
Agent-State Construction with Auxiliary Inputs

by

Ruo Yu Tao

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Ruo Yu Tao, 2022

Abstract

In most, if not every, realistic sequential decision-making tasks, the decision-making

agent is not able to model the full complexity of the world. In reinforcement learning,

the environment is often much larger and more complex than the agent, a setting also

known as partial observability. In such settings, the agent must leverage more than

just the current sensory inputs; it must construct an agent state that summarizes the

agent’s previous interactions with the world. Currently, the most common approach

to tackle such a problem is to learn the agent-state function with a recurrent network.

This is done with the agent’s sensory stream as input, which is often augmented with

transformations of the agent’s observation. These augmentations are done in multiple

ways, from simple approaches like concatenating observations to more complex ones

such as uncertainty estimates or predictive representations. Nevertheless, although

ubiquitous in the field, these additional inputs, which we term auxiliary inputs, are

rarely emphasized, and it is not clear what their role or impact is. In this work we

formalize agent-state construction with auxiliary inputs and present several examples

of auxiliary inputs that incorporate information from the past, present, and/or fu-

ture of the agent-environment interaction. We show that auxiliary inputs allow an

agent to discriminate between observations that would otherwise be aliased, leading

to more expressive features that smoothly interpolate between different states. We

empirically evaluate this agent-state construction with different function approxima-

tors, using different instantiations of these auxiliary inputs across a variety of tasks.

This approach is complementary to state-of-the-art methods such as recurrent neural

networks, and acts as a heuristic that facilitates longer temporal credit assignment, re-

ii

ducing the number of time steps needed when performing truncated backpropagation

through time and leading to better performance.

iii

“Not knowing the chance of mutually exclusive events and knowing the chance to be

equal are two quite different states of knowledge.”

—Ronald A. Fisher

iv

To my sister, Ruoshan.

v

Acknowledgements

I would like to begin by acknowledging and thanking my wonderful and supportive

advisors, Marlos C. Machado and Adam White for their guidance, support, and trust

during my time as a master’s student. They have done a terrific job shaping me into

a curious, principled, and careful scholar—most of what I know as a researcher has

been from lessons they have taught and guidance they have given as their student.

I am very excited to see all the interesting research we’ll be collaborating on in the

future! I would also like to thank Martha White for the help and advice she has given

me in my projects and as a nascent academic.

I am incredibly thankful for my lab mates in the Reinforcement Learning and

Artificial Intelligence Lab for the community, discussions, and guidance during my

time as a graduate student at the University of Alberta. Particularly to this thesis,

I would like to thank Matthew Schlegel for supporting and shaping my ideas and

research direction throughout this project. I have learnt so much about research,

neuroscience, predictions, and reinforcement learning in general from both you and

our many talks and discussions. Besides Matt, I would like to thank Shibhansh

Dohare, Prabhat Nagarajan, Khurram Javed, and Chunlok Lo for being both great

friends and amazing lab mates.

I am also incredibly grateful for two particular lifelong friends, Liam Peet-Pare

and Bradley Burega, for their friendship and support during my time in Edmonton.

I look forward to the many adventures together after we all move on to the next part

of our lives. Finally, I would like to thank the many wonderful people in the Alberta

Machine Intelligence Institute for the community over the past two years.

vi

Table of Contents

1 Introduction 1
1.1 Thesis Objectives and Contributions 3

2 Background 6
2.1 Sequential Decision Making and Markov Decision Processes 7
2.2 Value Functions . 8
2.3 Bellman Equations and Value Iteration for Control 9
2.4 Temporal-Difference Learning and Control with Sarsa 11
2.5 Value Function Approximation . 12
2.6 Deep Reinforcement Learning . 13
2.7 Partial Observability . 14
2.8 Agent-State Functions . 15
2.9 Recurrent Neural Networks as Agent-State Functions 16

3 Auxiliary Inputs 18
3.1 Formalism and Examples . 19

3.1.1 Frame Stacking . 20
3.1.2 Resolution and Depth . 21
3.1.3 Incremental Functions . 21

3.2 The Lobster Environment . 22
3.2.1 Environment Details . 22

3.3 Exponential Decaying Traces . 25
3.3.1 Decaying Traces on the Lobster Environment 25
3.3.2 Results . 27
3.3.3 Value Function Geometry of Trace Features 27

3.4 Approximate Belief State with Particle Filters 29
3.4.1 Particle Filtering on the Lobster Environment 31
3.4.2 Results . 32

3.5 Likelihoods for Incorporating Future Predictions and Past Information 33

vii

3.5.1 Likelihoods as Predictions for the Lobster Environment 34
3.5.2 Results . 35

4 Particle Filtering for Auxiliary Inputs 38
4.1 Particle Filtering Environments . 38

4.1.1 Modified Compass World . 38
4.1.2 RockSample . 40

4.2 Results and Discussion . 41

5 Scaling Up Auxiliary Inputs and Integration with RNNs 44
5.1 The Fishing Environment . 46
5.2 Exponential Decaying Traces For Mapping 47
5.3 Results and Discussion . 48

6 Conclusion and Future Work 50

Appendix A: Lobster Environment Experimental Details 56
A.1 Hyperparameters and Experimental Setup 56
A.2 Algorithmic details . 57

A.2.1 Observations only . 57
A.2.2 Value Iteration with Environment States 57
A.2.3 Exponential Decaying Trace 57
A.2.4 Particle Filtering . 57
A.2.5 Likelihood Predictions . 58

Appendix B: Particle Filtering Experimental Details 59
B.1 Environment Details . 59

B.1.1 RockSample Environment Details 59
B.2 Environment-Specific Algorithmic Details and Hyperparameters . . . 61

B.2.1 Modified Compass World Experimental Setup and Hyperpa-
rameters . 61

B.2.2 RockSample(7, 8) Experimental Setup and Hyperparameters . 62
B.3 Ablation Studies . 64

B.3.1 RockSample(7, 8) Half Efficiency Distance Experiment 64
B.3.2 LSTM Action Concatenation Ablation 65

Appendix C: Fishing Experimental, Algorithmic and Environment De-
tails 67
C.1 Fishing Environment Details . 67

viii

C.1.1 Mapping and Observations . 68
C.1.2 Stochasticity in the Environment 68

C.2 Fishing-Specific Algorithmic Details and Hyperparameters 69
C.2.1 Convolutional Neural Network Architecture 70
C.2.2 Convolutional Neural Network LSTM Architecture 71
C.2.3 Exponential Trace Implementation Details 71
C.2.4 Recurrent Neural Network Implementation Details 72

ix

List of Figures

3.1 The Lobster environment. 23
3.2 The Lobster Environment MDP . 23
3.3 Results for Exponential Decaying Traces in Agent States for the Lob-

ster Environment . 26
3.4 Results for Approximate Belief Distribution as Agent State in the Lob-

ster Environment . 32
3.5 Results for Likelihood as Agent State in the Lobster Environment . . 36
3.6 Combined Results in Lobster Environment 37

4.1 Modified Compass World and RockSample(7, 8) 39
4.2 Results for Particle Filter Auxiliary Inputs in Modified Compass World

and RockSample(7, 8) . 40

5.1 Fishing Environments and Results . 45

B.1 Half Efficiency Distance Function Plots 60
B.2 RockSample results for both δhed = 5, 20 60
B.3 Action Conditioning Ablation for LSTM 65

x

Chapter 1

Introduction

In reinforcement learning, an agent interacts with its environment in order to max-

imize a special numerical signal called the reward. The agent must make decisions

based only on the information it observes from the environment, such as a first person

camera view. This approach is quite general and has led to several high-profile suc-

cess stories, such as agents capable of achieving impressive performance controlling

fusion reactors [5], when playing curling [44], and when navigating balloons in the

stratosphere [1]. An important feature of these problems is that the environment the

agent is in—the real world—is much bigger than the agent itself. In this setting, the

current observation from the data stream the agent experiences does not contain all

relevant the information for the agent to act on, making the environment partially

observable.

Partially observable problems pose a particular challenge in reinforcement learning

because of the need for history summarization. All the information the agent could

know about the state of its environment lies in the past interactions, or history, of the

agent. This history grows as the agent continues to interact with the environment; as

time progresses, this history becomes computationally unwieldy to process due to its

growing size. To ameliorate this issue, the agent needs to select, at every time step,

what information to retain that is useful to its task. Deciding on what to retain at

every time step is at the crux of the history summarization problem, and is currently

1

an open area of research in reinforcement learning [37].

One general and scalable approach to history summarization is for the agent to

construct an internal state of its previous interactions with the world. We refer to

this internal state as the agent state. This has been key to the recent successes of

reinforcement learning algorithms. The most famous example of this is most likely

from the Deep Q-Network [21] algorithm, which achieved human-level performance in

Atari 2600 games by explicitly expanding the input space by stacking 4 frames; which

can be seen as a heuristic for capturing temporal information such as velocity and

momentum of the video game sprites as an agent-state function. One way to learn

agent-state functions is to leverage recurrent neural network architectures [9, 41, 5]

to summarize an agent’s history. These recurrent functions summarize history by us-

ing recurrent latent states (also called hidden states), and learn the function used to

summarize history. Another approach that has been used in real-life use cases of re-

inforcement learning is to model predictive information about the agent’s uncertainty

over its effectiveness [44] or observations [1] to allow the agent to reason about what

information the agent does not know to help resolve partial observability. Explicitly

learning and leveraging predictions [28] is another approach that has been considered

for history summarization. All these different examples for constructing agent-state

functions have the same purpose: embedding necessary information from observations

by expanding the feature space for a richer class of features with auxiliary inputs to

ameliorate the issues of partial observability for better decision making.

Feature expansion has been considered in many different contexts, and has been

widely used and investigated for neural networks over the years. Early adoptions of

neural networks used random projections in the first layer of the neural network as

“associator features” to map inputs to random binary features and expand the in-

put space [4]. Expanding the input space to specifically tackle time-series data has

been considered in the prediction context, where a convolution over the history of

inputs [22] has been proposed as a formalism to memory for neural networks. In rein-

2

forcement learning, feature space construction and expansion was widely used before

the advent of deep reinforcement learning. Techniques range from tile coding [37]

to radial and fourier basis functions [37, 15]. More recently, function approximation

with deep neural networks has allowed for more automated feature discovery with

higher dimensional raw sensory inputs, such as pixels and depth maps, with minimal

preprocessing.

In this work we investigate the idea of resolving partial observability through aug-

menting the inputs to a function approximator via joining feature expansion tech-

niques with deep neural networks for reinforcement learning. We look to combine the

simplicity and performance of simple feature expansion techniques with the natural

adaptivity and flexibility of neural network function approximation.

1.1 Thesis Objectives and Contributions

In this thesis, we have three objectives: (1) to survey the feature engineering tech-

niques used for resolving partial observability in successful real-world reinforcement

learning applications, (2) to unify these approaches under a single formalization which

we call auxiliary inputs, and (3) to demonstrate empirically, through a few illustrative

examples, the efficacy of these approaches. In the context of agent-state construc-

tion for reinforcement learning in partially observable environments, auxiliary inputs

are defined as additional inputs, beyond environment observations, that incorporate

or model information regarding the past, present and/or future of a reinforcement

learning agent.

Interesting to note is the fact that auxiliary inputs have been ubiquitous across

recent, real-world applications of reinforcement learning. In robotics, uncertainty

(or entropy) of the agent’s location in the world [29] has been used as an auxiliary

input feature to learn more accurate value functions. Recent work in stratospheric

superpressure balloon navigation with deep reinforcement learning [1] has explored

using not only the average magnitude and direction of the predicted wind columns

3

over time as input features, but also the variance of this wind column as an auxiliary

input to the deep reinforcement learning agent for successfully navigating balloons

in the stratosphere. In robotic curling, distance errors from previous throws and

a trace of previous trajectories have been used as auxiliary inputs as features that

help mitigate the partial observability induced by environment conditions such as

changing ice sheets over time [44]. In biomedical applications, both a time-decayed

trace of joint activity [24] and future predictions of prosthesis signals [23] were used as

additional input features for controlling or aiding in the control of robotic prostheses.

In this thesis, we explore the idea that many approaches to partially observable

problems can be viewed as a form of auxiliary input. The repeated success of agent-

state construction with auxiliary inputs in complex domains motivates the guiding

questions that we seek to answer throughout this thesis: (1) What shape can aux-

iliary inputs take that is general, effective, and easy to use to help in reinforcement

learning? (2) Why do auxiliary inputs help? (3) How might auxiliary inputs affect

and/or integrate with gradient-based agent-state construction methods? With these

questions to guide us, we present the following contributions in this thesis:

1. We formalize a general representation scheme for partially observable

problems called auxiliary inputs.

We formalize auxiliary inputs as additional inputs to the agent-state function

that incorporates/models information from the the past, present and/or future.

2. We show examples of auxiliary inputs which add relevant information

to input features that result in better learning.

We introduce and empirically test a few simple, fast, and general instantiations of

auxiliary inputs (a decaying trace of observations, particle filters, and likelihoods

as predictions). We show that these auxiliary inputs augment agent state by

incorporating information relevant to the task at hand, and results in better

learning in several problems by expanding the agent’s state space to represent

4

more fine-grained control policies.

3. We demonstrate that auxiliary inputs can improve recurrent neural

network training.

Finally, we show that particular auxiliary inputs (specifically exponential de-

caying traces) can integrate well with recurrent neural networks trained with

truncated backpropagation through time (T-BPTT), potentially allowing for a

significant performance increase as compared to using only one or the other. We

show this through experiments in two scaled-up visual domains.

To summarize, auxiliary inputs can be simple, performant, and should be the first

approach most reinforcement learning practitioners take to tackling partial observ-

ability. In many cases, simple auxiliary inputs may be good enough if not better than

more complex approaches such as recurrent function approximation, and can also

be easily combined with these approaches for better performance in reinforcement

learning.

5

Chapter 2

Background

In this chapter, we cover central concepts necessary for understanding this work.

We also introduce the relevant terms, abbreviations, and notation in this section.

We begin with introducing the formalism under which we study sequential decision

making—Markov decision processes—in Section 2.1. Next, we define value functions

in Section 2.2 as the function a decision-making agent is trying to optimize to achieve

a task. To solve for these value functions, in Section 2.3 we consider the Bellman equa-

tions and the value iteration algorithm. Section 2.4 establishes temporal-difference

methods for value function learning with experience, and introduces a control al-

gorithm leveraging these methods—the Sarsa algorithm. To further extend these

algorithms to larger state spaces, Section 2.5 introduces value function approxima-

tion to allow for generalization across states. The form of function approximation for

value functions that we focus on in this thesis is deep neural networks, an approach

which we describe in Section 2.6. In Section 2.7, we extend the Markov decision

process formalism to the more general case of the partially observable setting. For

decision making in this setting, we introduce agent-state functions in Section 2.8 to

summarize the history of an agent. Finally, we describe recurrent neural networks

and their use as agent-state functions in Section 2.9.

6

2.1 Sequential Decision Making and Markov Deci-
sion Processes

In this work, we consider the problem of decision making over time to achieve a

goal. More specifically, we focus on the setting where decisions in previous time steps

may affect future states of an environment that an agent interacts with. We use the

reinforcement learning [37] problem setting and solution methods as the framework

to formalize an agent learning from interactions with its environment to maximize a

numerical signal called a reward, which characterizes a goal.

We model the agent’s interaction with this environment as a Markov decision pro-

cess (MDP). An MDP can be characterized by a tuple (S,A,R, p, γ, S0, ST), where:

S is the state space of the environment; A is the set of permissible actions; R is the

set of rewards, which we specify as a subset of the real numbers in this work R ⊆ R.

On each time step t, the agent takes an action at ∈ A in the environment. Partially

in response to the agent’s taken action, the environment transitions into a new state

st+1 ∈ S and receives a reward rt+1 ∈ R, both according to the dynamics function

p : R×S ×A×S → [0, 1]. Periodically the environment enters a potentially random

terminal state ST = ⊥ resetting the environment to a potentially random start state

S0. Note that random variables are denoted with capital letters in this work, so sam-

pled states, actions and rewards are denoted as S ∈ S, A ∈ A, R ∈ R. The agent’s

interaction is thus broken into a sequence of episodes.

States in this formalism have the Markov property, which specifies that the state

includes all information pertaining to past agent-environment interactions that may

affect future states. More formally, the Markov property states that transition prob-

abilities are conditionally independent of all previous states and actions, given the

current state and action.

The agent chooses actions to interact with the environment according to a policy

π : S ×A → [0, 1], which maps a state to a probability distribution over actions. The

7

objective of a reinforcement learning agent is to maximize the future rewards of this

episodic interaction with the environment by learning an optimal policy π∗.

2.2 Value Functions

The agent’s primary goal is to learn a way of behaving that maximizes future reward.

We specify these future rewards as the value of a state s following a policy π, denoted

as vπ(s). This value of a state following a policy is the expected discounted sum of

rewards following the policy π starting at the state s:

vπ(s)
.
= Eπ

[︄
T−t−1∑︂
k=0

γkRt+k+1

⃓⃓⃓⃓
⃓St = s

]︄
(2.1)

= Eπ [Gt|St = s] , (2.2)

the return from time step t is the discounted sum of rewards Gt
.
= Rt+1+γRt+2+ ...+

γT−1RT , where γ ∈ [0, 1) is the discount and T is the (stochastic) time of termination.

Gt is also called the return. The expectation Eπ is subscripted with the policy π to

indicate that the expectation is with respect to the policy π (as well as the transition

dynamics p, which we omit for clarity). We can also define the action-value function

q, which is the expected discounted sum of rewards if the agent starts at state s and

takes action a, and follows the policy π thereafter:

qπ(s, a) = Eπ [Gt|St = s, At = a] . (2.3)

Value functions define a partial ordering over policies. There are potentially many,

but at least one, policy that is better than or equal to all other policies in their value

functions, which we call an optimal policy:

π∗
.
= argmax

π
vπ(s) (2.4)

for all s ∈ S. The value function of all optimal policies are called optimal value

8

functions, and optimal action-value functions if we also condition on taking an action:

∀s ∈ S, v∗(s)
.
= max

π
vπ(s) (2.5)

∀s, a ∈ (S,A), q∗(s, a)
.
= max

π
qπ(s, a) (2.6)

All policies which share the optimal value function (or action-value functions) are

optimal policies. Hence the goal of an agent is to find an optimal policy π∗ that

maximizes the return in expectation across start states Eπ[G0 | S0]. In the next

section we introduce methods to learn optimal policies.

2.3 Bellman Equations and Value Iteration for Con-
trol

Now that we have defined the functions we are interested in for sequential decision

making, we consider how to calculate these value functions. To do so, we introduce

the Bellman equations, which are equations that define the value of a state (or state-

action pair for action-values) in terms of the value of successor states:

vπ(s) =
∑︂
a

π(a | s)
∑︂
s′,r

p(s′, r | s, a) [r + γvπ(s
′)] . (2.7)

If the function p is completely known (e.g. as an |S| × |S| matrix for state transition

probabilities), the equation becomes a set of |S| linear equations with |S| unknowns

for the value function—a system of equations we can solve iteratively for what we call

a policy evaluation algorithm. This class of algorithms which use full knowledge of

the dynamics function are called dynamic programming (DP) methods. To do this,

consider a sequence of approximate value functions v0, v1, The algorithm begins

with initial values v0 (e.g. initialized with 0) for all states, and at every step performs

the updates:

vk+1(s)←
∑︂
a

π(a | s)
∑︂
s′,r

p(s′, r | s, a) [r + γvk(s
′)] (2.8)

9

until convergence, where vk = vk+1, in which case vk = vπ. Similarly for action-values,

we have the Bellman equation:

qπ(s, a) =
∑︂
s′,r

p(s′, r | s, a)

[︄
r + γ

∑︂
a′

π(a′ | s′)qπ(s′, a′)

]︄
(2.9)

and corresponding update equation

qk+1(s, a)←
∑︂
s′,r

p(s′, r | s, a)

[︄
r + γ

∑︂
a′

π(a′ | s′)qk(s′, a′)

]︄
. (2.10)

where updates are made over all state-action pairs for the action-value version of

the policy evaluation algorithm. These update equations suggest a technique that is

prevalent throughout reinforcement learning methods: using bootstrapped estimates

as update targets. Bootstrapping in this context refers to the updating of one estimate

with another estimate. For example, for value estimation in Equation 2.8, we update

our state value estimates with the rewards and discounted next state value estimates.

For the optimal value and action-value functions, we have the following Bellman

optimality equations:

v∗(s) = max
a

∑︂
s′,r

p(s′, r | s, a) [r + γv∗(s
′)] (2.11)

q∗(s, a) =
∑︂
s′,r

p(s′, r | s, a)
[︂
r + γmax

a′
q∗(s

′, a′)
]︂
. (2.12)

Equation 2.11 results in the following update rule for the value iteration algorithm,

for estimating the optimal value function (and hence optimal policy for control):

vk+1(s)← max
a

∑︂
s′,r

p(s′, r | s, a) [r + γvk(s
′)] (2.13)

where you perform updates until |vk+1 − vk| < ∆, for some small ∆. The value

iteration algorithm is a combination of two phases characteristic of control algorithms

based on value functions: policy evaluation and policy improvement. Policy evaluation

takes a step towards a more accurate value function, whereas policy improvement

greedifies the policy (in this case, with the max operator in Equation 2.11) to improve

the policy towards the optimal policy.

10

These approaches all require a model of the environment to calculate these value

functions and updates. We now consider how to learn an optimal policy with a stream

of experience instead—without knowledge of the dynamics function.

2.4 Temporal-Difference Learning and Control with
Sarsa

We leverage a technique central to reinforcement learning solution methods called

temporal-difference (TD) learning [36] to learn from a stream of experience for control.

TD methods directly learn from sampled raw experience, as opposed to DP methods

which require full knowledge of the dynamics function.

We consider a TD method for learning action values for control—the Sarsa [31]

algorithm. In this algorithm, an agent follows its policy π to gather experience, with

π defined by the incrementally estimated action-value function at timestep t, qt. In

this work, our policy π is defined by two cases: either we choose a greedy action with

respect to qt, or we choose a random action with probability 0 ≤ ϵ ≤ 1 to ensure

sufficient exploration of the state space. This form of policy is called an ϵ-greedy

policy. After sampling and taking an action At ∼ π(· | St), we receive the next reward

and next state Rt+1, St+1 ∼ p(·, · | St, At) and pick the next action At+1 ∼ π(· | St+1).

This gives us a tuple of sampled experience for time step t, (St, At, Rt+1, St+1, At+1),

which we use for our sample update. Learning an action-value function with TD

learning is a sample update version of Equation 2.10—the Sarsa algorithm performs

the following update on the action-value function at the current time step, which we

denote as qt+1 here:

qt+1(St, At)← qt(St, At) + α(Rt+1 + γqt(St+1, At+1)− qt(St, At)). (2.14)

Since data sampled by the policy π is being used to improve π itself, we call this update

an on-policy method. The alternative is an off-policy method, which improves a policy

from data generated by a different policy to itself. The Sarsa algorithm collects a tuple

11

of experience every step based on an ϵ-greedy policy defined above, and performs this

online update. The policy improvement step is done through picking actions from

our ϵ-greedy policy, which results in an ϵ-soft optimal policy.

2.5 Value Function Approximation

As state spaces become large, maintaining a value for every possible state in S

becomes computationally intractable—methods that generalize between states are

needed. All the methods defined in the previous section are tabular solution meth-

ods, where a value is associated with each individual state. To generalize across states,

a value function needs to be able to assign similar values to states that are similar.

To do so, we extend the above reinforcement learning methods to the function ap-

proximation setting, where we learn approximate solutions to our value functions and

policies.

To approximate a value function, we can use a vector of weights θ ∈ Rd to pa-

rameterize a differentiable function of these weights. Note that vectors are denoted

with bolded symbols in this manuscript. This function approximates the action-value

function of some policy π: q̂π(s, a,θ) ≈ qπ(s, a). To approximate these action-value

functions for control, one can use the sampled (with the same ϵ-greedy policy as

described in Section 2.4) tuples (St, At, Rt+1, St+1, At+1) for the semi-gradient Sarsa

update at timestep t+ 1:

θt+1 ← θt + α [Rt+1 + γq̂π(St+1, At+1,θt)− q̂π(St, At,θt)]∇θt q̂π(St, At,θt) (2.15)

where α > 0 is the step size, and ∇θt is the gradient of the function q̂ with respect

to parameters θt.

A simple instantiation for the function q̂ is to use a linear function. In this case, we

assume our state-action pairs can be represented by a feature vector, which is repre-

sented by the function x : S ×A → Rd, with xt
.
= x(St, At). A linear value function

is thus defined as q̂(s, a,θ) .
= θ⊺x(s, a). The gradient of the linear function q̂, ∇θq̂, is

12

simply the feature vector x(s, a). While this method is simple and well understood,

the space of representable functions are limited to only linear functions of the feature

vector. In the following section, we consider a class of function approximation that can

potentially be much more expressive—non-linear function approximation—as well as

techniques used for reinforcement learning with deep neural networks.

2.6 Deep Reinforcement Learning

Deep neural networks are a highly expressive class of function approximation that

have shown impressive results as a value function approximator and for reinforce-

ment learning as a whole. Its success in a large, pixel-based domain was first demon-

strated in the Deep Q-Network algorithm [21], which trains a deep neural network for

value function approximation with a similar semi-gradient TD method as to Equa-

tion 2.15, with gradients of the action-value approximator calculated through the

back-propagation algorithm [30]. The algorithm also utilizes a few design choices to

ensure stability throughout the training process. Two algorithmic choices considered

in the work is the use of an experience replay buffer and a momentum-based optimizer.

Experience replay buffers [17] store previous transitions experienced by the agent

to allow for more stable batch updates. Contrasting the online updates as described in

Section 2.4, experience replay randomly samples batches of transitions from a buffer

for an update that is somewhere in the spectrum of online and offline updates. Updat-

ing with a batch of randomly sampled transitions allows for updates that more closely

resemble the canonic supervised learning setting—an expected update over a batch of

data which are temporally decorrelated. Additionally, an expected update decreases

the variance of the gradients, allowing for smoother gradients when updating param-

eters. Finally, experience replay also allows for better temporal credit assignment in

environments with sparse rewards, as good transitions (e.g. transitions with larger

TD-error) are repeatedly reused for updates, as compared to online updates, where

these transitions are used once then “thrown away”.

13

Momentum-based optimizers have been widely used in deep reinforcement learning,

and have been shown to improve performance in a wide range of settings. The Adam

optimizer [13] is one momentum based optimizer that has seen wide adoption in deep

reinforcement learning. Empirical results on a range deep reinforcement learning

settings [8] have shown the benefits of the Adam optimizer, including better overall

performance, a faster rate of learning, and less hyperparameter sensitivity.

2.7 Partial Observability

In most real-world decision-making scenarios, the environment the agent acts in is

much larger than the agent itself. In these settings, it is the norm that the underlying

state of the environment is unavailable to the agent. Instead, the agent receives obser-

vations to reason about. Extending the formalism introduced in Section 2.1, the agent

instead interfaces with a partially observable Markov decision process (POMDP) [11],

defined by the extended tuple (S,A,R, p, γ, S0, ST , o,O), where O is the space of ob-

servations and o : S → O is the observation function. In a more specified form,

our observation space can be a vector space O ⊆ Rn, with the observation function

producing a vector o(St)
.
= ot. Note that in general, |O| << |S|. In this setting,

the agent does not observe the state, only the current observation vector ot. Unlike

environment states in MDPs, these observations no longer have the Markov property,

which implies that to perform optimally under partial observability, the agent has to

utilize its history of interactions in order to be performant.

In the POMDP setting, the policy is defined over the history of interactions, as the

agent cannot observe the underlying state. Let ht
.
= {o0, a0,o1, ...,ot} ∈ T where T

denotes the space of all possible trajectories of observations and actions of all possible

lengths. The new goal is to find a policy conditioned on history, π : T × A → [0, 1],

that maximizes the return in expectation across start states Eπ[G0 | S0].

14

2.8 Agent-State Functions

In many problems, learning policies over full histories is not tractable and the agent

must make use of agent-state functions to summarize its history. The agent-state

function maps a given ht to an agent state vector xt ∈ X .

The agent-state is an attempt to generate a Markovian state of the environment,

and it can be seen as a form of compression of the history of the environment [19]. The

history of an agent represents all the possible information the agent could possibly

know about the current state of the environment, with some potential amount of

irreducible uncertainty with respect to the Markovian state of the environment. For

each time step in an episode, while it might be possible to maintain a complete history

of the episode and use this as input to our agent-state function, this approach is not

practical since this history would grow linearly with time steps taken.

In the past, the traditional way to summarize history was through constructing a

belief state [33]—a distribution over potential states given the current history. While

this method has shown successes in the past and recent history [16], the underlying

assumptions that define the approach lack scalability. Firstly, it requires some model

of the world to update belief states from one time step to another. This model includes

both (potentially approximations of) the transition dynamics and the probability of

emitting an observation given a state. Secondly, most approaches require knowledge

of the state space S in order to form a belief state over it.

The agent state can be more scalable than reasoning about the belief state, at the

cost of approximating the Markov property. In most recent approaches to agent-state

construction, including recurrent neural networks and general value function networks

[32], the agent-state function has a recursive form:

xt+1
.
= uϕ(xt, at,ot+1) ∈ Rk, (2.16)

where ϕ ∈ Rb are the parameters of the parametric agent-state function uϕ. At every

time step, the agent takes an action, receives an observation, and incorporates this

15

observation into the current agent state, reducing the memory and time requirements

for maintaining this history to a constant factor per time step. An agent-state function

begins with some initial agent state x0, defined depending on the agent-state function.

We can easily extend Sarsa to approximate the value function from agent state,

by simply extending the definition of the feature vector function x from Section 2.5

to be the agent-state function in Equation 2.16. The action-value approximation

then becomes: q̂(xt, at,θt)
.
= θTxt ≈ qπ(st, at). Thus, one can view the estimated

value as a linear function of the agent-state, which itself is a recursive, potentially

non-linear, function of xt, at, and ot+1. To learn a control policy with an agent state,

semi-gradient Sarsa simply adapts both θ and ϕ from the agent’s interaction with the

environment in order to improve reward maximization of the agent’s policy, as before.

The aim of this work is to investigate how including auxiliary inputs in agent-state

construction (as input to u) can improve value-based reinforcement learning agents.

In the next section, we consider one popular approach to learning this parametric

agent-state function—recurrent neural networks.

2.9 Recurrent Neural Networks as Agent-State Func-
tions

One popular instantiation of the agent-state function are recurrent neural networks

[30] (RNNs). RNNs are parameterized recursive functions (which we denote as u in

this section) that maintain an internal hidden state, x ∈ X ⊆ Rk, which is updated

at every time step with some input; in reinforcement learning, these inputs are the

observation and action. This hidden state update is the main mechanism in which

RNNs process variable length sequences. At time step t + 1 with parameters ϕ, we

have the following hidden state update:

xt+1
.
= uϕ(xt, at,ot+1). (2.17)

16

In typical RNNs, u is non-linear and differentiable with respect to its parameters ϕ.

For example, in a standard one-layer RNN [7], u is defined by a linear combination

of the weight matrices ϕ with xt and its inputs ot+1 and at, followed by a sigmoid

activation to produce the next hidden state. Long short-term memory networks

(LSTMs) [10] are another RNN architecture which leverage gating mechanisms and

an additional cell state, which, put together, are meant to help with longer-term

dependencies across sequences.

Comparing the update rule for RNNs in Equation 2.17 to the agent-state update in

Equation 2.16, we see that RNNs are simply a learnable agent-state function. We now

consider how to train and update the RNN parameters ϕ for this agent-state function.

To approximate value functions over agent state, we can define a vector of weights θ

as in Section 2.8, and estimate action-values q̂(xt, at,θt)
.
= θTxt ≈ qπ(st, at), where

xt is the RNN hidden state/learnt agent state. At every update step, we update

both ϕ and θ with one of the semi-gradient TD update rules defined previously in

this chapter. To calculate gradients for the TD update, RNNs require us to calculate

gradients over time with the backpropagation through time (BPTT) or the truncated

backpropagation through time (T-BPTT) [42] algorithms. Since RNNs are recursive

functions of the same parameters, the BPTT algorithm calculates gradients for the

entire trajectory by “unrolling” the gradient computation backwards for each step

that the function is applied.

One limitation to BPTT is that the computational cost of calculating these gra-

dients scales linearly with the number of time steps in the trajectory. To alleviate

this issue, T-BPTT truncates this backwards gradient calculation to a fixed number

of steps; while this alleviates the computational costs of BPTT, it does so with a

few trade-offs. The biggest trade-off being the fixed depth in which credit can be

assigned, since gradients are only calculated and applied a fixed length back in time.

Another trade-off with truncation is that it is an additional hyperparameter that has

to be tuned depending on the nature of the problem setting.

17

Chapter 3

Auxiliary Inputs

In our work, we investigate the use of auxiliary inputs as an additional input into

the agent-state function. In this chapter, we first formalize and define these auxiliary

inputs as a convolution over the past and future trajectory of the agent. Next,

we introduce the Lobster environment—a simple partially observable environment

we use as a motivating example for auxiliary inputs. The environment represents a

continuing foraging task, with both stochastically regenerating rewards and stochastic

transitions. Afterwards, we introduce the three instantiations of auxiliary inputs that

we consider in this work: exponential decaying traces of observations as a simple

form of memory, approximate belief state with particle filtering, and likelihoods as a

prediction of potential future observations.

Finally, we evaluate these three approaches as auxiliary inputs to our agent-state

function on the Lobster environment. We first show that these three methods are

all able to outperform an agent only using current observations at each step; we also

show that each approach exhibits a similar average rate of return in this environment.

Next, we visualize the learnt policy of the agent to show how these auxiliary inputs

are helping with decision making in this partially observable environment—we show

that these auxiliary inputs allow an agent to smoothly interpolate between the values

of the ground-truth states, and allows the agent to discriminate between states that

would otherwise be aliased.

18

3.1 Formalism and Examples

To formalize these auxiliary inputs, we adapt and generalize the formalism of defining

memory for neural network inputs as a convolution over the history of inputs [22].

As opposed to only summarizing the past history of experiences, we define auxiliary

inputs to incorporate information from/model the past, present and/or future. To

do this, auxiliary inputs must summarize trajectories for decision making, rather

than only the agent’s history. We denote the trajectory of an agent at time t as

Tt
.
= {o0, a0,o1, ...,ot, at . . . ,OT} ∈ T , where T denotes the terminal time step of the

trajectory. At the time step t, an agent will have only a partially realized trajectory,

{o0, a0, ...,ot, at,Ot+1, At+1 . . . ,OT}, where observations and actions including and

before t are actualized variables (denoted with lower case letters), whereas all future

actions and observations from t+ 1 to T are still random variables.

Let m : T → Rm denote an auxiliary input as a function of the trajectory of

the agent, which maps the trajectory Tt to a vector. In the more general form,

we can have multiple functions mi, i ∈ {1, . . . , N} which correspond to each of our

auxiliary inputs over our history. For the ith auxiliary input at time t, we denote

this as mi(Tt)
.
= mi

t. The set of N auxiliary inputs at time t is then written as the

tuple Mt
.
= (m1

t , . . . ,m
N
t). With these additional auxiliary inputs, we re-define our

agent-state function to include these auxiliary inputs:

xt+1
.
= uϕ(xt, at,ot+1,Mt+1) ∈ Rk. (3.1)

We further specify the function m to allow us to formalize the different ap-

proaches to auxiliary inputs in our work. Without loss of generality, we modify

our definition of trajectory to be a sequence of (O, A) ∈ O × A observation-action

tuples (we can simply append the empty set AT
.
= ∅ to the final observation):

Tt
.
= {(o0, a0), (o1, a1), ..., (ot, at), ..., (OT , AT)} ∈ T . With this, our ith auxiliary

input at time t, mi
t can be seen as the function a of a convolution over the trajectory

19

of processed observation-action pairs:

mi
t
.
= f

(︄
T∑︂

τ=0

ki(τ)gi(Oτ , Aτ)

)︄
(3.2)

where ki is the ith kernel function k : N → R of the convolution, and g is the

preprocessing function applied to the observation-action pair before convolving with

the rest of the trajectory. One function f that particularly focus on in this work is

the expectation function E over a given probability distribution:

mi
t
.
= E

[︄
T∑︂

τ=0

ki(τ)gi(Oτ , Aτ)

]︄
(3.3)

=
t∑︂

τ=0

ki(τ)gi(oτ , aτ) + E

[︄
T∑︂

τ=t+1

ki(τ)gi(Oτ , Aτ)

]︄
. (3.4)

We explicitly consider expectations here due to the unobserved random variables (fu-

ture observations, actions, and terminal time step) past the current time step. This

expectation will be with respect to the sampling distribution of these trajectories.

Note that taking an expectation over the actualized variables of past observations

simply returns the actualized variables themselves. Equation (3.4) makes this dis-

tinction between the actualized, observed time steps, and the random variables of

the trajectory clear: from 0 to t our auxiliary input function maps over observed,

actualized variables, and from t+ 1 to T we take the expectation with respect to the

sampling distribution over this convolution over all potential future observations and

actions.

Many auxiliary inputs can be defined by the function m. To clarify how this

formulation might be used, we show how the frame stacking [21] technique, widely

used in the Arcade Learning Environment [2, 20], fits into this formalism.

3.1.1 Frame Stacking

As an auxiliary input, the number of previous frames to stack corresponds to the

number of auxiliary inputs (N = 3, as the current frame is accounted for). Our

20

preprocessing function g for frame stacking is simply the function that just returns

the observation: g(ot, at)
.
= ot. The kernel function for i ∈ {1, . . . , 3} is defined as

ki(τ)
.
= 1[τ=t−i]

where 1[cond] is the indicator function, which is 1 if cond is true, 0 otherwise. With

these definitions in place, Equation 3.3 defines 3 auxiliary inputs at time t, Mt
.
=

(m1
t , . . . ,m

3
t). Furthermore, based on the convolution of this time-indicator function,

each of these inputs correspond to the observation ot−i—or the previous 3 observations

seen by the agent. Mt defines the stack of the last 3 observations, which (in addition

to the current observation) is frame stacking.

3.1.2 Resolution and Depth

Viewing frame stacking as a form of auxiliary inputs elucidates an interesting prop-

erty of our formalization: auxiliary inputs defined by Equation 3.3 represent differing

depths and resolutions of the information you retain with regards to your trajectory.

We define depth to be at what temporal length these auxiliary inputs retain infor-

mation with regards to the agent’s trajectory, and resolution to be the extent that

information regarding individual observation-action pairs are preserved by the auxil-

iary inputs. Frame stacking is a form of auxiliary inputs that is low in depth (as we

only see 3 time steps before the current time step), but high in resolution (since we

retain all the relevant information of these 3 observations).

3.1.3 Incremental Functions

One important factor to note is the space and time complexity of calculating these

auxiliary inputs. While we define these auxiliary inputs to be a function of history,

we focus on algorithms that are incremental update functions for producing auxiliary

inputs: Mt
.
= h(Mt−1,ot, at).

With auxiliary inputs formalized, we now consider a simple partially observable

21

environment to help explain why these auxiliary inputs might help with reinforcement

learning.

3.2 The Lobster Environment

We introduce a small motivating example, the Lobster environment, which we use to

provide an intuition on how auxiliary inputs lead to a more expressive agent state.

In this chapter, we aim to show that these auxiliary inputs for agent state allows the

agent to discriminate between observations that would otherwise be aliased, and al-

lows for the smooth interpolation in the value function between different states in the

environment, implicitly modelling their underlying state. With this environment, we

aim to show that these different forms of auxiliary inputs all help resolve partial ob-

servability for better decision making. We begin by detailing the partially observable

environment we test our approaches on.

3.2.1 Environment Details

In the Lobster environment, shown in Figure 3.1, a fishing boat has to travel between

3 locations—represented as nodes in the graph—to collect lobsters from lobster pots.

Only locations L1 and L2 have lobster pots, which refill randomly over time after

being collected. The environment starts with both pots filled. The boat/agent can

only see whether or not a pot is filled if the agent is in the corresponding location.

Notice that, because of the partial observability regarding the visibility of the lobster

pots, the Lobster environment is not a 3-state Markov decision process, and the nodes

in Figure 3.1 do not directly represent states in the environment. The full MDP with

corresponding states is pictured in Figure 3.2. An agent in this environment has 3

actions: A .
= {left, right, collect}.

As this environment is partially observable, we now detail the observation vector

ot ∈ {0, 1}9 the agent receives at every time step. We list out 9 ordered true or

false questions which correspond to the elements (either 0 or 1 respectively) in the

22

RightL1 Left L2

 r(L1) visible r(L2) visible

RightLeft L0

RightLeft

Collect

Collect Collect

Figure 3.1: The Lobster environment.

Right

2
Left

Collect
3

RightLeft 1

RightLeft

Collect

Right

Collect

8

Right, Collect

Left 9

7

Right

Collect

Collect

Left, Collect

Right5

Left

Right, Collect

6

4

Left

Left

Collect

Collect

11 12

Left, Right, Collect

10

RightLeft
Collect

Collect

Right

Collect

Left,
Right,
Collect

RightLeft

RightLeft Left Right

Left, Collect

Right Left

Figure 3.2: The Lobster Environment MDP
“Slippery” transitions at certain states are not pictured. Green nodes represent states where
performing the collect action will yield a reward. Particular to only this figure, solid lines
are deterministic transitions, whereas dotted lines are stochastic transitions.

23

observation vector:

ot
.
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0. Is the agent in location 0?

1. Is the agent in location 1?

2. Is the agent in location 2?

3. Is the reward in location 1 observable and missing?

4. Is the reward in location 1 observable and present?

5. Is the reward in location 1 unobservable?

6. Is the reward in location 2 observable and missing?

7. Is the reward in location 2 observable and present?

8. Is the reward in location 2 unobservable?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

We now detail the sources of stochasticity in the Lobster environment. Actions

that try to transition between locations in the Lobster environment succeed with

probability pslip = 0.6; if the transition fails, the agent “slips” and stays in the same

location. At every time step, if a reward is not present, it regenerates according to its

own Poisson processes, with an expected number of steps for regeneration of Λ .
= 10

for each reward. Further details of this environment are elucidated in Appendix A.

With this formalism and environment in place, we describe three auxiliary input

techniques with the formalism introduced in Section 3.1 that incorporate or model

information from the past, present and/or the future. We consider these three tech-

niques throughout our work. To demonstrate that these auxiliary inputs help with the

task in the Lobster environment, we compare the performance of each form of auxil-

iary input to two agents: one using only the observations described in Equation 3.5,

another using the fully observable environment state. We use these two agents as

baselines as a gauge to see how much our auxiliary inputs are able to help resolve

partial observability. Both of these baselines are fully specified in Appendix A.2

All experimental results show (Figs. 3.3a, 3.4a and 3.5a) the mean (solid line)

and standard error to the mean (shaded region) over 30 seeds, with hyperparameters

swept and chosen. We defer a detailed description of the hyperparameters swept and

24

experimental setup to Appendix A.

3.3 Exponential Decaying Traces

To incorporate information from the past of the agent, we consider exponential de-

caying traces of history as auxiliary inputs to agent-state. Decaying traces simply

keep an exponentially decaying weighted sum of our observations and actions:

mi
t

.
=

t∑︂
τ=0

λt−τgi(oτ , aτ) (3.6)

with λ < 1. The kernel function ki(τ) in this case is a simple exponential function

over past time steps:

ki(τ)
.
=

{︄
λt−τ if τ ≤ t,

0 otherwise.
(3.7)

Our decaying trace auxiliary inputs are simply convolutions over time with this kernel

function. Written in an incremental form, we have mi
t
.
= λmi

t−1 + gi(oτ , aτ).

This form of auxiliary input acts as a model of the past by acting as an exponential

timer for events in the observation. When used as an auxiliary input to the agent-state

function, an exponential decaying trace of observations allows the agent to take into

consideration the time in which events occur in the observation vector o or action a.

This particular form of history summarization is high in depth, but low in resolution,

since gi(oτ , aτ) is aggregated together across time steps.

3.3.1 Decaying Traces on the Lobster Environment

To use decaying traces as an auxiliary input for the Lobster environment, we take

decaying traces of the elements in the observation vector that indicates whether or

not each reward is collected. With the indexing and observations from Equation 3.5,

our decaying trace for the lobster environment is defined as:

mi
t+1

.
=

{︄
λmi

t−1 if reward i is unobservable
ot[3i] otherwise

(3.8)

25

0.0 1.0 2.0 2.5
Environment steps 1e5

5

10

15

20

Re
tu

rn
s o

ve
r 2

00
 st

ep
s

(a
vg

. 3
0

ru
ns

)
ObservationsTrace

Oracle

(a) (b) (c)

Figure 3.3: Results for Exponential Decaying Traces in Agent States for the
Lobster Environment
(a): Online returns in the Lobster environment for our trace agent, in comparison to the
policy given ground-truth state (dotted line). See text for details. (b): Normalized action-
values for an agent with decaying trace auxiliary inputs in location 0 for the left action.
The axis denote the probability of rewards being present in locations L1 and L2. The
combination of which represents a possible input for the exponential decaying trace agent
state. The values for the ground-truth state (crosses) and for using only the observation
(diamond) are overlaid for comparison. (c): Action-values for both left (yellow) and right
(blue) actions. Note: Since our exponential decaying traces represents time since the reward
was observed as missing, we plot 1 −mi since 1 −mi ∝ P (r(Li) = 1). Note that in this
plot, the observation-only action values for both the left and right actions overlap, where
only the right action value is visible.

.

for each auxiliary input i ∈ {1, 2} that corresponds to rewards in locations 1 and 2,

respectively. Note that each auxiliary input here is a vector of size R1. As a reminder,

ot[3i] corresponds to the boolean that answers the question “Is the reward in location

i observable and missing?” Within our Lobster environment experiments, we use a

decay rate of λ = 0.9.

Put together, our auxiliary inputs are defined as Mt
.
= (m1

t ,m
2
t), which we use as

part of our agent-state function. Our agent state for trace decay auxiliary inputs in

the Lobster environment is the concatenation of the observation and the two auxiliary

inputs in Mt: xt
.
= [ot,Mt] ∈ R11. The dimension of this agent state is the number

of dimensions of the observation, plus two dimensions from the two auxiliary inputs

9 + 2 = 11.

26

3.3.2 Results

We now consider the results from using exponential decaying trace auxiliary inputs

in the Lobster environment. For the agents described in this section, we use the

Sarsa [31] algorithm to learn a control policy (with the exception of the ground-truth

state agent, which uses value iteration to learn the optimal policy). We also use

linear function approximation for all agents. For this trace decay agent, a step size

of α .
= 10−3 was selected from a hyperparameter sweep, with an epsilon of ϵ .

= 0.1

for the epsilon-greedy policy. All hyperparameters swept and algorithmic details are

fully described in Appendix A.

The performance of the agent with exponential decaying trace as auxiliary inputs is

summarized in Figure 3.3a. The policy learned with exponential decaying converges

to a higher return than the agent using only observations. We can see this in the

learned policies of our trace agents versus the observations only agent: when using

only observations, the agent dithers between location L0 and location L1 or L2, but

not both. On the other hand, the agent that leverages an additional trace as auxiliary

input collects the reward from one of the rewarding locations, and then traverses to

the other rewarding location depending on the value of the traces.

3.3.3 Value Function Geometry of Trace Features

To get a better idea of how exponential decaying traces augments our policy, we

consider the value function learnt over these auxiliary inputs. Specifically, since our

value function is approximated with linear function approximation, we visualize and

compare how the auxiliary inputs of exponential decaying traces affect the value

function geometry of our learnt policy in Figs. 3.3b and 3.3c.

We compare action-values when the agent is at location L0 between the three

algorithms plotted in Figures 3.3b and 3.3c: the agent using observations only (the

single diamond-shaped point), the agent using ground-truth environment states (the

crosses), and finally the agent with exponential decaying traces as auxiliary inputs

27

(the small circular points). The x − y axes (bottom two axes) captures two input

features that represent the likelihood of each reward being present. For the ground-

truth environment states, these features simply represent whether or not the rewards

are present or not. Since we have two rewards in locations L1 and L2, this corresponds

to four possible environment states at location L0—one for each possible state of the

two rewards (since they can be either present or not present). For the observation-

only agent, both of these corresponding features can only take on a single value due

to partial observability: both features are 0 since at location L0, this agent will only

ever see 0 elements for the features which correspond to whether or not the rewards

in each location are there. We now describe how we plot the exponential decaying

trace features.

From Equation 3.8, our exponential decaying traces decrease the more time elapsed

since last observing each reward was missing. This means that our trace features for

each reward should be inversely proportional to the likelihood of each reward being

present. Given this, we plot the complement (1 −mi) of each exponential decaying

trace input in Figures 3.3b and 3.3c.

We first consider Fig. 3.3b; in this plot we calculate and visualize all possible input

features mentioned above for the three algorithms over the normalized action-values of

the left action, given the agent is at location 0. We can see that augmenting the agent

state with auxiliary inputs expands the state space of the agent over two dimensions

of time: one dimension for each reward observation that we have our exponential

decaying trace over. The four vertices of this expanded state space represent and

coincide with the four ground-truth states when the agent is at location 0.

Learning a value function with these exponential decaying traces allow the agent

to smoothly interpolate between the values of the actual ground-truth states. The

agent does this through resolving (checking out a location) or accumulating (waiting

in another location) the decaying trace observations. Learning a value function with

such agent states essentially allows the agent to disentangle and discriminate states

28

that would otherwise be mapped to the same observation. This expansion in the state

space allows for more expressivity in the value function.

This additional expressivity is also reflected in the policy. This is depicted in

Figure 3.3c; in addition to the action-value function for the left action, we also

visualize the action-value function for the right action of the agent with exponential

decaying traces. By overlaying the action-values of both actions we can see how the

decaying trace agent, as well as the agent using the ground-truth states, learn action-

values that in some corners are greater for the right action and in other corners are

greater for the left action, actually leading to a sensible greedy policy. Alternatively,

the agent that uses only the environment observations has no choice but to collapse

the action-values of both actions into the same value.

3.4 Approximate Belief State with Particle Filters

We now consider a classic approach to auxiliary inputs for resolving partial observ-

ability: constructing approximate belief states. A common use of auxiliary inputs

in reinforcement learning is to leverage uncertainty information with regards to the

underlying state of the environment. In deep reinforcement learning for stratospheric

superpressure balloon navigation [2], uncertainty over the current wind column is used

as auxiliary inputs to take into account the non-stationarity of wind directions and

magnitudes. Prediction error as auxiliary inputs are used in robotic curling [44] to

account for the shifting ice over a game of curling. In this section, we investigate the

use of uncertainty as auxiliary inputs—approximating a distribution over all states

at every time step. In order to get this measure of uncertainty of the environment

state, we leverage a few assumptions with regards to available transition dynamics

and known state structure for the particle filtering approach for approximating a

distribution over possible states, or a belief state [11].

To construct these belief states, we consider a Monte Carlo based approach with

particle filtering [14] to approximate a distribution over state [39, 25] as auxiliary

29

inputs for agent state. With this approach, we maintain an approximate distribution

over possible states by incorporating the current observation and action through up-

dating weights and particles with the emission probabilities and dynamics function

respectively. We begin with m particles, which we denote by a vector of particle

states ŝ0 ∈ {1, . . . , |S|}m, initialized according to the start state distribution of the

environment, and instantiate a vector of weights w0 ∈ Rm. At every step t + 1,

and for every particle ∀j ∈ {1, . . . ,m}, we update the particles and weights by first

propagating all particles forward with the action taken with the dynamics function:

ŝt+1[j] ∼ p(· | ŝt[j], At), (3.9)

and updating each particle’s weight according to the probability of emitting the ob-

servation (emission probability) received:

wt+1[j]
.
= P{Ot = ot | St = ŝt[j]} ·wt[j]. (3.10)

This produces the unnormalized weights of all particles. We get our new set of

weights by simply normalizing: wt+1
.
= wt+1∑︁m

i=1 wt+1
. These weights are essentially the

mechanism in which we summarize our past trajectory.

With this mechanism to update particles and weights, we form our auxiliary inputs

based on these weights. In this approach, we only have a single auxiliary input vector

where N = 1, which we simply denote as mt.

These auxiliary inputs calculate our approximate distribution of states at time step

t+ 1, mt+1, by summing over weights for each particle for a given state:

mt+1
.
=

t∑︂
τ=t

m∑︂
j=0

wt+1[j]⊙ 1[ŝt[j]] (3.11)

Where the bolded 1[s] corresponds to the one-hot encoding of length |S|, with a 1 at

state s. In this case, our auxiliary inputs mt+1 are our agent-state function, and we

have xt+1
.
= mt+1.

At every step, the auxiliary input function m is defined by Equation 3.11. Our

current action and observation are incorporated into our auxiliary input by both the

30

propagation of particles forward given an action and the re-weighting of our particles

through the emission probability of the current observation given the particle. Our

kernel function is defined as:

k(τ)
.
=

{︄
1 if τ = t,

0 otherwise.
(3.12)

The preprocessing function g is defined by g(ot, at)
.
=
∑︁m

j=0 wt+1[j] ⊙ 1[ŝt[j]]. The

actions at are incorporated into the particle updates for ŝt[j] and observations ot are

incorporated into the weight updates for wt+1. Put together, mt resolves partial

observability through the counter-factual updates of the particles and their corre-

sponding weights at the present time step with the current observation and action.

This particle filtering for approximate belief state is an approach to auxiliary inputs

that is low in resolution and can be high in depth, depending on if the number of par-

ticles is adequate. This approach has low resolution because individual observations

are incorporated into the approximate belief state through its emission probabilities.

Approximate belief states summarize all observations through its re-weighting of par-

ticle weights, and is unable to discern between individual observations its seen in its

trajectory. On the other hand, if there are an adequate number of particles for an

environment, this approach can have high depth, seeing as belief states summarize all

the relevant information with regards to environment state and transition dynamics

[12].

3.4.1 Particle Filtering on the Lobster Environment

For this particle filtering approach in the Lobster environment, we approximate a

distribution over the 12 underlying ground-truth states (as per Figure 3.2), based on

the approximated distribution over state over nparticles = 100 particles. At every step,

we follow the steps in Section 3.4 to get our approximate belief state as our auxiliary

input. In this case, since we only have a single auxiliary input vector, we have that

Mt
.
= mt. In addition to this, our auxiliary inputs in this case define the entire agent

31

0.0 1.0 2.0 2.5
Environment steps 1e5

5

10

15

20

Re
tu

rn
s o

ve
r 2

00
 st

ep
s

(a
vg

. 3
0

ru
ns

)
ObservationsPF

Oracle

(a) (b)

Figure 3.4: Results for Approximate Belief Distribution as Agent State in
the Lobster Environment
(a): Online returns in the Lobster environment for our particle filtering agent, in comparison
to the optimal policy given ground-truth state (dotted line). (b): The action-values for both
left (yellow) and right (blue) actions for the value function learnt over particle filtering
auxiliary inputs. Again, the observation-only agent is represented by overlapping diamonds
in this plot.

.

state, since we already incorporate both observations and actions at each step in the

particle filter update: xt
.
= Mt.

3.4.2 Results

For this particle filtering agent, once again we leverage the Sarsa control algorithm

as well as a selected step size of α
.
= 10−3 (from a hyperparameter sweep) and an

epsilon of ϵ
.
= 0.1. Similar to the results from the exponential decaying traces in

Section 3.3.2, the particle filtering agent also converges to a higher rate of return as

compared to the agent using observations only, and performs worse than if the agent

was given full state information.

We also show similar value function geometry plots to Fig. 3.3c, except for the

belief distribution features in Fig. 3.4b. In this case, the bottom two x − y axes

correspond to, for each reward i ∈ {1, 2}:

P (r(Li) = 1)
.
=
∑︂
s∈S

m⊙ 1[s where reward r(Li) = 1 & s where the agent is in location 0]

32

which is the sum of the probabilities over environment states where the agent is in

location 0 and the reward in location i is present. In this particular visualization,

we visualize all the features collected from multiple rollouts of the policy learnt by

the particle filtering agent. Given these features, we see a similar policy at location

0 to the agent utilizing exponential decaying traces as auxiliary inputs, where the

greedy policy will go left if the likelihood of r(L1) being present is higher than the

likelihood of r(L2) being present, and right if the converse is true. Approximate

belief states with particle filtering are also able to resolve partial observability with

a similar performance to exponential decaying traces. Finally, we consider our last

form of auxiliary inputs—using likelihoods as future predictions.

3.5 Likelihoods for Incorporating Future Predictions
and Past Information

We now consider how to incorporate future predictions together with past information

for auxiliary inputs. In the reinforcement learning setting, one popular choice of

predictions are general value functions [35]. These predictions take on the form of

a discounted sum over cumulants (which can also be a function of observations and

actions like our preprocessing function gi), with some separate cumulant termination

function (which could be represented with our kernel function ki). While general value

functions fit into our formalism, learning and leveraging these predictions as auxiliary

inputs in partially observable settings has historically proven to be challenging. The

difficulty arises in the fact that, as an auxiliary input, the prediction at time step t

depends on the previous prediction at t − 1 as well as the current observation and

the previous action. While there have been (even real-world) examples of general

value functions as auxiliary inputs for control [43], learning predictions from previous

predictions, while learning a value function for control over these features is a difficult

task; it is also not clear that this approach is helpful for settings beyond a small set

of partially observable environments paired with specific general value functions [32].

33

In this section, we consider simpler predictions as a proof-of-concept for using future

predictions together with information from the past as auxiliary inputs—ground-truth

likelihoods.

3.5.1 Likelihoods as Predictions for the Lobster Environment

We describe auxiliary inputs that incorporate both future predictions and past infor-

mation for the Lobster environment. Let i ∈ {1, 2} be the indices for both our two

auxiliary inputs and our rewarding locations. These auxiliary inputs predict whether

or not a reward at a given location Li will be present if the agent takes the expected

number of steps to that location. These auxiliary inputs essentially amount to answer-

ing the question: “Given that I saw r(Li) missing some steps ago, if I take the mean

number of steps to reach Li, what is the likelihood that r(Li) will be regenerated?”

We now describe how we model this future prediction as a likelihood. We do this

through calculating, in closed form, the likelihood that r(Li) is present, given that

some number of steps have elapsed with r(Li) as unobservable. In this auxiliary

input scheme, those number of steps will depend on the number of steps since the

agent has seen r(Li) missing and the average number of steps needed to reach Li. In

this approach, we assume we have the privileged information of the rate r at which

either rewards are regenerated. Let Ei
τ be the event that the reward at location Li is

regenerated within τ steps, and Ei′
τ be the complementary event, where the reward

does not regenerate after τ steps. Since this is a Poisson process, this means that the

likelihood of a reward at location Li regenerating after τ steps is:

P (Ei
τ) = 1− P (Ei′

τ) = 1− exp{τ · r} (3.13)

where (3.13) is simply the probability that at least one Poisson process occurs after τ

steps. To calculate this prediction for our auxiliary inputs, we need the total number

of steps in our trajectory between last observing r(Li) as missing, and the average

number of steps to reach Li from the current location. We find this total number of

34

steps by summing these two number of steps, and finding the corresponding likelihood.

Our auxiliary input is then defined as:

mi
t
.
= 1− exp

{︄
t∑︂

τ=0

1[(oτ has r(Li) missing) & (τ > last observed r(Li) missing)]

+ Eπi

[︄
∞∑︂

τ=t+1

1[oτ [3i+ 2] = 1]

]︄}︄
(3.14)

where πi corresponds to the policy of going to location Li (for L1 that is simply the

policy that always goes left, for L2 this policy always goes right). oτ [3i + 2] is the

observation feature that answers the question “Is the reward at Li unobservable?”.

Again, like in Section 3.3.1, each auxiliary input here is a vector in R1, with Mt
.
=

(m1
t ,m

2
t). Each auxiliary input defined here corresponds to a future prediction about

the reward. In this case, our kernel function is simply a function which filters time

steps based on if the step was in the past/present or future. Our preprocessing

function is then defined by the function that returns the two element vector with the

two predicates defined in Equation 3.14. Put together we get our likelihoods (one for

each reward) which we use as auxiliary inputs for our agent.

Similar to particle filtering auxiliary inputs, since this approach summarizes its

history and future predictions with likelihood functions, it is low in resolution and

high in depth. It is low in resolution because these likelihoods summarize its history

into a probability distribution, and would be hard to recover individual observations.

It is high in depth as exponential decaying traces are also high in depth: the likelihood

probability distribution is also an exponential function of time steps, and so will have

depth depending on the Poisson process rate.

3.5.2 Results

Similar to our previous two auxiliary inputs, this approach also uses the Sarsa algo-

rithm for control, with a step size of α .
= 0.001 selected based on a hyperparameter

sweep. The epsilon used here was also ϵ
.
= 0.1.

35

0.0 1.0 2.0 2.5
Environment steps 1e5

5

10

15

20

Re
tu

rn
s o

ve
r 2

00
 st

ep
s

(a
vg

. 3
0

ru
ns

)
ObservationsLikelihood

Oracle

(a) (b)

Figure 3.5: Results for Likelihood as Agent State in the Lobster Environ-
ment
(a): Online returns in the Lobster environment for our agent leveraging likelihood auxiliary
inputs, in comparison to the optimal policy given ground-truth state (dotted line). (b): The
action-values for both left (yellow) and right (blue) actions for the value function learnt
over likelihood auxiliary inputs.

With these likelihoods as auxiliary inputs, we also outperform the agent using

observations only, and are even closer to the optimal policy in terms of returns as

shown in Fig. 3.5a. We also visualize the same normalized action-values of the two

likelihood action-values in Fig. 3.5b, and see a similar greedy policy as the previous

two auxiliary inputs in Sections 3.3 and 3.4.

Comparing all three auxiliary input performances in Figure 3.6, we see the similar-

ities in the performances across the three algorithms. The likelihood approach very

slightly outperforms the other two auxiliary inputs—this is likely due to the additional

privileged information given to the agent in the form of closed-form probabilities of

the reward being present. From all the visualizations of the action-value functions

seen for the three auxiliary input approaches, we can see similarities in the learnt

value functions between three auxiliary inputs that incorporate or model different

kinds of information. Learning a value function over these features result in similar

policies. This implies that these auxiliary inputs all help resolve partial observability

in one way or another.

The results from these auxiliary inputs in this Lobster environment gives an ex-

36

0.0 1.0 2.0 2.5
Environment steps 1e5

5

10

15

20

Re
tu

rn
s o

ve
r 2

00
 st

ep
s

(a
vg

. 3
0

ru
ns

)

ObservationsTrace

PF
LikelihoodState

Figure 3.6: Combined Results in Lobster Environment
All learning curves from the three algorithms in one plot for comparison.

ample of when auxiliary inputs are useful for reinforcement learning—For auxiliary

inputs to be useful, they must add information into the agent state that is relevant

to the task at hand. All the auxiliary inputs presented in this section incorporates

or models information from the past, present and/or future with regards to the two

partially observed rewards. We introduce these three forms of auxiliary inputs as

demonstrations and to investigate popular auxiliary inputs used in real-world rein-

forcement learning. Given this, we note that there are many forms of auxiliary inputs

we have not considered in this manuscript; two further examples being entropy over

a belief state [29] or a running average accumulator [40] as auxiliary inputs.

In the rest of this work, we investigate why and how two of these forms of aux-

iliary inputs are useful for reinforcement learning—particle filtering and exponential

decaying traces as auxiliary inputs. We first consider the particle filtering approach.

37

Chapter 4

Particle Filtering for Auxiliary Inputs

In this chapter, we further investigate and evaluate the auxiliary input approach of

particle filtering for an approximate belief state, as described in Section 3.4. We look

to answer the question: with the additional assumptions that this approach brings,

how do these forms of auxiliary inputs fare in partially observable environments?

We answer this question by evaluating this class of auxiliary inputs on two classic

partially observable environments: A modified version of the Compass World [27]

environment, and the RockSample [34] environment. We compare this approach to

agents using leveraging gradient-based agent-state functions (LSTMs) for agent-state

construction, and show that these auxiliary inputs consistently outperform LSTM-

based agent-state functions.

4.1 Particle Filtering Environments

We first describe the details of the two partially observable environments that we use

to evaluate our approximate belief state approach to auxiliary inputs. We start with

the modified version of Compass World.

4.1.1 Modified Compass World

In this partially observable 9 × 9 grid world (as shown in Fig. 4.1a), the state of

the agent is defined by both its position and its pose (or the direction its facing).

The agent can be in one of the possible positions within the four walls of the grid

38

(a) Modified Compass World (b) RockSample(7, 8)

Figure 4.1: Modified Compass World and RockSample(7, 8)
Environments for evaluating approximate belief states as auxiliary inputs.

world, and can face one of the four cardinal directions. As for its observations, the

agent can only see the color of the square directly in front of it. The observation

in this environment is simply a one-hot vector o ∈ O ⊂ {0, 1}5. The non-zero

index represents the color of the square directly in front of the agent, and the zero

vector represents no color in front of the agent. The agent has 3 actions: A .
=

{move forward, turn left, turn right}.

The goal of the agent is to traverse the grid world to face the green wall, after

which the agent receives a reward of +1 and the environment reaches a terminal

state. Rewards at all other time steps are 0. The agent is initialized in a random

position and pose (that is not the goal) as the initial start state. Due to both the

limiting observations and random start position and pose, the agent has to resolve

both its x and y coordinates in order to reach the goal. This environment is modified

from the original Compass World environment in that the goal location is in the

middle of the west blue wall, as opposed to the top of the west blue wall. This is

to add difficulty to this environment; in the original environment, the agent would

only need to traverse up to the north facing the orange wall (resolve its y-position)

and head west, until it reached the goal. In this modified version, the agent needs to

39

0.0 0.5 1.0
Environment steps 1e6

0.00

0.25

0.50

Ep
iso

di
c

re
tu

rn
s

(3
0

ru
n

av
er

ag
e)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(a)

0.0 0.5 1.0 1.5
Environment steps 1e6

0

10

20

30

Ep
iso

di
c

re
tu

rn
s

(3
0

ru
n

av
er

ag
e)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(b)

Figure 4.2: Results for Particle Filter Auxiliary Inputs in Modified Compass
World and RockSample(7, 8)
Online discounted returns over environment steps for agents in both the Modified Compass
World (4.2a) and RockSample(7, 8) (4.2b) environments. Colors in both plots correspond
to the same class of agents.

resolve both x and y coordinates to reach the goal.

4.1.2 RockSample

Rocksample(7, 8) (as shown in Fig. 4.1b) is partially observable environment with a

7 × 7 grid world with 8 rocks randomly scattered throughout the environment. At

the start of an episode, each rock is randomly assigned to be either good or bad.

Initially, the agent is unaware of whether or not rocks are good or bad, but has

individual actions to check the goodness of each rock. This check action is done

with an imperfect sensor that gets noisier the farther away the agent is to each rock.

Besides these check actions (one for each rock), the agent can also move in the four

cardinal directions, with a total of 8 + 4 = 12 actions.

The goal of the agent is to collect as many good rocks as possible before exiting to

the eastern border of the grid world. Collecting a good rock gives a positive reward

of +10, and exiting to the right also gives a positive reward of +10. Collecting a bad

rock results in a negative reward of −10. After a good rock is collected, it turns into

a bad rock, and further collecting of this rock results in a negative reward of −10.

Further details of this environment are listed in Appendix B.1.1

40

4.2 Results and Discussion

We compare our particle-filter-based auxiliary inputs to other agent-state functions

for Modified Compass World and RockSample in Figures 4.2a and 4.2b respectively.

The particle filtering-based agent (orange, labelled as “Auxiliary Inputs”) is compared

to three baseline agents: An agent using only observations (teal, labelled as “Obser-

vations”), an agent which uses LSTM as its agent-state function (yellow, labelled as

“LSTM”), and an agent that uses the ground-truth environment state (blue, labelled

as “Ground-truth”).

In these figures, we plot the online returns during training over environment steps.

All experimental results shown report the mean (solid lines) and standard error to

the mean (shaded region) over 30 runs. Hyperparameters for each algorithm were

selected based on a sweep. In these experiments, all agents utilize similar neural net-

work architectures as its function approximator. Further details of the experimental

setup and hyperparameters swept can be found in Appendix B. Further details of the

particle filter and this agent-state function for each environment in this section can

be found in Appendix B.2. In these results, we plot online discounted returns over

environment steps.

As a point of clarification, the LSTM-based agent conditions on both the observa-

tion and action [32] at every time step. We describe the specifics of this LSTM action

conditioning technique, as well as ablations for the LSTM agent with and without

action conditioning in Appendix B.

The particle filter agent outperforms the baselines with the exception of the agent

acting on the ground-truth state in both environments. These discrepancies in the

discounted returns that each agent converges to reflect the ability for this auxiliary

input to preserve useful information with regards to its trajectory for decision making,

given the additional assumptions that the approximate belief state entails.

In Modified Compass World, the ground-truth agent converges to a much higher

41

return than the other agents. This is because it is fully observable and has more

information available to it in its data stream than the other agents—namely the

position and orientation of the agent. The learnt policy for this agent traverses

directly to the green goal state, without having to localize first. For RockSample, all

the actual moralities (goodness or badness) of the rock are available to the ground-

truth agent at the start of an episode. The learnt policy for this agent traverses

directly to the good rocks, collects them, then exits to the right.

On the other hand, the agents acting on only observations must first resolve its

partial observability. We first consider the learnt policies from both the LSTM and

particle filter agent states in Modified Compass World. The agents first move for-

ward until they see a wall color. Seeing this wall color resolves one of their position

coordinates, and allows the agent to navigate towards the west wall. The agent then

traverses either up or down, periodically checking the color of the west wall until they

can resolve the other position coordinate, and get to the goal. This resolving of coor-

dinates is explicitly represented as elements of the distribution over state going to 0.

In RockSample, using an approximate belief state as auxiliary inputs is particularly

useful in this environment because these auxiliary inputs allow the agent to learn a

policy that takes into account the uncertainty of the rocks in the current time step.

The agent will traverse closer to a rock before checking whether the rock is good or

bad since accuracy of the check decreases with distance. From the results, the plots

also suggest that the additional information that these particle filter auxiliary inputs

provide also helps in exploration and the rate of learning of the agent in both these

environments, something that we briefly discuss as future work in Chapter 6.

The particle filter auxiliary input approach (with the additional assumptions that

approximate belief states afford) also consistently outperforms the agent using an

LSTM agent-state function. Not only do these auxiliary inputs converge faster, but

also converges to a higher average return. This implies that these auxiliary inputs

are able to represent and add information into the agent state that may be hard to

42

represent in recurrent neural network approaches, and are also beneficial for faster

value function learning.

Incorporating trajectory information with particle filtering leveraged knowledge of

the dynamics of the environment in order to form auxiliary inputs that were highly

relevant for decision making, based on a distribution over ground-truth state. While

the particle filtering approximate belief state assumptions may be strong assump-

tions to make, it is the case in many real-world use cases that these assumptions (or

approximations thereof) are not completely unreasonable. Now that we have shown

that auxiliary inputs are able to add complex, relevant information to the agent state

given a model of the environment, we now consider the case where we do not have

these assumptions available and investigate modelling the past for auxiliary inputs.

43

Chapter 5

Scaling Up Auxiliary Inputs and
Integration with RNNs

With the efficacy of auxiliary inputs demonstrated in smaller environments, in this

section we now consider how to scale up approaches to auxiliary inputs, as well as

the role of auxiliary inputs in gradient-based agent-state functions. Specifically, we

investigate ways in which to scale up exponential decaying traces to larger, pixel-

based environments, and how these traces integrate with recurrent neural networks

as an agent-state function, as described in Section 2.9. To do this, we first introduce

two scaled-up versions of the Lobster environment—the Fishing environments. These

new environments are two continuing, partially observable environments that require

the agent to resolve its partial observability and collect regenerating rewards in a 2

dimensional stochastic grid world.

Using these two Fishing environments as testbeds, we show how we use exponential

decaying traces as auxiliary inputs for this partially observable pixel-based environ-

ment, and compare and integrate these trace features with recurrent neural network

agent-state functions. We show that in these environments, exponential decaying

traces either match or outperform an LSTM-based agent. Furthermore, we show that

combining LSTMs together with exponential decaying traces produces even better

performance, as compared to using either only LSTMs or only exponential decaying

traces.

44

(a) Fishing 1.

0 1 2
Environment steps 1e6

10

20

30

Re
tu

rn
s (

1K
 st

ep
s)

Observations

Exp Trace

LSTM
LSTM + Exp Trace

Ground truth

(b) Fishing 1 results.

(c) Fishing 2.

0.00 0.25 0.50 0.75 1.00 1.25
Environment steps 1e7

15

20

25

30

35

40

Re
tu

rn
s o

ve
r 1

K
st

ep
s

(a
vg

. 3
0

se
ed

s)

Observations

Ground-truth

Exp
Trace
LSTM

LSTM + Exp Trace

(d) Fishing 2 results.

Figure 5.1: Fishing Environments and Results
(a, c) Fishing Boat environments. At every time step the agent receives a map with the 5×5
area around itself updated. This map includes obstacles, currents and rewards. Currents
labelled with multiple directions represent stochastic currents. Dark blue tiles represent
obstacles, whereas light blue tiles represent obstacles the agent is able to see through. (b,
d) Results for the first and second Fishing Boat environments respectively, averaged over 30
runs. Standard errors are shaded for each curve.

45

5.1 The Fishing Environment

We first introduce the Fishing environments - two pixel-based stochastic and partially

observable environments. This environment is reminiscent of a scaled-up version of the

Lobster environment, in that it was designed to test an agent’s ability to reason about

partial observability and time, except in a scaled-up setting. In both of these foraging

environments, the goal of the agent (a fishing boat) is to continually navigate around

the stochastic currents and obstacles to collect fish from fishing locations (denoted by

the green circles). Currents push the agent one step in the direction it is facing. After

collecting the fish from a net, the net is re-cast and fills up over a random amount of

time.

While full details of both environments are elucidated in Appendix C.1, we give a

summary of the environment dynamics in this section. We depict Fishing 1 and Fish-

ing 2 in Figures 5.1a and 5.1c, respectively. There are 4 actions in both environments,

each corresponding to moving in one of the cardinal directions. Both environments

are represented by an 11× 11 image with 4 rewards, as denoted by the green points.

Like in the Lobster environment (c.f. Section 3.2), in these environments the four

rewards regenerate stochastically after being collected. Once collected, the rewards

stay and do not disappear without being collected, and the agent receives a reward

of +1. Currents in these environments also change stochastically over time. The

multi-directional arrows represent these shifting currents for each given position, and

the directions in which they might be in. In addition to these sources of stochasticity,

the agent also has a chance of “slipping” at every time step and remaining in the same

position. Beyond this, there are also walls throughout the environment, denoted by

the dark blue tiles, that block the agent from traversing to or through. Bumping into

a wall results in a no-op. Finally, Fishing 2 in Figure 5.1c also has a glass wall denoted

by the blue tiles, which the agent can see through, but cannot traverse through. We

now describe the observations that the agent sees at every step.

46

Partial observability in the domain comes from a few sources. The first source of

partial observability is the environment map which the agent receives as observations.

At every step, the position of the agent is given and an agent-centric map of the

environment is accumulated, much like in robot navigation and mapping [e.g., 6, 38].

In a given step, the map is only updated with a potentially occluded 5×5 area around

the agent’s current position. Walls throughout the environment occlude parts of the

5× 5 observable map. This 5× 5 area contains information on the relative positions

and the direction of the currents, walls and rewards at the current time step. As

the agent traverses about the environment, previous features in the accumulated map

(such as reward availability and current direction) begin to "stale" since currents and

rewards change stochastically with time, and only get updated again after the agent

traverses to the relevant area and observes the 5 × 5 image of the map which the

feature resides in. Details of this mapping is described in Appendix C.1.1.

Due to the stochasticity of the currents and rewards, the degree of partial observ-

ability of each environment is dictated by the number of stochastic elements through-

out the map, and the rate at which these random variables change. In Fishing 1

(Figure 5.1a), we have an environment with low levels of partial observability and

stochasticity. There is a sparse number of currents throughout the map, with most

currents acting as a gateway to the rewarding areas. Rewards and currents in this

environment also have a relatively slow rate of change. Fishing 2 (Figure 5.1c) is

an environment that is much more partially observable, with several fast-changing

currents throughout the environment. Full details of the stochasticity of both envi-

ronments are specified in Appendix C.1.2.

5.2 Exponential Decaying Traces For Mapping

To encode information with regards to the past history of the agent as an auxiliary

input for these environments, we use exponential decaying traces (as per Section 3.3)

over the past observable regions in the environment map. In this case we have auxil-

47

iary inputs that are all updated at once as a matrix, which we define as Mt ∈ Rm×m,

where m is the width and height of the map, with N = m. Our auxiliary input is

then:

Mt
.
=

t∑︂
τ=0

λt−τ
1(oτ) (5.1)

where our kernel function is the same as defined in Section 3.3, and our preprocessing

function is defined as g(o, a)
.
= 1(oτ) ∈ {0, 1}m×m. 1(oτ) is an m ×m binary map

which indicates which areas of the global map are observable from oτ at time τ . At

each step, all the locations that are not currently observable are decayed by a factor of

λ < 1. This auxiliary input encodes the time since the agent has observed a particular

location as an exponentially decaying timer. The incremental version of this auxiliary

input is simply:

Mt
.
= max(λMt−1 + 1(ot),1) (5.2)

where 1 is an m×m matrix of ones.

5.3 Results and Discussion

We show our results for both environments in Figures 5.1b and 5.1d. Experimental

details including hyperparameters swept, algorithmic details, and environment details

are included in Appendix C. Results shown here are offline evaluation returns over

environment steps, where we evaluate our agent after every fixed number of steps. We

compare our exponential decaying trace auxiliary inputs (orange) to a few baselines:

an LSTM-based agent with action concatenation (yellow), and an agent with only

the observation map as described before as input (teal), and a combination of both

the trace auxiliary inputs combined with an LSTM agent-state function (purple). In

both environments, exponential decaying traces as auxiliary inputs are comparable

to, or performs slightly better than the LSTM-based agent. In the simpler Fishing

1, using exponential decaying traces matches the performance of the LSTM agent, as

shown in Figure 5.1b. While the LSTM agent performs temporal credit assignment by

48

using additional compute with T-BPTT and TD error propagation, our exponential

decaying trace can be seen as a simple way of performing temporal credit assignment

by only propagating TD error through the input features, reminiscent of eligibility

traces [37]. Doing so requires much less computation per time step as compared to

T-BPTT. In Fishing 2, the additional stochasticity seems to harm the performance

of the LSTM agent as compared to the agent using exponential decaying traces as

auxiliary inputs, with the decaying trace agent slightly outperforming the LSTM

agent.

Exponential decaying traces are also able to integrate with LSTMs. In both envi-

ronments, combining decaying trace auxiliary inputs with LSTM function approxima-

tion increased the performance of the agent by quite a large margin. As pointed out

by [26], adding an exponential decaying trace as input to an LSTM learning through

T-BPTT seems to add robustness to the truncation window length. In our case, for

control, it seems to both increase the rate of learning, and also increase the average

returns of the learnt policy. This example suggests that auxiliary inputs can integrate

well with gradient-based agent-state construction.

49

Chapter 6

Conclusion and Future Work

To conclude, auxiliary inputs are helpful tools for reinforcement learning practitioners

to resolve partial observability which also have the potential to integrate well with

existing, gradient-based agent-state functions.

In this work we advocate for the general principle of auxiliary inputs as an addition

to agent-state construction, and evaluate different instantiations of auxiliary inputs for

reinforcement learning. We first formalize auxiliary inputs, as well as consider three

different instantiations of these inputs in Chapter 3. Using the Lobster environment

introduced in Section 3.2, we demonstrate the efficacy of these auxiliary inputs in

resolving partial observability, as well as how these auxiliary inputs allow us to expand

the input feature space of the agent to allow us to interpolate between ground-truth

states, and for a more fine-grained policy. With this formalism in place, we investigate

the performance of the particle filtering approach to auxiliary inputs on a few classic

partially observable environments in Chapter 4. We show the efficacy of approximate

belief states as auxiliary inputs in these hard, partially observable environments.

Finally, in Chapter 5, we investigate the use of simple exponential decaying traces of

observation features as auxiliary inputs on the scaled-up Fishing environment. Besides

showing matching or better performance of these trace features in this environment

as compared to LSTMs, we also show how this auxiliary input can integrate with

recurrent neural network agent-state functions, and improve performance.

50

As for future work, the most immediate extension of our investigation would be

to use more complex predictions as auxiliary inputs. In terms of using future predic-

tions to resolve partial observability, general value functions [35] and predictive state

representations [18] are two promising approaches for using predictions for resolving

partial observability as an auxiliary input. While a promising area of research, future

predictions have their limitations: in the context of using future predictions for next-

step predictions as well as for control, general value functions have been shown to be

effective in only a very limited scope of environments and predictions [32]. Another

very promising direction for future work would be to integrate and combine different

forms of auxiliary inputs, which leverage information from all parts of the trajectory,

from both past and future. Another promising direction for future work is to leverage

auxiliary inputs for better exploration. While techniques to estimate the uncertainty

of an agent for exploration is near ubiquitous throughout reinforcement learning, an

interesting avenue for exploration is to alter the inputs of an agent for more robust

exploration.

51

Bibliography

[1] Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra,
S., Ponda, S. S., and Wang, Z. (2020). Autonomous Navigation of Stratospheric
Balloons using Reinforcement Learning. Nature, 588 7836:77–82.

[2] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of Arti-
ficial Intelligence Research, 47:253–279.

[3] Bellman, R. (1957). A markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684.

[4] Block, H. D. (1962). The perceptron: A model for brain functioning. i. Reviews
of Modern Physics, 34:123–135.

[5] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds,
T., Hafner, R., Abdolmaleki, A., de las Casas, D., Donner, C., Fritz, L., Galperti,
C., Huber, A., Keeling, J., Tsimpoukelli, M., Kay, J., Merle, A., Moret, J.-M.,
Noury, S., Pesamosca, F., Pfau, D., Sauter, O., Sommariva, C., Coda, S., Duval,
B., Fasoli, A., Kohli, P., Kavukcuoglu, K., Hassabis, D., and Riedmiller, M. (2022).
Magnetic Control of Tokamak Plasmas through Deep Reinforcement Learning. Na-
ture, 602(7897):414–419.

[6] Elfes, A. (1987). Sonar-based real-world mapping and navigation. The Insti-
tute of Electrical and Electronics Engineers Journal on Robotics and Automation,
3(3):249–265.

[7] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

[8] Ghiassian, S., Rafiee, B., Lo, Y. L., and White, A. (2020). Improving performance
in reinforcement learning by breaking generalization in neural networks. In Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’20, page 438–446, Richland, SC. International Foundation for
Autonomous Agents and Multiagent Systems.

[9] Hausknecht, M. J. and Stone, P. (2015). Deep recurrent q-learning for partially
observable mdps. In 2015 Association for the Advancement of Artificial Intelligence
Fall Symposia, Arlington, Virginia, USA, November 12-14, 2015, pages 29–37.
AAAI Press.

[10] Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural
Computation, 9:1735–1780.

[11] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998a). Planning and
acting in partially observable stochastic domains. Artificial Intelligence, 101:99–
134.

52

[12] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998b). Planning and
Acting in Partially Observable Stochastic Domains. Artificial Intelligence, 101(1-
2):99–134.

[13] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations Conference Track
Proceedings.

[14] Kitagawa, G. (1996). Monte Carlo Filter and Smoother for Non-Gaussian Non-
linear State Space Models. Journal of Computational and Graphical Statistics,
5(1):1–25.

[15] Konidaris, G., Osentoski, S., and Thomas, P. (2011). Value function approxima-
tion in reinforcement learning using the fourier basis. In Proceedings of the Twenty-
Fifth Association for the Advancement of Artificial Intelligence Conference, page
380–385. AAAI Press.

[16] Kurniawati, H. (2022). Partially observable markov decision processes and
robotics. Annual Review of Control, Robotics, and Autonomous Systems, 5(1):253–
277.

[17] Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8(3):293–321.

[18] Littman, M. L., Sutton, R. S., and Singh, S. (2001). Predictive Representations
of State. In Advances in Neural Information Processing Systems, pages 1555–1561.

[19] Lu, X., Roy, B. V., Dwaracherla, V. R., Ibrahimi, M., Osband, I., and Wen, Z.
(2021). Reinforcement Learning, Bit by Bit. ArXiv, abs/2103.04047.

[20] Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M. J.,
and Bowling, M. (2018). Revisiting the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents. Journal of Artificial Intelligence
Research, 61:523–562.

[21] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level Control through Deep Reinforcement Learning.
Nature, 518:529–533.

[22] Mozer, M. C. (1996). Neural Net Architectures for Temporal Sequence Processing,
volume 265, page 243–264. Addison-Wesley.

[23] Pilarski, P., Dick, T., and Sutton, R. (2013). Real-time prediction learning for
the simultaneous actuation of multiple prosthetic joints. In IEEE International
Conference on Rehabilitation Robotics, volume 2013, pages 1–8.

[24] Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., and Sutton, R. S. (2012).
Dynamic switching and real-time machine learning for improved human control
of assistive biomedical robots. In 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics, pages 296–302.

[25] Pineau, J. and Gordon, G. J. (2007). POMDP Planning for Robust Robot
Control. In Robotics Research, pages 69–82.

53

[26] Rafiee, B., Abbas, Z., Ghiassian, S., Kumaraswamy, R., Sutton, R. S., Ludvig,
E. A., and White, A. (2022). From eye-blinks to state construction: Diagnostic
benchmarks for online representation learning. Adaptive Behavior.

[27] Rafols, E., Koop, A., and Sutton, R. S. (2005a). Temporal Abstraction in
Temporal-difference Networks. In Advances in Neural Information Processing Sys-
tems, pages 1313–1320.

[28] Rafols, E. J., Ring, M. B., Sutton, R. S., and Tanner, B. (2005b). Using predic-
tive representations to improve generalization in reinforcement learning. In Inter-
national Joint Conferences on Artificial Intelligence, pages 835–840.

[29] Roy, N. and Thrun, S. (1999). Coastal Navigation with Mobile Robots. In
Advances in Neural Information Processing Systems, pages 1043–1049.

[30] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536.

[31] Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist
systems. Technical Report TR 166, Cambridge University Engineering Department,
Cambridge, England.

[32] Schlegel, M., Jacobsen, A., Abbas, Z., Patterson, A., White, A., and White,
M. (2021). General Value Function Networks. Journal of Artificial Intelligence
Research, 70:497—-543.

[33] Smallwood, R. D. and Sondik, E. J. (1973). The optimal control of partially
observable markov processes over a finite horizon. Operations Research, 21(5):1071–
1088.

[34] Smith, T. and Simmons, R. (2004). Heuristic Search Value Iteration for
POMDPs. In Conference on Uncertainty in Artificial Intelligence (UAI), pages
520—-527.

[35] Sutton, R., Modayil, J., Delp, M., Degris, T., Pilarski, P., White, A., and Precup,
D. (2011). Horde : A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction categories and subject descriptors. volume 2,
pages 761–768.

[36] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44.

[37] Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
The MIT Press, Cambridge, MA, USA.

[38] Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot
navigation. Artificial Intelligence, 99(1):21–71.

[39] Thrun, S. (1999). Monte Carlo POMDPs. In Advances in Neural Information
Processing Systems.

[40] Vasan, G. and Pilarski, P. (2017). Learning from demonstration: Teaching a
myoelectric prosthesis with an intact limb via reinforcement learning. IEEE ...
International Conference on Rehabilitation Robotics : [proceedings], 2017:1457–
1464.

54

[41] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss,
M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M.,
Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D., Sulsky,
Y., Molloy, J., Paine, T. L., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring,
R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T.,
Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. (2019). Grandmaster Level
in StarCraft II Using Multi-Agent Reinforcement Learning. Nature, 575:350–354.

[42] Werbos, P. J. (1990). Backpropagation through time: What it does and how to
do it. Proceedings of the Institute of Electrical and Electronics Engineers, 78:1550–
1560.

[43] White, A. (2015). Developing a Predictive Approach to Knowledge. PhD thesis,
University of Alberta.

[44] Won, D.-O., Müller, K.-R., and Lee, S.-W. (2020). An adaptive deep reinforce-
ment learning framework enables curling robots with human-like performance in
real-world conditions. Science Robotics, 5(46):eabb9764.

55

Appendix A: Lobster Environment
Experimental Details

A.1 Hyperparameters and Experimental Setup

We now detail the experimental setup and hyperparameters swept for all agents men-

tioned in Chapter 3. We first detail all the shared settings and swept hyperparameters

between all algorithms:

• Learning algorithm: Sarsa(0)

• Function approximator: Linear

• Optimizer: Adam

• Discount rate: γ = 0.9

• Environment train steps: 250K

• Max episode steps: 200

• Step sizes: [10−2, 10−3, 10−4, 10−5]

Because this environment is a continuing task, we evaluate our agents based on the

undiscounted returns over 200 time steps, with no terminal time steps. All hyperpa-

rameter sweeps were done over 30 seeds, with the best hyperparameters decided for

each algorithm based on mean undiscounted returns over these 200 time steps over

these 250K steps and 30 seeds. The results reported are over 30 different, additional

seeds, run on the selected hyperparameters. We now briefly describe the two base-

lines that we employ as comparisons to the auxiliary input techniques we introduce,

as well as minor details of the auxiliary input algorithms used in this section.

56

A.2 Algorithmic details

A.2.1 Observations only

As a baseline for performance, we consider the observations only agent. This agent

simply uses the Sarsa(0) algorithm and the configurations listed in Section A.1 to

learn a policy over the observations described in Equation 3.5. This agent is labelled

in teal as "Obs only".

A.2.2 Value Iteration with Environment States

We also consider an optimal agent acting on the fully-observable version of this task,

with full knowledge of the transition dynamics. We use this agent to see how close to

optimal our partially observable agents can perform. We use the transition probabil-

ities over the 12 possible states to perform value iteration [3] to calculate the optimal

value functions for control. We iterate through all states until our maximum change

in value function over all states ∆ is less than the threshold value θ = 10−10, ∆ < θ.

We use this optimal value function over the 12 states together with the transition

probabilities to get the optimal policy. We evaluate this optimal policy over 200

steps and collect 1000 runs to get both the mean and standard error to the mean as

the shaded dotted line in all learning rate plots: Figures 3.3a, 3.4a, 3.5a and 3.6.

A.2.3 Exponential Decaying Trace

For our trace decaying auxiliary input, we use a λ = 0.9 as the decay rate for the

exponential decaying traces for each reward.

A.2.4 Particle Filtering

With particle filtering, our approximate belief state becomes more accurate with more

particles we initialize with. In this environment, we instantiate the particle filter with

100 particles to begin with. In the rare case of particle depletion, where there are no

57

particles in the current environment state, we reset all particle weights to be uniform

and re-weight them from that time step onwards.

A.2.5 Likelihood Predictions

To predict the ground-truth reward regeneration likelihoods, we assume we know the

ground-truth rates of our Poisson processes for both rewards, which in this case is
1
Λ

.
= 1

10
for both rewards (on average, 1 reward regeneration every 10 steps). With

this rate of reward, we calculate the likelihood of a reward being present, given that

we get to the respective rewarding location as per Section 3.5.1.

58

Appendix B: Particle Filtering
Experimental Details

B.1 Environment Details

Below we consider all the details of the RockSample environment. We do not pro-

vide further details of the Modified Compass World environment here because the

description in Section 4.1.1 fully specifies the environment.

B.1.1 RockSample Environment Details

We now consider the environment and implementation details of the RockSample

environment not considered in Section 4.1.2.

The position of each rock is determined in this environment based on a uniform

sampling (without replacement) of 8 positions out of all possible 7 × 7 positions in

the grid. This position is deterministically defined by the seed which the experiment

is run on, and these positions do not change for each agent trained on a particular

seed. The initial goodness and badness of rocks is determined based on a uniform

Bernoulli distribution for every rock at every environment reset.

As mentioned when introducing this environment, the sensor available to the agent

for checking the goodness and badness of rocks has noise proportional to the L2

distance between the agent and the rock in question, which we denote as δ. This

noise is essentially based on another Bernoulli distribution, where with probability

p(δ) the sensor returns the correct sensor reading of the rock, and with probability

1− p(δ) the agent receives an incorrect reading. The probability function p is defined

59

0 5 10
L2 distance

0.50

0.75

1.00

Pr
ob

ab
ilit

y

hed = 20

hed = 5

Figure B.1: Half Efficiency Distance Function Plots
Probability of a correct sensor reading as a function of distances for different half efficiency
distances (δhed = 5, 20).

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(a) Half efficiency distance δhed = 20 results.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30
Di

sc
ou

nt
ed

 re
tu

rn
s

(1
0

ru
n

av
ge

ra
ge

)

Observations

Auxiliary Inputs

LSTM

Ground-truth

(b) Half efficiency distance δhed = 5 results.

Figure B.2: RockSample results for both δhed = 5, 20
In (a) and (b) mean and standard error to the mean are shown over 10 seeds. We use
δhed

.
= 5 for the results in our work.

by the half efficiency distance δhed of the sensor. Overall, this probability function is

defined by the function:

p(δ)
.
= 0.5× (1 + 2

− δ
δhed). (B.1)

We plot this function in Figure B.1. We also discuss results for different agents

introduced in Chapter 4 in RockSample for different half efficiency distances in Sec-

tion B.3. In our results in Section 4.1.2, we use a half efficiency distance of 5.

60

B.2 Environment-Specific Algorithmic Details and
Hyperparameters

We now detail the environment-specific algorithmic details and hyperparameters

swept for all agents pertaining to Modified Compass World and RockSample.

B.2.1 Modified Compass World Experimental Setup and Hy-
perparameters

For our Modified Compass World experiments, we use and sweep the following hy-

perparameters:

• Learning algorithm: Sarsa(0)

• Function approximator: Neural

Network

• Layers: 1

• Hidden units: 100

• Optimizer: Adam

• Discount rate: γ = 0.9

• Environment train steps: 1M

• Max episode steps: 1000

• Step sizes: [10−3, 10−4, 10−5]

• Number of particles: 1 for each pos-

sible start state (9×9×4−1 = 323)

All hyperparameter sweeps were done over 10 seeds, with the best hyperparameters

decided for each algorithm based on mean discounted returns over these 200 time steps

and 10 seeds. We then use these selected hyperparameters and run experiments for 30

different seeds to obtain the results presented in Figure 4.2a. For the LSTM agents in

this environment, the agents all use one-hot action concatenation [32] with its input

features to the LSTM cell. An ablation study for this action concatenation is done

in Appendix B.3.2.

Observations Only

With the observations only baseline, our observation vector is defined by a vector of

size 5, where each feature corresponds to whether or not the color directly in front

61

of the agent is being observed. An all zero vector represents no color being shown in

front of the agent.

Particle Filtering

We use particle filtering to approximate a belief state over the possible pose and

position of the agent. Our feature vector for this approach is of size 7 × 7 × 4 + 5,

where the first 7 × 7 × 4 features represent all possible combinations of positions

and poses of the agent, and the last 5 features are the same observation vector as

described in Appendix B.2.1. This position and pose belief state is approximated

through the particle filtering approach described in Section 3.4, where emission prob-

abilities are simply binary variables representing whether or not each position and

pose combination can emit the given color. For this environment, we simply use one

particle for each possible starting position and pose combination, 7 × 7 × 4−, since

the environment dynamics are deterministic, outside of the initial start state.

Recurrent Neural Network

Finally, our RNN-based approach uses the same observations as described in Ap-

pendix B.2.1, except with an LSTM as the function approximator. In addition to

using a recurrent neural network for function approximation, we also use action con-

ditioning [32]. In our setting, actioning conditioning simply consists of concatenating

a one-hot encoding of the previous time step’s action to the observation vector fed

into the RNN.

B.2.2 RockSample(7, 8) Experimental Setup and Hyperpa-
rameters

In our RockSample(7, 8) experiments, we leverage a replay buffer [17] for all of our

experience.

For the Rocksample(7, 8) experiments, we use and/or sweep the following hyper-

parameters:

62

• Learning algorithm: Sarsa(0)

• Function approximator: Neural

Network

• Layers: 1

• Hidden units: 100

• Optimizer: Adam

• Discount rate: γ = 0.99

• Environment train steps: 1.5M

• Max episode steps: 1000

• Step sizes: [10−3, 10−4, 10−5]

• Buffer size: [10K, 100K]

• Number of particles: 100

All hyperparameter sweeps were done over 10 seeds, with the best hyperparame-

ters decided for each algorithm based on mean discounted returns over these 200 time

steps. We then use these selected hyperparameters and run experiments for 30 differ-

ent seeds to obtain the results presented in Figure 4.2b. For the LSTM agents in this

environment, the agents also use one-hot action concatenation (c.f. Appendix B.3.2).

.

Observations Only

With the observations only baseline, our observation vector is defined by a vector of

size 7+7+8 = 22, where the first 7+7 features represent one-hot encodings of the x

and y coordinates of the agent respectively, and the final 8 features represent the most

recently observed rock moralities (goodness or badness). In our implementation of

RockSample, these observed rock moralities are initialized at 0.5, and take on values

depending on the most recent check of each rock. So if rock number 1 was checked

and seen as good 5 steps ago, and this was the most recent check of rock 1, then the

feature representing this rock would be a 1 feature, representing a good rock.

Particle Filtering

To approximate a belief distribution over state, we leverage particle filtering as men-

tioned in Section 3.4. In this approach, our input feature vector is also defined as a

vector of length 7 + 7+ 8. The first 7 + 7 features are once again a one-hot encoding

of the x and y coordinates for the first and second 7 features respectively. The final

63

8 features are an approximate belief state of the current state of the rock moralities,

instead of the underlying state of the environment. This is to reduce the dimension-

ality of the input features. These last 8 features are simply the normalized sum over

the weights over all particles. For this particle filtering algorithm, we start with 100

particles as well.

Recurrent Neural Network

Finally, our RNN-based approach uses the same observations as Appendix B.2.2, ex-

cept with an LSTM as the function approximator. Similarly to the Modified Compass

World LSTM agent, we also use action conditioning here.

Since we use a replay buffer with LSTMs for this algorithm, to fix a truncation

length for T-BPTT, we sample trajectories from our replay buffer of length truncation

length, and roll our trajectories out and propagate gradients backwards across the

sampled trajectory. This requires us to store and sample hidden states from our

LSTM in our replay buffer.

B.3 Ablation Studies

Here we list the ablation studies we perform over both our environments and select

algorithms.

B.3.1 RockSample(7, 8) Half Efficiency Distance Experiment

We perform a small experiment to see the effect of the half efficiency distance δhed

on the performance of our algorithms in Figures B.2a and B.2b. From these learning

curves, we can conclude that a lower δhed (or a less accurate sensor over distance to

rocks) doesn’t significantly affect the performance of the particle filtering auxiliary

input, nor does it affect the performance of the ground-truth agent. This parameter

seems to affect the LSTM-based agent and observations-only-based agent the most,

decreasing performance for both. The results presented in the main body of this work

64

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e6

0.0

0.1

0.2

0.3

0.4

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

LSTM (no cond)
LSTM (with cond)

Ground-truth

(a) Modified Compass World LSTM action condi-
tioning ablation.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

Observations

Auxiliary Inputs

Ground-truth

(b) RockSample(7, 8) LSTM action condi-
tioning ablation.

0.0 0.5 1.0 1.5
Environment steps 1e6

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

s
(1

0
ru

n
av

ge
ra

ge
)

LSTM (no cond)

LSTM (with cond)

(c) Fig. (b), but comparing only action con-
ditioning vs no action conditioning.

Figure B.3: Action Conditioning Ablation for LSTM
Results are over 10 seeds for both Modified Compass World and RockSample(7, 8).

use δhed
.
= 5.

B.3.2 LSTM Action Concatenation Ablation

We conduct another small ablation study on action concatenation with the LSTM

agent on both Modified Compass World and RockSample(7, 8). Results are shown

in Figure B.3. Action conditioning seems to generally help the LSTM agent in both

environments—this is because we are conditioning on and providing more information

than the LSTM agent not conditioned on actions. We note that the degree in which

this action conditioning helps varies from environment to environment. In Modi-

fied Compass World, action conditioning is vital to the performance of the LSTM

65

agent, whereas in RockSample(7, 8) we observe only potential marginal performance

increases (potential since we have overlapping standard error bars). This reveals a

further point with regards to action conditioning for RNNs: actioning conditioning

will help depending on how much knowledge of the action resolves partial observabil-

ity. In Modified Compass World, where the state is extremely partially observable,

knowing the previous action resolves a big portion of the partial observability of the

environment, whereas in RockSample, the previous action does not reveal too much

about the environment state.

66

Appendix C: Fishing Experimental,
Algorithmic and Environment Details

C.1 Fishing Environment Details

In this section, we describe the specifics for both Fishing environments, as well as the

environment parameters for both Fishing 1 and 2, including the rates of change for

currents and the rates of regeneration for rewards.

We first describe the implementation specifics of currents. For all currents in both

Fishing 1 and 2, currents push you one tile towards the direction that the current is

facing. In both environments, the agent is first moved in the direction which the action

it takes corresponds. After moving in that direction, depending on the current that

the agent lands on, it will be moved in the direction which the current is facing. For

example, if the agent moves into a current facing in the same direction it just moved

in, say east, then the current will bring the agent one more tile in the east direction.

In this one transition, the agent will move two tiles in the eastward direction, because

of the move action and the current.

As for rewards in the environment, the agent receives a reward of +1 for collecting

a reward. If the agent is pushed by the current into a wall, it receives a reward of

−0.1; otherwise, the agent receives a reward of 0.

As for starting position, the agent starts in the (x, y) position (5, 5) in both envi-

ronments.

67

C.1.1 Mapping and Observations

One part of the partial observability of this environment is the limited observation

an agent receives at every step. The agent receives a 5× 5 agent-centric observation

vector at every step. All agents view an accumulated (over time) agent-centric map

of these observation vectors, which we call the agent map. For our 11×11 grid world,

this amounts to a square observation of length 11 + 11 − 1 = 21—the dimensions

beyond the length 11 of the grid world account for the agent-centric view when the

agent is at the edges of the grid world. At every step, the 5 × 5 observable area is

updated on the agent map with the given coordinates of the agent. Hence, with every

additional step, since rewards and currents change stochastically over time, previously

observed (but currently unobserved) missing rewards and currents on the agent map

are less and less accurate as time progresses.

The agent’s view is also obstructed by the walls in the environment. If an agent

is next to a wall, then everything behind the wall is obstructed, even if the area was

meant to be observable. This is true for all walls except for glass obstacles, denoted

in blue in Fishing 2. These glass obstacles act as walls, except that the agent is able

to see through them, unlike normal walls. Glass walls are placed here so that the

agent is able to see the direction that the currents are facing within the tunnel to the

reward.

The agent observes a tensor of shape 21×21×6, where the last dimension indicates

the channels for different aspects of the environment/observation. The agent is able

to see obstacles (walls and glass walls, 1st channel), currents and their direction (next

4 channels), and finally the locations of rewards if they are present (last channel).

C.1.2 Stochasticity in the Environment

Both rewards and currents in both environments are defined by Poisson processes,

with potentially different rates corresponding to each reward and each current. We

now describe these rates for both environments. All currents depicted with a single-

68

direction arrow denote a current that is static and does not change direction. Note

for all currents, when a current is sampled to change, we sample uniformly at random

from the remaining current directions, excluding the original current direction.

Besides the stochasticity from the Poisson processes, the agent also has a 0.1 prob-

ability of “slipping” for a move, where the agent takes an action, and with probability

0.1 the agent simply stays in place.

Fishing 1 Poisson Processes

In Fishing 1, all our stochastic processes have equal rates of regeneration or current

flipping. This rate is 60—or on average, these Poisson processes will activate in

expectation over after 60 steps. This larger rate (c.f. Section 3.2) is such that the

agent is more incentivized to go collect other rewards, rather than staying at one

particular reward and waiting for regeneration.

Fishing 2 Poisson Processes

In Fishing 2, rates of reward generation are all set to 50, except for (y, x) coordinates

(8, 9), which has a rate of regeneration of 100. Note, from here onwards we will list

positions as tuples of coordinates of (x, y). As for our currents, we group our currents

based on their reward regeneration rates (in order from left to right, top to bottom

in the grid world):

10: (0, 6), (0, 7), (2, 5), (2, 6), (4, 1), (5, 7), (5, 8), (5, 10), (8, 7), (9, 7).

20: (1, 3), (1, 4), (7, 0), (7, 1), (8, 5), (9, 5), (10, 2), (10, 3), (10, 4).

30: (5, 2), (5, 3), (5, 4).

40: (0, 2), (2, 0), (2, 1), (3, 9), (3, 10), (6, 2), (6, 3), (6, 4), (9, 8), (10, 8).

C.2 Fishing-Specific Algorithmic Details and Hyper-
parameters

We now detail the algorithmic details and hyperparameters swept for all agents on the

Fishing environments. In both our Fishing experiments, we leverage a replay buffer

69

[21] for training. We list the hyperparameters swept for all our algorithms below:

For the Fishing experiments, we use a convolutional neural network to parse our

agent map tensor. We use and/or sweep the following hyperparameters:

• Learning algorithm: Sarsa(0)

• Function approximation: Convolu-

tional Neural Network

• Layers: 1

• Hidden units: 64

• Batch size: 64

• Optimizer: Adam

• Discount rate: γ = 0.99

• Environment train steps: 2M for

Fishing 1, 12M for Fishing 2

• Max episode steps: 1000

• Step sizes: [10−4, 10−5, 10−6, 10−7]

• Buffer size: 100K

• Evaluation frequency: 2K for Fish-

ing 1, 10K for Fishing 2

All hyperparameter sweeps were done over 5 seeds, with the best hyperparameters

decided for each algorithm based on mean discounted returns over the last 100 eval-

uation steps. Results in this section use offline evaluation returns over environment

steps. Offline evaluations are conducted every evaluation frequency steps (as listed

above). We run 5 test episodes per offline evaluation, and also average over these

test episodes as well as seeds for a final average return for a given evaluation step at

a certain training step. We then use these selected hyperparameters and this offline

evaluation to run experiments for 30 different seeds to obtain the results presented in

Figures 5.1b and 5.1d.

C.2.1 Convolutional Neural Network Architecture

We now detail the architecture for our convolutional neural network. All our convo-

lutional layers use a stride of 1 and no padding:

• Conv2D(output channels = 32, kernel size = 10)

• Relu activation

70

• Conv2D(output channels = hidden size, kernel size = 7)

• Relu activation

• Conv2D(output channels = hidden size, kernel size = 1)

• Linear layer with output nactions

C.2.2 Convolutional Neural Network LSTM Architecture

Our LSTM implementation is a convolutional neural network with an LSTM layer

after the convolutional layers:

• Conv2D(output channels = 32, kernel size = 10)

• Relu activation

• Conv2D(output channels = hidden size, kernel size = 7)

• Relu activation

• Conv2D(output channels = hidden size, kernel size = 1)

• Relu activation

• Linear layer with output hidden size

• LSTM(hidden state size = hidden size)

• Linear layer with output nactions

C.2.3 Exponential Trace Implementation Details

While we describe the approach to using exponential decaying traces for the Fishing

environment in Section 5.2, we go into detail here with regards to implementation

details and hyperparameters swept.

Our exponential decaying traces are simply another channel in our agent map

tensor, with the same size of 15× 15. It is a tensor of elements in the range of [0, 1],

with each element denoting how long it has been since observing that particular

position (where 1 denotes the agent is currently observing this area, and 0 denoting

it has never observed this position).

71

As for the decay rates, we swept the following rates: [1, 0.95, 0.85, 0.65].

C.2.4 Recurrent Neural Network Implementation Details

With our RNN implementation, we simply use the same technique of training an

LSTM with a replay buffer as in Appendix B.2.2, where we sample trajectories of

length truncation length for T-BPTT. We swept the following truncation lengths for

both Fishing environment hyperparameter sweeps: [1, 5, 10].

72

	Introduction
	Thesis Objectives and Contributions

	Background
	Sequential Decision Making and Markov Decision Processes
	Value Functions
	Bellman Equations and Value Iteration for Control
	Temporal-Difference Learning and Control with Sarsa
	Value Function Approximation
	Deep Reinforcement Learning
	Partial Observability
	Agent-State Functions
	Recurrent Neural Networks as Agent-State Functions

	Auxiliary Inputs
	Formalism and Examples
	Frame Stacking
	Resolution and Depth
	Incremental Functions

	The Lobster Environment
	Environment Details

	Exponential Decaying Traces
	Decaying Traces on the Lobster Environment
	Results
	Value Function Geometry of Trace Features

	Approximate Belief State with Particle Filters
	Particle Filtering on the Lobster Environment
	Results

	Likelihoods for Incorporating Future Predictions and Past Information
	Likelihoods as Predictions for the Lobster Environment
	Results

	Particle Filtering for Auxiliary Inputs
	Particle Filtering Environments
	Modified Compass World
	RockSample

	Results and Discussion

	Scaling Up Auxiliary Inputs and Integration with RNNs
	The Fishing Environment
	Exponential Decaying Traces For Mapping
	Results and Discussion

	Conclusion and Future Work
	Appendix A: Lobster Environment Experimental Details
	Hyperparameters and Experimental Setup
	Algorithmic details
	Observations only
	Value Iteration with Environment States
	Exponential Decaying Trace
	Particle Filtering
	Likelihood Predictions

	Appendix B: Particle Filtering Experimental Details
	Environment Details
	RockSample Environment Details

	Environment-Specific Algorithmic Details and Hyperparameters
	Modified Compass World Experimental Setup and Hyperparameters
	RockSample(7, 8) Experimental Setup and Hyperparameters

	Ablation Studies
	RockSample(7, 8) Half Efficiency Distance Experiment
	LSTM Action Concatenation Ablation

	Appendix C: Fishing Experimental, Algorithmic and Environment Details
	Fishing Environment Details
	Mapping and Observations
	Stochasticity in the Environment

	Fishing-Specific Algorithmic Details and Hyperparameters
	Convolutional Neural Network Architecture
	Convolutional Neural Network LSTM Architecture
	Exponential Trace Implementation Details
	Recurrent Neural Network Implementation Details

