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1 Abstract

1. Spatial memory plays a role in the way animals perceive their environ-
ments, resulting in memory-informed movement patterns that are observ-
able to ecologists. Developing mathematical techniques to understand
how animals use memory in their environments allows for an increased
understanding of animal cognition.

2. Here we describe a model that accounts for the memory of seasonal or
ephemeral qualities of an animal’s environment. The model captures mul-
tiple behaviors at once by allowing for resource selection in the present
time as well as long-distance navigations to previously visited locations
within an animal’s home range.

3. We performed a set of analyses on simulated data to test our model,
determining that it can provide informative results from as little as one
year of discrete-time location data. We also show that the accuracy of
model selection and parameter estimation increases with more location
data.

4. This model has potential to identify a specific mechanism in which ani-
mals use memory to optimize their foraging, by revisiting temporally and
predictably variable resources at consistent time lags.

1.1 Keywords

step selection function, cognitive map, spatial memory, grizzly bear, Ursus arc-
tos, animal movement, hidden Markov model

2 Introduction

Animal movement modelling has rapidly emerged as a subfield of ecology (Nathan
et al., 2008) due to advances in animal tracking (Kays et al., 2015) and compu-
tational technology (Kristensen et al., 2016). The products of these advances
have been widely applied to conservation and management (Fortin et al., 2005;
Graham et al., 2012; Gerber et al., 2019). These models allow ecologists to un-
derstand the size and shape of an animal’s home range (Worton, 1989) as well
as what habitat attributes animals prefer on a finer scale (Gaillard et al., 2010).
To address the latter, ecologists have developed tools such as resource selec-
tion functions (RSFs; Boyce and McDonald, 1999) and step selection functions
(SSFs; Fortin et al., 2005). These allow for inference on an individual’s habitat
preference in what is known as third-order selection (Johnson, 1980; Thurfjell
et al., 2014). The fine temporal and spatial resolution of these models allows
ecologists to draw inference about a variety of behavioral processes, such as how
an animal’s movement rates are affected by its environment (Avgar et al., 2016;
Prokopenko et al., 2017) and how movement patterns change at different tem-
poral scales (Oliveira-Santos et al., 2016; Richter et al., 2020). And yet, even
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with the advances that have been made in animal movement modelling, some
notable behavioral mechanisms are often not considered.

Spatial memory, defined by Fagan et al. (2013) as memory of the spatial
configuration of one’s environment, is one of the most important influences on
animal movement patterns. The idea of episodic-like memory, which hypothe-
sizes that animals can remember the “what”, “where”, and “when” associated
with specific events, is often intertwined within the intersection of spatial mem-
ory and foraging (Munoz-Lopez and Morris, 2009; Eacott and Easton, 2010;
Allen and Fortin, 2013; Crystal, 2018). Many well-known behavioral processes,
such as home range emergence (Van Moorter et al., 2009; Riotte-Lambert et al.,
2015), food caching (Clayton and Dickinson, 1998), and even migration (Bracis
and Mueller, 2017; Merkle et al., 2019), require the ability to remember the
spatial location of landmarks or regions, which often requires some form of
episodic-like memory of previous events. Animal species use spatial memory in
different ways (Fagan et al., 2013), and the benefits an animal may receive from
memory often depend on its environment (Mueller and Fagan, 2008; Mueller
et al., 2011). Theory on animal cognition has proposed that animals encode this
spatial information in their brain as a cognitive map (Tolman, 1948; O’Keefe
and Nadel, 1978). Ecologists have proposed multiple theories for the structure
of these maps, with debate arising over whether a spatially explicit Euclidean
map or a network-based topological map is more accurate (Bennett, 1996; Sturz
et al., 2006; Normand and Boesch, 2009; Asensio et al., 2011). The true struc-
ture of these cognitive maps in animals is still unclear and may vary in different
animal species. In the least, a cognitive map is an effective mathematical ve-
hicle to quantify how animals remember to revisit valuable places within their
home ranges. The link between memory and movement has long interested ecol-
ogists (in the case of Siniff and Jessen, 1969, for the purposes of home range
modelling), but there are still ample opportunities for modelling.

Many animals experience seasonal variation within their home ranges (Morey
et al., 2007; Wiktander et al., 2001), suggesting that a memory of these timings
would be beneficial to optimize foraging. A key tenet of optimal foraging theory
is that animals move to maximize their metabolic intake, and when the animal
does decide to move, the timing of departure and the animal’s subsequent des-
tination are both important (Charnov, 1976). For example, primates time their
journeys to previously visited resource patches with optimal feeding conditions
as a means to maximize energetic intake (Janmaat et al., 2006). Sharks display
intra-population variation and plasticity in their partially migratory movements,
highlighting the viability of these long-distance navigations as an efficient forag-
ing tactic (Papastamatiou et al., 2013). These recursive movement patterns are
nearly impossible without some sort of seasonal episodic-like memory, where the
animal must recall what it is foraging for, as well as when and where that food
resource was last found (Fagan et al., 2013). Movement models that incorporate
spatial memory can provide insight on how human-animal conflict (Buderman
et al., 2018), habitat fragmentation (Marchand et al., 2017), and global warming
(Mauritzen et al., 2001) affect memory-informed animals.

Attempts to model these revisitations have proposed cognitive maps with
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spatial and temporal components, but have neglected to make inference about
the specific nature of these influences. While many such approaches exist
(Dalziel et al., 2008; Avgar et al., 2013, 2015; Vergara et al., 2016; Harel and
Nathan, 2018), a common and simple technique involves integrating cognitive
maps into SSFs (Merkle et al., 2014; Oliveira-Santos et al., 2016; Marchand
et al., 2017). A notable example is the model developed by Schlägel and Lewis
(2014), where cognitive maps are based on time since last visit (a form of
episodic-like memory) for each point in space. It is proposed that animals
will only be encouraged to revisit locations when they have not visited them
recently, as seen in some ecological systems (Davies and Houston, 1981). This
model was used to draw inference from gray wolf (Canis lupus) movement pat-
terns (Schlägel et al., 2017), but it does not provide detail on when animals
choose to revisit portions of their home range. The model only considers the
last visit to any point in space, disregarding any previous visits to that point.
Time since last visit alone is insufficient to model the complex time-dependent
spatial memory that inspires movement patterns described above, because wait-
ing longer to revisit such locations may not always be beneficial for the animals
(e.g., trees that lose their ripe fruit after too long).

Here we describe a model that mathematically estimates the timing and
precision of these seasonally recursive movements (Fig. 1). We employ innova-
tive model fitting techniques (Kristensen et al., 2016; Fischer and Lewis, 2020)
brought about by advances in computational methods to detect patterns in an-
imal location data. Our modelling framework characterizes the movement of
simulated or real animals according to four hypotheses: (N) the null hypothe-
sis, assuming random walk behavior; (R) the resource-only hypothesis, assuming
animals move entirely according to nearby resources without memory; (M) the
memory-only hypothesis, assuming animals exhibit seasonal revisitation pat-
terns within their home range with a prescribed mean lag time; and (RM) the
resource-memory hypothesis, assuming animals are simultaneously influenced
by local resources and spatial memory. This model expands on previous work,
which has provided detail on how animals react to previously visited locations
(Schlägel and Lewis, 2014), how animals react to familiar locations at different
times of day (Oliveira-Santos et al., 2016), and how memory may decay over
time (Avgar et al., 2015). Riotte-Lambert et al. (2017) have even developed
a movement metric capable of gauging how often recursions are present in an-
imal movement data. We add to this rich array of literature by developing a
model that quantifies how long animals may take to revisit certain regions of
their home range, and how much a resource landscape plays a part in these
movements, by analyzing the animal’s entire movement path as opposed to the
recursion events themselves. The model is not intended to answer the question
of if animals use memory, but instead how, testing the prevalence of temporally
consistent recursive movements in foraging animals.

To test our model, we first simulated movement tracks according to the
model’s prescribed rules on simulated environments, subsequently analyzing
how sample size affects both model selection and parameter estimation. We
found that even with data sizes equivalent to roughly one year of animal track-
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ing data, the model accurately identified movement patterns consistent with the
four different hypotheses and produced accurate parameter estimates. These re-
sults improved when tracks with more locations were simulated. We then fit
the model to telemetry data from a population of Arctic grizzly bears (Ursus
arctos) and performed the same simulation analysis with real landscape data
and movement parameters estimated for the bears. These bears live in a harsh
environment where food resources are seasonal (Edwards and Derocher, 2015)
and sparsely distributed (Edwards et al., 2009). We found a heavy influence of
spatiotemporal memory in the bears’ movement patterns, although we deter-
mined that more data may be required to analyze these populations than for
simulated movements.

3 Materials and Methods

Here we introduce a new modelling framework based on step selection functions
that accounts for temporally consistent revisitations by animals that forage on
ephemeral resources (Fig. 1). We developed a nested structure of four models
in discrete time and continuous space (see Table 1 and Table S1 for a summary
of the parameters and models) to address our four alternative hypotheses (N, R,
M, RM). Our model fitting process, made possible through advanced automatic
differentiation techniques, allows for further inference about the specific nature
of these cognitive mechanisms. The novelty and complexity of the computa-
tional processes used to analyze animal location data with our model motivated
multiple simulation-based studies to identify the statistical power and parameter
estimability of our models.

3.1 Modelling framework

We fit a hidden Markov model (HMM) to animal movement data to incorporate
switching between stationary (or quasi-stationary) and non-stationary states.
HMMs are a first-order Markov process, implying that the animal’s current
state is entirely dependent on its most recent state. This approach is common
in movement ecology due to the multitude of behavioral strategies observed
in foraging animals (Morales et al., 2004; Jonsen et al., 2013). We employ
this approach to differentiate resting or other stationary behavior from what
the model would otherwise identify as spatial memory. Our model identifies
time lags at which the animal moves particularly close to its previously visited
locations, and staying put for one time step is interpreted mathematically by the
model as strong recursive behavior with a time lag of one time step. Without
including the stationary behavioral state, the model erroneously identifies this
one-step time lag in most animal data.

An HMM consists of a Markov matrix A of state-switching probabilities as
well as conditional probability distributions of the animal’s spatial location for
each state (Jonsen et al., 2013). For a model with n different movement states,
A maps from Rn → Rn, with each column summing to 1. Our model has
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Figure 1: Schematic describing our modelling framework. Given an animal’s
movement track, quantified as a set of spatial coordinates, as well as landscape
data describing an animal’s environment, we fit four nested, competing models
using maximum likelihood estimation. The insight we gain from this process
allowed us to make conclusions about the mechanistic drivers of animal behavior.
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two states, so we can infer the structure of A from its diagonal. We denote
these entries λ and γ, representing the probability that the animal will stay
in the stationary or non-stationary state, respectively, given it was just there.
Explicitly, it takes the form below:

A =

(
λ 1− λ

1− γ γ

)
(1)

While our model is meant to be applied to continuous-space animal data, we
make an approximation by discretizing our landscape over a two-dimensional
square grid. Empirical landscape data is rarely continuous in space, and the
resolution of this data can suggest a clear choice for the resolution of the domain
grid. We define points in continuous space as x (or xt to represent the animal’s
location at time t) and their corresponding grid cells as z or zt. Thus, x0 ∈ z0

is the animal’s initial location.
We define our conditional probability density functions for the stationary

and non-stationary state fs (which remains the same in all four models) and
fns, respectively. Each conditional probability distribution represents a first-
order Markov process modelling the animal’s location xt and its heading φt
over time, which depend only on xt−1 and φt−1 from the previous time step.
Due to observation error in animal tracking data, we assumed that the animal’s
observed location may change slightly even if it is not moving (Jonsen et al.,
2013), so we allowed for small “movements” in our stationary state. The proba-
bility distribution for headings in the stationary state, gs(φt|φt−1), is a uniform
distribution since we assume no directional autocorrelation here, so

gs(φt|φt−1) =
1

2π
, (2)

fs(xt, φt|xt−1, φt−1, ρs) =
2

πρs
gs(φt|φt−1) exp−‖xt − xt−1‖2

πρ2
s

. (3)

We modeled the probability of the animal moving from xt−1 to xt when
in the stationary state using a half-Gaussian distribution with a fixed mean
ρs. The half-Gaussian distribution has thinner tails than the more traditionally
used exponential distribution, decreasing the probability of longer movements
from this state. We fix ρs to reduce model complexity, noting that it is fairly
straightforward to do so based on the known degree of observation error or the
resolution of environmental data.

In the non-stationary state, we use a cognitive map structure to keep track
of the animal’s spatiotemporal movement experiences (Fig. 2). Our implemen-
tation of a cognitive map expands on the concept of time since last visit (Davies
and Houston, 1981; Schlägel and Lewis, 2014; Schlägel et al., 2017) by allow-
ing for the memory of more than just the last location to any point in space.
Instead, we formulate the animal’s cognitive map as the set of times since previ-
ous visits (TSPVs) for any area in space. This formulation allows for a form of
seasonal episodic-like memory that expands on the “time since last visit” frame-
work (Clayton and Dickinson, 1998; Martin-Ordas et al., 2010). We define this
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Figure 2: Diagram describing how an animal’s cognitive map Z changes over
four discrete time steps, given an animal’s movement track, which is illustrated
in the shaded panels. Each cell of Z contains a linked list that starts out empty
but is iteratively appended as the animal traverses its environment.

map Zt at each time t as a function over the domain grid. At each grid cell z,
Zt(z) is a linked list of integers, with each element of the list representing an
animal’s visit to a point inside that cell. Z0 is a grid full of empty linked lists,
except for z0; Z0(z0) is a list with one element, 0. We can obtain Zt if we know
Zt−1 as well as the animal’s location at time t. When t is incremented by 1, so
is every entry on every linked list across the grid, and a new entry (0) is added
to the linked list corresponding to the animal’s new location:

Zt(z) =

{
Zt−1(z) + 1 xt /∈ z
[Zt−1(z) + 1, 0] xt ∈ z

. (4)

where [Zt−1(z) + 1, 0] implies adding 1 to every entry of the linked list Zt−1(z)
and appending it with a new value 0.

The function fns, which models the animal’s location and heading in the
non-stationary state, resembles a step selection function (Fortin et al., 2005;
Forester et al., 2009), with two main components: k, the resource-independent
movement kernel; and W , the environmental (or cognitive) weighting function.
The function k describes the animal’s locomotive capability while W , which
may depend on the animal’s cognitive map Zt−1, describes how attractive the
point is to the animal. This yields the following expression for fns:
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fns(xt, φt|xt−1, φt−1, Zt−1,Θ1,Θ2)

=
k(xt|xt−1, φt−1,Θ1)W (xt|Zt−1,Θ2)∫

Ω
k(x′|xt−1, φt−1,Θ1)W (x′|Zt−1,Θ2)dx′

. (5)

The integral in the denominator serves as a normalization constant to ensure
that fns integrates to 1. The parameter vector Θ2 represents parameters re-
lated to the W and Θ1 represents the locomotive parameters associated with
k, namely ρns which describes the animal’s mean step length and κ which de-
scribes the degree of directional autocorrelation in the animal’s movements. For
each of our four models (null, resource-only, memory-only, resource-memory),
the animal’s resource-independent movement kernel k (as well as Θ1) has the
same formulation. We modeled the distance between xt and xt−1, known as a
step length, using an exponential distribution with mean parameter ρns, and
modeled the heading φt using a von Mises distribution centered at φt−1 with con-
centration parameter κ ≥ 0 (Equation 6). Higher values of κ indicate straighter
movement. We assume here that the animal’s step lengths and turning angles
are independent. This modelling structure, known more generally as a correlated
random walk, has been applied to a variety of ecological systems (Fortin et al.,
2005; Auger-Méthé et al., 2015; Duchesne et al., 2015), and the exponential
and von Mises distributions are both particularly easy to deal with analytically
while still providing accurate fits for a majority of field data (Codling et al.,
2008; Thurfjell et al., 2014). We formulate k such that

gns(φt|φt−1) =
exp (κ cos(φt − φt−1))

2πI0(κ)
, and (6)

k(xt|xt−1, φt−1,Θ1) =
exp

(
−‖xt−xt−1‖

ρns

)
ρns

gns(φt|φt−1), (7)

where I0(κ) is the modified Bessel function of order 0. Notice that φt, the
animal’s heading at time t, is not explicitly included in the left side of Equation
7; it can instead be calculated easily if xt and xt−1 are known (Fortin et al.,
2005). Note that gns, just like gs, is separate from the rest of k, following our
assumption that the animal’s step lengths and bearings are independent.

The only mathematical difference between the four models is the formulation
of W . To differentiate between these different formulations, we refer to them
as WN , WR, WM , and WRM for the null, resource-only, memory-only, and
resource-memory models, respectively. The set of parameters we estimate in
each model also varies, so we define Θ2,N , Θ2,R, Θ2,M , and Θ2,RM in a similar
respect.

3.1.1 Null model

The null model describes an animal’s locomotive capability and directional au-
tocorrelation based on its observed movement track. As a result, there is no
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extra weighting, so WN (xt|Θ2,N ) = 1 for all xt in space, and Θ2,N is the empty
set. As a result, when considering the null model, fns is equal to k.

3.1.2 Resource-only model

The resource-only model has the following key component:

(R1) the animal’s movement is driven by third-order selection for resources
reachable within one time step.

As a result, WR resembles the weighting function from an RSF or SSF (Boyce
and McDonald, 1999; Fortin et al., 2005). If we are interested in P differ-
ent resource covariates (expressed mathematically at each spatial location x as
r1(x), ..., rP (x)), we must estimate selection parameters β1, ..., βP for each co-
variate. These parameters make up Θ2,R. The expression for our weighting
function in the resource-only model is a linear combination of the covariates:

WR(xt|Θ2,R) = exp

[
P∑
p=1

βprp(xt)

]
. (8)

3.1.3 Memory-only model

The memory-only model contains the following key components:

(M1) the animal uses a cognitive map to remember the timing of previous visits
to regions of its environment, and

(M2) it will return to locations it previously visited after temporally similar
time lags.

This type of cognitive map has been supported in the literature (Normand and
Boesch, 2009; Martin-Ordas et al., 2010; Schlägel and Lewis, 2014) as has the
validity of path recursions and revisitations as a foraging strategy for animals
(Berger-Tal and Bar-David, 2015; Schlägel et al., 2017). Note that this behavior
could arise from multiple mechanisms: if an animal is foraging for periodically
available resources, we can use its previous locations to determine where it
might be in the future, and if an animal forages on some depleting resource, we
could use this model to identify how long the animal waits before returning to a
resource it had previously depleted. Note, though, that the memory-only model
assumes a homogeneous landscape, as resource data are not included. While
this assumption is usually unrealistic, we include it as an alternate hypothesis
to models including resource selection. In cases where appropriate resource
data are not available, or the existing resource data are insufficient to explain
patterns in the movement data, the memory-only model serves to identify if a
pattern of timed re-visitation exists.

We calculate WM based on distance to previously visited points on the ani-
mal’s track. Given some time lag τ , we can use the cognitive map Zt to find the
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point in space (or at least, the grid cell) where the animal was τ time indices
ago. There is always exactly one grid cell zt−τ where τ is an element of the
linked list Zt(zt−τ ).

For each time lag τ , we compute the distance between the animal’s current
location and zt−τ , ‖xt − zt−τ‖, and transform it using an exponential decay
function with decay parameter 10α. The primary role of α is to convert dis-
tances to unitless quantities representing attractiveness. Under the assumption
that points closer to previously visited locations are more attractive, we use
exp (−10α‖xt − zt−τ‖) as the transformation for the distance between x and
the center of zt−τ . We include the power here so α can be any real number,
and use 10 so its estimate can be interpreted more easily. The transformation
with α produces a discounting of importance with distance, where α quantifies
how quickly this importance is discounted spatially. If α is larger, then points
must be very close to the previously visited location for the animal to deem
them attractive. As α decreases, the mathematical difference between a step
1000 m away and a step 2000 m away is amplified, suggesting that the animal
understands these differences in space on a wider scale. The value of α may
be informative about the heterogeneity of the landscape, which can be informa-
tive about how animals value the importance of distance in predicting resource
quality (Farnsworth and Beecham, 1999).

The animal’s revisitation schedule, which is mediated by two parameters
µ and σ, dictates the weights for each of these exponentially transformed dis-
tances. The timing with which an animal navigates back to an existing location
can be thought of as a random process, following a Gaussian distribution with
mean parameter µ and standard deviation parameter σ. We can imagine that
this timing reflects the state of the environment, with µ indicating the time scale
at which resources may come and go and σ indicating the variability of these
revisitations. For any given time lag τ , the exponentially transformed distance
between xt and zt−τ is weighted by the Gaussian probability distribution func-
tion ϕ(τ |µ, σ). This produces a weighted mean of exponentially transformed
distances, following the hypothesis that animals will navigate towards points
they visited roughly µ time increments ago; the most “attractive” points for
the animal are closest to zµ. We introduce one final parameter, βd, a “selection
coefficient” for memorized locations. This parameter can be thought of as the
relative probability of revisiting a memorized location instead of moving ran-
domly or selecting for present-time resources. We restricted βd ≥ 0.5 (implying
log βd

1−βd
> 0), in line with the hypothesis that animals select for (not against)

previously visited locations.
The resulting formulation of WM is as follows:

WM (xt|Zt−1,Θ2,M )

= exp

(
β̃d

[∑t
τ=1 ϕ(τ |µ, σ) exp (−10α‖xt − zt−τ‖)∑t

τ=1 ϕ(τ |µ, σ)

])
, (9)

where β̃d = log( βd

1−βd
), and Θ2,M contains µ, σ, βd, and α.
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WM does not directly contain any periodic components (the Gaussian weight
simply just has one mode around µ), and we do this to increase the flexibility
of the model. In the event that an animal is pursuing resources that vary
periodically with a period of µ, its location at any point is likely to be nearby
its location µ timesteps ago. Movements simulated from this model do also
produce movements that are somewhat periodic, although the spatial correlation
between an animal’s location and its location µ time steps prior is stronger than
locations separated temporally by 2µ, for example.

3.1.4 Resource-memory model

The resource-memory model incorporates both resource selection and memory
into the animal’s movements, so (R1) and (M1) still remain as components in
this model. However, there is one additional component that is not present in
the resource-only or memory-only models:

(RM1) the animal will return to locations it previously visited at a prescribed
and scheduled time if habitat conditions there were favorable; otherwise
it will avoid these areas.

Models combining resources and memory in some way have proven to be ef-
fective in explaining movement patterns for many different animals (Dalziel
et al., 2008; Merkle et al., 2014; Schlägel et al., 2017). The resource-memory
model builds on the memory-only model, which is often unrealistic due to the
omission of environmental data, by truly quantifying an animal’s episodic-like
memory, capturing the “when” and “where” of an animal’s spatial experience
via Z and augmenting this with the “what”: the resource quality at these previ-
ously visited points. The addition of hypothesis RM1 produces memory that is
resource-dependent, whereas the memory-only model works under the typically
false simplifying assumption of a spatially homogeneous landscape.

The linear combination of resource covariates
∑P
p=1 βprp(x) is relative, so we

introduced an additional parameter β0 representing the relative probability of
visiting a faraway location depending on its resource quality. As β0 approaches
1, the animal perceives all previously visited locations as “attractive” for re-
visitation. We transform this parameter with an inverse logistic function so it
represents a pseudo-intercept (recall that traditional SSFs and are conditional
models and do not require an intercept; Fortin et al., 2005).

The weighting function now includes present-time resource selection in the
first sum and memorized information in the second term:

WRM (xt|Zt−1,Θ2,RM ) = exp

(
p∑
p=1

βprp(xt)+ (10)

β̃d

[∑t
τ=1 ϕ(τ |µ, σ) exp (−10α‖xt − zt−τ‖)(β̃0 +

∑P
p=1 βprp(zt−τ ))∑t

τ=1 ϕ(τ |µ, σ)

])
,
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Units Description N R M RM

ρns
distance

time Mean movement speed in non-stationary state X X X X

κ N/A Degree of directional autocorrelation X X X X

β0 N/A Probability of revisitation X

βi
1

ri units Resource selection coefficient(s) X X

βd N/A Strength of selection for memorized areas X X

µ time Mean time lag between revisitations X X

σ time Standard deviation in time between revisitations X X

α log(distance) Degree of perceptual resolution X X

λ N/A Probability of staying in stationary state X X X X

γ N/A Probability of staying in non-stationary state X X X X

Table 1: Description of model parameters, including units (N/A implies that
the parameter is unitless) and models (N = null; R = resource-only; M =
memory-only; RM = resource-memory) in which the parameters are estimated.
For functions and other quantities that were not fit as model parameters, see
Table S1.

where β̃d = log( βd

1−βd
) and β̃0 = log( β0

1−β0
).

The null model is a special case of both the resource-only and memory-only
models, which are both a special case of the resource-memory model. Setting

βi = 0 for i = 1, 2, ..., P and log
(

β0

1−β0

)
= 1 in the resource-memory model

yields the memory-only model, while setting βd = 0 yields the resource-only
model. Nesting models is advantageous for many mathematical reasons, includ-
ing the ability to conduct likelihood ratio tests between models (Burnham and
Anderson, 2004).

3.2 Statistical inference

We fit the four models to discrete-time, continuous-space animal movement
data and used information theory to identify which corresponding hypothesis
was most likely to be true. We identified the optimal set of parameters for a
given track using maximum likelihood estimation, and used likelihood profiling
to obtain accurate confidence intervals for our parameters.

3.2.1 Likelihood function

The likelihood of a set of model parameters for one step is a weighted sum of
the conditional likelihood functions (fs and fns), weighted by the probability
of being in each state. These state probabilities depend on probabilities for the
previous step, so for the first point we fit (there is no previous step), we fixed
δs, the probability of being in the stationary state right before the data begins,
as the proportion of steps shorter than ρs.
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The likelihood function for the entire track is a product of the likelihoods
for each step included in model fitting. We omitted all animal locations before
some time t∗, since our model (or at least, the memory-only and resource-
memory models) relies on past information to explain where the animal may
go. We left the portion of the track that happened before t = t∗ to “train”
the model on what the animal remembers. Thus, our iterative formula for the
likelihood function begins at t = t∗. We define Φt ∈ R2 as the vector of state
probabilities for time t ≥ t∗, and we calculate our likelihood using the iterative
equations below:

Φt∗ = (δs, 1− δs)T , (11)

Pt =

(
fs(xt|xt−1, ρs) 0

0 fns(xt, φt|xt−1, φt−1, Zt−1,Θ1,Θ2)

)
, (12)

Φt =
ΦT
t−1Pt−1

‖Pt−1Φt−1‖
A. (13)

Then, following Whoriskey et al. (2017), the overall likelihood for the model is∏tmax
t=t∗ ΦT

t Pt1, where 1 = (1, 1)T .
We approximate the denominator of Equation 5 with a sum so we do not have

to integrate every time we evaluate the likelihood function. As is commonly done
with SSFs (Thurfjell et al., 2014), we calculated W at a set of “control points”
for each observed point xt. If xt, the endpoint of a step from xt−1, is a random
variable conditional on Zt−1, Θ1, and Θ2, the integral in the denominator of
Equation 5 is E(W (xt)). Thus, we can approximate it by estimating the mean
value of W at a set of simulated draws from xt, which has probability density
function k. This gives us the following approximation for fns:

f̃ns(xt, φt|xt−1, φt−1, Zt−1,Θ1,Θ2)

=
k(xt|xt−1, φt−1,Θ1)W (xt|Zt−1,Θ2)

1
K

∑K
j=1W (xt,j |Zt−1,Θ2)

, (14)

where xt,j represents the jth control point (a simulated step starting at xt−1)
and K is the number of control points per observed step. From this approxi-
mation, it becomes evident that each model compares W from steps the animal
actually took to steps that are simulated from a random walk. This implies that
if an animal occasionally returns to previously visited locations as a result of
random movement, the model will account for this and identify the null model
as a more parsimonious explanation of the data than the other models. For
the memory-only model to truly be an effective explanation of movement pat-
terns observed in the data, these revisitations must be frequent and temporally
consistent.

14



3.2.2 Fitting the model

We fit the model to data using maximum likelihood estimation, with the Tem-
plate Model Builder (TMB) R package (Kristensen et al., 2016) improving nu-
merical accuracy for this complex problem. TMB has been used to fit complex
animal movement models, including HMMs (Albertsen et al., 2015; Auger-Méthé
et al., 2017; Whoriskey et al., 2017). TMB uses automatic differentiation to
calculate the gradient of a multidimensional likelihood function using pseudo-
analytical methods, as opposed to traditional finite-difference methods that are
slow and frequently result in numerical errors (Skaug and Fournier, 2006). We
wrote a likelihood function for each model in C++, which TMB compiles and
returns as a callable function in R (Kristensen et al., 2016). This allowed us
to use an R optimizer of our choice while also benefiting from C++’s superior
programming speed.

We used the R nlminb function to obtain maximum likelihood estimates
for the negative log of our likelihood function. To prevent our model from
producing errors or unrealistic results, we imposed various bounds on some of
the parameters. We bounded the estimation for µ at t∗ because if µ > t∗, we
would not be able to identify a signal due to a lack of training data. We also put
a lower bound on σ; when this parameter was small, the partial derivative of our
likelihood function with respect to µ became noisy, leading to computational
errors in optimization. We found that a lower bound of approximately 20 time
indices eliminated this problem. We additionally required estimates for α <
− log10(ρ̄), where ρ̄ is the animal’s empirical mean step length (for context, we
expect ρ̄ to be close to but slightly smaller than ρns). Values of α above this
bound imply that the animal cannot perceive a difference between a few step
lengths, which is unreasonable biologically. For parameters with fairly restrictive
bounds (λ, γ, βd, and β0, which are bounded between 0 and 1), we performed
logit transformations (λ̃ = log 1

1−λ , for example) so the optimizer would more
effectively traverse the parameter space.

We tested two “initial values” for µ for each dataset we fit the model to,
picking the fit that gave us the best likelihood function value. When profiling
the likelihood surface with respect to this parameter, we often found many local
optima, so we fit the model with initial values of t∗ and t∗

2 . Fitting with different
initial values incurs additional computational time (we are effectively running
the optimization algorithm twice) but is necessary due to the importance of
picking a good initial value for each parameter (Pan and Wu, 1998). Using a
different number of initial values for µ may be advantageous for some datasets.

For a model as complicated as this one, obtaining confidence intervals (CIs)
using traditional Wald-type methods does not always produce accurate results.
We frequently found this to be true for our model in practice so we used the
likelihood profiling from Fischer and Lewis (2020). Given a multidimensional
objective function with a known optimum, this algorithm finds confidence in-
tervals for one parameter at a time by performing a binary search algorithm
for a target function value (typically, the optimum minus some small confidence
threshold). The algorithm starts searching at the optimal parameter value, and
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tries an initial step, fixing the parameter in question at this value and optimizing
the rest of the function parameters. This process is repeated subsequently until
the lengths of each step in parameter space are small enough for the algorithm
to converge (Fischer and Lewis, 2020).

We used the Bayesian Information Criterion (BIC) to rank the four models
by their likelihood and identify the hypothesis that was most likely to be true.
BIC has a stronger penalization for model complexity than the more commonly
used Akaike Information Criterion (AIC), and is a more useful criterion for
model selection when one is interested in the truth of a hypothesis rather than
the predictability of a model (Burnham and Anderson, 2004).

3.3 Simulation studies

Before applying our model to an ecological system, we simulated data and used
it to test the model. These simulations are individual-based representations of
our model that produce movement patterns associated with our four hypothe-
ses. We performed this analysis as a means to ensure that our fitting methods
could accurately identify the parameter values prescribed by the model. At
each time index, we used our Markov matrix A to decide whether the animal
would change its behavioral state. If the animal was in the stationary state
we simulated a random step from fs (half-Gaussian step length, uniform turn-
ing angle). For the non-stationary state, we simulated from fns using a Monte
Carlo method (Parzen, 1961). We first calculated W for the entire grid, then
we simulated a large number of random steps from k (Equations 6 and 7). This
simulation process resembles the generation of control points in Equation 14,
but we simulated Nr = 10000 steps at each point in time. Making Nr very large
did not greatly affect computational time, so we did so in the interest of accu-
rately approximating Equation 5. These simulations took place on a bounded
grid representing the hypothetical landscape, and any of the Nr proposed steps
that took the animal off this grid were re-sampled until they were on the grid.
While this resembles reflective boundary conditions, the animal is not assumed
to “bounce off” the boundary or interact with it in any way other than avoiding
it. Note that it is possible to tune the animal’s mean step length as well as the
size of the landscape in simulations to drastically reduce the probability of this
happening, which we did. We then randomly choose one of the steps based on
the values of W at each step, with the probability of any step xt,i being chosen
described below:

W (xt,i|Zt−1,Θ2)∑Nr

j=1W (xt,j |Zt−1,Θ2)
. (15)

For models that incorporate memory, we simulated memoryless training data
(WM = WN for the memory-only model, and WRM = WR for the resource-
memory model) for t < t∗. As expected, these initial points are omitted from
model fitting.
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3.3.1 Model verification: simulated data

We simulated tracks on artificial landscapes with preset model parameters, then
fit the model to these tracks to explore parameter estimability and model se-
lection accuracy. We varied the length of these tracks, T = tmax − t∗, as well
as K, the number of controls points per step, to evaluate the amount of data
required for accurate inference. Specifically, we tested four “treatment groups”:
T = 600,K = 10;T = 600,K = 50;T = 1200,K = 10; and T = 1200,K = 50.

We used the R NLMR package (Sciaini et al., 2018) to simulate spatially au-
tocorrelated Gaussian random fields representing our resource covariates. For
each treatment group, we simulated 50 random movement tracks for each hy-
pothesis. Each group of 50 tracks had the same set of parameters. In our
simulations, we simulated environments for P = 3 resource covariates per track
using the nlm gaussianfield function in R. We then fit all four models to each
track individually, then used BIC to identify how often the “correct” model
was selected for each movement track. We compared these results with AIC to
confirm that BIC is the most suitabile information criterion for our modelling
framework. We also estimated the bias and mean squared error (MSE; the mean
squared difference between the parameter estimate and the true value) for each
parameter with each model.

3.3.2 Model application: grizzly bear case study

We applied the model to grizzly bears in the Canadian Arctic, and then re-
peated the simulation study with data and model parameters from this system.
Bears were captured from 2003 to 2006 and released with global positioning sys-
tem (GPS) collars. Collars returned a location every four hours while the bear
was not hibernating, and remained on the bears for up to four years (Edwards
et al., 2009). The University of Alberta Animal Care and Use Committee for
Biosciences approved all animal capture and handling procedures, which were in
accordance with the Canadian Council on Animal Care. Capture and tracking
was conducting under permit from the Government of the Northwest Territo-
ries, Department of Environment and Natural Resources, Inuvik Office (Permit
numbers: WL3104, WL3122, WL3282, WL5352, and WL5375) following meth-
ods approved by the University of Alberta Animal Care and Use Committee
for Biosciences (Permit numbers: ACUC412305, ACUC412405, ACUC412505,
ACUC412605, and ACUC412705) in accordance with the Canadian Council on
Animal Care guidelines.

The bears were collared in the Mackenzie River Delta region in the North-
west Territories (Edwards et al., 2009). Resources in the region are sparse
and heterogeneous both in space and time (Shevtsova et al., 1995; Edwards
and Derocher, 2015). To survive and forage optimally, bears take advantage of
ephemeral, unpredictable, or seasonally available resources through a variety of
foraging strategies (Edwards et al., 2009, 2011; Edwards and Derocher, 2015).

We analyzed grizzly bear habitat selection using multiple sources of environ-
mental data describing the Mackenzie Delta region. Vegetation class data for the

17



region assigned a one of 46 classes (indicating the dominant plant type or ter-
rain) to each 30x30 m cell. A digital elevation model for the region (with 30x30
m cell resolution) provided information on elevation and slope. We also used an
RSF layer estimating resource use for Arctic ground squirrels (Urocitellus par-
ryii), a common grizzly bear prey item (Barker and Derocher, 2010; Edwards
and Derocher, 2015). We considered P = 6 resource covariates: berry density,
represented as a likelihood of having berries for each vegetation class; distance
to turbid water, an indicator of broad whitefish (Coregonus nasus; a grizzly bear
prey item; Barker and Derocher, 2009) density as well as riparian habitat; Arctic
ground squirrel density, taken directly from the RSF; sweetvetch (Hedysarum
alpinum; a key grizzly bear food item; Edwards and Derocher, 2015) density,
estimated by the vegetation class data; distance to the nearest of two towns
in the region; and distance to six remote industrial camps (likely with little
human activity). We modelled these resources in two different ways, fitting the
resource-only and resource-memory models twice to each bear with different
interpretations: resources constant in time and resources that explicitly vary
throughout the year. We expected that if the movement patterns we had ob-
served were simply a result of the resource variation, as opposed to the bears
memorizing the location and timing of these resources, then the resource-only
model with seasonal resources would outperform any of our models including
memory. We defined an interval of availability based on the literature (Mac-
donald et al., 1995; Buck and Barnes, 1999; Gau et al., 2002; MacHutchon and
Wellwood, 2003), and assigned the value 0 to every point on the grid outside
the time interval for that resource. The null and memory-only model, which do
not incorporate resources, are unaffected by this change, but since we needed
to generate new available points for the seasonally varying resources, the model
fits were slightly different for these models as well.

Of the 21 bears with enough data for model fitting (at least two years of
GPS collar data), we selected the eight with the most GPS fixes (these bears
had at least three years of collar data). We set ρs = 30 meters, corresponding
to the length of one grid cell for the environmental raster data, and we set
t∗ = 365 days. We used K = 50 control points when fitting the models. For
each of these bears, we fit the models to the entire track as well as each year
individually, comparing model selection between years. We then replicated that
analysis using simulated bear tracks; for each bear, we simulated 100 movement
tracks using the optimal parameters for each bear and the Mackenzie Delta
environmental data. We simulated tracks of length T = 600 (approximately
one year of grizzly bear GPS data, accounting for missed fixes and hibernation)
and T = 1200 to evaluate how model selection accuracy changed with sample
size. We used BIC to identify the hypothesis that most accurately explained
each movement track, and also conducted likelihood ratio tests for each pair of
nested models to determine the significance of specific behavioral signals.
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4 Results

Our modelling structure allows ecologists to explain movement patterns iden-
tified from location data according to a set of four hypotheses, of which two
incorporate complex time-dependent spatial memory. For animals that appear
to use memory, our parametric approach evaluates the temporal consistency of
navigations to previously visited locations in an animal’s home range. By fit-
ting the model to simulated data we showed that the accuracy of the model is
improved by sample size, and ecologists can also increase parameter estimabil-
ity by simulating additional control points. Still, the amount of data required
to draw accurate inference from the model is not large, as we show both with
simulated environments and real-life landscape data (where the model is slightly
less accurate).

4.1 Model verification: simulated data

The model’s ability to accurately characterize each type of movement behav-
ior increased with the amount of location data (T ) but not with the number
of control points (K; Table 2). The model identified null and resource-only
movements accurately at all treatment levels, but the model’s ability to identify
memory-only and resource-memory movement increased for longer simulated
tracks. As a whole, increasing K does not improve model selection accuracy
for either choice of T . The most common misidentification at all sample sizes
was mistaking resource-memory movement for resource-only or memory-only
movement.

K = 10 K = 50
N R M RM N R M RM

T
=

60
0 N 48 0 0 2 47 0 0 3

R 0 45 0 5 0 46 0 4
M 7 0 40 3 4 0 44 2

RM 0 5 7 38 0 8 7 35

T
=

12
00

N 49 0 0 1 45 0 0 5
R 0 46 0 4 0 47 0 3
M 2 0 47 1 0 0 50 0

RM 0 3 2 45 0 7 2 41

Table 2: Breakdown of model selection counts using BIC for the simulated
tracks. The row represents the “true” model that the tracks were simulated
from (N = null; R = resource-only; M = memory-only; RM = resource-memory),
while the column represents the model that was identified as the most parsimo-
nious explanation of the data using BIC. Treatment groups (based on T, the
length of the fitted movement track, and K, the number of available points per
timestep)

are identified by the outer left and upper portions of the table and are
separated by shading.
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Figure 3: Violin plot of parameter estimates for β1 in the resource-memory
model for our four treatment groups (listed on the x-axis), with 50 simulations
per plot. The true value of 7.5 is denoted by a horizontal red line.

Using AIC instead of BIC resulted in a higher rate of “false positives” for
memory (i.e., the resource-memory or the memory-only model was identified as
the most parsimonious explanation for memoryless simulated tracks), and made
model selection less accurate overall (Appendix: Table S2). Likelihood ratio
tests on the same dataset for each pair of nested models revealed a similar trend;
the likelihood ratio test often identified memory when it was not incorporated
into the simulated tracks (Appendix: Table S3).

The model produced more accurate parameter estimates with larger values
of T and K (Table 3). When focusing on β1 in the resource-memory model, we
can see that bias does not change as much with different treatment groups as
MSE (Fig. 3). For the simpler movement parameters (ρns, κ, λ, γ), parameter
estimates were consistent even with smaller values of T and K (Table 3).

4.2 Model application: grizzly bear case study

According to our modelling framework, five of the eight grizzly bears exhibited
consistently timed revisitations to previously visited locations in their home
ranges (Table 4). When the data were broken up into one-year increments,
model selection results varied annually, and sometimes differed even from the
full dataset. For three of the bears (GF1008, GF1016, GM1046), the model
identified as most explanatory of the bears’ movement behaviors by BIC was
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True value
T = 600 T = 1200 T = 600 T = 1200
K = 10 K = 10 K = 50 K = 50

Bias MSE Bias MSE Bias MSE Bias MSE
ρns 0.75 -0.17 0.03 -0.18 0.04 -0.14 0.03 -0.17 0.04
κ 0.75 -0.21 0.05 -0.21 0.05 -0.19 0.04 -0.19 0.04
β0 0.50 0.06 0.12 0.04 0.12 0.13 0.11 0.18 0.12
β1 7.5 1.3 10.1 1.6 13.4 0.0 2.6 -0.7 1.7
β2 -7.5 -1.2 7.8 -1.1 5.5 0.2 3.8 0.5 1.5
β3 0.0 -0.1 5.0 0.4 4.3 -0.1 2.5 0.0 1.7
βd 0.999 -0.04 0.02 -0.04 0.02 -0.01 0.00 -0.03 0.02
µ 500 -8 795 -13 543 -22 7819 -25 7277
σ 25 2 341 -3 32 1 197 -1 217
α -1.78 -0.45 2.64 -0.28 1.30 -0.14 1.81 -0.67 2.17
λ 0.85 -0.02 0.001 -0.02 0.001 -0.02 0.002 -0.03 0.001
γ 0.90 -0.03 0.001 -0.03 0.001 -0.03 0.001 -0.03 0.001

Table 3: Estimates of bias and MSE for each parameter in the resource-memory
model, averaged from 50 simulated movement tracks per treatment group. True
values for each parameter are displayed on the left.

different for the full dataset, the first subset, and the second subset. The
resource-memory model was the most parsimonious explanation of the move-
ment patterns of four bears, while the resource-only (2), memory-only (1), and
null (1) models were also identified as most parsimonious in some cases. Four of
the five memory-informed bears exhibited seasonal memory timescales close to
one year (µ > 320 days), while GF1016 had a µ value of 3 days. The six bears
with resource selection included in their “best model” displayed similar resource
selection patterns: significant selection for areas indicative of berries and Arctic
ground squirrels, avoidance of areas indicative of sweetvetch, and indifference to
towns and cabins. When we considered the resources to be explicitly seasonal,
the memory-only model was most commonly the “best model” for the bears,
with models including resources being much less common (Table 4).

Our simulation study revealed that at smaller sample sizes, the model oc-
casionally failed to identify memory from memory-informed simulated tracks,
but this issue is remedied with double the data. An example was GF1008,
where only 10 of the 100 simulated tracks were correctly identified as “resource-
memory” movements at T = 600. With T = 1200, this improved to 89. When
we used likelihood ratio tests to compare the resource-memory model with the
resource-only model (a special case of the resource-memory model) for GF1008,
we found that at T = 600, 76 of our 100 simulated tracks registered a p-value
below 0.05, indicating that the resource-memory model was significantly more
explanatory than the resource-only model 76% of the time. With T = 1200,
this increased to 95. We observed similar trends for the other three resource-
memory bears (GF1004, GF1041, GM1046) but not as strongly. It should be
noted that GF1008 had the smallest estimate for βd (2.3) of these bears. When
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Bear ID Full data First subset Second subset Seasonal resources
GF1004 RM (38.54) N (1.11) RM (1.15) RM (3.50)
GF1008 RM (17.53) R (39.78) N (4.90) M (21.34)
GF1016 M (5.99) N (18.24) R (1.84) M (22.32)
GF1041 RM (45.74) R (18.24) RM (24.62) N (4.29)
GF1086 R (49.35) R (5.45) RM (19.68) R (16.78)
GF1107 R (33.63) R (30.17) RM (83.54) M (15.25)
GF1130 N (12.87) RM (73.82) N (17.13) RM (16.71)
GM1046 RM (40.32) R (6.03) M (10.06) M (19.71)

Table 4: Model selection results for each bear in the Mackenzie Delta population.
We list the hypothesis (N = null; R = resource-only; M = memory-only; RM =
resource-memory) identified by BIC as most likely to be true given the data for
the full dataset, the first subset, and the second subset. We also include results
for the full dataset when resources were modelled as being explicitly seasonal.
The numbers in parentheses are the difference in BIC between the best model
and the second-best model.

we performed BIC model selection on simulated tracks based on GF1086, a
“resource-only” bear, a false memory signal was identified more frequently with
larger T (from 4 to 12 out of 100). This trend was not replicated for GF1107,
the other “resource-only” bear (decrease from 10 to 7).

5 Discussion

Our model builds on existing literature to identify unique behavioral and cogni-
tive mechanisms from animal movement data. Using advanced computational
techniques, this novel and complex modelling framework can provide statistical
inference for a variety of ecological systems. Our simulation studies provided
insight on the viability of the model for different amounts of data.

We formulated a model that expresses parameters with clear biological im-
plications to aid in the interpretation of our results, but we had to do so carefully
to ensure that these parameters could be estimated accurately. Finding a set of
biologically meaningful parameters with low mean squared error (Table 3) re-
quired a degree of trial and error, especially for β0 and βd. We chose to express
them in a way that makes sense both biologically (where they represent relative
probabilities) and mathematically (where they can easily be estimated with less
error). While we can redefine these parameters without actually changing our
likelihood function, we made sure to define parameters that are easy to estimate
and biologically meaningful.

Our results provided support for a positive effect of the amount of location
data and control points on parameter estimation, with the number of control
points having a negligible effect on model selection accuracy. However, at all
treatment groups, parameter estimates were occasionally inaccurate (Fig. 3, Ta-
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ble 3), and the model occasionally mistook the movement mechanisms driving
the simulated tracks (Table 2). These outliers may be due to the stochasticity
of simulated movement tracks; for example, a resource-only simulated animal
may happen to visit similar portions of its landscape at a coincidentally regular
interval, which the model might mistake for memory-informed movement. Con-
versely, an animal following the “memory-only” rules may coincidentally visit
locations that happen to be particularly high (or low) in specific resource values,
resulting in the movement track being best explained by the resource-memory
or even the resource-only model.

Increasing the number of observed animal locations (T ) improved our results,
but we are more encouraged by the positive effects of simulating additional con-
trol points (K). While increasing T may require such costly tasks as using
longer-lasting tracking devices, re-capturing animals and equipping them with
new tracking devices periodically, or increasing the temporal resolution of track-
ing devices, increasing K is easy to do post-hoc. While increasing K may not
yield benefits as large as increasing T , the cost of increasing K is much smaller.

Our simulated tracks consistently underestimated ρns and κ in the resource-
only and resource-memory models (Table 3), which is an artifact of the way
we simulated the data. In these models, the animal “chooses” a step from Nr
proposed steps, which are simulated from k, which depends on ρns and κ. Our
simulated landscapes are spatially autocorrelated, so if the simulated animal
found itself in a resource-rich patch, it would be very likely to stay put. These
movements are also less directionally autocorrelated than would be suggested
by κ for similar reasons. Using an integrated step selection function (Avgar
et al., 2016) could remedy these issues but for our purposes, it adds additional
complexity to the model and is not our primary concern.

Our estimates of bias and MSE for α did not consistently decrease with
increases in the amount of location data or the number of control points, poten-
tially because of an odd bimodal distribution of parameter estimates (Appendix:
Fig. S1). The larger portion of this bimodal distribution is clearly centered
around the true value of approximately -1.78 for all four treatment groups, but
curiously the “second” mode, which appears to be centered around -4.5, seems
to account for more of the estimates T and K increase. These smaller esti-
mates for α would imply that the hypothetical organisms moving according to
our simulation rules occasionally behave with a much wider understanding of
their environment, which they perceive to be spatially heterogeneous. The exact
cause of these patterns requires further investigation.

When we applied the analysis to field data, we notice that the model’s ef-
fectiveness, especially when it comes to identifying a memory signal, increased
greatly with sample size. Our simulations revealed that the model may miss a
memory signal with inadequate data, which could explain the disparity between
subsets of the data in Table 4. It must also be noted that, as stated in the
Introduction, the goal of this model is not to determine whether or not grizzly
bears have spatial memory; we are more interested in if they use that memory
the way we have hypothesized. If the resource-only model is the “best model”
for a bear, it may just mean that they are using memory in some other way.
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While it is possible that grizzly bears, especially females that take on different
reproductive roles in different years, would change their movement strategies
between years, it is also likely that the model may have not had enough data to
identify a memory signal in an individual year. With twice data, the simulations
accurately identified memory more often, suggesting that the memory signals
identified for the entirety of each bear’s track are legitimate. Nevertheless, even
with these considerations, we see that half the bears in the dataset exhibited
patterns following the resource-memory hypothesis, suggesting a strong influ-
ence of both habitat selection as well as spatial memory on the movement of
grizzly bears in the Mackenzie Delta.

We occasionally observed “false positives” (the model identified memory as
a driver of movement from memoryless simulated data) that increased in longer
animal tracks (K = 1200 vs. K = 600) when simulating tracks with the grizzly
bear data. This trend may be an artifact of how the Mackenzie Delta landscape
data influenced simulated tracks, since false positives were much less frequent
in the simulation study with artificial landscapes. When comparing this result
with the real-life subsetting for the bears, we saw examples of subsetted data
registering memory when the full data set did not, but we also saw examples of
the opposite.

Our modelling framework operates under the assumption that resources vary
in time, forcing animals to exhibit seasonal movement patterns within their
home ranges. We handled this assumption in two different ways: by explicitly
defining this temporal variation, and by indirectly incorporating it into the
resource-memory and memory-only models. In this case, explicitly defining the
seasonality of the grizzly bear resources made the memory-only model (which is
primarily meant for situations when sufficient environmental data may not be
available) much more effective. We suggest that making arbitrary assumptions
about these timings may not always improve model parsimony, and instead may
overshadow patterns and behaviors we are interested in. An alternative method
to capture this variation would be to assume that µ is informative about how
long resources take to re-appear, and as a result how long animals take to return
to them.

Due to the novelty of this contribution, we accept that there will be oppor-
tunities to build on and improve the approach. Particularly interesting is the
addition of more behavioral states to the model. We applied a hidden Markov
component to the model mainly to avoid mistaking stationary periods for recur-
sive movement on a short timescale, but adding many states (e.g., a memoryless
searching state and a memory-informed navigating state) could provide insight
on the frequency of these movements. One such adjustment could involve chang-
ing the form of WM and WRM such that they are truly periodic; this could be
done by changing ϕ from a traditional Gaussian to a wrapped Gaussian. Mak-
ing this change would imply that animals are influenced to revisit locations
they visited kµ time steps ago for all positive integers k. Including such a
mechanism would also potentially warrant the incorporation of explicit memory
decay, which we omitted but could be useful when longer timescales or wrapped
distributions are involved. Revising ϕ to a mixture of multiple Gaussians in-
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stead could also be used to test the hypothesis that animals perform recursive
movements on different, asymmetrical scales. Modifying the formulation of the
cognitive map Z (e.g., to something resembling a discrete-time analog of the
territory interaction model from Potts and Lewis, 2016) could also be an op-
portunity to improve and tweak the model. Connections to the work of Potts
and Lewis (2016) could also be made by incorporating territoriality or the pres-
ence of other individuals into the model somehow, potentially as a “resource”
covariate. A final point for future work would be to redevelop this model from
the perspective of integrated step selection analysis (iSSA; Avgar et al., 2016).
Here, we could analyze how animal movement behavior is directly influenced by
covariates such as its distance from previously visited locations or the strength
of its reliance on spatial memory.

While we used grizzly bears as a case study, the model was designed to
be general and can be applied to a variety of different systems. Many ani-
mals, including turkey vultures (Cathartes aura; Holland et al., 2017), black
vultures (Coragyps atratus; Holland et al., 2017), caribou (Rangifer tarandus;
Lafontaine et al., 2017), and eastern indigo snakes (Drymarchon couperi ; Bauder
et al., 2016), perform seasonal movements within their home ranges. For data
with higher temporal resolution, it would be possible to model complex time-
dependent recursive movements on a diel scale, since many animals exhibit
repetitive day-to-day movements within their home range (Christiansen et al.,
2016; Herbig and Szedlmayer, 2016). Collecting data at finer temporal resolu-
tions would be beneficial for inference on memory-informed movement, assum-
ing observation errors are accounted for. Even patrolling predators, which were
modelled by Schlägel and Lewis (2014), could be modelled using our framework,
although we may expect estimates for µ to be smaller than in the grizzly bears.
Schlägel et al. (2017) displayed the importance of time since last visit for gray
wolves, but insight on when exactly wolves deem parts of their home range
“re-visitable” could be interesting. Of course, migration is also seasonal and
predictable, and although it is typically difficult to obtain environmental data
for an animal’s entire migratory route, spatial memory has been identified as
a key driver of migration in many instances (Mueller and Fagan, 2008; Mueller
et al., 2011; Fagan et al., 2013; Bracis and Mueller, 2017; Merkle et al., 2019).
Fitting this model to migratory populations could provide insights on how to
quantify or potentially even predict these mechanisms.

6 Conclusions

Our model uses patterns in animal movement data to obtain information on
complex time-dependent spatial memory patterns. Made possible by advanced
computational techniques, we expand on existing literature from animal move-
ment modelling as well as animal cognition to generate a model that can be
applied to a variety of ecological systems. The model can estimate the tim-
ing of recursive movement patterns observed in an animal, which is novel, and
also allows for the interaction of present-time resource selection and memory-
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informed navigation. We verify our model fitting process using simulated data
before testing its utility on GPS collar data from grizzly bears, finding that
this very complex model can be effective without need for immense data col-
lection. We hope to apply this model more broadly to animals with different
foraging strategies as a means to compare the nature of time-dependent memory
mechanisms in different ecological systems.
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