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Abstract

In this thesis, we study the threshold phenomena in the NK landscape, a com-
binatorial model widely used in the study of genetic algorithms and population
genetic dynamics. We establish two random models for the decision problem
of the NK landscape model, called the uniform probability model and the fixed

ratio model respectively.

The aim of the study is to investigate the hardness of the NK landscape
model in terms of the theory of threshold phenomena and phase transitions.
We show theoretically that the uniform probability model is trivially insoluble
as the problem size tends to infinity. For the fixed ratio model, we establish
two upper bounds of insolubility on the control parameter of the model above
which the problems are asymptotically insoluble with probability 1. We show
that instances with parameters above the upper bounds contain some easy sub-

problems such as 2-SAT, and hence can be solved by polynomial algorithms.

The fixed ratio model is also studied empirically. The experimental results
show that there is a threshold phenomenon in the model and our upper bound
ou the threshold is tight. From the experiments, we also observe that random
instances of the fixed ratio model are also typically easy in the soluble region

and phase transition region.
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Chapter 1

Introduction

Combinatorial search and optimization are fundamental problems in theoreti-
cal computer science. Many practical tasks in Artificial Intelligence(Al), com-
puter architecture design, machine vision, database, and computer networks,
can be formulated as search problems on combinatorial structures. The most
popular and extensively studied combinatorial problems are Boolean Satisfi-
ability(SAT), Graph Coloring(GC), Hamiltonian Cycle(HC), and Constraint
Satisfaction(CSP).

From the perspective of computational complexity, all of these problems(and
many other problems) are known to be in a class of decision problems called
NP-complete problems(NPC), and it is commonly believed that this class
of problems cannot be solved efficiently by any algorithms. However, there
has been much debate about the implications of these NP-complete results.
Researchers from AI and many other fields argue that the pessimistic NP-
complete analysis is irrelevant at least to many classes of practical problems
due to the worst-case-based nature of the analysis, and that what we really
need is an average case study which shows the typical hardness of a class of
problems and predicts for which part of the problem space an algorithm will
perform well.

In recent years, much progress has been made in our understanding of
the nature of the combinatorial search problems and the average/typical per-
formance of the search algorithms. A common approach to the average-case

analysis is to establish a random model for the problem and study the sta-



tistical properties of the instances randomly generated from the model. One
of the most exciting findings is the discovery of the threshold phenomena and
phase transitions that occur in many combinatorial search problems in an al-
gorithmically independent manner. Roughly speaking, a phase transition in
combinatorial search refers to the phenomenon that the probability that a
random instance of the problem has a solution drops abruptly from 1 to 0 as
the order parameter of the random model crosses a critical value called the
threshold. Closely related to this phase transition in solvability is the hardness
of solving the problems. There has been strong empirical evidence and theo-
retical arguments showing that the hardest instances of the problems usually
occur around the threshold and instances generated with parameters far away
from the threshold are relatively easy. The study of threshold phenomena and
phase transitions is emerging as a new research field that attracts the inter-
est of people from theoretical computer science, discrete mathematics, and
statistical mechanics.

The study of threshold phenomena in combinatorial structures can be
traced back to the work of Erdds and Renyi[ERR60]. Since then, it has been
shown that many graph properties such as connectivity, Hamiltonicity, and
colourability exhibit threshold behavior: i.e., the probability of their appear-
ance changes dramatically from 1 to 0 in a very small interval of the parameter
of the random graph model. It has also been proved that some NP-complete
problems such as edge-colouring and Hamiltonian cvcle can be solved in poly-
nomial time with the probability asymptotic to 1 as the problem size tends to
infinity.

Theoretical computer scientists are more interested in the correlation be-
tween problem hardness and the solvability threshold phenomena. Since the
seminal work of Cheeseman et al. [CKT91], many NP-complete combinatorial
search problems have been shown to have an easy-hard-easy pattern of hard-
ness and the hardest instances usually occur around the solvability threshold
[CMI97, FRE96, GEW96, MLE96, MSL92, SMH96]. In the past few years,

researchers have developed theories to explain the occurrence of the easy-
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hard-easy patterns (see, for example, the work of Manasson et al on the Back-
bone and (2+p)-SAT [MOZ96, MOZ97, MZK99a, MZK99b] and Culberson
and Gent’s work on frozen development [CUL99a, CUL99bj). These theories
provide a new way to characterize the nature of the computational complexity
of NP-hard problems. The theories and results in the study of phase tran-
sitions in search have also been used to generate benchmark problems that
can be used to evaluate newly designed algorithms [AGI00], including various
random local search algorithms such as GSAT [SML92], simulated annealling
[KGV83], and genetic algorithms [HOL92].

As a class of random search algorithms inspired by Darwin’s theory of
natural evolution, genetic algorithms gained their popularity in the past two
decades. An important approach to studying genetic algorithms is fitness land-
scape analysis, which has long been used in the field of evolutionary biology
since the work of Wright in 1932 [WRI32]. Roughly speaking, a fitness land-
scape Is an objective function defined on a data structure together with the
neighborhood structure introduced by some operators. The objective function
is usually called the fitness function. Fitness landscape analysis deals with the
interaction between the fitness values under a given neighborhood structure.
This interaction is called the correlation structure (or epistasis).

The NK landscape is a fitness landscape model devised by Kauffman [KAUS9]
in which the “ruggedness” of the landscape can be tuned by changing some
parameters of the correlation structure. In genetic algorithms, the NK land-
scape model has been used as a prototype in the analysis of the performance
of different genetic operators and the effects of different encoding methods
on the algorithm’s performance. It has also been used as benchmark in the
experimental evaluation of various new genetic algorithms.

In this thesis, we analyze the NK landscape model from the perspective of
threshold phenomena and phase transitions. We establish two random models
for the decision problem of NK landscapes and study the threshold phenomena
and the associated hardness of the phase transitions in these two models, theo-

retically and experimentally. The thesis is organized as follows. In Chapter 2,
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basic concepts of random graphs and the propositional satisfiability problem
are introduced. The study of threshold phenomena and phase transitions in
random graphs and propositional satisfiability problem and NK landscapes is
reviewed. In Chapter 3, we first establish two random models for the decision
problem of NK landscapes in section 3.1, and then analyze the threshold phe-
nomenon in one of the random models, the uniform probability model, and
study the performance of several polynomial algorithms for this model in sec-
tlon 3.2. In section 3.3, we establish upper bounds on the threshold of the
second random model, the fixed ratio model, and prove that random instances
generated with the parameters above these upper bounds can be solved poly-
nomially with probability asymptotic to one. In section 3.4, the analyses of
sections 3.2 and 3.3 are generalized to the generalized NK landscape model.
In section 3.5, we report our experimental results on typical hardness of the
fixed ratio model. In Chapter 4, we conclude our investigation and discuss

future research directicns on this topic.



Chapter 2

Preliminaries and Previous

Work

In this chapter, we introduce basic notation in the theory of random graphs,
SAT, and NK landscapes, and review previous work on the phase transition
of the SAT problem and on the analysis of NK landscapes. The phenomena of
the phase transition has been discovered and discussed in several combinatorial
problems such as graph coloring, constraint satisfaction, and SAT. The reason
we choose the phase transition in SAT to review is that the NK landscape

model is closely related to SAT problems.

2.1 Theory of Random Graphs

The study of the theory of random graphs started with Erdés and Renyi’s
seminal work [ERRGO]. After forty years’ development, random graph theorv
has become a mature field and provides lots of powerful theoretical results and

tools for the study of phase transition in combinatorial search.

2.1.1 Random Graphs and Threshold Functions

A random graph is a probability space (G, P) where G is a family of graphs and
P is a probability distribution on G [KAR95]. In the theory of random graphs,
the most widely used random model is the so called binomial random graph

G(n,pe) in which G is the set of all graphs with the same set of vertices V' —

0



{vi---,vn}, and each of the (3) edges is in G(n, p.) with the probability p, and
independent of other edges. The parameter De is called the edge probability-.
Another random graph model closely related to the binomial random graph
G(n, pe) is the uniform random graph G(n, m) in which G is also the set of all
graphs with the same set of vertices V" and the m edges of G(n, m) are selected
without replacement from the ('2‘) edges.

A graph property A is a subset of all the graphs. Examples of interesting
graph properties include connectivity, colorability, and Hamiltonicity. In ran-
dom graph theory, we are concerned with establishing the probability that a
random graph has certain properties and investigating the analytical behavior
of the probability as a function of some control parameters when the size n
of the graph tends to infinity. A class of graph properties that are of great
interest are the monotone properties. A graph property A is said to be increas-
ing(decreasing) if G € A and G is a spanning subgraph(supergraph) of a graph
H implies that H € A. A graph property is called monotone if it is increasing
or decreasing. For example, the property of connectivity is increasing, while
the property of colorability is decreasing.

An important topic in random graph theory is the study of the threshold
phenomena for (monotone) graph properties. L.e., the probability that a ran-

dom graph G(n,p,) has a property changes dramatically from values close to

0 to values close to 1 at a certain critical value of the parameter p,.

Definition 2.1.1. ([KAR95], Section 5) Let A be a monotone graph prop-
erty and assume that the edge probability p. = p.(n) is a function of n .
A function f4 = f(n) is called a threshold function for the property A if
Jim Pr{G(n.p(n)) € A} = 0 when p.(n) = o(f4), and Jim Pr{G(n,pe(n)) €
A} =1 when f4 = o(pe(n))-

In 1986, Bollobds and Thomason [BOTS6] proved the existence of the

threshold function for the monotone graph property.



Theorem 2.1.1. [BOT86] Every non-trivial increasing property A has a

threshold function in G(n, p.).

A recent progress in the study of the threshold phenomena in random
graphs is the work of Friedgut on the sharp threshold [FRI99]. For a mono-
tone graph property, the threshold interval is an interval of the edge proba-
bility in {0, 1] in which the probability that a random graph has the property
changes quickly from O to 1. Roughly speaking, a threshold associated with
a monotone property is sharp if the length of the threshold interval decreases
much faster than the threshold itself does. As a result, for a monotone graph
property with a sharp threshold, the limit probability that a random graph
has the property will be discontinuous as a function of the edge probability.
In [FRI99], Friedgut introduced the concept of the sharp threshold for a graph
property and established a very general sufficient conditional for a threshold
to be sharp. Friedgut also used his sufficient condition to show the existence of
a sharp threshold for the random SAT problem. In his PhD thesis [ACH99b],
Achlioptas used Friedgut’s sufficient condition to show the existence of a sharp
threshold for the k-colorability graph property.

Although the above results are interesting in their own right, they do not
give explicit expressions for the threshold functions. Locating the exact thresh-
olds for various graph properties is still a challenging task and has attracted

much attention.

2.1.2 Thresholds for Specific Graph Properties

Over the years, much work has been done in locating and bounding exact
thresholds for many interesting graph properties, including connectivity, col-
orability, and Hamiltonicity. In the following, we summarize the existing re-
sults in this respect.

Connectivity The threshold for connectivity was first established in [ERR60]

in which the following result was proved:
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Theorem 2.1.2. Let G(n,p.) be the binomial random graph with p.(n) = 4

For any ¢ > 0,

(1). Ifd =1 — ¢, then with probability asymptotic to 1 all connected
components have at most one cycle and O(logn) vertices;

(2). If d = 1+e¢, then with probability asymptotic to I there ezists a unique

connected component with many cycles and (n) vertices.

The above result has a vivid exposition in the framework of evolving graph
processes, which shows how the threshold phenomena in random graphs is
analogous to the phase transition undergone by water and other materials in

the physical world. See [IKAR95] for the details.

Hamiltonicity The existence of the threshold function for Hamiltonicity
was proposed as an open problem by Erdds and Renyi. About 20 years later,
using the methods of rotation and extensions, Komlos and Szemerédi [KOSS83]

were able to prove the following result and settle the open problem:

Theorem 2.1.3. Let G(n, m) be the uniform random graph with m = n(log n+

loglogn + ¢,)/2. Then,

r

0, if ch = —oc,
lim Pr{G(n.m)is Hamiltonian} = ¢ g—e™¢ if ch = c, (2.1.1)
1, if ¢, = oo.
\

Researchers have also come up with polynomial algorithms which solve the
Hamiltonian Cycle problem with probability asymptotic to 1. See [FRM97]
for an overview. The recent work of Vandegriend and Culberson [VCU98]
further shows that the Hamiltonian cycle problem is not as hard as many
people think even in the phase transition region—a surprise to people who
get to know the theory of phase transitions from the work of Cheeseman,

Kanefsky, and Taylor [CKT91]. (The main result of the current thesis is vet



another surprise to people who are enthusiastic in solving NP-hard problem
using genetic algorithms.)

Graph Colorability The graph coloring problem is one of the most impor-
tant problems in graph theory. In random graph theory, the chromatic number
of the random graph G(, n, pe) has been studied for more than 25 years. The
problem of a threshold for colorability property can be stated as follows:
Question Let £ > 2 be a positive integer and G(n, p.(n)) be a random graph

with pe(n) = £ for some positive constant d. Define
di = sup{d| lim Pr{G(n,p.(n)) is k-colorable}}. (2.1.2)

The problem is to determine the exact value of d;. or to bound it from above
( and/or below).

It turns out that the threshold problem for graph colorability is much more
difficult than those for connectivity and Hamiltonicity. We still do not know
the exact value of di except that da = 1. In recent vears, researchers have
come up with many approaches to establish upper and lower bounds for d,.

In his PhD thesis [ACH99b], Achlioptas proved that the threshold for the
k-colorability is sharp for £ > 3 and showed that there exists a function tr(n)

such that for any € > 0, we have

lim Pr{G(n, t_k_(n)——e) is k-colorable} =1 and
R tk(n) + € R
lim Pr{G(n, ————) is k-colorable} = 0.
n—oc

The problem with Achlioptas’s result is that t;(n) depends on n and its explicit
expression remains unknown. Actually, we do not even know if the limit
lim #;(n) exists.
n—oo

In recent vears, researchers have come up with many approaches to estab-
lish upper and lower bounds for di. Erdos and Renyi [ERR60] obtained the
first lower bound d3 > 1 based on the observation that all the connected com-
ponents of G(n, 1=¢) asymptotically have at most one cycle. Luczak [LUC91]
proved d3 > 1.0001 by showing that G(n, ircl’o—l) is 3-colorable. Chvdtal im-
proved the lower bound to d; > 2.88 in [CHVS1]. In 1996, Pittel, et al.

9



[PSW96] obtained a better lower bound ds > 3.35. This lower bound was im-
proved in [ACH99b] to d3 > 3.847 which, to my knowledge, is the best result
so far.

Using the first moment method, the upper bound d; < 5.420 can be
established without much difficulty([ACH99b, CHV91]). Molloy and Reed
in [MOL92] obtained the upper bound d3 < 5.15. The best upper bound
d3 < 5.044 belongs to Achlioptas [ACH99b] and is established by using a gen-
eralized form of the first moment method of Kirousis, et al. [KKK98] which

was developed to upper bound the threshold for SAT problem.

2.1.3 Probability Tools for the Study of Threshold Phe-

nomena

Probability theory provides many powerful tools for the study of threshold
phenomena in graphs and combinatorial search, including various probabilistic
inequalities, martingale methods, and limit theorems. The most fundamental
tools are the first moment method and the second moment method.

The first moment method is based on Markov’s Inequality: For any non-
negative random variable X', we have

E[X]
t

Pr{N >t} < fort > 0. (2.1.3)

The first moment method is typically used to prove the non-existence of a
special pattern in a random structure. For example, let X be the number of
triangles contained in the binomial random graph G(n,p.). Since it is easy
to see that E[XN] = (3)p2 ~ (np.)3/6, we know that G(n, p.) asymptotically
contains no triangle if np, < 1 for sufficient large n. As another example,
consider a 3-SAT formula with the clause-to-variable ratio r = m /n. Letting X
be the number of assignments to the variables that satisfy the 3-SAT formula,

we have E[X] = 27(7/8)™. Therefore, for r > logg/z2 =~ 5.191, the 3-SAT

formula is asymptotically unsatisfiable with probability 1. This is actually the

10



first upper bound for the 3-SAT phase transition in the literature [FRP83].
The following result on the existence of high girth and high chromatic number

illustrates how powerful the first moment method is.

Theorem 2.1.4. (See [MOL98]) For any g,k > 1, there exists graphs with

no cycles of length at most g and with chromatic number greater than k.

This result was first obtained by Erdos [ERD359]. The basic idea is to use
the First Moment method to show that the probability for a random graph to
have a large chromatic number and contain only short cycles is greater than 0.
[t took more than ten years for researchers to come up with a non-probabilistic
construction to prove the above result [LOV68].

A problem with the first moment method is that the bounds obtained
are usually not very tight. To see why this happens, observe that E[X] =
Z Pr{X > k} = Pr{X >0} + Z Pr{X > k}. The first moment method
prox es that Pr{X > 0} tends to zero by showing that E[X] tends to zero.
This works because Pr{X > 0} < E['\’] But it is possible that Pr{X > 0}
itself tends to zero while the term Z Pr{X > k} does not. In [KKK98], a
generalized first moment method is proposed and used to establish a tighter
upper bound for the 3-SAT phase transition. The same approach was also
used in [ACH99b] to obtain a tighter upper bound for the graph coloring
phase transition.

The second moment method is based on Chebyschev’s inequality: For a

random variable X' and positive number ¢,

var(X)

= (2.1.4)

Pr{X - E[X]| 2 t} <

where var(X) = E[(X — E[X])?] is the variance of X.

We usually use the second moment method to prove the existence of a
special kind of pattern in a random structure. This is done by letting X be
the number of the patterns contained in the random structure and showing

that E[X] > 0 and var(X) = o(E[X]).

11



2.2 Phase Transition in SAT

The propositional satisfiability (SAT) problem plays an important role in com-
putational complexity. It was the first problem shown to be NP-complete and
many of the NP-complete proofs of other problems are based on a reduction
from SAT. There are lots of NP-hard problems that can be transformed effi-
ciently to SAT. SAT problems are used as benchmarks in testing the efficiency
of search and optimization algorithms. Random SAT is also one of the NP-
complete problems in which the phenomenon of phase transition is observed
and studied. In this section, we introduce the basic concepts of SAT problems

and review existing results on the SAT phase transition.

2.2.1 Propositional Satisfiability Problem(SAT)

A SAT problem is the problem of determining if there is an assignment of truth
values to the variables of a formula in conjunctive normal form. Through-
out this section, let X = (z,,--- .Zn) be a set of Boolean variables and
L = (z1,%1,--- ,zn,T,) be the set of positive and negative literals on X .
Sometimes, we abuse the notation for the variable z; to represent the positive
literal and &; for the negative literal. Generally, given a literal u in L, we use
@ to denote its negative. The variable underlying the literal u is denoted as
|u|. Two literals u and v are said to be variable-distinct if lul # |vl.

A clause is a disjunction of a set of literals and a formula ¢ is the con-
Jjunction of set of clauses. The size of a clause is the number of literals in it.
A truth assignment is a binary mapping defined on the set of literals L. A
formula is satisfiable if and only if there is a truth assignment such that for
every clause, at least one of the literals is true under the assignment. The
k-SAT problem can be stated as follows: Given a formula @& with the size of
each of its clauses being k, is there a truth assignment that satisfies &?

It is well-known that the k-SAT problem is NP-complete for & > 3, while
the 2-SAT problem is polynomially solvable. Beside the 2-SAT problem, re-

searchers have also identified many classes of k-SAT (k > 3) problems which

12



are polynomially solvable. The details can be found in [FRG98] and the refer-
ences therein. For the general NP-complete k-SAT problem, many algorithms
have been developed. A good survey on the algorithms for SAT problems can

be found in [GUJ96].

2.2.2 Phase Transition in SAT

(1) Random Models for SAT

In the study of the threshold phenomena and phase transition of the SAT
problem, three random models are widely used. They are the constant-density
model, the fixed-length model, and the 2 +p model [FRP83, FRS95a, GEW96,
MLE96, MZK99a, MZK99b, SMH96].

The constant-density model, A/ (n, m, p), has three parameters: the number
of variables n, the number of clauses m, and the probability p. An instance
contains [ clauses, and each clause is generated in such a way that it contains
each of the 2n literals with probability p. It can be seen that the size of clauses
in the constant-density model is random and the average is 2np. The fixed-
length model, A/ (n, m, k), also has three parameters: the number of variables
n, the number of clauses m, and the size of the clauses k. In M(n,m,k), the
m clauses all have the size k and are chosen uniformly, independently and with
replacement among all 2*(}) non-trivial clauses of size k. The 2 + p model,
M{n.m,2+p),0 < p < 1, is introduced by Monasson et al [MZK99a, MZIK99b]
and has attracted lots of attention lately. A (n,m,2 + p) can be viewed as a
mixture of M (n,m,2) and M (n,m,3): pm clauses are chosen from the set of
all clauses of size 3 and (1 — p)m clauses are chosen from the set of all clauses

of size 2.

(2) Early Work on 3 (n,m, p)
The study of the average-case complexity of SAT started with Goldberg’s

controversial thesis [GOL79]. Goldberg claimed that under a random model
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similar to Af(n, m, p), SAT problems can be readily solved on average in O(n?)
time. It is proved by Franco et al. (see [FRS95a]) that in M (n,m,p), “virtu-
ally the entire parameter space is covered by a collection of polynomial time
algorithms that find solutions to random instances with probability tending to
1 as instance size increases”. To put it in another way, this means that Gold-
berg’s O(n?) result was not because he had a good algorithm, but because the
random model used by Goldberg is very unlikely to be able to generate really

hard SAT instances.

(3) Threshold Phenomena in Polynomial Classes

Due to the work of Goerdt [GOE92], Chvatal and Reed [CHR92], and Bollobis
et al. [BBC99], the threshold phenomenon in random 2-SAT M (n,m,2) is well
understood. The phase transition occurs at =1 [CHR92, GOE92], i.e.,

0 if%>1

lim Pr{df(n,m,2) is satisfiable} = { ’ (2.2.1)
n—oQ

1, if 2 <1

In [BBC99]. the exact finite-size scaling of the M(n,m,2) is determined which
gives us the asymptotic behavior of the random 2-SAT problem inside the
phase transition interval. In [[ST98], the exact scaling behavior of random
Horn formula is derived. In [FRG98], threshold functions are established for
a random k-SAT Af(n,m, k) to be Horn formula(q-Horn formula, matched

formula, or SLUR formula).

(4) Phase Transition in M (n, m, k)

The study of the phase transition in M(n, m, k) provides a real challenge. The
problem is to prove the following conjecture and determine the threshold dy.:
There is a constant dy such that,

0, if &> d,
1, if ® < d.

L. L.l

lim Pr{M(n,m, k) is satisfiable} = {

[FRI99] proves the existence of a function dr(n) that satisfies the above equality

and leaves it as an open question that ‘Does d(n) converge as n tends to
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infinity?’. Based on the empirical study carried out since the early 1990°s
[CMI97, MSL92], it is believed that the threshold dj is around 4.20.

The first upper bound d3 < 5.191 for the threshold of the random 3-SAT
M(n,m,3) is obtained by Franco and Paul [FRP83]. In [BFU93], Franco and
Paul’s upper bound is improved to d; < 5.191 — 10~7. New upper bounds
were obtained two years later, independently by El-Maftouhi and Fernandez
de la Vega [MAV95] (d3 < 5.08) and Kamath et al. [KRP95] (ds < 4.758).
It took another two years for Kirousis et al. to come up with a generalized
first moment method and obtain a tighter upper bound d; < 4.601 [KKK9§]
in 1998. This upper bound was then improved to d3 < 4.596 by Janson,
Stamation and Vamvakari [JSV99]. The best upper bound d; < 4.506 belongs
to Dubios, Boufkahad and Mandler [DBMO0].

Lower bounding the threshold for A/ (n, m, k) is even more difficult. Franco
is also the first to obtain a lower bound. In [FRAS4], he showed that for
= < 1, the pure literal heuristic eventually sets all variables with probability
asymptotic to 1, and thus obtained the lower bound d3 > 1. Using the same
approach, Broder, Frieze, and Upfal [BFU93] improved the lower bound to
d3 > 1.63. By introducing two new heuristics and analyzing their probabilities
of success on M (n,m, 3), Frieze and Suen [FSS96] proved that d3 > 3.003. The
best lower bound belongs to Achlioptas [ACH99a], who proved that ds > 3.145

by an improvement to the heuristics of Frieze and Suen [FSS96].

(5) The (2 + p) Model A (n,m,2 +p) The 2 + p model was introduced
by Monasson et al. [MZK99a, MZK99b] in an effort to understand the differ-
ence between the phase transition in 2-SAT (polynomial problem) and 3-SAT
(NP-complete problem). In a series of papers, Monasson et al. studied the
threshold phenomenon of random SAT problem in the framework of statis-
tical mechanics [NIOZ96, MOZ97, MZK99a]. By introducing the concept of
backbone—the subset of variables that are forced to be true/false in a formula,
they were able to come up with a new characterization of the phase transi-

tion behavior in random SAT problems to help understand the relationship
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between satisfiable-to-unsatisfiable phase transitions and the associated easy-
hard-easy patterns. They discovered that at the threshold, the ratio of the
size of the backbone to the problem size n changes continuously for random
2-SAT problems, but discontinuously for random 3-SAT problems. A similar
approach, called frozen development, has also been developed by Culberson
and Gent [CUL99a, CUL99b] in their study on the phase transition of graph
coloring.

In [MZK99a], it is proved that for each 0 < p <1, there is a critical value
7p around which A{(n,rn, 2 + p) undergoes a satisfiable-to-unsatisfiable phase
transition. An even more interesting thing to consider is the critical value De
such that A (n, m, 2 + p) behaves like a random 2-SAT for p < D¢, and like a
3-SAT for p > p.. This critical value can be defined as [ACH99b]:

pc = sup{p: lim Pr{M(n,An/(1 —p),2 +p) is satisfiable} = 1, VA < 1}.

In [MZK99a], a lower bound P = 0.4 was established based on statistical
mechanics method and a numerical upper bound Pe < 4.1 was observed. In
[ACH99b], Achlioptas found a theoretical upper bound p. < 0.695. Achilioptas
also conjectured that p. = 0.4(!) and provided a detailed discussion about the
reasonableness of his conjecture [ACH99b]. It is hoped that studies along this
line will shed light on the difference between P problems and NP-complete

problems. and help us tackle the famous conjecture P # N P.

2.3 Analysis of NK Landscape

The notion of fitness landscape was first introduced by Wright in 1932 [WRI32],
and since then has been used as a metaphor in the analysis of population ge-
netic dynamics. Biological organisms can be viewed by their genotype, which
is the genetic encoding of the organisms, and by their phenotype which rep-
resents the actual form and behavior of the organisms. For each phenotype,
there is an associated fitness value which abstracts the phenotype’s ability to

survive and reproduce. The evolution and dynamics of a population can thus
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be viewed as a process that searches the landscape of fitness in order to find
phenotypes with higher fitness values. A fitness landscape characterizes the
interactions between genes and its effects on the overall fitness of a population.
An interesting kind of interaction between genes is called epistasis, where the
effect on fitness from altering one gene depends on the state of other genes.

In the combinatorial search and function optimization perspective, a fitness
landscape can be viewed as an objective function defined on binary strings
where the function values and variables have a specific correlation structure.
Over the last two decades, the idea of fitness landscape analysis has been used
as a prototype in the study of classes of search and optimization algorithms
that are motivated from nature. Examples of such algorithms are simulated
annealing [KGV83] and genetic algorithms [HOL92].

The NK landscape is a fitness landscape model, devised by Kauffman
[KAUS9], in which the “ruggedness” of the landscape can be tuned by chang-
ing some control parameters. NK landscapes have been used as a prototype
and benchmark in the theoretical and empirical study of genetic algorithms.

Before discussing previous work on the analysis of NK landscapes in genetic

algorithms, let us first establish the formal definition of the NK landscape.

Definition 2.3.1. An NK landscape f is a real-valued function defined on

binary string of fixed length,

flz) = _Zfi(xiz II(z;)),

where n > 0 is a positive integer and z = (z,- - .Z,) € {0,1}". The NK
landscape f is the sum of n local fitness functions filzi, I(z3)), 1 <7 < n.
Each local fitness function fi(z;, II1(z;)) depends on its main variable z; and
its neighborhood II(z;) C {z1,---,zn}\{z:}. The main parameters of a NK

landscape are n, the number of variables, and the size of the neighborhood

k= |(z:)].

17



In an NK landscape, the neighborhood I1(z;) can be chosen in two different
ways: the adjacent neighborlood, where k variables with indices nearest to i
(modulo n) are chosen, and the random neighborhood, where the k variables
are randomly chosen from thee set {zj,---,z,}\{z;:}. Once the variables in
the neighborhood are determ.ined, the local fitness function fi 1s determined
by a fitness lookup table which specifies the function value fi for each of
the 2¥*! possible assignments to the variables z; and [I(z;). Usually, the
function values f;(s),s € {0, 1}¥*! are obtained by independently sampling
some probability distributions such as the uniform distribution on [0, 1] and
the Bernoulli distribution on {0,1}. See [ALT96] for a detailed discussion on
the fitness lookup table.

NK landscapes have been studied from the perspectives of statistics and
computational complexity. In the rest of this section, we discuss previous work
on the analysis of the NK landscape as an optimization model.

The statistical analysis of the NK landscape characterizes the NK land-
scape in terms of the distribuition of the local optima, the average distance
between these local optima, amd the way in which function values at different
points correlate with each other.

It should be noted that these characteristics depend on how the topological
structure of the space {0.1}" is defined. In the point of view of local search
algorithms, this means that thee characteristics of an NK landscape depend on
how the search algorithms generate new solutions and move in the search space.
As an example, consider the point mutation and crossover operators used in
genetic algorithms. The point mutation operator generates a new solution by
flipping a randomly chosen bit in the solution’s binary representation, and thus
views the space {0,1}" with the topology defined by the Hamming distance
(the number of different bits of two binary strings). On the other hand, the
crossover operator generates mew solutions by exchanging segments of two
binary strings which defines a totally different topology in the search space.
We refer the readers to the work [JON95, CULY6] for detailed discussions.

Most of the theoretical analyses of the NK landscape are conducted on the
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topology induced by the point mutation [ALT96, WEI90, WEI91, WEI96].
The typical approach to analyzing the NK landscape under point mutation
topology is to study the statistical characteristics of a random walk on the
space {0,1}".

Let {z(i).¢ > 1} be the random walk on {0,1}" and y(i) = f(z()).
Then {y(i).,7 > 1} defines a time series on {0,1}". In his series of work
[WEI90, WEI91, WEI96], Weinberger introduces the auto-correlation func-
tion and the correlation length of the time series {y(z),7 > 1} as the measures
of the correlation structure of the NK landscape. Weinberger’s work gives us
a clear picture about the correlation structures of the NK landscape under
the Hamming topology. For & = 0, each local fitness function only depends
on the main variables and the NK landscape has one global optimum which
can be found in the expected n/2 steps by hill-climbing algorithms under the
Hamming topology. For k¥ = n — 1, each local fitness function depends on
all the n variables and the overall fitness values are statistically independent.
This makes the NK landscape have many local optimum each of which has a
small basin of attraction.

Weinberger’s approach has also been used to examine the fitness landscapes
under the topologies such as those generated by crossover operators [MDS91].
In [HOR97]. Hordijk developed a complete time-series analysis on the fitness
time series {y(¢),7 > 1} in which the fitness time series is fitted to some well-
known time series models such as the auto-regressive moving average(ARMNA)
model. The obtained model can then be used to make predictions or perform
simulations. In his PhD thesis [JON95], Jones established a generalized fitness
landscape model with which the algorithmic and statistical characteristics of
the fitness landscapes can be studied under different topologies induced by op-
erators in genetic algorithms. By using an algorithm called reverse hillclimbing
and the proposed fitness landscape model, Jones examined the properties of
different NK landscapes such as the number of peaks, the sizes of the basins
of attraction, and the lengths of paths to discover peaks.

The computational complexity of the NK landscapes has also been inves-

19



tigated. In [WEI96], it is shown that NK landscape models with the adjacent
neighborhood are polynomially solvable, while NK landscapes with the ran-
dom neighborhood are NP complete for £ > 3. The computational complexity
of NK landscapes are further studied by Wright et al. In [WTZ99] which sum-
marizes their research since 1995, Wright et al. show that the NK landscape
with random neighborhood is NP-complete for £ > 2 and polynomial solvable
for & = 1. Besides the above theoretical studies, NK landscapes have been
extensively used as a benchmark in the experimental investigation of the per-
formance of genetic algorithms [EIB96, JON95, POT98]. In a certain sense, a
class of widely used testing functions called deceptive functions in the genetic
algorithms [WHIQ1] can be viewed as variations of the NK landscape model.

These NP-complete results bring up an interesting question with regard to
the difference between NK landscapes with random neighborhood and adjacent
neighborhood: Since NK landscapes with these two neighborhood structures
are statistically similar [KAU93, WEI96], what is the real difference between
the class of NP-complete NK landscapes and the class of polynomial NK land-
scapes? This thesis tries to answer this question by analyzing the threshold

phenomena of different random models of NK landscapes.



Chapter 3

Threshold Phenomena in NK
Landscapes

In this chapter, we study the threshold phenomena in NK landscapes. In
section 3.1, we establish two random models for the decision problem of NK
landscapes, called the uniform probability model and the fixed ratio model.
In sections 3.2-3.4, we study the threshold phenomena and phase transitions
under these two random models theoretically and empirically. It is proved
that the phase transition of the uniform probability model is easy in the sense
that there is a polynomial algorithm that can solve a random instance of the
problem with the probability asymptotic to 1 as the problem size tends to
infinity. For the fixed ratio model, we establish several upper bounds for the
solvability threshold, and prove that random instances with parameters above
these upper bounds can be solved linearly or polynomially. This, together with
our empirical study for random instances generated below and in the phase
transition region, suggests that the phase transition of the fixed ratio model

is also easy.

3.1 Random Models for NK Landscapes

‘Throughout this chapter, we consider the NK landscape model

f@) =3 fien 0@, o= (- ,2.) € {0,1}" (3.1.1)



with the size of the neighborhood k = |II(z;)|. As NK landscape problems
with adjacent neighborhoods are in the class P [WEI96], we will concentrate
on NK landscapes with random neighborhoods. To simplify the discussion, we
further assume that the local fitness functions take on binary values, i.e., for

each 1 <7 < n, we have f;i(z;,II(z;)) € {0,1},vz € {0,1}".

Definition 3.1.1. Let f; = fi(z:,II(z;)) be the local fitness function for the
variable r;. For each assignment (z;,[I(z;)) € {0,1}**!, f(z;,II(z;)) is a
Bernoulli random variable. The fitness distribution of the NK landscape model
is the joint probability distribution Pf on {0,1}**! of the 2*¥*l-dimensional

Bernoulli random vector { fi(z;, II(z;)), (z:, [I(z;)) € {0, 1}*+1}.

Remark 3.1.1. Tt is possible to study NK landscape models in which different
local fitness functions have different fitness distributions. But as a common
practice in the study of NK landscape models, we assume throughout this
chapter that all the local fitness functions have the same fitness distribution.
We therefore use the notation Py in the above definition to indicate that all

the local fitness functions have the same fitness distribution.

Definition 3.1.2. The decision problem of an NK Landscape model with

random adjacent neighborhoods
f(z) = Zfi(a:i: I(z;))
i=1

is defined as: Is the optimum of f(z) equal to n? An NK landscape decision

problem is insoluble if there is no solution for it.

[t has been proved in [THO95, WEI96, WTZ99] that the decision problem
of the NK landscape model is NP complete for k£ > 2. The proofs were based
on a reduction from SAT to the decision problem of NK landscapes. To study
the typical hardness of the NK landscape decision problems in the framework

of thresholds and phase transitions, we introduce two random models that have
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different fitness distributions. In both of the models defined below, the neigh-
borhood set II(z;) of a variable z; is selected by randomly choosing without

replacement & = |II(x;)| variables from z\{z;}.

Definition 3.1.3. (The Uniform Probability Model N'(n, k, p)) In this model,
the fitness value of the local fitness function f;(z;, II(z;)) is determined as fol-
lows: For each assignment y € Dom(f;) = {0,1}**1, let fi(y) = 0 with the
probability p and f;(y) = 1 with the probability 1 — p, and this is done for

each possible assignment and each local fitness function independently.

Remark 3.1.2. In the uniform probability model, the fitness values fily),y €
{0,1}**! are assigned independently. Thus, the fitness distribution Ps is an
independent 2¥*!.dimensional Bernoulli distribution. It follows that each local

fitness function has on average 2%*!p zeroes.

Definition 3.1.4. (The Fixed Ratio Model N(n,k,z)) In this model, the
parameter z takes on values from [0,2%*!]. If > is an integer, we specify the
local fitness function f;(z;, II(z;)) by randomly choosing without replacement
= tuples of possible assignments ¥ = (y;,--- ,y.) from Dom(f;) = {0, 1}*+,

and defining the local fitness function as follows:

0, if yeVY;
fily) =
1, otherwise.
For a non-integer z = (1 — a)[z] + afz + 1], we choose randomly without

replacement [(1 —a)n] local fitness functions and determine their fitness values
according to N(n, k, [z]). The rest of the local fitness functions are determined

according to N(n, k,[z] + 1).

Remark 3.1.3. In the fixed ratio model, the 2¥*i.dimensional Bernoulli ran-

dom vector {f;(z;, [1(z;)), (z:, I1(z;)) € {0,1}**1} is not independent. For an
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integer z, the joint distribution of this Bernoulli random vector is a uniform

distribution in the space

ok+1

{(re1<i< 2y e {0,137 . > =2}

i=1
There are exactly [an] local fitness functions which have [z] + 1 randomly
assigned zero values and n—[an] local fitness functions which have [z] randomly

assigned zero values.

We conclude this section by establishing a relation between the decision
problem of NK landscapes and the SAT problem. A decision problem of the

NK landscape
flx)=>" filzi, O(z)),
i=1

“is the optimum of f(z) equal or greater than n?”, can be reduced to a (k+1)-
SAT problem as follows:

(1) For each local fitness function f;(z;, [I(x;)), construct a conjunction
C; = /:\ Cij of clauses with exactly k& + 1 variable-distinct literals from the set
of varJi;LIes {z:, I1(x;)}, where z is the number of zero values that fi takes and
C7 is such that for any assignment y; € {0,1}**! that falsifies C7, we have
fily;) =0.

(2) The (k+1)-SAT is the conjunction ¢ = /n\ C;.
Table 3.1 shows an example of the fitness assignlr?llent of a local fitness function
fi = fi(z.y, z) and its associated equivalent 3-SAT clauses. It is easy to see

that for any assignment s to the variables z, v, z, fi(s) = 1if and only if the

assignment satisfies the formula
TVyVz, VYV ZI, TIVYVI, TVYV z.

Let ﬁ(n,?,p) and I\Y(n.Q.z) denote respectively the random SAT prob-
lems derived from the NK models N(n,2,p) and N(n,?2, z). We have
(1)An instance of ﬁ(n 2,p) is a sample from the probability space ([] C;, [T B).
=1 i—1

where C; = U L;(%1,72) with L;(i1,72) being the set of all size-2 clauses with

1,12
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z |y | z]| fi| Clauses
0j0(0|]0}{zvyVvz
0|01} 1
Oj1]0]1
O|1|1|0|zvyVvz
110101
110|1|0jzZvyvz
1{110|0jzvgVvz
TLj1(1}1

Table 3.1: A local fitness function and its equivalent 3-clauses.

exactly 3 variable-distinct literals from {zi,zi,, 7, }, and P; is a probabil-
ity distribution on C; such that for each CNF set ¢ € Ci,lc|] = z, we have

Py(e) = Lrtom=

G o

(2) Aninstance of Tf(n 2, z) is a sample from the probability space (ITC. T P,

i=1 i—1

where C; = |J L;(i1,i2) with L;(7,,15) being the set of clauses with exactly
i1,

3 variable-distinct literals from {z;, z;,,z;,}, and P is a uniform probability

distribution on C;. Note that |G| = (%) (*;1).

3.2 Analysis of the Uniform Probability Model

In the uniform probability model N(n, k, p), the parameter p determines how
many zero values a local fitness function can take. We are interested in how
the solvability and hardness of the NK landscape decision problem change
as the parameter p increases from 0 to 1. It turns out that for fixed D, the
decision problem is asymptotically trivially insoluble. This is quite similar to
the phenomena in the random models of the constraint satisfaction problem

observed in [AKK97]. For the case that p = p(n) is a function of the problem
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size n, we will derive threshold functions and polynomial algorithms, showing
that the problem is still asymptotically trivial. Let us first look at the case

where the parameter p is fixed.

Theorem 3.2.1. For each fized 0 < p <1 and k, we have
Pr{N(n,k,p)is soluble} < (1 — kaH)",

and hence

lim Pr{N(n,k,p) is soluble} = 0.

n—ooc

Proof: Let A be the event that the random NK decision problem N(n, k,p)
is soluble, and A4; be the event that f;(y) = 0, for each possible assignment

y € {0,1}**!. Then we have 4 C ﬂ Af, where Af denotes the complement of
=1
the set 4;. Since the fitness \alues of the local fitness functions are assigned

independently, we have

Pr{A} < Pr{m_{f} = H(l — Pr{4;})

ok+1 )n

= (1-p

Since 0 < p < 1, it follows that lim Pr{N(n,k,p) is soluble} =0. O
Theorem 3.2.1 implies that under the uniform probability model N(n, &, p),
the decision problem of NK landscapes is almost surely trivial as n tends to
infinity if p and k are fixed. Actually, the simple linear-time algorithm Al in
Table 3.2 will solve the decision problem with probability asymptotic to 1 as

long as p = p(n) does not decrease too fast.

Corollary 3.2.2. Assume that in the random NK landscape model N(n, k, p),
k 1s fized, p = p(n) is a function of n, and lim p(n) exists. We have
n—oc

lim Pr{Algorithm Al succeeds} =1
n—oc

if lim p(n)n?‘Glrl = +oc.
n



Algorithm A1l
Input: An instance of N(n,k,p), f(z) = 3. fi(z:, [1(z:));
i=1

Output: INSOLUBLE (algorithm succeeds), ABORT (algorithm fails)

Foreach1<i<n{
If fi(s) = 0 for each s € {0, 1}*+!
return INSOLUBLE;

}
return ABORT;

Table 3.2: Algorithm Al, a linear time algorithm for the uniform probability

model with fixed p and k.

Proof: From Theorem 3.2.1, we have

lim Pr{Algorithm Al succeeds} = 1-— lirglo Pr{N(n,k,p) is soluble}

n—oC
> 1- lim(1— p(n)zk“)".
n—oc
It is obvious that the right hand side of the above formula tends to 1 if
lim p(n) = pg > 0. For the case lim p(n) = 0, write
n—oc n—oC

ok+1
1 2

. ok+1\ " . ok+i\ okl np(n)
lim (1 — p(n) ) = lim (1 — p(n) )”
n—soc n—0oC

and we have

1
A+ 2k 1
lim (1 - p(n)? 1)”(“)' b= ’ < 1.
n—oo
It follows that N
lim (1 — p(n)2k+l) =0
n—oo

since k is fixed and
limnp(n)*™ = lim(p(n)nFT)*" = too.
n n

This proves the Corollary. a

Now, let us look at the situation where Iimp(n)n?"L_‘ € [0, +00). We first
introduce the concept of a connection graph for the NK landscape model and
some results in the theory of random graphs.
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Deﬁmtlon 3.2.1. The connection graph of an NK landscape instance f(z) =
Z fi(z:, II(z;)) is a graph G = G(V, E) satisfving
(1) Each vertex v € V" corresponds to a local fitness function; and
(2)There is an edge between v;, v; if and only if the corresponding local

fitness functions f;, f; share variables and both of them have at least one zero
value.

Definition 3.2.2. Let f(z) = Z fi(zi, II(z;)) be an NK landscape instance

with the connection graph G = G(I’ E). Let Gy,---,G; be the connected
components of GG. Since the vertices of G correspond to local fitness functions,
we can regard G; as a set of local fitness functions. For each 1 < i < [, define
UiCz=(z,,---,z,) as

U; = {y € z : y appears in the definition of some local fitness functions in Gi}.

It’s easy to see that (Uy,---U;) forms a disjoint partition of the variables
z = (z),--- . Zy,), and that the local fitness functions in G; only depend on the
variables in U;. In fact, we have the following:

Theorem 3.2.3. Let f(z) = Zf,(x, [1(z;)) be an NK landscape instance

with the connection graph G = G(Y/ E). Let Gy,---,G; be the connected
components of G and (Uy,---U;) be the associated disjoint partition of the
vartables x = (z,,--- ,z,). Then, the NK decision problem is soluble if and
only if for each 1 <4 <, there is an assignment s; € {0, 1}Vl to the variables
tn Uy such that for each local fitness function g € G, g(s) = 1.

Proof: The “only if” part of the theorem is obvious. To prove the "if” part,
assume that for each 1 < ¢ <[, there is an assignment s; to the variables in U;
such that g(s;) = 1 for any local fitness function g € G;. Since U;,1 <1 <!
is a disjoint partition of the variables z = (z;,---,z,) and the local fitness
functions in G; only depend on the variables in Ui, by combining s;,1 < i < [,
we get an assignment to x = (z,,-- -, z,) which is a solution to the NK decision
problem. d

Based on this result, we can design an algorithm A2 as shown in Table
3.3 which splits the NK decision problem into several sub-problems according
to the connected components of the connection graph, and solves these sub-

problems using brute-force search.



Algorithm A2
Input: An instance of ?V(n, k,p), f(z) = > filz:. T(zy));
=1

Output: SOLUBLE/INSOLUBLE(algorithm always succeeds)

1. Find the connected components G;,1 < i <[ of G;
2. Foreach 1 <i<![{
If there is no s € {0, 1}\% such that f(s) =1 for all f € G;
return INSOLUBLE;

t
return SOLUBLE;

Table 3.3: Algorithm A2, an algorithm for the uniform probability model that
splits the problem into sub-problems and solve the sub-problems by brute

force.

Corollary 3.2.4. Algorithm A2 is correct and its time complezity is O(n? +
n % 2M) with Al = max(|U;|,1 < i < 1) being the mazimum size of the subsets
(Ui, 1 < 7 < 1) associated with the connected components of the connection

graph.

Proof. The correctness of Algorithm A2 follows directly from Theorem 3.2.3.
It takes O(n?) time to find the connected components of a graph. Since the
local fitness functions in G; only depend on the set of variables U;, a brute
force search will finish in O(2!Y!) for the connected component G;. The result
then follows from the fact that there are at most n connected components in
a graph of size n. 4

It can be seen that if the maximum size of the connected components

of the connection graph is O(logn), then Algorithm A2 is polynomial. In
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the following, we will show that this is true for the connection graph of the
NK decision problem in the uniform probability model when lign p(n)ni’"l:f €
[0, +o0).

We first give a lemma on the size of the connected components of a random
graph which is well-known in the theory of random graphs (See [KAR93]).
Since it plays an important role in the rest of discussion on the solvability
of the uniform probability model of NK landscapes, we give it a proof for
completeness.

Lemma 3.2.5. Let G(n,p.) be a random graph with the edge probability p.,

m

and m be a positive integer. If lim p,n=-T = 0, then with probability asymp-
n—oo

totic to 1 as n tends to infinity, every connected component of G(n,p.) has the

size less than m.

Proof:  Let Y;, be the number of trees with size m which are contained in
G(n,pe). Since there are m™~? different trees on m vertices and a tree on m

vertices has m — 1 edges, we have

If lim p.n=-T = 0 and m is fixed, we have lim p?~'n™ = 0. Since () <
n—>¢ n—oc

n'™. it is easy to see that lim E[Y] = 0. The lemma follows from Markov’s
inequality. a

By combining Algorithms A1 and A2, we obtain the polynomial algorithm
A in Table 3.4. We now prove that Algorithm A is correct with probability

asymptotic to 1 as n tends to infinity.

Theorem 3.2.6. For any p(n) such that lim p('rz)n?ﬁl‘:1 ecists, Algorithm A is
n—so0
polynomial and successfully solves a random instance of N(n,k,p) with prob-

ability asymptotic to 1 as n tends to infinity.

30



Algorithm A
Input: An instance of N(n, k,p), f(z) = Zfl(r, I(z;));

Output: SOLUBLE/INSOLUBLE (algorithm successes),
ABORT (algorithm fails)

1. Run Algorithm Al on f(z);
If Al returns INSOLUBLE
Return INSOLUBLE;

o

Find the connected components of the connection graph of f;
If the maximum size of the components is greater than 2 + 2

Return ABORT:

3. Run step 2 of Algorithm A2 on f(z) and return the results accordingly-

Table 3.4: Algorithm A, a combination of Algorithms A1 and A2.

Proof: From Corollary 3.2.2 and Corollary 3.2.4, we know that the time com-
plexity of Algorithm A is O(n)+0(n?)+0(n=22+2). If nlgxolcp(n)n?"i*T = +o0,
we know from Corollary 3.2.2 that algorithm A1 will return INSOLUBLE and
hence succeeds with probability asymptotic to 1. It follows that

lim Pr{Algorithm A succeeds}

n—oc

> lim Pr{Algorithm Al succeeds} (3.2.1)

= 1.

- - - - l - .. - -
Consider the situation where lim p(n)n®T = ¢is a finite positive constant.
n

Let M(n, k, p) be the maximum size of the connected components of the con-
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nection graph of N(n, k,p). Since Algorithm A2 always succeeds, we have
lim Pr{Algorithm A succeeds} > lim Pr{M(n.k,p) < 2% +2}.
We complete the proof by showing that
lim Pr{M(n, k) < 2F £ 2} = 1.

Consider the connection graph G = G(V, E) of the random NK landscape
N(n,k,p). G is a random graph and there is an edge between two nodes of
G if and only if the two corresponding local fitness functions share a variable
and both of the local fitness functions take at least one zero as their fitness

value. Therefore, the edge probability of G is

Pe(n) < (1 - %> * (1 -1 —p(n))z"“)z.

Cr1Cry
Since
ChoCE oy _ ChyChiay
ChoiChoy Chiot Choy
_n—k-1n-k-2)(n—k=3)---(n -2k —1)
- n—1 (n—1)(n—-2)---(n—k)

n—k—1 <n—k—2>k
<
- n—1 n-—1

and k is a fixed constant, we have

It follows that
1
petn) =0 ( 3p(n)?)
n
Since lim p(n)n T < +00, we have

2k 42

lim p, *x n2*+1 = Q.
n—00
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It follows from Lemma 3.2.5 that the maximum size of the connected compo-
nents of the random graph G = G(n,p.(n)) is less than 2* +2 with probability

asymptotic to 1. This completes the proof. a

3.3 Thresholds of the Fixed Ratio Model

As has been discussed in the previous section, the uniform probability model
N(n,k,p) of NK landscapes is asymptotically trivial. This is largely due to
the fact that if the parameter p does not decrease very quickly with 7, then
asymptotically there will be at least one local fitness function that takes the
value 0 for all the possible assignments, making the whole decision problem
insoluble. In this section, we study the fixed ratio model N(n,k,z). In this
model, we require that each local fitness function has fixed number of zero
values so that the trivially insoluble situation in the uniform probability model
is avoided. We noticed that the same idea has been used in the study of the
flawless CSP [GMP9§].

We will establish several upper bounds on the solvability threshold of the
parameter z, and theoretically prove that random instances generated with
the parameter = above these upper bounds can be solved with probability
asymptotic to 1 by polynomial(even linear) algorithms.

Recall that in the fixed ratio model, we choose the neighborhood struc-
ture for each local fitness in the same way as in the uniform probability model
N(n, k,p). To determine the fitness value for a local fitness function fi, we ran-
domly without replacement select exactly z tuples {s;,--- ,s.} from {0, 1}5+!,
and let fi(s;) =0foreach 1 < j < zand f;(s) = 1 for every other s € {0, 1}++L.

It’s easy to see that the property “There exists an assignment z such that
fz) = Zn: fi(zi, II(z;)) = n” is monotone in the parameter z — the number of

=1
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tuples at which a local fitness function takes zero. It also can be shown that

for two random instances N(n, k, z;) and N(n, k, z5) with z; > z,, we have
Pr{N(n,k, z1)is soluble} < Pr{N(n, k, z)is soluble}.
According to the threshold conjecture, there exists a z. such that

1, if z < z;
lim Pr{N(n,k, z)is soluble} =
nee 0, ifz> z.

The value z. is called the threshold (or critical value) of the corresponding
probability model. An important task in the study of the phase transitions
is to locate the threshold for various random combinatorial problems. See
[ACH99a, FSS96, KKK98] for further references. Throughout this section, we

assume k = 2 in the fixed ratio model N(n,k, z).

3.3.1 A Linear Algorithm for the Case z > 3.0

n
Consider a random instance f = 3 f; of the fxed ratio model N(n,2,z) with
=1

2 =3.0 + £ > 3.0. Without loss of generality, we may write f as

fzzfi=Zfi+Zfi:
=1 =1

en+1
where f; has 4 zeroes in its fitness value assignment for 1 < i < en and 3

zeroes foren +1 < i < n.

Definition 3.3.1. Two local fitness functions f; and f; conflict with each
other if (1) f; and f; have exactly one common variable z and (2)for any

assignment s € {0,1}", we have f;(s) * f;(s) = 0.

Lemma 3.3.1. (1) An instance of NK decision problem is insoluble if there

ezists a pair of conflicting local fitness functions.
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(2) Two local fitness functions conflict with each other only if each of them
have at least 4 zeros as their fitness value.

(3) If two local fitness functions conflict with each other and z is the only
shared variable, then to make both of the local fitness functions take fitness
value I, = has to be forced to take the value 1 by one local fitness function and

0 by the other local fitness function.

Proof: It follows directly from the definition. O

Theorem 3.3.2. For the fired ratio model N(n,2,z) with z = 3.0 + £, we

have

lim Pr{there is a conflicting pair of local fitness functions in N(n,?2, z)} =1.

n—og
And thus, a random instance of N(n,2,z) is insoluble with the probability

asymptotic to 1.

Proof: Let

F=S =S5+ Y f
=1 i=1 1

i=sn+

be a random instance of the fixed ratio model, where f; has 4 zeroes in its
fitness value assignment for 1 <7 < zn, and 3 zeroes for en +1 <7 < n. Let
I;; be the indicator function of the event that f; and fj conflicts with each

other, i.e.,
I 1, if f; and f; conflicts with each other;
ij =
0, else.
and S = 3 [;. We claim that lim Pr{S =0} =0.
1<i,j<en n—oo
By Chebyschev’s inequality, we have

Pr{§ =0} < Pr{|S — E(S)| > E(S)}
Var(S)
~(E(S)?)

(3.3.1)
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Algorithm B1
Input: An instance of N(n,2,z2), f(z) =3 fi(z:, O(z:));
i=1

Output: INSOLUBLE((algorithm succeeds),
ABORT (algorithm fails)

int b[n] = {-1,---,—1}; b[i] = -1(or 0, 1) means the variable z; has not been
forced(has been forced to 0, has been forced to 1)
For each 1 <7< n{
Let z;,. x;,.T;, be the three variables of f;:
foreach 1 <m <3 {
check to see if z;,, is forced to make f; =1
if x,,, is not forced. continue:
else if z;, is forced to a and b[i,,] = ~1 {
blim] = a; continue;
}
else if the forced value of z;,, equals to b[in]{
continue;

}
else return INSOLUBLE;

}
return ABORT;

Table 3.5: Algorithm B, a linear time algorithm for the fixed ratio model with

>3
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Since for each 1 < 7 < en, f; has exactly 4 zeros in its fitness value assignment,
we have that two local fitness function f;, fin1 £14,j < en, conflict with each
other if and only if they have exactly one common variable z such that one of
the following is true: (1) fi(s) = O(or 1), f;(s) = 1(or 0) for all the assignments
s such that r = 1(respectively z = 0); and (2) fi(s) = 1(or 0), f;(s) = 0(or 1)
for all the assignments s such that z = 1(respectively = = 0);

Since the probability that two local fitness functions share a variable is

equal to

we have

Pr‘{I,-jzl}:(l—%g—;—;—)-?(—) =Q(%), >0, 1<1,75<en,

[

and hence,

E(S)= Y  E{y= Y Pr{l;=1}€(n).

1<ij<en 1<i j<en

We now consider the variance of S. Since S= >~ I,;, we have
1<ij<en

Z Var(l;) +2 > [E{Ljlim} — E{I;}E{lim}]

(1.5)#{lm)

Var(S) =
(5) (EQ)
Let X
Z 1 ClT'([ij)
.41 - —*—l,] 2
(E(S))
and
2 > [E{lylim} — E{I;}E{Lin}]
Ay = (i.5)#(lm)
(E(S))?
It is easy to see that lim 4, = 0. To prove lim Ao = 0, we consider two
cases:

Case 1: i # j % m # (. In this case, the two random variables Iij and Iy,

are actually independent. It follows that E{I;I,,} — E{5;j}Pr{l;»} = 0.
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Case 2: (7,7) # (I, m) but they have one in common, say j = [. In this

case, we have

E{lilm} = E{Ij}E{lim} = Pr{ly=1}Pr{ljm=1l; =1} -Q ((l) 2)

n

= 0 (%) Pr{ljm =1|L; =1} = Q (GL) 2)

Given that f; and f; conflict with each other, the conditional probability that
f; and fm conflict with each other is still in Q(1).

Since there are only C2, pairs of [;; and I, satisfying the condition in
Case 2, we know that > [E{ljlm} — E{L;}E{I;n}] is in Q(n). And

(1.J)#(L,m)
therefore, lim 4, = 0. It follows that

n—oQ

. . Var(S)
lim Pr{S =0} < lim ——==- =0.
n—o00 { } ~ nooc (E(S)-)

Since the event {S > 0} implies that there exists a conflicting pair of local
fitness functions, the theorem follows. O

Based on Lemma 3.3.1 and Theorem 3.3.2, we have a linear algorithm,
algorithm B1 in Table 3.5, which solves the NK decision problem N(n,2,z)

with probability asymptotic to 1 for any z > 3.

3.3.2 2-SAT Sub-problems in N(n,2,z) and a Tighter
Upper Bound

In this subsection, we establish a tighter upper bound z > 2.837 for the
threshold of the fixed ratio model N (n,2, 2) by showing that asymptotically,
N(n.2,z) contains an unsatisfiable 2-SAT sub-problem twith probability 1 for
any value of z greater than 2.873. This enables us to have a polynomial algo-
rithm which determines that N(n, 2, z) is insoluble with probability asymptotic

to 1 for z > 2.837.
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Definition 3.3.2. [FRG98] (1) Let U = {u;,0 < i < 3p} be a set of Boolean

variables. A criss-cross loop L(U,t),t = 3p + 2, is a set of 2-clauses

l-LQ V'LL]_, ﬁ,]_ V'U.g,"' ,ﬂp_l Vup, 'I:ZP Vﬂo,

Uo V Upi1; Upsr1 V Upta, -+ -, Usp—1 V Usp, Usp V Up.
(2) Let z,y, z be Boolean variables. A 3-module M for the clause z V yisa
pair of 3-clauses M = {zVyVz,zVyVz}.

It is easy to see that a criss-cross loop contains two contradictory cycles
and is unsatisfiable. This special structured 2-SAT formula plays an important

role in analyzing the phase transition of 2-SAT [BBC99, FRG9S].

Definition 3.3.3. A t-3-module M associated swith a criss-cross loop L(U, t)

is the union of the 3-modules for all the 2-clauses in £(U, t):

M={ M=@VwuVziVuVi);

A'[p—-l = (’l—tp_l vV Up vV <p—1, ﬂp—l A% Up \"4 Ep_l);
Mp = (Up VUV zp,Up Vi V 5p);

Mpiy = (Bp1 V Up+2 V Zpi1: Upt1 V Upro V Zpy);

1‘{3p—1 = (ﬂ3p—l \% Uszp \ Z3p—-1; ﬂBp—l \'4 U3p \ 23p—1);
./\[31_, = (ﬁ3p Vug VvV 23p, ’L-L3p Vug V 53;))
Mapir = (To VULV 23541, g V uy V Z3p+1);

Mapio = (U V Upy1 V 23500, ug V Up+1 V Z3pia);

such that all of the literals of u;’s and z;'s are variable-distinct.
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It is easy to see that there are T = 2¢ = 2(3p+2) clauses and T —1 distinct
variables in the t-3-module. A t-3-module is minimally unsatisfiable, that is,

the removal of any clause from it produces a satisfiable set of clauses.

Definition 3.3.4. Given a t-3-module M and an NK landscape instance f =

n
> fi.k =2, a sequence of local fitness functions

=1

g:(gl’--- rgt) C(fly"':fn)

is said to be a possible match(PM) if for each 1 < m < ¢, the main variable of
9m 1s one of the three variables that occur in the 3-module AZ,,,. A subsequence

(h1,---, ) of a possible match g is legal if for any 1 < m < J <, hm#h;.

Lemma 3.3.3. Let f(z) = Y fi(zi, II(z:)) be an instance of N(n,2,z) and
i=1
M be a t-83-module. Then the number of possible matches for the t-3-module

M is 3'. Further, the number of legal possible matches is © ((3*2———‘/5_)‘) .

Proof. For each 1 < m < t, there are exactly 3 possible choices for Gm:
fir (@i (z4), fin (2y, TL(7i2)) s fi (€1, I(zi,)), where r;,,z;,,and T;, corre-
spond to the three variables that occur in the 3-module A/,,,. Therefore, there
are 3’ possible matches for the t-3-module.

To prove the second conclusion, we divide the t-3-module into 3 parts
M = (M, My, M3), where M| = (M,,,1 < m < P Moo= (M, p+1<
m < 3p —1), and M; = (M;,, Mzpey, Mapis). Letting Ly, Lo, Ly are the
number of legal possible matches for M, M», M, respectively. Since the
literals in M, are variable-distinct from the literals in My, we have that the

number of legal possible matches, L, for the t-3-module M satisfies
LiLy, <L <27L\L,.

We now estimate the order of L;. To this end, we consider the probability space

(9, P), where Q is the set of sequences (91, ,g,) of local fitness functions
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that possibly match M; and P is the uniform probability distribution. Then,

the number of legal possible matches is
L, = Q|- Pr{a random sample from Q is legal} (3.3.2)

Let g = (g1.---,g,) be a random sample from Q and T4, denote the main

variable of the local fitness function g,,, then we have

b

LI =

Pr{z,,, = |um|} = Pr{z,, = |ums.|} = Pr{z, B =|zn|}=

where |u| denotes the variable corresponding to the literal u.
Let B,,0 < m < p be the event that the first m local fitness functions
g1:° ", gm in the possible match g = (g,,--- , g,) are mutually distinct. Since

in M only consecutive 3-modules share variables, we have

Brn={(g1:--.9m): gi #gis1, 1 <i<p—1}
Let by = Pr{gm # gm-1 | Bm-1}.m > 2. and b, = 1. Notice that B, = Q.
Then, we have
Prig = (gu.-- . g,)is legal} = Pr{B,}
=Pr{gi# g2.92 # g3, . gs1 # e}
= Pr{Bi}Pr{g: # g1 | Bi} - Pr{gs # g2 | Bo} - - Pr{gp # gp—1 | Bp—1}
=biby--- b,

(3.3.3)

Recalling that z,,., denotes the main variable of the local fitness function Gms
we have
by = Prigps # Gp Ty = gl | Bys} + Prigps # 65,7, , # gl | By}
= Pr{gy-1# gp | Bi_1.zg,_, = |u|}- Pr{zy,_, = |up| | Bp—1} +
Pr{gp—1 # gp | Bp—1:Zq,_, # lupl} - Pr{zg,_, # |up| | Bi—1}
= ga,, + (1 —ap)
1

= 1= gap: (3.3.4)
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where a, = Pr{z,,_, = |up| | Bp—1}- For a,, we have

— PT{B -1:2g,_, = lupl}

= Pr{B,_.}
= BB Bt 2y = lugl 20,0, = i}
+ Pr{Bp_1,2q,_, = |tUp|, Zg,_» # |tp-1|})
= g Py = [l | Bty = lipal} - PriBpos, 2, = ftper|}

+ Pr{l‘gp L=yl | B ~1:Tg, > 7 lup—1|} - Pr{B —1, Tgy s # [upi1]})
-1 1. .
Pr {Bp 1} ( Pr{Bp 1: Lgp_n = I‘up-1[} -+ gPr{Bp_l,:cgp_2 # Iup_1|}>
(3.3.3)

The last equation in the above formula is because that given By-1and z4,_, =
[up-1] (or zg,_, # |up_1]). we have two (three, respectively) choices in select-
ing the local fitness function g,_,. Consider the two terms Pr{Bp_I,xg,,_2 =

lup—_1|} and Pr{B —1:Tg,_» 7 |up—1|} in (3.3.3), we have

[Dl'{Bp_l,.’L'gp_2 = lup—ll}

= P"{Jp—" # 9ot | Bpe2:Tg,_» = |Up_i|} - Pr{Bp-2.7g, , = |up_y}

(3.3.6)
ng{rJ,,_._ = {up_1] | Bp—2} - Pr{B,_s}
- % . Pr{B,_s}
and
Pr{By_1,Tg,_, # lup_1|}
= Pr{gp—2 # go—1 | Bp—2.2g, , # |up-1|} - Pr{Bp_2. 74, , # lup_y|} 3.7

= Pr{zg, , # [tp_1| | Bpa} - Pr{B,_s}
= (1 ~ ap-1) - Pr{Bp_s}

By plugging (3.3.6) and (3.3.7) into (3.3.5), we get
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This, together with (3.3.4), gives us

1

by =1-— :
P 96,1

(3.3.8)

It is not difficult to show that the sequence {b,} is decreasing and lower

bounded by 0. Letting lim = b and taking the limit on both sides, we get
p

b=1- L (3.3.9)

3+v3

=~ since b, = 1. It follows that

and thus, b = %5. In our case, b =

by > b= 3"’6‘/5. And from (3.3.2), we know that the number of legal possible

matches is greater than

. (3+ \/3> _ (3 +9\/5) . (3.3.10)

6

4

To prove that the expected number of legal possible matches L, for M, is in

© ((3;,_,‘/3)11) let ap, = b, — 3+6‘/§ = b, — b. From (3.3.8) and (3.3.9), we have

byt — b

S =b, — b=
% = bp 9bb,_,

<dap_;, 0<d<1.

p
which means that the series )" a, is convergent. It follows that
m=1

«@

(1+ 57 (1+=2)

converges to a finite positive constant ¢. Therefore,
by--bp=(b+a1) - (b+a,)

:bp(1+%) (1+%’1) (3.3.11)

<e (3 +6\/§)

for sufficient large p and some constant c.

Similarly, we can show that the number of legal possible matches L, for

.. =\ P .
Msyisin® ((%) ) Recalling that the number of legal possible matches L
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for the t-3-module satisfies L; L, < L < 27L, L,, the second conclusion follows.
a
The following Lemma calculates the probability that a matching local fit-

ness function implies the matched 3-module.

Lemma 3.3.4. Given a $-module TV yV w, =V yV %, and a local fitness
function g such that the main variable z, of g is one of the three Boolean
variables |z|, |y|. |w|, let z =2+, 0 < a < 1 be the parameter in the fized

ratio model N(n,2,z). Then the probability that g contains the 3-module is

1 1 6 '
Po = (—(n;—l)> (ﬁ(l —a) + %‘01) (3.3.12)

Proof: Since z, is already one of the variables in the 3-module, the probability
that the other two variables are also in the 3-module is ﬁ

Now, assume that the variables of the local fitness function g are the same
as the variables in the 3-module. From the definition of the fixed ratio model,
g has two zeros in its fitness value assignment with probability (1 —a), and has

three zeros in its fitness assignment with probability a. Note that the local

fitness function g implies the 3-module zVy VvV w. =V y V& if and only if

9(Z,9.w) =0 and g¢g(z,7,w) =0.
From the definition of the fixed ratio model, this happens with the probability

(1-—a)+ 2o

1 5
(2) ()
The Lemma follows. O

With the above preparation, we are ready to prove the upper bound z >
2.837 for the threshold of the N(n,2, z) model. The idea is to show that if

= > 2.837, then N(z,2, z) contains asymptotically with probability 1, a t-3-

module which is an unsatisfiable 2-SAT instance. To make the proof more
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readable, we present the result in two theorems. In the first theorem, we
show that the average number of t-3-modules contained in N(n,2, z) tends to
infinity, while in the second theorem we show N(n,2,z) contains at least a
t-3-module with probability asymptotic to one by using the second moment

method.

Theorem 3.3.5. Let A; be the number of t-3-modules contained in N(n,2,z)

and t = O(In*n). Then, if 2 =2+« > 2.837,
lim E{4,} = co. (3.3.13)

Proof:  From Lemma 3.3.3, there are more than (%)‘ legal possible matches
for a fixed t-3-module. From Lemma 3.3.4, we know that each possible legal
match g = {g,--- , g.} implies the t-3-module with probability p}. From the

proof of Theorem 10.1 in [FRG98], there are
272pt=l(n — ¢t + 1)¢ (3.3.14)

possible t-3-modules, where ni=l = (n_—’t’;lﬁ Let 7 = (%(l —a)+ %a), and

write pg = (n_lryr We have

E{d} = (3 +)\/5—po> L2t 1)t
= (3 —i-_)\/gr) . Qt“Qnﬂ(n — {4+ ].)£ - %—;
i ("2") t
- 1 3+V5 Cntn—t+ 1t [ (D) (3.3.15)
-1(7’7. —t+ 1) 2 (721)5 (n;l)
_ 1 3+V5 t 4tnt(n —t + 1)t n )t
T d(n—t+1) 2 ) (n(n —1))¢ (n—?

t2

= %(2(3 +V3)r)t1 -0 (;) ),

where the fourth equation in (3.3.15) is due to the fact that for any positive

integer n and q such that ¢ < 2, we have n%~%*/2" < ng < n9. It follows that
<3
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lim F{4,} = o0 if

n—o0

234+ V3)r > 1. (3.3.16)

Solving the inequality (3.3.16) gives us o > 0.837, that is, z = 2 + o > 2.837.
This proves Theorem 3.3.5. O

Theorem 3.3.5 shows that the average number of t-3-modules in N (n, 2, z)
tends to infinity. Based on the Chebychev’s inequality, to prove that N(n, 2, z)
contains t-3-modules with probability 1, we need to show that the variance of
Ae, the number of contained t-3-modules, is o(E{A,;}). To do this, we need

the following

Lemma 3.3.6. (Alon and Spencer [ALS92]) Given a random structure(e.g., a
random CNF formula). let W be the set of substructures under consideration.
A(w) be the set of substructures sharing some clauses with w € W . Let I, = 1
when w is in the random structure and 0 otherwise. If

(1) elements of 11" are symmetric;

(2) p=FE{ Z'Iw} — oc; and

(3) Z( )1;076([’:Z | w) = o(y), for each w € 1V,

weA(w

then as n — oo, the probability that the random structure contains a substruc-

ture tends to 1.

To use the above Lemma to study the 2-SAT sub-problem in NK land-
scapes, we view the random structure to be a random instance of N(n,?2,z),

and 17 to be the set of all t-3-modules which is symmetric by their definition.

Theorem 3.3.7. If z = 2 + o > 2.837, then N(n,2,2) is asymptotically in-

soluble with probability 1.

Proof:  Let A4, be the number of t-3-modules implied by N(n,2,z) and t =

O(In*n). Theorem 3.3.5 shows that lim E{A:} = co. By Lemma 3.3.6, it is
n—c0
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enough to show that for each w € W,
Y Pr(w]|w) = o(E{A4.}), (3.3.17)
BEA(w)
where Pr(w@ | w) is the conditional probability that N(n,2, z) implies the t-
3-module @ given that it implies w, and A(w) is the set of all t-3-modules
sharing some clauses with w.

Suppose that @ shares Q,1 < Q < 2t clauses with w, and that these Q
clauses are distributed among g 3-modules. Further, let ¢, be the number of
3-modules whose two clauses are both shared and ¢, = q — q1 the number of
3-modules that only has one clause shared.

Let 77 be a 3-module in @ that shares exactly one clause with a 3-module
T> in w. \We claim that the conditional probability that 7} is implied by
N(n.2,z) given that w is implied by N(n, 2, z), is

éa + 0(%). (3.3.18)

Without loss of generality, assume that 7o = {z VyV u,zVyV @} and 7} =
{xVvyvu zvyva}. Since w is implied by N(n,2, 2), there is a local fitness
function g = g¢{|z|, |y|, |u|) that implies T,. The conditional probability that
T, is implied, is less than or equal to P, + P, where P, is the conditional
probability that g also implies the clause £V y V@ given that g implies T5, and
P, is the conditional probability that the clause z V y V @ is implied by other
local fitness functions. By the definition of N(n, 2, z), we have that P, = éa.
Since a local fitness function implies Z Vv y V @ only if it has the same variables
with g = g(|z[, |y], [u]), we have that P, = O(%). The claim is proved. It

follows that, for sufficient large n,

Priw|w} <c (3 +9\/3p0> - 17 (la) ¢ (3.3.19)




where pg is defined in Lemma 3.3.4 and c is a fixed constant.

Let Ag gq.(w) be the set of t-3-modules that share Q clauses with w such
that these @ clauses are distributed over ¢ different 3-modules. As before, q;
is the number of 3-modules whose two clauses are both shared and ¢, = ¢ — q;

the number of 3-modules that only has one clause shared. We claim that
!‘4QIqu2 (w)l = [‘42q,q,0(w)|6q2- (3-3-20)

where A, 40(w) is the set of t-3-modules that share all the 2¢ clauses in the
q 3-modules with w. Let A = {Af},---, 1} be a t-3-module in which all
the clauses 1f;,1 < i < q are shared with w. Let M = {A,,--- AL} be a
t-3-module in which all the clauses in M;,1 < 7 < ¢, are shared and each of
the 3-modules A/;,¢q; + 1 < ¢; + @2 has only one clause shared. Since for each
of the ¢ 3-modules, we have 6 ways to choose the non-shared clauses, there
are 6% such t-3-modules A/ in Ag 44,(w) that correspond to one t-3-module
M in Aygq0. The claims follow. From formula (35) and (536) in [FRG98] and

(3.3.17). it follows that

izt)gl—flnz(t—ﬂ@h g <p+1,
|- 40,q.0: (W) < (3.3.21)
Or(ll)gt—qrﬁ(t—q)ﬁqz .q>p+1.

Then. we have

| 4@ .quq: (W) Pr{@ | w}

O(t)tq?(t Yagr 3 F VB .1 2
< P2t g (SEY a2
O t It — 1
< n(-)ﬂ In2t=apt= Q(T_I)Tq (3.3.22
< 2O L (e
n 4n
O(t
< ()E{At;(4r) M, ¢g<p+3
and
Qe (W)Pr{m | w} S OME{A}(Er)™, ¢>p+3.  (3.3.23)
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Therefore,

S Pr@|w) = 3 14eue(w)Priw | w}

weA(w) Q.q.92
t O(2) t
3D SPILULIFRIEND 3B D N N
Q=1q<p+3 ¢ n Q—-1¢>p+3 q2
(3.3.24)
Since 4r > 1 for z > 2.837, we have
t4
> Pr(w|w) < o) )E{A,} + P E{A,}(4r) P
n -
BEA(w) (3.3.25)
= O(E{.’{t}).
This completes the proof. (I

3.4 The Generalized NK Landscape Model

In the NK landscape model. each local fitness function f; depends on its main
variable z; and a set of neighboring variables I1(z;), |[I(z;)| = k. which are
selected randomly. In the generalized NIX model([ALT96, WEI96]), each local
fitness function f; is not required to depend on the main variable z,. Instead,
the & + 1 variables of the local fitness function f; are all selected randomly.
Similar to the definitions of the uniform probability model and fixed ratio
model in Section 3.1, we can define the uniform probability model and fixed
ratio model for the generalized NK landscape accordingly and write Ng(n, k, p)
and Ng(n, k, z) for the uniform probability and fixed ratio models respectively.

The results in Section 3.2 and Section 3.3 can be extended to the general-

ized NK model without much difficulty.

Theorem 3.4.1. The polynomial Algorithm A given in Section 3.2 success-
fully solves a random instance of Ng(n, k,p) with probability asymptotic to 1

as n tends to infinity for any p(n) such that lim p(-n)n:T“lT1 erists.
n—oQ
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Proof:  \We need to consider two cases: (1) nlibngo p(n)rﬁ"-’l**—1 = +oc and (2)
nll)nolop(n)n?"% € [0, 00).

For the first case, it is easy to see that Theorem 3.2.1 still holds for
Ng(n, k,p) since the proof of Theorem 3.2.1 only makes use of the proba-
bility distribution with which the fitness values of the local fitness functions
are assigned. Then, the proof of Corollary 3.2.2 applies.

For the second case, similar to the proof of Theorem 3.2.6, we need to show

that

lim Pr{M(n.k) <2 +2} =1,

where )M/ (n, k) is the maximum size of the connected components of the con-
nection graph G of Ng(n, k,p). To this end, we only need to show that the

edge probability p.(n) of the random graph G satisfies

pe() =0 (an?) (3.41)

Recalling that in the generalized NK landscape model, the k& + 1 variables of
each local fitness function are all selected randomly, we have by the definition

of the connection graph that

pe(n) < (1 C;:?é:"ll) * (1 —(1—- P(n))2k+l)2
(n—k-1)(n—-k-2)---(n -2k —-1) ok+1) 2
-(1- e )= (1= @)
< (1 n—k—l) ) (1—(1—p(n))2k+1)2
=0 (2p077)
(3.4.2)
This completes the proof. a

For the fixed ratio model Ng(n,2,z) of the generalized NK landscape

model. we have the following upper bound on the insoluble threshold:
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Theorem 3.4.2. If z = 2+a > 2.667, then N(n,2,z) is in soluble asymptot-

teally with probability 1.

Proof: Let A, be the number of t-3-modules contained in N(n,2,z) and ¢t =
O(In? ). For a fixed t-3-models and a given subsequence of local fitness func-
tions g = {g1,---,g:} € {f1,---, fa}, the probability that g = {g1,---, 9.}

implies the t-3-module is

<% (%(1 —a) + %a)) . (3.4.3)
7 \2

where @ is the probability that a local fitness function has three specific vari-
ables, and r = (5(1 — @) + =a) is the probability that a local fitness func-
tion having the same variables with a 3-module implies the 3-module. Write
Po = ﬁr. Since there n‘ ways to choose the subsequence g = {g,,--- .Gt}

3
and there are 2‘"?n!=L(n — t + 1)’ possible t-3-modules ([FRG9S]), we have

E{4.} =p{nt2"nt=L(n — ¢t + 1)t

1 ¢ 1
e -2t tt —ta 1 t .
ey 2T
1 (2% 3)intnt(n -t + 1)t (3.4.4)
= T
4(n—-t+1) (n(n —1)(n-2))t
— _1__(1-')7.)t(1 O i )
4n T n/’
It follows that lim E{4,} =cif
127‘ > 1. (3.4-5)

Solving the above inequality gives us a > 0.667, that is, z = 2 + a > 2.667.
The rest of the proof is to show that the second condition in Lemma 3.3.6

holds and is almost the same as the proof of Theorem 3.3.7. O



3.5 Experiments

Our study of the threshold phenomena in NK landscapes started with exper-
imental investigation. Many of the theoretical results in the previous section
are also motivated by the observations made in our experiments. In this sec-
tion, we describe the approach and methods we used in the experimental study,

and report the results and observations we have made.

3.5.1 Strategies and Algorithms

In our experiments, an instance of the decision problem of NK landscape
is converted to an equivalent 3-SAT problem, and then the 3-SAT problem
is solved using Roberto’s relsat—an enhanced version of the famous Davis-
Putnam algorithm for SAT problems implemented in C*+. The source code
of relsat can be found at http://www.cs.ubc.ca/ hoos/SATLIB/solvers.html,
and algorithmic details of the implementation is discussed in (BSC97].

Let f(z) = Zn: filz:, (z:)), == (z1,---,xa) € {0.1}" be an instance of
the decision prcl:)llem of NKX landscape. From the discussion in Section 3.3.1,
each local fitness function f; is equivalent to a k-SAT problem C; and the
number of clauses in C; equals to the number of assignments at which fi takes
zero as its fitness value. The NK landscape decision problem is thus equivalent

to the following k-SAT problem:

(;;:CI/‘\C2"'/\Cn- (3-5-1)

Once we get the equivalent SAT problem ¢, Roberto’s relsat can be readily
used to solve the problem. In the experiments, we generated random instances
of the NK landscape decision problem from the random model N(n,2,2). Asa
result, the equivalent SAT problem for each random NK landscape instance is

a 3-SAT problem with n variables and (on average) zn clauses. By definition,
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Figure 3.1: Fractions of insoluble instances(Y-axis) as a function

of = (X-axis).

the parameter z is between 0 and 8. For z < 1, the 3-SAT can be solved easily
by setting the literals that correspond to the main variables of the local fitness
function to true. As z increases, we get more and more clauses and the 3-SAT
problem becomes more and more constrained. The aims of the experiments
are three-fold:(1)Investigating if there exists a threshold phenomenon in the
random NK landscape model; (2) Locating the threshold of the parameter z;

and (3)Determining if there are any hard instances around the threshold.

3.5.2 Experiments on the Original Fixed Ratio Model

In this part of the experiments, we generate 100 random instances of N (n, 2, 2)

for each of the parameters n =2°-..2!% and z = 2.71 + of fset,0 < of fset <
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Figure 3.2: Average search cost(Y-axis, in seconds) as a function

of = (X-axis).

0.29. These instances are then converted to 3-SAT instances and solved by
relsat. Figure 3.1 shows the fraction of insoluble instances as a function of the
parameter z. [t can be seen that there exists a threshold phenomenon and the
threshold is around 2.83. This shows that our upper bound z = 2.837 is very
tight.

In Figure 3.2, we draw the average search cost (in seconds) as a function
of the parameter z. As we can see, the average search cost drops quickly at
the threshold. By examining the data, we find that it takes much less time to
prove the insolubility of an instance. In fact, the data shows that more than
99 percent of the insoluble instances are solved quickly in the preprocessing
stage of relsat. This explains the dramatic decreasing of the average search

cost because the fraction of insoluble instances increases quickly around the
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Figure 3.3: Search cost (Y-axis, in seconds) as a function of
z (X-axis) for soluble instances (sub-figures (a) and (b)) and

insoluble instances(sub-figures (c) and (d)).

threshold. It also suggests that there must be some“small” structures that
make the instances insoluble. In Figure 3.3, we separate the search cost into
two parts: the average search cost for soluble instances and the average search
cost for insoluble instances. As the figure illustrates, it takes much more time
to find a solution to the soluble instances than to prove the insoluble instances.
Also shown in Figure 3.3 is the fact that in both soluble and insoluble cases,
the average search cost is almost constant as a function of the parameter z.
To see how the search cost scales with respect to the problem size, we plot in
Figure 3.4 the square root of the average search cost as a function of n. The

figure suggests that the average search is in O(n?) for any parameter z.

(41}
[¥]]
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3.5.3 Experiments on the 2-SAT sub-Problem

This is the part of the experiments that motivated our theoretical analyses in

Section 3.3.2. The idea can be explained as follows. Let

f@)=>" filz:, (), z=(21,---,1,) € {0,1}"

i=1

be an instance of the decision problem of NK landscape and

p=Ci\Cs--- \Cu. (3.5.2)

the equivalent 3-SAT problem where C; is the set of 3-clauses equivalent to
the local fitness function f;. For each i, there is a set of 2-clauses D;(possibly

empty) implied by C;. For example, if C; has three 3-clauses

(z,y.2). (2,7, 2), (z.9,2)),
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then the set of 2-clauses D; would be ((z, z), (z, y)). The conjunction of D;, de-
noted by 2, is a 2-SAT problem. It is obvious that the original 3-SAT problem
» Is satisfiable only if the 2-SAT sum-problem ¢ is satisfiable. In the experi-
ments. we generate instances of the NK landscape N (n, 2, z), convert them to
the equivalent 3-SAT problems, and extract the 2-SAT sub-problems. These
2-SAT problems are then solved by the relsat solver. If the 2-SAT problem is
unsatisfiable, then the original NK landscape instance is also insoluble.

As in section 3.5.2, we generate 100 instances of N(n,2,z) at each of the
parametersn = 29 —2'% and z = 2.71+o0f fset,0 < of fset < 0.29. The results
are shown in Figures 3.5-3.8, in parallel to the Figures 3.1-3.4 of the results
on the original 3-SAT problems in section 3.5.2. We see that the patterns of

insoluble fractions and search cost are similar to those we found in the orig-
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inal 3-SAT problems. There is a soluble-insoluble phase transition occurring
around 2.83, but the fraction of unsatisfiable instances is lower than the frac-
tion in the original 3-SAT problems. This may be possibly explained in two
ways: (1)In the original 3-SAT problem, other than the 2-SAT sub-problems,
there may be some other sub-problems that can be used to determine the un-
satisfiability of the instances: or (2) The gap in the fraction of unsatisfiable
instances is due to the effect of the finite problem size. \We are currently not
sure if the second explanation makes sense because we have tried the problem
size up to 27 = 131072.

Comparing Figure 3.3 and Figure 3.7, it is interesting to notice that for
the relsat, the average search cost of satisfiable instances for the 2-SAT sub-

problems remains the same as that for the original 3-SAT problems, while the
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average search cost of the unsatisfiable instances for the 2-SAT sub-problems
is much less than that for the original 3-SAT problems. This teils us that the
difficulty of solving a soluble instance of NK landscape is almost the same as
that of solving a 2-SAT problem which is polynomially solvable, and hence
is easy. Therefore, on average the NK landscape N(n,2,z) is also easy at

parameters below the threshold where almost all of the instances are soluble.
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Chapter 4

Conclusion

The NK landscape model, proposed by Kauffman [KKAUS9], has been widely
used as a prototype and benchmark in the study of genetic algorithms. In
the literature, it has been discussed from the perspectives of statistics and
computational complexity. In this thesis, we have studied the decision version
of the NK landscape model in terms of the threshold phenomena and phase
transition. We have theoretically and empirically investigated the problem
under two random models: the uniform probability model and the fixed ratio
model.

Our analyses show that the uniform model is trivially sovable as the prob-
lem size tends to infinity. For the fixed ratio model, we have derived two upper
bounds for the threshold of the solubility phase transition, and proved that
the problem with the control parameter above the upper bounds can be solved
polynomially with probability asymptotic to 1 due to the existence of easy sub-
problems such as 25AT. A series of experiments has also been conducted to
investigate the hardness of the problem with the control parameters around
and below the threshold. From the experiments, we have observed that the

problem is also easy around and below the threshold of the phase transition.
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There are several problems that are worth further exploration.

(1). Establishing lower bounds on the threshold of phase transition of
the fixed ratio model. As in the study of the SAT phase transition [FRAS84,
FRG98, FRP83, FRS95a, FSS96], this usually requires us to come up with
some polynomial algorithms which show that the problem is asymptotically
satisfiable if the control parameter is below the lower bounds. Currently, we
only have a trivial lower bound of z =

(2). Explaining the gap between the theoretical upper bound of the thresh-
old and the empirical thresholds obtained by solving the original NK land-
scape decision problem and the 2-SAT sub-problem (see Sections 3.3.2, 3.5.2,
and 3.5.3). Our theoretical analysis in Section 3.3.2 gives the upper bound
z = 2.837 by using only the set of 2-clauses generated by resolving each local
fitness function separately. Our empirical results, however, indicate that in
the region [2.84, 2.9], there are certain fraction of instances that are insoluble,
but their insolubility cannot be determined by the 2-SAT sub-problems gen-
erated according to our theoretical analysis. We have done the experiments
for the problem size up to n = 65536, and believe that it is large enough for
the frequencies to converge to the probabilities in the ordinary sense. \Ve still
cannot come up with a satisfactory explanation for this phenomenon.

(3). Generalizing the analysis to SAT and CSP problems. Both the uniform
probability model and the fixed ratio model can be converted to equivalent
SAT problems. This is the approach that we have used in the empirical study.
It should be noted that by converting the random NK landscape model to
SAT, we get a new random SAT model which is different from those widely
used in the study of SAT phase transition. In fact, the new random SAT
model has a special structure in which clauses are divided into several closely

related clusters. Further exploration of this special random SAT model may
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give us some interesting results about the nature of the SAT problem. In the
meantime, maybe this clustered random model is more suitable for modeling

the SAT and CSP problems encountered in practice.
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