software development cost [18]. The first of these cat

egories is algorithmic models: models that predict cost based on a set of input

parameters, or "cost drivers". Most calculable cost models fit into this category

since the concept is quite intuitive. Of these, the simplest models use project size as

their sole input; Table 2.1 presents models that use SLOCs as input, and Table 2.2

lists models that use an FP count as input. These models can be developed through

experimentation, mathematical analysis, or machine learning techniques applied to

data from previous projects. The measure of effort provided by these models is in

person-months.

Effort =
Effort =
Effort =
Effort =
Effort =
Effort =

= b.2{KSLOCfm

=. 5.5 + 0.73(KSLOC)116

= 5.28S(K SLOC)1047, KSLOC > 9
= 3.2(KSLOC)105

= 3.0(KSLOC)112

= 2.8(KSLOC)120

Walston-Felix model
Bailey-Basili model
Doty model
Boehm simple model
Boehm average model
Boehm complex model

Table 2.1: Simple algorithmic software cost models using SLOCs [54].

Not all algorithmic models are as simple as those in Table 2.1 and Table 2.2

though; for example, Putnam's SLIM model takes into account schedule compres

sion [63] (managers attempting to meet a deadline that comes before the time at

14

Effort =
Effort =
Effort =

= -13.39 + 0.0545(FP)
= 60.62 + 7.728 x 10"8(FP)3

= 585.7 + 15.12(FP)

Albrecht-Gaffney model [5]
Kemerer model [26, 46, 54]
Matson et al. model [54]

Table 2.2: Simple algorithmic software cost models using FPs.

which the project would normally be complete). However, almost all complex al

gorithmic models are either proprietary or have become antiquated. SLIM is now

owned by QSM [64]. The PRICE S model, created by Putnam, has evolved into

True S and is owned by PRICE Systems [35, 62]. SPQR/Checkpoint is now SPR's

KnowledgePLAN software tool [43, 67], Estimacs is owned by Computer Asso

ciates International [65, 23] but has not been recently updated, and Galorath Incor

porated owns SEER [42, 36]. COCOMO is the notable exception to this list - orig

inally proposed by Barry Boehm in 1981 [18], it has been extensively published,

evolving into COCOMO II in 1995 [21] and COCOMO 11.2000 in 2000 [19]. CO

COMO II is easily accessible, can be fine-tuned to suit almost any development

environment and project size, and natively handles code reuse. These qualities lend

it well for use in this research, and as such COCOMO II will perform the cost

estimation tasks of this work.

The second largest category of cost estimation techniques is that of expert opin

ion, or expert judgment. This method utilizes experts who are experienced in esti

mating the costs of projects similar to the one being analyzed. Expert judgment is

very versatile since many nuances of a project that can be overlooked by an algo

rithmic model can be taken into account, but it can also be subject to bias on the

part of the estimator. More importantly to many organizations requiring estimation,

qualified estimators are not always available. It is for this reason that expert opinion

estimates are not used in this research.

The remaining five estimation techniques are estimation by analogy, Parkinso

nian estimation, price-to-win estimating, top-down estimating, and bottom-up es

timating, all of which are fairly straightforward. Estimation by analogy uses data

from completed projects that are similar to the one under analysis, assuming that

the costs will be correlated. This method benefits from past experience of like

15

projects, but relies on the basis projects far too heavily; if similar projects are not

as comparable as assumed, or if similar projects do not exist, the estimation will be

quite inaccurate or will be impossible to perform. Parkinsonian estimation assumes

that the cost of the project will be equal to the budget allocated for the project,

whether or not the entire budget is required. A similarly terrible idea, price-to-win

estimating involves pricing a software project at a level that is preferable to clients

or management, but is usually highly unrealistic, in order to win development con

tracts. Top-down and bottom-up estimating use the other estimation methods: top-

down estimation predicts the cost of the entire system and divides that cost over

the component parts; bottom-up estimation predicts the cost of each component,

the summation of which is the estimated cost for the system. Software services

are created by a composition of parts, and as such bottom-up estimation is directly

applicable when used in conjunction with the aforementioned COCOMO II model.

2.3 COCOMO 11.2000 Details

Other than estimating the cost of creating a project from scratch, one of the main

benefits of COCOMO II is the ability to account for code reuse. In this respect,

COCOMO II estimates the cost, in terms of programmer effort, of creating a soft

ware development project as a function of the transformational complexity of the

application from an existing state to its envisioned state. All costs are given as both

the number of Person-Months (PM) and the time in calendar months required to

perform the change. Depending on the current stage of development, COCOMO II

contains slightly different models for cost calculation, namely early design, post-

architecture, or maintenance models.

For optimal performance, a number of COCOMO II parameters must be cali

brated to suit the specific software development environment. COCOMO 11.2000

comes with a set of default constants in place (A, B, C, and D in the equations

below), determined through testing the model on 161 sample projects. While these

parameters are adequate as a starting point, they will likely produce less accurate re

sults than if the model were fully calibrated based on the development environment,

16

the development team, and similar projects undertaken in the past. Section 7 of

the model definition manual discusses how this calibration can be performed [19].

Other than the recommended calibration, a number of variables are required as

inputs into the COCOMO II estimation model, depending on the maturity of the

project and the existence of code reuse. This section will discuss these necessary

inputs, followed by details of the COCOMO II models and a discussion of other

models that are based on COCOMO.

2.3.1 Required Inputs

If the project in question does not employ code reuse, the sole required input into

COCOMO is the amount of code to be written, in terms of thousands of SLOCs.

Code reuse adds an additional four required input parameters.

Size of code base: This input variable represents the size of the original code

base to which the adaptations are being made. Some section of this code is directly

modified to suit the needs of the new service. This quantity is accepted in thou

sands of SLOCs, and is referred to as adapted KSLOC in the COCOMO II model

manual [19].

Amount of code added: This is code added that is not from the original code

base. This can include "glue code", or code to introduce sections of completely

new functionality. If the new project is completely new development, all of the

other input values can be zero, in which case code added represents the entire size

of the development. In the COCOMO II model manual this quantity is referred to

as new KSLOC.

Amount of code modified, or percent of code modification (CM): This represents

the amount of code from the original code base that has been directly modified

to accommodate the new desired functionality. CM represents this quantity as a

percentage, equal to (code modified)/(code base) (if code base is zero, CM is

taken to be zero).

Percent of design modification (DM): This parameter denotes the percentage of

the overall design of the adapted code that requires modification during the process

of creating the new service. According to the COCOMO 11.2000 model manual,

17

this quantity is necessarily subjective. However, a study by Robert Leitch defined

this quantity as the percentage of methods in source code that are modified during

reuse [49]. For all instances where I calculate DM in this thesis, this is the method

that I use.

Retest impact (IM): This is the percentage of integration and testing effort re

quired for performing the modification. For simplicity, this value can be the per

centage of the original code base that needs to be retested. Note that this value can

exceed 100% if more code requires testing than was originally in the code base. In

Section 5.41 discuss predicting this value based on a measure of CM or DM.

2.3.2 Effort Estimation

COCOMO 11.2000 claims an effort estimation accuracy of within 30% of the actual

value 75% of the time. With calibration, this accuracy increases to within 30% of

the actuals 80% of the time [20].

The first stage of estimation is determining the size of the project. Using the in

puts discussed in the previous section, the formula for this is shown in Equation 2.1.

Size = (1 + REVL\ x (New^KSLOC + Equivalent JKSLOC) (2.1)

Equivalent JiSLOC = AdaptedJKSLOC x (1 - ~ J x AAM

f IAA+AAF(1M0-02XSUXUNFM))1 j Q r A A p ^

AAM =! im

\ [AA+AAFMSUXUNFM)] ? f f) r ^ > 5 Q

AAF = (0.4 x DM) + (0.3 x CM) + (0.3 x IM)

Performing these calculations will provide Equivalent Ji SLOC (EKSLOC),

i.e., the number of logical source lines of code (SLOC) divided by 1000, required

to create the new service. This value is a measure of effort, not necessarily an ex

act count of actual code lines to be written; it represents the effort required if the

equivalent number of lines of code would in fact have to be written. Essentially, it

reflects the effort that the "adaptation" of the existing service to the new one will

require. This value can then be added to NewJKSLOC, additional code that needs

18

to be added to the system, and adjusted by REVL, the requirements evolution and

volatility level, which is the percentage of code that is discarded from the origi

nal module during the modification. This process provides the user with Size, a

measure of the system size, accounting for reused code.

The calculation of EKSLOC relies on a number of parameters. AAM is the

Adaptation Adjustment Modifier, and AAF is the Adaptation Adjustment Factor;

they represent the effort of fitting the adapted code to an existing product, and the

relative size of the modification, respectively. AT is the percentage of code that

can be translated using automatic translation tools from the existing system to the

new one, thereby not requiring any effort. AA is the assessment and assimilation

increment, which is a measure of the effort required to determine if the old code

base is suitable for the new project. SU is the level of software understanding

increment that models the quality and complexity of the old code base. If CM

and DM are both equal to zero, then SU is also set to zero. This is because if no

changes to the code are necessary, then programmer understanding of the code is

irrelevant. UNFM is the familiarity of the programming team with the code that

they are modifying. AA, SU, and UNFM are project-specific parameters that need

to be set using the calibration guidelines in the COCOMO 11.2000 model manual.

In order to translate Size into a useful effort measure, either the Early Design

or Post-Architecture model must be used. The choice of model depends on the

current stage of development of the project at the time that the estimation is to take

place. As a guideline for choosing one model over the other, the COCOMO II

model manual gives the following explanation:

The Post-Architecture is a detailed model that is used once the project

is ready to develop and sustain a fielded system. The system should

have a life-cycle architecture package, which provides detailed infor

mation on cost driver inputs, and enables more accurate cost estimates.

The Early Design model is a high-level model that is used to explore of

architectural alternatives or incremental development strategies. This

level of detail is consistent with the general level of information avail

able and the general level of estimation accuracy needed. [19]

19

The Post-Architecture model is shown in Equation 2.2.

17

PM = A x SizeE x Yl EMi (2.2)
j = i

5

E = B + 0.01 * J ^ SFj
i=i

This model estimates the predicted Person-Months (PMs), in programmer time,

that will be required for the entire translation process. PM relies on a number of

other variables. A is the effort coefficient and B is the scaling base-exponent, both

of which have default values: A — 2.94 and B — 0.91. However, for optimal results

these values should be calibrated to reflect the development environment. There are

17 EMiS, or Effort Multipliers, to control the rate at which various factors of the

software development process affect the effort required to perform a change. E is

the sizing scale exponent, which takes into account the five SFjS, or Scale Factors,

which determine the effect of economies or diseconomies of scale on the software

project. The intuition behind E is that if factors exist that lead to diseconomies of

scale, such as a team that only interacts internally with great difficulty or conflict,

then the effort required to produce a line of code will be multiplicatively greater

than the effort required for a seamlessly interacting team.

Equation 2.3 demonstrates the Early Design model, which involves a similar

calculation, but uses a different set of effort multipliers. The equation for E is the

same as in Equation 2.2.

7

PM == A x SizeE x J J EMi (2.3)

The reduction in the effort multiplier set stems from the lack of information that

is available early on in the development process. For a description of the scale fac

tors and effort multipliers, please refer to Sections 3.1 and 3.2 of the COCOMOII

model definition manual, respectively [19].

20

2.3.3 Schedule Estimation

The time required to perform a change, from the requirements determination stage

to the requirements satisfaction verification stage in the waterfall development mod

els, can also be calculated using COCOMO II. The accuracy of this calculation is

slightly less than that of effort estimation: within 30% of the actual value 64% of

the time without calibration, and within 30% of the actuals 75% of the time with

calibration [20]. The equations for this estimation is as follows in Equations 2.4

and 2.5.

TDEV = C x (PMNsY
SCED%

x (2.4)
100 V '

F = (D + 0.2x[E- B]) (2.5)

TDEV is the time required to perform the required changes, measured in calen

dar months. B, C, D, and E are environment-specific coefficients. E corresponds

to the value for E from the effort calculation; B, C, and D are unique to the TDEV

equation and should be calibrated, though they have default values of B = 0.91,

C = 3.67, and D = 0.28. PMNS is the nominal effort involved in making the

required changes; it is measured in person-months, and does not take the SCED

parameter into account. SCED is the required schedule compression, ranging from

1.43 for an accelerated schedule to 1.00 for a drawn-out schedule.

Once the effort, measured in person-months, has been determined, it can be di

rectly translated into a monetary cost by simply multiplying it by the monthly salary

of the programmers involved in the project. This identical procedure, including use

of the code reuse model, can be used to determine the cost of maintaining a service

as well; the pre-maintenance version of the service can correspond to the reusable

version, and the post-maintenance version can correspond to the final product in the

above model. The difference between an initial reuse model and the maintenance

model is that the scope of the change is usually fairly limited during maintenance.

This assumption is not necessarily true for strict reuse, implying that the values for

Adapted-KSLOC, DM, CM, and likely IM will be lower during maintenance.

For maintenance, the input parameter set is also slightly reduced, as the EMs Re-

21

quired Development Schedule (SCED) and Developed for Reusability (RUSE) are

not included in the calculation. Section 5 of the COCOMO model definition manual

describes the maintenance model in detail [19].

2.3.4 The COCOMO Suite of Models

Numerous other cost models have evolved from COCOMO, forming the COCOMO

suite of models. While many of these are still in research stages, four stand out

as potentially applicable to the problem of cost estimation for software services.

The first of these is COCOTS, the Constructive COTS (Commercial Off the Shelf)

model. Since services can be created from existing software, such as a composition

of other services with "glue code" added to form the composition, there may be

some relevance in using a COTS-based model. However, COCOTS has not been

extensively refined, and as a result is significantly less accurate than even uncali-

brated COCOMO II. COCOTS can predict effort within 50% of the actual effort

value 62% of the time, and within 33% of the actual effort only a miniscule 38% of

the time. The accuracy values for schedule prediction are similar, with the estimates

coming within 31% of the actual schedule values 54% of the time [1].

CORADMO, or the Constructive Rapid Application Development Model, is an

extension to COCOMO II that adds support for projects developed under the con

cept of rapid application development. Software services can be small applications

that are developed in a fairly short period of time, and as such a RAD model may be

best suited to the task of estimating their cost. However, as promising as the idea of

CORADMO looks, the last presentation related to the model, as of the date of this

writing, was in May 2002 l. Prior to this date, insufficient research was performed

to gauge the accuracy of the model, and as such it cannot be used in this work.

The other COCOMO-based model that appears to have relevance to the situa

tion of software services is COSOSIMO, the Constructive Cost Model for Software

Intensive Systems-of-Systems. Services, in their composed form, can be construed

as systems-of-systems, where the composition is the main system and the compo-

'See http://sunset.usc.edU/research/CORADMO/coradmo_main.html#Papers, last accessed Oct.
25th, 2007

22

http://sunset.usc.edU/research/CORADMO/coradmo_main.html%23Papers

nent services are the subsystems. The concept behind COSOSIMO is that each of

the subsystems have a cost to develop, which can be estimated by a COCOMO-

based model depending on its type. There is also a cost associated with creating

the composition, the actual system-of-systems. These separate costs are combined

in COSOSIMO to provide a cost for the entire system. However, like CORADMO,

little has been published on this model, including accuracy statistics or a refined

and calibrated algorithm [48].

While the COCOMO suite contains additional models, they are intended for

large-scale systems or are concerned with aspects of software development unre

lated to this work. As such, a discussion of them will not be included herein.

2.4 Summary

Significant research has been done on cost estimation models for software projects

in the past. Regarding inputs, all of these models have one common requirement:

the size of the project to be undertaken. Source lines of code are the most intuitive

size measure of an application, but are difficult to estimate early on in a project's

lifecycle. Function points, although not perfect in their own respect, provide a

solution to this problem, since they can be measured by analyzing the requirements

presented for the project in question. This size can then be input into a cost model

for estimation purposes.

From a practical standpoint, i.e., only including models that are publicly avail

able, COCOMO 11.2000 is the front-runner of these cost estimation models: it

has been extensively tested, refined, analyzed, and utilized. The models based

on COCOMO that appear to be applicable to this research, namely COCOTS,

CORADMO, and COSOSIMO, are not at a level of maturity sufficient enough to

entrust the cost estimation of a service to them at this time.

23

Chapter 3

Valuation Approaches

Valuation, in this context, refers to the generic net value formulation for a project:

given a set of costs and a set of revenues delineated by the period in which they

are incurred or gained, net value formulae will quantify the overall financial impact

the project will have on its owner. Many methods of representing this quantity

exist, the most common of which will be discussed here. Methods for estimating

the cost inputs for a software service project were presented in Chapter 2; the other

required input, expected revenue, will be discussed in this chapter. Actual income

received from providing the service to customers will likely provide the largest

portion of revenue, but inherent flexibility of a service will indirectly contribute

to this revenue. Income can be garnered in many project- and company-specific

ways, and as such is left to individual organisations to determine. The value of

flexibility, on the other hand, can be estimated using real option theory. Methods

for calculating both project value and the benefits of flexibility are discussed in this

chapter, along with background information on the concepts described.

3.1 Project Valuation

The worth of a project, in the most basic form, is effectively all of the revenue that

the project will create, with all of the costs related to creating and maintaining the

project subtracted from this quantity. However, the value of money is not constant

over time; money now is generally worth more than an equal amount of money in

the future. Therefore, in determining the actual value of a project, one needs to

24

account for the time value of money. The discounting of future monies is encom

passed by the theory of Discounted Cash Flow (DCF), which is the general term

for a valuation method that devalues the value of future cash flows to present day

terms. This section will discuss common techniques related to DCF for valuating

future cash flows: namely net present value, internal rate of return, and modified

internal rate of return.

3.1.1 Net Present Value

Net Present Value (NPV) takes into account the time value of money by discounting

future cash flows by a "discount rate" (r) to express them in terms comparable to

the currency at t = 0. The general formula for calculating NPV is given in Equa

tion 3.1, where It is the income at period t, Ct is the costs or expenditures at t,

rt is the discount rate at t, and Co represents the initial expenditures required to

undertake the proposed project. If there are any cash inflows at t = 0, they can be

directly added to NPV as well.

^ = E(fr4-c° (31)

In order to calculate NPV, these input variables need to be estimated. It, the

predicted income of the project, can be approximated using traditional service-

valuation market research such as studies of competing services, customer ques

tionnaires, or pilot projects. This step is left up to the organisation undertaking the

project. The initial cost of developing the service, C0, can be estimated with soft

ware cost models, as were discussed in Chapter 2. If there are other initial costs

associated with the project, including "soft" costs such as administrative overhead,

personnel training costs, legislative lobbying costs, pilor program costs, or non-

software infrastructure costs, they can be included here as well. Ct, the periodic

cost, is mainly operating expenses and maintenance costs for the service. Software

cost models can be used here as well. The final variable in this calculation is the

discount rate, r, which is set to the rate of return the money would have realised

had it been invested elsewhere. The higher this number, the more conservative the

overall estimation will be. Typical values for this variable include the average rate

25

of return of a "tracking portfolio" of similar projects [29], the weighted average

cost of capital for the project, or, for a more liberal estimation, the risk-free interest

rate as determined by government bonds.

Generally, if NPV > 0 the project should be undertaken, as it will have a pos

itive impact on the finances of its owner. However, the bounds of reality dictate

that this cannot always be the case; if there are multiple services that can be devel

oped, yet limited resources are available to commit to their development, only the

project(s) with the greatest NPV should be undertaken. If NPV — 0, the project

should be undertaken only if it strengthens a non-monetary variable, such as com

petitive position or brand recognition. Projects with NPV < 0 should rarely, if

ever, be developed, and only then if they provide a larger indirect benefit than NPV.

Section 3.3 will describe methods of placing a value on such indirect benefits.

3.1.2 Internal Rate of Return

Internal Rate of Return (IRR) is directly related to NPV; it is the discount rate (r

in Equation 3.1) that will make NPV equal zero, satisfying Equation 3.2 [50]. This

metric, while theoretically providing the same information as NPV, can be useful

when comparing possible projects to other available investment alternatives, such as

other projects or government bonds, which have their profitability figures reported

solely as financial return. The general rule of project acceptance, given the choice

to accept or reject a solitary project, is if IRR > r (the NPV discount rate) the

project should be undertaken.

However, there is a major problem with this method of project evaluation: it as

sumes that IRR is constant for all t. While the NPV formula allowed for a different

rt for each t, IRR does not. Modified IRR (MIRR) compensates for this shortfall by

allowing for different discount rates for each period, much like in the NPV calcu

lation. It also takes into account the discounted cost of future expenditures that are

financed from previously accumulated income versus expenditures that use capital

not created by the project. The formula for MIRR satisfies Equation 3.3.

26

(1 + MIRE)" = E L ° ^ S u ^ f ' ^

In this equation, C"t represents costs at time t financed by accumulated project

income and C't is costs at t financed by other means [50]. All other variables are

the same as in Equation 3.1 or Equation 3.2

While MIRR has its uses, this work is concerned more with estimating dollar

figures than rates of return. MIRR is presented here as a possible future alternative

to the NPV approach, and because it is a widely accepted project valuation method;

however, it is not optimally suited to this research and as such will not be discussed

in greater detail.

3.2 Real Options Primer

An option is the right, not the obligation, to purchase or sell an asset for a fixed

price for a limited time [28]. This fixed price is referred to as the 'strike price',

while the current market value of the asset is referred to as the 'spot price'. There

are two basic categories of options: 'call' and 'put' options. With a call option, the

owner has the right to acquire an asset for a fixed price, and conversely a put option

gives the owner the right to sell an asset for a fixed price. The profit curves for call

and put options are given in Figure 3.1. Note the limited loss associated with the

options. This stems from the fact that options are not required to be exercised; if

exercising the option will create a net monetary loss, i.e., the option is "out of the

money", it does not have to be exercised. Each option is of a specified style, which

determines certain characteristics of the option; most commonly, this determines

when the option can be exercised. Most financial options are one of the two most

common option style: European or American. A European option can only be

exercised at a single specific time: the date of expiry. American options provide

more flexibility, and can be exercised at any time (that the markets are open) on or

before the date of expiry. More exotic options also exist, such as Bermudan options

that can be exercised only on specific days on or before expiration, but these are not

necessary for this work. Note that the name of the option style has little to do with

27

any geographical basis for the trading of said option [40].

. Put Option »«—» Call Option

Profit

°,r 0

l{

^

\
% V ^

^ ™ % r ;

Market Price of Asset

Figure 3.1: Profitability of call and put options.

A real option is a refinement of the option definition that only deals with real

assets, not financial securities or derivatives. In this context, the strike price is no

longer the exercise price for the option, but the investment cost. Similarly, the

spot price is not the current value of the stock, but the total value of expected cash

flow [34]. Erdogmus provides a good component by component comparison be

tween financial options and real options in [30].

To relate service flexibility to real options, the various flexible aspects must

be considered as either a put option or a call option. An example of this would

be the option to upgrade a service: this is akin to a call option, where the strike

price is the cost associated with upgrading, and the spot price is the benefit gained

through the upgrade. Sources of real options in software services are discussed

further in Section 5.2.3.

3.3 Real Option Valuation

Once project flexibility has been translated to a set of real options, those options can

be evaluated and refined to reflect a quantitative monetary contribution. The con

version from concept to dollar figure requires an option valuation model or formula.

The most common models for this function - Black-Scholes, Black's approxima-

28

tion, and the binomial tree approach - are discussed below.

3.3.1 Black-Scholes

Perhaps the most famous option pricing formula, the Black-Scholes model was

developed in 1973 for pricing financial options [17, 57], for which the authors were

awarded a Nobel Prize in Economics in 19971. In traditional financial uses of the

model, the asset on which the option is based is a non-dividend-paying stock. The

key idea of the model is that a riskless portfolio of assets can be created from a

combination of a position in the option and the opposite position in the underlying

stock. Since both the stock and its financial derivatives (in this case the option) have

the same basis for uncertainty (movements in the stock price), the price of both is

perfectly correlated. If the price of the asset shifted, this shift would be offset by

the opposite position in the derivative, which will shift by an equal amount. For

example, to create a riskless portfolio based on Company A, one could short2 x

shares of A for $X each and buy a call option for y shares at Y each. If the market

price of A's shares increases the short position will lose money, but the option will

be worth more. If A loses value, the short position will be profitable, but the option

will devalue. The Black-Scholes model makes use of this relationship to determine

the price of an option based on the underlying stock price.

Black-Scholes has separate formulae for call and put options, which are given

in Equation 3.4 and Equation 3.5 respectively, d, a variable used in both equations,

is provided as Equation 3.6.

ttcall(U, S, T,r,a) = U- N(d) - S • e~rT • N (d - aVf^

VLput(U,S,T,r,a) = S- e~rT -N(-d + aVr\ - U • N{-d)

In (U/S • e-rT) 1 r-

aVT 2

'Robert Merton and Myron Scholes received the award; Fischer Black passed away in 1995,
and the award cannot be conferred posthumously. For the pedantic, the award is not technically a
Nobel Prize, but is actually The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel, as there is no prize for the field of economics described in Alfred Nobel's will.

2Short selling, or shorting, is defined as selling a security in which you do not own. This is a
gamble that you will later be able to repurchase the security at a lower price, making a profit.

29

(3.4)

(3.5)

(3.6)

In this model, U is the spot price, S is the strike price, T is the number of

periods until the option expires, r is the discount rate as discussed in Section 3.1.1,

a is the constant volatility of the asset, and N(-) is the standard normal cumulative

distribution function. Once 0 for a real option has been determined, it can be added

directly to the NPV of the project to calculate the overall value of the service.

This formula is often used as it is simple to perform the calculation with the as

sistance of a standard normal CDF lookup table or evaluation function that is avail

able in most spreadsheet applications and advanced calculators. However, there are

some limitations of the Black-Scholes formula. Most pertinent to this work, it can

only be used to value European options, i.e., options with a single exercise date.

Almost all real options can be exercised at any point up until expiry, which leads to

a requirement for a valuation model for American options.

3.3.2 Black's Approximation

Black's approximation is an extension to the Black-Scholes model that allows for

the pricing of American options. In effect, the approximation model performs the

Black-Scholes calculation multiple times, each iteration using a different expiry

date that is prior or equal to the actual expiry date, and taking the maximum value

over all iterations as the option price [40]. This process is shown in Equation 3.7,

where S is the set of all possible exercise dates and all other variables are as de

scribed in Section 3.3.1.

Q = max(BlackScholes(U, S, (, r ,ff)) | (eS^<T (3.7)

This model has limitations as well, as far as the valuation of real options related

to software services is concerned: projects can embody multiple real options simul

taneously, and these options interact in non-cumulative ways. The multiple options

tend to conflict in certain circumstances, as is demonstrated in Section 5.2.5, and

the total value is often less than a simple sum of its parts. As Black's approximation

is designed to estimate the value of a single option, modelling multiple options us

ing this method is prohibitively difficult. As such, while Black's approximation is

more applicable to this research than the Black-Scholes model, neither are entirely

30

appropriate to satisfy the requirements of this work.

3.3.3 Binomial Lattice

The binomial option pricing formula, first proposed by Cox, Ross, and Ruben-

stein [24], simplifies the valuation process to a series of binary choices, where at

each stage the value of the asset either increases or decreases with a certain proba

bility. Consequently, the current value of the option increases or decreases as well.

Its simplicity, and the transparency of the underlying economics, have lead to bino

mial models gaining widespread acceptance; binomial models are now one of the

two fundamental option valuation models [15].

Figure 3.2: A binomial lattice for asset valuation, as in [15].

Figure 3.3: The binomial lattice for the value of a call option based on the asset

in Figure 3.2, as in [15].

Figure 3.2 shows the lattice associated with the underlying asset over time, with

each column representing the possible states of the asset's value at uniform intervals

31

of time. V is the initial value of the asset, and u and d are the upwards and down

wards value multipliers, respectively. The upward or downward paths are taken

with probability p and 1—p.u and d can be calculated from the standard deviation,

a, of the underlying asset's value, as is given in Equation 3.8, where T is the time

per step in the binomial lattice. Translating the value progression of the underlying

asset to the value of the option produces Figure 3.3 for a call option, with X rep

resenting the exercise cost of the option. For a call option, X is the strike price of

the option (S); for a put, X is the spot price ([/)• One important note here is that

options do not have to be exercised if this would produce a net loss; effectively, the

value of an option is O = max(Y—X, 0), where Y is the income generated through

exercising the option (the spot price of the underlying asset for a call option, or the

strike price for a put option).

u = eaVf d=- (3.8)
u

To translate this procedure from a risk-free assumption to a more realistic risk-

neutral environment, the probability of an increase or decrease can take into account

the risk-free rate, r, discussed previously in Section 3.1.1. To do this, we set p =

(rf—d)/(u—d), where rj = 1+r. Using this value, we can then determine the value

of an option, as is shown in Equation 3.9. Ou is the value of the option if it increases,

Od is the value upon decrease. For a call option, Ou = Cu = max(0, uV — X) =

max(0, uV—S). Effectively, the complete formula for calculating the value of a call

option is as in Equation 3.10, and the value of a put option is as in Equation 3.11.

O = P 0 " + (1 ~ ^ (3.9)
rf

p x max(0, uV — S) + (1 — p)max(Q, dV — S)
O = (3.1U)

rf

_ p x max(0, S - dV) + (1 - p)max(0, S - uV)
rf

This method of option valuation is flexible: each time period can be customised

individually if so desired. It also allows for options to be exercised at any time

32

before expiry by allowing all intermediate values to be considered; the visibility of

possible future states also allows for a rapid visual analysis of the option. These

qualities make the binomial model well suited for this work; this model will form

the basis for the option valuation portion of the framework presented in Chapter 5.

3.4 Volatility Estimation

Option valuation, especially in the case of real options, is not an entirely straight

forward endeavour. While most input parameters to the models can be observed or

estimated, volatility (a) of V, the standard deviation of the project's returns [69],

presents a certain difficulty. For projects that have yet to be undertaken, and as a

result have no cash flows, it is difficult to predict how volatile these flows will be.

Bajracharya et al. suggest a complicated process of studying the environment of ex

isting modules in order to determine a model for calculating a. This model would

be based on factors such as "users, external services, socio-technical implications

etc.", as well as the financial history of the modules [12]. While volatility is likely

affected by environmental contributors, to my knowledge no researcher or practi

tioner has designed such a model. Poon and Granger discuss 93 papers on models

that forecast volatility for financial markets; they conclude that while some classes

of prediction models are superior to others, "volatility forecasting will continue to

remain as a specialist subject and studied vigorously", implying that there is not a

single correct solution to the problem [61]. It is also unclear how forecasting from

financial markets transfers to the domain of real options.

Benaroch lists five approaches to the volatility estimation problem [16]:

1. If it is known that V will deviate by ±A%, a will simply be A, converted

from percent to decimal form. However, this being almost the exact same

situation as estimating a itself, the same problems apply.

2. If V is composed of i cash flows, individually being V{, an IRR can be com

puted for each V*. a can then be the standard deviation of the IRRs.

3. When the expected project revenues are of a known probability distribution

33

and outputs in this distribution can be produced formulaically from a set of es

timable input variables, such as those summarised in Table 3.1, Monte Carlo

simulation can be used to sample possible output values. The set of simulated

outputs can be collected into a distribution, and the standard deviation of that

distribution can be calculated according to its type.

4. If there exists, or can be created, a twin security which a) is traded, and b)

has the same risk characteristics as the project, the price S of the security will

have the same volatility as V. Benaroch mentions two main cases where this

is applicable: "when there is a publicly traded firm whose primary revenue

generating services parallel the services that the target project would yield to

generate payoffs", and "when the primary risk in the target project is due to

reliance on a risky IT that is the main product sold by a traded firm" [16]. In

this case, the volatility observed in S could be used for a.

5. In cases that the sources of risk are separable, such as technical risk, competi

tion risk, compliance risk, financial risk, etc., Benaroch proposes that overall

volatility can be calculated from a combination of these risks. Where r, is an

applicable risk and crfa) is the contribution of rj to a, a can be calculated

using Equation 3.12. However, even if the risks are separable, determining

the relationships between risks (cov(ri, r^)) is not a trivial problem in its own

regard.

(3.12) a = Yl [a M + cov (r*> ri)i±i

Ozkaya et al. additionally mention implied volatility, which is a method of cal

culating volatility for an asset that currently exists. The current price of the asset,

along with the other standard inputs, can be entered into a pricing formula, which

is then solved for a [59]. This method, however, is not effective for predictions, as

the project must already exist for this avenue to be available. Ozkaya et al. also

mention that historical data from which to estimate volatility is frequently unavail

able. Furthermore, they state that volatility can come from a number of disparate

34

sources such as "requirements changes, market response, or the changing price of

an outsourced key design component". This supports the assertion of Bajracharya

et al. and reinforces the notion that volatility is complex, complicated, and difficult

to estimate in a general, all-encompassing, way. If neither past data nor enough in

formation to perform a Monte Carlo simulation exist, then the simplest, and likely

most accurate, course of action would be to have the stakeholders perform their

own volatility analysis, taking into account all relevant sources of risk; this reported

volatility could then be used with at least moderate confidence in value calculations.

3.5 Summary

In valuing a service, two approaches must be taken: the first in a general sense,

determining the overall worth of a project to its owner; the second, placing a value

on the flexibility inherent in the SOA style of development. The former of these

can be performed though generic project valuation. To this end, I present three

commonly used models: NPV, IRR, and MIRR. While each of these has its partic

ular use, NPV is best suited to this research, and will form the foundation of the

framework outlined in Chapter 5. To the latter, we associate project flexibility with

real options, and present methods for calculating the value of these options: namely

Black-Scholes, Black's approximation, and binomial lattices. While the Black-

Scholes method is straightforward and easily computable in a closed form (with ac

cess to a standard normal CDF estimation function), it does not allow for American-

style options, and modelling multiple interacting options is difficult at best. Black's

approximation allows for American options, but still cannot handle multiple op

tions. As such, the benefits of the the binomial lattice method—American option

support, interacting options, and a visual representation of the option value time

line—outweigh those of the other models for real option valuation. Regardless of

the valuation model used, an estimate of project cash flow volatility is required; this

is recognised as a hard problem, and numerous methods used to estimate volatility

are reviewed.

Many inputs are common to numerous models; for ease of reference, I provide

35

a list of required variables, along with information on their use, in Table 3.1.

Variable

rt, r, rf

It

ct

C[

c'l

u

s

T

a

^
V

Definition
Risk-free rate
or discount rate

Project income
at time t
Project cost
at time t
Out of pocket
project costs
Reinvested
project costs
Spot price

Strike price

Periods until
option expiry
Volatility of
underlying asset
Set of expiries
Initial asset value

Model(s)
NPV, IRR, MIRR,
B-S, Black's
approx., Binomial
NPV, IRR, MIRR

NPV, IRR

MIRR

MIRR

B-S, Black's
approximation
B-S, Black's
approx., Binomial
B-S, Black's
approx., Binomial
B-S, Black's
approx., Binomial
Black's approx.
Binomial

Comments
rt indicates the discount rate for time t,
r indicates a constant rate for all t,
rf is 1 +r.

Can be predicted using cost
estimation models from Chapter 2.
Only includes costs not financed
by positive project income.
Only includes costs that are financed
by positive project income.
Current market price of asset
underlying option.
Fixed price of option.
Call = buy price; put = sell price.
"Periods" are counted in the same
scale for which r is given.
Provided in the same time
scale as r and T.
All possible expiries for American options.
Value of asset underlying option at t = 0.

Table 3.1: Input variables for value models.

36

Chapter 4

Related Work

Work related to this thesis can be divided into three main categories: software eco

nomics, architectural models, and software service valuation. Software economics,

in this case, refers to aspects of software engineering where economic models con

tribute information to, and affect the outcome of, the decision-making process. Ar

chitectural models are similar, but on a larger scale; they attempt to model numerous

aspects of the development process with a certain goal in mind, or from a certain

viewpoint. They represent facts about the entire architecture of a system; in this

context, these facts are economic, or utilize econometric theory as a mainstay of the

model. The third category is much more specific, and only discusses work related

directly to valuing software services, notably web services.

4.1 Software Economics

As software has become more flexible, economic factors, and value in particular,

have come to play a larger role in development decisions; numerous papers have

been published on the topic of software valuation under varying development strate

gies.

Favaro discusses the economics of reuse [33]. He presents and compares five

valuation approaches: NPV, payback, average return on book value, IRR, and prof

itability index (PI). Payback refers to the number of times the software has to be

used (or reused, as in Favaro's case) to recover the cost of investment. The general

rule for decision-making using the payback method is to accept a project if the pay-

37

back can be obtained before a specified time. This leads to a number of concerns

when using this model: cash flows are generally not discounted, the cutoff date be

fore which the cost needs to be recovered is arbitrary, any cash flows after the cutoff

date are ignored, and the model does not account for scale when comparing mul

tiple projects of different sizes. Scale is important, and as such cannot be ignored;

two projects could have the same predicted payback date of t, but the cash flows

of one project could be much higher than the other, and would create considerably

more profit than the other after t.

Average return on book value amortizes the value of the project over its lifetime,

then takes the average of the value of the project, minus cumulative amortization,

as the net average book value. This figure then divides the total cash flow for each

period to produce an average return on book value percentage. If this percentage is

greater than an arbitrary target percentage, then the project should be undertaken.

However, this method does not account for differences in cash flow patterns: large

inflows combined with large outflows are treated the same as small inflows with as

sociated small outflows. Also, the method of calculating amortization for a project

is not standardized, and is left up to the discretion of the particular accountant;

this can lead to vastly different calculations of return on book value, limiting the

comparability of such results across projects.

The profitability index (PI), or cost-benefit ratio, of a project is simply the

present value of the project divided by the initial cost to create the project. The

project should then be accepted if the PI is calculated to be greater than one. Like

the payback technique, this ignores the the size of the project or the actual quanti

ties of cash flows, undervaluing projects with larger flows. Additionally, the values

calculated for two projects cannot be added together to determine the PI if both

projects are undertaken.

NPV and IRR, as discussed in Section 3.1, are compared to the previous three

approaches; Favaro reports that NPV is the superior technique for valuing reuse-

based software development. He reaches this decision based on the fact that NPV

can account for projects of varying scale, the NPV values of separate products are

additive, and NPV allows for discounting of future cash flows.

38

Erdogmus studies the value of development strategies, including those based on

the use of commercial-off-the-shelf (COTS) components [27, 32]. COTS develop

ment is generally flexible because of the ability to place external modules into the

system, which can be upgraded or modified at a later time. Erdogmus presents two

approaches for valuing COTS-based development: a comparison of COTS strategy

against a custom development approach using NPV Incentive (NPVI), and a real

option-based method. The first strategy simply compares the NPVs of the two de

velopment alternatives and distills this comparison down to a value: NPVI. This

simplifies the decision of whether or not to undertake COTS-based development;

if NPVI > 0, the COTS-based approach will be more profitable. If not, the de

velopers should undertake a custom development strategy and produce their own

software to suit their needs. The formula for NPVI is presented in Equation 4.1,

where NPVX if the NPV produced by approach x; C is the asset value (the total

value of future predicted cash flows discounted from the time period in which they

occur); M is the operation cost, or ongoing costs, discounted from the time they

occur; / is the initial development cost.

N p v i = NPVcors - NPV custom (4 J)

^custom ^custom < ^custom

The second approach uses real options to model choices available during de

velopment, including the option to replace components (with other COTS products

that better meet the needs of the application), the option to skip or delay upgrades

of the underlying COTS components, the option to abandon the project for a ter

mination value, and the option to migrate from a COTS-centric system to a custom

design once the benefits of rapid development and early market penetration have

been realized. This work uses the Black-Scholes formula to calculate the value of

the options involved, with the option value added directly to the NPV value for each

alternative.

Like Favaro, Erdogmus also reaches the conclusion that NPV is the most effec

tive measure of a project's worth, however he mentions little of how to determine

the values of the parameters in the formula. He also summarizes with a set of

guidelines for assessing a COTS-centric development project, which include: con-

39

duct comparative evaluation between two development approaches, identify possi

ble future states in which the project could find itself, account for flexibility, focus

estimation on easily predictable variables, consider market conditions and business

context (specifically when choosing a discount rate for NPV), and concentrate on

what-if analysis instead of single-value data. These guidelines are not only spe

cific to COTS-based projects; they equally apply to service-oriented development

as well. This thesis follows these guidelines when developing a framework that can

be used to compare the economic feasibility of a set of potential service-oriented

projects.

4.2 Architectural Models

More recently, researchers have begun tackling the problem on a larger scale: cre

ating frameworks and theories that operate on entire projects and model both costs

and values in detail. Many of these incorporate a real option element for the valua

tion of flexible project aspects. Three works are most closely related to this thesis:

that of Ozkaya, Kazman, and Klein, that of Bahsoon and Emmerich, and that of

Baldwin and Clark.

Ozkaya et al. discuss the architecture of a system from a quality standpoint,

embodying the notion that various quality attributes dictate the architecture of a

project [59]. Quality attribute requirements can be met through the use of architec

tural patterns, and these patterns have inherent economic values that can be modeled

as real options. This approach can be used to map future quality-based design deci

sions to economic terms. The report strives to determine how the option value can

be extracted from architectural patterns, if this information can be useful for deter

mining the optimal time to apply an architectural pattern, and if pattern valuation

can be used to inform decision-making related to quality and business objectives.

These issues are explored through the use of a sample case study based on a ficti

tious city information system (CIS) that contains an option to alter the modifiability

and availability of the system through different architectural patterns. The binomial

approach is used to value real options. Their results on the sample system sup-

40

port the hypothesis that real options are a viable method of performing value-based

comparisons between possible architectural patterns. This work is closely related

to the Architecture Tradeoff Analysis Method (ATAM) [45] and the Cost Benefit

Analysis Method (CBAM) [8]: ATAM analyzes a system to determine whether ar

chitectural decisions lead to a satisfaction of desired quality attributes, while CBAM

studies cost and benefit implications of architectural decisions, assisting developers

in choosing which from a set of possible actions should be undertaken. Costs are

elicited from the organization whose project is under analysis; benefits are given

in terms of utility, where meeting quality attribute requirements will lead to an in

crease in utility.

Bahsoon and Emmerich develop ArchOptions, a model for determining the sta

bility of software architectures, where stability refers to the ability of an archi

tecture to handle changing requirements put forth by stakeholders or the environ

ment [9]. A more stable architecture is generally beneficial as it can withstand

requirement changes without necessitating a redesign of the system. This work

quantifies the value of each possible future evolutionary change to the architecture

by casting them as call options and using the Black-Scholes formula for valuation

(later compared to the binomial valuation method in Bahsoon's PhD thesis [11]),

with a greater value associated with a greater level of flexibility. Bahsoon and Em

merich apply this model to the field of refactoring by way of placing a value on

the flexibility that a refactoring may introduce to a system [10]. The authors ap

ply ArchOptions to a simulated case study from the literature, performing random

refactorings to the code and measuring the expected maintenance savings of each

refactoring. Each change to the code after the refactoring is performed is assumed to

be an option; this allows the "option value" to be determined by finding the break

even point (the number of changes required to allow the maintenance savings to

outweigh the cost of performing the refactoring). Any changes performed after the

break-even point contribute to the option value. However, using the ArchOptions

model the authors determine the break-even point to be ten changes subsequent to

refactoring, yet Stroulia and Leitch, the authors of the paper on which the example

is based, determine the value to be six [68]. There is no discussion of this discrep-

41

ancy, or how or why the ArchOptions model may be superior in this context.

Baldwin and Clark use a Design Structure Matrix (DSM) to map hierarchical

or interdependent relationships between design elements in a project [13]. A DSM

is a simple map denoting dependencies between modules, which can be analyzed

using the Net Option Value (NOV) model to determine what architecture would

create the most value for a system. The NOV model assumes that each module has

an expected value normally distributed around zero and a variance that is directly

correlated with the complexity of the module: to be more precise, variance increases

linearly with the number of tasks the module can perform. However, as the module

can be discarded if the value (X) is deemed to be below zero, the actual expected

value only includes the positive outcomes, or E(X+) = /°° Xf(X)dX, where

f(X) is the normal density function.

To generate options, which in this case are alternative architectures, a combi

nation of six modular operators are employed to alter the system in various ways.

These operators are splitting a system into sub-modules, substituting one module

for another, augmenting the system with a new module, excluding a module from

the system, inverting to create new design rules and standard components, and port

ing a module to another system. For each possible system, the NOV is the sum

of the module values plus an overall system value for modules with additive value

properties, or a combination of values if they are not additive. In this model, the

architecture with the greatest NOV is chosen. Sullivan et al, who treat software

design as a value-maximizing investment activity, verify the potential usefulness of

this approach for informing the software design process [69]. Baldwin and Clark,

however, later revisit the issue and mention the difficulties in performing accu

rate valuation of complex systems, partially due to the lack of concrete datasets on

which models can be tested [14].

4.3 Software Service Valuation

While most related to this research, few works have concentrated on the valuation

of software services specifically. As web services are becoming such a pervasive

42

force in e-commerce, the lack of research in this area is surprising. This void may

not be web service-specific though; Wiederhold discusses the deficit of software-

related value research is his papers on software and web service valuation [76, 75],

in which he stresses the need for such research since the value of a project is gen

erally unrelated to the costs expended to create it. He concludes that the value of

software is the income the project can generate, and that constant maintenance of

a traditional software product can effectively transform it into a service, as cus

tomers will pay for updates to the software instead of new and separate products.

Though he does not specifically mention valuing software flexibility, it can be con

strued as a portion of the income a project generates, albeit indirectly. Interestingly,

Wiederhold also states that on average 5% of code is replaced in a project through

normal maintenance activities, which increases "to 10% for code that is aggres

sively maintained" [76]. In this thesis, this value is used to determine default values

for COCOMO II calibration parameters.

Also studying web services in particular, Van der Raadt et al. examine ser

vice valuation in the context of requirements engineering, developing the Business-

oriented Approach Supporting web Services Idea Exploration (BASSIE) [73]. BASSIE

combines a goal-oriented framework for determining alternative methods for reach

ing business goals with a value-oriented framework for estimating the economic

worth of these alternatives. While the details and calculations of the underlying

models are not provided, there is no mention of future flexibility; therefore, it is

unlikely that real options constitute a part of the valuation process.

Perhaps the most prolific author in the area of web application economics,

Emelia Mendes has performed numerous studies, particularly in the fields of cost

and effort estimation, sizing metrics, and hypermedia applications1. While nomi

nally similar, web hypermedia applications are created at a much higher level than

the sourcecode-level applications studied in this work, with a concentration on con

tent delivered though multimedia, JavaScript, HTML, and other web publishing

media [56]. Instead of sizing metrics based on source code size and complexity,

metrics include HTML page count, media file count, Java applet or JavaScript file

'See http://www.cs.auckland.ac.nz/emilia/publications.html for an extensive list of publications

43

http://www.cs.auckland.ac.nz/emilia/publications.html

count, internal link complexity, and average media type counts. While Mendes's re

search is comprehensive and well published, it is dissimilar enough from this work

as to not contribute towards its goals.

4.4 Summary

The economics of various aspects of software development have been studied in

numerous contexts related to software services, including COTS development and

generic reuse. These studies have analyzed a range of economic models for placing

a value on the software project, including NPV, payback, average return on book

value, IRR, and PI, as well as the custom model NPVI. NPV, and models inspired

by NPV, are consistently chosen as the most effective approach to valuation based

on its ease of application, ability to discount future cash flows to current terms,

and final numeric value that is representative of an actual dollar amount, making

it easy to compare projects of various sizes. Models have also been developed

in an attempt to utilize architectural information, including those concerned with

architectural quality and architectural stability. Software service valuation, or mod

els applied to the architectures of services in particular, has not been extensively

studied, particularly not in conjunction with a real option approach for valuing flex

ibility. The existing work on software services tends to be focused at a high level,

not accounting for actual features of the codebase.

44

Chapter 5

Methodology

Building upon the work described previously, this section introduces and details the

steps of the ROMAN framework. I use a running example in conjunction with an

explanation of each step so the reader can see how the framework can be used in its

intended environment. This section also discusses the ROMAN Decision Support

System, or RomanDSS, which can be used to automate some steps of the frame

work application process. RomanDSS performs Monte-Carlo simulation when the

input variables are not precisely known, generating a probability density for likely

project value outcomes. In order to expedite the estimation process, RomanDSS

also includes default values for COCOMO II maintenance parameters; Section 5.4

discusses how these default values are chosen.

5.1 Case Study Introduction

While describing the ROMAN framework I illustrate the discussed concepts with an

example case study, which revolves around the operations of the service-oriented

business Movielnfo, Inc. Movielnfo is a company that provides a showtime in

formation web service, with a web-accessible interface, for theatres in many geo

graphical regions. Due to the popularity of this service, the company believes that

it will be able to increase its revenue by expanding its service offerings. To this

end, it is considering two expansion possibilities: 1) create a web service that al

lows customers to purchase movie tickets online, or 2) create a movie information

web service, complete with a recommendation system and the ability to purchase

45

selected movies. Both expansions could be performed with their existing hardware

infrastructure. The company has determined that it can only secure the capital to

undertake one of these expansions at the present time, and thus needs to decide

which expansion to perform.

As I establish the ROMAN framework in Section 5.2,1 will describe how each

step applies to the Movielnfo example, and how the application of the framework

will assist Movielnfo in choosing the correct path of expansion, accounting for

the value of flexibility. As the framework applies to both possible expansion al

ternatives, for the sake of brevity I will only provide calculations for the second

expansion option.

In terms of the information service, Movielnfo intends to generate income by

placing advertisements in the movie information results; the company charges ad

vertisers a cost per thousand impressions (CPM) of $5. Additionally, from the

movie selling portion, they foresee profits of $15 per thousand impressions, on av

erage, based on industry norms. Using this information, combined with that given

throughout the example, Movielnfo will be able to determine which expansion al

ternative to undertake.

5.2 ROMAN Framework

Based on the McKinsey flexibility valuation process [55], the ROMAN framework

involves five steps, each of which is designed to assist in the process of placing a

value on a project, with the intention of helping an interested entity choose between

alternative projects to undertake. This method of proper usage should be stressed:

even though the framework will provide a numeric value in monetary terms as its

final value estimate, this number should not be relied upon as being an accurate

monetary prediction. Instead, the value should be compared to that produced from

the analysis of other alternative projects, and the project with the greatest estimated

value should be undertaken. This intended use guideline is given as a precaution,

since more extensive real-world testing is needed to determine the absolute accuracy

of the estimation results. This recommendation is in line with those from other

46

authors, such as Erdogmus and Vandergraff [32], who stress the need for what-if

analysis over single-value data in economic valuation, allowing for the exploration

of alternatives rather than relying on precise estimation figures.

The first step of the ROMAN framework involves performing traditional NPV

calculations for each alternative. The NPV forms the basis of value calculations, but

neglects the value of project flexibility, and will therefore understate the expected

value of a project. The second stage models cash-flow uncertainty over the life of

the project on an event lattice, allowing the valuator to determine the likely out

comes of the project. Steps three and four work to identify flexibility in the project:

step three indicates commonly embedded options at the project level, and step four

specifies how flexibility at the design level can contribute to project flexibility. Both

of these steps are given as guidelines for areas to examine when searching for em

bedded options during project valuation. If applicable to the project under valu

ation, the value of the option can be calculated with the provided formulae. The

final step in the framework combines the value of options located in steps three and

four with the original event lattice, forming a decision lattice that indicates both the

optimal exercise time for embedded options and the updated NPV of the project,

including the value of flexibility. The conclusion of this step restates the traditional

NPV rule in a modern context: choose the project with the greatest NPV, where

NPV includes the value of flexibility afforded by the specifics of the projects in

question. The five steps of the ROMAN framework are detailed below.

5.2.1 Step 1: Estimate Basic NPV of Alternatives

The first step in the ROMAN framework is to perform a traditional NPV calcu

lation, devoid of any notion of the value of flexibility, for each alternative under

consideration. The general formula for calculating NPV, discussed in Section 3.1.1,

is given in Equation 3.1.

Movielnfo's information and retailing service is expected to receive 4 million

requests per year, based on present service demand, yielding income of $80000

annually, for the service's lifespan of 10 years. The initial cost of developing the

service can be calculated with COCOMO II, the inputs for which are given in Ta-

47

ble 5.1. For descriptions of each input parameter, see Section 2.3. Note that Ta

ble 5.1 assumes Java as the programming language in which the project is being

written, providing a 1/53 FP/SLOC ratio.

Variable
Codebase
DM
CM
IM
UNFM
AA
FP/SLOC
Modified FPs
New FPs

Definition
Size of existing codebase
Percent design modified
Percent code modified
Percent retest impact
Progammer unfamiliarity
Assessment and assimilation
FP/SLOC ratio (language-based)
Original code modified (interchangeable with CM)
Additional code required to achieve functionality

Value
200 FPs
40%
59.5%
85%
0.4
0
1/53
119 FPs
130 FPs

Table 5.1: Initial development COCOMO II input variables for Movielnfo movie
information web service.

These inputs result in an initial cost of $99 989.22, which I will round to $100 000

for the sake of simplicity.

Each year, the service will incur costs of $45 000 for maintenance of hardware

and software, bandwidth fees, support, and shipping costs (as they will cover much

of the cost of shipping movies). At an 8% cost of capital, this places the NPV for

the service at £ ! ° i ^000-45000 - 100 000 = $134 853.

5.2.2 Step 2: Model Project Uncertainty

With the basic NPV estimated, we create an event lattice to model future uncer

tainty on the cash flow [24]. To do this, we need an estimate of the project's cash

flow volatility, a; this input parameter is discussed in Section 3.4. Once estimated,

volatility can be used to calculate the value multiplier of an increase or decrease in

cash flow, which are u and d in Equation 5.1, respectively. T is the constant time

per step multiplier for the lattice. The probability of an upward step on the lattice,

p, is given in Equation 5.2, with Rk being the cost of capital for the project [55].

u = eaVf d=- (5.1)
u

48

P = < H ± M ^ > (5.2)
u — a

CPtj=^(l-Py-^\ (5.3)

0<t<N,0<j<t

The event lattice can then be created for iV desired time steps as shown in Fig

ure 5.1; each column is tT time steps in the future. The cumulative probability of

being in any specific state in the lattice, CP, then becomes Equation 5.3, where j

is the ascending row index (from the bottom).

Figure 5.1: General event lattice.

The lattice for the Movielnfo example is shown in Fig. 5.2 for a volatility of

<T = 10% and time steps of T = 1 year. Note that only the first 5 years are shown;

as such, all example options are limited to a maximum expiry date of 5 years. Values

indicate thousands of dollars.

5.2.3 Step 3: Identify General Project Flexibility

We now begin to look at the intangible aspects of value: those represented by real

options. At this stage we examine general aspects of the service that lend them

selves to the introduction of these options, and determine how these options affect

the value of the project. Each option will directly alter the value of the project at the

time that it is exercised; this change will propagate to t = 0 and modify the NPV for

the overall project. As these options do provide value, one needs to be careful not

to overlook this flexibility when valuating a project. Following is a list of common

49

Figure 5.2: Event lattice for Movielnfo.

options that could apply to an overall service-oriented project; in addition to those

listed here, other works have proposed varying categories of options and their affect

on the value of a project [15, 31, 40, 55]. Note that these options are not exclusive;

a project could embed multiple types of interacting options simultaneously.

Option to expand

This type of option can be used for a number of scenarios. Pilot projects embed

options to expand; at any time, if the pilot is deemed successful, the service can be

expanded into the full offering. Staged development is similar in this regard; upon

completion of the initial stage, subsequent stages are optional, contingent on the

success of the first stage. Likewise, deployed services can be expanded for a cost.

The value of the node in which this option is exercised becomes Ve — I, where V

is the previous value of the node, e is the expansion factor (e > 1), and / is the

cost of expansion. This option is akin to a call option. Aside from flexibility at the

project level, many expansion options exist due to the modular nature of services at

the architectural level, as I discuss in Section 5.2.4.

Option to contract

The opposite of expansion options, contraction options allow for a service to reduce

its costs with a reduction in the level of service provided. Services incurring a larger

ratio of variable costs to fixed costs are more likely to contain options to contract.

Take, for example, a web service that provides online retailers with the ability to

50

ship goods. Due to the Christmas season, fourth quarter demand for the service

rises sharply, and first quarter demand drops sharply [74]. If costs are related to

the number of simultaneous connections supported by the service, the ability to

decrease the service level during the first quarter will reduce expenditures. To model

an option to contract, the contracted node in the lattice becomes Vc+Ic—I, where c

is the contraction factor (c < 1), Ic is the expenditure reduction due to contraction,

and I is the cost to perform the contraction. Contraction options are akin to put

options.

Option to defer investment

Occasionally, the present is not the optimal time for an investment. Delaying devel

opment of a service may have a number of benefits, including resolving uncertainty

in the market value of the service, waiting for beneficial market conditions such as

higher demand or reduced entry barriers such as legislation, or determining com

petitive ability. A product entering a new market may benefit from deferral until

the owner can determine how the market will receive the product. When incor

porating this option, the value at execution will become NPV * e — V, where e

is the factor representing the additional income from deferral (e > 1), and V, the

previous value of the node, is the opportunity cost of delaying the investment. If

(NPV * e — V) < 0, then the option is not exercised (i.e., the service is not devel

oped). This is different from Benaroch's definition of a defer option [15], in which

the option is exercised when the deferral begins. In the definition used in this thesis,

the option is exercised at the end of the deferral period; its cost is assessed as the in

come opportunity lost by not developing it sooner, and its value is estimated as the

value of the service when developed. This definition is similar to holding financial

options to mitigate financial risk, to be exercised only if conditions are sufficient

for profit. This interpretation makes it similar to a call option. Note that e may be

difficult to predict in some circumstances, such as in situations of uncertain cus

tomer demand; in others, such as deferring investment until legislation is conducive

to market entry, this value can be fairly simple to estimate based on similar markets

in unrestricted locations.

51

Option to abandon

Depending on the service, there may be value in abandoning it. This occurs if

the owner is able to sell the service, or terminate it and liquidate its resources; a

company that estimates the NPV of a service to be $20, but has been contacted

by another company willing to purchase that service for $30, has the option to

abandon for a profit. The development process of the service is one of the factors

affecting its saleability; e.g., a service that is developed with stringent coding and

documentation standards will produce a greater liquidation value than one with

lax documentation and coding standards, based on the reuse value of the code.

This option will affect the value lattice in two ways: it will remove all downward

descendants of the exercised node, and the value of the exercised node will become

Va — Ia, where Va is the liquidation or sale value, and Ia is the cost of discontinuing

operation of the service. Like contraction options, abandonment options represent

put options.

5.2.4 Step 4: Identify Modular Flexibility

General service flexibility is embedded in a given project based on market condi

tions, development practises, business models, and risk profiles. However, not all

sources of flexibility are easy to identify at the project level; the fourth stage of

ROMAN is to isolate flexibility value at the design level. The SOA tenet of loose

coupling implies that systems are composed of collections of modules. Baldwin

and Clark recognise the importance of modular design and establish a set of six

operators that can be performed on modular systems; all modifications are a com

bination of these operators [13]. The adaptability that these operators provide adds

value to the project, which can be expressed in terms of the options discussed in

Section 5.2.3. In this section we discuss the inherent value of the six modular oper

ators.

Splitting

Splitting describes separating a system into smaller component modules. This is

important in the context of services, as large services can have the ability to be

52

decomposed into smaller, and possibly more profitable, services. This is the most

basic case of splitting: dividing one stream of revenue into multiple. Effectively,

the option to split a service in this way is an expansion option, as there will be an e

increase in value, which is obtained by altering the software at a cost of / .

Movielnfo, at any time, could separate its recommendation system from the

general movie information service and offer it as a separate service. They predict

that this would lead to a 20% increase in usage (e = 1.2) between the two services,

at a development and deployment cost of I = $30,000. Figure 5.3 demonstrates

the nodes where this option could be reasonably exercised; that is, any node where

Ve - I > V.

Splitting also allows for common complex operations, which are discussed be

low.

Dashed = Expand/splitting
Dotted = Contract/substituting "-. si.8

Figure 5.3: Profitable option exercise points.

Substituting

Substituting is the ability to replace a module in the system with another module

providing the same functionality, but usually with a different level of service or

cost. Generally, substitution is performed in one of two profit enhancing scenarios:

in order to increase the revenue generated by the service, or to decrease excessive

costs. The first scenario effectively represents an expansion option; the second,

a contraction option. The first category encompasses actions such as upgrading a

service to provide faster access or to handle more concurrent connections, either

53

through in-house development or by choosing a different provider for a third-party

service. The second category performs the opposite function: decreasing the level

of service when it becomes too costly to provide or is no longer desired by the

customers.

Movielnfo currently has an embedded contraction option due to the ability to

substitute one shipping company, used when customers purchase movies, for an

other. They currently ship with a reliable major courier, but could at any time mod

ify their service to use the shipping functionality of the local postal service. The

decrease in reliability and increase in shipping delays would devalue the service by

an estimated 4%, but would save Movielnfo $5000 annually. The lattice nodes in

which this substitution would benefit the company are shown in Figure 5.3.

Augmenting

Augmenting a service is adding another module to the system in order to raise

the level of service provided to the customer. This could be performed as part

of a differential pricing business strategy, with multiple services with increasing

levels of functionality at increasing price points, or as a means to differentiate one's

offerings from those of one's competitors [77]. It can also be used to increase

the technical understanding of a service by introducing a logging module into the

system. While not directly increasing the income generated by the system, this can

reduce maintenance costs, which in turn increases value. Augmenting forms the

main method for creating value-added services, and as such there are many possible

motivations for augmentation. Common to all forms of augmentation, however, is

the increase in the value of a service for a certain cost, or the ability to reduce

costs while maintaining value, which implies that the ability to augment a system

provides the owner with an expansion option.

Excluding

Exclusion is the modular opposite of augmentation, and refers to the removal of

a module from a system. Removed modules can be those that are no longer de

sired by customers, consume more capital than they create, or are superfluous to

54

the operation of the service. The ability to exclude a module from a system is an

instantiation of a contraction option where c is the reduction in service caused by

the exclusion, Ic is saved cost of maintaining the module, and / is the cost involved

in removing the module from the system.

Inverting

Inverting involves creating design rules. This is one of the more powerful opera

tors in that it allows for standardisation, which can lead to the creation of standard,

reusable, modules to perform common tasks across systems. At its most basic level,

inversion leads to savings of maintenance costs. As design rules and standards are

created, the software behind services becomes easier to understand, and therefore

easier to maintain. Common solutions only need to be implemented once, reducing

the size of the overall codebase. However, this does not represent an option; one

does not generally plan to create a system and then extract presently visible com

monalities at a future time. Inverting does lead to the presence of options when

combined with other modular operators though, as is discussed below.

Porting

Porting is similar to inverting in that it allows a current module to perform the same

task in another system. However, an inverted module does not change the design of

the system. Porting, on the other hand, requires development other than the ported

module; a ported module also requires the development of translator code to work

effectively in the new system. The need for interface code often occurs with third-

party, or COTS, components [32], and increases the costs associated with porting.

As porting allows for the use of components that do not fit precisely into the mod

ular framework, a wider range of solutions to a given implementation problem are

possible. In this way, porting can be used for augmenting or substituting modules

in the service.

Following the running example, Movielnfo has the option of substituting an

other back-end movie information data source, such as that of IMDb.com1, into
1 © 1990-2008 Internet Movie Database Inc.

55

http://IMDb.com1

their service. This would increase the quality of their search results, leading to

greater service usage and more orders, but would require Movielnfo to create soft

ware to handle IMDb's database structure. Movielnfo would also have to pay con

tent licensing fees. This option would, like the first category of substitution opera

tors, be representative of an expansion option.

Complex Operations

Complex operations are composed of two or more component operators and per

formed as an atomic unit. As such, the net value profile is different from that of a

simple combination of the underlying operators.

Split-exclude This operation is performed when part of a module, as opposed

to an entire module, is to be excluded. The value of this will be identical to that of

a simple exclusion, except the cost will be greater, as more development effort will

be required to first split the system, and then remove the desired module. When

analysing an architecture for options, options based on this operation should be

treated as exclusions.

Split-substitute Similar to split-exclude, this operation is required for substitut

ing part of an existing module. During option analysis, split-substitute operations

should be treated the same as substitution operations, but with the added cost of

splitting the system incorporated into the value calculation.

Split-invert As with the previous two operators, this is performed to extract

a subset of a module before conversion to a common module. This is similar to

inversion in that no options exist based solely on this operation. It can, however,

form the basis for the next two complex operations.

Invert-augment Can also be split-invert-augment. These operations are used

to create service frameworks to facilitate future development. Movielnfo, at some

point in the future, intends to expand into the soundtrack-selling business as well

as movies. With their modular design they can create a generic product-selling

framework through inversion, use the framework as the basis of their movie-selling

service, and then augment the system with a new soundtrack-selling module. This

development would represent an expansion option: the cost would be the develop-

56

ment cost of inversion and creating the new service, and the value would be the

increase in revenue as a percentage of total sales.

Invert-exclude Can also be split-invert-exclude. These complex exclusions can

be used to perform service differentiation, similar to augmentation. Unlike augmen

tation though, this is not a unary operator; the core functionality must be inverted

before differentiation can be performed. The result of the inversion is then used as

the base for all levels of service, and various other modules are excluded from the

original service to reduce functionality and price. Counterintuitively, the ability to

perform this operation in the future is an expansion option: the product line is being

expanded, even though a service is being contracted. The original service remains,

but new services are introduced at lower price points. Movielnfo has the option of

performing this operation by offering a reduced functionality service—one without

the recommendation system—with fewer advertisements displayed. The reduction

in ads would make the service more attractive to some people who would otherwise

not use either service, but this service would also cannibalise income from the orig

inal service. This results in many more sources of cost and value than inversion or

exclusion alone.

5.2.5 Step 5: Calculate NPV Including Flexibility

With all sources of flexibility determined, the final step of ROMAN is to model

this flexibility in a decision lattice and calculate the final NPV of the project. The

decision lattice is formed from the event lattice combined with all relevant option

values for the project. To illustrate this point, consider the expansion and contrac

tion options described in Section 5.2.4. To demonstrate overlapping options, also

consider an abandon option with a sale value of $110000 and no cost. The benefi

cial exercise times of these options are shown in Figure 5.4.

The decision lattice can now be used to find the optimal exercise time for each

option, and to calculate the NPV of the service that embeds the options. Starting

at the end of the lattice (t = 5), we determine which has the maximum value: any

applicable options (one each of expansion, contraction, and abandonment options

in this case), or the current node value (i.e., no option). We then propagate the value

57

Dashed = Expand/splitting
Dotted = Contract/substituting

Figure 5.4: Profitable option exercise points including overlapping options.

back, at each stage checking the possible option values against the propagated value.

If at any stage an option value is greater than the propagation value, the option

is exercised at that point and the value produced by the option is then propagated

back. To perform the propagation, we use the portfolio replication technique, which

models the value of options as a combination of B risk-free assets and a portfolio

of N assets with identical risk and value profiles as the project being valuated [55].

The propagation value Ptj of node (t, j), where t is the column index and j is the

ascending row index, is shown in Equation 5.4. In this equation Vtj is the original

node value as seen in Figure 5.3, Otj is the post-calculation node value (which is

the max of Pt>j and the various applicable option values), and ry is the risk-free rate,

such as that guaranteed by government bonds (note that rf is equal to 1 + r from

Section 3.1.1).

PtJ = VtJ xN + B (5.4)

N = (Ot+1,j+1 - Ot+1J) I (K+ij+i - Vt+1 j)

B = (Ot+1J - Vt+1J x N)/rf

The final decision lattice for Movielnfo is shown in Figure 5.5, with the loca

tions of option exercise indicated. The NPV for the service including options is

shown in the root node; for this example, the final NPV is $ 139.4k, leading to a

total combined option value of $4491.

58

(i7i.9 y<^y

s- ^C 1 5 4 - 7 ^^^ "\ / ^
139-4y*^^^-"^ >^C137-0\

T 124.5y\^^-—~\ J ^
(1137 V-~^

R ectangl e - A bandon
Dashed = Expand/splitting

Dotted = Contract/substituting

191.3

152.2

122.9

110.0

(212.9 J<^~

J^K. 169-2 J \

^ (135.0 \ f

jft(1134 /vT

(̂ NaN V C _

236.9)

^ -̂
188.5)

V . - ^

149.1 ")

122.5

110.0

NaN J

Figure 5.5: Final decision lattice with optimal option exercise times.

With the flexible NPV of each alternative project estimated, the project with

the greatest NPV can be chosen as the one to undertake, given that the NPV is

greater than zero. Clearly, if resources allow, more than one project can be chosen

for implementation in order to maximize profit. In the case of Movielnfo, we have

already established that they only have available resources for a single expansion.

Therefore, if the service to offer the movie tickets online has an NPV greater than

$ 139.4k then it should be undertaken; otherwise, Movielnfo should proceed with

the information and movie sales service.

5.2.6 Alternative Calculation Procedure for Step 5 - Risk Neu
tral Valuation

Step 5 of the ROMAN framework utilises the portfolio replication technique for

node value propagation. There is an alternative method to perform this task that can

be used as well: risk neutral valuation [55]. This method adjusts the probabilities

of entering a successive state to account for risk. These probabilities are used, in

conjunction with Vj+ij+i and Vt+ij, the original up and down node values at t + 1,

and discounted by the risk-free rate, to determine Otj, the new value for the node

at (t,j). The formula for calculating the risk-adjusted probability of an upwards

movement at any given node, p\^, is given in Equation 5.5.

Pt,
rf-d, t,i

Ut dt,j
(5.5)

59

When using risk neutral valuation u and d are not calculated as in Equation 5.1,

but are now directly based on Vt+ij+\ and Vt+\j. The risk neutral versions of utj

and dtj are given in Equation 5.6.

Vt+l,j+l , Vt+l,j ,r £s U,j=^r *j=^7 (5-6)
Ptj, the propagated value of Vt+ij+i and Vt+ij as in Step 5, then becomes a

probability-weighted combination of 14+lj-+1 and K+ij , discounted by the risk-free

rate, as is shown in Equation 5.7.

_ P*tJ x Vt+ij+1 + {I-Ptj) x Vt+hj
Ftj _ _ {5J)

This Ptj can then be used in the same way as in Step 5: Otj, the new value

for node (t, j), will then become the max of Ptj and the various applicable option

values that can be exercised at that point.

The main difference between the risk-neutral valuation method and the portfolio

replication technique is the incorporation of risk information into the probability of

upward movement; some valuators may find this information more useful than the

original scenario probabilities. Both approaches will yield identical results for O0,o,

the NPV of the system after all calculations have been performed.

5.3 RomanDSS - The ROMAN Framework Decision
Support System

In order to facilitate the calculation of project costs and values, I developed Ro

manDSS, a decision support system designed to simplify and study this process.

The application uses process descriptions provided by BPEL (Business Process

Execution Language) files to model the prospective service under consideration.

BPEL was selected for five main reasons: 1) it is being increasingly adopted by

organisations, as an increasing numbers of tools supporting it have become avail

able; 2) in addition to supporting the specification and orchestration of web-service

compositions, it is currently evolving to represent interactions with humans in

volved in the orchestration process (a necessary step to meet the requirements of

60

a business-process modelling language); 3) its open XML representation format

makes its parsing and analysis straightforward; 4) the structure of the orchestration

expressly models modularity, with modules being accessed through service calls;

and 5) the BPEL process can easily be created at the architectural stage, before the

system is implemented.

BPEL specifies how services are delivered as compositions of other coordinated

services. The composed services can be simple, i.e., implemented in a "native"

programming language, or composite, i.e., implemented as further BPEL com

positions. Costs and values for the web service under evaluation are determined

through analysis of the BPEL compositions and the auxiliary web services that it

accesses. For example, the Movielnfo service uses an information retrieval ser

vice and a recommendation service; those two auxiliary services would be treated

as modules under the ROMAN framework. If the auxiliary service is itself imple

mented as a BPEL file, the DSS recursively analyses it as a module composed of

sub-modules.

Load BPEL
File

|

Input maint
parameters

Determine
flexible NPV

- - •

•

Analyze
general
options

If Internal

Calculate
maint cost

If initial dev
t

Input dev cost
parameters

Apply real
option values

•

*
Extract aux
service call

i

—If reused code-*

-

" If Ext

•

ernal

L
Analyze
modular
options

A

Calculate dev
cost

Calculate NPV
latt ice

— > Input misc
costs & values

El

-

i

se

'
Input misc

& va lues

Figure 5.6: RomanDSS execution graph.

The operation of the tool, as is shown in Figure 5.6, is as follows. The user

initially loads a BPEL file into the system and performs real option analysis on the

overall project by entering applicable options as per Section 5.2.3. Any options de-

61

termined to exist at this stage are attached to the project as a whole. The DSS then

performs modularity analysis on each service call extracted from the BPEL file. If

the user tags a call as "internal" to the system, i.e., controlled by the same entity as

the BPEL-based process and is in charge of maintenance or modifications, then the

user is prompted for typical maintenance values, such as the average percentage of

the codebase that is modified during maintenance. If the module is not yet devel

oped, they are also prompted for initial development cost parameters. COCOMOII

is then used to estimate the actual cost of these activities. At the next stage, the DSS

prompts the user to consider modular operators and how they can create real options

for the service, as discussed in Section 5.2.4. If any options exists at this stage, they

can be attached to the module from which they derive their value. If there are any

miscellaneous costs or values associated with the module, they are also entered at

this point. Once all modules have been analysed, the user is prompted for miscel

laneous costs and values that apply to the overall system, such as the actual income

from customer usage. The DSS then performs basic NPV calculations, creates an

event lattice for the project, determines and propagates option values, and reports

the final flexible NPV of the system.

Note that any and all inputs to the application, be they cost or value related,

can be in the form of a probability distribution. Currently the application supports

the following distributions: uniform, Gaussian, upper- and lower-bounded Gaus

sian, beta, chi-square, exponential, and gamma distributions, as well as a simple

unweighted list of possible values. If any inputs to the system are stochastically

distributed, instead of performing a simple calculation of the values, the DSS per

forms Monte-Carlo simulation by repeatedly sampling from the input distributions

to form a resulting output distribution. The user can choose the resolution of the

output distribution, where higher resolutions imply more sample iterations and a

more time-consuming process. Once the DSS has completed the sampling process,

statistics such as mean, variance, maximum encountered value, and minimum en

countered value are displayed along with a graph of the resulting distribution.

62

5.4 Default COCOMOII Maintenance Parameters

In an effort to simplify the set of inputs required to perform a ROMAN analysis, I

have endeavoured to determine default values for maintenance parameters required

for estimation. While obviously the estimation would be more accurate with pa

rameters tuned to the specific project in question, these parameters can be used for

times when a rough estimation is needed quickly. The parameters I examine are

CM, DM, and IM, the percentage of code modified, the percentage of design mod

ified, and the retest impact of a change, respectively. As indicated in Section 2.3.1,

Leitch defines design modification as the percentage of methods changed during

maintenance [49]; I adopt this definition for DM. As a basis for parameter analysis

I also accept Wiederhold's statement that 5% of a project's source code is replaced

during maintenance per year, or 10% under an agressive maintenance routine.

To determine average parameters I collected a set of 34 open source projects

written in Java, taken from the Internet category of software projects on Source-

forge.net2. These projects and associated vital statistics are shown in Table 5.2.

Coverage is presented at the method level, and is the percentage of the methods in

an application that directly or indirectly depend on the other methods in the applica

tion. For example, an application with methods A, B, and C would have a coverage

of 66.7% if A depended on B and B depended on C (which would create a depen

dency from A to C due to transitivity). Each method also depends on itself. Out of

the nine possible dependencies, six exist: A depends on A, B, and C; B depends on

B and C; C depends on C. Coverage is used to measure the impact that a change

will have on a system, as any method that depends on the changed one will have

to be retested (in optimal test conditions). To gather SLOC count information I use

LOCC v4 [25], modified to count logical SLOCs according to the rules outlined in

the COCOMO 11.2000 model definition manual [19]. For data and control depen

dency information between methods I use Dependency Finder v 1.1.1 [71], modified

to better account for data dependencies.

I performed two sets of experiments on this set of applications: one intended to

2©2008 SourceForge, Inc.

63

http://forge.net2

Project
52north-WNS-v2-00-00
Azureus_3.0.1.6
FCKeditor-2.3
KeePassJ2ME-l_0_3
aTunes_1.6.5
ajaxtags-1.3-beta-rc4
contineo-2_5J2
dconfig-lib-1.0
dconfig-ui-1.0
freemarker-2.3.10
freemind-0_8_0
grinder-3.0-beta33
hibernate-3.2.4.spl
hsqldb-l_8_0_7
htmlparser 1 _6_20060610
htmlunit-1.11
itext-2.0.4
jbpm-identity
jbpm-jpdl-3.2.1
jena-2.5
jetty-6.1.4
jin-2.14.1
jodconverter-2.2.0
jodconverter-cli-2.2.0
jpivot-1.7.0
jwebunit-1.4.1
openxava-2.2
phex_3.2.0.102
salamandra-web-0.1 a
servingxml-0.7.1 a
soapui-1.7.5-beta2
stendhal-0.61
taste-1.5.5
tvbrowser-2.5.2

SLOCs
835
179919
599
2374
1626
2092
9144
2145
3020
26278
15493
22449
56952
42700
21177
9679
58007
786
16482
19092
21613
25438
471
53
5801
1108
21744
2057
1409
22798
1337
2765
53
6586

Packages
1
393
4
14
9
3
35
7
4
20
14
33
75
11
27
10
28
7
62
22
19
47
3
1
9
5
48
4
15
53
4
4
2
14

Classes
6
2066
5
41
32
27
213
43
47
487
279
468
994
266
230
219
419
19
344
394
216
348
12
1
84
19
347
37
61
878
27
58
2
88

Methods
44
18772
83
289
281
455
1046
328
233
3036
2269
2626
10908
4416
2441
2110
5843
151
2787
3373
2703
3370
72
3
805
298
3790
290
302
4168
164
388
16
929

Coverage %
15.42
1.02
4.22
2.82
1.77
1.50
0.69
7.03
1.44
7.79
3.22
1.55
0.51
17.61
2.75
1.57
4.99
3.78
2.77
0.44
1.06
1.39
5.48
44.44
1.16
2.96
3.98
1.29
1.02
0.13
11.67
1.51
8.98
1.25

Table 5.2: Projects and their statistics used in the COCOMOII default maintenance
parameter study.

64

determine corresponding values of DM and IM for a given CM, and one to deter

mine CM and IM for a given DM. The DM and IM results for CM=5% are used

as the default maintenance values in RomanDSS; however, I explored DM and IM

values for the set of CM={ 1,3,5,8,10,15,20,25,30,40,50}, and CM and IM values

for DM={ 1,3,5,8,10,15,20,25,30,40,50} as well for completeness. Small projects

tend to have parameter values that do not follow the application norm, and as such

I ignore any application with fewer than 1000 logical lines of code. This reduces

the experimental set from 34 applications to 28. See the discussion at the end of

Section 5.4.2 for notes on usage guidelines for the formulae developed herein.

5.4.1 Experiments with a Controlled CM

For each test with a constant CM, the given percentage of code needs to be "mod

ified". This is done in a simulated manner, with virtual lines of code randomly

selected from a weighted list of methods. Each method is assigned a weight based

on the SLOC count for that method, where the weight is the overall percentage of

lines of code for the entire application that fall into that method. This makes the

chance of any particular line of code being chosen as relatively equal. Note that the

actual lines of code are not seen by the experimental apparatus, just methods and

the SLOC counts contained therein, and as such each selected line of code merely

increments a counter associated with a particular method. If a randomly selected

method's counter is equal to the number of SLOCs in that method, the process is

repeated with a different selection. This random selection process is repeated until

the number of lines of code is equal to the desired CM percentage.

To determine the DM value for the selection, the number of methods with coun

ters greater than zero are summed, and this number is divided by the total number

of methods in the application. IM is determined though creating a map of all of

the methods that depend on the selected methods (those with counters greater than

zero), either directly or indirectly, and dividing that number by the total number of

methods. For each application in the experimental set this process is repeated 100

times and the average result is taken per application. The combined results of this

study over all sample projects are presented in Table 5.3. Figure 5.7 relates CM to

65

IM and DM.

CM
1
3
5
8
10
15
20
25
30
40
50

A v g D M

6.360749415

16.01217663

23.51940419

32.29893554

37.12470759

46.79292867

54.21561723
60.10419981

65.06603158

72.81675984

78.60740136

D M Stdev

1.551097932

3.236440421

4.139720274

4.921004602

5.176156082

5.398315798

5.358990716
5.032901364

4.820944778

4.110380078

3.28797926

AvglM

48.83809785

65.89568627

73.59384845

79.88952632

82.58958388

86.95845365

89.65802422

91.51219064

92.88688493

94.8099028

96.084518

I M Stdev

13.92333818

11.26959298

9.532340645

7.867964247

7.076503737

5.694858228

4.656470882

3.933940606

3.384294506

2.491083965

1.878408751

Table 5.3: Experimental results of CM tests.

Figure 5.7: IM and DM values for given values of CM.

The logarithmic nature of these results leads to Equation 5.8 for estimating an

average IM value from a given CM of randomly selected code, which has a coeffi

cient of determination (R2) of 0.976, and Equation 5.9 for DM, which has an R2 of

0.960. Naturally, CM must be greater than zero in these formulae.

IM = 11.97ln(CM) + 52.65 (5.8)

66

DM = 19.blln(CM) - 3.104 (5.9)

5.4.2 Experiments with a Controlled DM

I undertake a similar experiment with a constant DM in order to determine a corre

sponding value for CM and IM. This is performed by randomly selecting methods

until the desired percentage of methods has been obtained. With this list of meth

ods, sum the SLOC count for each method and divide this value by the total SLOC

count for the application to obtain a value for CM. Determining IM is done in the

same way as with the CM experiments: create a list of all the methods that depend

on the selected methods, and divide the cardinality of that set by the total number of

methods. Again, this process is repeated with each application 100 times and aver

ages are taken across the entire set of applications. The results of these experiments

is shown in Table 5.4 and in the relational graph in Figure 5.8.

DM
1
3
5
8
10
15
20
25
30
40
50

A v g C M

3.832716607

10.1469635

15.5584664

22.99474106

27.51159472

37.28791439

45.57440559

52.70482176

58.90850723
69.18450124

77.26781461

C M Stdev

1.7017775

2.933153305

3.818518868

4.773549104

5.278015573

6.112093846

6.422309984

6.344153587

6.185517718

5.442527016

4.541087096

AvglM

24.3326265

37.56468931

45.08329871

53.55044246

57.58744717

65.36621922

70.98016092

75.3477145

78.81473336
84.33309662

88.43235722

I M Stdev

14.47211476

13.5861479

12.65929859

11.38571487

10.53378214

9.202003927

7.904978058

6.98743319

6.170869353

4.809262674

3.73653719

Table 5.4: Experimental results of DM tests.

From this information we can develop general equations for IM and CM based

on the value of DM; these formulae are given in Equation 5.10 and Equation 5.11,

respectively, with R2 values of 0.990 and 0.993, where DM must be greater than

zero. Equation 5.10 models a logarithmic sequence, while Equation 5.11 is a power

trend3. The reader will note that values produced from these equations are not in-
3 While divergent at high values of CM, the best-fit logarithmic approximation provided a signif-

67

Figure 5.8: IM and CM values for given values of DM.

terchangeable: A DM calculated from Equation 5.9 cannot be then entered into

Equation 5.11 to produce the original CM value. These sets of equations are meant

to be used in different circumstances based on the style of change to be made to

the project code. If seemingly random and independent lines of code are to be

changed, as is common with simple bug fixes and many small maintenance activ

ities, the formulae in Section 5.4.1 should be used. If the maintenance is more

targeted to specific methods or classes, such as rewrites of sections of code, then

the formulae in this section should be used. In this way the maintenance activi

ties mirror the tests performed: in the first method maintenance is performed on a

per-SLOC basis, whereas in the second method it is performed on a per-method (or

larger) basis. Intuitively, this division is correct: many one-line changes will affect

a larger percentage of methods than SLOCS, but changes that change entire meth

ods or classes, and will occur with a greater probability in the methods containing

the most SLOCs, will alter more SLOCs than methods.

IM = 16.98ln{DM) + 20.23 (5.10)

CM = 4.331(£>M)a769 (5.11)

icant decrease in accuracy, with R2 — 0.907.

68

5.5 Summary

In this section I establish the ROMAN framework, which is composed of five main

stages. These stages, when applied to a set of alternative projects to undertake, will

allow a decision maker to choose the most valuable development direction. The first

step in the framework is to estimate the basic NPV of the various possible projects.

This NPV does not include the value of flexibility, but will provide a foundation for

the complex valuation process. The second stage creates a model of the uncertainty

attributable to a project using a decision lattice. This lattice shows the expected

outcomes of positive or negative influences on the value of the project over time.

Flexibility is introduced in step three, where the valuator is prompted to consider

sources of flexibility, such as the ability to expand, contract, abandon, or delay in

vestment in a project. These are modelled as real options. Step four also deals with

flexibility translated to real options, but from a lower-level perspective. Flexibil

ity exists through the ability to alter a modular project, such as a service, through

the use of Baldwin and Clark's six modular operators: splitting, substituting, aug

menting, excluding, inverting, and porting. These operators allow for options to be

created for each module and the project as a whole. The final stage of ROMAN,

step five, places a value on the collection of options that has been selected for use in

the project. Combined with the original NPV value, this stage will produce a value

for the project that includes flexibility; this value can then be compared with those

of the other alternative projects, and those with the greatest values can be chosen

for development.

I also develop RomanDSS, the decision support system, which implements the

calculations involved in the ROMAN framework and assists an interested party in

the decision making process. RomanDSS also allows for probabilistic inputs, which

causes the system to perform Monte Carlo simulation to produce an expected value

for the project, as well as variance and other distribution statistics.

In an effort to expedite estimation, though at the cost of accuracy, I also investi

gate default maintenance parameters that can be used in the COCOMOII estimation

aspect of the framework. Based on previous work stating an average of CM = 5%

69

per year I determined default values of DM = 23.5% and IM = 73.6%. Ag

gressive maintenance, which would lead to CM = 10%, results in defaults of

DM = 37.1% and IM = 82.6%. I also experiment with a range of CM val

ues to determine their corresponding DM and IM counterparts for SLOC-targeted

maintenance, and a range of DM values to determine their related CM and IM

values for method- or class-targeted maintenance. Through these experiments I am

able to determine a general formula for these inputs given the type of maintenance

being undertaken.

70

Chapter 6

Conclusions

6.1 Summary

This work examines the problem of estimating the comparative expected value of

alternative service-oriented applications, such as web services, based on the flexi

bility present in modular systems. Chapter 1 presents the problem, including moti

vation as to why it is important. It also gives a brief overview of the methodology

I take to approach the problem. Chapter 2 provides a discussion of models for es

timating software development cost, as well as the details of COCOMO 11.2000,

which I employ in this work. Chapter 3 handles the other half of the valuation

problem: that of estimating net value for a project. This includes an introduction to

real option theory—modelling available real-world choices after financial options

to calculate their value—that I use in this work to place a value on flexibility af

forded by modular service design. Chapter 4 discusses previous work in the area of

software project valuation and presents other studies that utilise real option theory

for valuing flexibility.

In Chapter 51 develop the ROMAN framework, which is a structured valuation

framework for estimating the net value of a project. ROMAN performs a tradi

tional NPV estimation on the potential project, taking into account the volatility of

expected cash flows, and then compliments this information with the value of flexi

bility. This is done by identifying areas of flexibility in the overall project, which is

then combined with areas of flexibility created by the modular design specific to the

system. To standardise the process of analysing modular flexibility, I incorporate

71

Baldwin and Clark's set of modular operators, which can be combined to produce

any change to a system. Because of this attribute, these operators can be analysed

to determine all areas of possible change to the system as well. The expected values

for projects estimated by this framework can be compared to one another to assist

in the choice of which project to develop from a given set of projects; this action

will help maximize the return on investment of service development.

My current work in this area involves creating a decision support system, Ro-

manDSS, to assist individuals who desire to use this framework for project valua

tion, which I discuss in Section 5.3. Using the DSS for the framework evaluation

produces numerous benefits, including the ability to easily model 'what-if' scenar

ios, where a subset of the parameters are improved to the detriment of others. It

also allows for inputs to be probability distributions, instead of simple averages.

In this case, Monte Carlo simulation is used to determine the resulting distribution

of the expected project value. This allows for uncertain input information to be

modelled more accurately, and as a result the variance of future cash flows can be

estimated. Another benefit of using the DSS is automated development effort calcu

lations, performed by incorporating the COCOMO II effort estimation model into

the system. This can be used to predict both development and maintenance effort,

reported as the time required to perform a change, based on the quantity of requisite

changes to the codebase. As gathering input parameters for a COCOMO II calcula

tion can be a time consuming process, in Section 5.41 perform a study to determine

defaults for three main inputs associated with the maintenance calculation: the per

centage of code modified (CM), the percentage of design modified (DM), and the

retest impact of a set of changes (IM). Under normal maintenance conditions these

values are CM = 5%, DM = 23.5%, and IM = 73.6%. In an agressive maine-

nance environment these defaults increase to CM = 10%, DM = 37.1%, and

IM = 82.6%.

Overall, the main contributions of this thesis are threefold:

1. The first and foremost contribution is the development of the ROMAN project

valuation framework, which includes associating modular design operators

with commonly accepted real options for valuation purposes. The framework

72

presents valuation techniques in a structured approach, allowing for unifor

mity of project assessment for comparison purposes between alternative pro

posed projects. This allows interested parties to choose which from a set of

possible services to develop by determining the project(s) that will provide

the greatest NPV, including indirect value created from areas of flexibility

within the project.

2. Secondly, I introduce RomanDSS, a decision support system for performing

the steps involved in the framework, thus reducing the amount of calculation

effort required on the part of the valuator. To accommodate uncertainty in

the estimation environment, RomanDSS also allows for probabilistic inputs.

RomanDSS handles these inputs by performing Monte Carlo simulation, pro

ducing a probability distribution for the resulting net value estimation. This

flexibility allows the ROMAN framework to be used in situations with inex

act parameters, providing an earlier opportunity for determining rough value

estimates.

3. Thirdly, in a further effort to expedite the estimation process, I study default

values for maintenance input parameters in the COCOMO II model. While

the primary use of these parameters is their incorporation into RomanDSS, I

also developed formulae for calculating the maintenance inputs for two con

trasting types of maintenance activities. Having access to default parameters

for maintenance cost estimations allows the valuation process to be applied

in a more rapid manner, permitting more timely decisions regarding the de

velopment of a service.

6.2 Future Work

In the long term, future work needs to be performed to verify the value of real op

tion valuation on software projects through real-world studies. The reason that I

promote the comparison of projects through the framework instead of individual

service valuation is that real option theory has not been extensively tested on soft

ware projects. Until this changes, I believe that estimated values can be used for

73

decision purposes, but not taken as precise expected values for individual projects.

This situation needs to be rectified through studies of the real option value related

to real software projects: those developed with the goal of producing profit, not

merely in an academic setting. This will likely not be a simple task; it has been

my finding that the data required to perform large real-world experiments is not

generally publicly available.

I have adopted COCOMO II as the software-development cost model because

it is designed to account for evolutionary software development. However, it is

clear that the model will have to be extended in order to represent the particular id

iosyncrasies of the service-oriented development paradigm. As it is, COCOMO II

estimates the cost of adapting source code; however, SOA development also in

volves developing and adapting declarative composition specifications, which may

be a fundamentally different process. Specifically, research into the cost of creat

ing a service composition is required. Other cost models, including those based

on COCOMO, need to be further examined for usability. The main impediment to

this area of future work is the immaturity of cost models that would be more suited

to this research, such as COSOSIMO and CORADMO; as applicable models are

developed and matured, work needs to be performed to compare their usefulness in

this type of research against COCOMO II.

On the topic of COCOMO II, I would also like to repeat the default maintenance

parameter study with a much larger dataset in order to verify the values determined

herein. While the resulting values lend themselves to a formulaic representation

with quite high accuracy, a test repeated with more data may yield different results.

Experiments to verify Wiederhold's CM declarations should also be performed to

ensure precision.

The final area of future work relates to RomanDSS, as certain improvements

would increase its usability and ostensible net value. The work flow needs to be

optimised and made more user-friendly, more assistance should be given to the

user when selecting real options, and experiments to determine the sensitivity of

the final value estimate to various input parameters should be performed in order

to gain the most information from the process. RomanDSS would also be more

74

useful if it contained more extensive support for modelling architectural operators

as real options, allowing for a more concrete alignment of business process changes

to an option representation. However, as with many software research projects,

improvements can be made ad nauseam with little return on invested effort, even

accounting for the value of future flexibility.

75

Bibliography

[1] Chris Abts, Barry Boehm, and Elizabeth Bailey Clark. Cocots: A cots soft
ware integration lifecycle cost model - model overview and preliminary data
collection findings. Technical Report USC-CSE-2000-501, Center for Soft
ware Engineering, University of Southern California, March 2000.

[2] United States Central Intelligence Agency. The World Factbook 2007. Central
Intelligence Agency, Office of Public Affairs, August 2007.

[3] K.K. Aggarwal, Yogesh Singh, Pravin Chandra, and ManimalaPuri. Bayesian
regularization in a neural network model to estimate lines of code using func
tion points. Journal of Computer Sciences, l(4):504-508, 2005.

[4] A.J. Albrecht and J.R. Gaffney. Software function, source lines of code and
development effort prediction: a software science validation. IEEE Trans.
Software Engineering, 9(6):639-648, 1983.

[5] Alan J. Albrecht and Jr. John E. Gaffney. Software function, source lines of
code and envelopment effort prediction: a software science validation, pages
137-154,1993.

[6] Giuliano Antoniol, F. Calzolari, L. Cristoforetti, Roberto Fiutem, and Gian-
luigi Caldiera. Adapting function points to object-oriented information sys
tems. In CAiSE '98: Proceedings of the 10th International Conference on Ad
vanced Information Systems Engineering, pages 59-76, London, UK, 1998.
Springer-Verlag.

[7] Phillip G. Armour. Beware of counting loc. Commun. ACM, 47(3):21-24,
2004.

[8] Jayatirtha Asundi, Rick Kazman, and Mark Klein. Using economic con
siderations to choose among architecture design alternatives. Technical Re
port CMU/SEI-2001-TR-035, Software Engineering Institute, Carnegie Mel
lon University, December 2001.

[9] Rami Bahsoon and Wolfgang Emmerich. Archoptions: A real options-based
model for predicting the stability of software architecture. In Proceedings
of the Fifth ICSE Workshop on Economics-Driven Software Engineering Re
search, 2003.

[10] Rami Bahsoon and Wolfgang Emmerich. Applying archoptions to value
the payoff of refactoring. In Proceedings of the Sixth ICSE Workshop on
Economics-Driven Software Engineering Research, pages 66-70, 2004.

[11] Rami K. Bahsoon. Evaluating Architectural Stabilty with Real Options The
ory. PhD thesis, University College London, October 2005.

76

[12] Sushil Krishna Bajracharya, Trung Chi Ngo, and Cristina Videira Lopes. On
using net options value as a value based design framework. SIGSOFT Softw.
Eng. Notes (EDSER), 30(4): 1-3, 2005.

[13] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity
Volume 1. MIT Press, Cambridge, MA, USA, 1999.

[14] Carliss Y. Baldwin and Kim B. Clark. Advancing Knowledge and the Knowl
edge Economy, chapter Between "Knowledge" and "The Economy": Notes
on the Scientific Study of Designs, pages 299-328. MIT Press, 2006.

[15] Michel Benaroch. Managing information technology investment risk: A real
options perspective. Journal of Management Information Systems, 19(2):43-
84, Fall 2002.

[16] Michel Benaroch and Robert Kauffman. Justifying electronic banking net
work expansion using real options analysis. MIS Quarterly, 24:197-225,
2000.

[17] Fischer Black and Myron S. Scholes. The pricing of options and corporate
liabilities. Journal of Political Economy, 81(3):637-54, May-June 1973.

[18] Barry Boehm. Software Engineering Economics. Prentice Hall PTR, October
1981.

[19] Barry Boehm. COCOMOIIModel Definition Manual. University of Southern
California, 2000.

[20] Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K.
Clark Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert Steece. Software
Cost Estimation with COCOMO II. Prentice Hall PTR, 2000.

[21] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy,
and Richard Selby. Cost models for future software life cycle processes: Co-
como 2.0. Annals of Software Engineering, 1(1):57—94, December 1995.

[22] David W. Cearley, Jackie Fenn, and Daryl C. Plummer. Gart
ner's positions on the five hottest it topics and trends in 2005.
http://www.gartner.com/DisplayDocument?doc_cd=125868, 2005. Last ac
cessed on Jan. 21 s t , 2008.

[23] Computer Associates International. Ca-estimacs.
http://www.ca.com/products/estimacs.htm. Last accessed on May 21 s t ,
2006.

[24] John C. Cox, Stephen A. Ross, and Mark Rubinstein. Option pricing: A
simplified approach. Journal of Financial Economics, 7(3):229-263, 1979.

[25] Joseph A. Dane. Modular program size counting. Master's thesis, University
of Hawaii, December 1999.

[26] Department of Defence Data and Analysis Center for Soft
ware. Modern empirical cost and schedule estimation tools.
http://www.thedacs.com/techs/estimation/comparison.shtml. Last accessed
on Jan. 21 s i , 2008.

77

http://www.gartner.com/DisplayDocument?doc_cd=125868
http://www.ca.com/products/estimacs.htm
http://www.thedacs.com/techs/estimation/comparison.shtml

[27] Hakan Erdogmus. Comparative evaluation of software development strategies
based on net present value. In ICSE'99 International Workshop on Economics-
Driven Software Engineering Research (EDSER1), May 1999.

[28] Hakan Erdogmus. Valuation of complex options in software development. In
ICSE'99 International Workshop on Economics-Driven Software Engineering
Research (EDSER1), May 1999.

[29] Hakan Erdogmus. Value of commercial software development under technol
ogy risk. The Financier, 7, 2000.

[30] Hakan Erdogmus. Valuation of learning options in software development
under private and market risk. The Engineering Economist, 47(3):304-353,
2002.

[31] Hakan Erdogmus, John Favaro, and Michael Hailing. Value-Based Software
Engineering, chapter Valuation of Software Initiatives Under Uncertainty:
Concepts, Issues, and Techniques, pages 39-66. Springer Berlin Heidelberg,
2006.

[32] Hakan Erdogmus and Jennifer Vandergraaf. Quantitative approaches for as
sessing the value of cots-centric development. In METRICS 99: Proceedings
of the 6th International Symposium on Software Metrics, page 279, Washing
ton, DC, USA, 1999. IEEE Computer Society.

[33] John Favaro. A comparison of approaches to reuse investment analysis.
In ICSR '96: Proceedings of the 4th International Conference on Software
Reuse, page 136, Washington, DC, USA, 1996. IEEE Computer Society.

[34] John M. Favaro, Kenneth R. Favaro, and Paul F. Favaro. Value based software
reuse investment. Annals of Software Engineering, 5:5-52, 1998.

[35] F.R. Freiman and R.E. Park. Price software model-version 3: An overview. In
Proceedings, IEEE/PINY Workshop on Quantitative Software Models, IEEE
Catalog No. TH0067-9, pages 32^4 , October 1979.

[36] Galorath Inc. Seer-galorath estimating center.
http://www.galorath.com/presentjestimat.html. Last accessed on Jan.
21s t, 2008.

[37] Handy Heffner and Larry Fulton. Topic overview: Service-oriented architec
ture. http://www.forrester.com/go?docid=38503, May 2006. Last accessed on
Sept. 23rd, 2007.

[38] Handy Heffner and Larry Fulton. Topic
overview: Service-oriented architecture.
http://www.forrester.eom/Research/Document/Excerpt/0,7211,42528,00.html,
June 2007. Last accessed on Jan. 21 s i , 2008.

[39] Israel Herraiz, Gregorio Robles, and Jesus M. Gonzalez-Barahon. Compari
son between sloes and number of files as size metrics for software evolution
analysis. In CSMR '06: Proceedings of the Conference on Software Main
tenance and Reengineering, pages 206-213, Washington, DC, USA, 2006.
IEEE Computer Society.

[40] John C. Hull. Options, Futures and Other Derivatives. Prentice Hall, June
2005.

78

http://www.galorath.com/presentjestimat.html
http://www.forrester.com/go
http://www.forrester.eom/Research/Document/Excerpt/0

[41] International Function Point Users Group (IFPUG). Function point counting
practices manual 4.2.1, January 2005.

[42] R.W. Jensen. An improved macrolevel software development resource esti
mation model. In Proceedings, ISPA 1983, pages 88-92, April 1983.

[43] C.Jones. Programming productivity. McGraw Hill, 1986.

[44] Caspers Jones. Backfiring: converting lines of code to function points. Com
puter, 28(11):87-88, November 1995.

[45] Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for architecture
evaluation. Technical Report CMU/SEI-2000-TR-004, Software Engineering
Institute, Carnegie Mellon University, August 2000.

[46] Chris F. Kemerer. An empirical validation of software cost estimation models.
Commun. ACM, 30(5):416^129, 1987.

[47] Barbara Kitchenham. The problem with function points. IEEE Sostware,
14(2):29-31,1997.

[48] Jo Ann Lane. Factors influencing system-of-systems architecting and inte
gration costs. Technical Report USC-CSE-2006-614, Software Engineering
Institute, Carnegie Mellon University, September 2006.

[49] Robert M. Leitch. Assessing the maintainability benefits of design restruc
turing using dependency analysis. Technical Report TR03-04, University of
Alberta, Department of Computing Science, December 2002.

[50] Steven A. Lin. The modified internal rate of return and investment criterion.
The Engineering Economist, 21(4):237-247, January 1976.

[51] Graham C. Low and D. Ross Jeffery. Function points in the estimation and
evaluation of the software process. IEEE Transactions on Software Engineer
ing, 16(1):64-71, January 1990.

[52] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown, and
Rebekah Metz. Reference model for service oriented architecture 1.0. Tech
nical report, OASIS, August 2006. Committee Specification 1.

[53] Paul P. Maglio, Savitha Srinivasan, Jeffrey T. Kreulen, and Jim Spohrer.
Service systems, service scientists, ssme, and innovation. Commun. ACM,
49(7):81-85,2006.

[54] J. E. Matson, B. E. Barrett, and J. M. Mellichamp. Software development cost
estimation using function points. IEEE Transactions on Software Engineering,
20(4):275-287, 1994.

[55] McKinsey & Company, Tim Koller, Marc Goedhart, and David Wessels. Val
uation: Measuring and Managing the Value of Companies. John Wiley &
Sons Canada, Ltd., 4th edition, May 2005.

[56] Emilia Mendes. Cost Estimation Techniques for Web Projects. IGI Publishing,
2008.

[57] Robert C. Merton. Theory of rational option pricing. The Bell Journal of
Economics and Management Science, 4(1):141-183, Spring 1973.

79

[58] NationMaster.com. Nationmaster. http://www.nationmaster.com. Last ac
cessed on Jan. 21 s t , 2008.

[59] Ipek Ozkaya, Rick Kazman, and Mark Klein. Quality-attirbute-based eco
nomic valuation of architectural patterns. Technical Report CMU/SEI-2007-
TR-003, Software Engineering Institute, Carnegie Mellon University, May
2007.

[60] Robert E. Park. Software size measurement: A framework for counting source
statements. Technical Report CMU/SEI-92-TR-20, Software Engineering In
stitute, Pittsburgh, PA, 1992.

[61] Ser-Huang Poon and Clive W. J. Granger. Forecasting volatility in financial
markets: A review. Journal of Economic Literature, 41(2):478-539, June
2003.

[62] PRICE Systems LLC. True s and price s: Software development and lifecycle
estimating models, http://www.pricesystems.com/products/true_s_price_s.asp.
Last accessed on May 21s t, 2006.

[63] L.H. Putnam. A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, pages 345-
361, July 1978.

[64] QSM Inc. Slim-estimate, http://www.qsm.com/slim_estimate.html. Last ac
cessed on Jan. 21 s t , 2008.

[65] H.A. Rubin. A comparison of cost estimation tools. In Proceedings, ICSE 8,
pages 174-180, August 1985.

[66] Software Productivity Research. Spr document catalog.
http://www.spr.com/catalog/. Last accessed on Jan. 21 s t , 2008.

[67] Software Productivity Research. Spr knowledgeplan.
http://www.spr.com/products/knowledge.shtm. Last accessed on Jan.
21s t, 2008.

[68] Eleni Stroulia and Robert Leitch. Understanding the economics of refactoring.
In Proceedings of the Fifth ICSE Workshop on Economics-Driven Software
Engineering Research, 2003.

[69] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben Hallen. The
structure and value of modularity in software design. In ESEC/FSE-9: Pro
ceedings of the 8th European software engineering conference, pages 99-108,
New York, NY, USA, 2001. ACM Press.

[70] Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter
Estimation. Society for Industrial and Applied Mathematics, 2005.

[71] Jean Tessier. Dependency finder, http://depfind.sourceforge.net/. Last ac
cessed on Jan. 21 s t , 2008.

[72] University of Southern California - Center for Software Engineering. Code-
count. http://sunset.usc.edu/research/CODECOUNT/. Last accessed on Jan.
21s t, 2008.

80

http://NationMaster.com
http://www.nationmaster.com
http://www.pricesystems.com/products/true_s_price_s.asp
http://www.qsm.com/slim_estimate.html
http://www.spr.com/catalog/
http://www.spr.com/products/knowledge.shtm
http://depfind.sourceforge.net/
http://sunset.usc.edu/research/CODECOUNT/

[73] Bas van der Raadt, Jaap Gordijn, and Eric Yu. Exploring web services from
a business value perspective. In RE '05: Proceedings of the 13th IEEE In
ternational Conference on Requirements Engineering (RE'05), pages 53-62,
Washington, DC, USA, 2005. IEEE Computer Society.

[74] Yi Wen. The business cycle effects of Christmas. Journal of Monetary Eco
nomics, 49:1289-1314, September 2002.

[75] Gio Wiederhold. What are web services worth? http://www-
db.stanford.edu/pub/gio/2005AVebWorthl.pdf, February 2005.

[76] Gio Wiederhold. What is your software worth. Communications of the ACM,
49(9), September 2006.

[77] Rama Yelkur and Maria Manuela Neveda DaCosta. Differential pricing and
segmentation on the internet: the case of hotels. Management Decision,
39(4):252-261,2001.

81

http://www-
http://db.stanford.edu/pub/gio/2005AVebWorthl.pdf

Appendix A

Acronym Reference Guide

Included for convience is a list of expansions of acronyms used in this thesis,

loosely grouped by subject matter.

SOA Related

• BPEL: Business Process Execution Language

• SOA: Service-oriented Architecture

• SOAP: Simple Object Access Protocol1

• UDDI: Universal Description, Discovery, and Integration

• WSDL: Web Service Description Language

• WSIL: Web Service Inspection Language

• XML: extensible Markup Language

Economics

• GDP (OER): Gross Domestic Product (Official Exchange Rates)

• GDP (PPP): Gross Domestic Product (Purchasing Power Parity)

Software Engineering Economics

• ATAM: Architecture Tradeoff Analysis Method

• CBAM: Cost Benefit Analysis Method

• COTS: Commercial Off-The-Shelf (software)

• DEMI: Delivered Executable Machine Instructions

• DSI: Delivered Source Instructions
]With version 1.2 of the SOAP standard SOAP lost its acronym status; the complete name of the

protocol is simply SOAP.

82

• DSM: Design Structure Matrix

• FP: Function Point

• IFPUG: International Function Point Users Group

• KSLOC: Thousands of SLOCs

• SLOC: Source Line of Code

COCOMO Family of Models

• COCOMO: Constructive Cost Model

• COCOTS: Constructive COTS (Commercial Off-The-Shelf) Model

• CORADMO: Constructive Rapid Application Development Model

• COSOSIMO: Constructive System-of-Systems Integration Cost Model

COCOMO Parameters

• CM: Percent of Code Modification

• DM: Percent of Design Modification

• IM: Retest Impact, as a percentage

Value Models

• CDF: Cumulative Distribution Function

• DCF: Discounted Cash Flow

• DSM: Design Structure Matrix

• IRR: Internal Rate of Return

• MIRR: Modified Internal Rate of Return

• NOV: Net Option Value

• NPV: Net Present Value

• NPVI: NPV Incentive

• PI: Profitability Index

ROMAN Framework

• ROMAN: Real Opions-based Modularity ANalysis

• RomanDSS: ROMAN Decision Support System

83

