
Group Trip Planning Queries in Spatial Databases

by

Elham Ahmadi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Elham Ahmadi, 2017



Abstract

Trip planning queries are considered an important part of Location Based Services.

As the first part of our research, we investigated Sequenced Group Trip PLanning

Queries (SGTP) queries. Given a set of source locations and destinations for a

group of n users, and a sequence of Categories of Interests (COIs) that the group

is interested to visit altogether, a SGTP query returns for each user, the route from

his/her source location to his/her destination such that all users go through the same

Points of Interests (POIs), while minimizing the group total travel distance.

As the second phase of our research, we assumed that users are interested to

visit a POI belonging to the predefined COI altogether with the goal of minimizing

the total detour distance towards group’s preferred paths. In the third phase of this

research, we investigated a combination of trip planning and path nearest neighbor

queries, which we refere to as “Best-Compromise In-Route Nearest Neighbor”. We

investigated the problem where a user, traveling on his/her preferred path, needs

to visit one (of many) POI while minimizing his/her total travel distance and also

minimizing the detour distance incurred to reach the chosen POI.

Finally, we studied the k-CPQs in road networks. Given two sets of nodes P

and Q on a road network, a k-Closest Pairs Query (k-CPQ) finds the pairs from

P × Q which have the k smallest network distances. Although this problem has

been well studied in the Euclidean and metric spaces, this is the first time it is being

investigated in the more realistic case of road networks.

ii



Dedicated to my beloved parents Mohammad Sadegh and Ashraf. For their love,

endless support, encouragement and sacrifices.

iii



A bird sitting on a tree is never afraid of the branch breaking, because her trust is

not on the branch but on her own wings.

– Unknown

iv



Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Mario A. Nasci-

mento for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all

the time of research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Jörg Sander, Prof. Zachary Friggstad and Prof. Tony Qiu, for their encouragement

and insightful comments.

Finally, I must express my very profound gratitude to my parents and to my

sisters and brother for providing me with unfailing support and continuous encour-

agement throughout my years of study and through the process of researching and

writing this thesis. This accomplishment would not have been possible without

them. Thank you.

Author

Elham Ahmadi

v



Contents

1 Introduction 1

2 Sequenced Group Trip Planning Queries 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Single User Trip Planning Queries . . . . . . . . . . . . . . 5
2.2.2 Group Trip Planning Queries . . . . . . . . . . . . . . . . . 8

2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Proposed Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Revised Iterative Approach (RIA) . . . . . . . . . . . . . . 12
2.4.2 PGNE Approach . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2.1 Applied Pruning Strategies . . . . . . . . . . . . 18
2.4.2.2 PGNE Algorithm . . . . . . . . . . . . . . . . . 21

2.4.3 Iterative Backward Search Approach . . . . . . . . . . . . 23
2.4.4 Running example . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Effect of POI Density . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Effect of Query Area . . . . . . . . . . . . . . . . . . . . . 36
2.5.3 Effect of Group Size . . . . . . . . . . . . . . . . . . . . . 37
2.5.4 Effect of COI Density . . . . . . . . . . . . . . . . . . . . 39

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Optimal Meeting Points Minimizing Aggregate Detour Distances from
Preferred Paths 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Proposed Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Multiple Ellipse-based Pruning Approach (MEP) . . . . . . 48
3.3.2 Single Ellipse-based Pruning Approach (SEP) . . . . . . . . 52

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Effect of POI Density . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Effect of Group Size . . . . . . . . . . . . . . . . . . . . . 60
3.4.3 Effect of Answer Size . . . . . . . . . . . . . . . . . . . . 63
3.4.4 Summary of experimental results . . . . . . . . . . . . . . 64

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Best-Compromise In-Route Nearest Neighbor Queries 66
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Our Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Upper bounds for travel and detour distance . . . . . . . . . 77

vi



4.4.2 Generating and pruning candidate paths . . . . . . . . . . . 79
4.4.3 Baseline approach . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Effect of Length of Preferred Path . . . . . . . . . . . . . . 85
4.5.2 Effect of POI Density . . . . . . . . . . . . . . . . . . . . . 86

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 k-Closest Pairs Queries in Road Networks 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 The G*-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 G∗-tree construction procedure . . . . . . . . . . . . . . . . 93
5.3.2 G-tree vs. G*-tree . . . . . . . . . . . . . . . . . . . . . . 96
5.3.3 Distance Computations in G∗-Tree . . . . . . . . . . . . . . 97

5.4 Top-Down Traversal (TDT) . . . . . . . . . . . . . . . . . . . . . . 98
5.5 Bottom-Up Sub-graph Joining (BUSJ) . . . . . . . . . . . . . . . . 101

5.5.1 Pre-Computations in BUSJ Approach . . . . . . . . . . . . 102
5.5.2 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . 102

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.1 Effect of Number of Leaf-Nodes . . . . . . . . . . . . . . . 108
5.6.2 Effect of Number of Required CPs . . . . . . . . . . . . . . 110
5.6.3 Effect of Dataset Size . . . . . . . . . . . . . . . . . . . . . 110
5.6.4 Effect of Imbalancing Factor . . . . . . . . . . . . . . . . . 111

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusion 113

Bibliography 116

vii



List of Tables

2.1 Meaning of symbols used in SGTPQs . . . . . . . . . . . . . . . . 12
2.2 Sample execution of IBS using the example of Figure 2.4. . . . . . 32
2.3 Road networks used in the experiments. . . . . . . . . . . . . . . . 33
2.4 Experimental parameters and their values (bold defines default val-

ues). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Aggregate detour distance for different POIs with respect to Fig-
ure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Summary of the dataset used in our experiments. . . . . . . . . . . 56
3.4 Experimental parameters and their values (bold defines default val-

ues). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Paths and their corresponding costs w.r.t. Figure 4.1. . . . . . . . . 68
4.2 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Experimental parameters and their values (bold defines default val-

ues). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 TDT approach for 2-CPQ of example of Figure 5.1 . . . . . . . . . 101
5.2 Parameter values in the experiments . . . . . . . . . . . . . . . . . 107

viii



List of Figures

2.1 A sample road network with three types of POIs. . . . . . . . . . . 5
2.2 A sample road network with three types of POIs. . . . . . . . . . . 13
2.3 An example scenario . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 A sample road network with three types of POIs. . . . . . . . . . . 30
2.5 Effect of POI density(D). . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Effect of query area (A). . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Effect of group size (n). . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Effect of Number of COIs (m). . . . . . . . . . . . . . . . . . . . . 39
2.9 COI density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 A sample road network. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Mapping of a k-OMP 3 query into a MALs problem. . . . . . . . . 45
3.3 The proposed pruning strategies. . . . . . . . . . . . . . . . . . . . 48
3.4 Defining lower bound for detour distance. . . . . . . . . . . . . . . 50
3.5 Bus stops and POIs in Oslo. . . . . . . . . . . . . . . . . . . . . . 56
3.6 Effect of Dp on processing time for sum aggregate function . . . . 58
3.7 Effect ofDp on number of examined POIs for sum aggregate function 58
3.8 Effect of Dp on processing time for max aggregate function . . . . 59
3.9 Effect of Dp on number of examined POIs for max aggregate func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.10 Effect of n on processing time for sum aggregate function . . . . . 60
3.11 Effect of n on number of examined POIs for sum aggregate func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.12 Effect of n on processing time for max aggregate function . . . . . 61
3.13 Effect of n on number of examined POIs for max aggregate func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.14 Effect of k on processing time for sum aggregate function . . . . . 62
3.15 Effect of k on number of examined POIs for sum aggregate func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.16 Effect of k on processing time for max aggregate function . . . . . 63
3.17 Effect of k on number of examined POIs for max aggregate func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Alternatives paths on a simplified road network from s to d visiting
one of POIs o1 or o2. Table 4.1 summarizes the travel and detour
distance implied by each such path. . . . . . . . . . . . . . . . . . 67

4.2 Conventional and linear skylines for the example shown in Fig-
ure 4.1 and summarized in Table 4.1. . . . . . . . . . . . . . . . . . 69

4.3 Area linearly dominated by {p1,p3}. . . . . . . . . . . . . . . . . 75
4.4 Locations of restaurants and coffee shops in Amsterdam, Oslo and

Berlin (overlaid on these cities’ road network) . . . . . . . . . . . . 85
4.5 Effect of path length n on query processing time . . . . . . . . . . . 87
4.6 Effect of POI density Dp on query processing time . . . . . . . . . 88

ix



5.1 A sample road network . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Sample steps of the coarsening phase for the graph in Figure 5.1. . . 94
5.3 The hierarchical graph partitioning of example of Figure 5.1 . . . . 95
5.4 (a) The intra-distance matrix of sub-graph G4, (b) the correspond-

ing inter distance matrix for G∗-tree illustrated in Figure 5.3 . . . . 98
5.5 The LPQs for border node v7 towards sub-graph G8 . . . . . . . . . 102
5.6 The order of joining of the sub-graphs in Figure 5.3 . . . . . . . . . 104
5.7 Effect of parameter λ . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.8 Effect of parameter k. . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.9 Effect of Data Set Size . . . . . . . . . . . . . . . . . . . . . . . . 110
5.10 Effect of Parameter γ . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



Chapter 1

Introduction

The term ”spatial database” [22] is associated with a view of a database which pro-

vides effective and efficient retrieval and management of geometric objects such as

points, lines and polygons. Spatial databases has been an active area of research in

the last two decades [37], in which many important results in data modelling, spatial

indexing, and query processing techniques have been obtained [15, 61, 45, 54, 59].

Nowadays, mobile devices equipped with a Global Positioning System (GPS), have

become more and more popular in our daily life for allowing Location Bases Ser-

vices (LBSs) that require spatial databases. LBSs can be defined as services that

integrate the position of a mobile device with other information in order to provide

added value to a user [48].

Trip planning queries are considered an important part of LBSs. Let us assume

a road network where the vertices represent either Points of Interest (POIs) or road

network branch points (i.e., road network junctions), and each POI belongs to ex-

actly one Category of Interest (COI), e.g., a COI can be ”Restaurants” and each POI

in this COI is a specific instance of a restaurant. Given a source point, a destination,

and a sequence of COIs that must be visited , the corresponding Trip Planing Query

retrieves the shortest trip from source point to destination passing through one POI

from each COI. An example of a trip planning application is the following: A user

plans to travel from the University of Alberta to the Bonnie-Doon Shopping Center

with the smallest travel distance and wants to stop at a supermarket, a bank, and a

post office.

Nowadays, with the integration of social networks such as Facebook [1], Google+ [2],

1



and Loopt [3] with LBSs, more complex and advanced query types are needed to be

supported. In this work, we studied three different types of trip planning queries: 1)

Sequenced Group Trip Planning Queries (SGTPQs), 2) k-Optimal Meeting Points

based on Preferred Paths (k-OMP 3) and 3) Best-Compromise In-Route Nearest

Neighbor (BC-IRNN).

As the first part of our research, we investigated SGTPQs. Given a set of source

locations and destinations for a group of n users, and a sequence of COIs that the

group is interested to visit altogether, a SGTPQ returns for each user, the route from

his/her source location to his/her destination such that all users go through the same

POIs, while minimizing the group total travel distance. An example of real world

application of SGTPQs in road networks would be the following. Consider a group

of friends, who are at different places (e.g., on a late afternoon all of them may still

be at their offices and workplaces). Before going home in the evening, they are

willing to plan a group trip to several COIs in a specific sequence such as dining at

a restaurant, then seeing a movie, and finally having drinks at a pub.

Our main contributions for solving SGTPQs were two algorithms: Progressive

Group Neighbor Exploration (PGNE) [6] and Iterative Backward Search (IBS) [4].

The former traverses the search space based on a mixed breadth-depth first search

strategy. The latter explores the search space based on depth first search strategy, in

which optimal group trips from different POIs are computed and reused for com-

puting the optimal answer thus avoiding significant query processing overhead.

As the second phase of our research, we investigated a novel query type, the

k-Optimal Meeting Points based on Preferred Paths (k-OMP 3). Given a set of pre-

ferred paths for a group of n friends, as well as a COI that the group is interested to

visit, then the k-OMP 3 query returns the k unique POIs which incur the k small-

est group detour distances towards group members preferred paths. For processing

k-OMP 3 queries, we proposed efficient solutions based on shrinking the search

space that apply geometric properties of ellipses to prune the POIs that cannot be

part of optimal answer set [8].

In the third phase of this research, we investigated a combination of trip plan-

ning and path nearest neighbor queries. Consider a user who is traveling on his/her

2



preferred path, needs to visit one POI while (1) minimizing his/her total travel dis-

tance and also (2) minimizing the detour distance incurred to reach the chosen POI.

We call this new problem “Best-Compromise In-Route Nearest Neighbor” (BC-

IRNN) query in order to emphasize that a route cannot typically optimize both

criteria at the same time, but rather find a compromise between them. In fact, the

competing nature of these two criteria resembles the notion of skyline queries. In

that context, we proposed a solution based on using suitable upper-bounds to both

cost criteria to prune uninteresting paths [5].

As the last phase of our research, we also investigated the k-Closest Pairs Queries

(k-CPQs) in road networks. Given two sets of nodes P and Q on a road network, a

k-CPQ finds the pairs from P×Qwhich have the k smallest network distances. Al-

though this problem has been well studied in the Euclidean and metric spaces, this

is the first time it is being investigated in the more realistic case of road networks.

As our first contribution, we present a new hierarchical graph partitioning struc-

ture, named G∗-tree, which is designed to support our proposed algorithms. Then,

we propose, as our main contribution, two different approaches for processing k-

CPQs. While the first approach applies a top-down traversal paradigm by applying

a best-first search strategy, the second approach looks for the k-closest pairs by

traversing the G∗-tree in a bottom-up manner. Both of the these approaches employ

an effective pruning strategy for shrinking the search space based on the minimum

network distance between sub-graphs, which is main driver for the G∗-tree’s con-

struction [7].

3



Chapter 2

Sequenced Group Trip Planning
Queries

2.1 Introduction

A Sequenced Trip Planning Query (STPQ) [52] is defined over a road network as

follows: a single user specifies a starting point s, a destination d and a sequence

of categories of interest (COIs) C that must be visited. The goal is then to find the

shortest trip that starts at s, passes through one point of interest (POI) from each

COI in C and ends at d.

In this section, we study an extension of STPQs, namely Sequenced Group Trip

Planning Queries (SGTPQs). SGTPQs have three parameters: the sets S and D

containing the source locations and destinations of n users, as well as a sequence

of COIs C.The goal is to find the trip plan that goes from all users’ origins to all of

their destinations, passing through the same sequence of POIs (one from each COI

in the sequence C) and where the group total travel distance is minimized.

Figure 2.1 illustrates a typical application of a SGTPQ (the road network itself

is omitted for simplicity). Let us assume that a group of two users currently at

locations S1 and S2 are interested in visiting, together, first a restaurant, then a

museum and finally a pub. The destinations of the group members after visiting the

COIs are D1 and D2, respectively. In this context the highlighted sequence of POIs

(R1,M1, P1) defines a feasible candidate answer for such SGTPQ.

Clearly, STPQs are trivial special cases of SGTPQs. Thus an algorithm that

provides optimal solutions for SGTPQs can solve STPQs optimally as well. For

4



Source location

Destination

Restaurant

Museum

Pub

s1

s2

D1

D2

M1

M2

M3

P1

P
2

M4

R1

R2

P
3

P4R3
R4

Figure 2.1: A sample road network with three types of POIs.

processing SGTP queries, we propose two approaches: Progressive Group Neigh-

bor Exploration (PGNE) approach and Iterative Backward Search (IBS) approach.

The PGNE approach explores the search space based on a mixed breadth-depth first

search strategy. On the other hand, IBS explores the search space based on a depth-

first search strategy, in which iteratively optimal group trips from retrieved POIs

are computed and reused when the algorithm proceeds. Both PGNE and IBS apply

efficient pruning strategies to shrink the search space.

2.2 Related Work

In Sections 2.2.1 and 2.2.2 we present a review on state-of-the-art techniques for

processing single user and group trip planning queries in spatial data bases, respec-

tively.

2.2.1 Single User Trip Planning Queries

In [37], Li et al. proposed solutions for Trip Planning Queries (TPQ). In a TPQ, the

user specifies a set of COIs and asks for the optimal route (with minimum distance)

from her starting location to a specified destination which passes through exactly

one POI of each COI. TPQ can be considered as a generalization of the Traveling

Salesman Problem (TSP) [10, 16], which is NP-hard. Any instance of traveling

Salesman problem can be considered as a TPQ, in which each city can be considered

as a COI containing only one POI. Consequently, finding an accurate solution to

a TPQ becomes NP-hard as the size of candidate space significantly grows. For

processing TPQs, Li et al. [37] proposed approximation algorithms to handle the

exponential growth of the problem’s search space.

5



Sharifzadeh et al. [52, 53] presented Optimal Sequenced Route (OSR) queries

where the user asks for an optimal route from her starting location and passing

through a number of COIs in a particular order (sequence). The R-LORD algo-

rithm [52] performs range queries to filter out the points that cannot possibly be part

of the optimal route by utilizing an R-tree index structure [23], and subsequently

builds the optimal route in reverse sequence (i.e., from ending to the starting point).

In [53] they proposed a pre-computation approach for processing OSR queries in

both vector and metric spaces, in which firstly the Voronoi diagram [11] of solution

space is constructed based on geometric properties of the solution space, and then

the OSR route is obtained by recursively accessing the pre-constructed Voronoi di-

agram.

Unlike sequenced trip planning queries [52, 53, 32], where the query contains

the total order of all COIs to be visited, Li et al. [39], Chen et al. [13] and Li et

al. [37] studied processing the route queries with arbitrary and multi-partial order

constraints. Chen et al. [13] proposed two heuristics for processing route queries

with multi-partial order constraints. The first, named NNPSR, finds an approximate

solution for the query by applying a greedy - approach; the second retrieves the

nearest point of the query start position q in every category, and then connects them

to form a route. In addition, they also developed a simple combination of NNPSR

and R-LORD [52], which answers a special case of the optimal route query with a

total order of the categories to be visited. The hybrid solution first runs NNPSR to

find a greedy route; then, it extracts the category of each point on the greedy route,

and runs R-LORD with this category sequence as input. Similarly, Li et al. [37]

investigated a variant of the optimal route query that specifies both a start point and

an end position, but no order constraint between the COIs that are supposed to be

visited.

For processing the optimal route queries with arbitrary order constraints, Li et

al. [39] proposed two different techniques namely Backward search and Forward

search algorithms. The former computes the optimal route from the last point to

the first (similar to the R-LORD algorithm [52]), while the latter follows the first-

to-last order of points. Although [39], [37] and [13] use the same query definition

6



as processing the route queries with arbitrary order constraints, the main difference

between [39], [13] and [37] is that none of the solutions in [13] and [37] guarantees

the optimality of the results, where [39] returns the optimal routes for route queries

with arbitrary order constraints.

Kanza et al. [32] investigated interactive route search in the presence of order

constraints that specifies that some types of entities should be visited before others.

In an interactive route search, initially the user poses a route-search query; however,

instead of providing to the user just one complete and unchanging route, the service

provider creates the route gradually while interacting with the user. In each step,

the system provides the next geographical entity on the route. The user goes to

the entity and provides to the service provider feedback on whether the entity has

satisfied the user. The feedback is used for computing the rest of the route.

Yan et al. [65] investigated Traffic-Aware Route search (TARS). In a TARS

query, the user provides start and target locations and the COIs that must be visited,

as well as time constraints for visiting the COIs. The goal of TARS query is to

find the fastest route from the start location to the target via one POI from each

COI by considering the traffic conditions of road network. The TARS query is

also considered an interactive query, in which there is a possibility that some of

the recommended/visited POIs will not satisfy the user. In this case, another POI

from the same COI will be recommended. For processing TARS queries, Yan et

al. [65] proposed three heuristic-based algorithms: a local greedy approach, a global

greedy approach and an algorithm that computes a linear approximation to the travel

speeds, formulates the problem as a Mixed Integer Linear Programming (MILP)

problem and uses a solver to find the solution. In [71], Zhu et al. studied the trip

search problem on categorical POI networks and proposed a spatial sketch-based

approximate algorithm to maximize user satisfaction score within a given distance

or travel time threshold.

The Multi-Request Route Planning (MRRP) problem was investigated in [41],

proposing a framework to efficiently find a route where the user-specified requests

can be served. Considering that in urban environments a POI may provide var-

ious kinds of services, in MRRP queries the goal is to plan a route for serving

7



multiple user-specified requests. The proposed framework in [41] for processing

MRRP queries consists of two major modules: planning module, in which pruning

and caching strategies are applied for planning a preliminary route, and refinement

module, where refinement mechanisms were proposed for further enhancing the

quality of the route. Shang et al. proposed the Path Nearby Cluster (PNC)[51]

query to find regions of potential interest along the user-specified travel route. The

authors considered the recommendation would be better if the best spatial distance

and cluster density are taken into account.

Soma et al. [59] investigated trip planning queries with location privacy in spa-

tial databases. The motivation behind this query is that users may not wish to

disclose their exact locations to the location-based service provider (LBSP). The

authors proposed a solution for processing TPQs without disclosing a user’s actual

source and destination locations to the LSP. The proposed technique protects the

user’s privacy by sending either a false location or a cloaked location of the user

to the LSP but provides exact results of the TP queries. The key idea behind the

proposed technique is that it refines the search space as an elliptical region using

geometric properties.

2.2.2 Group Trip Planning Queries

Hashem et al. [26] proposed the Iterative Approach (IA) and Hierarchical Approach

(HA) for processing SGTPQs in Euclidean spaces. Since the latter is not applica-

ble to road networks, we focus on the former. IA iteratively examines different

candidate trips, constructed based on a depth-first search strategy. This approach

first generates an initial “greedy” group trip by repeatedly visiting the nearest POI

belonging to an unvisited category (according to the predefined sequence of COIs).

Then it iteratively generates and examines other alternative solutions by traversing

the trip plan just obtained backwards and greedily replacing POIs (in the already

examined group trips) with the next nearest ones.

The main drawback of IA [26] is that it does not keep a summary of previous

discovered results, i.e., it is stateless, thus yielding high query processing cost for

repeatedly retrieving and examining POIs already examined. Furthermore, IA can-

8



not provide an optimal answer. Therefore, we propose Revised Iterative Approach

(RIA) as a modified version of IA[8], so that it can provide the optimal solutions

Samrose et al. [47] proposed the GOSR technique for processing SGTPQs in

road networks. First an initial greedy route is constructed by iteratively applying

nearest neighbor queries. Then, an ellipse for each user in the group is computed,

where the focal points of each ellipse are located on the corresponding user’s source

and target locations, and the major axis of all ellipses equals to the initial group total

travel distance computed based on the initial greedy solution. The intersection area

of all computed ellipses is, provably, a refined search space, containing the POIs

belonging to the optimal group route. The main shortcoming of this approach is

that it becomes inefficient with the increase of group size particularly when the

source and target locations of all group members located in far distances.

Hashem et al. [25] proposed the R-GTP and I-GTP approaches for processing

SGTPQs, the problem that we address in this chapter. The R-GTP approach first

finds a greedy solution based on iteratively extracting the nearest POI from the next

unvisited COI in the given sequence of COIs, where the first POI is extracted as

the nearest neighbor towards the centroid of source locations. Assuming MD as

the length of the shortest group trip computed so far, the search space is refined by

using the geometric properties of ellipses, in which all POIs with the total Euclidean

distance towards the centroids of source and target locations greater than MD/n are

discarded.

After shrinking the search space into a smaller refined area, R-GTP applies a

dynamic programming-based approach in order to discover the optimal sequence

of POIs among all POIs within the refined search space. The efficiency of this

approach significantly deteriorates with the increase in the query area or when the

cardinalities of COIs are not balanced. Assuming that all POIs of different COIs

have been indexed using an R∗-tree, the I-GTP approach applies a best-first search

strategy to incrementally retrieve and examine POIs in order of total distance to

the centroids of source locations and destinations. For each dequeued POI, the

algorithm checks whether it is possible to further minimize the shortest group trip

discovered so far by computing new trips via the last dequeued POI. Furthermore,

9



the algorithm updates the refined POI search space with the incremental retrieval

of POIs until the optimal group route has been identified. I-GTP’s performance

deteriorates with the increase of the query area, and similarly to R-GTP, when the

cardinality of COIs is not balanced. Since all POIs from different COIs are indexed

in one single R∗-tree, the POIs belonging to dense COIs have a higher chance for

being extracted in comparison to those from sparse COIs. This leads to high query

processing response time due to slow convergence towards the optimal answer.

Shang et al. [49] proposed Collective Trip Planning (CTP) queries in spatial

databases. The goal of this query is to find the lowest-cost route connecting multi-

ple sources and a destination, via at most k meeting points. The motivation behind

this query is that, when multiple travelers target the same destination, they may

want to assemble at meeting points and then go together to the destination by public

transport to reduce their global travel cost. For processing CTP queries efficiently,

Shang et al. proposed two algorithms, including an exact algorithm and an approx-

imation algorithm. The exact algorithm is capable of finding the optimal result for

small values of k (e.g., k=2) in interactive time, while the approximation algorithm,

which has a 5-approximation ratio, is suitable for other situations.

Hashem et al. [27] proposed the Sub-Group Trip Planning queries in spatial

databases. Given a group G of n users, the minimum subgroup size n′, a set of

source locations S, a set of destination locations D, sets of m types of data points,

and an aggregate function f the SGTP query returns for every subgroup size n′′ ∈

[n′, n], a subgroup G′ ∈ G of n′′ users and a set of data points that minimizes f .

Assuming that all POIs of different COIs have been indexed in separateR∗-trees

Hashem et al. proposed a solution that evaluates the query answers for different

subgroup sizes concurrently. This algorithm traverses the R∗-trees hierarchically

top-down pruning the POIs that cannot be part of the SGTP answer using the small-

est aggregate trip distance computed based on the already retrieved POIs from the

database.

Jahan et.al [31] studied the problem of Group Trip Scheduling (GTS) in spatial

databases. Given source and destination locations of group members, a GTS query

enables a group of n members to schedule n individual trips such that all trips visit

10



together the required types of POIs and the total trip distance of n group members

is minimized. In the proposed solution for processing GTS queries, the authors pro-

posed a dynamic-based programming technique that exploits the geometric proper-

ties of ellipses to refine the POI search space and prune POIs to reduce the number

of possible combinations of trips among group members.

Tabassum et al. [60] introduced the concept of dynamic groups for Group Trip

Planning queries and proposed the Dynamic Group Trip Planning (DGTP) queries.

The traditional GTP query assumes that the group members remain static or fixed

during the trip, whereas in the proposed DGTP queries, the group changes dynam-

ically over the duration of a trip where members can leave or join the group at any

POI such as a shopping center, a restaurant or a movie theater. The changes of mem-

bers in a group can be either predetermined (i.e., group changes are known before

the trip is planned) or in real-time (changes happen during the trip). The proposed

solution in [60] for processing DGTP queries exploits the trip information of users

to compute a pruning bound based on elliptical properties that allows it to search a

small data space instead of the entire database.

2.3 Problem Definition

Before we present our proposed solutions for solving SGTPQs, we need to formally

define the notions of group total travel distance and the SGTPQ itself. The symbols

used in the remainder of this chapter are summarized in Table 2.1.

Definition 2.3.1. Given a set of source locations S and destinations D, the group

total travel distance for visiting a given sequence of POIs O=(o1, o2, ..., om) is de-

fined as:

TD(p) = dn(o1, S) + n×
m−1∑
i=1

dn(oi, oi+1) + dn(om, D) (2.1)

Definition 2.3.2. Given a set of source locations S and destinations D, and a

sequence of m COIs C the Sequenced Group Trip Planning Query, denoted as

SGTPQ(S,D,C), returns a sequence of POIs O to be visited by all users together

such that TD(O) is minimal.

11



Table 2.1: Meaning of symbols used in SGTPQs
n Number of users
S = {S1, ..., Sn} Source locations of the users
D = {D1, ..., Dn} Destinations of the users
m The number of COIs
C = (C1, ..., Cm) An ordered sequence of COIs
O = (o1, o2, ..., om) A sequence of POIs
oi A POI belonging to Ci
cs, cd Centroid of S and D
de(., .), dn(., .) Euclidean and Network distances
dn(a, S) dn(a, S) =

∑n
i=1 dn(a, Si)

dn(a,D) dn(p,D) =
∑n

i=1 dn(a,Di)
de(a, S) de(a, S) =

∑n
i=1 de(a, Si)

de(a,D) de(a,D) =
∑n

i=1 de(a,Di)
MD The smallest group total travel distance computed so far

2.4 Proposed Solutions

For processing SGTPQs, we proposed three approaches. The first approach, called

Revised Iterative Approach (RIA) [6], is a modified version of Iterative Approach

(IA) [26], so that it can provide the optimal solutions. Next we proposed the Pro-

gressive Group Neighbor Exploration (PGNE) approach [6] which traverses the

search approach based on a mixed Breadth-Depth First search strategy. Our third

proposed approach, Iterative Backward Search (IBS) approach [4], discovers the

optimal sequenced group trip by traversing the search space based on a Depth-First

search strategy. In the following, we discuss each of these proposed solutions with

more details.

2.4.1 Revised Iterative Approach (RIA)

In this section, we discuss the IA and its drawbacks and our modifications on this

approach. Although Hashem et al. [26] claimed that IA obtains the optimal solution

(the shortest group trip), we show this approach is not able to produce the optimal

solution, and we made some modifications on this approach to make it obtain the

shortest possible group trip.

IA makes use of Group Nearest Neighbor (GNN) queries [42]. Given two sets

12



of points P and Q, a GNN from P with regards Q returns a point from P , which

has the smallest sum of distances to all points in Q. For example, let us sup-

pose n users are currently at locations Q = {q1, ..., qn}, and they are interested

in choosing a restaurant to have dinner together among a set of restaurants at lo-

cations P = {p1, ..., pm} in the city. The GNN query will return a restaurant with

the smallest sum of distances to all users in the group. In this work, we denote by

oki =GNN(k, {a1, ..., an}, Ci) as the POI which belongs to category Ci that has the

kth smallest total Euclidean distance w.r.t. locations {a1, ..., an}. In this work, we

used the single point method [42] for processing GNN queries.

Source location

Destination

Restaurant

Museum

Pub

s1

s2

D1

D2

M1

M2

M3

P1

P
2

M4

R1

R2

P
3

P4R3
R4

Figure 2.2: A sample road network with three types of POIs.

We describe IA by using the example of Figure 2.2, where S = {S1, S2} and

D = {D1, D2} are the source locations and destinations of a group of two users, and

(R,M,P ) is a sequence of three COIs that must be visited. The Iterative Approach

works as follows: It firstly determines the first GNN from category R w.r.t. S,

R1=GNN(1, S, R). Then it finds the first nearest neighbor from category M w.r.t.

R1, M1=NN(1, R1,M)1. Then it determines the first GNN from P w.r.t. M1 and

D, P1=GNN(1,M1 ∪D,P ), where the first alternative trip R1 → M1 → P1 will

be formed.

After that, the Iterative Approach backtracks to R1 and connects R1 to its next

NN from M , M2=NN(2, R1,M), and continues with the prefix R1 → M2. For

that, IA finds the first GNN from P w.r.t. M2 and D, P2=GNN(1,M2 ∪ D,P ),

and checks whether the new group trip R1 →M2 → P2 is shorter than the shortest

group trip found so far as R1 → M2 → P2. After that, IA backtracks again to R1,

and continues with the prefix R1. When all of possible trips with prefix R1 have
1We say point of interest pki belonging to category Ci is the kth-Nearest Neighbour (NN) w.r.t.

location a, NN(k, a, Ci), if it has the kth-smallest Euclidean distance w.r.t. a among all points
belonging to Ci.

13



Algorithm 1: RIA for a sequence of three COIs
Input: S = {S1, ..., Sn}, D = {D1, ..., Dn}, C = (C1, C2, C3)
Output: Ropt

1 MD =∞
2 A = {}
3 l = 1
4 repeat
5 ol1= GNN(l, S, C1)
6 v = 1
7 repeat
8 ov2= NN(v, ol1, C2)
9 j = 1

10 repeat
11 oj3= GNN(j, n× ov2 ∪D,C3)

12 if TD(ol1, o
v
2, o

j
3) < MD then

13 Ropt= (ol1, o
v
2, o

j
3)

14 MD = TD(ol1, o
v
2, o

j
3)

15 j = j + 1

16 until dn(o
l
1, S) + n× dn(o

l
1, o

v
2) + n× de(o

v
2, o

j
3) + de(o

j
3, D) ≤MD

17 v = v + 1

18 until dn(o
l
1, S) + n× de(o

l
1, o

v
2) ≤MD

19 l = l + 1

20 until de(o1, S) ≤MD

21 return Ropt

been checked, then the Iterative Approach backtracks one step more and connects

the source locations S to the second GNN from category R, R2=GNN(2, S, R),

and continues with prefix R2. The process terminates when all feasible trips are

examined, and the shortest route is reported as the query result.

Assuming thatCm is the last COI that must be visited in sequence (C1, ..., Cm−1, Cm),

and om−1 ∈ Cm−1, the reason why the IA approach is not able to obtain the opti-

mal solution is that the first GNN from Cm w.r.t. om−1 ∪ D does not necessarily

produce the optimal sub-trip from om−1 w.r.t. the users’ destinations. Although for

computing the total travel distance, the distance from om−1 ∈ Cm−1 to om ∈ Cm is

multiplied by the group size, but in the IA approach, om is retrieved as a POI which

has the minimum total distances w.r.t. om−1 ∪ D, regardless of the issue that the

path between om and om−1 is traversed by all group members.

14



This issue can be better explained by using the example illustrated in Figure 2.3,

where p1 belongs to C1, and two POIs p2 and p′2 belonging to C2, are respectively

the 1st and 2nd GNNs towards p1 ∪ D, i.e, p2 = GNN(1, p1 ∪ D,C2) and p′2 =

GNN(2, p1 ∪ D,C2). We observe that, although p2 is the first GNN with respect

to p1 ∪D, but the group trip (p1, p
′
2) with total group travel distance as 10 (1 + 1 +

2× 1 + 3 + 3) will produce a shorter trip, in comparison to (p1, p2) with total group

travel distance as 11 (1 + 1 + 2× 3 + 1 + 2).

Figure 2.3: An example scenario

For solving this issue, we propose the Revised Iterative Approach (RIA) [6],

where POIs from last category are retrieved w.r.t. a specific set containing n times

om−1 as well as set D. In other words, contrary to Iterative Approach, in RIA

while retrieving POIs from last category, we will consider the location of previously

retrieved POI (i.e., om−1) n times (where n is the group size). Algorithm 1 illustrates

the Revised Iterative Approach for a sequence of three COIs. We stress that the

apparently minor but crucial difference between RIA and IA is that for retrieving

POIs from C3, the RIA approach considers the location of o2 for all users, i.e., n

times (Line 11).

In this section, we discuss the pruning strategy applied in the RIA approach.

Assuming that in the given SGTPQ a sequence of m COIs as (C1, C2, ..., Cm) is

to be visited, we divide the POIs belonging to these m COIs into three different

groups. The first group contains POIs belonging to C1 , where POIs belonging to

COIsC2, ..., Cm−1 form the second group. The third group contains POIs belonging

to Cm. The reason for this division is that the POIs belonging to the first group are

supposed to be pruned based on the total Euclidean distance towards S. The POIs

belonging to the second group are supposed to be appended to a pre-formed partial

15



group trip. Finally the POIs belonging to the third group are supposed to be pruned

based on the last POI belonging to the previously formed partial trip and D. In

the following, Lemma 2.4.1 specifically discusses the pruning of POIs belonging to

the first group. Similarly, in Lemmas 2.4.2 and 2.4.6 2.4.3 we discuss the pruning

strategy applied for POIs belonging to the second and third groups.

Lemma 2.4.1. Let (C1, C2, ..., Cm) be an ordered sequence of COIs. LetMD be the

smallest group total travel distance computed so far. Assuming ol1= GNN(l, S, C1),

then there would be no other unexplored POI from C1 belonging to optimal group

trip, if the condition de(o1, S) > MD becomes true.

Proof. Let ot1= GNN(t, S, C1), where t > l. Then we have de(ot1, S) > de(o
l
1, S) >

MD. This means that the total Euclidean distance of ot1 towards S would be greater

than MD. So ot1 cannot be part of optimal group trip.

Lemma 2.4.2. Let (C1, C2, ..., Cm) be an ordered sequence of COIs. LetMD be the

smallest group total travel distance computed so far. Furthermore, let (o1, o2, ..., oi)

be a sequence of POIs, where 1 < i < m − 1. Assuming ovi+1= NN(v, oi, Ci+1),

then there would be no other unexplored POI from Ci+1 belonging to optimal group

trip, if the condition dn(o1, S) +
i−1∑
j=1

dn(oj, oj+1) +n× de(ovi+1, oi) > MD becomes

true.

Proof. Let oti+1= NN(t, oi, Ci+1), where t > l. Then we have dn(o1, S)+
i−1∑
j=1

dn(oj, oj+1)+

n×de(oti+1, oi) > dn(o1, S)+
i−1∑
j=1

dn(oj, oj+1)+n×de(ovi+1, oi) > MD. This means

that the the group trip for vising (o1, o2, ..., oi, o
t
i+1) would incur group total travel

distance greater than MD. So oti+1 cannot be part of optimal group trip.

Lemma 2.4.3. Let (C1, C2, ..., Cm) be an ordered sequence of COIs. LetMD be the

smallest group total travel distance computed so far. Furthermore, let (o1, o2, ..., om−1)

be a sequence of POIs. Assuming olm= GNN(l, n×om−1∪D,Cm), then there would

be no other unexplored POI from Ci+1 belonging to optimal group trip, if the con-

dition dn(o1, S)+
m−2∑
j=1

dn(oj, oj+1)+n×de(olm, om−1)+de(o
l
m, D) > MD becomes

true.

16



Proof. Let otm= GNN(t, n × om−1 ∪ D,Cm), where t > l. Then we have n ×

de(o
t
m, oi) + de(o

t
m, D) > n × de(o

l
m, oi) + de(o

l
m, D), resulting in dn(o1, S) +

m−2∑
j=1

dn(oj, oj+1) + n × de(otm, om−1) + de(o
t
m, D) > MD. This means that the the

group trip for vising (o1, o2, ..., om−1, o
t
m) would incur group total travel distance

greater than MD. So otm cannot be part of optimal group trip.

As mentioned before, in IA approach the POIs from the first and last categories

are selected to be examined by applying GNN queries w.r.t. all users’ source lo-

cations and destinations, respectively. The first drawback of IA is that with the

increase of number of users in the group (i.e., n become larger) selecting of POIs

from the first and last categories will incur large computational overhead due to the

processing of GNN queries w.r.t. S and D. The second drawback of IA is that this

approach does not consider the location of destinations D = {D1, ..., Dn}, while

iteratively retrieving POIs from C1 to Cm−1. Motivated by these two drawbacks

of IA [26] on SGTPQs, we propose the Progressive Group Nearest Neighbour Ex-

ploration (PGNE) approach, which traverses the search space based on a mixed

Breadth-Depth First Search strategy.

2.4.2 PGNE Approach

The idea behind the PGNE approach [6] is to incrementally create a set of Partial

Group Trips (PGTs) in the form of PGT = (o1, ..., oh), oh ∈ Ch, 1 ≤ h ≤ m

and store them in a priority queue, ordered based on the group total travel distance

lower bound. Each partial group trip PGT = (o1, ..., oh) is stored in the queue

in the form of (PGT, len(PGT ), TDLB(PGT )), where TDLB(PGT ) defines a

lower bound for the group total travel distance of PGT that is estimated as the sum

of the length of the PGT with the total Euclidean distances from the last POI in the

PGT (i.e., oh) w.r.t. the users’ destinations as the following:

TDLB(PGT ) = len(PGT ) +
n∑
i=1

de(oh, Di) (2.2)

where de(., .) indicates the Euclidean distance between two locations, and len(PGT )

represents the length of PGT as the total group travel distance from users’ source

17



locations S to the last POI in the PGT (i.e., oh) through points (o1, o2, ..., oh−1).

Formally, len(PGT ) is defined as:

len(PGT ) =
n∑
i=1

dn(Si, o1) + n

h−1∑
i=1

dn(oi, oi+1) (2.3)

The PGNE approach is an iterative process, in which, firstly we determine the

first GNN from C1 w.r.t. {cs ∪ cd} (i.e., o11 = GNN(1, {cs, cd}, C1)) generating

the first Partial Group Trip as PGT = (o11) with length
∑n

i=1 dn(Si, o
1
1), where the

TDLB(PGT ) is estimated as TDLB(PGT ) =
∑n

i=1 dn(Si, o
1
1) +

∑n
i=1 de(o

1
1, Di).

Then, we will place the new generated PGT in a priority queue, where the elements

of this queue are ordered based on TDLB(PGT ). In each subsequent iteration of

PGNE, a PGT from the top of the priority, which has the smallest TDLB , is fetched

and we perform two operations on it: progressive operation and replacement oper-

ation. In the replacement operation, the last POI in the PGT will be replaced with

another POI from the same category. On the other hand, in the progressive opera-

tion, based on the predefined order of visiting COIs, a POI from next COI will be

appended into PGT. In the following we present the pruning strategies applied in

PGNE approach, and then we discuss the two basic applied operations; replacement

and progressive operations, with more details.

2.4.2.1 Applied Pruning Strategies

In this section, we discuss the pruning strategy applied in the PGNE approach.

Assuming that in the given SGTPQ a sequence of m COIs as (C1, C2, ..., Cm) is

to be visited, we divide the POIs belonging to these m COIs into two different

groups. The first group contains POIs belonging to C1, where POIs belonging to

COIs C2, ..., Cm form the second group. The reason for this division is that POIs

belonging to the second group are supposed to be appended to a pre-formed partial

group trip. In the following, Lemma 2.4.4 specifically discusses the pruning of

POIs belonging to the first group. Similarly, in Lemmas 2.4.5 and 2.4.6 we discuss

the pruning strategy applied for POIs belonging to the second group.

Lemma 2.4.4. Let ok1 be the kth GNN from C1 with respect to cs and cd, i.e,

ok1 = GNN(k, {cs, cd}, C1), and let MD be the smallest group total travel distances

18



computed so far. Then, ok1 cannot be part of the optimal answer, as well as, there

can be no other unexplored point in C1 that can further minimize MD, if:

de(o
k
1, cs) + de(o

k
1, cd) > MD/n (2.4)

Proof. According to [25], for ok1, we have
∑n

i=1 de(o
k
1, Si) ≥ n × de(o

k
1, cs) and∑n

i=1 de(o
k
1, Di) ≥ n× de(ok1, cd). These two inequalities result in
n∑
i=1

de(o
k
1, Si) +

n∑
i=1

de(o
k
1, Di) ≥ n× (de(o

k
1, cs) + de(o

k
1, cd)) (2.5)

Then, assuming that the Inequality de(ok1, cs)+de(o
k
1, cd) > MD/n is true, based on

inequality 2.5 we can conclude
n∑
i=1

dn(ok1, Si) +
n∑
i=1

dn(ok1, Di) ≥
n∑
i=1

de(o
k
1, Si) +

n∑
i=1

de(o
k
1, Di) > MD (2.6)

Inequality 2.6 means that, since the total distance of ok1 to S and D is greater than

the smallest group total distance computed so far, ok1 cannot be part of the optimal

answer. After that, for any tth GNN from C1 with respect to cs and cd such as ot1,

i.e., ot1 = GNN(t, {cs, cd}, C1), where t > k, we have

de(o
t
1, cs) + de(o

t
1, cd) > de(o

k
1, cs) + de(o

k
1, cd) (2.7)

Then by considering inequalities 2.4 and 2.7 we have de(ot1, cs) + de(o
t
1, cd) ≤

MD/n. This means that ot1 cannot be part of the optimal group trip, since the total

distance of ot1 to S and D would be greater than the smallest group total distance

computed so far.

Lemma 2.4.5. Let PGT = (o1, o2, ..., oh), oh ∈ Ch, 1 ≤ h < m, be a partial group

trip. The following inequality holds for any point oh+1 ∈ Ch+1:

TD(o1, o2, ..., oh, oh+1) ≥ len(PGT ) +n× de(oh, oh+1) +n× de(oh+1, cd) (2.8)

Proof. According to [25], for any point oh+1 ∈ Ch+1, we have dn(oh+1, D) ≥

de(oh+1, D) ≥ n× de(oh+1, cd). Then by adding len(PGT ) + n× dn(oh, oh+1) to

both sides of Inequality dn(oh+1, D) ≥ n× de(oh+1, cd), we have

len(PGT )+n×dn(oh, oh+1)+dn(oh+1, D) ≥ len(PGT )+n×dn(oh, oh+1)+n×de(oh+1, cd)

(2.9)

19



The left side of inequality 2.9 equals to TD(o1, o2, ..., oh, oh+1). On the other hand,

since dn(oh, oh+1) ≥ de(oh, oh+1), we can replace dn(oh, oh+1) with de(oh, oh+1) in

the right side of inequality 2.9. This leads to inequality 2.8.

Lemma 2.4.6. Let PGT = (o1, o2, ..., oh), oh ∈ Ch, 1 ≤ h < m be a partial

group trip. Furthermore, let okh+1 ∈ Ch+1 be the kth GNN with respect to oh and

cd, i.e., okh+1 = GNN(k, {oh, cd}, Ch+1), and let MD be the smallest group total

travel distance computed so far. Then, appending okh+1 to partial group trip PGT

will result in forming a partial group trip with group total travel distance greater

than MD, and further, there can be no other unexplored point in Ch+1 such that

appending it to PGT can further minimize MD, if we have

de(oh, o
k
h+1) + de(o

k
h+1, cd) > (MD − len(PGT ))/n (2.10)

Proof. Inequality 2.10 can be restated as:

len(PGT ) + n× de(oh, okh+1) + n× de(okh+1, cd) > MD (2.11)

where based on inequalities 2.8 and 2.11, we can conclude:

TD(o1, ..., oh, o
k
h+1) > MD (2.12)

Based on inequality 2.12, appending okh+1 to PGT will generate a partial group trip

with group total travel distance greater than MD. After that, for any tth GNN from

Ch+1 with respect to oh and cd, i.e., oth+1 = GNN(t, {oh, cd}, Ch+1), where t > k,

we have

de(oh, o
t
h+1) + de(o

t
h+1, cd) ≥ de(oh, o

k
h+1) + de(o

k
h+1, cd) (2.13)

And then, based on inequalities 2.11 and 2.13, we have

len(PGT ) + n× de(oh, oth+1) + n× de(oth+1, cd) > MD (2.14)

where inequalities 2.8 and 2.14 lead to TD(o1, ..., oh, o
t
h+1) ≤ MD. This means

that appending oth+1 to PGT = (o1, o2, ..., oh) generates a partial group trip with

group total travel distance greater than MD.

20



2.4.2.2 PGNE Algorithm

As aforementioned the PGNE approach applies a mixed breadth-depth first search

strategy for exploring the search space. For that, PGNE performs replacement and

progressive operations. While the former explores the search space in breadth-

first search strategy, the latter examines other possible candidate solutions based on

a depth-first search strategy. In the following we provide more details about the

aforementioned operations.

1) Replacement operation: In this operation, we will replace the last POI in

the PGT = (o1, ...., oh−1, o
k
h), oi ∈ Ci with another POI from the same category as

following:

• If h = 1 and ok1 is the kth GNN w.r.t. {cs, cd}, (i.e., ok1 = GNN(k, {cs, cd}, C1)),

then we will find ok+1
1 as the (k + 1)th GNN from C1 w.r.t. cs and cd (i.e,

ok+1
1 = GNN(k + 1, {cs, cd}, C1)). The new generated partial group trip as

PGT ′ = (ok+1
1 ) will be inserted into queue, if the following inequality holds:

de(o
k+1
1 , cs) + de(o

k+1
1 , cd) ≤ (MD)/n (2.15)

The reason is that if this inequality does not hold for ok+1
1 , then according

to Lemma 2.4.4 the total network distance of ok+1
1 from S and D would be

greater than MD.

• If h > 1 and okh is the kth GNN toward {oh−1, cd}, (i.e., okh = GNN(k, {oh−1, cd}, Ch)),

then first we extract okh from PGT and generate a new PGT as PGT ′′ =

(o1, ..., oh−1). Then, the next GNN from Ch w.r.t. oh−1 and cd as ok+1
h =

GNN(k+1, {oh−1, cd}, Ch) is found. Let us suppose PGT ′=(o1, ..., oh−1, o
k+1
h )

is the new generated partial group trip resulted from appending ok+1
h to PGT ′′,

then PGT ′ can be inserted into the queue, if the following inequality holds:

de(oh−1, o
k+1
h ) + de(o

k+1
h , cd) ≤ (MD − len(PGT ′′))/n (2.16)

If this inequality holds for ok+1
h , then according to Lemma 2.4.6 the ap-

pending ok+1
h to PGT ′′ = (o1, ..., oh−1) will result the partial group trip

21



PGT ′=(o1, ..., oh−1, o
k+1
h ) with group total travel distance greater than MD.

In addition, there would be no other POI in Ch, that replacing ok+1
h with it in

PGT ′ can further minimize the MD.

2) Progressive operation: This operation is done on PGT = (o1, ..., oh), if the

number of POIs in the PGT is less than m. In this operation, we will determine

a POI o1h+1 ∈ Ch+1 to be appended to PGT, where o1h+1=GNN(1, {oh, cd}, Ch+1).

Let us suppose PGT ′=(o1, ..., oh, o
1
h+1) is the new generated partial group trip re-

sulted from appending o1h+1 to PGT. The new generated partial group trip PGT ′

will be inserted into the queue, if the following inequality holds:

de(oh, o
1
h+1) + de(o

1
h+1, cd) ≤ (MD − len(PGT ))/n (2.17)

The reason is that if this inequality becomes false for o1h+1, then according to

Lemma 2.4.6 the group total travel distance of PGT ′ will become greater than

MD. Consequently, any further progressive operation on PGT ′ will result a partial

group trip with greater group total travel distance than MD. Similarly, no further

replacement operation on o1h+1 in PGT ′ can further minimize the MD.

When the algorithm proceeds, if the new generated partial group trip PGT ′

visits all required COIs, and the group total travel distance of PGT ′ is less than

the smallest group total travel distance found so far as MD, i.e., TD(PGT ′) <

MD, then PGT ′ will be stored as the shortest group trip computed so far. PGNE

terminates when the queue becomes empty.

Algorithm 2 illustrates the PGNE approach, where the replacement and pro-

gressive operations are presented in Algorithms 3 and 4, respectively. In Line

2 of the PGNE Algorithm, we find the first GNN from C1 w.r.t. {cs, cd}, o11 =

GNN(1, {cs, cd}, C1). Subsequently, the first partial group trip is formed as PGT =

(o1) in Line 3. In Line 4, the new generated partial group trip is stored in the queue.

In Line 6, the partial group trip PGT , which has the smallest TDLB , is extracted

from top of queue. In Lines 7 and 9 replacement and progressive operations are

called, respectively. Note that the progressive operation is done on PGT , only if

the number of POIs in PGT is less than m (Lines 8-9). If the new generated par-

tial group trip, resulted from progressive or replacement operation, visits all of the

22



Algorithm 2: PGNE Approach
Input: S = {S1, ..., Sn}, D = {D1, ..., Dn}, C = (C1, C2, ..., Cm)
Output: (o1, o2, ...., om)

1 MD =∞, queue=∅
2 o11 = GNN(1, {cs, cd}, C1)
3 PGT = (o11)
4 Insert PGT into queue
5 repeat
6 Extract PGT from top of queue
7 PGT ′1= Replacement(PGT ) // Alg. 3
8 if |PGT | < m then
9 PGT ′2=Progressive(PGT ) // Alg. 4

10 if (|PGT ′1| = m and TD(PGT ′1) < MD) then
11 update(Ropt, MD, PGT ′1, TD(PGT ′1))

12 if (|PGT ′2| = m and TD(PGT ′2) < MD) then
13 update(Ropt, MD, PGT ′2, TD(PGT ′2))

14 if |PGT ′1| == 1 then
15 Insert PGT ′1 into queue if Eq.2.15 holds for PGT ′1
16 else
17 Insert PGT ′1 into queue if Eq.2.16 holds for PGT ′1
18 Insert PGT ′2 into queue if Eq.2.17 holds for PGT ′2
19 until queue is not empty

required COIs, and the corresponding group total travel distance is less than MD,

then the current shortest group trip as Ropt will be updated (in Lines 10-13). In

Lines 14-18, based on Lemmas 2.4.4 and 2.4.6, we explore the possibility that the

new generated partial group trips as PGT ′1 and PGT ′2 can be inserted into queue.

The algorithm terminates, when the queue becomes empty (Line 19).

2.4.3 Iterative Backward Search Approach

The Iterative Backward Search (IBS), similarly to the IA approach, also first pro-

duces a greedy based trip (i.e., a local optimal solution) by repeatedly visiting the

nearest POI belonging to the subsequent unvisited COI, and then backtracks step by

step, iteratively connecting POIs in the local optimal solution to their next nearest

neighbors and checking whether the new route is shorter than the current best one.

However, IBS differs from IA in three important aspects:

23



Algorithm 3: Replacement operation in PGNE approach
1 Replacement(PGT )

Input: PGT = (o1, ..., oh−1, o
k
h)

Output: PGT ′ = (o1, ..., oh−1, o
k+1
h )

2 if |PGT | = 1 then
3 ok+1

h = GNN(k + 1, {cs, cd}, C1)

4 PGT ′ = (ok+1
h )

5 else
6 ok+1

h = GNN(k + 1, {oh−1, cd}, Ch)
7 PGT ′ = (o1, ..., oh−1, o

k+1
h )

8 return PGT ′

Algorithm 4: Progressive operation in PGNE approach
1 Progressive(PGT )

Input: PGT = (o1, ..., oh−1, oh)
Output: PGT ′ = (o1, ..., oh−1, oh, o

1
h+1)

2 o1h+1 = GNN(1, {oh, cd}, Ch+1)
3 PGT ′ = (o1, ..., oh, o

1
h+1)

4 return PGT ′

• IBS considers the centroids of the users source locations and destinations

while retrieving POIs from different categories,

• IBS applies a strong and efficient pruning strategy for shrinking the POIs

search pace, and, more importantly,

• IBS relies on the Suffix Optimality Principle (stated next) in order to avoid the

main drawback of both IA and PGNE techniques, namely incurring the com-

putational overhead due to retrieving and examining the same POIs multiple

times during the processing of a single query.

Lemma 2.4.7 (Suffix Optimality Principle). Let r∗ = (o∗1, o
∗
2, ..., o

∗
m) be the optimal

answer for SGTPQ(S,D,C), and let r = (o∗h, o
∗
h+1, ..., o

∗
m) be any suffix of r∗. Then

r is the optimal solution for SGTPQ(S ′, D,C ′), where: S ′ = {S ′1, ..., S ′n} where

∀j S ′j = o∗h and C ′ = (Ch+1, ..., Cm).

Proof. Considering the notation in the lemma’s statement, let us assume there is a

better solution r̄ than r for SGTPQ(S ′, D,C ′), i.e., TD(r̄) < TD(r). Let us denote

24



by r̄∗ the trip obtained by replacing the suffix r in r∗ by r̄. Then we must have

TD(r̄∗) = TD(r∗)−TD(r)+TD(r̄), and since r̄∗ is a better suffix than r then we

must have TD(r̄∗) < TD(r∗), which contradicts the optimality of r∗, i.e., r must

be the optimal solution for SGTPQ(S ′, D,C ′).

The Suffix Optimality Principle (SOP) is simple but yet powerful as it will allow

us to save a considerable amount of computation as we shall see in the experiments

described in Section 2.5. Next we describe our main contribution, the IBS algo-

rithm, highlighting where the SOP is used.

For the sake of simplicity, but without loss of generality, we illustrate the pro-

cessing of the IBS algorithm (whose pseudo-code is shown in Algorithm 5, which

in turn uses Algorithm 6 for exploring optimal partial trips from different POIs)

by finding the optimal solution for SGTPQ(S,D,C) assuming a small sequence

C = (C1, C2, C3). We also make use of the following notation:

• R∗[oi]: The optimal partial group trip that starts from oi, i.e., the source

location of all users is the same POI oi, and the group visits the sequence

(Ci+1, ..., Cm).

• len(o1, ..., oi): The length of the partial group trip (o1, ..., oi), i.e., dn(o1, S)+

n×
∑i−1

k=1 dn(ok, ok+1).

Finally, IBS makes use of several Lemmas in order to ensure correctness of its

pruning criteria. In the following we discuss IBS with more details.

As the first step, IBS initializes the optimal group trip starting from all POIs

belonging to categories C2 and C3 as unknown (Alg. 5, Lines 1-2). Next, IBS deter-

mines the 1st group nearest-neighbour (GNN) from C1 with respect to the centroid

of source locations and to the centroid of destinations, i.e., o11 = GNN(1, {cs, cd}, C1)

(Alg. 5, Line 5). Then, using Algorithm 6, IBS starts discovering the optimal par-

tial group trip starting from o11. For this, first IBS computes the 1st GNN from C2

with respect to {o11, cd} (Alg. 6, Line 6). After that IBS checks whether the optimal

group trip starting from o12 has been computed so far (Alg. 6, Line 10). SinceR∗[o12]

is still unknown, IBS starts computing R∗[o12] by iteratively retrieving next GNNs

25



Algorithm 5: IBS Algorithm
Input:

S = {S1, ..., Sn}, //The group members source locations
D = {D1, ..., Dn}, //The group members destinations
C = (C1, C2, ..., Cm), // The sequence of COIs

Output: Ropt

1 for oi in {C2, ..., Cm} do
2 Set R∗[oi] as unknown
3 end
4 Candseq = ∅, MD =∞, SetC1 = ∅, l = 1
5 ol1= GNN(l, {cs, cd}, C1)

6 while de(cs, o
l
1) + de(o

l
1, cd) ≤

MD

n
do

7 //According to Lemma 2.4.4
8 Candseq.add(ol1)
9 R∗[ol1]= Findopt(o

l
1, Candseq,MD) //Alg. 2

10 if len(ol1) + TD(R∗[ol1]) < MD then
11 MD = len(ol1) + TD(R∗[ol1])
12 end
13 SetC1 .add(ol1)
14 Candseq.remove(o

l
1)

15 l = l + 1
16 ol1= GNN(l, {cs, cd}, C1)

17 end
18 o∗1 = argmin

∀oi∈SetC1

dn(S, oi) + TD(R∗[oi])

19 return R∗[o∗1] as Ropt

from C3 with respect to {o12, cd}. To be more specific, first the 1st GNN from C3

with respect to {o12, cd} is computed, i.e., o13 = GNN(1, {o12, cd}, C3), where the

first candidate trip is formed as (o11, o
1
2, o

1
3). Then, the algorithm determines the 2nd

GNN from C3 with respect to {o12, cd}, i.e., o23 = GNN(2, {o12, cd}, C3), and forms

the second candidate solution as (o11, o
1
2, o

2
3). Note that in each step the value ofMD,

the smallest group trip computed so far, is updated if we find a shorter trip than the

current MD value.

The process of finding the next GNN from C3 with respect to {o12, cd} for ap-

pending to partial group trip (o11, o
1
2) will be stopped when for the kth GNN ok3 =

GNN(k, {o12, cd}, C3), the inequality de(o12, o
k
3)+de(o

k
3, cd) > (MD−len(o11, o

1
2))/n

is satisfied. The reason is that according to Lemma 2.4.6 once this condition be-

26



Algorithm 6: Optimal partial group trip discovering
1 Findopt(o

u
v , Candseq,MD)

Input:
ouv // A POI belonging to Cv,
Candseq// A partial group trip,
MD//The smallest group total travel distance so far,

Output:
R∗[ouv ] // The optimal group trip starting from ouv ,

2 if (v == |COIs|) then
3 R∗[ouv ] = ouv , TD(R∗[ouv ]) = dn(ouv , D)
4 else
5 SetCv+1 = ∅, k = 1
6 okv+1= GNN(k, {ouv , cd}, Cv+1)

7 while de(ouv , okv+1) + de(o
k
v+1, cd) ≤

MD − len(Candseq)

n
do

8 //According to Lemma 2.4.6
9 Candseq.add(okv+1)

10 if R∗[okv+1] is unknown then
11 R∗[okv+1]=Findopt(o

k
v+1, Candseq,MD)

12 else
13 R∗[okv+1] is retrieved // use of SOP
14 if len(Candseq) + TD(R∗[okv+1]) < MD then
15 MD = len(Candseq) + TD(R∗[okv+1])

16 SetCv+1 .add(okv+1)
17 Candseq.remove(o

k
v+1)

18 k = k + 1
19 okv+1= GNN(k, {ouv , cd}, Cv+1)

20 o∗v = argmin
∀oi∈SetCv+1

n× dn(ouv , oi) + TD(R∗[oi])

21 R∗[ouv ] = (ouv , R
∗[o∗v])

22 TD(R∗[ouv ]) = n× dn(ouv , o
∗
v) + TD(R∗[o∗v])

23 Set R∗[ouv ] as known

24 Return R∗[ouv ]

comes true, then there would be no other unexamined POI belonging to C3 that ap-

pending it to (o11, o
1
2) would result in incurring smaller group travel distance in com-

parison to the smallest travel distance computed so far. Then, among all POIs be-

longing to C3 which have been examined, we will select o∗3 ∈ {o13, o23, ..., ok3} which

incurs the smallest group total travel distance from o12 w.r.t. group’s destinations

D (Alg. 6. Line 20). Subsequently, we will update the optimal partial group trip

27



starting from o12 as R∗[o12] = (o12, o
∗
3). Note that in Line 21, R∗[ouv ] = (ouv , R

∗[o∗v])

indicates the optimal partial group trip which starts from ouv and follows the route

R∗[o∗v].

As the next step, IBS backtracks to o11 and determines the 2th GNN from C2

with respect to {o11, cd}, i.e, o22 = GNN(2, {o11, cd}, C2), (Alg. 6, Line 6), and

consequently forms the partial group trip (o11, o
2
2). Since the optimal partial group

trip starting from o22 is still unknown, IBS repeats the same aforementioned pro-

cedure for o12 in order to obtain the R∗[o22]. To be more specific, IBS approach

iteratively finds the next GNNs from C3 with respect to {o22, cd}. Then, among

all POIs belonging to C3 which have been examined for appending to the prefix

(o11, o
2
2), we select a POI such as o∗3, which incurs the smallest group total travel dis-

tance from o22 w.r.t. D passing through o∗3. Subsequently, R∗[o22] will be updated as

R∗[o22] = (o22, o
∗
3). Then, IBS algorithm backtracks to point o11, and finds the point

o32 as o32 = GNN(3, {o11, cd}, C2), and forms the partial group trip (o11, o
3
2). Then

IBS approach repeats the same aforementioned procedure for o12 and o22 to obtain

R∗[o32].

Once again according to Lemma 2.4.6, the process of finding the next GNN

from C2 w.r.t. {o11, cd} will be stopped, when for the kth GNN, ok2, the condi-

tion de(o
1
1, o

k
2)+de(ok2, cd) > (MD − len(o11))/n becomes true. Then, among all

POIs belonging to C2 which have been examined for appending to the prefix (o11),

Setc2 = {o12, o22, ...ok2}, we select o∗2 which minimizes the group total travel distance

from o11 w.r.t. the group’s destinations (Alg. 6, Line 20). Based on selected o∗2, then

R∗[o11] will be updated as R∗[o11] = (o11, R
∗[o∗2]) (Alg. 6, Line 21), indicating a path

which starts from o11 and follows R∗[o∗2].

After exploring the optimal partial group trip starting from o11, the IBS back-

tracks to cs, and finds the 2nd GNN from C1 with respect to {cs, cd} as o21 (Alg. 5,

Line 16). Then, IBS repeats the same procedure mentioned above for o11, in order

to obtain the optimal group trip starting from o21 as R∗[o21]. The process of finding

the next GNN from C1 with respect to {cs, cd} will be stopped, when for the lth

GNN ol1 the condition de(ol1, cs) + de(o
l
1, cd) > MD/n becomes true. The reason

is that according to Lemma 2.4.4 (c.f. Appendix), once this condition becomes

28



true, then there would be no other unexamined POI from C1 as part of a group

trip incurring the smaller group travel distance in comparison to the shortest group

trip computed so far. Then, among all POIs belonging to C1 which have been ex-

amined as Setc1 = {o11, o21, ...ol1}, we will select o∗1 ∈ SetC1 , which minimizes

dn(S, o∗1) + TD(R∗[o∗1]) (Alg. 5, Line 18). Finally, R∗[o∗1] will be returned as the

final optimal answer.

One of the strong points of IBS is that, it avoids unnecessary repeated work

by applying the Suffix Optimality Principle (Lemma 2.4.7). In order to illustrate

the application of Suffix Optimality, let us suppose the current partial group trip

(o21, o
k
2). Assuming that in the previous steps of IBS the optimal group trip starting

from ok2 has already been computed as R∗[ok2] = (ok2, o
∗
3) , then there is no need for

examining POIs from C3. In this case, the pre-computed optimal suffix R∗[ok2] will

be appended to the current partial group trip (o21, o
k
2), forming the new candidate trip

as (o21, o
k
2, o
∗
3). That is, while iteratively retrieving POIs from different categories,

IBS checks the availability of the optimal group trip starting from the new retrieved

POI in order to avoid unnecessary processing.

2.4.4 Running example

We present IBS in more detail using the example of Figure 2.4. In this figure the

road network has been illustrated as a network of equally sized connected squares,

where the length of each edge of the small squares is 1 unit. Let us assume that

a group of two users who are currently at locations S1 and S2 are interested in

visiting a sequence of COIs (A,B,C). The destinations of the group members

after visiting the COIs are D1 and D2, respectively. Our goal is to find the optimal

group trip minimizing the group total travel distance. Table 2.2 illustrates step by

step the execution of IBS algorithm for this example scenario.

In the first step, we extract a2 as the first GNN w.r.t. {cs, cd} from A. In the

second step, b2 is retrieved as the first GNN w.r.t. {a2, cd}. In step 3, c2 as the

first GNN w.r.t. {b2, cd} from C will be examined, where the candidate group trips

(a2, b2, c2) will be formed, and Md will be updated as 20. We also compute and

store the optimal partial group trip starting from c2 w.r.t. destinations (i.e., R∗[c2]).

29



c
1

c
2

c4

c3

a3
a1

b1

b2

b3b4

a2

a4

a5

A

B

C

S1

S2

cs

D1

D2

cd

Source location

Centroid of source/target

 locations

Destination

Figure 2.4: A sample road network with three types of POIs.

In step 4, c1 as the second GNN w.r.t. {b2, cd} will be examined. According to

Lemma 2.4.6, examining different POIs from C for appending to the partial group

trip PGT = (a2, b2) will be stopped in step 4, since for c1 we have de(b2, c1) +

de(c1, cd) ' 4.8, where (MD − len(a2, b2))/2 = (20 − 12)/2 = 4. Subsequently,

in step 5, R∗[b2] is formed.

After computing the optimal partial group starting from b2, we aim at finding

the optimal partial group trip starting from b1 = GNN(2, {a2, cd}, B). For that,

through steps 7-9, we examine different POIs from C for appending to the partial

group trip PGT = (a2, b1). According to Lemma 2.4.6, examining different POIs

from C w.r.t. partial group trip (a2, b1), will be stopped at step 9, since we have

de(b1, c3) + de(c3, cd) ' 10.83, where (MD − len(a2, b1))/2 = (20 − 10)/2 = 5.

Subsequently, in step 10,R∗[b1] is formed, where we select c1 to be appended to par-

tial group trip PGT = (a2, b1), because it incurs the smallest group total travel dis-

tance among all examined POIs, i.e., c1=argmin 2× dn(b1, oi)+TD(R∗[oi]), where

oi ∈ {c1, c2}.

In step 11, b4, the third GNN from B w.r.t. {a2, cd} is extracted. In this step,

examining different POIs from B for appending to PGT = (a2) will be stopped,

since for b4 we have de(a2, b4) + de(b4, cd) ' 10.38, where (MD − len(a2))/2 =

(20 − 4)/2 = 8. Subsequently in step 12, R∗[a2] will be formed, where among

all retrieved and examined POIs from B for appending to partial GTP = (a2), we

select a POI incurring the smallest group total travel distance, i.e., b2 = argmin 2×

dn(a2, oi) + TD(R∗[oi]), ∀oi ∈ {b2, b1}. Recall that R∗[b2] and R∗[b1] have been

30



already computed and stored in steps 5 and 10, respectively. After computing the

optimal partial group trip starting from a2, then we start computing the optimal

partial group trip starting from a3 = GNN(2, {cs, cd}, A). Meanwhile, the main

point is that for each retrieved POI from B, we also need to check whether the

optimal partial group trip starting from that POI has already been computed or not,

in order to avoid unnecessary repeated work. To be more specific, considering

that the optimal partial group trips starting from b2 and b1 have been already pre-

computed in steps 5 and 10, respectively, according to the suffix optimality principle

there is no need for extracting POIs from C w.r.t. b1 and b2, and the previously

computed optimal partial group trips can be used. In step 15, the shortest group trip

computed so far will be updated as (a3, b2, c2) with MD = 18.

A similar process will be repeated for a1 = GNN(3, {cs, cd}, A). In steps 22

and 24, the pre-computed optimal partial group trips for b2 and b1 will be re-used.

Examining different POIs from B for appending to the partial group PGT = (a1)

will be stopped at step 25, since we have de(a1, b4) + de(b4, cd) ' 8.54, where

(MD − len(a1))/2 = (18 − 4)/2 = 7. Then in step 26, R∗[a1] will be formed. In

step 27, a4 = GNN(4, {cs, cd}, A) will be retrieved. According to Lemma 2.4.4,

the examining different POIs from A will be stopped in this step, since, we have

de(a4, cs)+de(a4, cd) ' 10.48, where (MD)/2 = (18)/2 = 9. Among all computed

candidate trips starting from a1, a2 and a3, the group trip R∗[a3] = (a3, b2, c2), with

group total travel distance 18, will be returned as the output of algorithm.

31



Ta
bl

e
2.

2:
Sa

m
pl

e
ex

ec
ut

io
n

of
IB

S
us

in
g

th
e

ex
am

pl
e

of
Fi

gu
re

2.
4.

St
ep

E
xa

m
in

ed
PO

Is
fr

om
A

E
xa

m
in

ed
PO

Is
fr

om
B

E
xa

m
in

ed
PO

Is
fr

om
C

R
∗

1
a
2

=
G
N
N

(1
,{
c s
,c
d
},
A

)
2

b 2
=
G
N
N

(1
,{
a
2
,c
d
},
B

)
3

c 2
=
G
N
N

(1
,{
b 2
,c
d
},
C

)
R
∗ [
c 2

]
=
c 2

4
c 1

=
G
N
N

(2
,{
b 2
,c
d
},
C

)
ha

lt!
5

R
∗ [
b 2

]
=

(b
2
,R
∗ [
c 2

])
6

b 1
=
G
N
N

(2
,{
a
2
,c
d
},
B

)
7

c 1
=
G
N
N

(1
,{
b 1
,c
d
},
C

)
R
∗ [
c 1

]
=
c 1

8
c 2

=
G
N
N

(2
,{
b 1
,c
d
},
C

)
9

c 3
=
G
N
N

(3
,{
b 1
,c
d
},
C

)
ha

lt!
10

R
∗ [
b 1

]
=

(b
1
,R
∗ [
c 1

])
11

b 4
=
G
N
N

(3
,{
a
2
,c
d
},
B

)
ha

lt!
12

R
∗ [
a
2
]

=
(a

2
,R
∗ [
b 2

])
13

a
3

=
G
N
N

(2
,{
c s
,c
d
},
A

)
14

b 2
=
G
N
N

(1
,{
a
3
,c
d
},
B

)
15

SO
P

is
ap

pl
ie

d
16

b 1
=
G
N
N

(1
,{
a
3
,c
d
},
B

)
17

SO
P

is
ap

pl
ie

d
18

b 4
=
G
N
N

(3
,{
a
2
,c
d
},
B

)
ha

lt!
19

R
∗ [
a
3
]

=
(a

3
,R
∗ [
b 2

])
20

a
1

=
G
N
N

(3
,{
c s
,c
d
},
A

)
21

b 2
=
G
N
N

(1
,{
a
1
,c
d
},
B

)
22

SO
P

is
ap

pl
ie

d
23

b 1
=
G
N
N

(2
,{
a
1
,c
d
},
B

)
24

SO
P

is
ap

pl
ie

d
25

b 4
=
G
N
N

(3
,{
a
1
,c
d
},
B

)
ha

lt!
26

R
∗ [
a
1
]

=
(a

1
,R
∗ [
b 2

])
27

a
4

=
G
N
N

(4
,{
c s
,c
d
},
A

)
A

lg
or

ith
m

Te
rm

in
at

es
!

32



2.5 Experiments

In this section, we compare the performance of our proposed approaches PGNE

and IBS to R-GTP and I-GTP [25]. Furthermore, in order to highlight the benefit

of using the Suffix Optimality Principle (SOP) discussed in Lemma 2.4.7, we also

compare IBS to a version of the same but without applying SOP, denoted by IBS-no-

SOP. Note that, IBS-no-SOP is a modified (stronger) version of RIA, where based

on paper [25] we applied a stronger pruning strategies for shrinking the search space

based on the distance of POIs towards the cs and cd. We also tried to compare our

approaches to GOSR [47] but based on our preliminary experiments it required at

least two times more query processing time in comparison to other competitors for

all cases, and for this reason we do not report the performance of that approach

in the experiments presented here. Table 2.3 shows the metadata of the real road

networks 2 used in our experiments.

Table 2.3: Road networks used in the experiments.
Network (Notation) Number of vertices / edges
Oldenburg (OL) 6,105 / 7,034
California (CA) 21,047 / 21,692
North America (NA) 175,813 / 179,179

It is not realistic to plan a group trip considering a whole state or continent. The

networks used should thus be considered abstractions of possibly very fine grained

cities, where the concept of a SGTPQ is realistic. For instance, OL could represent

a city where only bus stops are vertices and NA the same city, but where every

corner is mapped onto a network vertex.

The CA network contains the actual location 105,752 POIs of 42 COIs, thus

is considered a real data set de facto. Note that most POIs lie in an edge of the

network, hence why there are much more POIs than vertices in the network. Even

though the OL and NA networks are real, we do not have the POI locations for

them, thus we consider them as synthetic data sets. In each set of synthetic data set

experiments, based on a pre-specified number of POIs, we randomly select network

2https://www.cs.utah.edu/˜lifeifei/SpatialDataset.htm

33

https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm


vertices and set them as POIs (i.e., in synthetic data set experiments, we assume that

all POIs have been placed on road network vertices) and keeping all COIs equally

represented. We use the R∗-tree [12] to index POIs and keep in-memory graph data

structure to store the road network. Furthermore, we applied the traditional Dijk-

stra algorithm for computing the shortest network distance computations whenever

needed.

To evaluate our proposed approach for processing SGTPQs in a wide range of

settings we vary the following parameters:

• the POI density, D, as a percentage of the total number of vertices in the road

network,

• the query area A, i.e., the minimum bounding rectangle covering the source

locations and destinations as a percentage of the road network area,

• the group size (number of travellers) n,

• the number of COIs m, and finally,

• the POI distribution within the COIs as uniform (U) or Zipfian (Z).

The Zipfian distribution itself is divided into two groups as Zipfian-increasing

(Z-inc) and Zipfian-decreasing (Z-dec). In the Z-inc distribution, the number of

POIs in the given sequence of COIs follows an increasing order, where it gradually

decreases in the Z-dec distribution type. Table 2.4 summarizes the parameters,

their ranges, and default values (in bold) used in our experiments. For each set of

experiments, we vary the value of one parameter, and fix other parameters to their

default values.

Table 2.4: Experimental parameters and their values (bold defines default values).
parameter Range

POI density (D) 0.75%, 1.5%, 3%, 4.5%, 6%
Query area (A) 0.25%, 0.5%, 1%, 2%
Group size (n) 1, 5, 10, 30, 60
Number of COIs (m) 2, 3, 4, 5
COI density Z-dec, Z-inc, U

34



In the following, we compare the performance of different approaches regard-

ing the number of retrieved POIs and overall query processing time. In each set of

experiments, we run the experiment for 100 random SGTPQs and present the aver-

age result. We run all experiments using a computer with Intel Core i5 2.40 GHz

CPU and 8GB RAM.

2.5.1 Effect of POI Density

Figure 2.5 presents the performance comparison of different approaches in terms

of processing time when varying the number of POIs, expressed as a percentage

of number of vertices in the network. As expected all approaches incur higher

processing time with the increase of data set size. The experimental results illustrate

that in terms of response time, IBS requires on average 61%, 72% and 84% less

processing time in comparison to IBS-no-SOP in OL, CA and NA road networks,

respectively. That is, the larger the network the larger the savings yielded by using

SOP, thus highlighting its importance.

I-GTP can be seen as the runner-up performer. In fact, IBS is outperformed

by I-GTP on the smaller OL network. Nonetheless, for the medium CA and larger

NA networks IBS was, on average, 33% and 50% faster than I-GTP. The main

reason for that is, as discussed in Section 2.2, both I-GTP and R-GTP are based

on a dynamic programming approach which requires non-trivial time overall for

computing a potentially large number of shortest paths with the augmentation of

the road network.

Our experimental results show that the PGNE approach incurs a smaller re-

sponse time in comparison to IBS-no-SOP, even though both of them apply the

same pruning strategy. The reason is that PGNE applies a mixed breadth-depth first

search strategy, where the latter only focuses on traversing the search space based

on a depth-first search strategy. On the other hand, IBS outperforms the PGNE tech-

nique by applying the SOP principle, in which it reuses the pre-computed optimal

partial trips when the algorithm proceeds, resulting in reducing the query processing

overhead.

35



(a) Oldenburg (b) California

(c) North America

Figure 2.5: Effect of POI density(D).

2.5.2 Effect of Query Area

Figure 2.6 shows the effect of increasing the query area on processing time. A

simple inspection of scale of the Y-axis show that the query processing time of all

approaches follows an increasing trend with the augmentation of query area. This

is expected as for a larger query area more POIs need to be examined. Again, as

Figure 2.6(a) illustrates, the I-GTP approach is superior to every other competitor

the smaller OL road network, but for the CA network IBS is slightly faster and for

the larger NA network (Figure 2.6(c)), IBS approach yields up to 5 times smaller

in fact, response time in comparison to I-GTP method. Clearly, the gap between

the performance of IBS and I-GTP approaches becomes larger with the increase of

size of the road networks. In fact, while the query processing cost of all approaches

increases exponentially with the increase of query area in the NA network, the

response time of IBS increases with a much slower pace. The results of this set

36



(a) Oldenburg (b) California

(c) North America

Figure 2.6: Effect of query area (A).

of experiments serves to demonstrates the superiority of IBS, and the advantage of

using SOP within it, in terms of scalability with respect to query area in comparison

to other techniques, in particular with the increase of the underlying network.

Our experimental results show that, even though both IBS and PGNE tech-

niques apply the same pruning strategies for shrinking the search space, IBS takes

advantage of applying SOP based on depth-first search strategy to reduce the query

processing overhead by reusing the previously computed optimal partial group trips.

2.5.3 Effect of Group Size

Figure 2.7 shows that the processing time increases with the increase of group size

due to incurring larger number of shortest path computations required. IBS is over-

all the best performer in particular for the large NA network where it is up to 3

times faster than the second best competitor; I-GTP is a better competitor for the

37



(a) Oldenburg (b) California

(c) North America

Figure 2.7: Effect of group size (n).

smaller and medium-sized networks, though. As in previous case the advantage of

using SOP is clear, in particular for larger networks.

Finally, it is interesting to note that except for the case of the OL network, IBS

is more efficient for processing the special case of a single user STPQ as well.

Figure 2.8 shows that, the query response time of all approaches follow an in-

creasing trend with the increase of the number of COIs due to exponential aug-

mentation of search space. I-GTP algorithm requires smaller response time for

processing SGTPQs in OL road network in comparison to other competitors, but as

Figures 2.8(b) and 2.8(c) illustrate, the IBS technique outperforms I-GTP approach

for all settings of m in larger road networks, CA and NA. The reason is that I-

GTP incurs higher query processing overhead due to the higher number of shortest

path computations needed in the underlying dynamic programming approach. Fur-

thermore, the gap between the query processing cost of IBS and other competitors

38



(a) Oldenburg (b) California

(c) North America

Figure 2.8: Effect of Number of COIs (m).

(particularly IBS-no-SOP) highlights yet again the advantage of using SOP.

2.5.4 Effect of COI Density

Our final set of experiments were aimed to compare the performance of different

approaches when the densities of COIs are different. In this set of experiments, we

varied the data set distribution between Uniform (U) and Zipfian (Z), the latter in

two variants Z-inc and Z-dec. In the Uniform case the number of POIs for each

COIs is nearly the same, whereas in the Z-inc, respectively Z-dec, cases, the COIs

to be be visited first have a smaller, respectively larger, number of the POIs than the

COIs that have be visited later in the COI sequence.

As Figures 2.9(a) and 2.9(c) show, the IBS, PGNE and IBS-no-SOP approaches

with Z-inc data set distributions incur smaller query processing cost in comparison

to U and Z-dec distributions. This is because the POIs belonging to COIs that

39



(a) Oldenburg (b) California

(c) North America

Figure 2.9: COI density.

must be visited earlier have higher chance for appending to partial group trips with

smaller length, hence they have higher chance for being examined, in comparison to

POIs belonging to COIs that must be visited later. Consequently, with the increase

of the cardinality of POIs in the initial positions in the given sequence of COIs, the

search space growths with a faster pace in comparison to other data set distributions.

As seen before, I-GTP is the best performer for the smaller OL network, but IBS,

aided by SOP is the clear winner as the network gets larger.

2.6 Conclusion

In this chapter, we investigated Sequenced Group Trip Planning Queries (SGTPQs)

in spatial databases. Firstly we revised the previous proposed approach IA in order

to find the optimal answer. Additionally, we proposed PGNE and IBS approaches

relying on mixed breadth-depth depth first and depth-first search strategies for ex-

40



ploring the search space, respectively. The basic idea of PGNE approach is that

it iteratively generates and examines different potential partial group trips. As

an iterative process it retrieves a partial group trip that incurs the smallest group

travel distance and expands it by performing progressive and replacement opera-

tions. By applying those aforementioned operations, PGNE approach explores the

search space in depth and breadth first search strategies, respectively. Furthermore

we proposed IBS approach, a stateful algorithm, which applies the suffix optimal-

ity principle concept. As an iterative process, IBS computes the optimal partial

trips starting from different POIs, in which the precomputed optimal partial trips

are reused when the algorithm proceeds. Our experimental results show that while

for smaller networks the previously proposed I-GTP approach may outperform our

IBS approach, IBS is more scalable with respect to all parameters when the size of

network increases, in which case it may outperform I-GTP by a rather large factor.

This is important as crowdsourced maps become quickly finer grained, meaning

that even if the mapped geographical area remains the same, the number of vertices

and edges are bound to increase.

41



Chapter 3

Optimal Meeting Points Minimizing
Aggregate Detour Distances from
Preferred Paths

3.1 Introduction

With GPS-enabled devices, such as smartphones and the like being ubiquitous

nowadays, location-based services and location-aware applications for social net-

works are common place. In this context, we investigate the k-Optimal Meeting

Points over Preferred Path (k-OMP 3). A k-OMP 3 query takes as input a group of

travellers, with their preferred path as well as a set of points of interest (POIs), and

returns the k POIs that yield the k smallest aggregate detour distances between the

preferred paths for all group members and the chosen POIs.

As an example let us consider a group of travellers, who are at different places

(e.g., their workplaces). Before going home in the evening, using bus lines, the

group would like to meet at a restaurant, but would like it to be the restaurant which

would yield the smallest total group detour distance1. For visiting the meeting place,

each group member will take a detour from the nearest bus stop in their preferred

paths towards the meeting place. After meeting each group member will return

back to their daily paths via the same bus stop and continue their journeys towards

their destinations. The motivation behind this query is that the users would prefer

1 We define the detour distance between a POI o and a path p as the shortest distance from a
branching point in p to o, and the total group detour distance is defined as the sum of all group
members detour distances towards the meeting place.

42



1

2

3

R2

R1

R3

3

3

4

d2

d3

s1

d1

s2

s3

1

4

3b1

b2 b3

b4

b5
b6

b7

b8

5

Figure 3.1: A sample road network.

to follow the path that they are familiar with.

In order to illustrate k-OMP 3, Figure 3.1 shows a sample road network, where

three travellers (t1, t2 and t3) are traveling from their initial locations (s1, s2 and s3)

towards their destinations (d1, d2 and d3) through the preferred paths p1=(s1, b2, b4, b6, d1),

p2= (s2, b1, b2, b3, d2) and p3= (s3, b5, b6,b7,b8, d3), where, each bi is a branching

point2 in the travelers’ routes (e.g., a bus/subway stop). The stars in the figure illus-

trate three restaurants (R1, R2 and R3). In this context, consider a k-OMP3 query

to find the two restaurants which incur the two smallest aggregate detour distances,

based on preferred paths p1, p2 and p3. Table 3.1 lists the aggregate detour distances

for all POIs for aggregate functions sum and max, as well as the corresponding

branch points with respect to each of the travellers’ routes. For example, assuming

R1 is the meeting point, then t1, t2 and t3 would take a detour from their routes to-

wards the meeting point via branch points b2, b3 and b7, respectively; yielding 9 and

5 aggregate detour distance units, for aggregate functions sum and max, respec-

tively. In this particular example, the answer sets {R2, R1} and {R2, R3} would be

returned as the answers for aggregate functions sum and max, respectively.

Table 3.1: Aggregate detour distance for different POIs with respect to Figure 3.1.
Traveller Branch points aggregate detour distance

p1 p2 p3 sum max
t1 b2 b3 b7 9 (3+1+5) max{3, 1, 5}=5
t2 b4 b1 b5 6 (3+1+2) max{3, 1, 2}=3
t3 b4 b3 b8 10 (4+3+3) max{4, 3, 3}=4

As we shall discuss shortly (Section 3.2) previous approaches to solve related

2A branching point is a point in path where one can exit from/return to.

43



problems have at least one of the following shortcomings: they are either applicable

only to a single user, they rely on the notion of individual shortest paths discovered

during query processing time instead of using the notion of a (pre-defined) preferred

path, or they assume the users meet and stay together at the selected POI or that

they move together towards a common destination. As our main contribution we

propose two pruning-based approaches to answer k-OMP 3 as described above for

different aggregate functions, both are based on geometric properties of ellipses,

and overcome the shortcomings mentioned above. The former firstly prunes the

search space around each preferred path based on the total distance of POIs towards

the corresponding source location and destination, and then returns the intersection

area of all pruned areas as the final refined area. On the other hand, the latter prunes

the POIs search space based on the total distance of POIs towards the centroids of

source locations and destinations.

3.2 Related Work

To the best of our knowledge, only a restricted case of the k-OMP 3 query, namely

when a single user is considered, has been studied: In-Route Nearest Neighbour

(IRNN) [55], Path Nearest Neighbour (PNN) [14], and Best Point Detour (BPD)

[50]. In IRNN the problem setting is essentially the same as ours, but it cannot

be easily extended, if at all, to multiple users. PNN does not have the notion of

a given preferred path. Instead the shortest path between origin and destination is

used, and the solution does depend on that assumption, i.e., the meeting point is

determined as the shortest path is computed. Finally, BPD allows a user to leave

his/her preferred path at one branching point and return to it at a different branching

point, which is more generic than our assumption. However the approach requires

the user to determine a detour distance threshold in order to be practical; we, on the

other hand, do not impose such a constraint.

A seemingly related, but in fact rather different task, is that of finding optimal

meeting points, which has been addressed in [66] and [63]. In the former work the

query returns a single point where all users meet and stay. In the latter research the

44



(a)

Site

Bank

School

(b)

Figure 3.2: Mapping of a k-OMP 3 query into a MALs problem.

query returns a single point where all users meet and continue together to a common

destination. In both cases the paths from the users origin to the optimal meeting

point are determined as part of the answer at query time, whereas we assume that

different users have different destinations and their preferred paths are given as part

of the query’s input.

In [40] Lin et al proposed One-Tree Method (OTM) for finding the most ac-

cessible locations (MALs) among a set of possible sites towards a set of amenities

such as schools, supermarkets, and hospitals, etc. In the MALs problem, the goal

is to find k sites among a set of candidate sites incurring the k smallest accessi-

bility costs. The accessibility cost of a site is defined based on the total distance

towards the nearest facility instance from different pre-specified category types.

Figure 3.2(a) shows a sample MALs instance, where we are looking for a site

which incurs the minimum accessibly cost towards two sets of amenities: bank

and schools.

The MALs problem is particularly relevant in the context of our work as the

k-OMP 3 query can be mapped into the MALs problem as follows: (1) each single

preferred path in the k-OMP 3 query is mapped to an amenity type in a MALs

problem, where each branching point is considered as a facility instance, (2) the set

of POIs that the group is interested to visit in the k-OMP 3 query is mapped into the

set of candidate sites in a MALs problem. Once such mapping is done, the OTM

technqiue can also be used for solving k-OMP 3 queries. Figure 3.2(b) illustrates

the mapping of a k-OMP 3 query into a MALs problem. Given its relevance and

45



the fact we compare our proposal to the use of the OTM to solve a k-OMP 3 query-

mapped-into-MALs problems we discuss OTM in more detail next.

When solving the MALs problem the POIs of all amenities and sites are indexed

in two different R∗-trees, Ra and Rs, respectively. The basic idea of OTM is apply-

ing spatial join operation based on heap-algorithm [17] performed on Ra and Rs.

Each node u in Rs owns exactly one Local Priority Queue (LPQ), a min-heap that

maps node u to different nodes in Ra, where its elements are ordered by the lower

bound of total accessibility cost of node u towards different amenities. The OTM

also uses a Global Priority Queue (GPQ), a min-heap that maintains the generated

LPQs of all explored nodes in Rs. The elements of GPQ are ordered according to

lower bound accessibility cost of all explored nodes in Rs. For more details about

OTM, we refer the interested reader to paper [40]. We will use OTM as a baseline

in our experiments.

3.3 Proposed Approaches

As our main contribution we present two approaches, namely Multiple Ellipse-

based Pruning (MEP) and Single Ellipse-based Pruning (SEP), for processing k-

OMP 3 queries. But before discussing these approaches in details let us first for-

mally define the k-OMP 3 query.

We assume a road network modeled by an undirected graph G(V,E,W ), where

V is the set of road intersections and end-points, andE is the set of edges containing

all road segments. The set W indicates the weight of edges in G, in our case the

length of road network segments. The set of preferred paths of a group of n users

on a road network is denoted by P = {P1, P2, ..., Pn}, where each preferred path

is a sequence of branch points from source location w.r.t. the destination location,

i.e., Pi=(v1i , v
2
i , ..., v

|Pi|−1
i , v

|Pi|
i ). The length of preferred path Pi, denoted by l∗i ,

is defined as the accumulated weight of the sequence of edges traversed through

the sequence of branching points belonging to Pi, i.e., l∗i =
∑|Pi|−1

j=1 dn(vji , v
j+1
i ).

Table 3.2 defines the notation used in this chapter.

Before we formally state the k-OMP 3 queries we need to define the notions of

46



Table 3.2: Notation.
Notation Meaning
P = {P1, ..., Pn} The set of n preferred paths
Pi = (v1i , ..., v

|Pi|
i ) The preferred path of ith user

vji The jth branch point in path Pi
si = v1i , di = v

|Pi|
i the starting and ending points of path Pi

l∗i The length of path Pi
O={o1, ..., o|O|} The set of POIs

detour distance and aggregate detour distances.

Definition 3.3.1. The detour distance for POI oj ∈ O with respect to path Pi, de-

noted as dd(oj, Pi), is the minimum network distance from oj to the nearest branch

point in Pi, i.e, dd(oj, Pi) = min
vki ∈Pi

{dn(oj, v
k
i )}.

Definition 3.3.2. The aggregate detour distance of POI oj w.r.t. all paths in P , de-

noted as Add(oj, P ), is defined as: Add(oj, P ) = fni=1dd(oj, Pi) ∀Pi ∈ P . Where

f is an aggregate function. We consider two cases for f in this section: sum or max.

For instance if f is sum, then fni=1dd(oj, Pi) =
∑n

i=1 dd(oj, Pi).

We can now formally define the k-OMP 3 query:

Definition 3.3.3. Given a set of preferred paths P and a set of POIs O, the k-

OMP 3 query returns a set of k unique POIs A ⊆ O where ∀oi ∈ A, 6 ∃o′ ∈ O \ A

s.t. Add(o′) < Add(oi)

Now with the problem defined we can proceed to present MEP and SEP in

detail. In both of these approaches we retrieve, using an heuristic, an initial answer

set containing k candidate POIs from the database and compute an initial upper

bound for the kth smallest aggregate detour distance. The obtained upper bound is

used for pruning POIs that cannot be part of answer set.

The main difference between these approaches is that MEP uses the intersec-

tion of several ellipses, whose focal points depend on each of the preferred paths

(Figure 3.3a), whereas SEP uses a single ellipse with focal points on the centroid

of origins and destinations of all preferred paths (Figure 3.3b). Both of these ap-

proaches use the geometric properties of ellipses that the total distance of each point

47



s1 d1

s2 d2

p1

p2

(a) MEP strategy

s1 d1

s2 d2

p1

(b) SEP strategy

Figure 3.3: The proposed pruning strategies.

located outside an ellipse, is greater than the major axis of that ellipse [25]. We also

use this property to prune the non-promising POIs that cannot belong to the optimal

answer set. For that we first retrieve an initial answer set containing k POIs. Sub-

sequently based on the retrieved initial answer set, we compute an upper bound for

Addk. This upper bound will be used as the major axis for ellipses that are applied

for pruning the search space. The MEP approach firstly prunes the search space

around each preferred path based on the total distance of the POIs w.r.t. the corre-

sponding source location and destination, and then returns the intersection area of

all pruned areas as the final refined area. On the other hand, SEP prunes the POIs

search space based on the total distance of POIs w.r.t. the centroids of the source

locations and destinations.

In the next sections we detail the main differences between both approaches and

pose the criteria necessary to guarantee their correctness.

3.3.1 Multiple Ellipse-based Pruning Approach (MEP)

As mentioned above, first an initial answer set A = {o1, o2, ..., ok} is retrieved. In

this work, we use group nearest neighbor queries [42] w.r.t. the centroids of source

locations cs and destinations cd for extracting the k nearest POIs from C w.r.t. cs

and cd. After computing the aggregate detour distance for all POIs belonging to

that initial answer set A, an initial upper bound for the kth smallest aggregate de-

tour distance Addk is computed. In the next step, we compute one ellipse Ei for

48



each path Pi. The focal points of Ei are 〈si, di〉, where the major axis is defined as

2 × Addk + l∗i , in which l∗i is the length of path Pi (c.f. Lemmas 3.3.1 and 3.3.2).

After computing the set E = {E1, E2, ..., En}, the intersection region of all com-

puted ellipses, Eint=∩ni=1Ei, is returned as the final refined search space, based on

Theorems 3.3.3 and 3.3.4. Finally, the k optimal meeting points are obtained by

comparing the corresponding aggregate detour distance of all POIs residing in Eint.

Algorithm 7 illustrates the pseudo-code of MEP approach.

Algorithm 7: MEP Approach for sum/max
Input: P = {P1, ..., Pn}, C = {o1, ..., o|O|}, and k.
Output: k-OMP 3.

1 HR ← ∅, i← 1, Addk ←∞
2 while i ≤ k do
3 oi ← GNN(i, {cs ∪ cd}, O)
4 HR.Enqueue(oi, Add(oi, P ))

5 update Addk based on HR

6 i← 1
7 while i ≤ n do
8 Ei ←− Ellipse(< si, di >, 2× Addk + l∗i )

9 Eint ←− ∩ni=1Ei
10 for ∀oi ∈ Eint do
11 HR.Enqueue(oi, Add(oi, P ))

12 return the top k elements in HR

Next we justify the use and formally state the Lemmas 3.3.1 and 3.3.2 and The-

orems 3.3.3 and 3.3.4 that support MEP. Lemma 3.3.1 defines a lower bound for the

detour distance of a POI w.r.t. a path. The obtained lower bound is used for prun-

ing the POI search space around each preferred path Pi according to Lemma 3.3.2.

That is we compute an ellipse Ei for each path Pi in order to estimate the area con-

taining the POIs belonging to the optimal answer set. In the next step, we further

prune the search space by computing the intersection region of all pre-computed

ellipses, Eint=∩ni=1Ei, based on Theorem 3.3.3. This theorem indicates that the

intersection region Eint contains all the POIs belonging to the optimal answer set.

Furthermore, due to Theorem 3.3.4 we know that the pruned search space Eint for

solving a k-OMP 3query contains at least k POIs, assuming that |O| ≥ k.

49



si d
i

bk

o

i

j

Figure 3.4: Defining lower bound for detour distance.

Lemma 3.3.1. Let Pi = (v1i ,v2i , ..., v
|Pi|
i ) be a preferred path from source location si

to destination di, with length l∗i . The lower bound for the smallest possible network

distance of oj from path Pi (i.e., the lower bound for the detour distance of oj from

path Pi), denoted by ddlbn (oj, Pi), is given by:

ddlbn (oj, Pi) =
de(oj, si) + de(oj, di)− l∗i

2
(3.1)

Proof. Consider Figure 3.4 illustrating a preferred path Pi from source location

si to destination di, where vki has the smallest network distance w.r.t. POI oj in

comparison to all other branch points in Pi (i.e., vki is the best detour branch point

w.r.t. POI oj). Furthermore, let us suppose that the smallest network distance of vki
from si and di through the preferred path Pi be x and l∗i − x, respectively. Then,

based on the triangle inequality, we have:

de(oj, si) ≤ de(v
k
i , si) + de(v

k
i , oj) ≤ x+ de(v

k
i , oj) (3.2)

de(oj, di) ≤ de(v
k
i , di) + de(v

k
i , oj) ≤ l∗i − x+ de(v

k
i , oj) (3.3)

By summing up the Equations 3.2 and 3.3, we have

de(oj, si) + de(oj, di) ≤ l∗i + 2× de(vki , oj) (3.4)

Considering that de(vki , oj) ≤ dn(vki , oj), then we can conclude that:

de(oj, si) + de(oj, di)− l∗i
2

≤ dn(vki , oj) (3.5)

Lemma 3.3.2. Given Addk as the kth smallest aggregate detour distance computed

so far, let Ei be an ellipse defined for path Pi ∈ P with focal points {si, di}, and

major axis as 2 × Addk + l∗i . Then, the POIs residing outside of Ei cannot be part

of optimal answer set.

50



Proof. Let oj is a POI residing outside of Ei, then we have 2 × Addk + l∗i <

de(oj, si) + de(oj, di) . On the other hand, based on the estimated lower bound of

detour distance of oj w.r.t. Pi, defined in Lemma 3.3.1, we can conclude:

Addk <
de(oj, si) + de(oj, di)− l∗i

2
≤ ddlbn (oj, Pi) ≤ Add(oj, P ) (3.6)

This means that oj cannot be part of optimal answer set, since it incurs aggregate

detour distance greater than Addk.

Theorem 3.3.3. The intersection region Eint=∩ni=1Ei contains all the POIs belong-

ing to the optimal answer set.

Proof. Let us assume oj as a POI residing outside of the intersection region Eint.

Then it would be outside of at least one of the ellipses {E1, E2, ..., En}. Let Ei

be such an ellipse. Recalling that the major axis of Ei equals to 2 × Addk+l∗i ,

then we can conclude Addk < (de(oj, si) + de(oj, di) − l∗i )/2 ≤ ddlbn (oj, Pi) ≤

Add(oj, P ). This means that the POI oj placing outside of intersection region Eint

would have aggregate detour distance greater than Addk, thus it cannot be part of

optimal answer set.

Theorem 3.3.4. The intersection region Eint=∩ni=1Ei contains at least k POIs.

Proof. Let us a assume A = {o1, o2, ..., ok} as the initial answer set3, where the

intersection region Eint and the initial kth smallest aggregate detour distance Addk

were defined based on A. Then ∀oj ∈ A, 1 ≤ j ≤ k and ∀Pi ∈ P , 1 ≤ i ≤ n, we

have:

de(oj, si) + de(oj, di)− l∗i
2

≤ ddlbn (oj, Pi) ≤ Add(oj, P ) ≤ Addk (3.7)

Then we can conclude that de(oj, si) + de(oj, di) < 2 × Addk + l∗i . This means

that all POIs in initial answer set A are placed within all ellipses {E1, E2,..., En},

consequently, residing in the intersection region Eint. Thus the intersection region

Eint contains at least k POIs belonging to the initial answer set A.

3Recall that the set A is obtained via a heuristic approach such as applying group nearest neigh-
bors queries w.r.t. cs and cd.

51



Algorithm 8: SEP Approach (where the aggregate f is sum)
Input: P = {P1, ..., Pn}, C = {o1, ..., o|O|}, and k.
Output: k-OMP 3.

1 HR ← ∅, i← 1, Addk ←∞
2 while i ≤ k do
3 oi ← GNN(i, {cs ∪ cd}, O)
4 HR.Enqueue(oi, Add(oi, P ))

5 update Addk based on HR

6 Ec ←− Ellipse(< cs, cd >,
2× Addk +

∑n
i=1 l

∗
i

n
)

7 for ∀oj ∈ Ec do
8 HR.Enqueue(oj, Add(oj, P ))
9 update Addk based on HR

10 return the top k elements in HR

3.3.2 Single Ellipse-based Pruning Approach (SEP)

The Single Ellipse-based Pruning Approach (SEP) approach shrinks the search

space based on the total distance of POIs w.r.t. the centroids of source locations

and destinations, cs and cd, respectively. After obtaining the initial answer set using

group nearest neighbor queries, as explained in Section 3.3.1, SEP computes the

ellipse Ec, where the focal points are located at cs and cd, and the major axis of this

ellipse is defined based on Theorems 3.3.6 and 3.3.9 for sum and max aggregate

functions, respectively (both theorems are presented next). Similar to the MEP ap-

proach, after shrinking the POI search space into the refined area Ec, then the top

k meeting points are obtained by comparing the corresponding aggregate detour

distance of all POIs residing in Ec. In Theorems 3.3.7 and 3.3.10, we prove that

Ec contains at least k POIs, assuming that the aggregate function is sum and max,

respectively. Furthermore, Algorithm 8 illustrates the pseudocode for the SEP ap-

proach, when the aggregate function is sum, and it can be easily changed, based on

Theorem 3.3.9, to support the max aggregate function.

Lemma 3.3.5. Let P = {p1, p2, ..., pn} be the set of preferred paths of n users

with source and destination sset = {s1, s2, ..., sn} and dset = {d1, d2, ..., dn}, re-

spectively, where cs and cd are the centroid of source locations and destinations.

Assuming that the aggregate function is sum, then the lower bound for aggregate

52



detour distance of POI oj w.r.t P , denoted by Addsumlb (oj, P ), is given by:

Addsumlb (oj, P ) =
n× de(oj, cs) + n× de(oj, cd)−

∑n
i=1 l

∗
i

2
(3.8)

Proof. Consider that the aggregate function is sum. Then by summing up the

lower bound detour distance of POI oj w.r.t. the n preferred paths in P , based

on Lemma 3.3.1, we have:
n∑
i=1

{de(oj, si) + de(oj, di)} −
n∑
i=1

l∗i

2
≤ Add(oj, P ) (3.9)

According to work [25], we have n × de(oj, cs) ≤
∑n

i=1 de(oj, si), and similarly,

n× de(oj, cd) ≤
∑n

i=1 de(oj, di). Consequently, we have:

n× de(oj, cs) + n× de(oj, cd)−
∑n

i=1 l
∗
i

2

≤

n∑
i=1

{de(oj, si) + de(oj, di)} −
n∑
i=1

l∗i

2

≤ Add(oj, P ) (3.10)

Theorem 3.3.6. Let P = {p1, p2, ..., pn} be the set of preferred paths of n users

with source and destination sset = {s1, s2, ..., sn} and dset = {d1, d2, ..., dn}, re-

spectively. Let Addk be the kth smallest aggregate detour distance computed so far,

where the aggregate function is sum. Further let Ec be an ellipse with focal points

{cs, cd}, and with major axis equal to (2 × Addk +
∑n

i=1 l
∗
i )/n. Then any POI

located outside such ellipse Ec cannot be part of optimal answer set.

Proof. Based on geometric properties of ellipses, the distance between two focal

points via a point located outside the ellipse is greater than the length of the major

axis of the ellipse. Thus for a POI oj located outside of Ec, we have

2× Addk +
∑n

i=1 l
∗
i

n
< de(oj, cs) + de(oj, cd) (3.11)

where, from Lemma 3.3.5 we can conclude:

Addk ≤ n× de(oj, cs) + n× de(oj, cd)−
∑n

i=1 l
∗
i

2
= Addsumlb (oj, P ) (3.12)

53



This means that the POI oj located outside of Ec cannot be part of optimal

answer set, as it would yield an aggregate detour distance greater than Addk.

Theorem 3.3.7. Consider that the aggregate function is sum. The region Ec con-

tains at least k POIs.

Proof. (By contradiction): Let A = {o1, o2, ..., ok} be the initial answer set, ob-

tained via applying group nearest neighbors towards cs and cd. Let us assume oi,

1 ≤ i ≤ k, be the ith group nearest neighbors towards {cs ∪ cd}, placing outside of

ellipse Ec. Then we have (2×Addk +
∑n

i=1 l
∗
i )/n < de(oi, cs) + de(oi, cd). On the

other hand, according to Lemma 3.3.5, we have:

Addk ≤ n× de(oi, cs) + n× de(oi, cd)−
∑n

i=1 l
∗
i

2
= Addsumlb (oi, P ) (3.13)

This contradicts with our basic assumption that Addk is the kth smallest aggregate

detour distance computed so far. Thus all k elements of A are within Ec, i.e. it

contains at least k POIs.

Lemma 3.3.8. Consider the same notation used in Lemma 3.3.5. If the aggregate

function is max, then the lower bound for aggregate detour distance of POI oj w.r.t

P , denoted by Addmaxlb (oj, P ), is given by:

Addmaxlb (oj, P ) =
de(oj, cs) + de(oj, cd)− max

1≤i≤n
{l∗i }

2
(3.14)

Proof. Considering the aggregate function as max, then by aggregating the lower

bound detour distance of POI oj w.r.t. n preferred paths in P , based on Lemma 3.3.1,

we have:

max
1≤i≤n

{de(oj, si) + de(oj, di)− l∗i
2

} ≤ Add(oj, P ) (3.15)

Considering that according to work [25], we have de(oj, cs) ≤ max
1≤i≤n

{de(oj, si)}

and de(oj, cd) ≤ max
1≤i≤n

{de(oj, di)}, thus, we can conclude:

de(oj, cs) + de(oj, cd)− max
1≤i≤n

{l∗i }

2
≤

max
1≤i≤n

{de(oj, si) + de(oj, di)− l∗i
2

}

≤ Add(oj, P ) (3.16)

54



Theorem 3.3.9. Consider the same notation used in Theorem 3.3.6. If the aggregate

function is max, then POIs located outside of an ellipseEc with focal points {cs, cd},

and with major axis as 2×Addk + max
1≤i≤n

{l∗i } cannot be part of optimal answer set.

Proof. Due to geometric properties of ellipses, for a POI oj located outside of Ec,

we have

2× Addk + max
1≤i≤n

{l∗i } < de(oj, cs) + de(oj, cd) (3.17)

Then based on Lemma 3.3.8, we can conclude that:

Addk ≤
de(oj, cs) + de(oj, cd)− max

1≤i≤n
{l∗i }

2
= Addmaxlb (oj, P ) (3.18)

Therefore the POI oj located outside of Ec cannot be part of the answer set,

since the lower bound for aggregate detour distance of oj w.r.t. P would be greater

than Addk.

Theorem 3.3.10. Consider that the aggregate function is max. The intersection

region Ec contains at least k POIs.

Proof. (By contradiction): Let us assume there are less than k POIs inside the Ec.

In other words, the POI ok incurring the kth smallest aggregate detour distance is

placing outside of ellipse Ec. This leads to 2 × Addk + max
1≤i≤n

{l∗i } < de(ok, cs) +

de(ok, cd). Then based on Lemma 3.3.8, we can conclude Addk < Addmaxlb (ok, P ).

This contradicts with our basic assumption that Addk is the kth smallest aggregate

detour distance computed so far.

3.4 Experimental Results

We evaluate the performance of our proposed approaches, MEP and SEP, as well as

our baseline, OTM, for processing k-OMP 3 queries using real datasets [9] with the

public bus transportation networks and eateries (as POIs) in Amsterdam, Oslo and

Berlin as of March/2007. Figures 5a and 5b illustrates some of the data from Oslo.

Note that for all experiments we make the simplifying assumption that the preferred

paths of the travelers are given by randomly selected bus routes. Such setting main-

tains our experiments realistic according to the motivation discussed earlier, e.g.,

55



(a) Bus-stops (b) Restaurants and
coffee shops

Figure 3.5: Bus stops and POIs in Oslo.

colleagues traveling from their work to their homes and stopping somewhere to

meet somewhere in between. Table 3.3 summarizes details of the data set used in

our experiments.

Table 3.3: Summary of the dataset used in our experiments.
Amsterdam Oslo Berlin

Road Network no. of vertices 106,599 305,174 428,768
(size) no. of edges 130,090 330,632 504,228

POIs
Eateries (restaurants

824 958 3,083
and coffee shops)

Public Bus no. of routes 82 107 236
Network (size) no. of stops 887 988 4,346

Table 3.4: Experimental parameters and their values (bold defines default values).
Parameter Range
Density of POIs (Dp) 10%, 25%, 50%, 100%
Group size (n) 1,2,3,4
Answer size (k) 3, 5, 10, 20

In what follows, we varied the following parameters: (1) the density of POIs

(Dp), (2) the group size n and (3) the number of requested POIs k. Table 3.4

summarizes the parameter names, their ranges, and default values. For each set of

experiments, we vary the value of one parameter, and fix the other parameters to

their default values. It is important to note that even though the qualitative behavior

of all approaches is relatively similar across all the three datasets, quantitatively

56



there is a very clear difference due to the size of the datasets, i.e., all approaches

becomes proportionally more expensive with the size of the cities.

For computing the aggregate detour distance for each retrieved POI, we use

the well-known Dijkstra algorithm. For each set of experiments, we executed 50

k-OMP 3 queries and report average figures. All experiments were done using a

computer with Intel Core i5 2.40 GHz CPU and 8GB RAM.

For the sake of clarity we need to explain how we computed the set of POIs

within the intersection of ellipses of MEP or the single ellipse in SEP. For MEP

we compute the corresponding MBR for each ellipse based on [38]. Subsequently,

the intersection of all pre-computed MBRs (i.e., rectangles) as Eint is computed.

Finally, we perform a range-query to retrieve all POIs residing in the Eint. Simi-

larly, for SEP approach we compute the corresponding MBR of Ec, also using [38].

Subsequently, we perform a range-query to retrieve all POIs within Ec.

3.4.1 Effect of POI Density

In this set of experiments when Dp < 100% it means we randomly selected an

accordingly smaller subset of the POIs from each dataset. We do this in order to

investigate the scalability of the investigated approaches with respect to that param-

eter.

Our experimental result when using the sum aggregate, shown in Figure 3.6,

shows that the response time of all approaches becomes larger with the increase of

the density of POIs. We note when the density of POIs in Amsterdam and Oslo is

smaller than 50%, OTM outperforms SEP and MEP. In all other cases the OTM ap-

proach requires higher processing time in comparison to other competitors. This is

because the performance of OTM technique depends highly on the density of POIs.

Assuming that all branch points of all users’ preferred paths and POIs have been

indexed by the R∗-trees Rp and Rc, respectively, then the spatial join operation on

on those trees incurs higher query processing time with the increase of density of

POIs, due to the augmentation of height of corresponding R∗-trees. This explana-

tion is in fact valid for all experiments we performed, i.e., the cost of this join is the

determinant factor in the the relative poor performance of OTM and therefore we

57



will not repeat it in the following.

Also our experimental results illustrate the superiority of SEP over MEP for

all settings of Dp. The main reason is that, as illustrated in Figure 3.7, SEP tech-

nique provides a stronger pruning strategy in comparison to the MEP technique for

pruning the non-promising POIs by considering the total distance of POIs towards

the centroids of source locations and destinations. Particularly when the preferred

paths of users are placed far from each other, then the pruned search space as the

intersection region of all pruned areas around the preferred paths becomes larger

than the pruned area around the centroid of source locations and destinations.

25% 50% 75% 100%
0

2

4

6

8

10

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 
OTM
SEP
MEP

(a) Amsterdam

25% 50% 75% 100%
0

10

20

30

40

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 
OTM
SEP
MEP

(b) Oslo

25% 50% 75% 100%
0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 

OTM
SEP
MEP

(c) Berlin

Figure 3.6: Effect of Dp on processing time for sum aggregate function

25% 50% 75% 100%
0

50

100

150

200

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(a) Amsterdam

25% 50% 75% 100%
0

100

200

300

400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(b) Oslo

25% 50% 75% 100%
0

100

200

300

400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.7: Effect of Dp on number of examined POIs for sum aggregate function

Figures 3.8 and 3.9 show the results of varying Dp on the query processing time

and number of examined POIs, respectively, when the aggregate function is max. As

58



25% 50% 75% 100%
0

5

10

15

20

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 
OTM
SEP
MEP

(a) Amsterdam

25% 50% 75% 100%
0

10

20

30

40

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 
OTM
SEP
MEP

(b) Oslo

25% 50% 75% 100%
0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Dp

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.8: Effect of Dp on processing time for max aggregate function

25% 50% 75% 100%
0

100

200

300

400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(a) Amsterdam

25% 50% 75% 100%
0

50

100

150

200

250

300

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(b) Oslo

25% 50% 75% 100%
0

100

200

300

400

500

600

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

Dp

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.9: Effect of Dp on number of examined POIs for max aggregate function

in the case above (sum aggregate), and for the same reason, the processing time of

OTM technique increases with a faster pace than that of SEP and MEP approaches

with the increase of Dp. Contrary to the sum aggregate, now MEP approach incurs

smaller query processing cost by taking advantage of applying stronger pruning

strategy and shrinking the search space into a smaller refined search space. In order

to illustrate the performance comparison of SEP and MEP approaches, we compare

the area of corresponding refined search space of these two techniques, Ec and

Eint. The MEP technique returns a refined search space as the intersection area

of all pruned areas around the preferred paths based on corresponding length li.

On the other hand, the SEP technique prunes the search space as an ellipse where

the major axis is defined based on the maximum length of all users preferred paths,

2×Addk+ max
1≤i≤n

{l∗i }. That is, as illustrated in Figure 3.9, the MEP approach exhibits

59



superiority over SEP due to shrinking the search space into a smaller refined area.

1 2 3 4
0

50

100

150

200

250

300

R
es

po
ns

e 
tim

e 
(s

)

n

 

 
OTM
SEP
MEP

(a) Amsterdam

1 2 3 4
0

50

100

150

200

250

300

R
es

po
ns

e 
tim

e 
(s

)

n

 

 
OTM
SEP
MEP

(b) Oslo

1 2 3 4
0

50

100

150

200

250

300

R
es

po
ns

e 
tim

e 
(s

)

n

 

 

OTM
SEP
MEP

(c) Berlin

Figure 3.10: Effect of n on processing time for sum aggregate function

1 2 3 4
0

100

200

300

400

500

600

700

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(a) Amsterdam

1 2 3 4
0

200

400

600

800

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(b) Oslo

1 2 3 4
0

200

400

600

800

1000

1200

1400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.11: Effect of n on number of examined POIs for sum aggregate function

3.4.2 Effect of Group Size

Figure 3.10 shows that when the aggregate is sum, the response time of MEP and

OTM approaches increases sharply with the augmentation of group size, but the

SEP approach scales better for a higher value of n in comparison to its competi-

tors. The main reason is that with the increase of number of users in the group,

particularly when the preferred paths of users are placed far from each other, then

the pruned search space around each preferred path and subsequently the inter-

section area of all pruned areas augments with a faster pace than that of SEP

technique. That is SEP approach requires smaller response time for processing

60



k-OMP 3 queries, with the increase of number of users in the group, by pruning

the search space around the centroid of all source locations and destinations. Fig-

ure 3.11 illustrates the performance comparison of MEP, SEP and OTM in terms

of number of examined POIs, when the group size increases from 1 to 4, assuming

that the aggregate function is sum.

1 2 3 4
0

50

100

150

200

250

300

R
es

po
ns

e 
tim

e 
(s

)

n

 

 
OTM
SEP
MEP

(a) Amsterdam

1 2 3 4
0

100

200

300

400

R
es

po
ns

e 
tim

e 
(s

)

n

 

 
OTM
SEP
MEP

(b) Oslo

1 2 3 4
0

100

200

300

400

500

R
es

po
ns

e 
tim

e 
(s

)

n

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.12: Effect of n on processing time for max aggregate function

1 2 3 4
0

100

200

300

400

500

600

700

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(a) Amsterdam

1 2 3 4
0

200

400

600

800

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(b) Oslo

1 2 3 4
0

200

400

600

800

1000

1200

1400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

n

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.13: Effect of n on number of examined POIs for max aggregate function

When the aggregate is max, Figure 3.12 shows that all approaches incur higher

response time with the increase of n, since as above, the larger group size the higher

number of detour distance computations for each retrieved POI as well as higher

number of POIs examinations. Again, unlike for the case of the sum aggregate

MEP is the better performer. Based on our experimental results, MEP approach

outperforms other competitors in terms of response time for all settings of n. Fur-

61



3 5 10 20
0

50

100

150

200

R
es

po
ns

e 
tim

e 
(s

)

k

 

 
OTM
SEP
MEP

(a) Amsterdam

3 5 10 20
0

50

100

150

200

R
es

po
ns

e 
tim

e 
(s

)

k

 

 
OTM
SEP
MEP

(b) Oslo

3 5 10 20
0

200

400

600

800

1000

R
es

po
ns

e 
tim

e 
(s

)

k

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.14: Effect of k on processing time for sum aggregate function

3 5 10 20
0

100

200

300

400

500

600

700

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(a) Amsterdam

3 5 10 20
0

200

400

600

800

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(b) Oslo

3 5 10 20
0

200

400

600

800

1000

1200

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.15: Effect of k on number of examined POIs for sum aggregate function

thermore, the gap between the response time of MEP and SEP augments with the

further increase of n. The reason is that while MEP approach shrinks the search

space as the intersection region of all pruned areas around all preferred paths based

on corresponding length of preferred path, the SEP technique prunes the search

space as an ellipse where the major axis is defined based on the maximum length of

all users preferred paths, 2×Addk+ max
1≤i≤n

{l∗i }. Because of that with the increase of

n, the gap between the response time of these two techniques becomes larger. Fig-

ure 3.13 illustrates the performance comparison of SEP, MEP and OTM in terms

of number of examined POIs, when the group size increases from 1 to 4, assuming

that the aggregate function is max.

62



3 5 10 20
0

50

100

150

R
es

po
ns

e 
tim

e 
(s

)

k

 

 

OTM
SEP
MEP

(a) Amsterdam

3 5 10 20
0

50

100

150

200

R
es

po
ns

e 
tim

e 
(s

)

k

 

 

OTM
SEP
MEP

(b) Oslo

3 5 10 20
0

100

200

300

400

500

R
es

po
ns

e 
tim

e 
(s

)

k

 

 

OTM
SEP
MEP

(c) Berlin

Figure 3.16: Effect of k on processing time for max aggregate function

3 5 10 20
0

100

200

300

400

500

600

700

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(a) Amsterdam

3 5 10 20
0

200

400

600

800

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(b) Oslo

3 5 10 20
0

200

400

600

800

1000

1200

1400

N
um

be
r o

f e
xa

m
in

ed
 P

O
Is

k

 

 
OTM
SEP
MEP

(c) Berlin

Figure 3.17: Effect of k on number of examined POIs for max aggregate function

3.4.3 Effect of Answer Size

Figure 3.14 reflects the case that when increasing k and the aggregate is sum, the

search space becomes larger, which translates in larger query processing time for

all approaches, and overall SEP displays the best performance, being actually quite

robust. Figure 3.15 illustrates the performance comparison of MEP, SEP and OTM

in terms of number of examined POIs, when k increases from 3 to 20, assuming

that the aggregate function is sum. Our experiemnetal results show that the SEP

approach refines the search space into a smaller refined area in comparison to MEP

approach, because it prunes the search space into a smaller refined area by con-

sidering the total distance of POIs towards the centroid of source locations and

destinations.

63



When the aggregate function is max, Figures 3.16 and 3.17 indicate that with

the increase of k, the query processing cost of all approaches increases, since for a

larger k they need to retrieve a higher number of POIs. Based on ourt results, the

MEP approach requires smaller processing time in comparison to others.

3.4.4 Summary of experimental results

• Our proposed techniques, the MEP and SEP approaches, incur smaller re-

sponse time for processing k-OMP 3 queries for both sum and max aggre-

gate functions, in comparison to applying spatial join operation solution OTM

approach. This is due to applying efficient pruning strategies for shrinking the

search space into a smaller refined search space.

• The SEP approach is the most efficient and robust solution in terms of re-

sponse time, for processing k-OMP 3 queries in the case that the aggregate

function is sum, due to shrinking the search space into a smaller refined area

by considering the total distance of POIs towards the centroids of source lo-

cations and destinations.

• In the case that the aggregate function is max, the MEP approach provides

a stronger pruning strategy in comparison to other techniques, which results

in incurring faster response time. The reason is that while MEP approach

shrinks the search space as the intersection region of all pruned areas around

all preferred paths, the SEP technique prunes the search space as an ellipse

where the major axis is defined based on the maximum length of all users

preferred paths, leading to a larger refined area than that of MEP technique.

• The performance of OTM technique highly depends on the density of POIs.

The reason is that the spatial join operation on Rc and Rp based on top-down

traversal of the aforementioned R∗-trees incurs higher query processing time

particularly with the increase of density of POIs, due to augmentation of

height of correspondingR∗-trees. That is due to the complexity of spatial join

operation and top-down traversal of associated R∗-trees, the gap between the

64



response time of OTM approach and other competitors becomes larger with

the increase in the density of POIs.

3.5 Conclusion

In this chapter, we proposed a new query type, namely the k-OMP 3 query. Given

a set of preferred paths of a group of n users and a set of POIs, the k-OMP 3 query

finds k POIs, incurring the k smallest aggregate detour distances towards all group

members preferred paths. For processing k-OMP 3 queries, we developed two ef-

ficient approaches: MEP and SEP. In order to reduce the query processing cost, the

proposed approaches shrink the POIs search space into a smaller space based on ge-

ometric properties of ellipses. Our experimental results show that, in the case that

the aggregate function is max, MEP approach provides a stronger pruning strategy

in comparison to SEP approach, which results in incurring faster response time.

On the other hand, SEP approach is the most efficient and robust solution in terms

of response time for processing k-OMP 3 queries, in the case that the aggregate

function is sum.

65



Chapter 4

Best-Compromise In-Route Nearest
Neighbor Queries

4.1 Introduction

Consider a scenario where a user has his/her preferred path, say a particular bicycle

path from work to home, and further assume that the user needs to find a certain type

of point-of-interest (POI), e.g., an ATM, a supermarket or a water fountain, while

traveling on this path. Assuming that the user wants to return to his/her preferred

path after visiting the POI, it would make sense to search for the POI that yields the

minimum detour from the preferred path. This type of problem has been previously

defined as In-Route Nearest-Neighbor (IRNN) queries [55]. We extend the notion

of IRNN queries to consider that it may better for the user to deviate more from

his/her preferred path if that would lead to a shorter path overall.

For the sake of an example, let us consider a user’s preferred path P ∗ = 〈s, v1, v2, d〉

from his work place s to his home d as illustrated in Figure 4.1, where o1 and o2

denote POIs, e.g., ATMs or restaurants. On the one hand, if the user wanted to

minimize only the total travel distance while visiting a POI, path P 1 = 〈s, o1, d〉

(with travel distance 17) would be the best solution. On the other hand, if the

user wanted to visit a POI based on a path minimizing the detour distance1 from

P ∗, i.e., the route found by issuing an IRNN query, the best path would be P 2 =

〈s, v1, v2, o2, v2, d〉 (with detour distance 4). While P 2 leads to a smaller detour than

P 1 (4 vs 17), P 1 leads to a shorter path overall (17 vs 26). Which one would a user

1We defer the definition of detour distance to Section 4.3.

66



v1 v2

ds

4

8

10
6

2

5
12

9

o1

o2

(a) Oldenburg

ds

4

8

10
6

2

5
12

9

v1 v2

o1

o2

(b) California

ds

4

8

10
6

2

5
12

9

v1 v2

s

o1

o2

(c) North America

ds

4

8

10
6

2

5
12

9

v1 v2

o1

o2

(d) California

ds

4

8

10
6

2

5
12

9

v1 v2

o1

o2

(e) North America

Figure 4.1: Alternatives paths on a simplified road network from s to d visiting one
of POIs o1 or o2. Table 4.1 summarizes the travel and detour distance implied by
each such path.

prefer in general? The answer is not obvious as the trade-off between minimizing

the total travel distance and the detour distance may not be easy to assess. Let us

consider other alternative paths. P 3 = 〈s, v1, v2, o2, d〉 yields a total travel distance

of 23 and a detour distance of 11, while P 4 = 〈s, o1, v1, v2, d〉 yields a total travel

distance of 29 but the same detour distance of 11.

Given all such alternatives, can we efficiently find a set that represents answers

that are objectively better than others? Fortunately the answer is yes. Indeed, in-

vestigating this novel problem, which we name Best-Compromise In-Route Nearest

Neighbor (BC-IRNN) query forms the main contribution of this chapter.

A simplistic way to address BC-IRNN queries is to combine both criteria (total

travel distance and detour distance) and optimize the combined distance. However,

67



Table 4.1: Paths and their corresponding costs w.r.t. Figure 4.1.
Path Cost (distance)

Travel Detour

P 1 17 17

P 2 26 4

P 3 23 11

P 4 29 11

finding a single meaningful function means weighting the importance of each type

of distance. This depends primarily on the user’s preferences which can change

often, e.g., on a rainy day one may prioritize the shortest path, whereas in a sunny

day the preferred path, even if longer, may be more pleasant. Hence, finding an

appropriate weighting would not only add an extra parameter to the problem but

would make a solution found potentially short-lived and user-dependent.

Another alternative way to cope with BC-IRNN is to determine all results that

are optimal under an arbitrary distance combination. This is the very notion of

skyline queries [68]. We discuss those in details shortly in Section 4.3, but for the

sake of motivation and in generic terms, the result set of a skyline query contains

objects which are not dominated by any other one. An object oi is dominated by

another object oj if for each cost criterion the cost of oi is equal or larger than the

cost of oj , and for at least one criterion the cost of oj is strictly smaller than the

cost of oi. If we consider the paths shown in Figure 4.1, we can say that P 1 (the

one that yields minimum total travel distance), P 2 (which yields minimum detour

distance) and P 3 are not dominated by any other path. P 4, however, is dominated

by P 2 and P 3 and is therefore a non-interesting solution that can be discarded, and

all others are equally interesting and should be offered as alternatives for the user.

Figure 4.2(a) illustrates the concept of skyline queries. It shows the corresponding

travel and detour distances of these four candidate paths. The linked dots denote the

frontier of non-dominated paths and the shaded area contains the dominated ones.

However, it is well known that skyline queries may return a large number of

results, potentially with similar costs, making it very hard to the user to choose a

particular solution. In order to diminish the size of the solution to a more intuitive

set, the authors in [54] proposed the notion of linear skyline queries. A linear sky-

68



p1

p2

Travel distance

 D
e
to

u
r 

d
is

ta
n
c
e

p4

p3

(a) Conventional skyline

p1

p2

Travel distance

 D
e
to

u
r 

d
is

ta
n
c
e

p4

p3

(b) Linear skyline

Figure 4.2: Conventional and linear skylines for the example shown in Figure 4.1
and summarized in Table 4.1.

line returns a typically much smaller subset of the conventional skyline which is

optimal under any linear combination of the competing criteria. Figure 4.2(b) illus-

trates the linear skyline set obtained for the example shown in Figure 4.1. Although

P 3 is a non-dominated path from a conventional skyline perspective, it is linearly

dominated by {P 1, P 2}. Note that P 4 that is already conventionally dominated

is also linearly dominated by {P 1, P 2}. Therefore, for this example the answer

set {P 1, P 2} contains the (smaller and more diverse) linearly non-dominated paths

which would be returned to the user.

Given the discussion above we propose an efficient approach based on the no-

tion of linear skylines to process BC-IRNN queries. The first step of our proposal is

to calculate upper bounds to the travel and detour distances of non-dominated paths.

This allows us to prune paths that exceed the determined thresholds, i.e., dominated

paths, during a network expansion from s that explores the paths in increasing order

of travel distance. Given the lack of any other research to solve BC-IRNN queries

we compare our proposal to a straightforward approach that finds all shortest paths

between all pair of vertices in P ∗ that visit at least one POI. Our results indicate that

our proposed approach can be orders of magnitude faster than such an alternative.

69



4.2 Related Work

Next we review previous research related to two particular topics which are closely

related to BC-IRNNs and to the “backbone” of our proposed solution: path-finding

based on pre-defined paths and skyline queries.

Shekhar and Yoo proposed the In-Route Nearest Neighbor (IRNN) query [55].

Their query aims at finding the POI through which the detour from the preferred

path on the way to the destination is minimized. Differently from an IRNN query,

which focus solely on minimizing the deviation from the original route, BC-IRNN

queries provide the user with multiple alternative paths that yield different travel and

detour distances, but that are still interesting in the sense that they are not linearly

dominated by any other path.

In [5] we studied an extension of IRNN queries named k-Optimal Meeting

Points based on Preferred paths (k-OMP3) queries. Instead of a single user and

his/her preferred path, a k-OMP3 query takes as input a group of n users and their

corresponding preferred paths. It then finds the POI incurring the smallest possible

total detour distance from the group’s preferred path assuming that users leave from

and return to their preferred paths through the same so-called branching point. In

this work, we do not make such assumption. Similarly to IRNN queries, in k-OMP3

queries there is no concern regarding the actual total path length, the only goal is to

minimize the detour distance.

Chen et al. address a query similar to IRNN called k-Path Nearest Neighbor

(k-PNN) query [14]. The main difference between the IRNN and k-PNN queries

is that in the latter there is no notion of a preferred path. Instead the deviation is

measured w.r.t. the shortest path between the user’s origin and destination which is

itself built “on-the-fly.” Also, the returned path needs to visit k POIs, whereas in

our case one POI suffices.

Shang et al. [50] investigated the Best Point Detour (BPD) query. Given a pre-

ferred path, a BPD query discovers the detour point with the minimum detour cost

subject to a used-defined threshold. The detour cost is defined as the extra network

distance introduced by a detour w.r.t. the travel distance of the original path. In

70



this work we consider the notion of unconstrained detour distance, which is given

by the sum of the length of the edges that do not belong to the preferred path. In

addition, as opposed to the case of BC-IRNN queries, in BDP queries there is no

concern about the total travel distance.

Differently from the works presented above which aim at minimizing a single

distance, Huang et al. studied In-Route Skyline (IRS) queries [29]. In that work the

authors consider the location of a user along their preferred path and return the set

of POIs, w.r.t. that location, belonging to the skyline set based on criteria similar to

the ones we use. We, on the other hand, do not consider the user’s location, rather

our returned skyline set is comprised of entire paths instead of POIs. In a sense

IRN queries are for use during a trip whereas BC-IRNN are for use when planning

a trip. Also, while the former return the conventional skyline set, the latter return

the (smaller and more diverse) linear skyline set.

Also, in the context of path skyline queries, Kriegel et al. studied the problem

of finding all conventionally non-dominated paths between two given vertices in a

multicost road network [35]. The authors considered multiple cost criteria such as

distance, driving time, the number of traffic lights, gas consumption. Shekelyan et

al. investigated the problem of computing Linear Path Skyline in Bi-criteria Net-

works [54]. However, neither [35] or [54] consider the existence of a preferred path.

Another fundamental difference between those papers and the problem addressed

in this work is the fact that we aim at finding paths from a starting point s to a des-

tination d that visit at least one POI, rather than POI-independent non-dominated

paths from s to d.

4.3 Preliminaries

We assume that a road network is modeled by an undirected graph G(V,E,W ),

where V is a set of vertices that represent the road intersections and end-points, E

is the set of edges containing all road segments andW indicates the weight of edges

in E. In our case, the weight of an edge connecting vertices vi and vj is given by

the length of the road network segment that connects those vertices and is denoted

71



Table 4.2: Notation.
Notation Meaning

P i = 〈vi1, vi2, ..., vin〉 A path P i (P ∗ is the preferred one)
vij The j-th vertex in P i

s = vi1, d = vin The source and destination in P i

w(vi, vj) = w(vj, vi) Length of the edge connecting vi to vj
O = {o1, ..., o|O|} The set of POIs
TD(P i) Travel distance of path P i

DD(P i, P ∗) Detour distance of path P i w.r.t. P ∗

pi = (pi1, p
i
2) Cost vector of path P i

P i ≺ P j P j is conventionally dominated by P i

{P i, P j} ≺L P k P k is linearly dominated by P i and P j

P TD Shortest full path
PUD Full path that yields the minimum detour distance
DDU Upper bound for detour distance
TDU Upper bound for travel distance
OTD(P i, d) Optimistic travel distance of P i w.r.t. the destination d = v∗n

by w(vi, vj). Moreover, the set of POIs of the road network is denoted O.

We define a path P i = 〈vi1, vi2, ..., vin〉 in G as a cycle-free sequence of vertices

such that any two consecutive vertices vij and vij+1, for 1 ≤ j < n, are directly

connected by an edge (vij, v
i
j+1) ∈ E. Particularly, a preferred path is denoted

P ∗ = 〈v∗1, v∗2, ..., v∗n〉, where v∗1 represents the user’s starting location s and v∗n is the

destination d. Additionally, a path P i = 〈s, ..., oj, ..., d〉 from s to d that visits at

least one POI oj ∈ O is referred to as full path. Throughout this chapter we use the

notation presented in Table 4.2.

In the following we provide the formal definitions for travel and detour dis-

tances. Subsequently, in order to distinguish between linear skylines and skylines

in the ordinary sense, we first recall the definition of conventional skylines and the

conventional dominance relation they are based on.

Definition 4.3.1 (Travel Distance). Given a path P i = 〈vi1, vi2, ..., vin〉 inG, its travel

distance is given by the sum of the weights of the edges in it, i.e.,

TD(P i) =
n−1∑
j=1

w((vij, v
i
j+1)).

Definition 4.3.2 (Detour Distance). Given a path P i = 〈vi1, vi2, ..., vin〉 and the pre-

72



ferred path P ∗, the detour distance of P i is defined as the sum of the length of the

edges in P i that do not belong to P ∗. That is:

DD(P i, P ∗) =
n−1∑
j=1

D(vij, v
i
j+1, P

∗),

where D(vij, v
i
j+1, P

∗) = w((vij, v
i
j+1)) if (vij, v

i
j+1) 6⊂ P ∗ and D(vij, v

i
j+1, P

∗) = 0,

otherwise.

Consider for instance P 3 = 〈s, v1, v2, o2, d〉 in Figure 4.1. Its travel distance is

given by TD(P 3) = w(s, v1)+w(v1, v2)+w(v2, o2)+w(o2, d) = 4+8+2+9 = 23,

whereas its detour distance, always with respect to the preferred path P ∗, is given

by DD(P 3, P ∗) = w(v2, o2) + w(o2, d) = 2 + 9 = 11.

Given a preferred path P ∗ and a set of POIs O, our goal is to find the set LS

containing linearly non-dominated full paths w.r.t. detour and travel distance. The

answer set found by a linear skyline is a subset of a conventional skyline result

set. In order to distinguish between conventional and linear skyline operations, we

first recall the definition of a conventional skyline. In the following definitions we

denote the cost vector of a path P i as pi, where pi1 and pi2 represent the two cost

criteria that are to be minimized, e.g., travel and detour distances in our particular

case of interest.

Definition 4.3.3 (Conventional Dominance). Let P be a set of paths in a two-

dimensional cost space. A path P i ∈ P conventionally dominates another path

P j ∈ P , denoted as P i ≺ P j , if

(pi1 < pj1 ∧ pi2 ≤ pj2) ∨ (pi1 ≤ pj1 ∧ pi2 < pj2)

That is, P i is better in one criteria and at least as good as P j in the other one. The

set of non-dominated paths, i.e. {P i ∈ P | @P j ∈ P : pi ≺ pj}, denotes the

conventional skyline.

A linear skyline consists of the subset of the conventional skyline which is op-

timal under all linear combination functions. In our case the linear skyline set is

composed of full paths that minimize F = δ1× pi1 + δ2× pi2 for all possible weight

73



vectors δ = (δ1, δ2). A vector δ represents the weights (importance) that a user

could give to both criteria. It is worth emphasizing that although we find the op-

timal solution for all such δ, we do not require any weight vector to be provided

beforehand. In the following we present the definition of δ-dominance which deter-

mines when a path linearly dominates another one for a particular δ.

Definition 4.3.4 (Linear Dominance). A path P i δ-dominates another path P j ,

where δ is a vector such that δ ∈ IR2
≥0 and δ 6= (0, 0), if and only if δTpi < δTpj

[54].

In order to illustrate this concept let us consider Figure 4.1 again. The path P 1

δ-dominates P 2 for δ = (1, 0), since 17×1+17×0 < 26×1+4×0. However, this

is not a sufficient condition for determining whether P 2 is a linearly dominated path

in the general sense. Note that, for instance, P 2 δ-dominates P 1 for δ = (0.5, 0.5).

As formalized in the following definition, a path is only considered to be linearly

dominated if it is either conventionally dominated or δ-dominated for every possible

δ.

Definition 4.3.5 (Linear Skyline). Let P be a set of paths in a two-dimensional cost

space. A subset P ′ ⊆ P linearly dominates a path P j ∈ P , denoted as P ′ ≺L P j ,

if and only if

(∃P i ∈ P ′ s.t. P i ≺ P j) ∨ (∀δ ∈ IR2
≥0 ∃P i ∈ P ′ s.t. δTpi < δTpj)

The maximal set of linearly non-dominated paths is referred to as linear sky-

line [54].

In other words, a path P i is linearly non-dominated w.r.t. a set P ′ if it is not

conventionally dominated by any path in P ′ and there is a vector δ and a path

P j ∈ P ′ such that P i δ-dominates P j . For the set of paths P ′ = {P 1, P 2, P 3, P 4}

shown in Figure 4.1, P 1 and P 2 are considered linearly non-dominated since they

are conventionally non-dominated and, as shown above, P 1 δ-dominates P 2 for

δ = (1, 0) and P 2 δ-dominates P 1 for δ = (0.5, 0.5). Thus, both paths satisfy the

conditions to be considered linearly non-dominated. On the other hand, although

74



P 3 is conventionally non-dominated, there is no weight vector δ for which P 3 δ-

dominates either P 1 or P 2. P 4 is a conventionally dominated path and thus it is

also linearly dominated.

The problem addressed in this chapter can now be formally defined as follows.

Definition 4.3.6 (BC-IRNN query). Given a user’s preferred path P ∗ = 〈v∗1, v∗2, ..., v∗n〉

and a set of POIs O, the BC-IRNN query aims at finding the set of all linearly non-

dominated full paths, i.e., paths from s = v∗1 to d = v∗n that visit at least one POI

oi ∈ O.

Shekelyan et al. [54] showed that the notion of linear dominance has an intuitive

graphical intuition, which does not require having to check all possible vectors δ in

order to determine whether a path is linearly dominated. They argued that a path P i

is linearly dominated by a set of paths P ′ if pi lies above the line between any two

cost vectors of paths from P ′. This observation can be formalized as follows. Let

P i and P j be two paths with pi1 < pj1 and pj2 < pi2. Let n be the normal vector of

the line between P i and P j , such that nTpi = nTpj , and u be the component-wise

minimum of P i and P j , such that u1 = min(pi1, p
j
1) and u2 = min(pi2, p

j
2). A path

P k is linearly dominated by {pi, pj}, denoted as {pi, pj} ≺L pk, iff:

(u ≺ pk) ∧ (nTpk > nTpi = nTpj) (4.1)

Travel distance

 D
e
to

u
r 

d
is

ta
n
c
e

u

p3

p2

p1

Figure 4.3: Area linearly dominated by {p1,p3}.

In order to illustrate this concept, let us consider Figure 4.3 which shows a

set of paths {P 1, .., P 5} mapped into a bi-criteria cost space. The colored area

75



shows the area linearly dominated by {p1, p3}, containing only p5. In this example,

{p1, p3} 6≺L p2 because even though the condition nTp2 > nTp1 = nTp3 holds,

p2 is not conventionally dominated by u = (p31, p
1
2). Furthermore, although p4 is

conventionally dominated by u, it is not linearly dominated by {p1, p3}, because it

is placed below the line connecting p1 and p3, i.e., nTp4 < nTp1 = nTp3.

In our proposed approach for processing BC-IRNN queries, the candidate full

paths are retrieved in increasing order of travel distance. The linearly non-dominated

full paths are stored in a list LS = (P 1, ..., P k) which is ordered in increasing order

of travel distance. Let us assume that P i is a new full path found by our approach

for which we want to determine whether it should be added to LS or not. Note that

TD(P i) > TD(P k), since, as we shall show shortly, the paths are always found

in increasing order of travel distance and thus TD(P i) is greater than the travel

distances of all the other paths in LS. Therefore, DD(P i, P ∗) < DD(P k, P ∗)

must hold for P i to be considered a non-dominated path. As proved in [54], if this

condition is satisfied, i.e., P i is a conventionally non-dominated path, then it is also

linearly non-dominated in LS and thus it can be added to that set.

After adding a new non-dominated path to LS, some paths may become linearly

dominated. Therefore we need to check whether inserting P i into LS leads to the

removal of other paths from LS. Shekelyan et al. [54] showed that any path P j is

only linearly dominated in LS if it is dominated by both of its neighbors. Thus,

in order to determine if P k is linearly dominated, it is sufficient to check whether

{P k−1, P i} ≺L P k. Note that P i is the right neighbor of P k since it is inserted

at position k + 1. If this condition is satisfied, P k is removed from LS. After

that, P k−1 becomes the left neighbor of P i. Subsequently, we need to examine

whether {P k−2, P i} ≺L P k−1 holds. This process will be terminated when the first

element of LS has been examined or the current left neighbor of P i is a linearly

non-dominated path.

76



4.4 Our Proposed Approach

Our proposed approach first finds the full path that yields the minimum detour dis-

tance and use its travel distance as an upper bound to prune paths that are too long

to be considered non-dominated. Similarly, we also find the shortest full path and

use its detour distance as an upper bound for pruning paths that deviate from P ∗

more than the determined upper bound. Subsequently, the linearly non-dominated

paths are retrieved by traversing the road network from s. During this traversal the

previously determined upper bounds are applied for shrinking the search space.

4.4.1 Upper bounds for travel and detour distance

The first step of our proposed approach is to determine upper bounds for the detour

and travel distances of non-dominated paths, denoted respectively by DDU and

TDU . The goal is to use those to prune paths that can be proven to be dominated.

In order to calculate these bounds, we need to find two paths: PDD which is

the full path that yields the smallest detour distance from the preferred path P ∗,

and P TD which is the shortest full path. The corresponding detour and travel dis-

tances of P TD and PDD, namely DDU=DD(P TD, P ∗) and TDU=TD(PDD) re-

spectively, are the two bounds used for pruning the search space. In the following

we discuss how PDD and P TD are computed.

Computing DDU : an upper bound for the detour distance

Let cm be the centroid of s and d in Euclidean space, then for determining P TD

and DDU = DD(P TD), according to Chapter 2, we start iteratively retrieving

the (Euclidean distance-wise) nearest neighbors [69] from the set of POIs O w.r.t.

cm. Let us denote as oj = NN(cm, O, j) the j-th such nearest POI. For each

retrieved POI oj , we form a candidate trip P j = 〈s, ..., oj, ..., d〉, where the paths

from s towards oj and similarly from oj w.r.t. d are the shortest ones. According to

Lemma 4.4.1, the processes of forming candidate trips can stop when the condition

MTD < 2 × de(oj, cm) is satisfied, where MTD is the smallest travel distance

computed so far and de(., .) indicates the Euclidean distance between two locations.

77



Finally among all generated candidate full paths, the one incurring the smallest

travel distance will be returned as P TD. In the example shown in Figure 4.4(a)

P TD= P 1=〈s,O1, d〉.

Lemma 4.4.1. Let cm be the centroid of s and d, and oj the j-th retrieved nearest

neighbor POI w.r.t. cm. Furthermore let MTD=TD(P i) be the smallest travel

distance computed so far. Then P i corresponds to P TD, if MTD < 2× de(oj, cm).

Proof. According to [38], we have de(s, oj) + de(oj, d) > 2 × de(oj, cm). Conse-

quently, if 2×de(oj, cm) > MTD then we can conclude that de(s, oj)+de(oj, d) >

MTD. This means that any full path that visits oj would incur travel distance

greater than MTD. Furthermore ∀oz = NN(cm, O, z), where z > j, we have

de(oz, cm)¿de(oj, cm), leading to de(s, oz) + de(oz, d) > MTD. We can then con-

clude that TD(pz) > MTD, and there would be no other unexamined path incur-

ring smaller travel distance than MTD.

Computing TDU : an upper bound for the travel distance

In order to compute the upper bound for the travel distance, TDU , we need to find

PDD, the full path which incurs the smallest possible detour distance w.r.t P ∗, i.e.,

TDU=TD(PDD). For that we need to find a POI incurring the smallest detour

distance. In Chapter 3, we discussed how such POI can be determined. As we

shall discuss in Section 4.4.2 all full (partial) paths which incur a travel distance

greater than TDU are (will be) conventionally dominated by PDD, and thus cannot

be part of the answer set. Our strategy for determining PDD is to first find the POI

oi closest to a vertex in P ∗, then use it to determine PDD. For determining oi we

use a group nearest neighbor query [42], where one group is the set O of POIs and

the other group is the vertices in P ∗. The answer of such a query is the POI that

minimizes the total distance to all vertices in P ∗, which serves as an approximation

for oi sought2.

Then, we compute the smallest possible network distance of oi w.r.t. P ∗, de-

noted by dminn (oi, P
∗)=min∀v∗j∈P ∗ dn(oi, v

∗
j ). Note that dminn (oi, P

∗) indicates the

2 Our preliminary results indicated that using only {s, d} instead of all vertices in P ∗ yielded
virtually same results at a lower processing cost and thus we used only those vertices in our imple-
mentation.

78



half of the smallest possible detour distance for visiting oi from P ∗, as one needs

to leave P ∗, visit oi and return to P ∗. The distance dminn (oi, P
∗) will be used for

shrinking the search space. For that, we compute an ellipseE, where its focal points

are placed at s and d, and the major axis is defined as 2× dminn (oi, P
∗) + TD(P ∗).

According to Lemmas 3.3.1 and 3.3.2 (formally presented shortly), the POIs that

are placed outside E would incur a detour distance greater than that of oi. Then all

POIs within E will be examined for determining the POI that incurs the smallest

possible detour distance w.r.t. P ∗. Assuming that POI oz ∈ O is that one POI and

its reached via vertex v∗j ∈ P ∗, then the path 〈s, ..., v∗j , ..., oz, ..., v∗j , ..., d〉 will be

returned as PDD, and TDU will be set as TD(PDD). Revisiting the scenario in

Figure 4.4(a), we have PDD=P 2 = 〈s, b1, b2, O2, b2, d〉.

Next we discuss in details how the upper bounds TDU and DDU determined

as detailed above are used for shrinking the search space while traversing the road

network in order to produce the desired result set for the BC-IRNN query.

4.4.2 Generating and pruning candidate paths

After computing the upper bounds TDU and DDU , we incrementally generate

paths starting from s through a network traversal based on an A∗ search [24]. An

A∗ search expands paths based on an optimistic total travel distance. In this work,

we assume that the optimistic distance from a vertex vi ∈ V to d is given by their

Euclidean distance, de(vi, d). It is easy to show that de(vi, d) is a lower bound to

the optimal (minimum) network distance between vi and d, therefore it is an ad-

missible heuristic and the A∗ search is guaranteed to return the optimal result. Let

P i = 〈s, ..., vij〉 be a partial path ending at vij . The optimistic travel distance for P i

is then defined as OTD(P i) = TD(P i) + de(v
i
j, d).

All paths from s to any vertex vi ∈ V found during the network traversal are

stored in a priority queue Q, where its elements are ordered based on their corre-

sponding optimistic travel distance. At each iteration of our proposed algorithm, the

path P i with minimumOTD(P i) value is popped fromQ. If P i is a partial path and

DD(P i, P ∗) < DDU , then P i is expanded. Otherwise, if DD(P i, P ∗) > DDU ,

then according to Lemma 4.4.2, presented next, P i cannot be part of a path belong-

79



ing to the linear skyline set and thus it can be safely pruned.

Lemma 4.4.2. Let P i be a partial path such that DD(P i, P ∗) < DDU . Then P i

leads to a dominated full path and thus it can be pruned.

Proof. Let P j be an extension of P i that ends at d and contains at least one POI.

Given that Once P TD is the shortest full path we have that TD(P j) > TD(P TD).

Moreover, since by assumptionDD(P i, P ∗) > DDU=DD(P TD, P ∗), thenDD(P j, P ∗) >

DD(P TD, P ∗) also holds. Therefore, P j is dominated by P TD. Thus P i leads to a

dominated full path and thus it can be pruned.

Moreover, when a non-dominated full path P i is dequeued from Q, the upper

bound DDU can be updated to DD(P i) since all following non-dominated full

paths must have a detour distance smaller thanDD(P i), as proved in Lemma 4.4.3.

This allows us to further shrink the search space by pruning paths whose detour

distance from the preferred path P ∗ is larger than the current non-dominated path

incurring the smallest detour distance among all full paths computed during the

network traversal.

Lemma 4.4.3. Whenever a new non-dominated full path P i is dequeued, DD(P i)

is guaranteed to be an upper bound to the detour distance of non-dominated full

paths that have not been examined yet and DDU can then be updated to DD(P i).

Proof. Let us suppose that there is an unexamined non-dominated full path P j such

that DD(P j) > DD(P i). Since the paths are found in increasing order of travel

distance and P j has not been examined yet, then TD(P j) > TD(P i). Therefore,

DD(P j) < DD(P i) must hold for P j to be considered a non-dominated path.

However, by assumption DD(P j) > DD(P i), which is a contradiction to the fact

that P j is not dominated. Therefore all non-dominated full paths found after P i

must have a smaller detour distance than DD(P i) and thus DDU can be updated to

DD(P i).

Furthermore, if OTD(P i) > TDU the process of traversing the road network

can be terminated since all linearly non-dominated paths will have already been

examined, a result guaranteed by Lemma 4.4.4, stated next.

80



Lemma 4.4.4. The network traversal can be terminated once the first path P i such

that OTD(P i) > TDU is found.

Proof. Since OTD(P i) > TDU = TD(PDD) and OTD(P i) ≤ TD(P i) it is also

true that TD(P i) > TD(PDD). This means that PDD is better than P i in terms

of travel distance. Thus one of the conditions that must be satisfied for P i to be

considered a candidate to be explored is DD(P i) < DD(PDD). Let us analyze the

two possible cases:

1. P i is a full path. Therefore DD(P i) < DD(PDD) does not hold since PDD

is the full path that yields the minimum detour distance. Thus P i is a domi-

nated path and can be pruned.

2. P i is a partial path. Let P j be an extension of P i that ends at d and contains

at least one POI. Since TD(P i) > TD(PDD), TD(P j) > TD(PDD) also

holds. Moreover, by definition DD(P j) > DD(PDD). Therefore P j is

dominated by PDD and thus P i does not lead to a non-dominated full path.

Therefore, no further path needs to examined beyond P i, and consequently the

network traversal can be safely stopped.

When a full path P i is dequeued, we check whether P i is linearly non-dominated

in the linear skyline set LS, which is done by simply checking whether P i is con-

ventionally non-dominated, as explained in Section 4.3. If so, P i is inserted into

linear skyline answer set LS.

Algorithm 9 describes our proposed technique for processing BC-IRNN queries

in pseudo-code. In Lines 2-3, we determine the two upper bounds DDU and TDU ,

as described in Section 4.4.1. In the next step, the first partial route containing only

the vertex s is generated and stored in the priority queue Q (Lines 4-6). We re-

call that the elements in Q are ordered according to their corresponding optimistic

travel distance. Then as an iterative process, at each step the path P with min-

imum OTD(P ) is dequeued (Line 8). For each path P we first check whether

OTD(P ) > TDU (Lines 9-10). If this condition is satisfied, then according

to Lemma 4.4.4, the network traversal can be terminated. Otherwise, we check

81



whether P is a full path (Line 12). If so, P is a candidate to be added to set LS.

Algorithm 9: Proposed Approach
Input: Starting point s, Destination d, Preferred path P ∗ = 〈v∗1, v∗2, ..., v∗n〉

and O = {o1, ..., o|O|}
Output: Linear skyline LS containing the paths that visit at least one POI

from O
1 LS ← ∅
2 DDU ← DD(P TD, P ∗)
3 TDU ← TD(PDD)
4 P ← 〈s〉
5 P.previous← s
6 Q.insert(P )
7 while Q 6= ∅ do
8 P ← Q.pop()
9 if OTD(P ) > TDU then

10 return LS
11 v ← last vertex of P
12 if v = d & P contains at least one POI then
13 if P is not conventionally dominated then
14 k ← |LS|
15 Add P at position k+1 in LS
16 DDU=DD(P )
17 while k > 2 & {P k−1, P} ≺L P k do
18 Delete P k from LS
19 k=k-1

20 else if DD(P ) < DDU then
21 for all (v, u) ∈ E do
22 if (u 6= P.previous) or (v is a POI) then
23 P u ← extend P with u
24 P u.previous← v
25 Q.insert(P u)

26 return LS

For each such P , two verifications are necessary. Firstly, we check whether P

should be added to LS, i.e., if it is a linearly non-dominated path. After that, in the

case that P linearly non-dominated, we verify whether there are paths currently be-

longing to LS that may have become linearly dominated and thus must be removed

from LS. In the following we discuss how these verifications are performed.

82



In order to check whether a path P should be added to the list LS, it is only

necessary to verify if P is a conventionally non-dominated path, as explained in

Section 4.3. If this condition is satisfied, P is added at the end of LS (Lines 14-15),

since it is the longest full path found so far and LS is ordered in increasing order

of travel distance. Also, according to Lemma 4.4.3, the upper bound DDU can

be updated to DD(P ). Moreover, as aforementioned, we need to check whether

the insertion of P into LS leads to the removal of other paths from LS (Lines 17-

19). For this, we traverse LS in the left direction starting from P , as described

in Section 4.3. Considering P k as the left neighbor of P , in the case that P k−1

exists, we check whether {P, P k−1} ≺L P k holds. If this condition is satisfied,

P k is removed from LS. After that, P k−1 will be considered the left neighbor of

P , where similarly the linearly non-dominancy of P k−1 w.r.t. {P, P k−2} must be

examined. This process will be terminated when the first element of LS has been

examined or the current left neighbor of P is a linearly non-dominated path.

In case a dequeued path P is partial, we need to verify if it is eligible to be

expanded. For that, according to Lemma 4.4.2, we check whether the condition

DD(P ) < DDU holds (Line 20). If so, P is expanded. A new path P u is created

for each neighbor u of the last vertex v of P , i.e., P is extended by adding u to it.

Note that in Line 22, we check if u is the vertex that appears just before v in P and

v is not a POI, then the path P u is not created. By doing this we avoid returning

to the previously visited vertex, unless it is after visiting a POI. All the paths P u

created are inserted into Q. The steps above are repeated until the optmistic travel

distance of the current shortest path exceeds the upper bound TDU or Q is empty.

4.4.3 Baseline approach

Finally, let us now discuss a straightforward approach for solving BC-IRNN queries,

which we use as the baseline reference in our experiments in Section 4.5. Given a

preferred path P ∗, the baseline is obtained by performing a trip planning query, us-

ing for instance the approach proposed in [4], for each pair of vertices (vi, vj) ∈ P ∗;

note that vi = vj is a feasible pair as well. In other words, for each such pair we

compute the shortest path starting from vi and ending at vj that visits at least one

83



POI. We assume that the traveler moves from s towards vi along P ∗, takes a de-

tour for visiting a POI, returns back to P ∗ through vj and continues his/her journey

towards d along P ∗. Assuming that P ∗ contains n branch points, processing a

BC-IRNN query based on this straightforward approach would require performing

O(n2) trip planning queries in order to retrieve the LS set containing all linearly

non-dominated paths. Clearly, the performance of such a baseline deteriorates when

n increases, making it impractical for scenarios where P ∗’s length is large. Nev-

ertheless, given the lack of alternatives, we use it as a baseline for comparison

purposes in the experiments discussed next.

4.5 Experimental Results

We evaluate the performance of our proposed approach, as well as the baseline

approach (as discussed in Section 4.4) for processing BC-IRNN queries using real

datasets [9]. The datasets reflect eateries (restaurants and coffee shops) serving as

POIs in Amsterdam, Oslo and Berlin, depicted in Figure 3.17(c) as of March/2007.

We used the real datasets of three cities Berlin, Oslo and Amsterdam road networks

in our experiments, illustrated in Table 3.3. We used restaurants and coffee-shops

as POIs in our experiments. Figure 4.4 illustrates Oslo, Berlin and Amsterdam road

networks and corresponding POIs used in our experiments.

Table 4.3: Experimental parameters and their values (bold defines default values).
Parameter Range
Length of preferred path (n) 10, 30, 50, 70
COI Density (Dp) 10%, 25%, 50%, 100%

Our first observation was that, as expected, the cardinality of the answer set, i.e.,

the number of linearly non-dominated full paths was typically very small. In fact,

none of our experiments yielded more than than 10 such paths and most were in the

range of 5-6, which reinforces the usefulness of linear skylines.

To establish the query processing efficiency, we varied the density of POIs Dp,

and the length n of the preferred path given as the number of vertices therein. In

order to determine the latter, we randomly selected two vertices on the road net-

84



(a) Amsterdam road network (b) Oslo road network

(c) Berlin road network

Figure 4.4: Locations of restaurants and coffee shops in Amsterdam, Oslo and
Berlin (overlaid on these cities’ road network)

work, computed the shortest path between them, and used the first n vertices as the

preferred path3. Table 4.3 summarizes the parameter ranges and default values. For

each set of experiments, we vary the value of one parameter, and fix the other pa-

rameters to their default values. All experiments were done using a computer with

Intel Core i5 2.40 GHz CPU and 8GB RAM.

4.5.1 Effect of Length of Preferred Path

Our experimental results shown in Figure 4.5 illustrates that the query response time

of both approaches becomes larger with the increase in the length of the preferred

path. The query response time of the baseline approach grows at a significantly

faster pace than our approach’s. This is because, as discussed in Section 4.4, the

3For the sake of reference two vertices in the road networks we use typically equate to the side
of a city block.

85



baseline approach performs a Trip Planning Query (TPQ) for each pair of vertices

in the preferred path. Therefore, a greater n requires the execution of more such

queries.

Even though at a much more acceptable pace, the processing time of our ap-

proach also grows with n. The farther the starting location s and the destination d

are from each other, the higher the number of possible paths between them. This

implies that more paths will need to be explored during the network traversal, which

in turn increases the query processing time. This also explains why the processing

time is longer for larger road networks. Moreover, when the preferred path contains

more vertices, the paths connecting s and d are more likely to contain more edges

that do not belong to the preferred path. This potentially increases the value of

the upper bound DDU , which causes less paths to be pruned based on their detour

distance.

4.5.2 Effect of POI Density

In this experiment we investigated how both solutions behave when the density of

POIs Dp is varied. To do so, we randomly selected a subset of the POIs from

each dataset containing a certain percentage of the original set of POIs. Note that

for Dp = 100%, the whole set of POIs is used. Figure 4.6 shows that, contrary

to our proposed approach for which the response time becomes smaller when Dp

increases, the baseline technique takes longer to processing a query. The baseline

approach requires processing TPQ queries which aim at finding the POI that via

which the travel distance from the s to d is minimized. The higher the density of

POIs, the greater the number of candidate POIs that need to be examined in order

to find the one that yields the smallest travel distance.

The main reason why our proposal is more efficient for larger values of Dp is

that PDD, the path that yields the smallest detour distance, becomes shorter with

the increase in the number of POIs, since it is easier to find a POI that is closer to

the preferred path. Consequently, the upper bound TDU = TD(PDD) will also be

smaller, which in turn allows the network traversal to be terminated earlier.

86



10 30 50 70
n

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Proposed approach
Baseline approach

(a) Amsterdam

10 30 50 70
n

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

) Proposed approach
Baseline approach

(b) Oslo

10 30 50 70
n

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Proposed approach
Baseline approach

(c) Berlin

Figure 4.5: Effect of path length n on query processing time

4.6 Conclusion

In this chapter, we proposed a new query type, namely the Best-Compromise In-

Route Nearest Neighbor (BC-IRNN) query. Guided by the principles of skyline

queries, we proposed a road network traversal-based approach, which applies a set

of pruning strategies that shrink the search space and discard paths that are conven-

tionally dominated and thus could not be part of the linearly non-dominated answer

set. Our experimental results on real datasets show that our proposed approach

incurs in significantly faster query processing time when compared to a straightfor-

ward baseline approach.

87



25% 50% 75% 100%
Dp

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Proposed approach
Baseline approach

(a) Amsterdam

25% 50% 75% 100%
Dp

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Proposed approach
Baseline approach

(b) Oslo

25% 50% 75% 100%
Dp

0

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

)

Proposed approach
Baseline approach

(c) Berlin

Figure 4.6: Effect of POI density Dp on query processing time

88



Chapter 5

k-Closest Pairs Queries in Road
Networks

5.1 Introduction

Given two spatial sets of points-of-interest (POIs) P and Q on a road network, a

k-Closest Pairs Query (k-CPQ) returns the pairs of POIs from P × Q, that have

the k smallest network distances between POIs in P and POIs in Q.A typical ap-

plication for k-CPQs is illustrated in Figure 5.1 where a road network is a graph,

the set P = {v2, v6} shown as dark grey vertices represent the locations of touristic

sites, the setQ = {v0, v3, v5, v11} shown as light grey vertices stand for hotels in the

corresponding road network and white vertices are road intersections. The weights

on the edges indicate the length of the corresponding road segments. A 2-CPQ will

return the pairs of touristic sites and hotels that have the two smallest network dis-

tances among all possible pairs of sites and hotels. The answer set for this example

is {(v2, v0),(v6, v3)}, where the length of the shortest paths between v2 and v0 and

between v3 and v6 are both equal to 3.

More formally, we consider a road network modeled as an weighted graph G =

〈V,E〉, in which the weight of edge (vi, vj) ∈ E, where vi, vj ∈ V , is denoted by

w(vi, vj). Each node in V is either an intersection in the road network or a node

belonging to either data set P = {p1, ..., p|P |} or data set Q = {q1, ..., q|Q|}. Then a

k-CPQ between P and Q over G returns a set of pairs A = {〈p, q〉} such that: (1)

〈p, q〉 ∈ P × Q. (2) ∀〈p, q〉 ∈ A, dn(p, q) ≤ dn(r, s), ∀〈r, s〉 ∈ {(P × Q) \ A}.

and (3) |A| = k; where dn(vi, vj), denotes the length of the shortest network path

89



3

6

5
2

3

2

1213

10

2

35

9

4

2

6

v5

v1

v2 v0 v4

v10

v11

v6

v3v7v8

v12

v9

Figure 5.1: A sample road network

between vi and vj in graph G.

In this chapter, we first present a new hierarchical road network partitioning

structure, called G∗-tree, designed to support efficient processing of k-CPQs on

road networks. The G∗-tree can be seen as being similar to the G-tree [70], in the

sense that both rely on the multi-level graph partitioning approach [33], which is

constructed by recursively partitioning the road network into smaller sub-graphs.

There is, however, a fundamental difference between the two. The optimal G-

tree aims at generating sub-graphs of approximately same sizes with the goal of

minimizing the number of border nodes, whereas the G∗-tree aims at maximizing

the minimum network distance between sub-graphs in order to boost the pruning

power of the tree for more efficient processing of k-CPQs.

Based on the G∗-tree hierarchical road network partitioning structure, we pro-

pose two different approaches for processing k-CPQs on road networks. The first

one traverses the G∗-tree based on a top-down traversal method. The basic idea of

this algorithm, is to exploit the hierarchical properties ofG∗-tree and use a modified

best-first search strategy to find the pairs of data points that have the k smallest pair-

wise network distances. The second approach looks for the k-closest pairs of POIS

by applying a bottom-up traversal paradigm. First the leaf nodes of the G∗-tree are

explored in order to obtain local optimal answer sets. Next, the G∗-tree is traversed

bottom-up, where the final optimal list is gradually obtained by joining sibling sub-

graphs. Both of proposed approaches employ aggressive pruning strategies based

on minimum network distances between different sub-graphs, which is in fact the

90



main driving factor when building the G∗-tree.

5.2 Related Work

The existing approaches for processing of k-CPQs can be categorized into two

groups. One studied the k-CPQs in Euclidean spaces [17, 18, 28, 46, 57, 62, 67, 56].

The other has investigated the k-CPQs in general metric spaces [20, 30, 43, 58, 36,

21]. To the best of our knowledge there has been no published work in the context

of road networks, which is our main focus.

Assuming that the sets of POIs P andQ have been indexed in separateR∗-trees,

[17, 18] exploit the hierarchical properties of the R∗-trees for boosting the pruning

capability. Plane-sweep and access ordering techniques are also applied for further

improving query efficiency. For processing of distance join queries [56, 57] propose

the use of bidirectional node expansion and plane-sweep techniques for quickly

pruning distant pairs, where the plane-sweep is further optimized by novel strategies

for selecting a good sweeping axis and direction. Yang and Lin [67] proposed a new

indexing structure, bRdnn-tree, for processing of k-CPQs in Euclidean spaces. The

bRdnn-tree keeps track for each data point in P its nearest neighbour in data set Q

for efficient processing the k-CPQs. The main shortcoming of this approach is its

limited applicability, since for constructing the bRdnn-tree on P as a sample data

set, we need to discover the nearest neighbour of each POI in P towards all data

sets.

The authors of [36] proposed a divide-and-conquer based approach called Adap-

tive Multi-Partitioning approach. This approach uses the multi-ball partitioning

strategy, where its basic idea is the iterative reduction of upper-bounds for the pair-

wise distance of kth closest pair. Unfortunately, its efficiency degrades quickly

with the size of the data sets. More recently, in [21] the authors proposed three

approaches based on depth-first, best-first, and a combination thereof, traversal

paradigms for processing of k-CPQs in general metric spaces using an M -tree [44].

CPQs are also highly connected to similarity joins queries. Similarity join algo-

rithms find pairs of objects that lie within a certain distance ε of each other. Jacox

91



and Samet [30] presented a comprehensive overview of different approaches. The

basic idea of the proposed solution in [43] for solving the similarity join problem is

to index the two different data sets jointly in a single data structure as list of twin

clusters, a metric index specially focused on the similarity join problem. The ba-

sic idea behind the proposed approach in [30], termed Quickjoin, is based on the

Quicksort algorithm in that it recursively partitions the data into smaller partitions.

This approach was further improved in [20]. In [19, 64] the similarity joins prob-

lem has been studied based on Map-Reduce approach, that partitions the data space

based on the underlying data distribution. The similarity join solutions cannot han-

dle k-CPQs problems efficiently, due to difficulty in choosing a proper value for ε; a

small value may lead to incomplete results and a large value may incur in too much

overhead [21].

5.3 The G*-tree

In order to process k-CPQ queries efficiently we propose the G∗-tree, a new hier-

archical road network partitioning structure particularly designed for this type of

query. The G∗-tree is inspired on, but built on quite different premises than, the G-

tree proposed recently in [70]. In the following, we briefly review the G-tree before

presenting the details of the G∗-tree. (We discuss the differences between the two

indices later in Section 5.3.2.)

TheG-tree of a graphG = 〈V,E〉 is a balanced search tree, which is constructed

based on the idea of Multi-Level Graph Partitioning approach [33]. In the G-tree,

each node represents a sub-graph. The root node corresponds to the complete graph

G, and each non-leaf node has f≥2 children and each leaf node contains τ≥2 ver-

tices. The idea is to recursively partition the sub-graph of a node into f equally

sized sub-graphs, each leading to one new child node, until such child nodes have

no more than τ vertices. At the end this will lead a balanced search tree. For more

details about the G-tree construction procedure, we refer the interested reader to

[70].

92



5.3.1 G∗-tree construction procedure

For a given graph G = 〈V,E〉, the G∗-tree for G is constructed by hierarchically

partitioningG into a set of sub-graphs, where each sub-graph corresponds to a node

in G∗-tree.

The G∗-tree construction procedure contains two major phases: coarsening and

tree formation. In both of these phases, two sub-graphs are iteratively selected and

collapsed. Before discussing these two phases in details, we first discuss how such

collapsing works.

Consider two sub-graphs Gi = 〈Vi, Ei〉 and Gj = 〈Vj, Ej〉. For the sake of

discussion, we consider sub-graphs as special nodes in the network and we denote

such nodes as Gi and Gj , respectively. The collapsing operation on Gi and Gj

yields a new sub-graph Gz = 〈Vz, Ez〉 of G, where Vz = Vi∪Vj and Ez ⊆ Ei∪Ej .

The edges incident on Gz is set to the union of the edges incident to Gi and Gj .

For instance, considering the graph Figure 5.1, collapsing nodes v3 and v11 (note

that a node itself is by definition a sub-graph) leads to a new sub-graph G0 in the

(partially) coarsened graph shown in Figure 5.2(a). Furthermore, if the new sub-

graph Gk is directly connected to the two sub-graphs Gi and Gj , then the weight

of the edge connecting Gk and Gz is set to the minimum of the weights of all

edges connecting Gk and Gi as well as connecting Gk and Gj , i.e., w(Gz, Gk) =

min{w(Gi, Gk), w(Gj, Gk)}. This is exemplified in Figure 5.2(b) which shows

that sub-graph G1 resulted from the collapsing of v1 and v2 in Figure 5.2(a). Since

vertex v0 is a direct neighbour of both vertices v2 and v1, we have w(G1, v0) =

min{w(v0, v2), w(v0, v1)} = 3.

Definition 5.3.1. Let us assume Gi and Gj are two neighbour sub-graphs of graph

G′, which are selected to be collapsed. Then w(Gi, Gj) in graph G′ is called the

collapsing distance of Gi and Gj .

With this in place, we can proceed to discuss the first phase of the G∗-tree

construction, the coarsening phase. This phase produces the leaf-nodes of G∗-tree,

where, step by step, two sub-graphs are selected and collapsed.

Choosing which sub-graphs to collapse and when to stop doing so, is an impor-

93



3

6

5
2

3

2

1213

10

35

9

4

2

6

v5

v1

v2 v0 v4

v10

v6

v7v8

v12

v9

G0

(a)

3

6

3

2

1213

10

35

9

4

2

6

v5

v0 v4

v10

v6

v7v8

v12

v9

G0

G1

(b)

G8

G5G4

G7

6

13 12

9

(c)

Figure 5.2: Sample steps of the coarsening phase for the graph in Figure 5.1.

tant issue. In this work, we use the idea of the Light Edge Matching (LEM) ap-

proach [34], in which two sub-graphs containing the smallest edge weight among

all are selected to be collapsed. Therefore, by construction, the collapsing distance

(Definition 5.3.1) minimizes the distance between two sub-graphs. In the coarsen-

ing phase the road network is gradually coarsened with the goal of maximizing the

total edge weight of the coarsened graph for boosting the pruning capability based

on the minimum network distance between sub-graphs. The coarsening phase will

terminate when the number of sub-graphs in the coarsened graph is no more than λ,

and at this point the remaining sub-graphs will become the leaf nodes of theG∗-tree

associated with the original graph G. (In Section 5.6 we discuss the effect of this

parameter on the query processing efficiency in terms of query response time and

number of examined data points.) For instance Figures 5.2(a-b) illustrate the first

two steps of coarsening phase, where, assuming λ = 4, Figure 5.2(c) shows the

final result of coarsening phase for the example of road network in Figure 5.1.

In the second phase of the G∗-tree construction procedure, the tree formation

phase, the G∗-tree as a hierarchical partitioning of the given road network is con-

structed, bottom-up, starting with the leaf-nodes produced in the coarsening phase.

This phase is fundamentally similar to coarsening phase: in an iterative manner,

and again based on the LEM approach, two sub-graphs are selected to be collapsed,

where the new formed sub-graph will be the parent node of the collapsed sub-

graphs. Assuming the coarsened graph in Figure 5.2(c), then in the first step of

94



v1

v2
v0

v4

v10

v11

2

3

5

2

3

6

1213

v5

v6

v3
v7v8

v12

v9

9

2

4

6

2

10

3
5

G11

G9 G10

G4 G5 G7 G8

 V0 V4
V8 v3

Figure 5.3: The hierarchical graph partitioning of example of Figure 5.1

tree formation phase the sub-graph G9 is formed from collapsing sub-graphs G4

and G5 in the corresponding G∗-tree. The G∗-tree node corresponding to G9 will

be the parent of nodes G4 and G5. Then, in the second step of this phase, the sub-

graphs G7 and G8 will be collapsed, where the new formed sub-graph G10 will be

considered the parent node of G7 and G8. As the final step, the sub-graph G11 is

formed by collapsing G9 and G10. Having no more sub-graphs to be collapsed, this

phase is concluded and the single remaining node is the root node of the G∗. Fig-

ure 5.3 shows the corresponding G∗-tree and hierarchical road network partitioning

for the given road network in Figure 5.1.

There are two important concepts pertaining to the G∗-tree that need to be de-

fined as they are used throughout our proposed solutions.

Definition 5.3.2. Given a node Gi = 〈Vi, Ei〉 of G = 〈V,E〉, a vertex u ∈ Vi is

a border node if ∃(u, v) ∈ E where v 6∈ Vi. We denote the set of border nodes of

sub-graph Gi as β(Gi).

Definition 5.3.3. The occurrence point list of node Gi with respect to data set P

(Q), denoted by ΓPpoint(Gi) (ΓQpoint(Gi)), contains the identifiers of all POIs in P

(Q) appearing in Gi as one of its vertices.

For instance, the border nodes set of sub-graphs G4 and G5 are defined as

β(G4) = {v1}, β(G5) = {v10}. Furthermore, for example the occurrence point

list of G4 with respect to sets P = {v2, v6} and Q = {v0, v3, v5, v11} are defined as

95



ΓPpoint(G4) = {v2}, ΓQpoint(G4) = {v0}.

5.3.2 G-tree vs. G*-tree

Although bothG andG∗-trees represent a hierarchical partitioning of the given road

network, these two structures are different in terms of: construction procedure, bal-

anced/unbalanced characteristic, equal sized/unequal sized leaf nodes and indexing

parameters. In the following we discuss each of these differences with more details:

Construction procedure. While the goal of the G-tree indexing structure is

to represent a multi-level graph partitioning with the minimum number of border

nodes (Definition 5.3.2), on the other hand, the G∗-tree is constructed with the goal

of maximizing the minimum network distance between sub-graphs. This difference

in goals can be specified by the difference in the corresponding construction pro-

cedure of these two structures. On the one hand, in each step of coarsening phase

in the G∗-tree construction procedure, the two sub-graphs/vertices containing the

minimum edge weight are selected to be collapsed so as to maximize the total edge

weight of the coarsened graph. On the other hand, in the G-tree construction pro-

cedure, the road network graph is hierarchically partitioned into a set of smaller

sub-graphs in a way that minimizes the total number of border nodes.

Balanced/Unbalanced characteristic. The G-tree indexing structure is con-

sidered a balanced search tree. This property comes from this fact that, in the

partitioning phase of the G-tree construction procedure, each sub-graph Gi is di-

vided into approximately equal sized sub-graphs. On the other hand, there is no

guarantee for balanced characteristic of the G∗-tree, since as aforementioned the

corresponding tree structure is constructed only based on the LEM approach [34].

Equal sized/Unequal sized leaf nodes. As mentioned before, in theG-tree con-

struction procedure each sub-graph Gi is partitioned into equal-sized smaller sub-

graphs, resulting approximately equal sized leaf-nodes. On the other hand, there is

no guarantee for this characteristic in the G∗-tree. The reason is that, in the coars-

96



ening phase in the G∗-tree construction procedure, the collapsing operation takes

place regardless of the size of sub-graphs. When the number of sub-graphs reaches

to the predefined value λ, the remaining (possibly unequal sized) sub-graphs will

be considered the leaf nodes.

Indexing parameters. While G-tree indexing structure requires two param-

eters, indicating the fanout of each non-leaf-node and the size of leaf-nodes re-

spectively. The G∗-tree requires only one parameter as λ indicating the number of

leaf-nodes.

5.3.3 Distance Computations in G∗-Tree

Given the correspondingG∗-tree of a road network, two sets of distance information

are pre-computed: (i) the intra-distance matrix for each leaf-node, containing the

minimum network distance from each vertex v to each border node of the leaf-node

that contains v, and (ii) the inter-distance matrix, indicating the pairwise minimum

network distance between each pair of border nodes of any two different leaf-nodes

of G∗-tree.

Considering the G∗-tree in Figure 5.3, Figure 5.4(a) illustrates the correspond-

ing intra-distance matrix of leaf-node G4, that is the minimum network distance be-

tween all vertices in G4 towards the only border node of G4, i.e., v1. Figure 5.4(b)

illustrates the corresponding inter-distance matrix of the same G∗-tree, where the

pairwise minimum network distance of all pairs of border nodes of different leaf-

nodes is pre-computed. (Note that the inter-distance matrix is by definition sym-

metrical and with a null diagonal.)

Given the G∗-tree of a road network, for computing of minimum network dis-

tance between vi and vj , we consider two cases. In the first case, both vi and vj are

within the same leaf-node, where dn(vi, vj) is computed by applying the traditional

Dijkstra algorithm. In the case where vi and vj belong to two different leaf-nodes

Gi andGj , then dn(vi, vj) is computed based on a dynamic programming approach,

according to [21], as follows:

min
∀bi∈β(Gi),bj∈β(Gj)

{dn(vi, bi) + dn(bi, bj) + dn(bj, vj)} (5.1)

97



G4 v0 v1 v2

v1 5 0 2

(a)

G∗ v1 v7 v8 v10

v1 0 13 22 6
v7 13 0 9 12
v8 22 9 0 21
v10 25 12 21 0

(b)

Figure 5.4: (a) The intra-distance matrix of sub-graph G4, (b) the corresponding
inter distance matrix for G∗-tree illustrated in Figure 5.3

Note that in Eq. 5.1, all three elements dn(vi, bi), dn(bi, bj) and dn(bj, vj) are consid-

ered pre-computed distances which are extracted from corresponding intra-distance

and inter-distance matrices.

5.4 Top-Down Traversal (TDT)

The basic idea of the TDT approach is to exploit the hierarchical properties of the

G∗-tree and use a modified best-first search algorithm for processing k-CPQs on

road networks. One of these properties is the minimum sub-graph distance (Defi-

nition 5.4.1) between each pair of nodes (i.e., sub-graphs) of the G∗, which is used

for pruning non-promising pairs of nodes of G∗-tree. The intuition behind this ap-

proach is that the pairs of nodes with small minimum sub-graph distance have a

higher chance of containing pairs of data points belonging to the answer set. Alter-

natively, nodes that are far away from each other are less likely to contain closest

pairs. In fact, this is exactly what allows one to do effective pruning of candidate

nodes (Lemma 5.4.1).

Definition 5.4.1. The minimum sub-graph distance between sub-graphsGi andGj ,

denoted by dmin(Gi, Gj), is defined as:

dmin(Gi, Gj) = min
∀bi∈β(Gi),bj∈β(Gj)

{dn(bi, bj)} (5.2)

Lemma 5.4.1. Let mndk be the minimum network distance of the kth-closest pair

discovered so far. Then, any pair of sub-graphs (Gi, Gj) in G∗ where mndk <

98



Algorithm 10: TDT Approach
Input: G∗: G∗-tree
Output: k-CPs on P and Q

1 HT ← ∅
2 HR ← ∅
3 mndk ←∞
4 HT .push(〈(G∗root, G∗root), dmin(G∗root, G

∗
root)〉)

5 while HT is not empty do
6 〈(Gi, Gj),dmin(Gi, Gj)〉 ← HT .pop()
7 if dmin(Gi, Gj) > mndk then
8 break //Lemma 5.4.1

9 if Gi, Gj are both leaf-nodes then
10 for ∀pi ∈ ΓPpoint(Gi) do
11 for ∀qj ∈ ΓQpoint(Gj) do
12 HR.push (〈(pi, qj), dn(pi, qj)〉)

13 for ∀qi ∈ ΓQpoint(Gi) do
14 for ∀pj ∈ ΓPpoint(Gj) do
15 HR.push (〈(pj, qi), dn(pj, qi)〉)

16 update the mndk
17 else
18 W ← crosssets(Gi, Gj)
19 for each (G′i, G

′
j) ∈ W do

20 if (|ΓPpoint(G′i)| > 0 & |ΓQpoint(G′j)| > 0) OR
(|ΓPpoint(G′j)| > 0 & |ΓQpoint(G′i)| > 0) then

21 HT .push(〈(G′i, G′j), dmin(G′i, G
′
j)〉)

22 return the top k pairs in HR

dmin(Gi, Gj), cannot result in forming a pair of vertices (vi, vj), vi ∈ Gi and vj ∈

Gj , such dn(vi, vj) ≤mndk.

Proof. Any shortest path between vi and vj must contain two border nodes such

as bi ∈ β(Gi) and bj ∈ β(Gj), where dmin(Gi, Gj) ≤ dn(bi, bj) ≤ dn(vi, vj).

Based on the assumption of the lemma, we have mndk < dmin(Gi, Gj), resulting

in mndk < dn(vi, vj).

The pseudo-code for the TDT approach is presented on Algorithm 10. In the

first step, TDT approach initializes two min-heaps, HT and HR. The elements

99



of HT , are pairs in the form of 〈(Gi, Gj), dmin(Gi, Gj)〉 and are ordered by their

minimum sub-graph distance dmin(., .). On the other hand, the elements of HR

are pairs in the form of 〈(vi, vj), dn(vi, vj)〉 ordered according to their minimum

network distance dn(., .). In Line 4, the algorithm pushes the first element of HT as

〈(G∗root, G∗root), 0〉, whereG∗root is the root node ofG∗-tree. In line 6, TDT iteratively

pops the top element of HT as 〈(Gi, Gj)〉, and handles it according to whether

elements of Gi and Gj are leaf or non-leaf nodes. At this point Lemma 5.4.1 can be

used to prune non-promising nodes, i.e., nodes that cannot lead to a solution better

than the ones already obtained. In the case that both Gi and Gj are leaf nodes, then

all possible pairs of data points (pi, qj), as illustrated in lines 10-15, are pushed into

HR. In the case that at least one of nodes Gi and Gj is a non-leaf node, then all

possible combinations of Gi and Gj’s children (determined by crosssets(Gi, Gj))

are pushed into HT , lines 18-21. Note that in Algorithm 10 before putting a pair

of nodes into HT , we should also check the corresponding occurrence point lists of

nodes for pruning non-promising pairs of sub-graphs, line 20.

We illustrate the TDT approach functioning by using the network of Figure 5.1

in order to answer a 2-CPQ. Table 5.1 depicts the values stored in the heaps HT

and HR in each step of the algorithm. In step 1, the first element 〈(G11, G11), 0〉

is pushed into HT . In step 2, 〈(G11, G11), 0〉 is fetched from HT , and then the

different combinations of G11’s children accompanied with their dmin are pushed

intoHT . In Step 3, the pair of sub-graphs 〈(G9, G9), 0〉will be popped fromHT and

all possible combinations of G9’s children will be pushed into HT , by considering

the corresponding occurrence point lists. For example, since ΓPpoint(G5) = ∅, the

pair of sub-graphs (G5, G5) will not be added into HT . In step 4, the element

〈(G4, G4), 0〉 will be popped from HT . Since, both elements in this pair are leaf-

nodes, then all possible pairs of data points from P and Q belonging to sub-graph

G4 will be pushed into HR. In Step 5, the element 〈(G10, G10), 0〉 will be popped,

where among all possible combinations of G10’s children the pair of sub-graphs

(G8, G8) will be pushed into HT . In step 6, first, the pair of sub-graphs (G8, G8)

will be popped from HT , and two elements 〈(v6, v3), 3〉 and 〈(v6, v11), 5〉 will be

added into HR, and mndk will be updated as 3. In Step 7, the algorithm terminates,

100



Table 5.1: TDT approach for 2-CPQ of example of Figure 5.1
Step HT HR

Step1 < (G11, G11), 0 >
Step2 < (G9, G9), 0 >,< (G10, G10), 0 >,

< (G9, G10), 12 >
Step3 < (G4, G4), 0 >,< (G10, G10), 0 >,

< (G4, G5), 6 >,< (G9, G10), 12 >,
Step4 < (G10, G10), 0 >,< (G4, G5), 6 >, < (v2, v0), 3 >

< (G9, G10), 12 >
Step5 < (G8, G8), 0 >,< (G4, G5), 6 >, < (v2, v0), 3 >

< (G9, G10), 12 >
Step6 < (G4, G5), 6 >,< (G9, G10), 12 >, < (v2, v0), 3 >,

< (v6, v3), 3 >,
< (v6, v11), 5 >

Step7 < (G4, G5), 6 >,< (G9, G10), 12 > < (v2, v0), 3 >,
< (v6, v3), 3 >,
< (v6, v11), 5 >

since the smallest minimum sub-graph distance in theHT , belonging to the element

〈(G4, G5), 6〉 is greater than mndk.

Note that TDT technique can also be applied on top of G-tree indexing, where

Lemma 5.4.1 can be used for pruning the non-promising pairs of sub-graphs. Mean-

while, considering this point that the G∗ tree is constructed based on maximizing

the minimum network distance between sub-graphs, implementing TDT on G∗-tree

is inherently a more efficient alternative in comparison to the G-tree based on the

applied pruning strategy (Lemma 5.4.1).

5.5 Bottom-Up Sub-graph Joining (BUSJ)

The basic idea of the BUSJ technique is to traverse the G∗-tree based on a bottom-

up traversal paradigm for discovering the k-closest pairs. At the first, all leaf-nodes

in the G∗-tree are explored for discovering the local closest pairs, in which the

elements of each pair belong to same leaf node. Then, iteratively based on the

order of collapsing of sub-graphs in the tree formation phase (in the construction

procedure of G∗-tree), two sibling sub-graphs are selected to be explored together,

aiming at finding possible closest pairs where the data points belong to different

sibling sub-graphs.

101



LPQv7
G8

(P )
〈v6, 5〉

(a)

LPQv7
G8

(Q)
〈v3, 10〉
〈v11, 10〉

(b)

Figure 5.5: The LPQs for border node v7 towards sub-graph G8

5.5.1 Pre-Computations in BUSJ Approach

As mentioned before, the TDT approach requires distance pre-computations be-

tween each pair of border nodes. In comparison to the TDT approach, the BUSJ

technique requires another extra group of pre-computations. It is assumed that each

border node bi ∈ β(Gi) of sub-graph Gi has one Local Priority Queue (LPQ) for

each data set. In the following LPQbi
Gi

(P ) denotes the LPQ of border node bi to-

wards sub-graph Gi = 〈Vi, Ei〉 and data set P . It is a min-heap with entries in the

form 〈v, dn(v, bi)〉 where v is a node in the same sub-graph as border node bi. Fi-

nally, it is ordered by the minimum network distance between those two nodes. The

LPQbi
Gi

(Q) is defined in the similar way. The LPQs are used while investigating

the possible closest pairs, in which elements of each pair belong to two different

sibling sub-graphs. Figure 5.5 illustrates the corresponding LPQs for border vertex

v7 towards sub-graph G8 and data sets P = {v2, v6} and Q = {v0, v3, v5, v11} for

example of Figure 5.3.

5.5.2 Algorithm Overview

Algorithm 11 presents BUSJ’s pseudocode. It contains two main steps as: (i) all

leaf-nodes of G∗-tree are traversed for discovering the k-Local Closest Pairs (Lines

3-6), and (ii) the sibling sub-graphs in the G∗-tree are joined based on the order in

which the sub-graphs were collapsed in the tree-formation phase (Lines 7-18). In

the following, we discuss BUSJ technique with more details step by step.

Finding the k-Local Closest Pairs (k-LCPs) in a node based on traditional Dijk-

stra algorithm is a relatively simple task, and thus we omit algorithmic details. The

goal is to search, within each leaf node (leaf sub-graph Gi) of the G∗-tree for the k

102



Algorithm 11: BUSJ Approach
Input: G∗: G∗-tree,

QS: a queue indicating the order of joining of sub-graphs
Output: k-CPs on P and Q

1 HR ← ∅
2 mndk ←∞//the pairwise network distance of kth-CP
3 for ∀Gi as a leaf-node of G∗ do
4 if |ΓPpoint(Gi)| > 0 & |ΓQpoint(Gi)| > 0 then
5 HR.enqueue(LCPs(k,Gi))
6 update mndk

7 while QS is not empty do
8 < (Gi, Gj), dc(Gi, Gj) >← QS.pop()
9 if dc(Gi, Gj) > mndk then

10 break // Lemma 5.5.1

11 else
12 if |ΓPpoint(Gi)| > 0 & |ΓQpoint(Gj)| > 0 then
13 HR.push(Gi(P )./kmndkGj(Q)) // Alg. 12
14 update mndk based on HR

15 if |ΓPpoint(Gj)| > 0 & |ΓQpoint(Gi)| > 0 then
16 HR.push(Gj(P )./kmndkGi(Q)) // Alg. 12
17 update mndk based on HR

18 l ← l + 1

19 return the top k pairs in HR

closest pairs of points (pi, qi), pi ∈ ΓPpoint(Gi) and qi ∈ ΓQpoint(Gi). Note that it is

possible that there arem < k such pairs withinGi; in such a case allm are returned.

When all leaf-nodes of G∗-tree are explored then the second phase is triggered.

Now, by applying a bottom-up traversal paradigm, we examine the candidate

pairs in which elements of each pair belong to different leaf-nodes in G∗-tree. Such

pairs are generated by joining sibling sub-graphs in G∗-tree, based on the order of

collapsing of sub-graphs in the tree-formation phase of G∗-tree construction proce-

dure. Let us assume QS is a queue, in which different pairs of sibling sub-graphs

accompanied with their corresponding collapsing distance (Definition 5.3.1) have

been stored in the form of 〈(Gi, Gj), dc(Gi, Gj)〈. The intuition is that the sibling

sub-graphs with smaller collapsing distance have higher chance for containing pairs

of data points belonging to the answer set. As an example, the corresponding QS

103



for example of Figure 5.3 has been illustrated in Figure 5.6. Since in the tree for-

mation phase, the sub-graphs G4 and G5 are the first pair that were collapsed with

collapsing distance as dc(G4, G5)=6, then the element < (G4, G5), 6 > has been

placed in the front of QS .

→ <(G9,G10),12> <(G7,G8),9> <(G4,G5),6> → front

Figure 5.6: The order of joining of the sub-graphs in Figure 5.3

In order to join two sub-graphs Gi and Gj , denoted by Gi ./
k
mndk

Gj , we

break down this problem into two smaller sub-problems Gi(P )./kmndkGj(Q) and

Gj(P )./kmndkGi(Q). Gi(P ) ./kmndk Gj(Q) looks for a set of at most m pairs, which

have the m smallest minimum network distances among all pairs of points that can

be formed by choosing points pi and qi from sub-graphs Gi and Gj , respectively,

where m is defined as m ≤ min{k, |ΓPpoint(Gi)| × |ΓQpoint(Gj)|}, i.e., the minimum

between the sought k or the actual number of possible pairs. Gj(P ) ./kmndk Gi(Q)

is defined in the similar way.

Algorithm 12 represents the corresponding pseudocode of Gi(P )./kmndkGj(Q).

For each pair of border vertices (bi, bj), bi∈β(Gi), bj∈β(Gj), we iteratively form

candidate pairs of data points based on the corresponding LPQs of bi and bj , i.e.,

LPQbi
Gi

(P ) and LPQbj
Gj

(Q) respectively. In lines 6 and 11 of Algorithm 12, the

data points pf and qh respectively indicate the data points from data sets P and Q,

that have the f th and hth smallest minimum network distance towards bi and bj ,

respectively. We do not provide the algorithm of Gj(P )./kmndkGi(Q) due to space

constraints and its similarity to Gi(P )./kmndkGj(Q).

Within BUSJ technique two sibling sub-graphs of G∗-tree are iteratively se-

lected to be joined based on the order in which they were collapsed in tree for-

mation phase in G∗-tree construction procedure. Fortunately we can apply ef-

fective pruning to reduce the search space and there the joining of sub-graphs.

Lemma 5.5.1 states the condition under which the joining process of sub-graphs

will be stopped, i.e., when the pair of sub-graphs in the front of QS have their col-

lapsing distance greater than mndk (Algorithm 11, lines 9-10). Recall that, the

collapsing distance between two sub-graphs Gi and Gj minimizes w(Gi, Gj), i.e.,

104



Algorithm 12: Gi(P )./kmndkGj(Q)

Input: Gi, Gj, k,mndk
Output: HR

1 HR ← ∅
2 for ∀bi ∈ β(Gi) do
3 for ∀bj ∈ β(Gj) do
4 f ← 1
5 while f¡ min{k,ΓPpoint(Gi)} do
6 pf ← LPQbi

Gi
(P, f)

7 if dn(pf , bi) > mndk then
8 break

9 h← 1

10 while h< min{k,ΓQpoint(Gj)} do
11 qh ← LPQ

bj
Gj

(Q, h)

12 if dn(bj, qh) > mndk then
13 break

14 if dn(pf , bi) + dn(bi, bj) + dn(bj, qh) < mndk then
15 HR.push(< pf , qh >)

16 h← h+ 1

17 f ← f + 1

dc(Gi, Gj) = dmin(Gi, Gj).

Lemma 5.5.1. Let mndk be the corresponding minimum network distance of kth

closer pair discovered so far. And let us assume (Gi, Gj) is a pair of sibling sub-

graphs in the front of QS , where dc(Gi, Gj) > mndk. Then, Gi ./
k
mndk

Gj cannot

result in forming a pairs of data points belonging to the optimal answer set, as well

as, there would be no un-examined pairs of data points that can further minimize

the mndk.

Proof. For any pair of data points such as (pi, qj) ∈ Gi ./
k
mndk

Gj we have

dc(Gi, Gj) = dmin(Gi, Gj) ≤ dn(pi, qj). On the other hand, assuming thatmndk <

dc(Gi, Gj), we can conclude that mndk < dn(pi, qj). This means that the pair of

data points (pi, qj) cannot be part of the answer set. Furthermore, considering that

the pairs of sub-graphs in theQS have been ordered with respect to their dc, in which

the pair of sub-graphs in the front of QS as (Gi, Gj) has the smallest dc among all

105



other elements of QS , then we can conclude that there would be no un-examined

pairs of data points that can further minimize the mndk.

Let us now illustrate the BUSJ approach through an example. Assuming the

illustrated G∗-tree in Figure 5.3 for the network in Figure 5.1, then for discovering

the 2-CPs on data sets P and Q, in first step the leaf-nodes of G∗-tree as G4, G5,

G7 and G8 will be explored separately returning a set of two local closest pairs as

{(v2, v0),(v6, v3)}, where mndk = 3. Then in the next step, according to Figure 5.6,

initially the pair of sub-graphs in the front of QS in the form of < (G4, G5), 6 >

will be extracted. Since this pair has the corresponding collapsing distance greater

than mndk, then according to Lemma 5.5.1 the algorithm terminates, returning the

answer set as A = {(v2, v0),(v6, v3)}.

A final remark about the BUSJ is that while the discussion above assumed an

underlying G∗-tree, it could be implemented on top of the G-tree as well, however,

the pruning criteria (Lemma 5.5.1) could not be used. To be more specific, let us

assume two sibling sub-graphsGi andGj with the parent nodeGk, whereGk′ is the

sibling of Gk in the G∗-tree. Then according to G∗-tree construction procedure, we

have dmin(Gi, Gj)≤ dmin(Gk, Gk′), in which Lemma 5.5.1 can be used as a pruning

strategy while applying the BUSJ technique on top of G∗-tree. On the other hand,

the G-tree indexing structure does not guarantee this condition. As a consequence,

while implementing BUSJ technique on top ofG-tree, the whole G-tree would have

to be traversed, all the way to its root node. Clearly, the using G∗-tree instead is

inherently a more efficient alternative.

5.6 Experiments

In this section we evaluate the performance of our proposed approaches, BUSJ

and TDT techniques, through an extensive set of experiments. In order to show

the superiority of the G∗-tree in comparison to G-tree in processing of k-CPQs,

we compare the performance of the TDT approach based on both the G and G∗

trees, where TDT on the G-tree is denoted by TDT-G. Following [70] we selected

τ = 128 and f = 4 as the fanout and the maximum number of vertices in leaf-

106



nodes for the G-tree, respectively. As discussed at the end of the previous section,

there is no reason for one to believe that BUSJ would perform better on top of

the G-tree than the G∗-tree and due to that we do not perform such a comparison.

In the experiments, we used two different road networks; the California (CA) and

Oldenburg (OL) road networks1. California’s road network contains 21,047 vertices

and 21,692 road segment edges, and Oldenburg’s road networks has 6,104 vertices

and 7,034 road segment edges. For each k-CPQ, the generated data sets P and Q

are placed randomly on the road networks’ vertices.

In the experiments, we study the effect of different parameters: (1) the sole and

main parameter of G∗-tree, λ, indicating the number of leaf-nodes in the G∗-tree;

(2) the number of requested closest pairs (k); (3) the cardinality of the data sets, and

(4) the parameter γ indicating the imbalancing factor as the cardinality of P over

Q, i.e., γ = |P |/|Q|. We measure the query processing time. Table 5.2 summarizes

the values used for each parameter in our experiments and their default values. In

the experiments, we change one of the parameters and set others as default values in

order to verify the effect of each parameter. For each set of experiments, we execute

400 queries and show the average results.

Table 5.2: Parameter values in the experiments
Parameter Range Default

Number of leaf-nodes (λ) 2% – 32% 14%
Cardinality of data sets 1% – 12% 4%

Number of required CPs (k) 1 – 100 10
The imbalancing factor (γ) 1 – 5 1

In our preliminary experiments we used the Heap-Algorithm [17] as a loose

baseline (since it was designed for the Euclidean space). Unfortunately it required

at least two times more retrieved data points as well as response time in all experi-

ments for a variety of settings. Therefore we do not plot the corresponding graphs

of that algorithm in the figures that follow.

1http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm

107

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm


5.6.1 Effect of Number of Leaf-Nodes

In the first set of experiments we investigate the effect of λ on (1) the number of

border nodes (Figure 5.7(a)), (2) the standard deviation of leaf-nodes sizes (Fig-

ure 5.7(b)), (3) the G∗-tree build time (Figure 5.7(c)) and (4) the response time

(Figure 5.7(d)).

Note that the percentage of border nodes correlates with the amount of pre-

computations overhead for calculating the distance between each pair of border

nodes. A larger standard deviation of leaf-nodes sizes indicates that a larger num-

ber of data points are to be retrieved while examining the leaf-node sub-graphs.

In this set of experiments, we make two observations. With the increase of λ, the

percentage of border nodes increases linearly, and the variation of leaf-nodes sizes

decreases exponentially. Although the ideal λ is the one incurring a lower percent-

age of border nodes and also less variation of leaf-nodes sizes, our experimental

results show that there is a trade-off between these two parameters that should be

considered while selecting the parameter λ. On the one hand, when the parameter

λ increases, the higher percentage of border nodes incurs a higher load of distance

pre-computations between each pair of border nodes. On the other hand, it requires

a lower number of retrieved data points, because the deviation of leaf-nodes sizes

from the average decreases exponentially with the increase of λ. Based on our

experimental results in Figures 5.7(a) and 5.7(b), we selected λ as 3000 and 800

(nearly 14% of the total number of vertices) the CA and OL road networks, respec-

tively. This setting requires pairwise network distance pre-computations between

nearly 28% of vertices as border nodes in both of road networks.

Figure 5.7(c) shows the effect of λ on G∗-tree build time. This figure illustrates

two groups of G∗-tree build time for each road network. Since BUSJ technique

requires an extra group of pre-computations as construction of LPQs in comparison

to TDT technique, we plot the G∗-tree build time for TDT and BUSJ techniques

separately. As this figure shows, with the increase of λ and subsequently with the

increase of percentage of border nodes, there is a gap augmentation between G∗-

tree build time for TDT and BUSJ techniques.

Figure 5.7(d) shows the impact of parameter λ on the response time. As ex-

108



2 8 1 4 1 8 2 4 3 2
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

P
er

c
e
nt

a
g
e 

of
 

B
or

d
er

 
N
o
d
es

 (
%)

λ  ( %)

 

 
O L

C A

2 8 1 4 1 8 2 4 3 2
0

2 0

4 0

6 0

8 0

1 0 0

St
d 

of
 

Si
z
e 

of
 
L
e
af
 

N
o
d
es

λ  ( %)

 

 
O L

C A

( a)

2 8 1 4 1 8 2 4 3 2
3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

G*
−

Tr
e
e 

B
uil

d 
Ti

m
e(

s)

λ  ( %)

 

 

T D T( O L)

B U S J( O L)

T D T( C A)

B U S J( C A)

( b)

2 8 1 4 1 8 2 4 3 2
0

1 0

2 0

3 0

4 0

5 0

6 0

R
es

p
o
ns

e 
Ti

m
e(

s)

λ  ( %)

 

 
T D T( O L)

B U S J( O L)

T D T( C A)

B U S J( C A)

( c)

( d)

Fi g ur e 5. 7: Eff e ct of p ar a m et er λ

p e ct e d, w h e n t h e p ar a m et er λ i n cr e as es, t h e B U SJ’s r es p o ns e ti m e dr o ps e x p o n e n-

ti all y d u e t o r e d u cti o n i n l e af- n o d es si z es. O n t h e ot h er h a n d, t h e T D T a p pr o a c h, i n

t h e O L r o a d n et w or k, i niti all y f oll o ws a st e e p r at e w h e n λ i n cr e as es fr o m 2 % u p t o

1 4 % , b ut t h e n, si mil ar t o C A r o a d n et w or k t h e r es p o ns e ti m e r e m ai ns m or e st a bl e

wit h t h e f urt h er i n cr e as e of λ . T h e m ai n r e as o n f or t h e st e a d y r es p o ns e ti m e b y t h e

T D T a p pr o a c h wit h t h e c h a n g e of λ is t h e f oll o wi n g. Wit h t h e i n cr e as e of λ t h e

si z e of l e af- n o d es d e cr e as es, m e a ni n g t h at a l o w er n u m b er of p oi nts ar e s u p p os e d

t o b e e x a mi n e d. O n t h e ot h er h a n d, it a u g m e nts t h e h ei g ht of t h e G ∗ -tr e e yi el di n g a

l ar g er n u m b er of i nt er m e di at e n o d es i n t h e tr e e. I n ot h er w or ds, w h e n λ i n cr e as es,

1 0 9



1 10 25 50
0

10

20

30

40

50

60

70

R
es

po
ns

e 
Ti

m
e 

(s
)

k

 

 
TDT−G(OL)
TDT(OL)
BUSJ(OL)
TDT−G(CA)
TDT(CA)
BUSJ(CA)

Figure 5.8: Effect of parameter k.

1 2 4 8 12
0

10

20

30

40

50

60

70

R
es

po
ns

e 
Ti

m
e 

(s
)

Data Set Size (%)

 

 
TDT−G(OL)
TDT(OL)
BUSJ(OL)
TDT−G(CA)
TDT(CA)
BUSJ(CA)

Figure 5.9: Effect of Data Set Size

the changes in the size of leaf-nodes and the height of tree balance the effect of each

other in terms of response time.

5.6.2 Effect of Number of Required CPs

Figure 5.8 shows that the query response time in all approaches increases with the

enlargement of k. The response time of the G∗-tree-based TDT grows at a slower

pace than its competitors, where the fastest rate of increase of response time belongs

to BUSJ technique. The results illustrate that for lower values of k, BUSJ shows a

smaller response time in comparison to TDT technique, but with the increase of k

the response time of these two techniques converge towards each other. As well, the

TDT approach based on G∗-tree outperforms the same technique based on G-tree

in terms of response time for all settings of k. The main reason for the superiority

of TDT approach on top of G∗-tree over the G-tree is that the G∗-tree provides a

stronger capability for pruning non-promising pairs of sub-graphs and consequently

shrinking the search space.

5.6.3 Effect of Dataset Size

Figure 5.9 plots the effect of varying the cardinality of data sets P and Q on the

response time. The results indicate that although the response time of all approaches

increases with the increase of data set size, the performance of the BUSJ approach

increases at a slower pace in comparison to other competitors. The main reason for

110



why BUSJ outperforms the other two approaches is that on the one hand, with the

increase of data sets sizes less number of vertices are traversed, sincemndk tends to

be smaller when the cardinality of data set increases. On the other hand, TDT using

both G and G∗ requires examining a larger number of data points with the increase

of data set size, since leaf-nodes become denser in both trees. Meanwhile, TDT

technique outperforms TDT-G in terms of query processing cost for all settings of

data set sizes, due to G∗-tree provides a stronger pruning strategy in comparison to

G-tree.

1 2 3 4 5

5

10

15

20

25

30

35

40

45

50
R

es
po

ns
e 

Ti
m

e 
(s

)

Imbalancing Factor(%)

 

 
TDT−G(OL)
TDT(OL)
BUSJ(OL)
TDT−G(CA)
TDT(CA)
BUSJ(CA)

Figure 5.10: Effect of Parameter γ

5.6.4 Effect of Imbalancing Factor

In the last set of experiments we vary γ, i.e., the ratio of cardinality of P over Q.

Figure 5.10 illustrates our experimental results. Increasing γ has two opposite ef-

fects on the performance of query processing cost of different approaches. On the

one hand, when γ increases, the search space becomes smaller, since the number of

candidate pairs is reduced in the imbalanced data sets. On the other hand, the pair-

wise distances of the kth closest pair becomes larger, which decreases the pruning

capability of different approaches and more nodes are examined. Because of these

two opposite effects, as expected the response time of different approaches remains

stable.

111



5.7 Conclusion

In this chapter, we investigated for the first time the k-CPQs problem in road net-

works. We proposed an efficient road network partitioning structure, G∗-tree, for

efficient processing k-CPQs based on hierarchically partitioning road networks into

smaller sub-graphs.

Using G∗-tree as a framework, we developed two approaches, named TDT and

BUSJ, based on top-down and bottom-up traversal of G∗-tree, respectively. Both

approaches make use of effective pruning, due to the way the underlying G∗-tree

was constructed. Our experimental results, using real data sets and varying a num-

ber of parameters, show that BUSJ technique always incurs smaller query pro-

cessing cost in comparison to TDT approach. This superiority is due to a set of

pre-computations, specifically local priority queues for each border node in each

sub-graph, which effectively orders the data points placing in the same sub-graph

based on their distances from that border node. Comparing the performance of TDT

over our proposed G∗-tree and the same algorithm using the state-of-the-art G-tree,

shows that TDT over the G∗-tree is always more efficient. This shows the superior-

ity of G∗-tree indexing structure by allowing the use of a stronger pruning strategy

based on the maximizing the minimum network distance between sub-graphs, while

hierarchically partitioning the road network into smaller sub-graphs.

112



Chapter 6

Conclusion

In this thesis, we studied an important class of location based services in spatial

databases, namely group trip planning queries. For that, we investigate differ-

ent trip planning queries: Sequenced Group Trip Planning Queries (SGTPQs), k-

Optimal Meeting Points based on Preferred Paths (k-OMP 3), Best-Compromise

In-Route Nearest Neighbor (BC-IRNN). We also investigated processing the k-

Closest Pairs Queries (k-CPQs) in road networks.

For processing SGTPQs, we proposed the PGNE and IBS approaches. While

the former applies a mixed breadth-depth first search strategies for exploring the

search space, the latter traverses the POIs search space based on a depth-first search

strategy, in which the optimal partial trips from different POIs are computed and

reused when the algorithm proceeds. Both of aforementioned techniques apply

efficient pruning strategies to shrink the search space. Our experimental results

show that IBS is more scalable with respect to all parameters when the size of

network increases.

As our second contribution in this thesis, we investigated (k-OMP 3) queries,

finding the k POIs which incur the k smallest aggregate detour distances towards

the given set of preferred path for a group users. We solved k-OMP 3queries for

aggregate functions sum and max. For processing k-OMP 3queries, we proposed

efficient provably correct solutions as Multiple Ellipse Based Pruning (MEP) and

Single Ellipse based Pruning (SEP). Both of these techniques shrink the search

space based on geometrical properties of ellipses. The former first prunes the search

space around each preferred path and then returns the intersection of all pruned

113



areas as the final refined area. On the other hand, SEP approach returns the final

refined area as an ellipse where the focal points are placed on the centroid of source

locations and destinations. Our experimental results show that, in the case that the

aggregate function is max, MEP approach provides a stronger pruning strategy in

comparison to SEP approach, which results in incurring faster response time. On

the other hand, SEP approach is the most efficient and robust solution in terms

of response time for processing k-OMP 3queries, in the case that the aggregate

function is sum.

In the third phase of this research we investigated a combination of trip planning

and path nearest neighbor queries as BC-IRNN queries. Given a preferred path for

a user from source location towards a destination, and the COI that he/she is inter-

ested to visit, in BC-IRNN queries our goal is to find the linearly non-dominated

paths from source location towards destination passing at least one POI based on

two criteria, total traversed distance and detour distance from preferred path. For

processing BC-IRNN queries we proposed a solution based on using suitable upper-

bounds to both cost criteria to prune uninteresting paths. These upper-bounds are

defined based on the travel distance of the path incurring the minimum detour dis-

tance and detour distance of the path which requires the minimum possible travel

distance. Our experimental results on real datasets show that our proposed approach

incurs in significantly faster query processing time when compared to a straightfor-

ward baseline approach.

In the last phase of our research, we worked on k-CPQs in road networks. Given

two sets of nodes P and Q on a road network, a k-Closest Pairs Query (k-CPQ)

finds the pairs from P × Q which have the k smallest network distances. As our

first contribution, we present a new hierarchical road network partitioning structure,

named G∗-tree, which is designed to support our proposed algorithms. Then, we

propose, as our main contribution, two different approaches, BUSJ and TDT, for

processing k-CPQs. While TDT technique applies a top-down traversal paradigm

by applying a best-first search strategy, BUSJ approach looks for the k-closest pairs

by traversing the G∗-tree in a bottom-up manner. Both of the these approaches

employ an effective pruning strategy for shrinking the search space based on the

114



minimum network distance between sub-graphs, which is main driver for the G∗-

tree’s construction. Our experimental results, using real data sets and varying a

number of parameters, show that BUSJ technique always incurs smaller query pro-

cessing cost in comparison to TDT approach. This superiority is due to a set of

pre-computations, specifically local priority queues for each border node in each

sub-graph, which effectively orders the data points placing in the same sub-graph

based on their distances from that border node.

In real-life trip planning applications the travel time depends on the departure

time and road network traffic, thus time-dependent group trip planning queries in

road networks can be considered as a possible future work which has not been

investigated so far. For this, all queries that have been studied in this thesis can be

investigated in time-dependent road networks as possible future works.

115



Bibliography

[1] Facebook. http://www.facebook.com.

[2] Google+. http://plus.google.com.

[3] Loopt. http://www.loopt.com.

[4] Elham Ahmadi and Mario A. Nascimento. IBS: An efficient stateful algo-

rithm for optimal sequenced group trip planning queries in road networks. In

Proc. of the 18th Intl. Conf. on Mobile Data Mangement (MDM), pages 24–33,

2017.

[5] Elham Ahmadi, Camila F. Costa, and Mario A. Nascimento. Best-compromise

in-route nearest neighbor queries. In Proc. of the 25th Intl. Conf. on Ad-

vances in Geographic Information Systems (ACM SIGSPATIAL)-Submitted.

ACM, 2017.

[6] Elham Ahmadi and Mario A. Nascimento. A mixed breadth-depth first search

strategy for sequenced group trip planning queries. In Proc. of the 16th Intl.

Conf. on Mobile Data Management (MDM), 2015.

[7] Elham Ahmadi and Mario A. Nascimento. k-closest pairs queries in road

networks. In Proc. of the 17th Intl. Conf. on Mobile Data Mangement (MDM),

pages 232–241, 2016.

[8] Elham Ahmadi and Mario A. Nascimento. k-optimal meeting points based on

preferred paths. In Proc. of the 24th Intl. Conf. on Advances in Geographic

Information Systems (ACM SIGSPATIAL), pages 47:1–47:4, 2016.

116

http://www.facebook.com
http://plus.google.com
http://www.loopt.com


[9] Elham Ahmadi and Mario A. Nascimento. Datasets of roads, public trans-

portation and points-of-interest in Amsterdam, Oslo and Berlin. In: https:

//sites.google.com/ualberta.ca/nascimentodatasets/,

2017.

[10] Sanjeev Arora. Polynomial time approximation schemes for euclidean trav-

eling salesman and other geometric problems. Journal of the ACM (JACM),

45(5):753–782, 1998.

[11] Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for

constructing the weighted voronoi diagram in the plane. Pattern Recognition

Journal, 17(2):251–257, 1984.

[12] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

R*-tree: an efficient and robust access method for points and rectangles.

Mathematical Programming Journal, 19(2):322–331, 1990.

[13] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. The

multi-rule partial sequenced route query. In Proc. of the 16th Intl. Conf. on

Advances in Geographic Information Systems (ACM SIGSPATIAL), pages 1–

10, 2008.

[14] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Moni-

toring path nearest neighbor in road networks. In Proc. of the Intl. Conf. on

Management of Data (ACM SIGMOD), pages 591–602, 2009.

[15] Reynold Cheng. Managing uncertainty of large spatial databases. ACM

SIGSPATIAL Special Journal, 8(2):11–17, 2016.

[16] Thomas H Cormen. Introduction to algorithms. Massachusetts Institute of

Technology (MIT) press, 2009.

[17] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vas-

silakopoulos. Closest pair queries in spatial databases. ACM Special Interest

Group on Management of Data (SIGMOD) Record Journal, 29(2):189–200,

2000.

117

https://sites.google.com/ualberta.ca/nascimentodatasets/
https://sites.google.com/ualberta.ca/nascimentodatasets/


[18] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vas-

silakopoulos. Algorithms for processing k-closest-pair queries in spatial

databases. Data & Knowledge Engineering Journal, 49(1):67–104, 2004.

[19] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. Clusterjoin: a similarity

joins framework using map-reduce. Very Large Data Bases (VLDB) Journal,

7(12):1059–1070, 2014.

[20] Kimmo Fredriksson and Billy Braithwaite. Quicker similarity joins in metric

spaces. In Intl. Conf. on Similarity Search and Applications, pages 127–140.

2013.

[21] Yunjun Gao, Lu Chen, Xinhan Li, Bin Yao, and Gang Chen. Efficient k-

closest pair queries in general metric spaces. Very Large Data Bases (VLDB)

Journal, 24(3):415–439, 2015.

[22] Ralf Hartmut Güting. An introduction to spatial database systems. The VLDB

Journal—The International Journal on Very Large Data Bases, 3(4):357–399,

1994.

[23] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.

Mathematical Programming Journal, 14(2):47–57, 1984.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics Journal, 4(2):100–107, 1968.

[25] Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali, Lars Kulik, and

Egemen Tanin. Efficient computation of trips with friends and families. In

Proc. of the 24th ACM Intl. Conf. on Information and Knowledge Management

(CIKM), pages 931–940, 2015.

[26] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, and Lars Kulik.

Group trip planning queries in spatial databases. In Intl. Symp. on Spatial and

Temporal Databases (SSTD), pages 259–276. 2013.

118



[27] Tanzima Hashem, Tahrima Hashem, Mohammed Eunus Ali, Lars Kulik, and

Egemen Tanin. Trip planning queries for subgroups in spatial databases. In

Australasian Database Conference, pages 110–122, 2016.

[28] Gı́sli R Hjaltason and Hanan Samet. Incremental distance join algorithms

for spatial databases. ACM Special Interest Group on Management of Data

(SIGMOD) Record Journal, 27(2):237–248, 1998.

[29] Xuegang Huang and Christian S Jensen. In-route skyline querying for

location-based services. In Proc. of the 4th Intl. Workshop on Web and Wire-

less Geographical Information Systems (W2GIS), pages 120–135, 2004.

[30] Edwin H Jacox and Hanan Samet. Metric space similarity joins. ACM Trans-

actions on Database Systems (ACM TODS) Journal, 33(2):7, 2008.

[31] Roksana Jahan, Tanzima Hashem, and Sukarna Barua. Scheduling multiple

trips for a group in spatial databases. In Proc. of the 20th Intl. Conf. on Ex-

tending Database Technology (EDBT), pages 10–22, 2017.

[32] Yaron Kanza, Roy Levin, Eliyahu Safra, and Yehoshua Sagiv. Interactive route

search in the presence of order constraints. Very Large Data Bases (VLDB)

Journal, 3(1-2):117–128, 2010.

[33] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning.

In Proc. of the ACM/IEEE Conf. on Supercomputing, page 29, 1995.

[34] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scientific Computing,

20(1):359–392, 1998.

[35] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline

queries: A multi-preference path planning approach. In Proc. of the 26th Intl.

Conf. on Data Engineering (ICDE), pages 261–272, 2010.

119



[36] Hisashi Kurasawa, Atsuhiro Takasu, and Jun Adachi. Finding the k-closest

pairs in metric spaces. In Proc. of the 1st Workshop on New Trends in Simi-

larity Search, pages 8–13, 2011.

[37] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-

Hua Teng. On trip planning queries in spatial databases. In Proc. of the 9th

Intl. Symp. on Spatial and Temporal Databases (SSTD), pages 273–290. 2005.

[38] Hongga Li, Hua Lu, Bo Huang, and Zhiyong Huang. Two ellipse-based prun-

ing methods for group nearest neighbor queries. In Proc. of the 13th annual

ACM Intl. workshop on Geographic information systems (ACM GIS), pages

192–199, 2005.

[39] Jing Li, Yin David Yang, and Nikos Mamoulis. Optimal route queries with

arbitrary order constraints. IEEE Transactions on Knowledge and Data Engi-

neering (IEEE TKDE) Journal, 25(5):1097–1110, 2013.

[40] Qianlu Lin, Chuan Xiao, Muhammad Cheema, and Wei Wang. Finding the

sites with best accessibilities to amenities. In Intl. Conf. on Database Systems

for Advanced Applications (DASFAA), pages 58–72, 2011.

[41] Eric Hsueh-Chan Lu, Huan-Sheng Chen, and Vincent S Tseng. An efficient

framework for multirequest route planning in urban environments. IEEE

Transactions on Intelligent Transportation Systems Journal, 18(4):869–879,

2017.

[42] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis.

Group nearest neighbor queries. In Proc. of the 20th Intl. Conf. on Data En-

gineering (ICDE), pages 301–312, 2004.

[43] Rodrigo Paredes and Nora Reyes. Solving similarity joins and range queries

in metric spaces with the list of twin clusters. Journal of Discrete Algorithms,

7(1):18–35, 2009.

120



[44] M Patella, P Ciaccia, and P Zezula. M-tree: An efficient access method for

similarity search in metric spaces. In Proc. of the 23rd Intl. Conf. on Very

Large Data Bases (VLDB), pages 1241–1253, 1997.

[45] George Roumelis, Antonio Corral, Michael Vassilakopoulos, and Yannis

Manolopoulos. New plane-sweep algorithms for distance-based join queries

in spatial databases. GeoInformatica Journal, 20(4):571–628, 2016.

[46] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis

Manolopoulos. A new plane-sweep algorithm for the k-closest-pairs query.

In Intl. Conf. on Current Trends in Theory and Practice of Informatics, pages

478–490. 2014.

[47] Samiha Samrose, Tanzima Hashem, Sukarna Barua, Mohammed Eunus Ali,

Mohammad Hafiz Uddin, and Md Iftekhar Mahmud. Efficient computation of

group optimal sequenced routes in road networks. In Proc. of the 16th Intl.

Conf. on Mobile Data Management (MDM), pages 122–127, 2015.

[48] Jochen Schiller and Agnès Voisard. Location-based services. Elsevier, 2004.

[49] Shuo Shang, Lisi Chen, Zhewei Wei, Christian S Jensen, Ji-Rong Wen, and

Panos Kalnis. Collective travel planning in spatial networks. IEEE Transac-

tions on Knowledge and Data Engineering Journal, 28(5):1132–1146, 2016.

[50] Shuo Shang, Ke Deng, and Kexin Xie. Best point detour query in road net-

works. In Proc. of the 18th Intl. Conf. on Advances in Geographic Information

Systems (ACM SIGSPATIAL), pages 71–80, 2010.

[51] Shuo Shang, Kai Zheng, Christian S Jensen, Bin Yang, Panos Kalnis, Guohe

Li, and Ji-Rong Wen. Discovery of path nearby clusters in spatial net-

works. IEEE Transactions on Knowledge and Data Engineering Journal,

27(6):1505–1518, 2015.

[52] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. The

optimal sequenced route query. Very Large Data Bases (VLDB) Journal,

17(4):765–787, 2008.

121



[53] Mehdi Sharifzadeh and Cyrus Shahabi. Processing optimal sequenced route

queries using voronoi diagrams. GeoInformatica Journal, 12(4):411–433,

2008.

[54] Michael Shekelyan, Gregor Jossé, Matthias Schubert, and Hans-Peter Kriegel.

Linear path skyline computation in bicriteria networks. In Proc. of the 19th

Intl. Conf. on Database Systems for Advanced Applications (DASFAA), pages

173–187, 2014.

[55] Shashi Shekhar and Jin Soung Yoo. Processing in-route nearest neighbor

queries: a comparison of alternative approaches. In Proc. of the 11th ACM Intl.

Symp. on Advances in Geographic Information Systems (ACM GIS), pages 9–

16, 2003.

[56] Hyoseop Shin, Bongki Moon, and Sukho Lee. Adaptive multi-stage distance

join processing. ACM Special Interest Group on Management of Data (SIG-

MOD) Record Journal, 29(2):343–354, 2000.

[57] Hyoseop Shin, Bongki Moon, and Sukho Lee. Adaptive and incremental pro-

cessing for distance join queries. IEEE Transactions on Knowledge and Data

Engineering (IEEE TKDE) Journal, 15(6):1561–1578, 2003.

[58] Yasin N Silva, Spencer S Pearson, and Jason A Cheney. Database similarity

join for metric spaces. In Intl. Conf. on Similarity Search and Applications,

pages 266–279. 2013.

[59] Subarna Chowdhury Soma, Tanzima Hashem, Muhammad Aamir Cheema,

and Samiha Samrose. Trip planning queries with location privacy in spatial

databases. World Wide Web Journal, 20(2):205–236, 2017.

[60] Anika Tabassum, Sukarna Barua, Tanzima Hashem, and Tasmin Chowdhury.

Dynamic group trip planning queries in spatial databases. In Proc. of the

29th Intl. Conf. on Scientific and Statistical Database Management (SSDBM),

page 38, 2017.

122



[61] David Taniar and Wenny Rahayu. A taxonomy for nearest neighbour queries

in spatial databases. Journal of Computer and System Sciences, 79(7):1017–

1039, 2013.

[62] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and accurate

nearest neighbor and closest pair search in high-dimensional space. ACM

Transactions on. Database Systems (ACM TODS) Journal, 35(3):1–20, 2010.

[63] G Tsatsanifos, P Petcovici, and Mario A. Nascimento. Meet-and-go: finding

optimal single connecting points considering companionship preferences. In

Proc. of the 24th Intl. Conf. on Advances in Geographic Information Systems

(ACM SIGSPATIAL), pages 87:1–87:4, 2015.

[64] Ye Wang, Ahmed Metwally, and Srinivasan Parthasarathy. Scalable all-pairs

similarity search in metric spaces. In Proc. of the 19th ACM Intl. Conf. on

Knowledge Discovery and Data mining (ACM KDD), pages 829–837, 2013.

[65] Da Yan, Zhou Zhao, and Wilfred Ng. Efficient algorithms for finding optimal

meeting point on road networks. Very Large Data Bases (VLDB) Journal,

4(11):1–11, 2011.

[66] Da Yan, Zhou Zhao, and Wilfred Ng. Efficient processing of optimal meeting

point queries in euclidean space and road networks. Knowledge and Informa-

tion Systems (KAIS) Journal, 42(2):1–33, 2013.

[67] Congjun Yang and King-Ip Lin. An index structure for improving closest

pairs and related join queries in spatial databases. In Database Engineering

and Applications Symposium (IDEAS), pages 140–149, 2002.

[68] Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest

neighbor queries in road networks. IEEE Transactions on Knowledge and

Data Engineering (IEEE TKDE) Journal, 17(6):820–833, 2005.

[69] Jun Zhang, Nikos Mamoulis, Dimitris Papadias, and Yufei Tao. All-nearest-

neighbors queries in spatial databases. In Proc. of the 16th Intl. Conf. on

123



Scientific and Statistical Database Management (SSDBM), pages 297–306,

2004.

[70] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree: An

efficient index for knn search on road networks. In Proc. of the 22nd ACM

Intl. Conf. on Information and Knowledge Management (CIKM), pages 39–

48, 2013.

[71] Chenghao Zhu, Jiajie Xu, Chengfei Liu, Pengpeng Zhao, An Liu, and Lei

Zhao. Efficient trip planning for maximizing user satisfaction. In Proc. of the.

22nd Intl. Conf. on Database Systems for Advanced Applications (DASFAA),

pages 260–276, 2015.

124


	Introduction
	Sequenced Group Trip Planning Queries
	Introduction
	Related Work
	Single User Trip Planning Queries
	Group Trip Planning Queries

	Problem Definition
	Proposed Solutions
	Revised Iterative Approach (RIA)
	PGNE Approach
	Applied Pruning Strategies
	PGNE Algorithm

	Iterative Backward Search Approach
	Running example

	Experiments
	Effect of POI Density
	Effect of Query Area
	Effect of Group Size
	Effect of COI Density

	Conclusion

	Optimal Meeting Points Minimizing Aggregate Detour Distances from Preferred Paths
	Introduction
	Related Work
	Proposed Approaches
	Multiple Ellipse-based Pruning Approach (MEP)
	Single Ellipse-based Pruning Approach (SEP)

	Experimental Results
	Effect of POI Density
	Effect of Group Size
	Effect of Answer Size
	Summary of experimental results

	Conclusion

	Best-Compromise In-Route Nearest Neighbor Queries
	Introduction
	Related Work
	Preliminaries
	Our Proposed Approach
	Upper bounds for travel and detour distance
	Generating and pruning candidate paths
	Baseline approach

	Experimental Results
	Effect of Length of Preferred Path
	Effect of POI Density

	Conclusion

	k-Closest Pairs Queries in Road Networks
	Introduction
	Related Work
	The G*-tree
	G*-tree construction procedure
	G-tree vs. G*-tree
	Distance Computations in G*-Tree

	Top-Down Traversal (TDT)
	Bottom-Up Sub-graph Joining (BUSJ)
	Pre-Computations in BUSJ Approach
	Algorithm Overview

	Experiments
	Effect of Number of Leaf-Nodes
	Effect of Number of Required CPs
	Effect of Dataset Size
	Effect of Imbalancing Factor

	Conclusion

	Conclusion
	Bibliography

