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Abstract

There is considerable research work going on segmentation of RGB-D clouds

due its applications in tasks like scene understanding, robotics etc. The avail-

ability of inexpensive and easy to use RGB-D cameras and computational

capabilities of GPUs has lead to development of numerous applications in this

area. Recently proposed cloud segmentation methods are either slow in op-

eration or do not operate in an online fashion making them unsuitable for

applications in robotics. In this work we deal with the aforementioned prob-

lem. We propose a method to perform online segmentation of RGB-D scene.

Our framework is built on dense scene mapping methods like Kinect fusion. It

allows us to generate accurate and dense depth maps and provide camera pose

information. Instead of directly operating on a large 3D point cloud we process

individual RGB and depth frames which are assembled in a dense cloud in an

incremental fashion. Pose information is used to integrate the segmentation

maps into the global label cloud using GPU. We perform multi-view integra-

tion of segments as the camera is moved around in the scene by formulating

the problem as weighted graph. We will discuss applications of our segmenta-

tion framework to perform real time and scalable object discovery and object

detection.
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Chapter 1

Introduction

Vision is one of the primary senses used by us to interact and understand the

environment around us. We can learn to recognize large number of objects in

various poses and under different lighting conditions with great accuracy. We

can not only learn the appearance of various objects but also reason about

the interaction between various objects, just from visual stimuli. Owing to

the detailed information that visual stimuli can provide us, there has been

considerable interest to understand the workings of visual cortex and have

machines perform similar task.

Such a system will have numerous application in industrial automation,

robotics, medicine etc. However besides some successes in tasks like face recog-

nition by [28], [40], text detection and optical character recognition by [15]

there have been lack of a general solution that can perform as good as human

visual system. The primary reason for lack of progress in this area has been

due to the lack of suitable computational hardware and associated cost, and

the lack of understanding of working of visual cortex and nervous system.

1.1 Motivation

Human visual system process various low level cues combined with high level

reasoning to group and classify each element of visual stimuli belonging to

certain object class. Intensity and color information provides a large amount

of information about the scene. It is one of the basic cues which help us to

delineate object boundaries. But only intensity is not sufficient to completely
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Figure 1.1: Ames room experiment. Absence of other low level cues besides
intensity distorts our perception of a given scene. Source: http://www.eyes-
and-vision.com/optical-illusion-ames.html

Figure 1.2: Kanizsas triangle illusion, we automatically fills in the white space
with the image of a triangle. Hence, we perceives the image as consisting of
two triangles. Source: http://thetartan.org/2009/2/9/scitech/howthingswork

understand a given scene. For example in the famous Ames room experiment

an image of a distorted room is captured which demonstrates how we reason

about the objects in the scene when depth or other low level cues are absent.

See figure 1.1

Depth, motion, texture, shading and shadow interact in a complex manner

with color to further provide information about the scene. We demonstrate

the complexity of the visual system in the following figures 1.2 1.3 1.4 1.5 .

Last but not the least, context and culture also plays a very important role

in the task of scene understanding. An interesting example of role of context is

2



Figure 1.3: Highlights and shadows help us perceive depth. Source:
http://what-when-how.com/computer-vision-from-surfaces-to-3d-
objects/scene-statistics-and-3d-surface-perception-computer-vision-part-2/

Figure 1.4: Combination of intensity and shape are used to find nuclei in an
image.
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Figure 1.5: Combination of disconnected components ar-
ranged in a specific pattern forms illusion of depth. Source:
http://monkeybuddha.blogspot.ca/2013/01/the-optical-illusion-of-
dimension.html

shown in the image figure 1.6. The way the image is perceived and understood

depends on culture the observer is from.

Another low level cue of interest is motion. Motion has been used in many

important research works for tasks like novel object detection, object tracking,

depth from motion. In our day to day interaction we can reason about the

objects and their components based on motion.

Aforementioned examples demonstrate how various low level cues combine

with each other to provide information about the scene. But the manner by

which all these cues are combined and processed is not completely understood.

Physiology of human eye also plays an important role in interpreting the visual

stimuli. It has been shown that rather than processing every part of the scene

we just focus on some important aspects like higher relative contrast, motion,

depth. Also most of the processing of visual stimuli is performed in the area

of retina known as fovea. Due to the complexity of the system, it has lead to

the development of various research problems in computer vision.

Object localization and recognition is one such problem which deals with

localization and recognition of objects. Some examples of prominent works in

this direction are by [10], [43], [27]. General version of object recognition prob-

lem is known as scene understanding [26]. The problem of scene understanding

is closest to capabilities of human visual system. It deals with assigning every

4



Figure 1.6: When the image is shown to people from East Africa, nearly all
the participants in the experiment said she was balancing a box or metal can
on her head. In a culture containing few angular visual cues, the family is
seen sitting under a tree. Westerners, on the other hand, are accustomed to
the corners and boxlike shapes of architecture. They are more likely to place
the family indoors and to interpret the rectangle above the woman’s head as
a window through which shrubbery can be seen.

pixel its object class, which leads to solving the problem of object localization,

recognition, and segmentation simultaneously. Scene understanding is one of

the most active research area and with the challenges like PascalVOC chal-

lenge [11] and databases like Imagenet, novel solutions are being developed in

this area. However this problem has not been solved with good accuracy, as it

is computationally time consuming, does not scale very well to large number

of object classes and depends heavily on large amount of training data.

Taking inspiration from the structure of human eye and attention mech-

anism has led to the development of another research area known as active

vision. Active vision deals with detection and segmentation of objects in a

scene where processing is done on a very small region of the image. This ap-

proach has an advantage of being very similar to human visual system and can

process regions of interest in small amount of time. Recently there has been

considerable interest in this area and some of the prominent works has been

[29], [4].

In more recent works tasks like object detection are being performed by

combining various cues like intensity and depth. Depth plays an important

5



role for delineating the object boundaries and reasoning about a scene. With

advances to problems like stereovision and development of sensors like Mi-

crosoft Kinect has made it possible to acquire depth information with good

accuracy in a real time fashion. RGB-D scene segmentation, object discovery,

and object recognition are some of the basic requirements in robotics and com-

puter vision applications. For real world applications these problems should

also meet the criteria of being real-time and online in order to operate in a

dynamic environment. Currently there is no method available that can achieve

these objectives simultaneously. In this work we develop a framework for on-

line RGB-D scene segmentation which operates in real time, and discuss its

application in problems like object detection and object discovery.

In recent years considerable amount of research has been performed on

scene understanding by [26] [25], large scale object learning, and object discov-

ery and detection by [23] [4]. These research problems have profound impact

on the field of robotics. Solving these problems allows machines to interact,

manipulate and reason about the environment. However the methods available

are too slow in operation for applications in robotics.

More recently, depth is being used as an additional cue to perform scene

understanding. Inexpensive RGB-D cameras like Microsoft Kinect have made

it easy to acquire synchronized depth information with RGB information and

this has led to new developments in scene understanding. Some of the promi-

nent works in this direction are by [34] [7]. [23] has shown that objects can be

segmented from a given mesh using learned geometric properties.

Performing object detection and scene labeling in an indoor environment is

challenging. Presence of a large number of objects makes these tasks even more

difficult. Thus, achieving scalability and real time performance has proven

to be a difficult task. Existing approaches require a training database for

every object that has to be recognized. E.g. [27] requires sliding window

detector to be trained for every object. Creating a training database is a

costly process. The other challenging aspect of the problem is adding new

objects to be recognized and making the whole process online.

6



1.2 Overview

As discussed in the previous section human visual system group elements of

visual stimuli using various low level cues. In this work we develop an online

method for point cloud segmentation and demonstrate its application in object

discovery. Nearest neighborhood methods proposed by [41] for object detection

can be used to overcome the limitations discussed in the previous section. In

this work we develop an online method for point cloud segmentation and show

how object discovery and nearest neighborhood methods for object detection

can be used to perform tasks similar to human visual system. Object discovery

can be used to find new objects in a given scene. [19] used motion as a cue

to detect novel objects in a given scene and [29] used depth data with color

information to detect novel objects. For the methods using depth as cue rely

upon segmentation of point cloud as prior for discovering objects for example

[23] and [13]. But these segmentation methods operate on a dense point cloud

in an offline fashion thus making them unsuitable for applications in robotics.

It also affects the computational performance because as the size of point cloud

increases so does the computational cost to segment it.

Nearest neighborhood based object detection methods using large databases

overcome the limitations of training a classifier for every object. [41] used a

modified sum of squared difference (SSD) as a metric to perform different tasks

like object detection, image coloring using a large database on small images.

In this work we use the same approach to perform object detection. As the

camera is moved around, we leverage upon our multiview segmentation frame-

work with object discovery to compute the large database in an unsupervised

manner. We do image matching on GPU and use SSD as metric to compute

nearest neighbors.

Main contributions of this work is a real time, online segmentation method

for RGB-D data. Our proposed algorithm is built upon Kinect fusion large

scale part of [35]. We perform computation on GPU with efficient segmen-

tation methods to achieve run time performance of 5-6 fps for segmentation.

We also discuss various applications of the segmentation framework. First

7



application that we focus on is unsupervised or semi-supervised generation of

object database. As discussed previously that collection of training data is a

difficult process and requires human interaction. In this work we demonstrate

how object discovery with point cloud segmentation can be used to generate

object database. Second application of our framework is for scalable, real-

time object detection. In literature different methods have been proposed to

perform object detection for RGB-D data. However these methods invariably

suffer from the problem of scalability. In this work we leverage computational

power of GPU to perform nearest neighbor match for object detection based

on work by [41]. We discuss application of proposed framework for object de-

tection in an efficient and scalable manner using proposed online segmentation

framework.

8



Chapter 2

Literature review

This chapter reviews the RGB-D cloud segmentation literature and various

applications. We also define the problem statement and significance of our

work. There has been extensive previous work on RGB-D scene segmentation

and object detection. RGB-D cloud segmentation methods can be divided into

two main categories. Some contemporary approaches use prior information for

segmentation for example trained classifiers or sliding window detectors. Alter-

native methods use unsupervised segmentation by imposing various smooth-

ness constraints on the cloud. As a background to the proposed method we

also discuss dense point cloud reconstruction, object recognition using nearest

neighbor and object discovery methods in the following sections.

2.1 RGB-D segmentation

2.1.1 Segmentation using prior information

Some of the common approaches use prior information to segment and label

the given scene. This problem is also known as scene understanding. Features

and object representations are learned from a labeled object data set and

the learned models are applied in testing phase to perform segmentation and

labeling of a given scene. [34] uses kernel descriptors proposed by [6] aggre-

gated over superpixels and transformed using efficient match kernels used by

[8] for RGBD scene labeling. Kernel descriptors were used for capturing shape

similarities and appearance. For contextual modeling they have used two ap-

proaches, one using MRFs and other using segmentation trees constructed by

9



using gPb contour detector by [3]. In contrast to their approach we use an un-

supervised segmentation method and rely on temporal integration of segments

to perform scene segmentation. For labeling we use nearest neighbor method

and object discovery.

[27] used of sliding window detectors combined with inference on MRF

over the voxels to produce scene labeling. They have obtained very good re-

sults for the task of scene labeling. However one shortcoming of this approach

is that a sliding window detector has to be trained for every object making

it difficult to scale the method to large number of objects. [46] proposed a

modification of deformable parts model for RGB-D data to perform object

detection in RGB-D scenes, however the method is not scalable and require

offline training for object models. [2] also performs 6DOF pose estimation of

objects besides recognition of the objects by combing features like SIFT for

RGB data and SHOT for depth data with hypothesis verification. Using a

contour based approach [16] modified gPb contour detector for segmentation

of RGB-D scene. Besides RGB contour cues used in original gPb contour de-

tector, they used three more geometric cues extracted from depth images to

perform segmentation. After segmentation, various features like shape, geo-

centric pose are estimated from the superpixels and classification is performed

to determine object classes. [39] focus on the problem of detecting objects in

RGB-D by verifying the compatibility between object hypotheses and corre-

sponding RGB-D map.

The techniques discussed in this section depends on training data which can

be costly and time consuming to generate. They also suffer from the problem

of scalability in terms of the number of objects. For example [27] requires a

sliding window detector for every object detected. This technique does not

scale very well to a large number of objects. An alternative to providing prior

object information is using solutions developed for object discovery. These

methods rely on either active vision [1] [29] or segmentation of scene and

classification of segments as objects proposed by [23]. We will discuss use of

object discovery to generate training data in the following sections.
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2.1.2 Unsupervised segmentation methods

In contrast to the segmentation methods discussed in the previous section,

most of the works in this section use smoothness or other geometric constraints

to segment a given scene. [1] proposed an active vision framework using fix-

ation to perform task like segmentation and object discovery. They perform

segmentation using extension of gPb contours for RGB-D images by gener-

ating probabilistic boundary map. Then using a fixation point they generate

polar representation of contour map and segment objects by finding ”optimal”

closed contour. However gPb contour detectors are is slow in practice. Even

a GPU implementation by [9] takes seconds to compute contours on an RGB

image thus making it unsuitable for real time applications in robotics.

[33] performs segmentation of objects of interest using saliency maps and

depth data captured from stereo. [24], [42] use motion and depth as a cue

to perform segmentation of unknown objects. In their work objects are ma-

nipulated by a robotic arm to verify object hypothesis. In recent literature

different segmentation methods have been proposed which are very fast in

practice. [30], [23], [13] used convexity based criteria to segment the RGB-D

scene. [23] operates on point cloud data obtained from Kinect fusion and ex-

tract multiple segments using [12]. For each segment, features are extracted

and segments are classified as object. [13] uses a similar framework using free

space filtering to find differences between two point clouds to learn about new

objects. In proposed work we use similar segmentation criteria with slight

modification to perform segmentation as explained later in this thesis.

[14] perform min cut segmentation of point cloud given object location.

Even though the segmentation method is simple it requires object location.

In contrast in our method we initialize object location using object discovery

methods and instead of using multiple thresholds, we over segment the scene

and rely on temporal segmentation for correct segmentation. [5] uses active

vision for 3d scene segmentation of unknown objects. They create models

for foreground, background, and object with stereo based fixation process to

perform segmentation. With their proposed approach only one object can be
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segmented at a time.

Another category of unsupervised object segmentation uses active vision

approach inspired by human visual system. Humans can learn object repre-

sentation in a purely unsupervised manner. Whereas current state of the art

object detection methods rely heavily on a labeled datasets. The human visual

system makes a series of fixations at various salient locations in a given scene

[45]. The eyes move from location to location either voluntarily or involuntar-

ily. The parts to focus on are selected based on various local cues. Local cues

like relatively higher contrast, motion. Inspired from the behavior of human

visual system, active vision selects some points in the scene to perform tasks

like segmentation, object detection.

[1] has shown applications of active vision in various tasks for object seg-

mentation, robotics. For object segmentation, using gpb contours an edge map

is created. To segment the objects a point of interest is selected. The edge

map is converted to polar map around the point of interest and by finding an

optimal cut on edge map in polar space the boundary of the object is obtained.

Also [22] used an active vision based approach to segment 3d point clouds.

Points of interest are selected by various methods such as geometric seeding,

saliency based seeding and seed points selected by humans. An approximate

solution to the segmentation is obtained by performing multiway cut as it is

an NP hard problem. [37], [38] performs unsupervised analysis of images to

build object class models.

Recently [20] proposed a temporal segmentation method which uses depth

and color information. They segment the data using multistage hierarchichal

graph based approach. Similar regions in several point clouds are grouped over

a graph. These regions are merged to yield a dendogram using agglomerative

clustering via minimum spanning tree algorithm. They achieved .8 fps on

images of size 640X480.

Segmentation methods proposed by [23], [13] and discussed previously are

either slow or operate in an offline manner thus rendering them unsuitable

for applications in robotics. We refer to these offline segmentation methods

as batch solutions as before performing segmentation they collect dense 3D
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Figure 2.1: Microsoft Kinect. Source:
http://fivedots.coe.psu.ac.th/ ad/jg/nui13/kinect.jpg

cloud of the scene. In contrast to these batch solutions we propose an online

solution for the segmentation problem that is sequential i.e. processing one

RGB-D frame at a time.

2.2 Dense reconstruction methods

As we have highlighted before, human visual system combine many low level

cues to understand a scene and depth has proven to be one of the very impor-

tant cues. This property of visual system has lead to development of problems

like stereovision, depth from single camera, depth from motion. It has also

lead development of some novel devices and sensors which project structured

light which is used to infer depth in real time. Such low cost and easy to use

devices have been used in many recent works in robotics and computer vision.

Microsoft Kinect is one such sensor 2.1. It has an infrared light source

which projects structured light 2.2. Infrared camera and on board processing

capability is used to determine depth from the projected light. Besides depth

camera, it also have a RGB camera and provides registered stream of RGB

and depth information. Besides cameras it also has other on board sensors

like accelerometer and a motorized base, microphones. But Kinect also suffers

from few limitations like missing data due absorption of infrared rays, shadows

and noise. Black surfaces causes absorption of infrared rays causing loss of
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Figure 2.2: Structured light pattern projected by Kinect. Source:
http://blogs.msdn.com/b/msroboticsstudio/archive/2011/11/29/kinect-
for-robotics.aspx

Figure 2.3: IR shadow Kinect sensor. Source:
http://social.msdn.microsoft.com/Forums/en-US/74ff175a-291f-445d-ab55-
09d2af7cfd4c/why-did-my-kinect-sensor-show-such-a-double-image

information. The phenomenon of shadows is highlighted in following figure

2.3.

One way to overcome these sensor limitations is by using dense recon-

struction methods. Dense reconstruction allows to generate dense 3d point

cloud of a given surface. Few prominent works in this area has been by [44].

Kinect fusion developed by Microsoft demonstrated the use of Kinect sensor

to perform dense reconstruction and various other applications. Kinect fusion

perform camera pose estimation using ICP and integrate raw depth maps into

a global TSDF (Truncated Signed Distance Function) cloud. GPUs were used
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to obtain real time performance. The imprtant point to note is that GPUs

played an important role in feasibility of the method. ICP for pose estimation

works only when two point clouds to be aligned are very close to each other.

GPU made the processing fast enough that ICP can be performed at much

faster frame rate. Another important aspect of the kinect fusion work is that

rather than doing frame by frame registration, authors have performed frame

by model estimation, thus reducing the pose error.

But original kinect fusion suffered from the limitation of amount of area

that can be mapped. The primary reason for his limitation is that GPU mem-

ory is limited and a costly resource, and data transfer between CPU-GPU

involves considerable overhead. Later Kintinous was developed which allows

mapping of large amount of area by swapping memory blocks representing a

part of the surface in and out of the GPU. As the sensor is moving around

is a transformation above certain threshold is detected current TSDF (Trun-

cated Signed Distance Function) GPU block is swapped out of GPU memory

and new part of the surface is mapped is the current cloud. This approach

helped to overcome memory limitation of the GPU. Another noteworthy as-

pect of Kintious is pose estimation process. They have proposed FOVIS (Fast

Odometry from VISion) [21] as pose estimation method which is more robust

in comparison to ICP during large amount of camera transformation.

Our algorithm is built upon dense reconstruction algorithm similar to

Kintinous. We work with an open source implementation known as Kinect

fusion large scale implemented in Point Cloud Library [35]. The dense map-

ping algorithm provides our method with dense depth and pose estimates.

Which are used for further processing like scene segmentation and multi-view

integration of segments into a label cloud.

2.3 Nearest neighbor object detection meth-

ods

As discussed in the previous sections that there have been any methods pro-

posed in literature that deals with object detection in RGB-D clouds. Most
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of these methods rely upon labeled datasets for training and use model based

approaches for object detection. But generating ground truth data is not only

costly but also time consuming and not scalable. Another limitation of these

methods is that they perform object detection using model based approach i.e.

for every object to be detected a prior model has to be trained. This severely

reduce the scalability of object detectors in terms of number of objects that

can be detected.

The other alternative to model based methods is model free methods for

example nearest neighbor. Nearest neighbor methods use large database of

objects of interest to perform various tasks like object detection, segmentation,

image coloring etc. These methods usually have advantage of being highly

scalable in number of objects that can be detected and do not require training

of complex models for every object.

One of the prominent works in computer vision using nearest neighbor

methods have been [41]. They used a database of 80 million images and

demonstrated that using even images of seize 32X32, tasks like object detec-

tion, image coloring, object localization can be solved with good accuracy.

Given a query image, they first prune candidates based on top 19 eigen vec-

tors. After selecting a subset of whole database they compute nearest neighbor

using modified SSD score which supports warping. Because of low resolution of

the images these computations can be done easily. We use a similar non para-

metric approach for object detection as it has the advantage of being scalable

in number of objects and an efficient GPU implementation is possible.
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Chapter 3

Temporal framework for RGBD
cloud Segmentation

Our segmentation framework is built upon dense mapping methods like Kinect

Fusion proposed by [32] and Kintinous by [44]. These methods compute dense

depth maps, and pose information for every frame using Iterative Closest Point

or FOVIS (Fast Odometry from VISion) by [21] in case of Kintinous. We use

depth information to generate vertex and normal maps and segment a given

scene using segmentation method by [12]. We use a modification of the edge

weight metric proposed by [23]. Using the camera pose information we fuse

segmentation maps from different viewpoints in a 3d cloud in an online fashion.

The fusion of segments is treated as a region merging problem and is solved

by deleting edges from a weighted graph built from segmentation maps to

be merged. The segmentation maps are used to discover new objects and to

identify objects in real time in a new scene. The segmentation and detection

pipeline for the proposed method is shown in 3.1. In the following sections we

will discuss each module in detail.

3.1 Data acquisition

As discussed in previous chapters sensors like Microsoft Kinect have led to

the development of numerous techniques for RGB-D object detection, mainly

because of low cost and ease of use. We use the Kinect sensor for acquiring

RGBD data although our method is not just limited to Kinect. But as dis-

17



Figure 3.1: Segmentation and detection pipeline

cussed in the previous sections the sensor also has some limitations like noisy

depth data, missing information due to shadows and infrared absorbing sur-

faces. To overcome these limitations in literature various methods have been

used. Dense mapping algorithms comes under this category. Dense mapping

algorithms aggregate depth information into a TSDF (Truncated Signed Dis-

tance Function) cloud to minimize noise and fill in depth information as the

sensor is moving around.

We use dense mapping algorithms to obtain depth maps. The advantage

of using dense mapping algorithm instead of alternative approaches is that

besides removing the noise in the data it also provides with pose estimates.

Also since iterative median filters fill in information based on neighbors, in case

of complex objects or in case there is large amount of information missing, it

will lead to incorrect depth maps. Whereas dense reconstruction methods fill

in depth information in an incremental fashion from real world data which has

the advantage of being more accurate.
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Figure 3.2: Example of dense reconstruction of a given scene. Top images is
rendered dense depth map which is the output from Kinect fusion. Bottom
image is raw depth image at a time instance t. Note the missing depth infor-
mation in the raw depth image on the and the information has been filled in
reconstructed image.
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3.2 Segmentation

Segmentation and multi-viewpoint integration is the central idea of this work.

The primary requirement for our work is that segmentation should operate in

real time, work in an incremental fashion, should be able to handle missing data

and noise and should be able to integrate segments from multiple viewpoints.

Another requirement that we impose is that segmentation method should have

minimum number of input parameters in order to limit the complexity of the

over all system. In this work we use segmentation method by [12] because of

its simplicity, computational efficiency and accuracy. Also there is just one

parameter for controlling segmentation thus making it suitable for our task.

3.2.1 Efficient graph based segmentation

In this section we will discuss the segmentation problem for a single image as

defined by [12]. Given an RGB image I and corresponding depth image D

a graph G is constructed as follows. For each pixel a vertex is created and

edges are created between neighbors of a pixel. Each edge between vertices vi

and vj weight wij is computed which is a non-negative measure of dissimilarity

between the two pixels.

The predicate for dividing the graph into various components C ⊆ V

where V is set of all vertices or pixels, thus achieving segmentation mea-

sures the inter-component dissimilarity to intra-component dissimilarity. The

intra-component dissimilarity for component C is defined as follows

Int(C) = max
e∈MST (C,E)

w(e) (3.1)

where MST is minimum spanning tree of component C and above function

selects maximum weight of edge e in the MST. The inter-component dissimi-

larity is defined as minimum weight of the edges between two components C1,

C2 where C1, C2 ∈ V .

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w((vi, vj)) (3.2)
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The pairwise comparison predicate between two components is defined as

follows

D(C1, C2) =

{
true if Dif (C1, C2) > MInt (C1, C2)
false else

(3.3)

Where minimum internal difference MInt is defined as

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (3.4)

Where τ = k/|C| requires stronger evidence for a boundary for small com-

ponents. Constant k controls the size of segments and larger k causes larger

components. k is the only input to this segmentation algorithm and controls

between over and under segmentation. The algorithm is easy to implement

and give good run time performance even on a CPU. It is implemented using

union by rank and path compression algorithm.

3.2.2 Edge Weights

In the previous section we discussed the segmentation algorithm. The seg-

mentation problem is posed as dividing a graph into components. Each edge

in the graph is assigned a dissimilarity weight measure computed neighboring

vertices or pixels.

[23], [13] used convexity based criteria as edge weights for graph based

segmentation algorithm [12]. We use similar approach for segmentation but

with slight modification to the edge weight metric which is defined as follows

wij =


MAXWGHT if d (vi, vj) ≥ dmin

(1− ni · nj)
2 if d (vi, vj) < dmin and (vj − vi) · nj > 0

1− ni.nj else
(3.5)

Where MAXWGHT is a large constant weight, vi is a vertex point, ni is

the corresponding normal and d (vi, vj) is the euclidean distance between two

vertex points. Rational for deviating from the approach in [23] is explained

with 3.3.

3.3 Spatio-temporal Integration of Segments

Spatio-temporal segmentation is the central idea to our approach. In literature

there have been some methods which deal with the problem in 2d images. [47]
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Figure 3.3: View 1 shows two objects, dotted arrows show direction of normals.
View 2 shows the same object configuration from a different view. Since surface
4 (S4) has same normal direction as surface 1 (S1) which merges both regions
even though they belong to two different objects. Adding a distance based
threshold allows to separate two surfaces.

used DAG based approach for detection and segmentation of primary object

in video. Motion and intensity are central cues to the approach to perform

proposal prediction and to expand the set of object proposals for a frame.

[31] used Kolmogorov-Smirnov test to determine spatial similarity and merge

regions using weighted directed graph. Such an approach has multiple ad-

vantages as compared to segmentation of objects in a single image due to the

presence of multiple cues. Motion has been one of the important cues for iden-

tifying novel objects in a scene. Also due to the temporal information present

multiple frameworks can be used for validating the detections performed.

[23], [13] generate multiple segmentation maps using different thresholds

to detect multiple objects. In our work instead of generating multiple segmen-

tations of the same scene we over-segment a given scene and rely on spatio-

temporal segmentation to fuse segments of geometrically connected regions.

We show that by integrating segments from multiple views allows us to seg-

ment complex objects which do not necessarily comply with convexity based

criteria in one or more views. Other advantages of an online approach as
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Figure 3.4: Segmented images using the efficient graph based segmentation.
The spatio-temporal integration has not been done and segmentation results
are for a single frame only. Notice the noise on the edges of the objects due
noisy depth data.
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compared to an offline approach are as follows.

• Run time performance and scalability - The primary emphasis of this

work has been on run time performance of RGB-D cloud segmentation

and scalability of the whole architecture. In previous sections we have

discussed various methods to perform the task of segmentation. Common

approach in contemporary work on RGB-D cloud segmentation have

been to capture the complete scene first using a dense reconstruction

algorithm like Kinect fusion and then performing segmentation followed

by further processing like object discovery. But one limitation of such an

approach is that it is not scalable. As the size of the area to be processed

increases, the size of the corresponding cloud also increases. One way to

decrease the computation time is to downsample the cloud, however one

disadvantage of downsampling is loss of resolution and bad performance

of segmentation around thin structures.

We over come the limitation of run time performance and scalability by

proposing an online approach for segmentation. Our proposed solution

is independent of the amount of surface being processed thus achieving

scalability. For segmentation rather than segmenting a dense point cloud

collected offline at once, we segment each RGB-D frame independently

followed by integration into a segmentation cloud. We also heavily par-

allelize various components of the segmentation process on a GPU thus

achieving real time performance for segmentation framework. Run time

analysis for our algorithm is as follows.

The segmentation method that we use, proposed by [12] has a runtime

complexity of O (nlogn). The algorithm depends on the number of ver-

tices in the graph or number of vertices in a point cloud. In our case n

is a constant. Assume w and h be the width and height of the RGB-D

images being processed. We use w = 320 and h = 240 in our work. Thus

segmentation cost in our case is O (n∗logn∗) where n = w ∗ h. The total

cost of segmentation framework is 2 ∗ projection cost + O (n∗logn∗) +

merging cost where projection cost is cost of projecting the previous
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segmentation map from current point of view and storing the integrated

cloud which is again a constant time operation and is performed on a

GPU. merging cost is cost of merging two segment maps as discussed

in the following sections. Again merging cost depends on number of

segments in an image which almost remains constant and depends upon

segment threshold and complexity of a given scene. Segmentation cost

remains constant irrespective of the size of the physical area being pro-

cessed for a given scene.

• Higher resolution of data - We gain this advantage because of scalability

and real-time property of the proposed method. For the task of object

detection more information and finer details can be extracted from a

high resolution images. For example in texture analysis or while using

features like HOG, high resolution will help to extract more discrimi-

native features. By using offline methods where a dense point cloud is

collected before processing can only deal with limited resolution to lower

the computational cost. Thus the number of voxels per meter are lower

whereas by using the proposed method this limitation can be overcome

as the method is not dependent on the size of the cloud but only depends

on the images being processed.

Another limitation of offline approach is low resolution of RGB data

and due to averaging leads to blurring of resulting images. As discussed

in previous sections dense reconstruction methods collect RGB-D data

and integrate the information into a dense cloud by running weighted

average process. Due to this averaging process and minute errors in the

integration process results in RGB data to be heavily smoothed and also

loss of edge information. This can result in bad performance of color

based segmentation or image description methods. Also to make offline

methods computationally efficient low resolution data is used, which also

results in low resolution of the RGB data.

• Applications in robotics - Dividing an image into meaningful segments

has numerous applications. There have been considerable interest in the

25



research community to achieve segmentation which is closer to the true

object boundaries. With advances in robotics and depth sensors there

is considerable interest in using this additional information for tasks

related to grasping, object manipulation and navigation. Segmentation

plays an important role in tasks for example for the task of grasping it

is important that the structure of the object is precise and the object of

interest can be separated from the background. But due to noisy depth

data and missing information it is not suitable to use depth data directly.

The proposed segmentation framework provides dense depth information

and meaningful segment(s) for objects. The framework is also flexible to

support an unsupervised or a supervised approach as segmentation can

be easily coupled with user interaction.

• Amodal completion - We also deal with the problem of amodal com-

pletion. While performing segmentation in an indoor environment due

to heavy occlusion it is possible that one single object gets divided into

multiple regions. [16] proposed a solution to this problem by geometric

fitting. We we demonstrate that our framework can perform amodal

completion implicitly by integrating information from multiple views.

Our spatio-temporal segmentation algorithm is described as follows. Let

pt be the pose information given at time t, and Vt and Nt the vertex map and

normal map at time t obtained from dense mapping. Using pose information

pt we project label information from dense label cloud which has the integrated

label information from time 0 to t− 1.

3.3.1 Merging Criteria

Before merging multiple segments from different segmentation maps, we deter-

mine the extent of overlap between the segments. Merging criterion between
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Figure 3.5: Assignment of edge weights. Given two segments sk from St and
sprjl from Sprj t.

two segments si and sj is defined as follows

oij = Overlap (si, sj)

ai = Area (si)

aj = Area (sj)

MergeRegion (si, sj) =

{
1 if oij/ai > Othresh or oij/aj > Othresh

0 else

Given a segment si, Area computes the number of pixels having label i in

a 2D image. Overlap computes the overlap between two segments si, sj by

computing number of 2D coordinates in segmentation images St having label

i and Sprj t having label j.

3.3.2 Merging Segmentation Maps

Given two segmentation maps the aim of spatio-temporal integration is to

merge the segments in a consistent manner such that object boundaries are

preserved. As mentioned previously that we oversegment the image. Which

leads to division of a single object into multiple segments. Assuming that

these oversegmented regions preserve the object boundaries, goal of this step

is to preserve the object boundaries and integrate segmentation maps from
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Figure 3.6: Merging of segmentation maps as the Kinect camera moves around.
P is the pose estimate and V is the vertex map.

different viewpoints into one consistent label cloud.

Integration of segmentation maps is formulated as region merging problem.

A graph is created from the segmentation maps to be merged and edges are

deleted from the graph. Regions which stay connected after edge deletion are

labeled as one single region. Let St be the segmentation map at time t and

Sprj t be the projected segmentation map obtained from label cloud from the

current pose. Both segmentation maps are used to generate Scloud t which is

stored back in the label cloud. The merging process is explained pictorially in

3.6.

Letm be the number of unique labels in segmentation map St and s0, s1, · · · , sm
be the corresponding segments. Similarly n is the number of unique labels

in segmentation maps Sprj t and sprj0, sprj1, · · · , sprjn are the segments. The

graph is constructed in the following manner. For each segment in both seg-

mentation maps a graph node is created. Edges between nodes from segmen-

tation map St and nodes from Sprj t are created and each edge is assigned a

weight computed from overlap metric oij. Note that the m segments from St

don’t have any edge between them as there is no overlap between any segment.

The same is true for n segments of Sprj t.
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To perform merger of the segments the resulting graph is traversed. Cycles

are avoided by keeping track of the nodes traversed. Any pair of segments

having overlap greater than the overlap threshold are merged in the graph

and are assigned same label. For the connected nodes in the graph its label

is determined by selecting label from the node corresponding to the segment

having largest area. Rational for selecting the segment having largest area

is explained later in this document. Now some of the nodes will still have

unassigned label and for these nodes a new label is generated, creating a new

label.

3.3.3 GPU Implementation

In the previous sections we have discussed segmentation of RGBD cloud and

multiview integration of RGBD data to obtain dense segmentation map for a

scene. We operate on 512 X 512 X 512 label cloud which maps to 3m X 3m

X 3m real world space. The projection of the label cloud from current view-

point and update of the cloud is performed for every frame. Updating every

voxel in the label cloud or getting the projection of the cloud is computation-

ally very expensive. In order to achieve real time performance these tasks

are implemented on the GPU. The projection of the cloud from the current

viewpoint is performed as follows. Let R, t be the rotation and translation

matrix information obtained from pose estimation. The size of each voxel is

csz, csz, csz where csz = 3.0/512. Given the vertex map V corresponding to

current viewpoint and each vertex in the vertex map be vi. For each vertex vi

the voxel index is determined as follows

voxeli.x = float2integer(vi.x/csz)

voxeli.y = float2integer(vi.y/csz)

voxeli.z = float2integer(vi.z/csz)

To parallelize the operation for each vertex a thread on a GPU is launched

and the voxel index is computed which is used to project label cloud to a 2D
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image which represents segmentation from current point of view. Similarly,

after performing region merging operation a new consolidated segmentation

map is obtained. This consolidated segmentation map at time t Scloud t is

added to the dense label cloud LabelCloud. The size of the LabelCloud is

V OLUMEX, V OLUMEY, V OLUMEZ. This operation is also performed on

the GPU. Let R, t be the rotation and translation matrix information obtained

from pose estimation and Rinv be the inverse of R. Let fx, fy be the focal length

and cx, cy be the image center. On a GPU for each possible value of ν.x and

ν.y is launched where 1 ≤ ν.x ≤ V OLUMEX and 1 ≤ ν.y ≤ V OLUMEY .

Each thread runs in parallel and Algorithm 1 is performed for each thread.

Algorithm 1 Label Cloud Update

1: procedure Update(ν, V , Scloud t, fx, fy, cx, cy, csz, Rinv, t, LabelCloud,
cols, rows, distthresh)

2: ν.z = 1.
3: loop:
4: if ν.z > VOLUMEZ then goto exit

5: vg ← GetGlobalCoordinates (ν, csz).
6: v ← Rinv ∗ (vg − t)
7: if v.z ≤ 0 then
8: ν.z ← ν.z + 1
9: goto loop

10: coo.x← float2integer (v.x ∗ fx/v.z + cx)
11: coo.y ← float2integer (v.y ∗ fy/v.z + cy)
12: if coo.x ≥ 0 and coo.y ≥ 0 and coo.x < cols and coo.y < rows then
13: p.x← V (coo.x, coo.y) .x
14: p.y ← V (coo.x, coo.y) .y
15: p.z ← V (coo.x, coo.y) .z
16: dist← norm (p− vg)
17: if dist < distthresh then
18: LabelCloud (ν.x, ν.y, ν.z)← Scloud t (coo.x, coo.y)

19: ν.z ← ν.z + 1
20: goto loop
21: exit :
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Algorithm 2 Compute global coordinates

1: procedure GetGlobalCoordinates(ν, csz)
2: p.x← (ν.x+ 0.5) ∗ csz
3: p.y ← (ν.y + 0.5) ∗ csz
4: p.z ← (ν.z + 0.5) ∗ csz
5: return p
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Chapter 4

Experiments

In this section we discuss the main results of this work. The experiments have

been performed on Intel Xeon 6 core processor with NVIDIA Tesla C2075

GPU card. Microsoft Kinect was used for data acquisition. In this chapter

we will evaluate the performance and properties of the proposed segmentation

framework.

4.1 Segmentation performance

We evaluate the proposed segmentation framework on NYU2 RGBD dataset

by [36]. The dataset consists of 1449 RGBD images, gathered from a wide

range of commercial and residential buildings in three different US cities, com-

prising 464 different indoor scenes across 26 scene classes. The images were

hand selected from 435,103 video frames, to ensure diverse scene content and

lack of similarity to other frames. We compare the results for the proposed

method with [20]. We use the evaluation criteria used in [20] to quantify the

error between generated segmentation map and ground truth. The evaluation

critria is as follows. The boundary edges are extracted from the segmentation

map, and ground truth segmentation. For each pixel in computed segmen-

tation maps distance to nearest boundary pixels is computed using chamfer

distance. Similar distance map is computed for ground truth boundary map.

Difference between both the distance maps is computed. The computed differ-

ence is summed for all pixels and normalized by product of image width and

image height. If w, h is the width and height of image. d (i) is the distance of
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Method Score
[20] 19.35
Proposed method (non temporal) 19.37
Proposed method (temporal) 17.54

Table 4.1: Evaluation of the proposed segmentation framework.

a pixel to a nearest boundary pixel.

error =

∑
i abs (dgtrth (i)− dseg (i))

w ∗ h
(4.1)

To conduct the experiment we determine videos corresponding to 1449

RGBD images, then we extract 8 frames previous to the each 1449 RGBD

image. We run the proposed segmentation framework on the sequence of

images. The final segmentation that we achieve for 1449 images is used for

evaluation. The segmentation performance is shown in table 1.

The primary reason for our method performing better than [20] is that

our segmentation is not affected by color. Segmenting only the depth data

gives better performance as segmentation results are not affected by shadow,

lighting changes in a scene or reflective surfaces like mirror. The performance

of our method can be further improved. Since we run the experiment only

on past eight frames for each 1449 frames, the performance can be improved

by using more temporal information. Also the performance is little bit lower

due to the fact that we still have some missing information in the depth maps

due the Kinect camera limitation. Better accuracy can be obtained by oper-

ating on closer distance as Kinect loses depth resolution and accuracy as the

distance increases. Due to dense depth reconstruction errors there is also a

drop in performance. Proposed method will give better results when objects

of interests are at a close distance. We also perform qualitative evaluation of

temporal segmentation versus non temporal segmentation in figure 4.1 to 4.8.

As mentioned before the quality of the segmentation results can be im-

proved by incorporating more temporal information. The primary reason for

this improvement is complex objects can be segmented properly. Also noisy
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Figure 4.1: Top row shows result of object boundaries using the proposed
multiview segmentation method. Bottom row shows segmentation results com-
puted on one image for the same frame. Our method gives more precise and
clear object boundaries. Following images show more examples.

Figure 4.2: Segmentation results

Figure 4.3: Segmentation results
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Figure 4.4: Segmentation results

Figure 4.5: Segmentation results

Figure 4.6: Segmentation results
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Figure 4.7: Segmentation results

Figure 4.8: Segmentation results
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Figure 4.9: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames

and missing information from Kinect which often causes drop in performance.

This can be reduced with more temporal data. To verify the claims we conduct

experiments to show relation between segmentation performance and number

of frames. For this purpose we compare segmentation performance of proposed

method with segmentation on a single frame to emphasize that performance

improvements are not due to smoothing effect of depth maps by Kinect fu-

sion. For every 1449 RGBD image we extract n frames from the corresponding

videos where 2 ≤ n ≤ 20. The results are shown in figure 4.9. More results

are shown in Appendix 1.
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4.2 Frame rate

The main emphasis of this work has been on RGBD cloud segmentation. We

leverage GPU processors and proposed multi-view temporal segmentation al-

gorithm to achieve a real time performance. Existing methods, which we refer

to as batch or offline methods, first collect a dense map of an entire scene be-

fore segmenting the integrated point cloud. It can become difficult to segment

large volumes of data as the number of points increase. Where as we adopt an

approach of segmenting only the current point cloud and merge its segments

with those that have been segmented so far. In other words, our algorithms

works at the segment level, instead of the point level, and considerably reduces

the complexity of the solution and is not dependent on number of points in

the dense depth cloud. We integrate raw depth maps in a dense volume cloud

and take projection of the cloud from current point of view to obtain less

noisy and dense depth information. This allows us to segment the scene in an

online fashion and run time of the segmentation remains the same as the size

of projected depth maps are constant. For our implementation we are able to

achieve a segmentation rate of at 5-6 fps on images on resolution of 640X480.

Recently [20] proposed similar method which operates at 0.8 fps for images of

same resolution.

4.3 Segmentation of complex objects

In this section we evaluate the performance of the proposed segmentation

method. As we can segment the scene in an online fashion, our segmentation

method is able to handle more complex objects which violate the convexity

criteria in one or more of the views. Most of the common objects present in

indoor scenes are complex and not necessarily convex in one or more views,

which might lead to over-segmentation of a given object. But we leverage the

capability of integrating multiple views to correctly segment a given object.

In Figure 4.10 we show the segmentation of a complex object. It can seen

that the red box is non convex in some of the viewpoints. But as the sensor
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Figure 4.10:

is moving around if a convex connection is discovered between one part of the

over segmented object with another the labels are merged leading to correct

segmentation of the object.

4.4 Number of constraints imposed

We also compare our method with other methods in terms of the number

of constraints imposed for segmenting a scene. [36], [16] uses a gPb contour

based approach for segmentation. [36] aligns the captured RGB-D cloud before

performing segmentation and each pixel is assigned a plane using CRF. [22]

use mutiway cut to perform segmentation which is an NP hard problem and

only approximate solution can be obtained. [14] uses a user specified radius

and small or large radius can affect the detection of true boundaries of an

object. [23] generates multiple segmentations of a given scene. [1] proposed

use of fixation points and gPb contours for segmenting an object. They also

proposed and extension of original method for segmenting multiple objects by

selecting multiple fixation points.

We compare our approach with these methods in terms of complexity of

overall approach. Instead of performing complex tasks as plane estimation

before segmenting or using complex or approximate segmentation methods,

we use a simple segmentation methods and do not impose any alignment con-

straint on the data. This help us to overcome computational complexity of
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preprocessing the data and eliminate possibility of errors in plane estima-

tion process. Also instead of selecting multiple thresholds for segmenting the

same scene, we over segment every frame and rely on temporal integration to

overcome segmentation errors. The rational behind such an approach is, as

the segmentation method use convexity criteria, even after over segmenting

an RGB-D cloud boundaries are still preserved but due to noise and chang-

ing viewpoint overlapping segments are generated in consecutive segmentation

maps from different viewpoints. Temporal segmentation merge these overlap-

ping segments thus correctly segmenting a scene and also preserving the object

boundaries.

4.5 Amodal completion

Due to occlusion a given object can be divided into multiple segments. The

problem of combining these multiple objects into one correct segment is known

as amodal completion. [16] handled amodal completion by estimating a para-

metric geometric model and merging superpiexls into bigger regions based on

agreement among parametric geometric models. Instead of computing a geo-

metric model we rely upon information from multiple views. In 4.11 we show

some examples of amodal completion by integrating multiple views. As shown

in the figure the floor is over segmented as the chair obstructs complete view of

the floor. But as the camera moves around connection between various parts

of floor are discovered and the floor is combined into one single segment.
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Figure 4.11: Top row shows the RGB image and bottom row shows the cor-
responding segmentation maps. In the beginning frames we can see that floor
is divided into different segments due to occlusion from chair. But once a
connection is established between segments they remain connected as seen in
Frame 180.

41



Chapter 5

Applications of the
segmentation framework

In this chapter we discuss various possible applications of the proposed seg-

mentation framework. In this thesis we have focused on a robust RGB-D

segmentation framework which uses temporal information. We have been em-

phasizing on real time and online performance the segmentation framework for

which we have used GPU. In the following sections we discuss the applications

of real time temporal segmentation framework for tasks like object discovery

and object detection.

5.1 Object discovery

Object discovery, as the name suggests, deals with discovering objects in a

given scene in an unsupervised manner. In literature color, motion, depth or

combination of different cues have been used to perform object discovery. Some

notable works in this area have been by [33], [13], [42], [19], [18], [23]. There

are also active vision based approaches by [29], [22] which rely on selection of

some points inside an object.

Our proposed segmentation method can naturally solve the object discov-

ery problem with minimum additional work. Rather than selecting the seg-

ments and classifying them as object, we select segments as possible objects

which are in the center of view and have been persistent in segment size for

a few frames. After segmenting current scene and during the merging of seg-
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Figure 5.1: Discovered objects in some test scenes bounded by white rectan-
gles.

ments from multiple frames using graph based approach, for all the segments

to be merged we assign them the label of the segment having largest area. By

assigning the label having the largest area helps in tracking the persistence of

size of segments. We also impose size and eccentricity constraint on segments

to prune the candidates. Segments which belong to floor or table or other

surfaces usually reach edges of the view allowing objects to be delineated in

the scene. Figure 5.1, 5.2 shows some of the results for object discovery.

5.1.1 Unsupervised database creation

Besides using the simple approach to object discovery discussed previously our

framework also allows use of more advanced object discovery methods. The

aim of object discovery in this work is to demonstrate unsupervised generation

of an object database. As we have discussed previously that generation of

a training database is a difficult procedure often requiring complex setup,

also generating ground truth database is a costly process. We demonstrate
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Figure 5.2: Discovered objects in some test scenes bounded by white rectan-
gles.

that the process can be simplified by combining object discovery with online

segmentation.

Our segmentation method allows us to segment a given scene by just mov-

ing the Kinect camera around. By combining object discovery with dense

temporal scanning of a scene we can keep track of the labels and capture an

object from different poses. This simplifies the database generation procedure

to such an extent that only thing one has to do is pick up a Kinect camera

and move it around in an object in any fashion. It also allows to capture

data for multiple objects simultaneously. We demonstrate our results for data

collection in 5.3, 5.4. [17] developed methods to perform 3D model creation

of objects which can also be used for model creation. Figure 5.3, 5.4 shows

result for our approach for object database creation.

5.2 Object detection

In this work we have emphasized the need for methods which are scalable and

operate in real time to have practical applications. [27] used detection based

framework for labeling 3d scenes with good accuracy. The only shortcoming

of such an approach is it needs sliding window detectors for every object, and

this results in a large search space for every object.
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Figure 5.3: Top row shows the objects detected in the RGB image shown at the
bottom. Middle row shows some images that are added to the object database
as the camera moves around for one object. For all the objects detected
similar images are generated and object labels are inferred from segmentation
map shown in the bottom row.

Figure 5.4:
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We discuss how a scalable and real time framework can be developed for

object detection and 3d scene labeling. We build object detection frame-

work similar to [41]. As discussed, by combing object discovery and proposed

segmentation framework we can collect images of objects in an unsupervised

fashion. We build our object detector on this framework. We collect images

corresponding to objects and build a large database of objects. We convert

samples in database from RGB color space to LAB color space and normalize

color channels to have unit variance and zero mean. We perform comparison

of query images with the images in database using modified SSD metric pro-

posed in [41]. We use GPU implementation of the method to achieve real time

performances on a large amount of data. It also allows us to add objects to

the database in an online fashion making the detection framework online. Any

object that is not detected is added to the object database dynamically.

One limitation of the above nearest neighbor framework is, it is still sensi-

tive to lighting and viewpoint changes. However, the aim of this experiment

was to develop a proof of concept and it is possible to construct better object

models for detection or even bootstrap the databse with known objects to per-

form detection. In our experiments we can perform object detection at nearly

15-20 fps with little or no affect on run time as size of database increases.
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Figure 5.5: Example of object detection using the segmentation framework.
The objects collected using object discovery are shown in this image. Obj X
is the name of the object generated automatically.
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Figure 5.6: Example of object detection. All the object candidates are enclosed
with white bounding boxes. Correctly identified objects have cyan label on
the top left of the rectangle. Cyan label shows the object name generate by
object discovery as shown in 5.5
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Figure 5.7: Example of object detection.
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Chapter 6

Conclusion

The primary focus of this work has been on RGB-D cloud segmentation. We

have discussed complexities of the human visual system. It uses various cues

in combination to group elements of visual stimuli. Some of the cues used by

human visual stimuli are motion, depth, shadow and shading. These cues help

us to delineate object boundaries. The existing methods on RGBD cloud seg-

mentation either rely on training database which can be costly to acquire or are

slow in operation. Existing methods also being offline do not operate on large

amount of surface due to the large number of points in the RGBD cloud. In

this thesis we have proposed a temporal segmentation method which operates

on 2D RGB-D data and perform multi-view point integration of segment maps

to generate a global scene segmentation. We have used an efficient graph based

segmentation algorithm as it is fast in operation and does not require many

input parameters. We rely on dense reconstruction algorithms like Kinect Fu-

sion to acquire dense depth maps. The dense reconstruction methods provides

with less noisy and precise depth information, and pose information. We also

apply our segmentation framework to other problems like object detection and

discovery. We combine the online segmentation approach with object discovery

to create offline database of objects thus simplifying the training data acquisi-

tion process. We also demonstrate the application of segmentation framework

for scalable object detection. We implement the framework on a GPU thus

achieving real time performance. Multiview integration and object detection

using nearest neighbor is performed on a GPU.
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In future, we also plan to handle more complex objects. In this paper we

have used a very simple segmentation criterion but some objects do not com-

ply with the convexity criteria for example furniture. However by combining

adjacent labels multiple object hypotheses can be generated. These hypothe-

ses can be scored based on prior data to generate scores and select the best

one. Also motion is one very important cue which has been successfully used

in literature for segmentation of novel objects. In future we plan to to explore

motion, combined with depth and other low level cues to identify novel ob-

jects and achieve better segmentation. But this will also require more work

on dense mapping algorithms as current state of the art works well with no or

very less motion.
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Appendix A

As discussed before that the performance of proposed method can be im-

proved by incorporating more temporal information. This section presents

further proof towards validating this claim.. The following images will demon-

strate the performance of proposed method as compared to single frame image

segmentation. In order to present the results we will show ground truth seg-

mentation for a particular scene in top left image. In top right panel we will

show the segmentation result generated by proposed segmentation framework

after 20 frames. In Bottom left panel we will show the results from segmenta-

tion performed on the 20th frame. Finally we present a graph in bottom right

corner which show the performance improvement as the number of frames

increase.
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Figure A.1: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.2: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.3: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.4: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.5: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.6: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.7: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.8: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.9: Top left image: Ground truth object boundaries. Top right: Seg-
mentation results from proposed temporal segmentation Bottom left: Segmen-
tation of single frame. Bottom right: segmentation performance vs number of
frames
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Figure A.10: Top left image: Ground truth object boundaries. Top right:
Segmentation results from proposed temporal segmentation Bottom left: Seg-
mentation of single frame. Bottom right: segmentation performance vs number
of frames
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Figure A.11: Top left image: Ground truth object boundaries. Top right:
Segmentation results from proposed temporal segmentation Bottom left: Seg-
mentation of single frame. Bottom right: segmentation performance vs number
of frames
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Figure A.12: Top left image: Ground truth object boundaries. Top right:
Segmentation results from proposed temporal segmentation Bottom left: Seg-
mentation of single frame. Bottom right: segmentation performance vs number
of frames
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Figure A.13: Top left image: Ground truth object boundaries. Top right:
Segmentation results from proposed temporal segmentation Bottom left: Seg-
mentation of single frame. Bottom right: segmentation performance vs number
of frames
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