
WSDarwin: A Comprehensive Framework for
Supporting Service-Oriented Systems Evolution

by

Marios-Eleftherios Fokaefs

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

c© Marios-Eleftherios Fokaefs, 2015

Abstract

Service-oriented architecture (SOA) has become the prevalent paradigm for

the development of distributed and modular software systems. SOA owes its

popularity to certain properties that characterize the resulting systems and,

in theory, gives flexibility to the development and maintenance of service-

oriented systems. First, web services, which are the building blocks of service-

oriented systems, are accessible over the Internet, which implies that there is

no need to exchange code artifacts (as in the case of software libraries). Second,

software components in service-oriented systems are published through concise

and abstract interfaces usually based on common and well-adopted standards.

The abstraction implies that the interface exposes just enough for a functional

run-time data exchange. The abstraction results in information hiding, which

offers two benefits. On one hand, providers can hide the business logic of their

service from the clients, thus, retaining their expertise or the ownership of data,

from which they can possibly profit. On the other hand, taking advantage of

the common standards, clients can flexibly migrate between web services to

satisfy their requirements as best as possible.

Nevertheless, these particular properties may also cause problems in the

stability of a service-oriented system especially in the case of software evolu-

tion, if good practices are not followed. One relevant challenge is that, since

the system is distributed, the decision about the evolution of a service may

be restrained to a small part of the system. Also, since the communication

between the components is limited by the abstract interface, the impact of the

change may be unknown for the rest of the system. The clients of a service

may have little information about the changes and how to react to them. The

published service interface constitutes a contract between the provider and

ii

the client. If best practices about service evolution are not followed and this

contract is broken, the repercussions may be severe to the client application

and this can also have business and financial impact both to the client and

the provider. Another challenge is caused by the definition and availability

of multiple styles and technologies that follow a service-oriented architecture,

including, but not limited to, REST and WS-* services. This results in a

variability on how service-oriented systems are implemented. Although the

challenges around the evolution of web services may be based on fundamental

properties of the architecture, each style may require different solutions and

tools to support the maintenance of service-oriented systems.

Given these challenges, there is an evident need to support client developers

in the maintenance of their application against evolving services. This support

is necessary regardless of whether good practices are followed by providers

and regardless of the underlying styles and technologies of the service sys-

tem. There is also a need to support the decision-making processes of service

providers and clients about the evolution of their software, in a manner aware

not only of the technical but also the relevant business and economic consider-

ations. In my work, I make three contributions towards satisfying these needs.

I have developed the WSDarwin tools to support the maintenance of client ap-

plications in the event of service evolution; first, an Eclipse plug-in to support

service clients of the WS-* style and, second, a web application to support

REST service clients. Between the two implementations, WSDarwin offers

support for a variety of tasks, including comparison of WSDL and WADL

service interfaces to identify differences between versions of a service, auto-

matic adaptation of WS-* client applications, automatic generation of WADL

interfaces for REST services and automatic mapping of similar services from

different providers. The third contribution of my work is the development of a

theoretical framework to support the decision-making process concerning the

evolution of a service-oriented system. The framework consists of an economic

model and a game-theoretic model to take into consideration the economic

repercussions of service evolution and the complicated interactions between

providers and clients. The thesis of my work is that service evolution should

iii

be not only technically but also socially and economically conscious through

support from automated tools. WSDarwin implements a suite of relevant

tools, and thus substantiates the thesis.

iv

Preface

This thesis is written in a paper-based format. It consists of papers that

have already been published or of papers that have been submitted, but have

not yet been reviewed by the time this thesis was submitted. Each paper

is copied in its entirety and its original format in a dedicated section in the

corresponding chapter. For the published papers, I start each section with the

corresponding reference to the paper, while for the submitted paper, I provide

the partial reference to the paper and a note to specify that the paper has

been submitted, but not yet accepted and the date of submission.

There are two of the published papers that had more authors, other than

myself, my supervisor or a member of my supervisory committee. For the

paper presented in Section 2.1 (Fokaefs et al., 2011), the second co-author

developed the tool I used to study the web services, while the third co-author

found the different versions for the various services and the relevant business

announcements. I conducted the empirical study, drew the conclusions and

wrote the biggest part of the paper. For the paper presented in Section 3.2,

I developed the mapping methodology and its implementation into a tool,

designed its evaluation on the selected APIs and wrote the biggest part of the

paper. The first author of this paper conducted the experiments to evaluate

the mapping methodology and helped me write the evaluation section of the

paper. In this case, the order of the authors reflect the fact that this work

was a requirement for a course of the first author, and not necessarily the

contribution of each author.

v

Acknowledgements

I would like to thank Professors Hoover, Messinger, Miller and Martin for

serving as members for my PhD committee, all the reviewers of my publications

and all the colleagues I have met and discussed in various conferences and

especially the CSER community, whose comments and advice helped to shape

and guide this work towards the right direction.

I would also like to thank my colleagues in the SERL lab and the SSRG

group for creating an excellent work environment with great atmosphere. A

huge thanks goes to all of my friends and especially Angeliki Altani, John

Dimopoulos, Natasa Tsantali, Nikos Vitzilaios and Maria Attarian (from afar)

for helping me keep my sanity and reminding me that there is so much more

in life.

I couldn’t possibly just thank my parents, because everything they have

done for me to support me and encourage me in my work is invaluable. I hope

I made them proud. I would be remiss if I didn’t acknowledge the support

from my professors and mentors Professors Chatzigeorgiou and Tsantalis and,

of course, my supervisor Professor Eleni Stroulia, who has not only supported

this work, but has also generously provided me with the necessary skills to

pursue my future endeavours. ”I owe my parents my life and my teacher my

happiness”.

vi

Table of Contents

1 Introduction 1
1.1 Service-Oriented Architectures 1
1.2 Problem Definition . 2
1.3 Technical Background . 6
1.4 Thesis and Contributions . 8
1.5 Outline . 12

2 Support for WS-* Service Clients 15
2.1 An empirical study on web service evolution 21
2.2 WSMeta: a meta-model for web services to compare service

interfaces . 31
2.3 WSDarwin: Studying the Evolution of Web Service Systems . 40
2.4 WSDarwin: automatic web service client adaptation. 66
2.5 The WSDarwin Toolkit for Service-Client Evolution 82

3 Support for REST Applications 87
3.1 Developing and Maintaining REST Client Applications: The

Tumblr Case Study . 90
3.2 Mapping the responses of RESTful services based on their values101
3.3 WSDarwin: A Web Application for the Support of REST Ser-

vice Evolution . 112

4 Service Evolution Economics 117
4.1 Software Evolution in the Presence of Externalities: A Game-

Theoretic Approach . 120
4.2 WSDarwin: A Decision-Support Tool for Web-Service Evolution 145
4.3 Software Evolution in Web-Service Ecosystems: A Game-Theoretic

Model . 150

5 Conclusions and Future Work 165
5.1 Summary and Conclusions . 165
5.2 Future Plans and Directions 167

Bibliography 170

vii

Chapter 1

Introduction

1.1 Service-Oriented Architectures

Service-oriented architecture (SOA) has become the prevalent style for the de-

velopment of modular systems. Systems implemented based on this architec-

ture are distributed and their components communicate with each other over

the Internet. SOA enables interoperability and flexibility in developing such

distributed systems based on existing software components. The flexibility of

the architecture successfully addresses the high volatility of such systems in

terms of changing requirements (functional and non-functional) and the avail-

ability (or absence thereof) of services. Another goal of the architecture is to

overcome the technical barriers imposed by the existence of multiple platforms,

programming languages and hardware constraints. The flexibility, interoper-

ability and technological independence of SOA are achieved by relying on open

Internet standards that can be supported by most, if not by all, platforms and

programming languages.

Web services are the building block of SOA and the term is used to describe

a broad class of software components. As a result of this variety, there are a

number of perceptions as to what is a web service and in turn there is a num-

ber of definitions, an overview of which is provided by Alonso et al. (2004). In

the context of this work and throughout this document, I assume the defini-

tion provided by the UDDI consortium, which describes web services as “self-

contained, modular business applications that have open, Internet-oriented,

standards-based interfaces” (UDDI Consortium, 2001). This definition, simple

1

yet comprehensive, emphasizes all the properties of web services that make

this work interesting and its contributions important for the advancement of

Web Services research.

The self-containment of web services implies that they are independently

designed, implemented and maintained software components, which are fully

functional. Self-containment also implies a notion of ownership and a clear defi-

nition of boundaries between the service and other components. The definition

of web services as business application clearly points out their importance for

firms as business assets with financial and economic properties. Web services

enable firms to take advantage of and expose their expertise in a domain, their

data or certain qualities they may possess, including reliability, authority and

security. As business assets, they have to be protected and this is the reason

that the business logic of a web service is hidden behind a carefully designed

interface. The fact that this interface is based on web standards, which are

supported by most platforms and programming languages, implies that they

are directly consumable by a machine, which facilitates the development of au-

tomated tools to support the development and maintenance of service-oriented

systems.

1.2 Problem Definition

Unlike other modular and distributed architectures, SOA has properties that

may challenge certain software-engineering tasks. This work is specifically

concerned with the task of software evolution, namely how web services evolve

and how this evolution affects the maintenance of a service system and its

components in general. This section lays out the specifics of these properties

and how they manifest themselves during service evolution.

Jurisdiction: As independently developed software components, the web

services of a service-oriented system may belong to different entities. As a re-

sult, the decision about a change may be made independently and lie outside

the control of other participants in the system. There are no formal mecha-

nisms to enforce that changes should take into account the impact on the rest

2

of the system. Furthermore, the composition of the system in terms of services

and clients may not always be completely known. As a result, a change to a ser-

vice may affect the stability of certain components or of the system as a whole.

Backwards compatibility, which suggests that a change can be implemented so

that it doesn’t affect current client applications, cannot always be supported.

One way of offering backwards compatibility is by keeping the older version

available. However, maintaining multiple versions of a service can result in

additional costs to support the necessary infrastructure (e.g. servers) and it

can actually be cheaper for client applications to migrate to the new version.

Therefore, it is the normal policy of service providers, after a grace period,

to take down an older version and force their clients to migrate to the new

version (Twitter, 2014; Tumblr, 2014). In some cases, supporting backwards

compatibility, by including deprecated interfaces for example, may cause the

quality of the service to deteriorate and implies additional maintenance costs.

Information hiding: While hiding the business logic of a web service

enables the owner to protect his intellectual property, it deprives the clients of

valuable information about the implementation of the service especially in the

event of a change. Since the client application perceives only an abstraction of

the service’s functionality through its interface, it is hard to assess the specific

details of a change. If the change affects the service interface, it will be easy

for a client to recognize that there has been a change. However, if the change

goes deeper in the functionality of the service, it will still have an impact on

the client’s behaviour. If the change affects the service’s functionality but not

its interface, then the change will be perceived by the client through a fault.

A provider may give more information about the change, but it will more

than often be in a format that it is not directly consumable by a machine.

While this information will assist the client to adapt to the new version of

the service, it does not facilitate the implementation of tools to support the

automatic adaptation of client applications, which is one of the goals of SOA.

Live connection: Client applications need to maintain a live connection

with web services, since the latter are web-accessible software. Unlike software

libraries, where a client owns a local copy, the only version of a web service

3

is the one which is available online. If a change occurs in a static API, this

will not affect the local copy and it will not disrupt the client application’s

functionality. However, if a web service is changed in an incompatible way, then

this constitutes a breach in the communication contract (i.e., the interface)

between the service and the client, even if the medium of the communication

(i.e., the Internet) remains intact and this may affect the client application’s

functionality.

Economics: Given that web services are considered self-contained busi-

ness applications, their respective owners have financial and economic mo-

tives when they develop and maintain their software. The independence of

the service components also implies that their owners are self-interested and

self-motivated. Any decision made around the evolution of a service or the

adaptation of a client application will have to be based both on technical and

socio-economic criteria. For example, if a provider decides on a change that

may potentially lead to excessive adaptation costs for the clients, then the

latter may consider abandoning the provider for a competitor. In reality, a

service-oriented system operates within a broader business ecosystem, where

multiple providers offer similar services and clients will have to choose one of

them. Keeping up with competition and maintaining backwards compatibil-

ity are two conflicting goals, where achieving the former includes the risk of

losing clients, while achieving the latter includes the risk of technological stag-

nation and staying behind with respect to competition. It is essential that the

trade-off between these to goals is considered when making evolution decisions.

Although service components are independent in principal, there are very

strong ties between them, both technical and economical. Software-engineering

best practices, in this context the preservation of backwards compatibility,

cannot or may not always be followed. Even if we assume that best practices

can be followed, this is not always the case and a breaking change can have

negative technical and financial repercussions for the clients. Furthermore,

the imprecise definition of certain service-oriented styles may be interpreted

differently by the providers resulting in variability of syntaxes and service in-

terfaces. In this case, the design of a service-oriented system may become more

4

rigid. Clients may get locked with a particular provider without the flexibility

to satisfy their requirements with a different service. Therefore, there is a need

to support the clients with automated tools to react to service changes in as

effective and expeditious manner as possible.

Research Problem 1 (RP1): How can clients be supported to
adapt to change or to a new service effectively and efficiently?

As web services are implemented using a variety of technologies and archi-

tectural styles, like WS-* services or REST services, different tools and speci-

fications have been developed for these styles. Although the problems around

service evolution and its impact on client applications are similar across the

different styles, the variety of tools gives different capabilities to create solu-

tions for adapting client applications against changed web services. Therefore,

along with developing generic methods to support service evolution, there is

also a need to create and implement specific tools to facilitate the adaptation

of client applications.

Research Problem 1-WS-* (RP1-WS): How can client
applications be supported in adapting to changed WS-* services?

Research Problem 1-REST (RP1-REST): How can client
applications be supported in adapting to changed REST services?

Additionally, the technical repercussions to clients may lead to respective

financial repercussions to the providers. Therefore, another need is to support

technical and business decisions on an evolving service ecosystem. Such a sup-

port system will be required to take a holistic consideration of the ecosystem,

its needs and predict its actions and its reactions concerning evolution.

Research Problem 2 (RP2): How can providers and clients be
supported in making decisions on service evolution with both
technical and economic criteria?

5

1.3 Technical Background

In this section, I describe certain technologies and tools that are going to be

referenced throughout this document and are necessary for the understanding

of my work.

WS-* (W3C, 2013) (Web of Services) is a message-based design proposed

by W3C to construct modular and service-oriented systems based on a set of

technologies and standards. WS-* services use SOAP (Simple Object Access

Protocol) (W3C, 2007a) as the message exchange protocol for structured in-

formation. SOAP is characterized (a) by extensibility (W3C, 2007c), so that

other specifications can define additional features for the protocol like “secu-

rity”, “routing” and “correlation”, (b) by neutrality (W3C, 2007b), since it

can work with a variety of communication protocols on the application layer,

not limited to HTTP and (c) by independence (W3C, 2007c), as it allows for

any programming model. SOAP uses exclusively XML to encode its messages

in which it specifies the remote calls and response information. SOAP was

criticised for verbosity and that was one of the reasons, why REST gained

popularity over WS-* services. The other reason is the programmatic simplic-

ity and ease of use of REST similar to making HTTP calls. WS-* services are

generally perceived as operation-centric, where any kind of operation can be

invoked remotely using the appropriate input and the output is not required

to be persistently stored.

REST (Fielding, 2000) (Representational State Transfer) is an architec-

tural style built on top of the HTTP communication protocol. REST imposes

certain architectural constraints that effectively remove responsibilities from

the server, other than delivering the requested functionality. In practice, the

requests carry no information about the state of the client and the client may

cache the requests. In turn, the hyperlinks determine the state of the ser-

vice. REST is implemented exclusively over HTTP, while the most popular

format for information exchange is JSON, although XML may also be used.

REST services are data-centric, where everything is perceived as a resource,

upon which a client can perform CRUD operations (Create, Retrieve, Update

6

and Delete), which conceptually correspond to the HTTP methods (PUT, GET,

POST, DELETE). The response of these operations is usually a view of some

persistently stored data.

WSDL (W3C, 2001) (Web Service Description Language) is an XML-based

language to define interfaces especially for WS-* services, although WSDL2.0

can also specify interfaces for REST services. The WSDL defines a service as

a set of operations with input and output parameters. The WSDL includes or

may reference an XML schema that describes the types and the structure of

the operation parameters. The concrete part of the WSDL interface defines

the service endpoint and the communication protocol used for each operation.

WADL (Hadley, 2009) (Web Application Description Language) is an XML-

based language to define web applications that are built based on the REST

architectural style. According to WADL, a REST service is a collection of re-

sources upon which only HTTP methods can be performed. For each method,

the interface specifies the request and the response parameters and, similar to

WSDL, a XML schema defines the parameters’ types and structure.

Apache Axis2 (Apache, 2012) is an engine especially designed for WS-*

services and Java client applications. Axis2 offers the capabilities of generating

a WSDL interface from Java source code and a Java client proxy from a WSDL

interface. In the former case, the user has to specify what methods are going to

be exposed as service operations from a single class and the parameters have to

be of concrete types, because the XML schema cannot be inferred for abstract

classes or interfaces. In the latter case, Axis2 generates a single class that

contains all the operations of the WSDL interface and all the parameter types

are implemented as inner static classes within the proxy. The client application

can then construct the input data according to the generated classes and invoke

the service operations from the proxy.

WADL2Java (Oracle, 2013) is a tool offered as part of the Jersey framework

for REST services by Oracle, similar to Axis2 for WS-* services. In order to

generate a WADL interface, the tool first adds special annotations to the

methods and the class that are to be exposed. The generated proxy is a

Java class that follows the structure of the resources defined in the interface

7

and each resource includes the available methods. However, the various types

included in the XML schema are generated as separate classes.

The challenges around service evolution and the methods proposed to ad-

dress them in this thesis apply to service-oriented systems regardless of the

implementation style. However, the WSDarwin tools are implemented specifi-

cally for each style (REST and WS-*) considering their peculiarities and taking

advantage of the artifacts and technologies for each one of them (e.g. WSDL

and Axis2 for WS-* and WADL and WADL2Java for REST). Pautasso et al.

(2008) give a comprehensive comparison between WS-* and REST, which

actually emphasizes the point that different styles require different tooling

support.

1.4 Thesis and Contributions

The thesis of this work is that “service system evolution can and should be, not

only technically, but also socially and economically conscious through support

from automated software engineering tools.” Today, when deciding on, de-

veloping and implementing a change not all of these considerations are taken

into account at the same time nor with the same priority. Automated tools

to support the evolution and adaptation of service components can help to

address this inadequacy.

In my work, I have developed WSDarwin as a means to implement my

thesis and prove its plausibility. Towards this goal, WSDarwin makes two

technical contributions to address the first research problem for WS-* (RP1-

WS) and REST (RP1-REST) services and support the adaptation of client

applications, and a theoretical contribution to address the second research

problem (RP2) and support the decision-making process of service-ecosystem

participants on service evolution.

For the first technical contribution and towards addressing the first research

problem for WS-* service clients (RP1-WS), WSDarwin offers an integrated

set of two tools providing a complete solution for systematic adaptation of

WS-* client applications, in the event of service evolution.

8

• The service-interface comparator automatically identifies the differ-

ences between two versions of a web service. The comparator uses a

proprietary representation for the service interfaces, which is less ver-

bose than WSDL or WADL, in order to be faster and to be able to

handle both WS-* and REST services seamlessly. The representation

is based on the WSMeta web service interface meta-model, which I

also propose in this thesis. The comparison algorithm can identify sim-

ple CRUD (Create, Retrieve, Update, Delete) changes as well as more

complicated ones like refactorings.

• The client-application adaptor automatically adapts client proxies to

new versions of a service interface. The tool receives the differences from

the comparator as an input and uses them as an edit script to adapt

the old client proxy to the new version of the service. The adaptation

algorithm is generic enough to handle any kind of change and regardless

of the client’s underlying programming language. Not all service clients

may use a client proxy to invoke a service, but, especially for WS-*

services, this is the easier and more common way. Therefore, the adaptor

can support a large number of service clients.

The WSMeta service specification is proposed to provide a more abstract

and less verbose representation for service interfaces than WSDL or WADL

specifications. This leads to more efficient comparison methods. At the same

time, this specification follows the structure of the generated client proxy, thus,

the service interface annotated with the results of the comparison can be seam-

lessly consumed by the adaptation process, which by extension becomes more

efficient and effective in addressing changes from the client’s side. Addition-

ally, the specification has the ability to represent services of the two popular

styles that this thesis deals with; WSDL and WADL service interfaces. To

achieve this, we used VTracker (Fokaefs et al., 2011), a generic XML differ-

encing method, on the respective schemas of the two specifications to identify

the best mapping between their elements. Merging the two schemas according

to the VTracker results gave the WSMeta specification.

9

The WS-* support of WSDarwin is implemented as an Eclipse plug-

in. The plug-in offers a complete solution to the problem of service evolution

guiding the developers of client application from understanding how the service

changed to automatically adapting the client application and testing it to

confirm that the changes were benign. The user’s interaction with the plug-in

is very simple (one button per action) and all the actions are orchestrated so

that very little input is required from the developer.

For the second technical contribution and towards addressing the first re-

search problem for REST service clients (RP1-REST), WSDarwin offers a set

of four tools providing support for the development and maintenance of REST

applications and, among others, address the absence of formal specifications.

• The service-interface specification generator automatically exer-

cises a web service and analyses the requests and responses to infer the

schema and the structure of the service. This tool is specifically targeted

to REST services, for which a service interface is not always provided in

a standard format.

• The service-interface comparator is the same as the comparator for

WSDL interfaces. This is due to WSMeta which has the ability to handle

handle both WSDL interfaces for WS-* services and WADL interfaces

for REST services seamlessly.

• The client-proxy generator automatically generates service client prox-

ies from service interfaces. WSDarwin integrates Oracle Jersey to gen-

erate proxies from WADL service interfaces. This integration allows the

developers to invoke said tools from within their development environ-

ment and their output can be then used by the other WSDarwin tools

with minimal human input.

• The cross-vendor service mapper semi-automatically maps the re-

sponses of two services by different providers within the same domain.

The tool assumes that, since the services belong to the same domain,

10

some of response elements will have the same or similar values and there-

fore will correspond to the same entity. The goal of the tool is to map

these elements and indicate to the developer how the client application

should be changed to migrate from one service to another.

The REST support of WSDarwin is implemented as a stand-alone web ap-

plication. The application is developed in the spirit of REST to be easy to use

and requiring little and readily available input. The tools are complemented

with a set of visualizations to allow the users to change the generated interface

at will and better identify the differences between services.

The theoretical contribution of my research is setting the foundations for

a framework to support the decisions of service providers and clients around

the evolution of web services and the adaptation of client applications. The

argument of this research is that while evolution decisions may be motivated

by technical drivers, such as new emerging technologies and changing require-

ments, they are actually dictated by economic and financial parameters. Fur-

thermore, as modular and distributed systems, service-oriented systems oper-

ate within a business ecosystem and every decision may have an impact on

part or on the whole ecosystem. Therefore, it is necessary for the decision

makers to adopt a holistic approach and take into account both the techni-

cal and the economic aspects of service evolution. Towards supporting the

decision-making process on service evolution, my thesis makes three distinct

contributions.

• It proposes an economic model to calculate and estimate a number of

non-technical parameters relative to web services. The model consists of

functions and a series of optimizations to calculate the costs of evolution

and adaptation, optimal evolution effort and the price and the value of

the new version of the service for every possible evolution scenario. The

model takes into account the actions and reactions of all the participants

of the service ecosystems, clients and providers alike, and the indirect

effect of each decision to the rest of the ecosystem.

11

• It proposes a game-theoretic model to capture all the interactions

and conflicting interests of the service ecosystem participants when they

decide about their evolution strategies. Their interactions are modelled

as a two-stage game, where the providers decide first on their evolution

strategy and the clients react by choosing their preferred provider.

• It proposes a decision-support system, which simply solves the afore-

mentioned game and finds its Nash equilibrium. This equilibrium de-

termines the best action for each participants as the response to other

participants’ actions and the state of the ecosystem. It also dictates the

evolution strategy of each provider, the division of the market (what

client uses which provider), evolution and adaptation efforts for changed

services and the prices for the new versions.

The use of the models and the decision-support system is demonstrated

with a synthetic but realistic case study from the domain of cloud services

inspired by real cloud providers like Amazon, Google and Microsoft. In this

example, we explore a variety of evolution scenarios and their impact on the

ecosystem. The primary goal of this part of my thesis is to raise awareness

about the importance of economics and business relationships on the strategic

decisions concerning the lifecycle of software and especially of web service

systems.

1.5 Outline

This dissertation is organized in 4 chapters; three on the contributions of

WSDarwin and one that concludes the work. Each contribution chapter opens

with an introduction to summarize the research problem and to lay out the

papers that I have published or submitted around this problem. The purpose

of the introduction is also to connect the papers with each other and describe

the contributions that each one of them makes towards addressing the single

research problem. The rest of each chapter contains the papers as they have

been published or submitted.

12

The dissertation is organized as follows. Chapter 2 describes the first tech-

nical contribution of this thesis on RP1-WS to support clients of WS-* ser-

vices. More specifically, the chapter presents an empirical study on the evolu-

tion of several industrial WS-* services (Section 2.1) to examine how services

generally evolve and the impact of these changes to service clients. Next, the

chapter describes a methodology to automatically identify changes between

two versions of a service by comparing the public WSDL interfaces of the

service (Section 2.3). The chapter also presents an algorithm and a tool to

automatically adapt client applications to new versions of a service using the

previously identified changes between the two versions (Section 2.4). Finally,

the chapter demonstrates an Eclipse plug-in that implements a complete so-

lution to support WS-* clients from comparing service interfaces to adapting

and testing Java clients (Section 2.5). The performance of the tool and its

different features was evaluated on the Amazon EC2 SOAP service.

Chapter 3 describes the second technical contribution of the thesis on RP1-

REST to support clients of REST services. First, the chapter examines how

REST services are developed and published to clients using the Tumblr API as

a case study (Section 3.1). In the context of this study, the section also presents

the WSDarwin method to automatically generate the WADL interface for a

REST service, which can be used for several tasks, including the generation

of client proxies and the comparison of service interfaces. Second, the chapter

describes a methodology to automatically map similar services from the same

domain but offered by different providers based on the similarity of their input

and output data in order to support the migration of client applications to

services of different providers (Section 3.2). Finally, the chapter demonstrates

the implementation of the interface generation, the comparison of versions of

a service and the cross-vendor comparison as a simple and easy-to-use web

application (Section 3.3).

Chapter 4 describes the theoretical contribution of the thesis on RP2 to

support the decision-making process around the evolution of service systems

taking into account both the technical and economic aspects of the problem,

the complex interactions between providers and clients and their conflicting

13

interests. The chapter studies the economic parameters of software evolution

and the interactions between one provider and one client in various software

ecosystems and models these interactions as a game (Section 4.1). Based

on this analysis, the chapter describes a simple tool based on decision trees

to guide the provider to make the optimal decision that will maximize both

the provider’s and the client’s payoff (Section 4.2). Finally, service evolution

was studied in a more complex ecosystem with more providers and clients,

where again the interactions of the participants are modelled as a game and

an economic model is proposed to calculate costs, values and prices of services

(Section 4.3). The use of the decision-support system is demonstrated in a

realistically synthetic cloud ecosystem.

Finally, the dissertation is concluded in Chapter 5, where a summary of

the contributions and the impact of the thesis is provided. The chapter also

outlines how the work in this thesis can be extended by future research.

14

Chapter 2

Support for WS-* Service
Clients

WS-* services are generally characterized by their degree of structure, espe-

cially compared to their REST counterparts. The nature of the message ex-

change protocol and the complexity involved in constructing SOAP messages

necessitate the exposure of the service through a structured and machine-

readable interface and the use of a dedicated middleware to consume this

interface. This also dictates the use of good practices in designing service-

oriented systems and increases the degree of automation in the development

and maintenance of service applications. The ability for increased automation

has led to the development of a number of tools to support the development

of web services and client applications. These tools support the automatic

generation of the WSDL interfaces from source code, the generation of client

code from the interface, testing environments to invoke the service, graphical

editors to design and develop service applications and so on.

Concerning the evolution of service-oriented systems, the structured na-

ture of WS-* services can help developers of client applications to better rea-

son about the changes to a service and address these changes more effectively.

Moreover, the ability to automate certain tasks will ensure the efficiency with

which changes have to be addressed, since service systems are online systems

and continuous communication between services and clients needs to be main-

tained. In my work, I have developed methods and tools to address research

problem 1 for WS-* services (RP1-WS). The WSDarwin toolkit is imple-

15

mented to support the automatic adaptation of client applications against

evolved WS-* services. The tools take advantage of existing standards and

other automated tools (like WSDL and Axis2). WSDarwin offers a complete

solution from identifying the changes in the service to adapting and testing

client applications. The tools are integrated under the same interface, fully

automated and yet interactive in order to minimize the necessary effort by the

developers. At the same time, the tools guarantee that the applications will

be correctly adapted to the new version and they will be fully functional.

The first step towards supporting client applications during the evolution of

web services is to understand how WS-* services evolve and what is the impact

of these changes to client applications that consume the services. To this end, I

conducted an empirical study (Fokaefs et al., 2011) (Section 2.1), in which I ex-

amined different versions for a number of WS-* services from various providers,

including Amazon, FedEx, Bing and Paypal. First, I correlated the changes in

the services with relevant business announcements from the providers and the

conclusion was that most changes are introduced to add new functionality or

extend existing functions with extra data. Second, I studied how the services

changed and whether their elements were added, deleted or changed. The

study showed that there are two extremes with respect to the evolution of a

web services. On one hand, we have a more conservative evolution strategy,

where the provider aims for changes that have the smallest possible impact

on the interface of the service, thus maintaining the backwards compatibility

between subsequent versions. On the other hand, we have providers that aim

to maintain a concise and well-designed web service, in many occasions, at the

expense of client applications. Therefore, there is a tradeoff in the decision

towards choosing one of the two directions. Among the examined providers,

there are two representatives for these two extremes; Amazon for the former

strategy and FedEx for the latter. Amazon’s changes have a small effect on

the interface of the service, i.e., its contract with its clients, and most of the

changes concern the addition of new functions that don’t affect existing func-

tionality. According to Xing and Stroulia (2005a), the Amazon web service

is in a growing state in its evolutionary history. Although this is partly sup-

16

ported by the business decisions by which some of the changes are motivated,

the general history of the service tells us that this growing trend is mainly to

maintain the backwards compatibility and not always to add new functional-

ity to the service. On the other hand, FedEx seems to frequently breach the

contract between the clients by deleting, renaming and generally changing a

large number of each elements. This results in shorter interfaces (compared

to Amazon, for example) and a more concise design, but with a higher risk to

clients. Finally, the study of the evolution of these services revealed a set of

recurring evolution scenarios, which were described along with their potential

impact on client applications.

The empirical study revealed three needs towards automating the support

for client applications.

1. The WSDL interface may be too verbose and only a portion of the spec-

ified information is actually needed to identify the changes between two

versions.

2. There is a need for an efficient and domain-specific method to compare

two versions of a service’s interface.

3. There is a need to correlate the differences from the service interface to

how the clients consume the interface (through an auto-generated client

proxy) and then automatically adapt the client application to the new

version.

To address the first need, I developed the WSMeta meta-model (Fokaefs

and Stroulia, 2013b) (Section 2.2) to express the interface of a web service in a

more concise manner and specifically address the task of identifying differences

between two versions. WSMeta ignores the syntactic elements of the interface

and includes only the elements that correspond to the service’s functionality.

A service interface in WSMeta is expressed as a collection of operations with

input and output data. Therefore, this representation focuses only on the

elements that are important for the evolution of the service. Additionally, it

replaces references with containment by copying the referenced elements inside

17

the elements that refer to them. These two properties improve the efficiency

with which the interfaces are translated into WSMeta and with which the

WSMeta representations are read and compared with each other. WSMeta

was developed to have the ability to express both WSDL interfaces for WS-*

services and WADL interfaces for REST services.

Having a compact representation for service interfaces, I continued to de-

velop the service-interface comparator (Fokaefs and Stroulia, 2014b) (Sec-

tion 2.3) to identify the differences between two versions. The WSDarwin

comparison method includes formal rules to identify basic differences, i.e.,

additions, deletions and changes, but also more complicated, refactoring-like,

differences, such as renamings and moves. The method is also based on certain

heuristics in order to improve its accuracy and efficiency. For example, if two

elements have the same identifier between the two versions, they are consid-

ered to be one and the same element. In fact, it was shown that WSMeta,

the heuristics and the domain-specific nature of WSDarwin greatly improve

its efficiency compared to domain-agnostic methods. I compared WSDarwin

with VTracker (Fokaefs et al., 2011), a domain-agnostic method to compare

tree-like structures (such as XML or WSDL files). The results showed that,

first, WSDarwin was much faster than VTracker and that its execution time

is linear to the size of the interfaces, compared to the exponential execution

time of VTracker.

Having identified the differences on the interface of the service between two

versions, I developed an algorithm, the client-application adaptor that is

able to automatically adapt the client application based on the changes (Fokaefs

and Stroulia, 2012) (Section 2.4). The algorithm is designed so that it is in-

dependent of the change and the programming language in which the client

is developed or the particular tool that was used to generate the client proxy.

The philosophy of the algorithm is to alter the client proxy corresponding to

the old version of the service interface in order to invoke the proxy of the new

version of the service interface. In practice, this means that the actual client

application will be invoking the service through the old interface but accessing

the new functionality. Since no changes are made to the actual client code, but

18

only to auto-generated code, the adaptation process is non-invasive and it does

not affect the developer’s awareness of their own code. The goal is to make

the client invoke the new version by sending the input data that is already

available and still valid and by processing the output data that was needed in

the previous version as well. Therefore, the algorithm copies the data of all

the old input variables to the new input variables, uses those to invoke the new

version of the service through the proxy and then repeats the process for the

output variables as well. Newly added variables are assigned default values

and deleted elements are ignored. If the new variables are optional, then the

defaults will have no impact in the invocation of the service. Otherwise, if the

default values are semantically meaningful, this will be confirmed by executing

the client’s test cases.

The automatic adaptation process is not expected to create design over-

head, since adapters are created between the current version of the service that

the client uses and the most recent version. If a newer version is published, the

process will not be applied on the previous version, but again on the current

version, with respect to the client. This implies that the client will only have

to maintain two versions of the service. However, this process may have an

overhead to the client’s understanding of the web service. In this case, the

user may opt to manually adapt to the most recent version and completely

replace the current version.

As it was discussed in the empirical study (Section 2.1), there are three

broad categories of changes according to their potential impact to client ap-

plications. First, there are changes that have no effect to either the interface

or the functionality of the web service. These can be refactorings that do not

affect the signature of the public operations or the structure of the input and

output types. The second category includes adaptable changes that affect the

structure of the service interface but not its functionality. These changes can

also be refactorings, but which may affect the public interface of the service.

Finally, we can have changes that are non-adaptable and require additional

effort from the developer of a client application. These changes usually affect

the functionality but not necessarily its public interface. In the case, when

19

the interface is not affected, the change is harder to identify because it doesn’t

throw any exceptions but its output does not correspond to that expected by

the client. Therefore, the developer will have to use the client’s test cases to

confirm what causes the application to fail and why. The adaptor proposed in

this thesis can address any change that affects the interface of the service. In

case of adaptable changes, the process ends there and the adaptor is enough

to adapt client applications. In case of non-adaptable changes, the user needs

additionally invoke the test cases. Combining the results of the comparison

and the test cases, the user will be able to understand what and how was

changed and where and why it caused the client application to break, thus

enabling him to efficiently and effectively address the adaptation manually.

The WSDarwin tools to support the evolution of WS-* service clients

are implemented as an Eclipse plug-in (Fokaefs and Stroulia, 2014a) (Sec-

tion 2.5). The plug-in follows the “one-click” approach; each function (com-

parison and adaptation) is implemented as one button. This minimizes the

effort required by the developer and facilitates the whole adaptation process.

The developer would need to already possess the two versions of the service

interface, which are provided as input to the tool. The diff script produced

by the comparison tool is then fed to the adaptation tool. The adaptation

process is applied on Java client proxies generated by the Apache Axis2 tool.

A parsing tool is used to map the WSMeta elements from the diff script to

the proxy elements in order to alter them accordingly for the adaptation. The

plug-in offers a third button to invoke the JUnit test cases of the client, as-

suming that these are already provided, in order to confirm that neither the

adaptation process nor the evolution of the service affected the client applica-

tion. The plug-in was evaluated on the Amazon EC2 web service and it was

shown that the tool maintains a short execution time even for relatively large

service interfaces. The most expensive task is the adaptation, mainly due to

the complexity of resolving references between the diff script and the client

proxies and refactoring the client proxy. The second most expensive task is

parsing the raw WSDL interfaces to WSMeta representations. Naturally, this

task depends (linearly) to the size of the interfaces. The execution time for

20

comparing the service interfaces is negligible.

The methods proposed and developed in this thesis for WS-* services, the

comparator, the adaptor and WSMeta, are generic enough and are based on

assumptions that hold for most technologies. For example, the assumption

that service interface can be perceived as collections of operations with input

and output (as represented in WSMeta) to follow the client proxy structure

is true for proxies produced for any language and not only for Java proxies.

Naturally, the implementation of the methods in tools for specific languages

depending on the provided tools and infrastructure for these languages, in-

cluding proxy generators and code manipulators (like JDK for Java).

2.1 An empirical study on web service evolu-

tion

Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A., 2011. An Em-

pirical Study on Web Service Evolution. In: IEEE International Conference

on Web Services (ICWS 2011). ICWS ’11. Washington, DC, USA, pp. 49-56.

21

An Empirical Study on Web Service Evolution

Marios Fokaefs, Rimon Mikhaiel, Nikolaos Tsantalis, Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

{fokaefs,rimon,tsantalis,stroulia}@ualberta.ca

Alex Lau
Center for Advanced Studies

IBM Toronto Lab
Markham, ON, Canada

alexlau@ca.ibm.com

Abstract—The service-oriented architecture paradigm pre-
scribes the development of systems through the composi-
tion of services, i.e., network-accessible components that are
completely specified by (and invoked through) their WSDL
interface descriptions. Systems thus developed need to be aware
of changes in, and evolve with, their constituent services.
Therefore, accurate recognition of changes in the WSDL
specification of a service is an essential functionality in the
context of the software lifecycle of service-oriented systems.

In this work, we present the results of an empirical study on
WSDL evolution analysis. In the first part, we empirically study
whether VTracker, our algorithm for XML differencing, can
precisely recognize changes in WSDL documents by applying
it to the task of comparing 18 versions of the Amazon EC2 web
service. Second, we study the changes that occurred between
the versions of various web services and discuss their potential
effect on the maintainability of a general service system.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

Service-system evolution and maintenance is an interest-
ing variant of the general software-evolution problem. On
one hand, the problem is quite complex and challenging
due to the fundamentally distributed nature of service-
oriented systems, whose constituent parts may reside not
only on different servers but also across organizations and
beyond the domain of any individual entity’s control. On
the other hand, since the design of a service-oriented system
is expressed in terms of the interface specifications of the
underlying services, the only changes that the overall system
needs to be aware of are those that impact these interface
specifications; any changes to the service implementations
that do not impact their interfaces are completely transparent
to the overall system. In effect, the WSDL specifications of
the system’s constituent services serve as a boundary layer,
which precludes service-implementation changes from im-
pacting the overall system. Further simplifying the problem
is the fact that service providers, once they have published
and made available to clients their service-interface specifi-
cations, are highly motivated to refrain from making changes
that may threaten the stability of their clients, especially
since, frequently, they do not necessarily know by whom,
how often or by how many clients they are used.

Therefore, changing a service is a rather sensitive task.
Although changes might still need to happen and the system
to evolve, the service provider needs to be aware of the
impact a specific change might have on existing clients. The
impact is with respect to factors such as time and human
effort to deal with the change as well as business decisions
(e.g., a client should not break if it belongs to a strong
partner). If the impact is low, the service provider might still
need to provide some backward compatibility. If the impact
is high but the change is still necessary, then its effect on a
client might need to be leveraged by the client’s developer
with the use of appropriate tools and techniques.

In this scenario, the objective of precisely recognizing the
changes to the WSDL specification of a service interface and
their impact on client applications is highly desirable and
precedes the process of actually dealing with the change
either on the server or on the client side. Further, assuming
that such a precise method for service-specification changes
existed, it would be extremely useful if one could (a)
characterize the changes in terms of their complexity and
(b) semi-automatically develop adapters for migrating clients
from older interface versions to newer ones.

In our work, we have developed VTracker, a tree-
alignment algorithm. VTracker is an evolution of SPRC [1],
an algorithm developed for the task of RNA secondary
structure alignment. VTracker (and SPRC) are based on
the Zhang-Shasha’s tree-edit distance [2] algorithm, which
calculates the minimum edit distance between two trees
given a cost function for different edit operations (e.g.
change, deletion, and insertion). In our earlier work [3],
we have already applied VTracker to the task of comparing
web-service specifications. However, in this earlier work, our
objective was to illustrate how VTracker could be used to
compare BPEL specifications. In the mean time, we have
evolved VTracker to enable it to compare large XML docu-
ments, which has allowed us to use it in comparing complex
WSDL specifications in the empirical study reported in this
paper.

More specifically, in this paper, we are interested in
analyzing the long-term evolution of real world services,
including the Amazon Elastic Cloud Computing (Amazon

EC2)1, the FedEx Package Movement Information and Rate
Services2, the PayPal SOAP API3 and the Bing search
service4. First, we have applied VTracker to the problem
of pair-wise comparison of subsequent versions of these
service-interface specifications. We manually inspected the
results of the comparison in order to assess how effec-
tive VTracker is for the purpose of accurately recognizing
service-interface changes. Next, we examined the various
types of changes that the algorithm identified in the history
of the real-world services we study, in order to understand
how services evolve, what types of changes are more or less
frequent, and whether these changes endanger the stability
of the clients.

The rest of the paper is organized as follows. In Section II
we give an overview of VTracker and we elaborate on how
this tree-differencing algorithm works. In Section III, we
discuss our mapping of WSDL documents to tree represen-
tations that can be understood and compared by VTracker.
In Section IV, we evaluate VTracker’s ability on studying
service evolution. In Section V, we discuss the results of our
study and we present some interesting change scenarios. In
Section VI we review the related literature and finally in
Section VII we conclude our work and discuss a few of our
future plans.

II. VTRACKER OUTLINE

VTracker is an extension to Zhang-Shasha tree-edit dis-
tance algorithm. Zhang-Shasha’s tree edit-distance algo-
rithm [2] given a cost for change, insertion, and deletion
operations, computes the cheapest cost to transform one tree
to the other with an average complexity |T1|3/2 · |T2|3/2,
where |T1| and |T2| are the sizes of the two trees respectively.
VTracker uses this algorithm as a starting point, and it
extends it in two ways. First, VTracker reports the least
expensive edit script that transforms one tree to the other.
Second, it allows for move operations, through a post-
processing phase of mapping deleted sub-trees from the first
tree to inserted subtrees of the other.

The result of a comparison between two trees – T1 and
T2 – is a tree-edit script, i.e., a sequence M of mappings,
map(i, j), where i is a node in T1 and j is a node in T2,
such that ∀(i1, j1)and(i2, j2) ∈M :
• i1 = i2 iff j1 = j2; each node cannot be involved in

more than one edit operation;
• T1[i1] is on the left of T1[i2] iff T2[j1] is on the left

of T2[j2]; the mapping preserves the original sibling
order;

• T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor
of T2[j2];it also preserves the ancestor-child order.

1http://aws.amazon.com/ec2/
2http://www.fedex.com/us/developer
3https://www.paypalobjects.com/en US/ebook/PP APIReference/

architecture.html
4http://www.bing.com/developers

Figure 1. Tree Edit Script.

Let us illustrate the properties of the labeled-
ordered tree-differencing algorithm with the example
shown Figure 1. The difference of trees T1

and T2 shown in Figure 1 is the edit sequence
M = (b, b), (d, d), (e, e), (c,−), (−, f), (a, a′). This
sequence consists of the following edits: node a is changed
to a′, node c is deleted, node f is inserted, and node d is
moved. Both nodes b and e are unchanged at the second
tree. This solution obeys the above constraints as it maps
(a, a′) where both a and a′ are ancestors of all other
nodes; additionally, (b, b) and (e, e) preserve the sibling
order where in both trees, node b is on the left of node e.
Clearly, moved nodes do not preserve the original ordering
relations.

A. Affine Cost

The original Zhang-Shasha algorithm assumes that the
cost of any deletion/insertion operation is independent of the
operation’s context. Thus, the cost of a node insertion/dele-
tion is the same, irrespective of whether or not that node’s
children are also deleted/inserted. As a result, it will consider
as equally expensive two different scripts with the same
number and types of edits, with no preference to the script
that may include all the changes within the same locality.
Such behavior is unintuitive: a set of changes within the
same sub-tree is more likely than the same set of changes
dispersed across the whole tree.

In order to produce more intuitive tree-edit sequences,
we have modified the Zhang-Shasha algorithm to use an
affine-cost policy. In VTracker, a node’s deletion/insertion
cost is context sensitive: if all of a node’s children are also
candidates for deletion, this node is more likely to be deleted
as well, and then the deletion cost of that node should be
less than the regular deletion cost. The same is true for
the insertion cost. To reflect this heuristic, the cost of the
deletion/insertion of such a node is discounted by 50%.

B. Simplicity Heuristics

It is very likely to have many edit scripts associated with
the calculated edit distance. Thus, the objective of VTracker
simplicity filter is to discard the unlikely solutions from

the solution set produced by the VTracker tree-edit distance
algorithm through a set of simplicity heuristics.

The first simplicity heuristic advises the algorithm to “pre-
fer minimal paths”: when there is more than one different
path with the same minimum cost, the one with the least
number of deletion and/or insertion operations is preferable.

The second simplicity heuristic advises the algorithm
to “prefer contiguous similar edit operations”. Intuitively,
this rule says that contiguous same-type operations could
be considered as a single edit operation. When there are
multiple different paths with the same minimum cost and the
same number of editing operations, the one with the least
number of changes (refractions) of operation types along a
tree branch is preferable.

The third simplicity heuristic advises the algorithm to
maximize the number of nodes along a tree branch to which
the same edit operation is applied. VTracker proposes that,
to the extent possible, sibling nodes should also suffer the
same edit operations.

III. APPLYING VTRACKER TO WSDL DOCUMENTS

The WSDL specification is quite verbose. Consider, for
example, the mapping of a single public class method
(implemented in Java) into a WSDL operation. This mapping
will produce a tree rooted at the operation element which
will contain a number of messages corresponding to the
number of parameters in the method signature. Each of
these message elements, in turn, will contain a single part
element, which in turn will refer to a data type. In fact,
there are several cases within a WSDL document where an
element contains a single element; clearly all these cases
cause the implicit tree representation to become deeper
without necessarily adding any information content to it.
Such deeply nested trees can, in fact, severely compromise
the performance of VTracker.

This is why for the purpose of comparing WSDL spec-
ifications with VTracker, we developed an intermediate
XML representation, much simpler than WSDL which still
captures the information content relevant to our task. This
simpler representation includes information about data types
and their use in operations. This is because we are interesting
in study the web service evolution from the client’s perspec-
tive and identify what changes are easily adapted and which
are not. Operations and types are the interesting parts since
the operations are the only point of interaction between the
client and the web service and the types are directly related
to the operations (through input and output).

Thus, given a WSDL document, in order to construct its
simpler XML representation, we perform the following steps
to it:

1) We strip the files off their functional parts such as the
SOAP bindings.

2) We trace the references from the operations’ inputs
and outputs to the types through the messages and the

xs:elements. We replace the messages in the inputs and
outputs with the corresponding types, thus eliminating
messages and xs:elements.

3) We remove the messages as they essentially are me-
diators from types to operations and they add no
additional information.

4) We remove the xs:element nodes which are immediate
children of the root of the file. This is because these
nodes serve as mediators between the types and the
messages.

5) Finally, we remove any annotations or documentation
nodes in the file. This data is irrelevant to the purpose
of this study.

To perform these changes we used XSL transformations.
Generally, WSDL files from different services have slightly
different structures thus special XSLTs had to be created
for each service. For step 2 of the transformations, we took
advantage of the naming conventions in the files in order
to make the XSLT as simple as possible. For example, in
many cases the name of the type that is used by a message
is usually the word “Type” appended to the name of the
message.

Eventually, we got valid XML files (although not valid
WSDL files), which are now closer to WADL-like files. The
goal of performing these changes was to to minimize the
number of nodes and eliminate as many levels of indirection
as possible. This will relieve us from any unnecessary data,
such as messages and bindings, and help VTracker produce
more concise results faster.

IV. EVALUATION OF VTRACKER

The first question we want to answer in this work is
to examine whether VTracker can be used to accurately
recognize the evolution of web services. To that end, we
employed a clustering technique. We compared the 18
versions of the Amazon EC2 service pairwise, for example,
version 1 against version 2, version 2 against version 3
and so on. VTracker then produced the tree edit distances
between every pair of operations for the given pair of
versions. We applied a hierarchical agglomerative clustering
algorithm. In order to run the clustering between the two
versions, we need to have distances between all operations
(from both versions) in a square distance matrix. Thus,
we have to construct the total distance matrix as shown
in Figure 2. Although the individual sub-matrices might
not be square, for example, because new operations were
added from one version to the next, the concatenation of
the matrices produces a square distance matrix which can
be used by the clustering algorithm. We used the R Project
for Statistical Computing5 to run our clustering analysis.

Using such a technique, we anticipate that different ver-
sions of the same operation will be grouped in the same

5http://www.r-project.org/

cluster as being similar to each other, a fact that will be
recognized by the small distance that VTracker will calculate
between them. In case this does not happen, i.e., if two
versions of an operation are clustered in different clusters,
we will assess whether the difference between two versions
is so significant that the two operations cannot be considered
as versions of the same operation but rather two distinct
operations; one that was removed from the first file and
another new one that was added in the second file. Closer
examination of the cluster will help us better understand the
changes between versions and the motivation behind them
and may also reveal the need to tune VTracker with domain
specific knowledge.

We compared the 18 versions of the Amazon EC2 service
pairwise, for example, version 1 against version 2, version
2 against version 3 and so on. VTracker then produced the
distances between every pair of operations for the given
pair of versions. We applied a hierarchical agglomerative
clustering algorithm. In order to run the clustering between
the two versions we have to construct the total distance
matrix as shown in Figure 2. Although the individual sub-
matrices might not be square, for example, because new
operations were added from one version to the next, the
concatenation of the matrices produces a square distance
matrix which can be used by the clustering algorithm. We
used the R Project for Statistical Computing6 to run our
clustering analysis.

Figure 2. The construction of the total distance matrix.

The results of the clustering experiment were in forms of
dendrograms (Figure 3) so that we can see how the opera-
tions of two subsequent versions were grouped together. In
Figure 3, we see a particular dendrogram for the comparison
between the 4th and the 5th version of the Amazon EC2
web service. The operations are indexed 1-19 for version 4
and 20-39 for version 5. As it becomes obvious operation 1
in version 4 corresponds with operation 20 and so on. The
height of the tree corresponds to the level of the distance
where the clusters merged. We can distinguish three cases
of clusters:
• The operation with index 39 does not belong to a cluster

until a very high distance. This is because this particular

6http://www.r-project.org/

operation was a new addition in version 5 and therefore
there was not an available good mapping.

• There are operations that are paired with each other in a
distance higher than 0. This is because these operations
or the types that they are using changed from one
version to the next. VTracker was still able to map
them correctly and report their changes through their
distances. As it can be noticed the pair 19-38 stands
even higher than the rest of the modified operations.
This is because in this particular case the type that was
immediately used by the operation changed (shallow
change), while in the rest of the cases the changes
occurred deeper in the chain of types and thus the effect
of the change was “diluted” along the various elements
(deep change).

• The rest of the operations which are paired in distance
0. These are operations that remained the same between
the two versions and their types did not change either.

This experiment helped us confirm that VTracker is able
to correctly map elements between different versions of the
same service and identify possible changes between them.

V. STUDY OF WEB SERVICE EVOLUTION

In this part of the study, we used VTracker as tool to
report all changes that happened between different versions
from a set of services. For our study, we chose to examine
the evolution of the following services:
• Amazon EC2. The Amazon Elastic Compute Cloud

(Amazon EC2) is a web service that provides resizable
compute capacity in the cloud. We studied the history
of the web service across 18 versions of its WSDL file
dating from 6/26/2006 to 8/31/2010.

• FedEx Rate Service. The FedEx Rate Service opera-
tions provide a shipping rate quote for a specific service
combination depending on the origin and destination
information supplied in the request. We studied 9
versions of this service.

• FedEx Package Movement Information Service. The
FedEx Package Movement Information Service opera-
tions can be used to check service availability, route
and postal codes between an origin and destination. We
studied 3 versions of this service.

• PayPal SOAP API. The PayPal API Service can be
used to make payments, search transactions, refund
payments, view transaction information, and other busi-
ness functions. We studied 4 versions of this service.

• Bing Search Service. Bing Services provide program-
matic access to Bing data by way of application pro-
gramming interfaces (APIs).The Bing API, Version 2
provides developers and site managers with flexible,
multiple-protocol access to content SourceTypes such
as Image, InstantAnswer, MobileWeb, News, Phone-
book, RelatedSearch, Spell, Translation, Video, and
Web. We studied 5 versions of this service.

Figure 3. Dendrogram for the clustering of the operations between versions 4 and 5.

A. Analyzing the evolution of the services

Table I shows the evolution profile of all the examined
services. The percentage calculated for each one of the
activities (change, deletion, insertion) is with respect to the
total number of activities in that particular version. As we
can see from the table in services like PayPal, Bing and in
most versions of Amazon EC2 and FedEx Rate, we observe
a domination of additions. From this we can derive two
conclusions: (a) these services were in a stage of rapid
development and high expansion during this part of their
lifecycle and (b) radical changes and deletions are usually
avoided because they are more likely to break a client. On
the other hand, in services like FedEx Package Movement
Information and some versions of the Amazon EC2 and
FedEx Rate, we noticed an increased number of changes,
primarily, and deletions. This indicates that these services
were in a more stable stage and developers performed
restructuring and perfective changes.

B. Correlation between changes and business announce-
ments

As web services are an integral part of modern businesses
their consistency is bound to be affected by business deci-
sions. In this section, we are trying to correlate changes that
happened in the studied services with business announce-
ments of new features.

1) Amazon EC2: In March 2008, Amazon announced7

new features for static IP addresses, availability zones and
user selectable kernels. These changes were already avail-
able in version 7 earlier the same year. In August 2008, they
announced the Elastic Block Store (EBS) for persistent stor-
age and the changes were incorporated in version 8. In May

7Source: Amazon Web Services Blog (http://aws.typepad.com/)

2009, they announced the AWS management console, and
plans for load balancing, autoscaling, and cloud monitoring
services. The changes were incorporated between versions
9 and 13.

2) FedEx Rate: In March 2010, FedEx announced8 the
FedEx Electronic Trade Documents, Shipping Hazardous
Meterials, the FedEx Web Integration Wizard, FedEx Freight
Rating and enhancements for the FedEx SmartPost. These
changes were incorporated between version 6 and 8. In
August 2010, they announced more enhancements for the
FedEx SmartPost, “Hold at Location” service expansion,
new intra-country shipping options and improvements for
hazardous material shipping. These changes were introduced
in version 9.

3) Bing: In June 2009, Bing launched9 the Bing Trans-
lator and consequently the types TranslationRequest, Trans-
lationResponse and ArrayOfDeepLink were added between
version 2.1 and 2.2. In June 2010 Bing was expanded10

to handle more entertainment-related queries and the enu-
merations Shopping, QueryAnnotation, Social, Events and
RssFeed were added between versions 2.2 and 2.3.

C. Service Change Scenarios

In this section we provide a collection of change sce-
narios. Some of them have actually occurred in the set of
services we have studied, while others we deem possible
to happen. We discuss the changes in detail and describe
how they can affect client applications: whether they are
manageable and how.

8Source: https://www.fedex.com/us/developer/wss/announcement.html
9Source: http://en.wikipedia.org/wiki/Bing Translator
10Source:http://blogs.computerworld.com/16374/microsoft to add

enhancements to bing

Table I
THE EVOLUTION PROFILE OF THE STUDIED SERVICES.

Service Version Changed(%) Deleted(%) Inserted(%)

Amazon EC2 2 2.82 0 97.18
Amazon EC2 3 13.33 0 86.67
Amazon EC2 4 50 0 50
Amazon EC2 5 8.82 0 91.18
Amazon EC2 6 16.67 50 33.33
Amazon EC2 7 1.71 0 98.29
Amazon EC2 8 1.40 0 98.60
Amazon EC2 9 3.54 0.88 95.58
Amazon EC2 10 11.11 0 88.89
Amazon EC2 11 2.67 0 97.33
Amazon EC2 12 5.56 0 94.44
Amazon EC2 13 0.79 0 99.21
Amazon EC2 14 2.70 0 97.30
Amazon EC2 15 10.26 0 89.74
Amazon EC2 16 1.08 0 98.92
Amazon EC2 17 64.90 0 35.10
Amazon EC2 18 31.06 0 68.94

FedEx Rate 2 8.93 21.43 69.64
FedEx Rate 3 9.20 5.75 85.06
FedEx Rate 4 8.11 17.05 74.84
FedEx Rate 5 8.00 20.00 72.00
FedEx Rate 6 1.51 6.67 91.83
FedEx Rate 7 3.05 30.46 66.50
FedEx Rate 8 11.48 12.02 76.50
FedEx Rate 9 11.53 42.88 45.59

Bing 2.1 0 21.33 78.67
Bing 2.2 0 9.38 90.63
Bing 2.3 0 0 100.00
Bing 2.4 0 0 100.00

PayPal 53.0 2.33 0 97.67
PayPal 62.0 0.55 0 99.45
PayPal 65.1 1.35 0 98.65

FedEx Pack. 3 80.00 0 20.00
FedEx Pack. 4 100.00 0 0

Operation Deletions. We noticed an absence of operation
deletions. This is mainly because if an operation is deleted
a client that might have been using it will instantly break.
This is a non-recoverable situation which in fact means that
the client should be changed and recompiled. We found a
case like that in FedEx Rate. In version 1 only one operation
existed named getRate. In version 2 a second operation was
added named rateAvailableServices and in version 3 a third
operation named getRates replaced the other two. Although,
the three operations were similar in the sense that they used
and returned similar data, in the end these changes must
have caused significant problems to client applications. A
prudent thing to do in this case would be to declare the old
operations as deprecated so as not to be used by new clients
and when the time was right to remove them in order to
minimize the cost.

Inline Type. In Amazon EC2, we noticed the best way
to handle changes in types. In version 6 the type RunIn-
stancesInfoType was removed and all of its elements were
moved to the parent type named RunInstancesType. This
change is called “Inline Type” [4] and it is non-destructive

to the client. It does not affect the functionality and it does
not break the code because any data that existed in version
5 still exists in version 6 although bundled in a different
type. The important thing is that no matter how the data is
formatted the client must have access to it because it was
used from the previous version. Furthermore, we noticed
that old operations never use new data, which is reserved
only for the new operations. The opposite action, namely
“Extract Type” where a complex type is decomposed in
simpler elements is also a recoverable change by the client
for the same reasons.

Aggressive Refactoring. An interesting situation oc-
curred in FedEx Rate in version 9 where several enhance-
ments were supposed to take place. For this reason, more
than 50% of the types of the service were removed and
totally new ones were added. This was a poor maintenance
activity not only because of the nature of the changes
(deletions) but also their breadth. In this case, the best course
of action would be to add the new types in a new service
and copy the old still valid components from the previous
version and offer both services as alternatives so that the old
clients will not break.

Renaming Variables. In Amazon version 14 we had
a type with two elements named currentState and previ-
ousState. In version 15 the same type has the elements
previousState and shutdownState. There are two scenarios
in this case. First, that the currentState was renamed in
shutdownState and previousState remained the same. In
the second case, the currentState was renamed in previ-
ousStateand previousState was renamed in shutdownState.
The difference between the two scenarios is the order of the
parameters. If the order matters then the second scenario is
true.

Adding New Types. If new types are added as elements
in already existing types then the interface of the service is
not affected. The question is then whether the functionality
breaks. If the new elements do not participate in the result
of the operation then the functionality of the client is not
affected. For example, in version 1 of a service we have an
operation add(int i, int j) which returns the sum of i and j
and in version 2 we have add(int i, int j, boolean flag) where
the flag notes whether the result should be stored in a file.
In this scenario the flag doesn’t affect the sum of the two
numbers and thus the functionality of the client will not be
affected.

In a different situation, the returned sum will not be the
expected one. The problem is that we cannot be sure whether
the change in the result was because of the added parameter
or because something changed in the algorithm (a change
which is not visible to the client). In this case, creating
an adapter will not fix the client. An idea to address this
problem would be to employ web mining techniques in order
to obtain the description of the changes that happened from
one version to the other and help the developer of the client

to apply the proper changes in their system.
Changing Input or Output Types. Since the client

interacts only with the operations, these are the sensitive
points. In order for the interface of the service to break, one
has to replace the input or the output types of an operation
with different types or rename the input and output types of
the operation. In this case the client should update itself in
order to invoke the operation in the correct way. If the input
or output is replaced by a new type then the type should be
generated on the client side or added in the stub.

If the input or output type is changed (elements added,
deleted, changed or renamed) then a problem occurs only
if the client tries to access these types. For example, if in
the returned type of an operation we delete or rename some
elements and the client tries to access these elements, it will
break. In case of added elements, we will not have problems.

VI. RELATED WORK

A. Model and Tree Differencing Techniques

Fluri et al. [5] proposed a tree differencing algorithm for
fine-grained source code change extraction. Their algorithm
takes as input two abstract syntax trees and extracts the
changes by finding a match between the nodes of the
compared trees. Moreover, it produces a minimum edit script
that can transform one tree into the other given the computed
matching. The proposed algorithm uses the bigram string
similarity to match source code statements (such as method
invocations, condition statements, and so forth) and the
subtree similarity of Chawathe et al. [6] to match source
code structures (such as if statements or loops).

Kelter et al. [7] proposed a generic algorithm for comput-
ing differences between UML models encoded as XMI files.
The algorithm first tries to detect matches in a bottom-up
phase by initially comparing the leaf elements and subse-
quently their parents in a recursive manner until a match is
detected at some level. When detecting such a match, the
algorithm switches into a top-down phase that propagates the
last match to all child elements of the matched elements in
order to deduce their differences. The algorithm reports four
different types of differences, namely structural (denoting
the insertion or deletion of elements), attribute (denoting
elements that differ in their attributes’ values), reference
(denoting elements whose references are different in the
two models) and move (denoting the move of an element
to another parent element).

Xing and Stroulia [8], [9] proposed the UMLDiff algo-
rithm for automatically detecting structural changes between
the designs of subsequent versions of object-oriented soft-
ware. The algorithm produces as output a tree of structural
changes that reports the differences between the two design
versions in terms of additions, removals, moves, renamings
of packages, classes, interfaces, fields and methods, changes
to their attributes, and changes of the dependencies among

these entities. UMLDiff employs two heuristics (i.e., name-
similarity and structure-similarity) for recognizing the con-
ceptually same entities in the two compared system versions.
These two heuristics enable UMLDiff to recognize that two
entities are the same even after they have been renamed
and/or moved. The UMLDiff algorithm has been employed
for detecting refactorings performed during the evolution
of object-oriented software systems, based on UMLDiff
change-facts queries [10].

Recently, Xing [11] proposed a general framework for
model comparison, named GenericDiff. It tackles the chal-
lenge of balancing balance between being domain indepen-
dent yet aware of domain-specific model properties and syn-
tax by separating the specification of domain-specific inputs
from the generic graph matching process and by making
use of two data structures (i.e., typed attributed graph and
pairup graph) to encode the domain-specific properties and
syntax so that they can be uniformly exploited in the generic
matching process. Unlike the aforementioned approaches
that examine only immediate common neighbors, GenericD-
iff employs a random walk on the pairup graph to spread
the correspondence value (i.e., a measurement of the quality
of the match it represents) in the graph.

B. Service Evolution Analysis

Wang and Capretz [12] proposed an impact analysis
model as a means to analyze the evolution of dependencies
among services. By constructing the intra-service relation
matrix for each service (capturing the relations among the
elements of a single service) and the inter-service relation
matrix for each pair of services (capturing the relations
among the elements of two different services) it is possible
to calculate the impact effect caused by a change in a given
service element. A relation exists from element x to element
y if the output elements of x are the input elements of
y, or if there is a semantic mapping or correspondence
built between elements of x and y. Finally, the intra- and
inter service relation matrices can be employed to support
service change operations, such as the addition, deletion,
modification, merging and splitting of elements.

Aversano et al. [13] proposed an approach, based on
Formal Concept Analysis, to understand how relationships
between sets of services change across service evolution.
To this end, their approach builds a lattice upon a context
obtained from service description or operation parameters,
which helps to understand similarities between services,
inheritance relationships, and to identify common features.
As the service evolves (and thus relationships between
services change) its position in the lattice will change, thus
highlighting which are the new service features, and how
the relationships with other services have been changed.

Ryu et al. [14] proposed a methodology for addressing
the dynamic protocol evolution problem, which is related
with the migration of ongoing instances (conversations) of

a service from an older business protocol to a new one.
To this end, they developed a method that performs change
impact analysis on ongoing instances, based on protocol
models, and classifies the active instances as migrateable
or non-migrateable. This automatic classification plays an
important role in supporting flexibility in service-oriented
architectures, where there are large numbers of interacting
services, and it is required to dynamically adapt to the new
requirements and opportunities proposed over time.

Pasquale et al. [15] propose a configuration management
method to control dependencies between and changes of
service artifacts including web services, application servers,
file systems and data repositories across different domains.
Along with the service artifacts, Smart Configuration Items,
which are in XML format, are also published. The SCIs
have special properties for each artifact such as host name,
id etc. Interested parties (like other application servers) can
register to the SCIs and receive notifications for changes
to the respective artifact by means of ATOM feeds and
REST calls. Using a discovery mechanism the method is
able to identify new, removed or modified SCIs. If a SCI is
identified as modified, then the discovery mechanism tracks
the differences between the two items and adds them as
entries in the new SCI. The changes are limited to delete,
add, modify a property or delete, add, modify a dependency.
The changes are also too general, for example, a change
in an input type of an operation is reported as a change
in the operations part of a WSDL. In our case, we are
more interested in finding more complicated changes and
annotate them appropriately so we know the exact nature of
the change (where it happened and what it affected).

The aforementioned research works mainly focus on
the evolution of inter-dependencies among services or the
evolution of business protocols. On the other hand, our
approach focuses on the evolution of the elements within a
single service and their intra-dependencies. Furthermore, our
approach investigates the effect of service evolution changes
on client applications.

VII. CONCLUSION

In this paper we presented an empirical study for the evo-
lution of web services where we investigated how changes
that occur in WSDL files can potentially affect client appli-
cations. The first question we tried to answer was whether
a generic tree differencing algorithm like VTracker can be
used to study the evolution of web services. VTracker was
indeed helpful in this task mainly because of its ability to
produce fine-grained results in terms of distances between
individual elements (types and operations) that belonged in
different versions and changes that were applied on these
elements. This helped us identify the nature of the changes
and identify good and bad maintenance scenarios in our case
studies. Furthermore, this work helped us improve VTracker
in terms of efficiency and accuracy.

For the empirical study we examined the evolution of
five web services (Amazon EC2, FedEx Rate, Bing, PayPal
and FedEx Package Movement Information). The main
conclusion of this study was that web services are usually
expanded rather than changed or having their elements
removed. This is because the addition of new features does
not affect the robustness of clients that already use the
service. Furthermore, changes, if made in a conservative
manner, do not affect clients much. On the other hand,
deletion of elements should be avoided in all cases as it
can easily break a client application.

ACKNOWLEDGMENT

The authors would like to acknowledge the generous
support of NSERC, iCORE, and IBM.

REFERENCES

[1] R. Mikhaiel, G. Lin, and E. Stroulia, “Simplicity in RNA
Secondary Structure Alignment: Towards biologically plausi-
ble alignments,” 6th IEEE Symposium on Bioinformatics and
Bioengineering, 2006.

[2] K. Zhang, R. Stgatman, and D. Shasha, “Simple fast al-
gorithm for the editing distance between trees and related
problems,” SIAM Journal on Computing, vol. 18, pp. 1245–
1262, 1989.

[3] R. Mikhaiel and E. Stroulia, “Examining Usage Protocols for
Service Discovery,” 4th International Conference on Service
Oriented Computing, pp. 496–502, 2006.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring Improving the Design of Existing Code. Boston,
MA: Addison Wesley, 1999.

[5] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change
Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction,” IEEE Transactions on Software Engi-
neering, vol. 33, no. 11, pp. 725–743, 2007.

[6] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change Detection in Hierarchically Structured
Information,” ACM Sigmod Internation Conference on Man-
agement of Data, pp. 493–504, 1996.

[7] U. Kelter, J. Wehren, and J. Niere, “A Generic Difference
Algorithm for UML Models,” Software Engineering 2005,
Fachtagung des GI-Fachbereichs Softwaretechnik, pp. 105–
116, 2005.

[8] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-
Oriented Design Differencing,” 20th IEEE/ACM International
Conference on Automated Software Engineering, pp. 54–65,
2005.

[9] ——, “Analyzing the Evolutionary History of the Logical
Design of Object-Oriented Software,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 850–868, 2005.

[10] ——, “Refactoring Detection based on UMLDiff Change-
Facts Queries,” 13th Working Conference on Reverse Engi-
neering, pp. 263–274, 2006.

[11] Z. Xing, “Model Comparison with GenericDiff,” 25th
IEEE/ACM International Conference on Automated Software
Engineering, pp. 135–138, 2010.

[12] S. Wang and M. A. M. Capretz, “A Dependency Impact Anal-
ysis Model for Web Services Evolution,” IEEE International
Conference on Web Services, pp. 359–365, 2009.

[13] L. Aversano, M. Bruno, M. D. Penta, A. Falanga, and
R. Scognamiglio, “Visualizing the Evolution of Web Services
using Formal Concept Analysis,” 8th International Workshop
on Principles of Software Evolution, pp. 57–60, 2005.

[14] S. H. Ryu, F. Casati, H. Skogsrud, B. Benatallah, and
R. Saint-Paul, “Supporting the Dynamic Evolution of Web
Service Protocols in Service-Oriented Architectures,” ACM
Transactions on the Web, vol. 2, no. 2, pp. 1–46, 2008.

[15] L. Pasquale, J. Laredo, H. Ludwig, K. Bhattacharya, and
B. Wassermann, “Distributed cross-domain configuration
management,” in Proceedings of the 7th International Joint
Conference on Service-Oriented Computing, ser. ICSOC-
ServiceWave ’09, 2009, pp. 622–636.

2.2 WSMeta: a meta-model for web services

to compare service interfaces

Fokaefs, M., Stroulia, E., 2013b. WSMeta: a meta-model for web services to

compare service interfaces. In: Panhellenic Conference on Informatics (PCI

2013). ACM, pp. 1-8.

31

WSMeta: A Meta-Model for Web Services to Compare
Service Interfaces

Marios Fokaefs and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

{fokaefs,stroulia}@ualberta.ca

ABSTRACT
With the increasing adoption of the web-services stack of
standards, service-oriented architecture has attracted sub-
stantial interest from the research community which has pro-
duced several languages and methods for describing and rea-
soning about services. These languages cover many concepts
ranging from individual services and their code generation
from specifications, service semantics, service compositions
and networks, economics and business aspects around ser-
vice ecosystems etc. However, this abundance of specifica-
tion languages has also resulted in communication difficul-
ties between stakeholders and hinders tasks such as service
composition, discovery and maintenance. The presented
work is a step towards the unification of the specifications
and different aspects of service systems using Model-Driven
Engineering. We propose a generic and abstract web service
meta-model called WSMeta, which has the ability to de-
scribe both operation-centric web services (WS-*) and data-
centric web services (REST) and can be used in tasks such as
service evolution analysis and service systems maintenance.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—web-based services; D.2.2 [Software En-
gineering]: Design Tools and Techniques—modules and in-
terfaces, top-down programming

General Terms
Design

Keywords
model-driven engineering, service-oriented architectures, WADL,
WSDL, service comparison

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCI 2013 September 19 - 21 2013, Thessaloniki, Greece
Copyright 2013 ACM 978-1-4503-1969-0/13/09.
http://dx.doi.org/10.1145/2491845.2491860 ...$15.00.

In spite of being a relatively new technology, web ser-
vices have been extensively studied by academia and indus-
try alike. All this research effort has resulted in the devel-
opment of a variety of specifications for web services and
service systems. Oberle [11] gives a comprehensive overview
of these specifications highlighting their purposes and their
properties. One of the reasons that contributed to the de-
velopment of multiple service-related specifications is the
dichotomy between operation-centric and data-centric web
services. Instances in the former category are usually speci-
fied using the Web Service Description Language (WSDL)1,
a W3C standard. WSDL files are XML-based and specify
the complete interface of a web service in terms of operations
and the data types they manipulate as input and output;
essentially a WSDL specification serves (a) as a directory
of the operations supported by the service, and (b) as a
complete guideline for how clients can invoke the service.
A variety of supporting tools have been developed to gener-
ate client- and server-side code (in a variety of programming
languages) from WSDL specifications, or to reverse engineer
WSDL specifications from code. Data-centric web services
conform to the Representational State Transfer (REST) [7]
architectural style, and they are usually specified in non-
standard HTML or XHTML documents. In this informal
specifications natural-language text is a dominant element,
thus, lacking structure which in turn makes it difficult for
the specification to be parsed automatically. For this rea-
son, a new specification has been submitted recently to W3C
for standardization called Web Application Description Lan-
guage (WADL)2. WADLs are also XML-based, in the spirit
of WSDL, and can be used for client code generation or
client configuration. They describe data as resources and
all the operations that can be invoked on these resources in
the form of HTTP methods (GET, POST, PUT, DELETE).

Services may follow either the REST or the WS-* style and
there is often a need for instances in either style to interop-
erate. To that end, there have been tools and techniques to
translate service specification from one format to the other.
Furthermore, version 2.0 of the WSDL standard has been
designed so that it can be used to natively specify both
REST and WS-* services (i.e., there is no need for inter-
mediate transformations). However, in reality, both formats
are used independently and this can raise certain challenges.
For example, if one wants to create a service composition,
one should be able to take full advantage of both REST and
WS-* repositories alike. This is why, we propose a web ser-

1http://www.w3.org/TR/wsdl20/
2http://www.w3.org/Submission/wadl/

vice meta-model called WSMeta. This meta-model is simply
an abstraction of the WADL and WSDL specifications. It
takes into account all the common elements between the two
and eventually specifies a service as a collection of operations
with inputs and outputs. The meta-model also contains ex-
tension points as place-holders for other concepts of service
systems such as clients and service compositions. WSMeta
is based on Ecore, the Eclipse Modelling Framework (EMF)3

meta-model. We also provide a set of Epsilon Transfor-
mation Language (ETL)4 scripts to transform WSDL and
WADL files into a WSMeta model and vice versa.

WSMeta can be primarily useful to service consumers.
The task of service interface comparison is very common
for service consumers. This task is performed, for example,
when the consumed service has changed and the consumer
has to compare the two versions of the interface in order
to identify the changes and adapt to the new version. In
our previous work [8] we have investigated the evolution of
web services and we have identified certain types of changes
and how they can affect client applications. The task of
differencing web services requires the parsing of the service
specification and comparison of its elements between dif-
ferent versions. However, certain properties of the service
may be irrelevant to the task at hand, for instance, names-
paces, unused operations or types and so on. In this case, a
lightweight model to represent the interfaces, like WSMeta,
can improve the accuracy and the efficiency of the compar-
ison method. Another scenario where comparison is neces-
sary is when the client decides to migrate the application to
the service of another vendor. In this case, the client needs
to compare the interfaces of the two services and identify the
necessary changes to the client application so that it can be
migrated to the new service. A generic web service meta-
model, like WSMeta, can allow the client to compare web
services, whose interfaces are specified in different standards,
for example a WSDL service with a RESTful service. This
way, the client’s possibilities are greatly expanded. Finally,
WSMeta can also be useful to service providers. The meta-
model allows the provider to change the format of a service
(from WSDL to REST or vice versa) or offer the same service
in different formats, which will enable the provider to ex-
pand the clientèle and accommodate more applications. The
model transformation that accompany WSMeta are specific
to service providers for this particular use case.

The rest of the paper is outlined as follows. Section 2
provides an overview of other model-driven approaches that
have been applied on Web Services. Section 3 describes WS-
Meta and provides details on how the meta-model was cre-
ated and in Section 4 we discuss how the transformation can
be applied on a simple service. Finally, Section 5 concludes
this work and discusses some of our future plans.

2. RELATED WORK

2.1 Representing service systems
Ortiz and Hernandez [12] propose a model-driven approach

to develop web services with extra-functional properties from
a platform independent model (PIM). As a PIM, they use
a UML profile extended with certain stereotypes for ser-
vice components and extra-functional properties. Then, us-

3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/gmt/epsilon/doc/etl/

ing ATL (Atlas Transformation Language) 5 transformation
rules this model is transformed into four platform specific
models, each serving a certain purpose:
(a) a web service meta-model in JAX-RPC 6, in order to de-
couple the properties from the service development process;
(b) an aspect-oriented meta-model, in order to decouple the
properties from the implementation of the service;
(c) a policy meta-model in WS-Policy, in order to decouple
the properties from the description of the service; and finally
(d) a SOAP tag meta-model, to make the services more
flexible in the presence of optional extra-functional proper-
ties. The amalgamation of model-driven engineering, service
component architecture, aspect-orientation and WS-Policy,
as presented in the paper, is exemplified in a simple case
study.

Jegadeesan and Balasubramaniam [10] present a service
meta-model, which extends the UML Infrastructure Library.
The motivation behind this work, is the inability of exist-
ing modelling techniques to capture all aspects of SOA and
the evolution of web service standards. The proposed meta-
model has five views each one capturing an aspect of SOA:
The Service Definition View captures ownership informa-
tion as well as the nature of the service (composite, abstract
etc.);
The Service Capability View captures the description of a
service and its operations, QoS properties, constraints and
exceptions;
The Service Policy View captures the non-functional con-
straints of a service;
The Service Realization View captures information about
how a service is realized such as participants, like providers,
consumers, aggregators and mediators, and how services can
be composed.
The Service Mediation View, that handles compositions from
a data or process perspective.

Treiber et al. [14] propose SEMF, a service evolution man-
agement framework. According to the authors, different
stakeholders of a web service system that handle the various
aspects or artifacts of the system can trigger various changes.
The proposed framework handles all this data and integrates
it by employing a Web Service Information Model and then
correlates the various changes from the different stakehold-
ers. The information model is implemented as Atom feeds,
where the artifacts are linked seamlessly regardless of the
underlying data model and the feeds can be queried effi-
ciently using XQuery. The framework is also extendible to
accept new data sources and the extensions are in the form
of plugins which follow a specified interface.

Fensel and Bussler [6] present a Web Service Modelling
Framework (WSMF) that focuses particularly on supporting
e-commerce applications with multiple and heterogeneous
partners. With respect to the service system implementa-
tion, the framework focuses on supporting service compo-
sition and mediation between the partners. According to
the authors such a modelling framework should satisfy two
fundamental properties that need to exist in an e-commerce
system: decoupling of the system’s parts and mediation be-
tween the various partners of the system. WMSF provides
support for discovering, comparing and composing web ser-
vices and handling heterogeneous data and business logics.

5http://www.eclipse.org/atl/
6http://java.net/projects/jax-rpc/

WSMF uses four elements to describe e-commerce systems.
Ontologies are employed to provide domain and application-
specific terminology needed by the system. A goal repository
contains the various objectives of the partners and their spe-
cific pre- and post-conditions. The web services used in the
system are characterized by their individual descriptions.
Finally, mediators are defined for eliminating discrepancies
between data structures, business logics, message-exchange
protocols, dynamic service invocation and service composi-
tion.

Finally, Andrikopoulos et al. [3] follow a model-based ap-
proach to facilitate the management of service evolution.
They propose three different descriptions for a service sys-
tem: (a) the Abstract Service Definition (ASD) that de-
scribes the general concepts and their relations that are com-
mon to all web services; (b) the Service Schema Definition
(SSD) that describes a particular web service; and (c) the
Instance of Service Schema Definition (ISD) that describes
the execution of a web service. In fact, the ASD is the meta-
model of the SSD. As such, it contains attributes which are
assigned values when the service is instantiated (i.e., in the
ISD) and property domains from which a particular property
will be selected when a SSD will be generated from the ASD.
The ASD comprises of two sections, the public and the pri-
vate and three layers, the structural, the behavioural and the
regulatory. The public section refers to the public interface
of the web service (i.e., the one that is exposed to potential
clients) and the private section refers to the internal logic of
the service. The structural layer contains the interface spe-
cific components of the service such as operations, messages
and data types, the behavioural layer contains constraints
and dependencies between the operations, as well as instruc-
tions on how the operations can be combined into a process
and, finally, the regulatory layer contains the policies and
the business rules of the service.

2.2 Task- or component-specific service mod-
els

Cao et al. [5] first recognize the need for a web service
meta-model. According to the authors, the meta-model
should be a platform-independent model (PIM) in order to
be generic). This meta-model can later be transformed into
a platform-specific model (PSM). In this work, the proposed
tool-independent meta-model is realized using ER diagrams,
while the tool-dependent model is specified using Generic
Modelling Environment. This approach covers only inter-
face specific elements.

Bordbar and Staikopoulos [4] propose a semi-automatic
method to generate meta-models from XSD files. They
use hyperModel, an Eclipse plug-in to generate XMI files
from XSD. Next, using Poseidon for UML they generate
a UML class diagram. According to the authors, the pro-
posed methodology is especially useful for web services since
WSDL files are practically XSD based. They demonstrate
this ability by generating a WSDL meta-model from the
WSDL XSD published by W3C and manually refining it
to remove XSD or XML specific elements leaving behind
only pure WSDL elements. They also propose a meta-
model approach to support integration and interoperability
between the different aspects and standards of web-service
systems [13], based on UML-related research, where model
transformations to allow for integration and interoperability
are already established. First, they discuss the mechanisms

from both UML and web services and compare them based
on five criteria: containers, composite structures, messag-
ing, links and mechanisms. Next, they propose a binding
meta-model for web-service integration and interoperability
and they explain how this meta-model can be applied to
integrate BPEL compositions with WSDL specifications.

Ali and Babar [1] propose an extension for SoaML called
AmbientSoaML to incorporate mobility properties, such as
boundaries in mobile networks, in the SoaML meta-model,
using Ambient Calculus. The problem is motivated and the
method is explained in a simple example about voice call-
ing and sms services in mobiles. Later, Ali et al. [2] present
an Eclipse plug-in for developing web services in SoaML7.
They use SoaML as their PIM. The meta-model is specified
in Ecore and the users can create instances of it using EMF.
The instances can be validated against the meta-model us-
ing the EMF Validation Framework. The plug-in also pro-
vides a SoaML Graphical Editor to create and edit SoaML
instances. Finally, using ATL the SoaML models can be
transformed into OSGi Declarative Service models.

Gebhart et al. [9] propose a set of properties for designing
service systems based on SoaML. For properties that can
be quantified OCL expressions are used to evaluate such
properties. Given the values of these properties, a design can
be characterized as bad and a better one can be suggested,
as demonstrated in the paper.

2.3 Discussion
Although, as we see there have been proposed several

model-driven engineering techniques to specify web services
and service systems, they don’t satisfy the entirety of our
needs with respect to the particular task we try to address
(i.e., comparison of heterogeneous web service specifications).
In this work, the proposed meta-model is not intended to be
used as a means to specify new services or service systems,
but rather to be used as an intermediate format to be used
in tasks that include comparison of service interfaces such
as evolution analysis, service discovery and selection, etc.

While holistic approaches may cover many aspects of a
service system such as partners, policies, business logic etc.,
these approaches may not provide sufficient details for these
parts. For example, in SoaML, the interface of a web ser-
vice is implemented as a single component. However, in a
task like comparison, one needs to specify all the interface
components (operations, messages and types) as individual
components and analyse them separately.

An advantage of holistic approaches, especially the ones
that are based on established modelling languages and tech-
niques like UML, is that they provide opportunities for ex-
tension. Developers can use UML stereotypes, OCL rules
and other components to extend a service model and in-
clude more details or other aspects. In this sense, one can
extend a service model with a more fine-grained model for
the service interface. Unfortunately, most of the approaches
lack the tool support and detailed instructions on how to
extend the models so that the extension communicates har-
moniously with the core model.

3. WSMETA
Before embarking into the task of creating a web service

meta-model, we first need to identify the elements that the

7http://www.omg.org/spec/SoaML/

two main formats that we want to integrate (WADL and
WSDL) have in common. Therefore, a pre-processing step
would be to analyse the two formats so that we can un-
derstand the purpose and the significance of each element.
Then, we produce a mapping between the two formats. In
some cases, elements in one format may correspond directly
to elements in the other. In other cases, the elements of one
format might be more complex and correspond to a collec-
tion of elements in the other format. Finally, we include in
the meta-model the elements that are not common in the
two formats, since, when translating from a specific format
to WSMeta, we need to keep all the important information
so that we can later perform the opposite translation. In
this section, we will present these steps of the WSMeta con-
struction in detail.

3.1 Analyzing WSDL
As we have already mentioned, WSDL specifies a service

as a collection of operations that require an input and re-
turn an output or throw exceptions. A WSDL file consists
of three sections: the schema that specifies the data types,
the interface that specifies the operations, and the binding
that specifies implementation-related aspects of the service.
The schema is usually specified as an XML Schema Doc-
ument (XSD), that can be included, imported or specified
as an inline document inside the WSDL. It describes the
data that the service handles and organizes it in complex or
simple types. The operations are identified by a name and
contain an input, an output, a fault corresponding to the
input and a fault corresponding to the output. The number
and types of these children are dictated by the message-
exchange pattern of the operation (request-response, notifi-
cation etc.). Inputs, outputs and faults have a reference to
a type from the schema. The binding of the service specifies
how the service is bound to a communication protocol (e.g.
RPC/encoded, Document/literal etc.). In the binding, one
can also specify what is the communication protocol over
which an operation can be invoked. For example, we can
have wsoap:action and the name of an operation for SOAP
or whttp:method and an HTTP method for HTTP. Finally,
it also contains the service’s address.

3.2 Analyzing WADL
WADL describes a service as a set of resources on which

operations can be applied as HTTP methods (GET, PUT,
POST, DELETE). As such, the WADL can be split in two
parts: the schema and the resources. The schema serves the
same purpose as in WSDL, although in WADL it is referred
to as a grammar. There is no restriction on what format the
schema is specified, but XSD is a popular choice in WADL
as well.

The resources part includes a URL that is the path to the
resources. Each resource has a special attribute that defines
the path to this particular resource. To find the actual ad-
dress to a resource one has to concatenate its path attribute
with the URL to the resources. Each resource contains the
methods that are valid to be applied on it. The method is
identified by an id and the name of an HTTP method. A
method contains a request and multiple responses depend-
ing on the HTTP status (by default, WADL methods follow
the request-response message exchange pattern 8). For ex-
ample, an HTTP 200 status code means success while 400

8http://www.w3.org/2002/ws/cg/2/07/meps.html

means failure. Responses and requests can be specified in
two ways: either as representations or as a set of parame-
ters. A representation specifies the type of the media, which
can be, for example, XML or JSON, and the structure of
the data, which can be specified as an XSD type or it can
be a reference to an XSD type declared in the grammars
section. A parameter has a name and a reference to an XSD
type specified in the grammars. It also has other attributes
such as whether it is required or a default value if necessary.
Parameters can also be enumerations of options.

3.3 Mapping WADL and WSDL
In order to map the elements and their attributes between

WADL and WSDL, we used VTracker, a tree-aligning algo-
rithm, which we have already used to analyse the evolu-
tion of WSDL services [8]. VTracker has a special feature
that allows us to create a cost function for two different file
formats. Essentially, we ran VTracker on the WSDL and
WADL schemas and we produced a mapping between the
elements of the two standards with their corresponding dis-
tances. Because VTracker employs not only the structural
properties of the elements but also their references (both in-
coming and outgoing), even in the case of elements that are
different structurally, the algorithm can map them based on
what other elements they use and by what other elements
they are used. The synthesized cost function helped us map
several elements. However, there were cases where not even
references helped and for specific elements there was no clear
mapping between the two formats. In these cases, we speci-
fied a mapping manually by changing the distance between
the two elements to 0 in the cost function. VTracker was
selected due to its bootstrapping ability to calculate a cost
function by comparing a schema to itself or two different
schemas. Although this cost function might require some
manual tuning, the bootstrapping process performs most of
the mapping automatically. In any case, the manual effort
is only applied on the schema level and the cost function is
used for instance level comparisons.

In order to evaluate the mapping, we created a reduced
version of the Amazon EC29 service in WSDL, by including
only one operation and its corresponding types. Then, we
manually translated this service to WADL. The next step
was to compare the two formats with VTracker by using
various configurations of the algorithm. The first variability
point we introduced concerned the employed cost function.
We used three configurations: no special cost function, the
synthesized cost function, and the manually improved cost
function. The second variability point concerned the key
elements. VTracker requires from the developer to specify
what are the key elements in each file (i.e. the elements
for which we are interested in mapping between the two
compared files). Then the algorithm reports the mapping
between the key elements. If an element is not considered
key, it does not participate in the mapping process. First,
we included XSD elements, WSDL operations and WADL
methods as key elements. Next, we introduced some ”noise”
in the key elements by adding WSDL messages, WSDL ports
and WADL resources. With the first key configuration, all
cost functions found the proper mapping (between XSD ele-
ments and between WSDL operations and WADL methods).
However, the distance reported between the elements (i.e.,
the confidence of the mapping) was better with the synthe-

9http://aws.amazon.com/ec2/

Table 1: Mapping of elements and their attributes between WADL and WSDL.

WADL WSDL WSMeta
application definitions IService

@targetnamespace @targetNamespace
grammars types Schema
resource interface Interface

resources@base+ re-
source@path

service::endpoint
@address

@address

method operation Operation
@id @name @name
@name binding::operation

@whttp:method OR
binding::operation
@wsoap:action

@method

http://www.w3.org/
ns/wsdl/in-out
(fixed)

@pattern @pattern

@href @href
@safe @safe
@style @safe

request
(re-
sponse)

input(output) Operation::request
(response)

::param@type
OR ::representa-
tion@element

@element @request(@response)

param xsd:element IType
@type @type @name

param xsd:simpleType SimpleType
::option@value ::restriction::enumeration

@value
Option@value

sized cost function than with no special cost function and
even better with the manually improved cost function. With
the second key configuration and with the default cost func-
tion and the synthesized cost function, VTracker got con-
fused and mapped WADL methods with WSDL messages.
This happened because WADL methods can reference XSD
elements directly (if they use parameters instead of represen-
tations). WSDL operations can only access XSD elements
only through messages (at least in version 1.110). There-
fore, it seems more natural to map such WADL methods
with WSDL message since they refer to the same elements
and their structure is not very different. However, with the
manually improved cost function, where we explicitly spec-
ified that WSDL operations are to be mapped with WADL
methods, the mapping was correct and with a strong confi-
dence.

Table 1 shows the final mapping between WADL and
WSDL. We use the delimiter ‘::’ to denote a parent-child
relationships, the delimiter ‘@’ to denote an attribute and
the delimiter ‘:’ to qualify names with namespaces. The
first column of each specification contains their high level
elements, while the second column contains the attributes
of these elements.

3.4 The Web Service Meta-Model
Figure 1 shows the proposed web service meta-model, WS-

Meta, produced by merging the WSDL and WADL models
as explained previously. WSMeta was implemented using
the EMF Ecore. An interesting point about the meta-model
concerns the schema. Although a schema is considered a sep-

10In version 1.2 of WSDL, the operations can directly access
data types, therefore the mapping could have been easier in
this case

arate file, it is an essential part of a service since it specifies
the nature and the structure of the data the service handles.
As such it should be included in a web service meta-model
and it can be useful in tasks such as service comparison.

Figure 2: The WSMeta as a meta-model for specific services.

Figure 2 positions WSMeta with respect to specific mod-
els. As its name implies, WSMeta is a meta-model for the
specific web service models, which have to conform to it. In
order to get the model corresponding to a web service file
or generate the service from the model, we use the Eclipse
Web Standard Tools (WST)11. Unfortunately, WST only of-
fers transformations from WSDL to its corresponding model
and not from WADL services (as of the time this paper was
being written).

Apart from the meta-model, we also contribute a set of
transformations, implemented using the Epsilon Transfor-
mation Language (ETL). An example of such a transforma-
tion rule can be seen in Figure 3. These transformations are

11http://www.eclipse.org/webtools/wst/main.php

Figure 1: The Web Service meta-model.

Figure 3: ETL rule to transform a WADL method to a
WSMeta operation.

used to translate the specific models into the meta-model

and vice versa. This way we can easily create meta-model
instances from specific web services.

This would also allow us to translate the specification of
a service from one standard to the other through WSMeta.
The way we have defined our meta-model, i.e., by including
not only the common elements between WSDL and WADL
but also the unique elements from each standard, we ensure
that such a transformation will be lossless. In other words,
the produced interface will exactly correspond to the inter-
face of the other standard. Of course, we cannot guarantee
that the produced interface will be immediately functional
and this is because, for a translated service to work, some
low-level requirements need to be fulfilled first. For example,
some REST services may require the existence of a persis-
tent resource (e.g., database or file system). If we translate
a WSDL interface to a WADL one, the service will not work
until such a resource is provided. The purpose of the trans-
lation of services using WSMeta is to guide and facilitate
the migration of services from one standard to the other.
Manual changes to the service interface and the underly-
ing system may still be necessary for the service system to
function properly.

One thing that can hinder the transformation of web ser-
vice interfaces is the schema. Whether the interface includes
or imports an XML schema, it is still a different file, not in-
cluded in the model. This means that for a single interface
two models need to be created: one for the functional parts
and one for the data types of the service. As a result, the
transformation scripts for these two models need to be post-
processed in order to resolve the references between the two
models.

Figure 4: The client/composition extension of WSMeta.

Built with popular and state-of-the-art modelling tech-
niques and tools, WSMeta can be easily extended to include
more SOA concepts. For example, Figure 4 shows a WS-
Meta extension to describe service compositions and to in-
clude client applications.

4. AMAZON EC2 CASE STUDY
In this section, we present how we applied the transforma-

tion scripts and WSMeta on a case study we created from
the Amazon EC2 service. We created a minimal interface
with only two operations (RegisterImage and Deregister-

Image) and information only about the abstract part of the
interface, without the schema or the binding. We first cre-
ated a WADL and a WSDL instance of the interface based
on the WADL and WSDL schemata respectively. Then us-
ing the ETL transformations we generated the WSMeta in-
stances from the other two instances. Finally, using the
opposite transformation rules, we attempted to reconstruct
the WADL and WSDL instances from the WSMeta instance.
The results of this case study are shown in Figures 5 and 6
respectively for the two formats.

As it can be seen from the figures, the transformations
from the specific model instance to the meta-model instance
and vice versa produced the same model instance as the orig-
inal in terms of structure. This demonstrates the ability of
the meta-model and the transformation scripts to retain the
basic structure of the service, which will allow more accurate
comparisons. However, there are some discrepancies with
respect to specific attributes of the service elements (e.g.
names, types etc.), which shows that the transformations
are not completely lossless and additional work needs to be
done in this aspect. Furthermore, the transformation from
both WADL and WSDL to WSMeta produced the same in-
stance in terms of structure, which demonstrates the ability
of our method to allow comparisons between heterogeneous
service interfaces.

5. CONCLUSION AND FUTURE WORK
In this work, we presented WSMeta, a web-service meta-

model. We applied VTracker on WSDL and WADL schemas

in order to identify the common elements between the two
standards. We used Ecore as our modelling language and
ETL for the model transformations.

The proposed meta-model is not intended to describe web
services but rather to be used as intermediate format to
run tasks such as web service interface comparison. Since
interfaces are the consumable part of a service, its critical
parts are what it can do (operations) and on what data
(types). By keeping only these elements, we abstract it and
make it more lightweight to facilitate comparison algorithms
and improve their efficiency and accuracy. Furthermore, by
combining the elements of WSDL and WADL in our meta-
model we can compare heterogeneous services specified in
these standards. This widens the possibilities in web ser-
vice discovery and selection. Finally, by using popular and
state-of-the-art tools (Ecore, EMF, Epsilon) to create WS-
Meta and provide tooling support for it, we facilitate its
further development and make it easier for other developers
to provide custom extensions.

This work is a first step towards a web service meta-model
for service interface comparison. Although some of its fun-
damental aspects have been implemented and presented in
this work, we want to further develop and improve WS-
Meta. First, we plan to systematized the process of creat-
ing the meta-model. This can be achieved by model merg-
ing techniques. Using such techniques in combination with
VTracker, we will no longer have to rely on manual effort
to map elements between different formats. Furthermore,
we will be able to study more service standards other than
WSDL or WADL and automatically integrate them with
WSMeta. Finally, Eclipse WST allows us to parse a WSDL
service and generate the corresponding Ecore model. How-
ever, such a parser doesn’t exist for WADL or other stan-
dards. It is necessary to create such a tool to allow us to
apply the transformations and translate WADL services to
WSMeta models.

6. ACKNOWLEDGMENTS
This work has been supported by NSERC, AITF and

IBM.

7. REFERENCES
[1] N. Ali and M. A. Babar. Modeling service oriented

architectures of mobile applications by extending
soaml with ambients. In Proceedings of the 2009 35th
Euromicro Conference on Software Engineering and
Advanced Applications (Patras, Greece, August 27-29,
2009), SEAA ’09, pages 442–449, 2009.

[2] N. Ali, R. Nellipaiappan, R. Chandran, and M. A.
Babar. Model driven support for the service oriented
architecture modeling language. In Proceedings of the
2nd International Workshop on Principles of
Engineering Service-Oriented Systems (Cape Town,
South Africa, May 1-2, 2010), PESOS ’10, pages 8–14,
2010.

[3] V. Andrikopoulos, S. Benbernou, and M. P.
Papazoglou. Managing the evolution of service
specifications. In Proceedings of the 20th international
conference on Advanced Information Systems
Engineering (Montpellier, France, June 16-20, 2008),
CAiSE ’08, pages 359–374, 2008.

(a) The original instance of the
WADL Amazon service.

(b) The WSMeta Amazon instance af-
ter the WADL2WSMeta transforma-
tion.

(c) The WADL Amazon instance after
the WSMeta2WADL transformation.

Figure 5: The WADL to WSMeta Amazon case study.

(a) The original instance of the WSDL
Amazon service.

(b) The WSMeta Amazon instance af-
ter the WSDL2WSMeta transforma-
tion.

(c) The WSDL Amazon instance after
the WSMeta2WSDL transformation.

Figure 6: The WSDL to WSMeta Amazon case study.

[4] B. Bordbar and A. Staikopoulos. Automated
generation of metamodels forweb service languages. In
Proceedings of the 2nd European Workshop on Model
Driven Architecture (Canterbury, UK, September 7-8,
2004), MDA’04, September 2004.

[5] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R.
Raje, A. M. Olson, and M. Auguston. A
meta-modeling approach to web services. In
Proceedings of the IEEE International Conference on
Web Services (San Diego, CA, USA, July 6-9, 2004),
ICWS ’04, pages 796–800, 2004.

[6] D. Fensel and C. Bussler. The web service modeling
framework wsmf. Electronic Commerce Research and
Applications, 1(2):113–137, 2002.

[7] R. T. Fielding. REST: Architectural Styles and the
Design of Network-based Software Architectures.
Doctoral dissertation, University of California, Irvine,
2000.

[8] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and
A. Lau. An empirical study on web service evolution.
In Proceedings of the 2011 IEEE International
Conference on Web Services (Washington, DC, USA,
July 4-9, 2011), pages 49–56, 2011.

[9] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch,
and S. Abeck. Evaluation of service designs based on
soaml. In Proceedings of the 2010 Fifth International
Conference on Software Engineering Advances (Nice,
France, August 22-27, 2010), ICSEA ’10, pages 7–13,
2010.

[10] H. Jegadeesan and S. Balasubramaniam. An
MOF2-based Services Metamodel. Journal of Object
Technology, 7(8):71–96, 2008.

[11] D. Oberle. D1 report on landscapes of existing service
description efforts.
http://www.w3.org/2005/Incubator/usdl/wiki/D1,
September 2011.

[12] G. Ortiz and J. Hernandez. A case study on
integrating extra-functional properties in web service
model-driven development. In Proceedings of the
Second International Conference on Internet and Web
Applications and Services (Mauritius, May 13-19,
2007), pages 35–40, 2007.

[13] A. Staikopoulos and B. Bordbar. A comparative study
of metamodel integration and interoperability in uml
and web services. In Proceedings of the First European
conference on Model Driven Architecture: foundations
and Applications (Nürnberg, Germany, November
7-10, 2005), pages 145–159, 2005.

[14] M. Treiber, H.-L. Truong, and S. Dustdar. Semf -
service evolution management framework. In
Proceedings of the 2008 34th Euromicro Conference
Software Engineering and Advanced Applications
(Parma, Italy, September 3-5, 2008), SEAA ’08, pages
329–336, 2008.

2.3 WSDarwin: Studying the Evolution of Web

Service Systems

Fokaefs, M., Stroulia, E., 2014b. WSDarwin: Studying the Evolution of Web

Service Systems. Advanced Web Services. Springer, Ch. 9, pp. 199-223.

40

WSDARWIN: Studying the Evolution of Web
Service Systems

Marios Fokaefs and Eleni Stroulia

Abstract The service-oriented architecture paradigm prescribes the development of
systems through the composition of services, i.e., network-accessible components,
specified by (and invoked through) their interface descriptions. Systems thus devel-
oped need to be aware of changes in, and evolve with, their constituent services.
Therefore, the accurate recognition of changes in the specification of a service is an
essential functionality in supporting the software lifecycle of service-oriented sys-
tems. In this chapter, we extend our previous empirical study on the evolution of
web-service interfaces and we classify the identified changes according to their im-
pact on client applications. To better understand the evolution of web services, and,
more importantly, to facilitate the systematic and automatic maintenance of web-
service systems, we introduce WSDARWIN, a specialized differencing method for
web services. Finally, we discuss the application of such a comparison method on
operation- (WSDL) and resource-centric (REST) web services.

1 Introduction

Service-system evolution and maintenance is an interesting variant of the general
software-evolution problem. The problem is complex and challenging due to the
fundamentally distributed nature of service-oriented systems, whose constituent
parts may reside on different servers, across organizations and beyond the domain
of any individual entity’s control. At the same time, since the design of a service-
oriented system is expressed in terms of the interface specifications of the under-

Marios Fokaefs
Department of Computing Science, University of Alberta, Edmonton, AB, Canada, e-mail:
fokaefs@ualberta.ca

Eleni Stroulia
Department of Computing Science, University of Alberta, Edmonton, AB, Canada e-mail:
stroulia@ualberta.ca

1

2 Marios Fokaefs and Eleni Stroulia

lying services, the overall system needs and can be aware only of the changes that
impact these interface specifications; any changes to the service implementations
that do not impact their interfaces are completely transparent to the overall system.
In effect, the specifications of the system’s constituent services serve as a boundary
layer, which precludes service-implementation changes from impacting the overall
system.

The directly affected party in the evolution of service systems is the client, i.e.,
the consuming party. Figure 1 shows a typical evolution scenario from the client’s
perspective. Initially, the client invokes the service and a fault may be detected. It is
not usual for the client to have a priori knowledge about any changes on the service,
unless there is frequent and effective communication between the provider and the
client. Once the fault is detected, the client has to compare the old service interface
with the new one from the provider to identify the nature of the changes and possibly
their effect on the application. The next step is to adapt the client application to the
new version of the service. This requires as much information as possible in order
to make the adaptation process systematic and, if possible, fully automatic. Finally,
the client has to test the application to make sure the adaptation worked, since not
all changes are automatically adaptable.

Fig. 1 The evolution process from the client’s perspective.

This is why recognizing the changes to the specification of a service interface
and their impact on client applications is highly desirable and a necessary prerequi-
site for actually adapting the applications to the new version of the service. Further,
assuming that a precise method for service-specification changes existed, it would
be extremely useful if one could (a) characterize the changes in terms of their com-
plexity, and (b) semi-automatically develop adapters for migrating clients from older
interface versions to newer ones.

In this work, we introduce WSDARWIN, a domain-specific differencing method
to compare (a variety of) web-service interfaces. Most frequently, services are devel-
oped following two approaches: operation-centric, whose interfaces are specified as
Web Service Description Language (WSDL)1 files, and data-centric (REST), which
are specified as Web Application Description Language (WADL)2 files. Although
the two approaches are quite different in the syntax they use to specify web services
and their associated technologies, they share a palette of building elements, namely
functions and data. WSDARWIN takes advantage of this fundamental commonal-
ity to produce accurate comparison results in an efficient and scalable manner for
service interfaces regardless of their specification syntax. In this work, we compare

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/Submission/wadl/

WSDARWIN: Studying the Evolution of Web Service Systems 3

WSDARWIN with our old comparison approach VTRACKER [6] and discuss their
differences with respect to performance and scalability. Finally, we apply WSDAR-
WIN on Unicorn3, W3C’s unified validator and Amazon Elastic Cloud Computing
(EC2) web service and we present some special cases to demonstrate how the com-
parison method is used and how its results are presented.

In addition to comparing pairs of specifications to recognize their differences, we
are also interested in analyzing the long-term evolution of real world services. We
have already presented an empirical study [6], where we analyzed a set of commer-
cial WSDL web services including the Amazon Elastic Cloud Computing (Amazon
EC2)4, the FedEx Package Movement Information and Rate Services5, the Pay-
Pal SOAP API6 and the Bing search service7, using VTRACKER, as a comparison
method. In that work, we studied the evolution of the aforementioned services and
reported our findings on evolution patterns, we identified particular change scenar-
ios and discussed them with respect to their impact on potential client applications
and, finally, we correlated these changes with business decisions concerning the ser-
vices in an effort to reason about the evolution of each service. In this chapter, we
extend the findings of this empirical study by providing additional statistics about
the changes that the examined services underwent and, more importantly, we pro-
vide a classification of the service change scenarios according to their impact on
client applications.

The rest of the chapter is organized as follows. In Section 2 we present the ex-
tended results of our empirical study on the evolution of WSDL services and we
present the classification of service changes. In Section 3, we introduce WSDAR-
WIN as a comparison method for service interfaces and demonstrate its usage on a
WSDL and a WADL service. Section 4 provides an overview of the literature re-
lated to our work. Finally, Section 5 concludes this chapter and discusses some of
our future plans.

2 Study of Web Service Evolution

Before developing methods and tools to support the evolution process of web ser-
vices, it is important to first study and understand how service interfaces change.
This way, we can identify what is important to pay attention to and what can be
simplified in order to build improved automated processes. In our work, we have
studied five real-world web services offered by companies in the industry of web
applications, whose evolution spans across different time periods and exhibits inter-
esting evolution patterns.

3 http://code.w3.org/unicorn/
4 http://aws.amazon.com/ec2/
5 http://www.fedex.com/us/developer
6 https://www.paypalobjects.com/en_US/ebook/PP_APIReference/
architecture.html
7 http://www.bing.com/developers

4 Marios Fokaefs and Eleni Stroulia

• Amazon EC2. The Amazon Elastic Compute Cloud is a web service that pro-
vides resizable compute capacity in the cloud. We studied the history of the web
service across 18 versions of its WSDL specification, dating from 6/26/2006 to
8/31/2010.

• The FedEx Rate Service operations provide a shipping rate quote for a specific
service combination depending on the origin and destination information sup-
plied in the request. We studied 9 versions of this service.

• The FedEx Package Movement Information Service operations can be used to
check service availability, route and postal codes between an origin and destina-
tion. We studied 3 versions of this service.

• The PayPal SOAP API Service can be used to make payments, search transac-
tions, refund payments, view transaction information, and other business func-
tions. We studied 4 versions of this service.

• The Bing Search service provide programmatic access to Bing content Source-
Types such as Image, InstantAnswer, MobileWeb, News, Phonebook, Related-
Search, Spell, Translation, Video, and Web. We studied 5 versions of this service.

2.1 Analyzing the evolution of the services

Table 1 shows the evolution profile of all the examined services in terms of data
types and operations. Each row corresponds to a service version. Columns 3-8 report
the percentage of types and operations in this version that underwent edits (Changes,
Deletions, Additions) from the previous version. The change columns include two
types of changes: renaming or other changes in the “signature” of the object (type or
operation), i.e., the attributes of the particular XML element and changes that were
propagated from children nodes. For example, if the input or output of an operation
or the contained elements of a type are changed, then these changes are propagated
to the parent element.

Amazon EC2, as it can be seen from the tables, followed a very distinct pattern of
evolution. The developers chose to augment a single service with new operations as
they were being developed. For this reason, we observe many additions and changes
and a complete lack of deletions. Although this policy eventually produced a rather
long WSDL file, it was also prudent in the sense that deleting an operation creates
a non-recoverable situation. In such a case a client application should be changed
and recompiled. Furthermore, we can observe a correlation between adding new
operations and adding new types. This is because in the Amazon services there is a
2-to-1 relationship between types and operations (one input type and one output type
for each operation). The changes in the types are usually because of enhancements
in previous functionality or to accommodate new functionality. In version 6, we can
observe a special case: there are small changes and deletions in types and no other
activity. Upon closer examination, it becomes clear that this change represents, in
fact, a refactoring.

WSDARWIN: Studying the Evolution of Web Service Systems 5

Table 1 The evolution profile of types and operations in the studied services.

Service Ver Types Operations
C(%) D(%) A(%) C(%) D(%) A(%)

Amazon EC2 2 5.00 0.00 25.00 0.00 0.00 21.43
Amazon EC2 3 1.33 0.00 8.00 0.00 0.00 11.76
Amazon EC2 4 2.47 0.00 0.00 0.00 0.00 0.00
Amazon EC2 5 7.41 0.00 7.41 0.00 0.00 5.26
Amazon EC2 6 2.30 2.30 0.00 0.00 0.00 0.00
Amazon EC2 7 4.71 0.00 30.59 0.00 0.00 30.00
Amazon EC2 8 0.00 0.00 23.42 0.00 0.00 30.77
Amazon EC2 9 26.28 0.00 10.22 2.94 0.00 8.82
Amazon EC2 10 0.66 0.00 3.97 2.70 0.00 2.70
Amazon EC2 11 0.00 0.00 8.92 0.00 0.00 7.89
Amazon EC2 12 1.17 0.00 4.68 0.00 0.00 4.88
Amazon EC2 13 1.68 0.00 44.69 0.00 0.00 51.16
Amazon EC2 14 1.54 0.00 5.02 0.00 0.00 4.62
Amazon EC2 15 5.88 0.00 8.82 0.00 0.00 8.82
Amazon EC2 16 0.34 0.00 10.14 0.00 0.00 9.46
Amazon EC2 17 1.53 0.00 7.36 0.00 0.00 7.41
Amazon EC2 18 12.00 0.00 4.57 0.00 0.00 4.60
FedEx Rate 2 26.32 1.32 11.84 0.00 0.00 0.00
FedEx Rate 3 14.29 0.00 9.52 0.00 0.00 0.00
FedEx Rate 4 25.00 8.70 47.83 0.00 0.00 100.00
FedEx Rate 5 9.38 0.78 4.69 50.00 50.00 0.00
FedEx Rate 6 10.53 3.01 39.85 0.00 0.00 0.00
FedEx Rate 7 15.38 2.75 15.93 0.00 0.00 0.00
FedEx Rate 8 8.25 0.97 11.17 0.00 0.00 0.00
FedEx Rate 9 18.06 0.44 0.44 0.00 0.00 0.00
Bing 2.1 11.29 0.00 14.81 0.00 0.00 0.00
Bing 2.2 7.35 1.61 11.29 0.00 0.00 0.00
Bing 2.3 2.94 0.00 0.00 0.00 0.00 0.00
Bing 2.4 1.43 0.00 2.94 0.00 0.00 0.00
PayPal 53.0 12.35 0.00 107.69 0.00 0.00 110.53
PayPal 62.0 7.07 0.00 22.22 0.00 0.00 20.00
PayPal 65.1 1.82 0.00 11.11 0.00 0.00 10.42
FedEx Pack. 3 10.00 0.00 0.00 0.00 0.00 0.00
FedEx Pack. 4 5.00 0.00 0.00 0.00 0.00 0.00

The FedEx services (Rate and Package Movement) do not follow the same evolu-
tion pattern. These services have a very small number of operations (1 and 2 respec-
tively), which rarely change. On the other hand, the data types evolve vigorously
with changes, deletions and additions of new types especially in the Rate service.
An interesting change in the Rate service occurred between versions 3 and 4. Until
version 3 the service offered a single operation named getRate. In version 3, a
second operation, named rateAvailableServices, was introduced. In ver-
sion 4, however, the new operation was promptly deleted, getRate was renamed
to getRates, and based on the reorganization of the types, it appears that the
responsibilities of the deleted operation were merged into the original one.

6 Marios Fokaefs and Eleni Stroulia

Bing and PayPal have both had a relatively short lifecycle but still exhibit inter-
esting differences between them. Bing’s history has been relatively stable, with few
modifications given also the small number of elements in its WSDL specification
(1 operation and between 54 and 70 types). PayPal, on the other hand, follows an
expansion pattern similar to the one Amazon follows; it is consistently enhanced
with new operations. The great increase observed in Figure 2(a) in the number of
operations between the first two examined versions of PayPal is because there are a
lot of intermediate versions for which we have no data.

(a) Evolution of number of operations

(b) Evolution of number of types

Fig. 2 The evolution of the examined services

Figures 2(a) and 2(b) show the evolution of the operations and types of the exam-
ined services. An interesting observation from these figures concerns the Amazon
service, where we can see that the particular service seems to have three distinct
phases: the first is from version 1 to version 6, the second is from 7 to 12 and the
third from 13 to 18. These phases are the result of the business decisions that have
been described in [6].

WSDARWIN: Studying the Evolution of Web Service Systems 7

2.2 Classification of Service Changes

Based on the discussion about specific changes that happened in the web services we
examined in [6], we propose a classification of these changes based on their impact
on client applications. Because of the distributed nature of service systems, clients
usually have very little information to understand the changes in web services and
contemplate their impact on their applications. Therefore, accurately recognizing
and characterizing service changes will facilitate clients reason about these changes
and systematically build adapters for their applications. We distinguish three types
of changes with respect to their impact on clients.

1. No-effect changes do not impact the client at all. The client functionality is not
disrupted and neither is the interface, which practically means that the client can
still operate using the old stub. Changes in this category include adding new
types (as long as these types are not used by existing operations) and adding new
operations (assuming that the semantics of the service are preserved and there
are no interdependencies between the new and the old operations).

2. Adaptable changes affect the interface of the client, but the functionality of the
service remains the same. These changes, from the point of view of the provider,
usually correspond to refactorings on the source code of the service. In other
words, they are changes meant to improve the design of the service and leave
the functionality unaffected. They can be easily addressed by generating a new
stub and changing the old stub, still used by the client application, to invoke the
new one and thus the evolved service [7]. This way we avoid changing the client
code by modifying only autogenerated code. Changes in this category include
refactorings, renaming and changing input or output for an operation (assuming
that the new input or output are existing types and not new ones).

3. Non-recoverable changes imply that the functionality of the service is affected, in
a way that the client breaks and we cannot address the issue without changing and
recompiling the client code. In some cases, the change is so subtle as not to affect
the interface of the client. In other words, the client still works but the results
produced are not the desired ones. The problem in this case can be identified
by means of unit and regression testing. Removing elements from the service
interface (without replacing them) is a non-recoverable change.

Even after the identification of detailed changes between versions of the service
interface and the classification of these changes, the adaptation of client applications
may still not be plausible. Even in the first two categories, functionality may be
affected and this impact may seem invisible or easily addressable by examining just
the service interface. For this reason, testing of the adapted client application may
still be needed and additional (manual) effort may be required.

8 Marios Fokaefs and Eleni Stroulia

2.3 Implications of the Empirical Study

Apart from drawing conclusions for the evolution of web service interfaces, in-
cluding evolution patterns, lifecycles, good and bad practices, through the empiri-
cal studies we identified types of simple or more complex, but definitely recurring,
changes. These examples, along with ones drawn from our experience in designing
and developing software systems, have been used to design the comparison com-
ponent of WSDARWIN. The study has shown us what kind of changes to expect
and the instances of these changes in commercial web services have helped us to
understand how we can automatically identify such changes.

On the other hand, the classification of service changes primarily contributes
to the adaptation and generally the evolution of client applications. In a recent
work [7], we propose an adaptation algorithm that automatically adapts client ap-
plications to adaptable changes of the service interface. The knowledge of what
category the change belongs to, can help us identify whether automatic adaptation
can be applied. The classification can also improve the comparison method. For in-
stance, in case of refactorings, these types of changes have very specific mechanics
(see the work by Fowler [8]), which can be translated to comparison rules in WS-
DARWIN, thus expanding the system’s capabilities to identify a greater variety of
changes.

3 WSDARWIN

In order to be able to systematically adapt client applications to the changes of the
web services on which they rely, we, first, should be able to accurately recognize the
changes a web service undergoes. In developing a web-service differencing algo-
rithm, one should consider two quality properties: (a) the efficiency and scalability
of the algorithmic process, and (b) the understandability of the output it produces.
The process has to be efficient and scalable because service-interface descriptions
can be quite lengthy and complex, as they may contain many and complex types
and numerous operations. On the other hand, as the differencing process is usually
preformed in service of another task, such as adaptation for example, its output has
to be understandable by the developers and it also has to be designed to be easily
consumed by any downstream automated process.

In the WSDARWIN comparison method, we ensure efficiency by using a concise,
domain-specific model to represent the relevant information of a service interface.
The model captures the most important information of a service’s elements such as
names, types, their structure and the relationships with each other, thus, providing a
simpler, more lightweight syntactic representation of the service representation than
either WSDL or WADL. In addition, the algorithm employs certain heuristics on
name comparisons to further improve the efficiency. The rationale underlying these
heuristics is that within the same service (even between versions) names are unique
and can therefore be treated as IDs. The use of the same name for different elements

WSDARWIN: Studying the Evolution of Web Service Systems 9

is not likely (and in many cases it is not allowed). For this reason, it only makes
sense to compare strings using exact matching and not partial matching techniques
such string-edit distance. Furthermore, instead of comparing named XML nodes like
VTRACKER, WSDARWIN compares model entities based on their specific type (e.g.
operations with operations, complexTypes with complexTypes etc.). This way it is
not necessary to compare all elements against each other, thus avoiding false results
due to fuzzy mapping and gaining further efficiency improvement over VTRACKER.

WSDARWIN’s output follows the model shown in Figure 38. Figure 3(a) shows
the model used to represent WSDL service interfaces. The operations, which are
the invocation points between the provided service and the client application,
have input and output types. The type hierarchy is in accordance with the XML
Schema specification9: PrimitiveTypes include strings, integers, boolean etc.;
SimpleTypes are based on certain restrictions on their values (e.g. enumera-
tions); ComplexTypes are composed of other types. The model omits elements
that add no further structural information for the clients, such as messages and
high level elements from the schema, which only serve as references. Therefore,
only the elements to which these references point were eventually included in the
model.

Figure 3(b) corresponds to the WADL interface model. The element resources
contains a set of resource elements, which in turn contain methods and these
have requests and responses. Requests consist of a set of parameters and
the responses, which are usually returned as a file of structured data such as XML
or JSON, refer to elements in an XML schema file. The IType hierarchy is the same
as in the WSDL model.

In both these models, the containment relationships (denoted by the black dia-
monds) indicate parent-child relationships between element types. For example, an
operation in WSDL has two children: an input type and an output type. The children
elements together represent the structure of a WS element. Structural information
can be used to uniquely identify elements. If two elements across two web-service
specifications have the same children, then there is high confidence that they are one
and the same element.

Figures 4(a) and 4(b)10 show examples of the instantiation of the WSDL and
WADL models for the Amazon EC2 and the Unicorn validator, respectively. The
figures clearly demonstrate the structure of elements, implemented by the parent-
children relationship between WS elements as defined in the interface models.

Figure 3(c) models the changes. We can have different types of deltas including
changes, additions, deletions, moves and moves and changes. The two hierarchies
are connected through the Bridge design pattern [9] and their relationship is that
each delta has a source WS element and a target WS element.

The interface models define the structure and the vocabulary of the diff scripts
produced by WSDARWIN; the Delta model defines the annotations for each map-

8 The diagrams were designed using the Eclipse EMF toolkit.
9 http://www.w3.org/XML/Schema
10 The figures were generated by the Eclipse EMF toolkit.

10 Marios Fokaefs and Eleni Stroulia

(a) The WSDL service interface model.

(b) The WADL service interface model.

(c) The WSDARWIN delta model.

Fig. 3 The WSDARWIN comparison framework.

WSDARWIN: Studying the Evolution of Web Service Systems 11

(a) Amazon EC2 (b) W3C Unicorn CSS validator

Fig. 4 Snippets of WSDL and WADL instances of the WSDARWIN interface models.

ping reported in these scripts. Designing WSDARWIN in this manner, we have
striven for a balance of specificity to the syntax of the compared specification
(WSDL vs. WADL) and generality in the definition of the changes the interfaces
go through. This design, we believe, makes the output clear to web-service sys-
tem developers and enables them to understand and better reason about the changes
in the services. Furthermore, the output is designed with consideration to a down-
stream automated adaptation process, since it provides a full mapping between the
elements and the type of every change so that the process can assess its impact on
the client application.

Let us now review WSDARWIN in some detail. For each version v to be ex-
amined, WSDARWIN extracts Ev, the set of elements in the specification of the v
version of the service. This set contains tuples (id, t,a,s) where id is the identifying
attribute of the element (usually the name), t is the type of the element, a is the set
of its attributes and s is the structure of the element.

12 Marios Fokaefs and Eleni Stroulia

In the context of the WSDARWIN comparison, the ID or the structure can
uniquely identify an element. Therefore, if two elements, belonging in two different
versions, share at least one of these two properties (ID and structure), then WS-
DARWIN considers them to be two versions of the same element. Since web service
interfaces are artifacts generated by source code, they also follow the programming
conventions of the underlying programming language. In principle, two entities in
the same file cannot have the same name, or a compilation error occurs. Therefore,
we can safely assume that the name of an entity is its unique identifier. On the other
hand, we also consider structure to be a unique identifier so as to be able to identify
cases of renaming. In the rare case, where the new version contains two elements,
one with the same name as the old entity and the other with the old entity’s structure
but different name, WSDARWIN might get confused, but the diff script exactly the
same set of edit operation: one addition and one change.

Note that the set Ev contains elements of all types across the WSDL and WADL
specification syntaxes. For every element in a specific version of the web-service
e ∈ Ev, WSDARWIN identifies

• Ae: The set of attributes, other than the ID, and
• Se: The structure of the element, if it is a complex element. Note that, as we

mentioned above, the structure refers to the children of complex elements such
as input and output types for operations and elements for complex types.

Finally, for each comparison ∆ , between two versions v1,v2 ∈ V , where V is
the set of versions of a web-service specification to be analyzed, we determine the
added and deleted matched elements by using the symbols “+” and “-”respectively.
Therefore, E+

∆ is the set of elements that were added. We also use the symbol “#” to
denote mapped elements, e.g. E#

∆ .
WSDARWIN relies on a set of rules to map and differentiate the elements be-

tween different versions of the service interfaces. Table 2 summarizes the rules we
use to compare service interfaces.

Table 2 The definition of rules used by WSDarwin for the comparison of web service interfaces.

Name of comparison rule Rule
1 Exact matching ∀ae1 ∈ Ae1 ,∀ae2 ∈ Ae2 : ae1 .literal = ae2 .literal
2 Mapping ∃e1,e2 ∈ E#

∆ : e1.t = e2.t and (e1.id = e2.id or e1.s = e2.s)
3 Changed ∃(idi, ti,ai,si) ∈ E#

∆ and ∃(id j, t j,a′j,s j) ∈ E#
∆

4 Propagated change ∃(idi, ti,ai,si) ∈ E#
∆ and ∃(id j, t j,a j,s′j) ∈ E#

∆
5 Matched ∃(idi, ti,ai,si) ∈ E#

∆ and ∃(id j, t j,a j,s j) ∈ E#
∆

6 Added ∃ev2 /∈ E#
∆

7 Deleted ∃ev1 /∈ E#
∆

8 Changed (Renamed) ∃(idi, ti,ai,si) ∈ E−∆ and ∃(id′j, t j,a j,s j) ∈ E+
∆

9 Moved ∃(idi, ti,ai,si) ∈ E−∆ and ∃(id j, t j,a j,s j) ∈ E+
∆

10 Moved and Changed ∃(idi, ti,ai,si) ∈ E−∆ and ∃(id′j, t j,a′j,s
′
j) ∈ E+

∆

WSDARWIN: Studying the Evolution of Web Service Systems 13

1. The first rule is the exact matching rule. In case of simple attributes (such as the
element’s ID and attributes belonging in the Ae set of the element), two attribute
values are the same if and only if they have the same literal. In case of structure
(i.e., the set of children of an element), two elements are considered structurally
equal if and only if all their children are equal. Children equality is determined
in an iterative manner.

2. The second rule states that two elements are “mapped” to each other, i.e., they
are considered the same element across the two interface versions, if their type
and at least one of their identifying properties, i.e., ID and structure, match. It is
important to note that two mapped elements are not necessarily matched. There
can still exist differences in which case a Change Delta is reported. On the other
hand, matched elements are always mapped.

3. An element is considered “changed” if its ID was found in both versions but
some of the values of its other attributes differ across the two versions.

4. If there is a change in the structure of the element (i.e., its children have changed),
the element itself is considered “changed” even if none of the attributes of the
parent element have changed. This is because the adaptation process starts from
the root element of a service request which is considered to be the operation.
Therefore, if some part of its input or its output is affected the operation is still
considered affected.

5. If two elements are mapped and no differences are identified, they are labeled as
“matched”. The need to retain matched elements in the final comparison script is
because an automated adaptation process needs a full mapping between the two
versions.

6. An “addition” is identified if an element’s name (its ID) that did not exist in the
old version, but it was not found in the new version.

7. Correspondingly, a “deletion” is identified if an element’s name existed in the old
version, but it was not found in the new version.

8. In a second phase, the additions and deletions are reexamined to recognize po-
tential changes in the element IDs or moves. If an element is identified as deleted
from the old version and another element as added in the new version and the two
elements have identical structure but differ with respect to their IDs then these
elements are labeled as “changed (renamed)”.

9. In a similar scenario, where elements are mapped between the deleted and added
sets, these elements are marked as “moved”. The reason they couldn’t be iden-
tified in the first run of the comparison is because the process follows the struc-
ture of the service interface and elements are compared only in the context of
their parents. Legitimate moves in a WSDL interface include primitive types be-
ing moved between complex types. Another also legal, but less probable, move
can occur when two operations exchange their input or output types. In WADL,
where the structure is more complicated, we can have resource elements be-
ing moved between resources elements and methods being moved between
resource elements. Moves involving data types are also possible in this syn-
tax.

14 Marios Fokaefs and Eleni Stroulia

10. If the moved elements also differ in their structures or their IDs, they are labeled
as “moved and changed”. If they differ with respect to both structure and ID,
then they are considered different elements and are report as an addition and a
deletion.

Algorithm 1 diff(e1,e2) WSDARWIN service interface comparator
1: Compare the attributes of the two elements.
2: if Changes are detected then
3: Set ElementDelta to ChangeDelta(e1,e2)
4: end if
5: for all c1 ∈Children(e1) do
6: for all c2 ∈Children(e2) do
7: if ¬Mapped(c1,c2) then
8: Add DeleteDelta(c1) OR AddDelta(c2) to ElementDelta
9: for all cc1 ∈Children(c1) do

10: Add DeleteDelta(cc1) to DeleteDelta(c1)
11: end for
12: for all cc2 ∈Children(c2) do
13: Add AddDelta(cc2) to AddDelta(c2)
14: end for
15: else
16: Call diff(c1,c2)
17: Add result to ElementDelta
18: if The result contains only MatchDeltas AND ElementDelta != null

then
19: Set ElementDelta to MatchDelta(e1,e2)
20: else
21: //Change propagated.
22: Augment ElementDelta with ChangeDelta(e1,e2)
23: end if
24: end if
25: end for
26: end for

Algorithm 2 findMoveDeltas(Delta)
1: for all AddDelta(e2) AND DeleteDelta(e1) ∈ Delta do
2: if Mapped(e1,e2) then
3: if Changed(e1,e2) then
4: Create MoveAndChangeDelta(e1,e2)
5: Replace DeleteDelta(e1) with MoveAndChangeDelta(e1,e2)
6: else
7: Create MoveDelta(e1,e2)
8: Replace DeleteDelta(e1) with MoveDelta(e1,e2)
9: end if

10: end if
11: end for

WSDARWIN: Studying the Evolution of Web Service Systems 15

Based on the model and using the rules, in the first phase, the differencing method
performs pairwise comparisons between the elements of the service interfaces start-
ing from the more complex ones, such as the WSDL or WADL files themselves,
and going down the hierarchy of the service elements as shown by Algorithm 1.
First, the algorithm reports any changes in the attributes of the element (using the
3rd rule) or in the ID of the element (using the 8th rule) (steps 1-4). Second, the
children of the compared elements are mapped according to the 2nd rule (step 7).
Those that were not mapped are considered added, according to the 6th rule, or
deleted, according to the 7th rule (step 8). If a complex element is added or deleted
all of its children are also added or deleted to acquire a full mapping between the
two versions (steps 9-14). The elements that were mapped are then compared (step
16). The comparisons continue this way until they reach simple elements, such as
XSD elements or WADL param elements, which are only compared based on their
attributes since they have no children and the comparison result is returned to the
parent. In the final step, the algorithm checks if the children of the compared ele-
ments and the children of their children are matched according to the 5th rule, then
the compared elements are matched as well (step 19). Otherwise, a change is prop-
agated to the parent according to the 4th rule (step 22). In a second phase shown by
Algorithm 2, WSDARWIN tries to identify moved elements among the added and
the deleted ones. In the first phase, additions and deletions are identified within the
scope of an element. In the second phase, the hierarchy is collapsed and additions
and deletions are reexamined to detect moves based on the 9th and the 10th rule.

3.1 WSDARWIN versus VTRACKER

VTRACKER, the first method we used for web-service differencing, is a generic
domain-agnostic differencing algorithm that can be used to compare heteroge-
neous interfaces, i.e., interfaces described in different schemas. In other words,
VTRACKER can be used to compare any pair of XML documents. For this reason,
this method uses fuzzy mapping and partial matching. For the former option, since
we don’t always know a mapping between the elements of the two interfaces, the
algorithm compares all elements with each other (regardless of their type) and estab-
lishes a mapping based on their structural similarity. As far as the partial matching
is concerned, the algorithm uses the notion of distance to compare elements with
each other. Then, using a stable marriage algorithm it matches the elements with the
lowest edit distance. VTRACKER can be configured to include information about
the specific XML syntax used by the files to be compared. In our previous study [6],
we configured VTRACKER to work with WSDL interfaces. In the end, the output
produced by the algorithm is a text-like document containing the appropriate XML
edit operations to go from the first file to the second.

WSDARWIN, on the other hand, is a comparison method tailored to the web-
service domain and it is developed from the beginning with knowledge about the
structure of the interfaces, thus improving on quality properties such scalability and

16 Marios Fokaefs and Eleni Stroulia

understandability. Fuzzy mapping can cause problems in the case of elements of
different types named in a similar manner if they correspond to the same concept.
In the case of web services, the convention is to name operations and their input
and output types similarly to denote their relationship. Fuzzy mapping and partial
matching also contribute to decreased efficiency and accuracy: when the algorithm
considers a variety of increasingly relaxed methods for establishing correspondence
between two elements, then it has to perform more computations (resulting to ineffi-
ciency) and it risks establishing correspondence on more “risky” grounds (resulting
to inaccuracy). WSDARWIN takes advantage of the fact that web services share
a common palette of elements, regardless of their syntax, namely data and func-
tionality. In other words, this method is domain-specific, but technology-agnostic.
Furthermore, having a priori knowledge, it compares elements according to their
types and taking advantage of naming conventions, it uses exact matching to com-
pare literals. Finally, the output of WSDARWIN is based on the Deltas and follows
the structure of the service interface, which makes it not only understandable but
also easily consumable by automated adaptation techniques. Table 3 summarizes
the comparison between VTRACKER and WSDARWIN.

Table 3 Comparison between VTRACKER and WSDARWIN.

VTRACKER WSDARWIN

Domain-agnostic Domain-specific
Technology-specific Technology-agnostic
Heterogeneous comparisons Homogeneous comparisons
- Can be applied on any XML-like file - Can be applied only on the WS domain

Less efficient More efficient
- Fuzzy mapping - Mapping according to type, structure

and identifier
- Partial matching - Exact matching (same literal)

Free text output Structured output
- XML edit operations - Deltas

- Directly consumable by CASE tools

Figure 5 shows the execution time of VTRACKER and WSDARWIN with respect
to the size of the compared service interfaces. Time measurements were performed
in a machine with an Inter Core 2 Duo 1.87 GHz CPU, 3 GB RAM and 64-bit oper-
ating system. This figure clearly demonstrates the scalability of WSDARWIN even
in the presence of large services. VTRACKER approximates an exponential execu-
tion time while WSDARWIN’s is linear. Apart from the fuzzy mapping and partial
matching, another factor that contributes to VTRACKER’s large execution time is the
fact that when comparing the structure of an element, the method has to resolve and
compare references and this resolution takes place for each reference. WSDARWIN,
on the other hand, resolves references only once during the parsing of the service
interface and replaces the references with containment relationship, so the method
avoids the time to seek for the element corresponding to a reference every time it
encounters one.

WSDARWIN: Studying the Evolution of Web Service Systems 17

Fig. 5 Comparison between WSDARWIN and VTRACKER in terms of their execution time.

3.2 Applying WSDARWIN on the Comparison of Service Interfaces

In this section, we demonstrate with examples how the WSDARWIN differencing
method can be used to compare different versions of service interfaces. We applied
the method on Amazon EC2, which has a WSDL-based interface, and Unicorn,
which has a WADL-based interface. We chose these examples to show that given
the proper model to represent the service interface, the comparison method, which
is based on the delta model, can be applied to compare the interfaces regardless of
their underlying specification technology.

Figure 6 shows a snippet of the output of WSDARWIN for the Amazon EC2
service. The diff script follows the hierarchy of the WSDL interface starting with the
operations and then their input and output types. Each line is prefixed with the type
of the edit operation performed for each element. The detection of move operations
is activated for the script in Figure 6(b), and deactivated for the script reported in
Figure 6(a). Comparing the two figures, we observe that the move operations are first
perceived as additions and deletions, in the first phase of the comparison algorithm.
In the second phase, the deletions are replaced by move operations but the additions
are kept in the diff script.

In this example, we have a case of an “Inline Type” refactoring as described in our
previous work [6]. As it can be seen from the figure, such a refactoring occurs when
a type (RunInstancesInfoType), which is nested into another complex type
(RunInstancesType, is deleted from the service and its constituent elements
are all added in the parent type. By identifying the edit operations as moves and
not as actual deletions, we can characterize this change as adaptable according to
our classification. This is because the data exists in both versions but is “packaged”
differently.

18 Marios Fokaefs and Eleni Stroulia

(a) Diff script without the detection of move operations

(b) Diff script with the detection of move operations

Fig. 6 Snippet of the diff script between two versions of the Amazon EC2 service.

Also, edit operations of children elements are propagated as changes to the parent
element. This is so that the adaptation process knows as early as possible which are
the operations that are affected, since these are the contact elements between the ser-
vice interface and client applications. For example, as it can be seen in the figure, be-
cause of the changes (additions and deletions) in the input of the RunInstances
operation, these changes affect the operation which is marked as changed, despite
not being directly changed.

Figure 7 shows the output of WSDARWIN for the CSS validator service of Uni-
corn. The only major difference between the Unicorn and the Amazon diff scripts
is that the former follows the WADL hierarchy. The edit operations are reported in
exactly the same manner based on the delta model. In this case, we also have an
instance of an attribute change (line 13). These changes are reported by identifying
which attribute was changed (in this case attribute “name” of method “CssValida-

WSDARWIN: Studying the Evolution of Web Service Systems 19

Fig. 7 The diff script between two versions of the WADL-based CSS validator of Unicorn.

tionText”) prefixed by the symbol “@” for attribute, along with its old value and its
new value. An attribute change subsumes a propagated change, since both edit op-
erations mark the element as affected. For this reason, we do not need an additional
type delta for either edit operation.

As we have already mentioned, while the structure and the vocabulary of the diff
script are dictated by the underlying syntax model, the Deltas are used as annota-
tions. This demonstrates and emphasizes the fact that WSDARWIN is technology-
agnostic; regardless of the syntax model, the Delta language can be applied to pro-
vide the comparison context of the diff script.

4 Related Work

Our work relates to differencing, WSDARWIN’s contribution, and service evolution,
the substance of our empirical study.

4.1 Model- and Tree-Differencing Techniques

Fluri et al. [5] proposed a tree-differencing algorithm for fine-grained source code
change extraction. Their algorithm takes as input two abstract syntax trees and ex-
tracts the changes by finding a match between the nodes of the compared trees.

20 Marios Fokaefs and Eleni Stroulia

Moreover, it produces a minimum edit script that can transform one tree into the
other given the computed matching. The proposed algorithm uses the bi-gram string
similarity to match source code statements (such as method invocations, condition
statements, and so forth) and the sub-tree similarity of Chawathe et al. [3] to match
source code structures (such as if statements or loops). The method also uses names
and types as IDs to map elements and can identify primarily changes, additions,
deletions and moves for different types of elements.

Kelter et al. [10] proposed a generic algorithm for computing differences between
UML models encoded as XMI files. The algorithm first tries to detect matches in
a bottom-up phase by initially comparing the leaf elements and subsequently their
parents in a recursive manner until a match is detected at some level. When detecting
such a match, the algorithm switches into a top-down phase that propagates the last
match to all child elements of the matched elements in order to deduce their differ-
ences. The algorithm reports four different types of differences, namely structural
(denoting the insertion or deletion of elements), attribute (denoting elements that
differ in their attributes’ values), reference (denoting elements whose references are
different in the two models) and move (denoting the move of an element to another
parent element). Although the method does not use IDs to map elements, they are
necessary to identify moves. For this reason, custom ones are constructed using the
name of the element and its path along the XMI tree.

Xing and Stroulia [15] proposed the UMLDiff algorithm for automatically detect-
ing structural changes between the designs of subsequent versions of object-oriented
software. The algorithm produces as output a tree of structural changes that reports
the differences between the two design versions in terms of additions, removals,
moves, renamings of packages, classes, interfaces, fields and methods, changes to
their attributes, and changes of the dependencies among these entities. UMLDiff
employs two heuristics (i.e., name-similarity and structure-similarity) for recogniz-
ing the conceptually same entities in the two compared system versions. These two
heuristics enable UMLDiff to recognize that two entities are the same even after they
have been renamed and/or moved. The UMLDiff algorithm has been employed for
detecting refactorings performed during the evolution of object-oriented software
systems, based on UMLDiff change-facts queries [16].

Recently, Xing [14] proposed a general framework for model comparison, named
GenericDiff. While it is domain independent, it is aware of domain-specific model
properties and syntax by separating the specification of domain-specific inputs from
the generic graph matching process and by making use of two data structures (i.e.,
typed attributed graph and pair-up graph) to encode the domain-specific properties
and syntax so that they can be uniformly exploited in the generic matching pro-
cess. Unlike the aforementioned approaches that examine only immediate common
neighbors, GenericDiff employs a random walk on the pair-up graph to spread the
correspondence value (i.e., a measurement of the quality of the match it represents)
in the graph.

In our previous work [6], we adopted VTRACKER to recognize the differences
between two versions of a web-service interface. VTRACKER is designed to com-

WSDARWIN: Studying the Evolution of Web Service Systems 21

pare and recognize the similarities and differences between XML documents, based
on the Zhang-Shasha tree-edit distance [17] algorithm.

WSDARWIN is tailored around a very specific domain, that of web services.
Therefore, a lot of domain-specific information and characteristics are imbued in
the comparison method. However, we do borrow some fundamental differencing
techniques from the works described in this section. For example, many methods
employ the concept of a model to describe the compared artifacts. In fact, the un-
derlying model is the one that will determine the accuracy and the efficiency of the
comparison method. Second, the use of identifiers for mapping compared elements
is a widely used technique, also present in the VTRACKER algorithm. Finally, the
propagation of changes as described in WSDARWIN, is a similar technique as the
top-down/bottom-up approach used by Kelter et al.

Table 4 Comparison between differencing techniques.

Method Type Edit Operations IDs Exact Matching Model
Kelter generic CAD(M) No(Yes) No UML/XMI
Fluri domain-specific CADM Yes No AST
UMLDiff domain-specific CADMX Yes No Custom/UML
GenericDiff generic CADM Yes No UML
VTRACKER generic CADM Yes No XML
WSDARWIN domain-specific CADM Yes Yes Custom/WS

Table 4 positions WSDARWIN among the aforementioned works with respect to
whether they are generic or domain-specific, what kind of edit operations they can
identify (Change, Addition, Deletion, Move, compleX changes), if they employ IDs
for the mapping of elements, whether they use exact matching in the comparison and
finally what is the underlying model.

4.2 Service-Evolution Analysis

In addition to web-service (and web-service version) comparison, substantial ef-
forts have been dedicated to the task of web-service evolution analysis. Wang and
Capretz [13] proposed an impact-analysis model as a means to analyze the evolution
of dependencies among services. By constructing the intra-service relation matrix
for each service (capturing the relations among the elements of a single service)
and the inter-service relation matrix for each pair of services (capturing the rela-
tions among the elements of two different services) it is possible to calculate the
impact effect caused by a change in a given service element. A relation exists from
element x to element y if the output elements of x are the input elements of y, or
if there is a semantic mapping or correspondence built between elements of x and
y. Finally, the intra- and inter-service relation matrices can be employed to support

22 Marios Fokaefs and Eleni Stroulia

service change operations, such as the addition, deletion, modification, merging and
splitting of elements.

Aversano et al. [2] proposed an approach, based on Formal Concept Analysis, to
understand how relationships between sets of services change across service evolu-
tion. To this end, their approach builds a lattice upon a context obtained from service
description or operation parameters, which helps to understand similarities between
services, inheritance relationships, and to identify common features. As the service
evolves (and thus relationships between services change) its position in the lattice
will change, thus highlighting which are the new service features, and how the re-
lationships with other services have been changed. This approach is useful to study
the evolution of similar interchangeable services.

Ryu et al. [12] proposed a methodology for addressing the dynamic protocol evo-
lution problem, which is related with the migration of ongoing instances (conversa-
tions) of a service from an older business protocol to a new one. To this end, they
developed a method that performs change impact analysis on ongoing instances,
based on protocol models, and classifies the active instances as migrateable or non-
migrateable. This automatic classification plays an important role in supporting flex-
ibility in service-oriented architectures, where there are large numbers of interacting
services, and it is required to dynamically adapt to the new requirements and oppor-
tunities proposed over time.

In a similar vein, the WRABBIT project [4] proposed a middleware for wrap-
ping web services with agents capable of communication and reflective process ex-
ecution. Through their reflective process execution, these agents recognize run-time
“conversation” errors, i.e., errors that occur due to changes in the rules of how the
partner process should be composed and resolve such conversation failures.

Pasquale et al. [11] propose a configuration management method to control de-
pendencies between and changes of service artifacts including web services, appli-
cation servers, file systems and data repositories across different domains. Along
with the service artifacts, Smart Configuration Items (SCIs), which are in XML for-
mat, are also published. The SCIs have special properties for each artifact such as
host name, id etc. Interested parties (like other application servers) can register to
the SCIs and receive notifications for changes to the respective artifact by means of
ATOM feeds and REST calls. Using a discovery mechanism the method is able to
identify new, removed or modified SCIs. If a SCI is identified as modified, then the
discovery mechanism tracks the differences between the two items and adds them
as entries in the new SCI. The changes that can be identified are delete, add, modify
a property or delete, add, modify a dependency.

Andrikopoulos et al. [1] propose a service evolution management framework.
The framework generally aims to support service providers evolve their services. It
contains an abstract technology-agnostic model to describe a service system in its
entirety, specifying all artifacts such as service interfaces, policies, compositions etc.
and divide the artifacts in public and private. This division implies that the manage-
ment framework has knowledge about the service’s back-end functionality, which
in turn means that it can be used only by the provider. The authors also propose
a classification for the changes based on the basic operations (additions, deletions

WSDARWIN: Studying the Evolution of Web Service Systems 23

etc.) and guidelines on how to evolve, validate and conform service specifications
to older versions. Although such a management framework may lead to a smooth
evolution process, inconsistencies may still occur between services and their clients.
Therefore, support to clients is equally important.

Table 5 Comparison between service evolution works.

Method Dependencies Client Support Level
Wang Inter Yes Protocol
Aversano Inter No Interface
WRABBIT Inter Yes Protocol
Pasquale Intra Yes Interface
Ryu Inter No Protocol
Andrikopoulos Intra No Source Code
WSDARWIN Intra Yes Interface

Table 5 summarizes the comparison between WSDARWIN and these other projects
along 3 dimensions:

• what kind of dependencies the method examines:

– inter-dependencies, requiring knowledge about different parts of the service
system;

– intra-dependencies, focusing on a particular part;

• whether the method provides any support to consumers of the service.
• what is the architectural level the method uses to study the service systems:

– business protocol level, where the method needs information about various
services in the system;

– interface, where the method only examines boundary artifacts, such as service
interfaces;

– source code, where the method needs back-end information.

5 Conclusion and Future Work

In this chapter, we introduced WSDARWIN as a comparison algorithm to support
of web-service evolution tasks. Using a set of models to represent the service inter-
faces (whether this is WSDL or WADL) and to capture their differences, WSDAR-
WIN perform efficient, scalable and accurate comparisons. Furthermore, the results
of these comparisons are in a structured format that can potentially be used by other
tools such as automatic client adaptation processes. The comparison method is pre-
cisely defined by a set of rules based on the representation and delta models. The
usage of WSDARWIN was demonstrated on a WSDL and a WADL web service.

Using WSDARWIN we extended our previous empirical study on the evolution
of several families of quite widely used commercial web services: Amazon EC2,

24 Marios Fokaefs and Eleni Stroulia

FedEx Rate, Bing, PayPal and FedEx Package Movement Information. We exam-
ined what types of changes occur in the interfaces of actual, commercial web ser-
vices and how these changes affect their client applications. Our main observation
was that for the most part, as expected, web services were expanded rather than
being changed or having their elements removed. This is because the addition of
new features does not impact the behavior of clients that already use the service.
Furthermore, changes, if made in a conservative manner, do not negatively impact
clients much. On the other hand, deletion of elements should be avoided, as it will
likely break a client application.

The most important result of the study was to identify a set of frequently applied
changes and classify them in three categories according to how they can be handled
by the client: no-effect, where changes don’t affect the client at all, non-recoverable,
where changes affect the functionality but cannot be addressed automatically and
adaptable, where changes affect the interface of the service and the client can be
automatically adapted to these changes.

In the future, we plan to extend our comparison method in two directions. The
first direction involves identifying more complicated edit operation that consist of
the simple ones, change, add, delete and move. This will help us characterize the
changes from version to version according to our classification and easily assess
their impact on client applications. Second, having defined separate models to rep-
resent WSDL and WADL service interfaces, we plan to merge the two into a single
web service meta-model to describe service interfaces regardless of their specifica-
tion. Since the rules and the comparison process are independent of the model, a
unified model will allow us to compare any kind of service interface, even hetero-
geneous once.

Acknowledgments.

The authors would like to acknowledge the generous support of NSERC, iCORE,
and IBM.

References

1. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service spec-
ifications. In: CAiSE ’08, pp. 359–374. Springer-Verlag, Berlin, Heidelberg (2008)

2. Aversano, L., Bruno, M., Penta, M.D., Falanga, A., Scognamiglio, R.: Visualizing the Evolu-
tion of Web Services using Formal Concept Analysis. 8th International Workshop on Princi-
ples of Software Evolution pp. 57–60 (2005)

3. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection in Hierar-
chically Structured Information. ACM Sigmod Internation Conference on Management of
Data pp. 493–504 (1996)

4. Elio, R., Stroulia, E., Blanchet, W.: Using interaction models to detect and resolve inconsis-
tencies in evolving service compositions. Web Intelli. and Agent Sys. 7(2), 139–160 (2009)

WSDARWIN: Studying the Evolution of Web Service Systems 25

5. Fluri, B., Würsch, M., Pinzger, M., Gall, H.C.: Change Distilling: Tree Differencing for Fine-
Grained Source Code Change Extraction. IEEE Transactions on Software Engineering 33(11),
725–743 (2007)

6. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study on web
service evolution. In: ICWS 2011, pp. 49 –56 (2011)

7. Fokaefs, M., Stroulia, E.: Wsdarwin: Automatic web service client adaptation. In: CASCON
’12 (2012)

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring Improving the Design
of Existing Code. Addison Wesley, Boston, MA (1999)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software, 1 edn. Addison-Wesley Professional (1994)

10. Kelter, U., Wehren, J., Niere, J.: A Generic Difference Algorithm for UML Models. Software
Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik pp. 105–116 (2005)

11. Pasquale, L., Laredo, J., Ludwig, H., Bhattacharya, K., Wassermann, B.: Distributed cross-
domain configuration management. In: Proceedings of the 7th International Joint Conference
on Service-Oriented Computing, ICSOC-ServiceWave ’09, pp. 622–636 (2009)

12. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the Dynamic
Evolution of Web Service Protocols in Service-Oriented Architectures. ACM Transactions on
the Web 2(2), 1–46 (2008)

13. Wang, S., Capretz, M.A.M.: A Dependency Impact Analysis Model for Web Services Evolu-
tion. IEEE International Conference on Web Services pp. 359–365 (2009)

14. Xing, Z.: Model Comparison with GenericDiff. 25th IEEE/ACM International Conference on
Automated Software Engineering pp. 135–138 (2010)

15. Xing, Z., Stroulia, E.: Analyzing the Evolutionary History of the Logical Design of Object-
Oriented Software. IEEE Transactions on Software Engineering 31(10), 850–868 (2005)

16. Xing, Z., Stroulia, E.: Refactoring Detection based on UMLDiff Change-Facts Queries. 13th
Working Conference on Reverse Engineering pp. 263–274 (2006)

17. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and re-
lated problems. SIAM Journal on Computing 18, 1245–1262 (1989)

2.4 WSDarwin: automatic web service client

adaptation.

Fokaefs, M., Stroulia, E., 2012. WSDarwin: automatic web service client

adaptation. In: Conference of Center for Advanced Studies (CASCON 2012).

pp. 176-191.

66

WSDarwin: Automatic Web Service Client Adaptation

Marios Fokaefs∗and Eleni Stroulia†

Department of Computing Science
University of Alberta

Edmonton, AB, Canada
{fokaefs,stroulia}@ualberta.ca

Abstract

The service-oriented architecture paradigm
prescribes the development of systems through
the composition of services, i.e., network-
accessible components, specified by (and in-
voked through) their WSDL interface descrip-
tions. Systems thus developed need to be aware
of changes in, and evolve with, their constituent
services. To support this coevolution process,
we have developed WSDarwin, a toolkit that
facilitates both providers and clients in the evo-
lution of service-oriented systems.

In this work, we focus primarily on the com-
parison of service-interface versions, in order
to precisely recognize their differences, and the
adaptation of client applications. We propose
a lightweight model to represent service in-
terfaces, an efficient and accurate comparison
method whose output can be seamlessly con-
sumed by the adaptation process, a classifica-
tion of changes in service interfaces based on
their impact on client applications and, finally,
a generic adaptation algorithm that can be ap-
plied for any type of change and on any client
regardless of the implementation technology.
We demonstrate this part of the WSDarwin

∗The author is holding a CAS Research scholarship.
†The author is a Visiting Scientist with IBM Canada

CAS Research, Markham, Ontario, Canada.
Copyright c© 2012 Marios Fokaefs and Eleni Strou-

lia. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

toolkit on a client application invoking several
versions from the Amazon EC2 web service and
we report on the challenges we faced.

1 Introduction

Service-system evolution and maintenance is
an interesting variant of the general software-
evolution problem. On one hand, the problem
is quite complex and challenging due to the
fundamentally distributed nature of service-
oriented systems, whose constituent parts may
reside not only on different servers but also
across organizations and beyond the domain of
any individual entity’s control. On the other
hand, since the design of a service-oriented
system is expressed in terms of the interface
specifications of the underlying services, the
overall system needs to be aware of only the
changes that impact these interface specifica-
tions; any changes to the service implementa-
tions that do not impact their interfaces are
completely transparent to the overall system.
In effect, the WSDL specifications of the sys-
tem’s constituent services serve as a boundary
layer, which precludes service-implementation
changes from impacting the overall system. Of
course, information hiding can still raise cer-
tain challenges. For example, even if a change
is transparent to the client application with re-
spect to the service interface, its functionality

can still be affected and cause disruptions to
the normal function of the client application,
which requires additional effort from the client
to adapt the application to the new version of
the service. Furthermore, without access to the
source code of the service, the client cannot
have a full understanding and reason about the
changes, which is a crucial aspect of the adap-
tation process.

Service providers may not precisely know by
whom, how often or by how many client appli-
cations their services are used. And although
changes will always happen (so that providers
can improve and extend their offerings), the
service provider needs to be somewhat aware
of the impact of a specific change on existing
clients, in terms of the time and effort neces-
sary to update client software as well as the
potential business costs (e.g., when changes
cause disruptions to the operations of impor-
tant partners). Even if the impact is low, the
service provider might still need to support
some backward compatibility. If the impact is
high but the change is still necessary, then it
would be desirable to provide appropriate tools
to help client developers address the impact of
the change. These issues can greatly affect the
business aspect of the service provider, since
decisions on the evolution of web services are
of a very sensitive nature. Indeed, if the im-
pact to an application from a change to the
service is unbearable for the client, with respect
to cost and effort, this client may opt to switch
providers, thus depriving the original provider
from the corresponding income.

For these reasons, it becomes evident why
recognizing the changes to the specification of
a service interface and their impact on client
applications is highly desirable and a prereq-
uisite for dealing with the change, whether on
the server or on the client side. Assuming that
such a precise method for service-specification
changes existed, it would be extremely use-
ful if one could (a) characterize the changes
in terms of their complexity, and (b) semi-
automatically develop adapters for migrating
clients from older interface versions to newer
ones. Furthermore, by systematizing the pro-
cess of identifying and addressing the changes
to a service, the adaptation cost is reduced and
the provider’s decision process for the evolution

of a service becomes better informed.

In our work, we are building WSDarwin a
toolkit to support the evolution of web service
systems both from the perspective of the client
as well as that of the provider. We propose that
such a toolkit should provide a series of auto-
matic and semi-automatic techniques to iden-
tify faults in client applications due to changes
on the consumed service, compare service inter-
faces, identify and classify changes according to
their impact on client applications, automati-
cally adapt the applications to the new version
of the service and facilitate the decision pro-
cess of the service provider when concerning
the evolution of the system.

Building on our previous work [6], where we
studied the evolution of commercial web ser-
vices, in this paper we focus on the compar-
ison of service interfaces and the adaptation
of client applications. Based on our past ex-
perience with developing VTracker [6, 11], a
generic tree-differencing algorithm, we propose
a service-interface differencing technique based
on a lightweight model of the service interface;
with this domain-specific method, we are able
to improve the efficiency of the process that
now produces an output that can be seam-
lessly integrated with the adaptation process.
For the adaptation, we have developed an al-
gorithm to adapt client applications to new ver-
sions of web services. This algorithm is general
in that it can be applied on any client in spite
of its implementation technology (e.g., Java,
C++, BPEL etc.) in the presence of any type
of change. Moreover, we extend the findings
of our empirical study with a classification of
changes based on their impact on client appli-
cations in order to facilitate the reasoning and
understanding from the client’s part even in the
absence of sufficient information. Finally, we
demonstrate the application of the comparison
and adaptation techniques on a client applica-
tion invoking the Amazon EC2 service (as stud-
ied in our previous work).

The rest of the paper is organized as fol-
lows. In Section 2 we review the related lit-
erature focusing mostly on service evolution,
client-adaptation techniques and self-adaptive
systems. In Section 3 we provide an overview
of a service evolution support toolkit as it is be-
ing implemented in WSDarwin. In Section 4 we

describe the comparison method used to iden-
tify the differences between service interfaces
and in Section 5 we discuss how the results of
this comparison can be used by a generic adap-
tation algorithm for client applications. In Sec-
tion 6 we present the application of the com-
parison and the adaptation process on a client
that invokes the various versions of the Amazon
EC2 service and we present details about the
challenges we faced in this case study. Finally,
Section 7 summarizes this work and concludes
with its main contributions.

2 Related Work

Our work in this paper relates to service evo-
lution and client adaptation. In the context of
the first topic, which is the general concern of
the WSDarwin toolkit, we review research on
the evolution of service systems and methods
and tools developed to compare service inter-
faces. In the second topic, we discuss methods
for adapting, or facilitating the adaptation of,
client applications to evolved services.

2.1 Service-Evolution Analysis

Wang and Capretz [13] proposed an impact-
analysis model as a means to analyze the evo-
lution of dependencies among services. By
constructing the intra-service relation matrix
for each service (capturing the relations among
the elements of a single service) and the inter-
service relation matrix for each pair of services
(capturing the relations among the elements of
two different services) it is possible to calculate
the impact effect caused by a change in a given
service element. These relation matrices can
be employed to support service change opera-
tions, such as the addition, deletion, modifica-
tion, merging and splitting of elements.

Aversano et al. [2] proposed an approach,
based on formal concept analysis, to under-
stand how relationships between sets of ser-
vices change across service evolution. To this
end, their approach builds a lattice upon a con-
text obtained from service description or oper-
ation parameters, which helps to understand
similarities between services, inheritance rela-
tionships, and to identify common features. As

the service evolves (and thus relationships be-
tween services change) its position in the lat-
tice changes, thus highlighting which are the
new service features, and how the relationships
with other services have been changed.

Ryu et al. [10] proposed a methodology
for addressing the dynamic protocol-evolution
problem, which is related with the migration
of ongoing instances (conversations) of a ser-
vice from an older business protocol to a new
one. They developed a method that per-
forms change-impact analysis on ongoing in-
stances, based on protocol models, and clas-
sifies the active instances as migrateable or
non-migrateable. This automatic classification
plays an important role in supporting flexibility
in service-oriented architectures, where there
are large numbers of interacting services, and
it is required to dynamically adapt to the new
requirements and opportunities proposed over
time.

In a similar vein, the WRABBIT project
[5] proposed a middleware for wrapping web
services with agents capable of communication
and reflective process execution. Through their
reflective process execution, these agents recog-
nize run-time “conversation” errors, i.e., errors
that occur due to changes in the rules of how
the partner process should be composed and
resolve such conversation failures.

Pasquale et al. [8] propose a configuration-
management method to control dependencies
between and changes of service artifacts includ-
ing web services, application servers, file sys-
tems and data repositories across different do-
mains. Along with the service artifacts, Smart
Configuration Items (SCIs), which are in XML
format, are also published. The SCIs have spe-
cial properties for each artifact such as host
name, id etc. Interested parties (like other
application servers) can register to the SCIs
and receive notifications for changes to the re-
spective artifact by means of ATOM feeds and
REST calls. Using a discovery mechanism the
method is able to identify new, removed or
modified SCIs. If a SCI is identified as mod-
ified, then the discovery mechanism tracks the
differences between the two items and adds
them as entries in the new SCI.

The aforementioned research works mainly
focus on the evolution of inter-dependencies

among services or the evolution of business pro-
tocols. On the other hand, our approach fo-
cuses on the evolution of the elements within
a single service and their intra-dependencies.
Furthermore, our approach investigates the ef-
fect of service evolution changes on client ap-
plications.

Andrikopoulos et al. [1] propose a ser-
vice evolution management framework. The
framework generally aims to support service
providers evolve their services. It contains an
abstract technology-agnostic model to describe
a service system in its entirety, specifying all ar-
tifacts such as service interfaces, policies, com-
positions etc. and divide the artifacts in pub-
lic and private. This division implies that the
management framework has knowledge about
the service’s back-end functionality, which in
turn means that it can be used only by the
provider. The authors also propose a classifi-
cation for the changes based on the basic opera-
tions (additions, deletions etc.) and guidelines
on how to evolve, validate and conform ser-
vice specifications to older versions. Although
such a management framework may lead to a
smooth evolution process, inconsistencies may
still occur between services and their clients.
Therefore, support to clients is equally impor-
tant.

2.2 Client adaptation

Benatallah et al. [3] present a methodology for
the systematic definition of web-service proto-
col adapters, in the form of BPEL processes.
The proposed techniques aim to facilitate ser-
vice providers in order to tackle issues such as
the evolution of web services, the heterogeneity
of interfaces and protocols and the high number
of clients with variations in supporting tech-
nologies and eventually achieving a certain de-
gree of interoperability. In order to facilitate
the creation of adapters, the authors use com-
mon mismatch patterns.

In comparison to our work which aims at de-
veloping client-side adapters, this one tries to
systematically create adapters for incompati-
ble web services but on the server side. There
are several benefits on creating the adapter on
the provider’s side. First, thanks to the avail-
ability of source code the provider is in better

position to understand the change and create
the adapter accordingly. Second, in such a case
only one adapter has to be created which can
be used by multiple clients. On the other hand,
changes may have different effect on client ap-
plications depending on their technology. If
the change is not completely transparent to
the client, more adaptations may be necessary
at the client side. In other words, client and
provider adapters seem to be complementary
solutions rather than mutually exclusive.

Ponnekant and Fox [9] present a set of tools
to support service substitutability to allow ap-
plications to switch between services from dif-
ferent vendors seamlessly. According to the au-
thors, services can be functionally similar, and
thus valid substitutes for each other, under two
scenarios: autonomous services, where the ven-
dors develop the services independently or de-
rive services, where the vendors build on an ex-
isting service from a dominant/popular vendor.
Obviously, services in the second scenario have
more chances of being interchangeable. Incom-
patibilities between such services can be either
structural, semantic or they can concern val-
ues or encoding properties. The proposed tech-
niques aim to guarantee the SV-compatibility
(structural-value) between two services. Both
static and dynamic analyses are employed to
resolve the incompatibilities and their critical-
ity is determined manually. Finally, a cross-
stub (like an adapter) is semi-automatically
generated and the developer is asked to resolve
some incompatibilities manually using guide-
lines provided by the tool.

In this work, the authors employ usage in-
formation (i.e., what part of the service is used
by the client application) in order to deal only
with the relevant incompatibilities. Although
filtering out irrelevant incompatibilities for the
current version of the application might im-
prove the performance of the tool, it will even-
tually hinder the extensibility of the applica-
tion since, if the application was to expand by
also using other parts of the service, the client-
development team will have to address the in-
compatibilities again. WSDarwin addresses all
incompatibilities regardless of whether they are
used or not. After all, Axis2 would generate
a client proxy for the whole service interface,
thus, potentially the entirety of the service can

Figure 1: The WSDarwin service evolution support toolkit. This paper focuses on the comparison
and adaptation parts (black boxes).

be used.

Both of these works deal mostly with the
problem of service interchangeability across dif-
ferent vendors. This is related to the problem
of client adaptation to new versions of a sin-
gle service, but it also presents some different
challenges. First, when we have different ven-
dors, it is expected to have differences in the
semantics of the services. For example, two ser-
vices might use the terms “search” and “find”
for the same task. This might make the map-
ping process especially challenging. Second, in
case the provider opts to offer an adapter from
the server side, it is necessary to know what
the alternative services from the other vendors
are. Also, if a new alternative service enters
the market, the adapter has to be updated.
Another difference between these works and
ours is that incompatibilities have to be iden-
tified manually or at least with manual inter-
vention. On the other hand, WSDarwin has a
completely automatic comparison component.

Villegas et al. [12] propose a framework to
support the (self-)adaptation of systems using
quality and adaptation properties as adapta-
tion goals and adaptation metrics to evalu-
ate these properties. The framework evalu-
ate properties concerning the structural, be-
havioral and functional aspect of the system,
such as stability, robustness, performance etc.
In our work, we focus more on the structural
adaptation of the client applications, however,
we plan to expand our work to cover more
of the behavioral properties described in this
work.

3 Overview of WSDarwin

The WSDarwin toolkit supports the evolution
of service systems in a provider-client ecosys-
tem. Such an ecosystem has two central par-
ties: a provider, who controls the web service
and is responsible for evolving it, and the client,
who controls the client application and has to
catch up with the evolving web service. The
key artifact exchanged between the two par-
ties is the service interface which is the only
communication between the provider and the
client and they will have to perform all evolu-
tion activities solely using the information on
the interface.

Figure 1 depicts the evolution process of a
service system in the described ecosystem. The
role of the provider starts at the early stages of
the evolution. First and foremost the provider
has to study the environment to confirm that
there is a need for a change and that the time
is ripe. In general, the decision for a change
involves not only technological properties and
constraints, but it also includes business and
economic concerns. After the evolution of the
service, the provider has to publish the new
interface so that it becomes accessible to the
clients. Depending on the environment, the
provider may opt to facilitate the adaptation
process of the client by providing adapters [3, 9]
and evolution information [4]. However, these
adapters or the information have to be provided
in a format that can be understood and con-
sumed by tools.

In the event of an evolved service, the client

has first to recognize the change. This can
be practically assessed by invoking the service
anew and establishing that the normal func-
tion of the client application is disrupted (e.g.
an exception was thrown or the results were
not the expected ones). Then, the client has to
retrieve the interfaces that correspond to both
the old and the new version of the service and
compare them in order to identify the changes.
The result of this comparison can be further
analyzed in an attempt to identify the purpose
behind the changes. This can be helpful and
save time and effort for the developers because
the nature and the purpose of a change is di-
rectly related with invoking applications. For
example, if a change is characterized as a refac-
toring, it may affect the interface of the service
but there is high confidence that the function-
ality of the service may remain unaffected. Fur-
thermore, the result of the comparison should
be in a format that it is appropriate to be effec-
tively utilized by the adaptation process. The
adaptation of client application is usually tied
to the specific implementation technology, but
there are still some quality and syntactic rules
that should hold. Moreover, the provider can
facilitate the adaptation process as described
previously. The final step is for the client to
test the application and confirm that every-
thing works as expected and if there is a need
for further modifications.

4 Comparison of Web-
Service Interfaces

As we have mentioned a comparison method
should adhere to three quality properties:

• Accuracy

• Efficiency/Scalability

• Systematized output (which can be used
by other tools)

Our previous comparison method,
VTracker [6], is a generic differencing algorithm
that can be used to compare heterogeneous
interfaces, i.e., interfaces described in different
schemas. For this reason, this method uses
fuzzy mapping and partial matching. In

the first case, since we don’t always know
a mapping between the elements of the two
interfaces, the algorithm compares all elements
with each other (regardless of their type)
and establishes a mapping based on their
structural similarity. In the second case,
the algorithm uses the notion of distance to
compare elements with each other. This can
cause problems in the case of elements of
different types named in a similar manner
if they correspond to the same concept. In
the case of web services, the convention is to
name operations and their input and output
types similarly to denote their relationship.
Fuzzy mapping and partial matching maybe
the reasons for efficiency and accuracy issues.
However, if we imbue the comparison process
with knowledge about the structure of the
interfaces we can significantly improve these
quality properties.

In the WSDarwin comparison method, we
ensure efficiency by using a reduced, domain-
specific model to represent the syntactic infor-
mation of a service interface. The interfaces
are parsed and a model representation is cre-
ated for each one of them on which the compar-
ison method is applied. The model captures the
most important information of a service’s ele-
ments such as names, types, their structure and
the relationships with each other, thus, provid-
ing a simpler syntactical representation of the
service representation than WSDL and mak-
ing it more lightweight. The simplicity of the
model allows for improved efficiency. Moreover,
we employ certain heuristics on name compar-
isons to further improve the efficiency. The
reason for that is that within the same service
(even between versions) names can be treated
as unique and therefore as IDs. The use of the
same name for different elements is not likely
(and in many cases it is not allowed). For this
reason, it only makes sense to compare strings
using exact matching and not partial matching
techniques such string edit distance.

This model also ensures accuracy. Instead
of comparing named XML nodes, we com-
pare model entities based on their specific type
(e.g. operations with operations, complex-
Types with complexTypes etc.). This way it is
not necessary to compare all elements against
each other, thus avoiding false results due to

Figure 2: The Delta model used for the comparison output. The leftmost hierarchy represents the
service interface.

fuzzy mapping and improving the efficiency.

As far as the output is concerned, it is pro-
duced using the model shown in Figure 2. The
rightmost hierarchy in the figure corresponds to
the model used in the comparison. Essentially,
the operations, which are the invocation points
between the provided service and the client ap-
plication, have input and output types. The
type hierarchy is in accordance with the XML
Schema specification1: PrimitiveTypes, such
as strings, integers, boolean etc., SimpleTypes
are types that pose certain restrictions on their
values (e.g. enumerations) and ComplexTypes

which contain other types. To make the model
simpler than the input interface we omitted
some elements that added no additional struc-
tural information as far as clients are con-
cerned. We omitted messages and high level
elements from the schema, which only serve
as references. Therefore, only the elements to
which these references point were eventually
included in the model. The rightmost hier-
archy models the changes. We can have dif-
ferent types of deltas including changes, addi-
tions, deletions, moves and moves and changes.
The two hierarchies are connected through the
Bridge design pattern [7] and their relationship
is that each delta has a source WSDL element
and a target WSDL element.

In our comparison, we used some rules to
map and differentiate the elements between dif-
ferent versions of the service interfaces. For the
definition of the rules we use the following no-
tation based on the model we described above.
For each version v ∈ V we extract the following

1http://www.w3.org/XML/Schema

sets:

• Ev: The set of WSDL elements of the ser-
vice. This set contains tuples (id, t, a, s)
where id is the identifying attribute of
the element (usually the name), t is the
type of the element (complex type, prim-
itive type, simple type or operation), a
is the set of other attributes and s is
the structure of the element. This set is
the superset of the WSDL elements, i.e.,
CTv ∪ PTv ∪ STv ∪Ov = Ev, where

– CTv: The set of complex types of
the service. This set contains tuples
(n, v, t), where n is the name of the
complex type, v the name of the cor-
responding variable (XSD element) in
the WSDL file and t is the set of types
it contains.

– PTv: The set of primitive types of
the service. This set contains tuples
(n, v), where n is the name of the
primitive type (string, integer, etc.)
and v the name of the corresponding
variable (XSD element) in the WSDL
file.

– STv: The set of simple types of
the service. This set contains tuples
(n, r, enum), where n is the name of
the simple type, r is the type of the
restriction base and enum is the set
of values for the enumeration.

– Ov: The set of operations of the
service. This set contains tuples
(n, it, ot), where n is the name of the

operation, it is the input type and ot
is the output type.

• Ae: The set of attributes, other than the
identifying one, for an element e ∈ E.

• Se: The structure of a complex element
e ∈ E. The structure refers to the children
of complex elements such as input and out-
put types for operations and elements for
complex types.

Finally, for each comparison ∆, between two
versions v1, v2 ∈ V , we determine the added,
deleted, changed and matched elements by us-
ing the symbols “+”, “-”, “*” and “=” respec-
tively. Therefore, E+

∆ is the set of elements
that were added. We also use the symbol “#”
to denote mapped elements, e.g. E#

∆ .
Table 1 summarizes the rules we use to com-

pare service interfaces.

1. The first rule is the exact matching rule.
In case of simple attributes (such as the
element’s ID and attributes belonging in
the Ae set of the element), two attribute
values are the same if and only if they have
the same literal. In case of structure (i.e.
the set of children of an element), two ele-
ments are considered structurally equal if
and only if their children are equal. Chil-
dren equality is determined in an iterative
manner.

2. The second rule states that two elements
are mapped together if their type and at
least one of their identifying attributes,
name and structure, match.

3. An element is considered changed if its
name (its ID) was found in both versions
(i.e., it is mapped between the two ver-
sions) but there were some changes in the
values of other attributes.

4. If there is a change in the structure of the
element (i.e., its children), the change is
propagated from the nested element to the
parent, even if the parent is not directly
changed. This is because the adaptation
process starts from the root element of a
service request which is considered to be
the operation. Therefore, if some part of

its input or its output is affected the oper-
ation is still considered affected.

5. If two elements are mapped and no dif-
ferences are identified, they are label as
matched. The reason to retain matched
elements is that the adaptation process
needs a full mapping between the two ver-
sions as we will see next.

6. An addition is identified if an element’s
name (its ID) that existed in the old ver-
sion was not found in the new version.

7. Correspondingly, a deletion is identified if
an element’s name did not exist in the new
version but was found in the old version.

8. In a second phase, the additions and dele-
tions are reanalyzed to identify changes in
the IDs or moves. If an element is identi-
fied as deleted from the old version and an-
other element as added in the new version
and the two elements have identical struc-
ture but differ with respect to their IDs
then these elements are labeled as changed
(renamed).

9. In a similar scenario, where elements are
mapped between the deleted and added
sets, these elements are marked as moved.
The reason they couldn’t be identified in
the first run of the comparison is because
the process follows the structure of the ser-
vice interface and elements are compared
only with respect to their parents.

10. If the moved elements also differ in their
structures or their IDs, they are labeled as
moved and changed. If they differ with re-
spect to both structure and ID, then they
are considered different elements and are
report as an addition and a deletion.

4.1 Service change classification

In our previous empirical study [6] we have re-
ported several change scenarios in service in-
terfaces some of them we actually observed in
the studied services, some others were based
on our experience on software-maintenance ac-
tivities. In this work, we provide a classifica-
tion of such changes based on their potential

Table 1: The definition of rules used by WSDarwin for the comparison of web service interfaces.
Name of comparison rule Rule

1 Exact matching ∀ae1 ∈ Ae1 ,∀ae2 ∈ Ae2 : ae1 .literal = ae2 .literal

2 Mapping ∃e1, e2 ∈ E#
∆ : e1.t = e2.t and (e1.id = e2.id or e1.s = e2.s)

3 Changed ∃(idi, ti, ai, si) ∈ E#
∆ and ∃(idj , tj , a′j , sj) ∈ E#

∆

4 Propagated change ∃(idi, ti, ai, si) ∈ E#
∆ and ∃(idj , tj , aj , s′j) ∈ E#

∆

5 Matched ∃(idi, ti, ai, si) ∈ E#
∆ and ∃(idj , tj , aj , sj) ∈ E#

∆

6 Added ∃ev2 /∈ E#
∆

7 Deleted ∃ev1
/∈ E#

∆

8 Changed (Renamed) ∃(idi, ti, ai, si) ∈ E−∆ and ∃(id′j , tj , aj , sj) ∈ E+
∆

9 Moved ∃(idi, ti, ai, si) ∈ E−∆ and ∃(idj , tj , aj , sj) ∈ E+
∆

10 Moved and Changed ∃(idi, ti, ai, si) ∈ E−∆ and ∃(id′j , tj , a′j , s′j) ∈ E+
∆

impact on client applications. According to
this classification, we distinguish three types
of changes: (a) no-effect, (b) adaptable and (c)
non-recoverable.

No-effect changes do not impact the client
at all. The client functionality is not disrupted
and neither is the interface, which practically
means that the client can still operate using the
old stub (i.e., the service proxy auto-generated
locally in the client). An example of such
a change is the addition of new functionality
(provided that there is no dependency with the
old functionality).

Adaptable changes affect the interface of the
client, but the functionality of the service re-
mains the same. Viewed from the point of view
of the service provider, these changes usually
correspond to refactorings on the source code
of the service. In other words, they are changes
meant to improve the design of the service and
leave the functionality unaffected. They can
be easily addressed by generating a new stub
and changing the old stub, still used by the
client application, to invoke the new one and
thus the evolved service. This way we avoid
changing the client code by modifying only au-
togenerated code. Refactorings are representa-
tive instances of adaptable changes. For exam-
ple, in Amazon EC2 we had the application of
an “Inline Type” refactoring (i.e., the elements
of a type were redistributed to the type’s par-
ent and the said type was deleted). In this case,
the change is adaptable since in the new ver-
sion we have exactly the same data but only
packaged differently.

Non-recoverable changes imply that the func-
tionality of the service is affected, in a way
that the client breaks and we cannot address
the issue without changing and recompiling the
client code. In some cases, the change is so sub-
tle as not to affect the interface of the client.
In other words, the client still works but the
results produced are not the desired ones. The
problem in this case can be identified by means
of unit and regression testing.

Being able to recognize the nature of the
change in these terms can save a lot of ef-
fort on the developer’s part. For example, in
case of no-effect changes there might be no
real need to proceed with the adaptation of
the client application. On the other hand, in
non-recoverable changes, the adaptation of the
client to the changed interface may actually ac-
complish nothing, so it can be skipped and pro-
ceed directly to the complete reevaluation and
reengineering of the client.

5 Adapting clients to
changes

Using the results of our previous empirical
study with respect to frequent change scenar-
ios we propose an algorithm to automatically
adapt clients to changed service interfaces in
case of adaptable changes. Algorithm 1 demon-
strates the necessary steps.

Once it has been confirmed that the invoked
service has changed, the task becomes to gen-
erate the new stub (step 1). This will be

Algorithm 1 Client Adaptation

1: Generate the stub for the new version of the service.
2: Add a reference of the new stub in the old stub.
3: Instantiate the new stub in the constructors of the old stub, by invoking the corresponding constructor

and using the appropriate parameters.
4: Find a complete mapping for the types and operations between the two versions and identify what

changed and how.
5: for all the changed operations do
6: Delete the body of the corresponding method of the old stub.
7: //In the body of the method of the old stub, prepare the input and the output for the new method.
8: //For the input:
9: Create an instance for the input of the new version of the operation.

10: for all the elements that match between the old and the new input do
11: if an element is an object then
12: Create an instance of the object using types from the new stub.
13: end if
14: Copy the values of all primitive elements (integers, strings etc.) from the old input and its objects

to the new input and its objects.
15: end for
16: if the new input has new elements then
17: Assign default values to the new elements (’0’ if numeric, empty string if text and null if object).
18: end if
19: //For the output:
20: Create an instance of the old output.
21: Using the new input invoke the new version of the operation from the new stub.
22: for all the elements that match between the old and the new output do
23: if an element is an object then
24: Create an instance of the object using types from the old stub.
25: end if
26: Copy the values of all primitive elements (integers, strings etc.) from the new input and its objects

to the old input and its objects.
27: end for
28: if the old input has deleted elements then
29: Assign default values to the deleted elements (’0’ if numeric, empty string if text and null if object).
30: end if
31: Return the old output.

32: end for

used, from now on, to support the communi-
cation between the old client and the new ser-
vice. However, the new stub cannot be used di-
rectly (as this would imply changing the client
code); instead, the old stub will be automat-
ically changed to invoke the new stub. Next,
we use the diff script produced by our com-
parison method that contains the full mapping
between the types and the operations of the
old version of the service interface and the new
version. This will ensure that the changed el-
ements are fully reconstructed and accurately
replaced in the source code. Finally, it is just
a matter of changing the old stub’s methods to
appropriately call the methods of the new stub.
It’s important to note that the client provides
input in the old format and also expects the re-
sult to be in the old format. Therefore, the new
input has to be constructed using values from
the old input and the new method may be in-
voked to obtain its output. Then using values
from this output, an output of the old format
is constructed and returned to the client.

In general we can make two observations for
this algorithm. The first is about its generic na-
ture. Firstly, it does not depend on the nature
of the change. If we consider an operation in its
fundamental form, as a mathematical function,
it’s a mechanism that takes an input and it pro-
duces an output. If the data in the input and
the output is not affected by the change (adapt-
able change) then we can reengineer them so
that the change is transparent to the client.
As a consequence all adaptable changes can
be viewed by protocol changes (that primar-
ily affect the communication between two enti-
ties). Furthermore, the general concept of data
transformation can be applied on all kinds of
clients regardless of their specific implementa-
tion technology. How these data transforma-
tions are performed by different technologies
and what kind of challenges this entails indeed
depend on the specific technology and will be
discussed in the next section in the case of a
Java client.

The second observation concerns the degree
of intrusion of the adaptation in the general
development process of the client applications.
The proposed algorithm only changes the client
stub. Since this part of the code is automati-
cally generated the developers have very little

Figure 3: Adaptation process.

knowledge about it and it contributes nothing
to the developers’ general awareness about the
application. Therefore, by changing only the
stub and making the change look transparent
from the client’s perspective, we maintain the
developers’ awareness. Figure 3 shows how the
adaptation is applied in this manner. Natu-
rally, in this scenario the adaptation process
takes place only on the client side.

6 Amazon EC2: a case
study for WSDarwin

In this section, we present the application of the
comparison and adaptation processes of WS-
Darwin on a Java client that invokes several
versions of the Amazon EC2 web services, as
this was described in our previous work. The
case study is presented under certain assump-
tions.

First, we only focus on these two parts of the
evolution process and not on the testing part.
This practically mean that whatever change we
have to deal with and whatever adaptations we
apply, we do not afterward confirm that the
functionality of the client is not disrupted. In
other words, we view all changes between the
versions of the service as adaptable changes; we
fix the interface inconsistencies but we assume
that the functionality is checked later (manu-
ally or automatically). To this end, the only
artifacts we need in order to study our tools
are the web service interfaces (in the form of
WSDL files) and the client stubs correspond-
ing to the various versions of the service.

Second, we assume Apache Axis2 as the web-

service middleware2. One important difference
between Axis2 and its predecessor Axis is that
the former has as a configurable option to con-
trol the “wrapping” of types, while the latter
“unwraps” the types by default. “Wrapping”
a primitive (e.g., an integer or a string) type
means that the middleware creates a corre-
sponding complex type to include the primitive
as an element and the client generation engine
may create a class corresponding to each com-
plex type. For our experiments, we followed
the default configuration of Axis2, which wraps
the types and does not produce a class for each
complex type but rather adds them all as inner
classes in the stub. This way the adaptation
method has to transform only one compilation
unit (i.e., java file).

Finally, for the analysis and transformation
of the Java client proxy we used the Java Devel-
opment Toolkit (JDT) of Eclipse3 that employs
the Abstract Syntax Tree (AST) representation
to manipulate Java source code.

We believe that in spite of these assumptions
our general conclusions can be transferred and
still hold in other configurations and environ-
ments as well. However, we have observed that
as we specialize the aspects of the adaptation
process (technologies, configurations etc.), cer-
tain challenges may arise and we will study
them as they have appeared in this particular
case study.

Figure 4 demonstrates the output of the com-
parison process between two versions of the
Amazon EC2 service. The two versions of the
output we present in this figure are to show the
difference when the option to detect moves is
enabled. As it can be observed, the moved ele-
ments are no longer reported as deleted. How-
ever, the respective additions of the moved ele-
ments to the new parent remain in order to re-
tain the full mapping between the two versions.
This is because additions are only visible in the
new version and deletions only in the old ver-
sion. If we removed the additions as well the
moved elements would only be visible through
the old parent and this could cause problems
in the adaptation process.

The script is organized according to the
structure of the service interface. The first level

2http://axis.apache.org/axis2/java/core/
3http://www.eclipse.org/jdt/

concerns the operations. First, the type of the
difference is reported (Change, Add, Delete,
Move etc.), then the name of the old operation
and the name of the new operation. On the sec-
ond level, we have the input and the output of
the operation presented in a similar way. On
the third level, we report the elements of the
complex types. In case the elements are com-
plex types as well, these are reported in a new
level. In the case of changes in attributes of a
WSDL element, after we report the names of
the old and the new version of the element, the
name of the changed attribute is reported along
with the old and the new value. In the case of
additions, we report only the new version of
the element, since the old does not exist. The
opposite happens in the case of deletions. In
moves, we also report the names of the old and
the new parent. In case of moves and changes,
we combined the information reported by the
individual moves and changes. Another rele-
vant observation related to the figure is that the
operation and its input are reported as changed
without any more information. This is because
this is not an attribute change but rather that
this change was propagated from the children
of these elements. Therefore, this is to denote
that the input and, in turn, the operation itself
were affected by these changes.

As far as the adaptation of the client is con-
cerned, we observed certain inconsistencies be-
tween the service interface file and the client
proxy, mainly because of the configuration and
the tool we used to generate the proxy. The
first of these inconsistencies concerns the names
(IDs) of types and operations. For example,
the WSDL for the Amazon EC2 specifies the
names of operations starting with an upper
case character. However, when this is trans-
lated into Java methods, the Java naming con-
ventions have to be followed and the method
names start with a lower case letter. This
issue can be easily overcome by ignoring the
case of the names when comparing them with
each other. Another naming issue concerns
the elements of ComplexTypes, which, in the
client stub, would correspond to attributes of
classes. Axis2 names these attributes using
the name attribute of the element and prefix-
ing it with the term “local”. Obviously, there
is no longer a direct correspondence between

Figure 4: Snippet of the diff script between two versions of the Amazon EC2 service. Left-hand side
is with the detection of Move operations, right-hand side is without.

the elements and the attributes. This issue can
be mitigated by comparing the terms of the
names. Therefore, we tokenize the names into
their constituent parts, we compare them using
the exact-matching principle and we report the
names as equal if the one with the least number
of terms is fully included in the other (usually
the only term that remains is “local”). In order
to increase the confidence that two names are
equal in this sense, we also compare their type.
Finally, a similar approach is employed to find
and use the appropriate public accessors for the
local attributes; the names of the elements are
partially matched with the name of the acces-
sor methods (with the exception of the “get”
and “set” keywords) and a method invocation
is created to invoke them where necessary.

The second inconsistency concerns the types
of elements and more specifically arrays and
collections. In the WSDL specification, arrays
of elements are specified by means of additional
attributes on the minimum or maximum occur-
rences of this element in the parent complex
type. In this case, the client generator trans-
lates the multiplicity in an attribute whose type
is an array of the element’s type. Once again,
the direct mapping is lost (because Type is not
the same as Type[]). In order to compare such
cases, we use JDT’s type binding to first resolve
whether we have to deal with an array and then
we get the type of the elements in the array.
After the mapping, we also have to address the
construction of the new array with the elements
from the old array (and all the nested changes).
Axis2, in case of arrays, usually generates an
adding method as well. Therefore, we can in-
voke this method iteratively for all elements

in the old array. Alternatively, if the adding
method is absent, we can construct the new
array manually, by setting each element of the
old array in the corresponding cell of the new
array (i.e., newArray[i] = oldArray[i]).

Although the proposed adaptation algorithm
is generic and can generally be applied to any
client against any change, these inconsistencies
show that additional effort and attention is nec-
essary to implement this algorithm in an adap-
tation tool. However, the algorithm can pro-
vide guidelines and a general skeleton for all
adaptation tools.

6.1 Implementation status of the
WSDarwin adaptation pro-
cess.

At the time of writing this paper, we are in
the process of implementing and perfecting the
WSDarwin tools with a particular focus on
the automatic adaptation of client application.
The toolset is implemented as an Eclipse plug-
in and its implementation status is as follows:

1. We have manually applied the adaptation
process on 18 versions of the Amazon EC2
web service (as studied in [6]). That is
we have identified and studied the changes
that occurred between these versions and
identified all the challenges in the adapta-
tion process as they were presented in this
section.

2. We have applied and tested the tool on
educational and simple service systems. It
addresses most of the edit operations in

service interfaces and produces adapted
clients with no compilation errors.

3. We are currently working in addressing
the specific challenges that came up in the
Amazon EC2 web service. The goal here
will be to produce adapted client proxies
with no syntactic error (the functional san-
ity of the client is out of scope for this
work).

7 Conclusion and Future
Work

In this work, we introduced WSDarwin, a
toolkit to support providers and clients alike
in the evolution of web-service systems. The
set of tools in WSDarwin support

(a) the analysis of the evolution of web ser-
vices (with a lightweight model for representing
WSDL specifications and a corresponding dif-
ferencing algorithm),

(b) the decision-making process of providers,
when considering the evolution of their services
(, and

(c) the adaptation of client applications to
evolving web services (with an algorithm that
modifies the client stub to use the new service
interface).

The contribution of this paper is the descrip-
tion of the first and third aspects of the WS-
Darwin toolkit, as we focus specifically on com-
paring service interfaces and adapting client
applications.

1. We presented a lightweight model to rep-
resent the service interface, which is then
combined with delta model to represent
the differences between subsequent ver-
sions of the service interface and systemat-
ically produce an output that can be seam-
lessly consumed by other tools in the WS-
Darwin toolkit. The comparison method-
ology is based on a set of well-defined
which in combination with the lightweight
model allow for greater efficiency, scalabil-
ity and accuracy. Finally, the format of the
comparison output is in direct accordance
to the client proxy with enough detail to be
directly consumed by the adaptation pro-
cess.

2. Next, we presented a client adaptation al-
gorithm. This algorithm is generic enough
to be applicable on any kind of client appli-
cation, in spite of its technology, to tackle
any kind of change. It contains a com-
plete set of guidelines which can be used
to build tools to automatically support the
adaptation of client applications for spe-
cific environments both from the side of
the provider or that of the client.

We have built a prototype tool for the com-
parison methodology as described in this paper
and applied in the Amazon EC2 case study.
We plan to expand the comparison tool sup-
port to be able to identify more complicated
changes than the ones we report in this paper.
The ability to identify complex changes would
also give the tool the ability to reason about
the purpose and the nature of the change and
by extension its impact on client application.
For example, refactorings, which are a form of
complex change, usually do not affect the func-
tional behavior of the system and as such can
be easily classified as adaptable changes. Apart
from the type of changes, we plan to extend
the comparison methodology with respect to
the data it examines. A client application can
be affected by a change not only on the inter-
face of a service but also on its quality proper-
ties. Such information can be found in Service
Level Agreements (SLAs). By combining the
results from comparing both the interface and
the SLAs of a service, we can give a more com-
plete picture of the evolution of a service to its
clients.

As for the adaptation process, we have cre-
ated a prototype tool in the form of an Eclipse
plug-in which uses the proposed adaptation al-
gorithm to adapt Java-based clients to changed
services based on the configuration described
in our case study. We plan to expand our tool
to different configurations and possibly create
guidelines on how to build technology specific
implementations of the adaptation algorithm.

Acknowledgments

The authors would like to acknowledge the gen-
erous support of NSERC, iCORE, and IBM.

About the Authors

Marios Fokaefs is a PhD student with the Ser-
vice Systems Research Group in the Depart-
ment of Computing Science in the University of
Alberta, Canada. He received his BSc from the
Department of Applied Informatics in the Uni-
versity of Macedonia, Greece and his MSc from
the Department of Computing Science in the
University of Alberta, Canada. His research
interests include object-oriented and service-
oriented design and reengineering.

Eleni Stroulia is a Professor and NSER-
C/AITF Industrial Research Chair on “Ser-
vice Systems Management” (w. support from
IBM) with the Department of Computing Sci-
ence at the University of Alberta. Her re-
search addresses industrially relevant software-
engineering problems and has produced au-
tomated methods for migrating legacy inter-
faces to web-based front ends, and for ana-
lyzing and supporting the design evolution of
object-oriented software. More recently, she
has been working on the development, compo-
sition, run-time monitoring and adaptation of
service-oriented applications, and on examin-
ing the role of web 2.0 tools and virtual worlds
in offering innovative health-care services.

References

[1] Vasilios Andrikopoulos, Salima Ben-
bernou, and Mike P. Papazoglou. Manag-
ing the evolution of service specifications.
In CAiSE ’08, pages 359–374, Berlin,
Heidelberg, 2008. Springer-Verlag.

[2] L. Aversano, M. Bruno, M. Di Penta,
A. Falanga, and R. Scognamiglio. Visu-
alizing the Evolution of Web Services us-
ing Formal Concept Analysis. 8th Interna-
tional Workshop on Principles of Software
Evolution, pages 57–60, 2005.

[3] Boualem Benatallah, Fabio Casati,
Daniela Grigori, Hamid R. Motahari
Nezhad, and Farouk Toumani. Develop-
ing adapters for web services integration.
In CAiSE, pages 415–429, 2005.

[4] Kingsum Chow and David Notkin. Semi-
automatic update of applications in re-

sponse to library changes. In ICSM ’96,
pages 359–, Washington, DC, USA, 1996.
IEEE Computer Society.

[5] Renée Elio, Eleni Stroulia, and Warren
Blanchet. Using interaction models to de-
tect and resolve inconsistencies in evolv-
ing service compositions. Web Intelli. and
Agent Sys., 7(2):139–160, April 2009.

[6] M. Fokaefs, R. Mikhaiel, N. Tsantalis,
E. Stroulia, and A. Lau. An empirical
study on web service evolution. In ICWS
2011, pages 49 –56, july 2011.

[7] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Pro-
fessional, 1 edition, November 1994.

[8] Liliana Pasquale, Jim Laredo, Heiko Lud-
wig, Kamal Bhattacharya, and Bruno
Wassermann. Distributed cross-domain
configuration management. In ICSOC-
ServiceWave ’09, pages 622–636, 2009.

[9] Shankar R. Ponnekanti and Armando
Fox. Interoperability among indepen-
dently evolving web services. In Middle-
ware ’04, pages 331–351, New York, NY,
USA, 2004. Springer-Verlag New York,
Inc.

[10] S. H. Ryu, F. Casati, H. Skogsrud, B. Be-
natallah, and R. Saint-Paul. Support-
ing the Dynamic Evolution of Web Ser-
vice Protocols in Service-Oriented Archi-
tectures. ACM Transactions on the Web,
2(2):1–46, 2008.

[11] N. Tsantalis, N. Negara, and E. Stroulia.
In ICSM 2011, pages 586 –589, sept. 2011.

[12] Norha M. Villegas, Hausi A. Müller,
Gabriel Tamura, Laurence Duchien, and
Rubby Casallas. A framework for evalu-
ating quality-driven self-adaptive software
systems. In SEAMS ’11, pages 80–89, New
York, NY, USA, 2011. ACM.

[13] S. Wang and M. A. M. Capretz. A Depen-
dency Impact Analysis Model for Web Ser-
vices Evolution. ICWS 2009, pages 359–
365, 2009.

2.5 The WSDarwin Toolkit for Service-Client

Evolution

Fokaefs, M., Stroulia, E., June 2014a. The WSDarwin Toolkit for Service-

Client Evolution. In: IEEE Internation Conference on Web Services, Work In

Progress (ICWS 2014 WIP). IEEE, Anchorage, Alaska, USA, pp. 716-719.

82

The WSDarwin Toolkit for Service-Client Evolution

Marios Fokaefs and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

Email: {fokaefs,stroulia}@ualberta.ca

Abstract—As primarily modular and distributed architec-
tures, service-oriented architectures may impose new challenges
in software evolution. Since web services evolve independently,
this may cause disruptions to the proper function of consuming
software. In this paper, we present WSDarwin , an Eclipse plug-in
to support the evolution of service clients, including (a) identifying
the differences between two service versions; (b) automatically
adapting the client application to the new version; and (c) testing
the client to confirm it functions properly.

I. INTRODUCTION

Web services are independently developed and functionally
autonomous pieces of software; therefore systems comprised
of web services typically include components outside the
domain of control of any single organization. As a result,
when web services evolve independently, the functionality of
the software systems that rely on them may be disrupted. In
these cases, the service clients have to react fast and adapt
to the new service versions, typically with limited amount of
information.

In this paper, we describe the WSDarwin Eclipse plug-in
for supporting the adaptation of clients to changed web ser-
vices. In the event of service evolution, WSDarwin facilitates
service-client adaptation by providing three major functionali-
ties: (a) comparison of the two versions of the service interface
(before and after the evolution) to identify their differences;
(b) client adaptation, using the service-interface differences as
input to automatically adapt Java-based client applications by
transforming the client proxy; and (c) regression testing of the
client’s JUnit test cases in order to confirm that the proper
function of the client application was not disrupted after the
change of the service and the adaptation process.

The rest of this paper is organized as follows. In Section II,
we give the overview of the WSDarwin plug-in. In Section III,
we demonstrate how the tools can be used on an example from
the Amazon EC2 web service 1 and how they perform in terms
of execution time. Finally, Section IV concludes this paper.

II. WSDARWIN OVERVIEW

Several methods have been proposed for adapter construc-
tion in the event of service evolution. Benetallah et al. [1]
propose BPEL-based adapters to handle the changes on the
message exchange protocol between two versions. Ponnekanti
and Fox [2] propose a method to create adapters between
services from different providers to support interoperability.
Finally, Kaminski et al. [3] propose a tool to iteratively

1http://aws.amazon.com/ec2

create interface adapters to simultaneously support clients
that correspond to multiple versions of the service. All these
efforts focus on creating adapters on the server side. While
this approach is proactive in that backwards compatibility
is guaranteed by the service provider, WSDarwin follows a
reactive approach. Since we cannot fully assume that the
provider will always make backwards compatible changes, the
clients will have to be given tools to effortlessly adapt to the
new version. WSDarwin offers three tools for comprehensively
supporting the client-adaptation process described as follows.

The comparison module can compare both WSDL2 inter-
faces for operation-centric services, and WADL3 interfaces for
RESTful services. The first step in the comparison process is
to transform the input service interfaces into the WSMeta [4]
representation. WSMeta is a lightweight abstraction of both
service interface specifications, WSDL and WADL. According
to WSMeta, a Service is a collection of Interfaces, which
contain Operations. An Operation has an input and an output
ComplexType. The ComplexTypes contain other Complex-
Types or SimpleTypes or PrimitiveTypes4. The purpose of the
WSDL-to-WSMeta (WADL-to-WSMeta) transformation is to
strip the interface of purely syntactic elements that do not
convey information about the evolution of service, such as
XML Schema elements, messages, service bindings and docu-
mentation. Eventually, the input service interface is represented
as a collection of operations with input and output types.
WSMeta also resolves any references in the service interface
and replaces them with composition. This reference resolution
substantially improves the performance of the comparison
process. In fact, we have shown the improvement of this
method over XML tree-differencing techniques in our previous
work [5].

Once the input interfaces have been translated into WS-
Meta, the comparison module maps the service elements
between the two versions through a parallel depth-first traver-
sal. If two elements have the same identifier, then they are
considered the same element in the two versions (i.e., a
complete “match”). If two elements have different names, their
structure (i.e., their children elements) is checked and, if it is
identical, the elements are “mapped”, i.e., they are considered
to be the same element that has suffered a change in the
evolution process, in this case “renaming”. If an element of
the older (newer) version cannot be mapped in the newer

2http://www.w3.org/TR/wsdl
3http://www.w3.org/Submission/wadl/
4A PrimitiveType can be an integer, a float, a double, a character, a boolean

or a string. A SimpleType is a PrimitiveType with special restrictions, for
instance, an enumeration. Definitions are according to the W3C XML Schema
specification http://www.w3.org/XML/Schema.html

2014 IEEE International Conference on Web Services

978-1-4799-5054-6/14 $31.00 © 2014 IEEE

DOI 10.1109/ICWS.2014.113

716

Fig. 1. The WSDarwin interface in the Eclipse workspace.

(older) one, it is considered “removed” (newly “added”). After
the interface-traversal process has reached the leaf interface
elements, the traversal process is reversed, and the precise
deltas (i.e., units of difference) are constructed between the
mapped elements (taking into account the deltas of their chil-
dren elements). In this process, the tool distinguishes between
complex elements that have children like Service, Interface,
Operation and ComplexType and simple elements that do not
have an internal structure like SimpleType or PrimitiveType.
WSDarwin recognizes six types of deltas: (1) addition, (2)
deletion, (3) change, (4) move, (5) move and change and (6)
match (no change), as follows.

• If a simple element appears with the same name and
the same type in the new version, it is marked with a
match delta.

• If a complex element appears with the same name and
all its children elements have been marked as matched,
it is also marked with a match delta.

• If a complex element has a different name but matched
children, it is marked with a renaming change delta.

• If a complex element retains the same name and
the same structure, but a non-identifying attribute has
changed, it is marked with a change delta.

• If an element does not exist in the newer version, it
is marked with a deletion delta.

• If a new element does not exist in the older version,
it is marked with anaddition delta.

• If an element is mapped between the two versions but
has a different parent element, it is marked with a
move delta.

• If an element is mapped between the two versions but
has a different parent element and one or more its
non-identifying attributes was changed, it is marked
with a move and change delta.

The above rules have been described in depth in our previ-
ous work [5]. The comparison process produces a diff script,
which follows the structure of the original service interface,
with each interface element annotated by its corresponding
delta.

The adaptation step currently deals with Java clients only.
The adaptation algorithm as described in our previous work [6]
is language independent and can be implemented for any lan-
guage provided that it has a way to manipulate the source code
like the Eclipse JDT5 for Java. Because Java client proxies
are generated based on the service interface, the adaptation
process, guided by the service-interface deltas, modifies the
old-service proxy to invoke the new service interface, thus
eliminating the need to modify the actual client. The tool
currently works for client proxies generated by Apache Axis26

from the WSDL interface7. The adaptation tool injects in the
old proxy code fragments that, for each operation, (a) copy the
input provided client into an instance of the input type required
by the new operation version; (b) invoke the new operation;
and (c) repackage the returned output values to the output
types of the old operation version, as expected by the client
application. In effect, the new code fragments implement a
middleman translation process, enabling the client application
to interact with the new interface through the old-interface
protocol. This effectively makes the service-interface changes

5http://www.eclipse.org/jdt/
6http://axis.apache.org/axis2/java/core/
7Currently, client adaptation is only available for WSDL services.

717

transparent to the client code. In this way, it is ensured that
no actual changes are applied to the client code but rather to
the auto-generated client proxy and, thus, the awareness of the
client developers of their code is not affected. The adaptation
process is described in more details in our previous work [6]

Finally, the regression testing tool launches the JUnit
test cases of the client application and reports the results in
the Eclipse JUnit view. It is assumed that the developer has
already specified a run configuration of the test cases in the
current workspace, simply by running the tests once manually.
Successful tests indicate that there was not any change in
the functionality of the service but just in its interface. In
case of failed tests, JUnit points directly to the operation that
failed. Furthermore, the information provided by the diff script
exactly shows what was changed in this particular operation.
Therefore, the developer can go to the exact place in the source
code and make the necessary changes manually.

In summary, in the best case scenario, where the service
interface has changed but its behaviour has not, WSDarwin
automatically adapts the client application. In the worst case
scenario, where the service behaviour has also changed, WS-
Darwin adapts the client and provides the client-application
developer with information relevant to completing the addi-
tional changes required, thus systematizing and decreasing the
development effort necessary.

A. User Interaction with WSDarwin

WSDarwin is implemented as an Eclipse plug-in with a
single-view type of interface. Figure 1 shows the WSDar-
win user interface within the Eclipse workspace. The plug-
in contributes a new menu in Eclipse’s menu bar with two
items (Figure 1(1)). The first item launches a view for WSDL
interfaces, while the second launches a view for WADL
interfaces. The two views are equivalent in appearance and
functionality.

Comparison: The view has three buttons (Figure 1(2)),
each one corresponding to one of the WSDarwin tools. When
the comparison button is selected, the user is prompted to
provide two versions of the service interface and the corre-
sponding versions of the client proxy. Then, the tool calculates
the differences and the view’s table is populated with the deltas
(Figures 1(3) and 2). The first column of the table contains the
type of the delta, the second contains the type of the service
element, the third contains the identifier of the source (old
version) element, the fourth contains the identifier of the target
(new version) element and the remaining columns contain
additional information about the attributes changed in case of
a change delta. The results are presented in a tree format to
correspond to the service interface’s structure.

Adaptation: The adaptation functionality of WSDarwin
treats the whole process as a refactoring. Using the Eclipse
Language Toolkit (LTK)8 every change is recorded. When
the adaptation button is selected, a preview is shown to the
user with all the changes that will happen to the client proxy
(Figure 3). After the preview has been accepted by the user,
the tool performs the actual changes on the AST level using
the Eclipse Java Development Toolkit (JDT)9 and opens the

8http://www.eclipse.org/articles/Article-LTK/ltk.html
9http://www.eclipse.org/jdt/

updated client proxy in the Eclipse Java editor (Figure 1(4)).
Due to every change being recorded using LTK, the whole
process is reversible and can be undone from the Eclipse
interface.

JUnit testing: Finally, the “run tests” button searches in
the client project for test cases and invokes the Eclipse JUnit
shortcut to execute them. The results are then presented by the
JUnit view of the Eclipse interface (Figure 1(5)).

Fig. 3. The refactoring preview window for the adaptation of the client proxy.

III. CLIENT-ADAPTATION CASE STUDY

We applied the WSDarwin tools on a real-world web
service. The example web service is the Amazon EC2 web
service to manage the Amazon Elastic Cloud infrastructures.
We applied WSDarwin on 25 versions of the service and
measured the time for each individual component as reported
in Table I. The results were obtained with a machine that has
an Intel Core i7-3517U processor at 2.4 GHz, 8GB RAM and
64-bit operating system. We calculated only the time that was
required for the tools to complete each task and not the time
required to manually provide input or make choices. The times
were measured once for each version.

As it can be seen from the Table, the performance of the
tool depends on the size of the interface, but even in the
latest versions for more than 2000 elements, the whole process
didn’t take more than 5 minutes. The parsing of the service
interface takes from less than a second to little more than
a minute for the later versions. During the parsing process,
the WSDL interface is parsed using a DOM parser and it is
then transformed into a WSMeta representation which will be
passed to the comparison module. The performance of parsing
is achieved by using an efficient way to resolve references
within the service interface; the first time the WSDL interface
is parsed with the DOM parser, its constituent elements are
stored into Map structures, where the key is the identifier of
the element and the value is the element itself. This way,
when a reference needs to be resolved, it simply queries the
Map and gets the XML node for further processing without
having to traverse the whole structure. This results into a linear
complexity.

Having resolved the references during parsing, the com-
parison of the service interfaces becomes extremely efficient,
taking merely milliseconds, as it can be seen from the Table.
This is achieved because WSMeta strips the interfaces of some
unnecessary elements that only serve as references imposed
by the underlying XML constraints. Furthermore, since the

718

Fig. 2. Part of the diff script for the Calculator service.

references are already resolved, the elements are compared as
they are being traversed once.

Finally, the adaptation is the heaviest process of the three
since it involves complex AST transformations. The most
intensive task is finding the corresponding Java class of the
client proxy from a WSDL complex type. Axis2 generates
a Java class for each complex type in the service interface,
from which we need to get all the getters and setters to adapt
the client. The adaptation begins by traversing all the classes
generated for the client proxy and storing them in a Map
structure, where the key class-identifier key is the same as
the identifier of the corresponding complex type.

TABLE I. THE EVOLUTION OF THE AMAZON EC2 WSDL INTERFACE.

Version Operations Types Parsing Diff Adaptation
time (ms) time (ms) time (ms)

2006-06-26 14 167 2735
2006-10-01 17 189 414 19 3078
2007-01-03 19 201 374 12 4636
2007-01-19 19 204 356 16 4461
2007-03-01 20 219 437 15 5053
2007-08-29 20 222 467 32 4988
2008-02-01 26 276 681 24 5796
2008-05-05 34 356 907 21 7947
2008-08-08 37 468 1264 18 12268
2008-12-01 38 479 1709 30 19171
2009-03-01 41 521 2176 30 16065
2009-04-04 43 549 2739 27 22406
2009-07-15 65 810 4479 48 19999
2009-08-15 68 841 7321 56 38527
2009-10-31 74 936 9223 336 48571
2009-11-30 81 1099 12181 35 61459
2010-06-15 87 1166 14516 6 78317
2010-08-31 91 1399 26302 8 87606
2010-11-15 95 1467 29284 5 93864
2011-01-01 118 1835 49269 33 92388
2011-02-28 118 1846 49511 19 177255
2011-11-01 119 1907 51907 18 140332
2011-12-01 127 2121 63872 555 158333
2011-12-15 128 2147 60842 27 200398
2012-03-01 132 2203 70462 32 190552

IV. CONCLUSIONS

In this paper, we described the WSDarwin tool, an Eclipse
plug-in to support web-service evolution. We have recognized
the need to allow developers of client applications to react to
the evolution of the services they consume by employing only
publicly available information. WSDarwin offers a complete
solution to this problem. First, it is able to compare two ver-
sions of the service interface and allow the developer to study
the evolution of the service. The results of the comparison are
then provided as an input to the adaptation process. WSDarwin
employs a methodology that would adapt the client application
without actually altering the manually developed code. It takes

advantage of the fact that WSDL-based services can be invoked
through auto-generated client proxies. It transforms the proxy
corresponding to the old version of the service to invoke the
new proxy. Eventually, the client code is still aware of the
old interface but it now gets the new content from the updated
service, thus making the changes transparent to the consuming
application. Finally, the user can automatically run JUnit test
cases for the client application through WSDarwin, either to
confirm that its function was not disrupted or to gather more
information about any additional manual changes that might
be necessary.

We plan to further improve the WADL module of WSDar-
win. At the current version of the tool, only the comparison of
WADL interfaces is available, which is also subject to similar
limitations as with the WSDL interfaces (i.e., different gener-
ation mechanisms). For the adaptation, we will rely on similar
client proxy generation tools like the Apache Axis2. More
specifically, we can use the wadl2java tools provided either
by Oracle10 or by Apache11. The two tools roughly produce the
same client proxy. We can apply the same adaptation algorithm
as in the case of WSDL interfaces, but paying extra attention
on how to handle such REST concepts as resources and URIs.

REFERENCES

[1] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and F. Toumani,
“Developing adapters for web services integration,” in CAiSE, 2005, pp.
415–429.

[2] S. R. Ponnekanti and A. Fox, “Interoperability among independently
evolving web services,” in Middleware ’04. New York, NY, USA:
Springer-Verlag New York, Inc., 2004, pp. 331–351.

[3] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving
web services,” in Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research - CASCON ’06. New York,
New York, USA: ACM Press, Oct. 2006, p. 23.

[4] M. Fokaefs and E. Stroulia, “WSMeta: a meta-model for web services
to compare service interfaces,” in Proceedings of the 17th Panhellenic
Conference on Informatics. ACM, 2013, pp. 1–8.

[5] ——, “WSDarwin: Studying the Evolution of Web Service Systems,” in
Advanced Web Services. Springer New York, 2014, pp. 199–223.

[6] ——, “WSDarwin: automatic web service client adaptation.” in CAS-
CON, 2012, pp. 176–191.

10https://wadl.java.net/wadl2java.html
11http://cxf.apache.org/docs/jaxrs-services-description.html#

JAXRSServicesDescription-wadl2javacommandlinetool

719

Chapter 3

Support for REST Applications

REST services are typically developed in a more ad hoc and less structured

way than WS-* services. They are not always supported by standard specifi-

cations; the interface of a REST API is usually published as a free-text, semi-

structured HTML page. This non-standardized way of publishing a web service

sometimes gives rise to variability on how the functionality of the service can

be invoked by clients. This lack of standardization deprives client developers

from systematic support, necessary for the development and maintenance of

their applications. However, REST APIs are grounded on the popularity of

the HTTP protocol and the ease with which such requests can be constructed.

All programming languages provide support to construct HTTP requests and

to analyse XML and JSON responses, which are the typical formats for REST

services. The lack of systematicity is a double-edged sword; on one hand, it

makes adoption of REST APIs easy since there exists programmatic support

for handling the protocols and formats used by the REST style, but on the

other hand, it makes handling the evolution of a REST service difficult, since

there is no systematic way to find how the service changed and how the change

can be dealt with. In other words, the lack of a machine-readable interface

significantly lowers the ability to create automated tools and support the de-

velopment and maintenance of REST applications. Although it has not been

widely adopted, W3C has proposed a structured format, similar to WSDL, to

publish REST APIs, called Web Application Description Language (WADL).

The WADL file specifies the structure of service’s resources, the methods that

87

are available for each resource and the methods’ input and output variables.

Furthermore, there are tools, similar to those for WS-* services, to automati-

cally create client proxies from WADL interfaces.

Given that WADL interfaces will offer more opportunities for automation

but, at the same time, given the reluctance of developers to adopt such a

structured interface, I developed an automatic service-interface specifica-

tion generator for WADL interfaces of REST services. The tool is designed

to be easy to use and requiring little input, so that it doesn’t add overhead

to the development process. The tool requires as input a set of URL requests

for the REST service, which can be assumed that are already constructed to

either invoke the service or test the client application. The requests are then

analysed to infer the resources of the service and the input data for the meth-

ods that are available on these resources. The same requests are used to invoke

the service and the responses are analysed to infer the schema of the output

data. The analysis results for each request are merged in order to produce

a single WADL for the REST service. Batch analysis of requests gives the

ability to resolve parameter types with higher confidence, identify enumera-

tions, identify resources with variable identifiers and create a more complete

interface for the service. The tool can be used both by providers and clients,

which implies that it releases any particular party from the responsibility of

creating or having to provide a WADL interface.

An efficient method to generate WADL interfaces can facilitate and au-

tomate a variety of tasks, including the generation of client proxies for any

programming language, the study of the evolution of a REST API, service

discovery and service client adaptation. I demonstrate the use of the WADL

generator on the Tumblr API and discuss how the generated WADL interfaces

can be used for the aforementioned tasks focusing more on the client proxy

generation and service evolution. Given the opportunity to demonstrate the

WADL generator, I also study the practices on developing and maintaining

REST applications, using Tumblr as a case study. The study reveals that there

are discrepancies on how REST principles are perceived and implemented by

developers even between different versions of the same API. The study also

88

shows that best practices are not always followed. More specifically, Tumblr

evolved radically between versions 1 and 2, its documentation, especially for

version 1, is rather unstructured and disorganized and the developers of the

API have manually developed SDKs on a small set of programming languages

for client applications. All these are tasks that can benefit from the existence

of a formal service interface, like a WADL file.

To further support the development and maintenance of REST applica-

tions, I propose a cross-vendor service mapper to map the output elements

between two similar services from the same domain, but offered by different

providers. The premise of the method is that two parameters from the differ-

ent services that contain the same data correspond semantically to the same

entity. Therefore, the developer will know what data can be used to invoke an-

other similar service. The assumption that similar data can exist between two

services can be valid in a variety of ways, either within the same domain (e.g.

movies, sports), or temporally constrained data (e.g. ticket selling services),

or geographically constrained data (e.g. weather data or map directions). The

goal of this method is to allow client developers to discover similar services and

then easily migrate their application between these services. In order to eval-

uate the method, I apply it on services from two domains (movies and maps).

The evaluation shows that the method is fairly accurate, especially concern-

ing services that are particularly popular (e.g. IMDb for movies or Google

Maps for map). It is revealed that other providers tend to make an effort to

be compatible with the leading service of a domain, probably to facilitate the

migration of client applications from the leading service to their services. The

need and usefulness of the mapper as a tool to support service migration is

accentuated by the fact it improves effort (in terms of time) by 6 or 7 times.

In spite of being a semi-automatic method and not fully automatic, the man-

ual steps are only needed to map the input parameters of two services, which

are much less in number and of lower complexity than the output parameters,

which are automatically mapped between the two services. The method can

be complemented structural and semantic comparison techniques to further

improve its results and its efficiency.

89

The service-interface specification generator for WADL interfaces, a

service-interface comparator, similar to the one proposed for WSDL inter-

faces, a client-proxy generator to generate Java-based service client proxies

from WADL interfaces and the cross-vendor service mapper are imple-

mented in a web application. The web application was developed in the spirit

of the general REST principles, in the sense, that it is simple to use, requires

minimal input and it can efficiently produced the necessary artifacts and infor-

mation to promote automation and facilitate a variety of development tasks.

For the interface generation, the web application presents an editable version

of the generated WADL file, where the user manually edit names and types

of parameters, methods and resources and add or remove elements from the

file. After the file is edited, it can be downloaded locally. For the compari-

son, the web application takes advantage of the fact that WSDarwin can also

express WADL interfaces in WSMeta and uses the same comparison method

as in the case of WS-* services. The two versions are then presented side

by side with the changes annotated with the appropriate colors. Finally, for

the cross-vendor comparison, the web application shows what output elements

from one service are mapped to the other service and how similar their val-

ues are. The elements can be selected and are highlighted on the two WADL

interfaces which are shown side by side on the right of the screen.

3.1 Developing and Maintaining REST Client

Applications: The Tumblr Case Study

Fokaefs, M., Stroulia, E., 2015. Developing and Maintaining REST Client

Applications: The Tumblr Case Study. In: IEEE International Conference on

Software Engineering, Software Engineering In Practice (ICSE 2015 SEIP).

IEEE.

Note: This paper has been submitted to the Software Engineering in

Practice (SEIP) track of the International Conference on Software Engineering

(ICSE 2015) pending review.

90

Developing and Maintaining REST Client
Applications: The Tumblr Case Study

Marios Fokaefs and Eleni Stroulia
Department of Computing Science

University of Alberta, Edmonton, Alberta, Canada
Email: {fokaefs,stroulia}@ualberta.ca

Abstract—Service orientation has been established as the dom-
inant paradigm for the development of modular distributed soft-
ware systems. In spite of the substantial research effort dedicated
to the development of methods and tools to support SOAP-based
service-oriented application development, in practice, RESTful
services have surpassed SOAP-based services in popularity and
adoption, primarily due to the simplicity of their invocation.
However, poor adoption of REST specification standards and
lack of systematic development tools have given rise to many,
more or less compliant, variants of the RESTful style constraints,
which undermine the evolvability and interoperability of these
systems. In this paper, we reflect on the principles and practice
of the REST style, we describe a tool that we have developed to
encourage the standardization and systematization of RESTful
application development, and we illustrate the usefulness of our
tool in the context of the Tumblr evolution.

I. INTRODUCTION

Service-oriented systems have been established as the dom-
inant paradigm for the development of modular software. Due
to attributes such as dynamic binding, information hiding,
and invocation through HTTP-based protocols, web services
offer a great degree of flexibility and efficiency, which are
considered as assets in the business of modern software
systems.

Within the domain of service technologies, REST services
have recently gained much popularity as the prevalent ar-
chitectural style to develop service-oriented systems. This
popularity can be attributed to the fact that they can be invoked
through simple HTTP requests, which makes them even more
easy to use since practically every programming language
provides software and tooling to support HTTP requests. The
increasing popularity of REST services, especially over other
technologies like SOAP services, is also evident in the recent
developments in the software industry. Big companies like
Amazon [1] and Google [2] have discontinued their SOAP
APIs in favour of their RESTful counterparts. Amazon has
also reported that 80% of the requests to their services comes
through their REST API [3] and that querying the services
using REST is 6 times faster than with SOAP [4].

Software-engineering research has already contributed nu-
merous methods to supporting the development and mainte-
nance of service systems. There exist many automatic and
interactive tools to support service discovery, selection and
binding, web service maintenance and evolution, web-service
middlewares and more. This work has focused primarily on

SOAP-based services. The relative scarcity of tool support
for engineering REST-based systems is due to the fact that
the simplicity of REST services deprives researchers from
some very valuable artifacts. For example, the interfaces of
REST services are usually published as semi-structured HTML
pages that do not follow the same standards across different
providers and are specified in free text. Furthermore, these
specifications may be incomplete; for example, responses are
usually specified through simple and incomplete examples. All
these factors may hinder some software-engineering tasks like
service discovery or addressing service evolution. Although
there exist standard interface formats like WADL [5] or WSDL
2.0 [6] to specify REST services, providers keep publishing
REST APIs as HTML pages, which are easily understandable
by humans but not as easily consumable and reasoned about
by software.

A challenge even more important than the informality of
their public documentation is the high degree of variance in
their design and evolution. Variation in the conventions of
designing a REST API can occur between different vendors
or even within a single API. For example, with respect to the
type of the response (e.g. JSON or XML), there are services
that return only one type (e.g. Twitter [7] or Tumblr [8]) or
those that return more than one (e.g. Google [9] or Rotten-
Tomatoes [10]). The type may be specified as an extension to
the URL request (Twitter and RottenTomatoes) or as a separate
resource or parameter (Google and Tumblr). Another example
of variability that occurs within the Twitter API, where in
some requests the identifier to a specific resource is specified
as a separate resource (variable id), while in others as a
parameter. These differences can cause problems to consumers
of such services and they can make the maintenance of client
applications difficult and costly and hinder the development of
automated tools consistent across all domains and providers.
One such problem is that consumers may become tightly
coupled with their providers (similar to the “vendor lock-
in” problem in cloud computing [11]), which is against the
general flexibility principle of REST architectures. Under the
assumption that best practices cannot always be followed, in
this work, we argue that automatic tools, systematic methods
and standardized development can alleviate some of these
problematic situations and assist the developers of REST client
applications.

In this work, we present an overview of the variability points

of REST services and their typical implementations by various
providers. We pay particular attention to issues concerning
the evolution of REST services and the maintenance of client
applications. We argue that the first step towards standard-
izing the development of REST applications and facilitating
their maintenance and evolution with automated tools is the
construction of standard WADL interfaces for REST services
in an automatic and efficient manner causing no additional
overhead to either providers or= clients. To this end, we have
developed such a tool and present it as an extension for the
WSDarwin toolkit for service client adaptation [12].

We use the Tumblr API [8] as a case study. We discuss
the various design and evolution decisions throughout the
development of a REST API like Tumblr, and consider their
implications to potential client applications. Furthermore, we
evaluate the WSDarwin WADL generator on the Tumblr
case study and demonstrate its usefulness to client-applications
developers.

The rest of the paper is organized as follows. In Section II,
we discuss the REST architectural style, its technical details
and how these may be implemented in real world with
particular interest in automatic methods. Section III introduces
WSDarwin’s contribution to set of tools to support the devel-
opment of REST applications, an automatic WADL generation
tool. In Section IV, we present the case of the Tumblr API,
on which we studied the application of the REST principles
and techniques and we demonstrated the application of the
WADL generator on a real example. In Section V, we present
a broad overview of research literature related to the evolution
and maintenance of service systems focusing more specifically
on REST applications. Finally, Section VI concludes our work
and briefly discusses some of our future plans.

II. REST IN THEORY AND PRACTICE

The REST (Representation Stateless Transfer) protocol and
architectural style was first described by Roy Fielding [13],
who identified a set of six architectural constraints governing
the design of an emerging class of web applications at the time.
At the same time, the web-services (WS-*) stack of standards
was being proposed as a complete systematic solution for spec-
ifying, engineering and maintaining service oriented systems.
The two approaches were in effect motivated by the same
needs, yet they were fundamentally different conceptually.
RESTful systems, as described by Fielding, operated on a
“lighter” medium, meaning that there exists no intelligent
middleware as is the case in WS-* services and the handling
of the constraints lies on the communicating participants,
effectively decoupling the client from the server.

In practice, the REST architecture style, lacking any stan-
dardization and reference implementation, was interpreted dif-
ferently by various providers, who practically started offering
simple web services over HTTP without much concern regard-
ing the REST architectural guidelines. House [14] provides
an overview of the most common “violations” of the REST
principles by service providers. The usual suspects include
non-conformance with HTTP principles, e.g. how to properly

invoke the HTTP methods and use the HTTP codes, and
reduction of the flexibility and dynamic nature of REST APIs,
which makes them harder to be discovered.

In the context of our work, we are more interested in the
conventions that may affect service clients, so we focus on
the interface of the service and how it evolves. The interface
of a REST service, or more specifically for a single request,
consists of the service endpoint, the path to access the desired
resource, and any parameters of the request. The service
endpoint specifies the address of the server on which the
service is deployed. A frequent convention that may affect the
endpoint is that providers specify the version of the service as
part of the endpoint. Therefore, when a new service version
becomes available, the endpoint also changes and any clients
accessing the service through the old endpoint break. An
alternative to this convention is to specify the version of the
service as a parameter to the request, which, if omitted, it
will default to the latest version. Nevertheless, the need to
specify the version of the service stems from the practice of
maintaining multiple versions, which is, to being with, a costly
process for the provider [15], [16].

A second convention that affects the interface of a service
is how the provider decides to specify the service resources.
The resource is the basic abstraction of information in the
REST architectural style; and, in essence, any concept can
be a resource. In practice, we can consider that the data of
a service is organized as a relational database, where the
resources are the tables and the HTTP requests correspond
to SQL queries. The user of the database can access whole
collections (tables) or query for specific records. If the tables
are indexed, then the user can access specific records simply
by using the respective key. Otherwise, the query needs to
specify particular constraints to access the desired records. As
these relational repositories become exposed through REST
services, the question becomes to specify what should be
considered as a resource. A specific instance of a resource can
be specified as part of the URL of the request or as a parameter.
If this convention is changed from one version of the service to
another, this will break the consuming applications. REST also
gives the option to specify resources with variable identifiers,
referring to a class of resources (e.g. accounts, usernames).
The identifier of the actual resource and, thus, the complete
URL of the request is determined in runtime by the client of
the service.

A. Standardized REST Services Specifications

As we have already discussed, REST services are usually
documented with semi-structured HTML pages that define
how the URL requests are constructed and the structure of
the responses. However, these pages are not machine readable
which hinders the applicability of automatic software engi-
neering tools.

To address this shortcoming, two standardized formats
for specifying REST services have been put forward,
i.e., WADL [5] and WSDL 2.0 [6], which, although not very
popular, can be consumed by tools. WSDL 2.0, as a successor

of WSDL, is more tailored to the structure of the operation-
oriented SOAP web services. WADL, a W3C submission, is
targeted particularly to REST services. As such, it describes
the structure of the data that becomes available through the
service as resources and the HTTP methods that can be applied
on these resources.

The WADL specification of a REST service interface de-
scribes the service endpoint, a collection of available resources
each one associated with its corresponding path, and the
methods it exposes. For each method, WADL specifies its input
and output parameters, typically as representation, which is a
reference to particular data structure defined in the service’s
XML schema. WADL allows for the definition of resources
with variable identifiers (surrounded by curly brackets), in
which case the variable ID is also defined as a parameter
of the resource. Furthermore, in case of direct access of a
resource (where the identifier of the resource is part of the
URL request), the method corresponding to the request does
not have an identifier and only the HTTP method is specified
(GET, PUT, POST, DELETE). More details about the structure
of a WADL interface can be found in [5] and an example will
be provided for the Tumblr API in Section IV.

B. REST Client Generation

The main motivation behind web services is to increase
software interoperability by decoupling clients and providers
and making their dependency technologically agnostic so that
a client may invoke a service, regardless of its programming-
language implementation and platform. This can be achieved
by special-purpose middleware [17], [18] that consumes the
machine-readable service-interface specification and produces
client proxies in a variety of programming languages. IN
this manner, developers can obtain a service client in the
programming language of their choice, from the single service
interface specification.

Although such tooling does exist, due to the low adoption of
standards, providers tend to offer client-development toolkits
in a variety of languages to facilitate consumers in invoking
the service through a native interface. While this practice
eliminates the need for a special middleware, it increases the
coupling between the client and the service provider, violating
the intent behind service orientation. First, this method implies
the need for a toolkit for every programming language that
exists currently or may exist in the future, which is a require-
ment unlikely to be met. Second, if there is a client that uses
a toolkit for a particular language and they later decide to
migrate to another language, this will transform the particular
piece of client code into legacy software, a problem that web
services set out to solve in the first place. Finally, dedicated
client-development toolkits reduce the interoperability of client
applications. If a client is tightly coupled with a toolkit and the
developers decide to migrate to another service, the transition
is bound to be harder than it would have been if the client
was developed from the service interfaces using the same
middleware under the same assumptions. The consistency of
the code produced by a single middleware for a variety of

web services can be a great advantage for clients that wish to
switch between service providers.

C. REST Service Evolution

In our previous work [19], we have explored several evolu-
tion scenarios that may occur on SOAP web services and clas-
sified them according to their potential effect on client appli-
cations as no-effect, adaptable and non-adaptable. A no-effect
change will not affect existing clients, adaptable changes can
be addressed by automatic tools and non-adaptable changes
need extra manual effort to be addressed. In this paper, we
explore similar cases for REST services.

TABLE I
EVOLUTION SCENARIOS IN REST SERVICES.

Change Impact Condition/ Note
Endpoint Change Adaptable The endpoints can automatically be

mapped.
Non-
adaptable

The endpoints cannot be mapped
and the service cannot be resolved.

Resource
Addition

No-effect The resource is added to the end
and is not used.

Adaptable The position of the new resource
can be automatically identified and
the new resource can be automati-
cally injected to existing requests.

Resource
Renaming

Adaptable The resource can be mapped based
on its structure.

Non-
adaptable

The structure of the resource has
also changed.

Parameter Addi-
tion

Non-
adaptable

The new parameter (input) is re-
quired and its value cannot be re-
solved solely from the interface.

No-effect The new parameter (input/output)
is optional.

Input Parameters
Reordering and
Type Change

No-effect Request parameters are untyped
and the order is irrelevant.

Output
Parameters
Type Change

Non-
adaptable

The client casts variable or parses
strings to numbers without type
checking.

Output
Parameters
Reordering

No-effect Output parameters are usually
wrapped in complex types and their
order plays no role.

Table I summarizes a collection of evolution scenarios
for REST services, along with their classification based on
their impact on clients. Some of these scenarios are further
discussed as they have appeared in the Tumblr case study (see
Section IV). The particular changes to a REST service that
can potentially affect client applications are those around the
formation of the URL requests towards the service, namely
changes to the service endpoint, the structure of the resources
and the parameters of the methods. Changes to the response
of a service may have negative effect on the client if they are
not handled properly by the application. However, new output
parameters will not affect existing clients, since they will be
unaware of them.

Changes to the service endpoint will affect all the URL
requests constructed for this service; consequently, current
clients issuing these requests will break because they will
no longer be able to resolve the service address. However,
if the new endpoint can be easily mapped to the old endpoint,

then the URLs can be systematically (even automatically)
changed to reflect the new endpoint. The mapping can be
achieved semantically, if the terms comprising the endpoint
are somehow related to each other, or structurally, if the
contained resources and their methods are the same or similar.
If, however, there were extensive changes to the rest of the
service-interface structure, then it would become more difficult
to map the two versions of the endpoint, especially if the
service contains more than one endpoints. In that case, the
client would require additional information about the new
service version, and more manual effort would be necessary
to adapt to the change.

Changes to the structure of the service resources may
cause similar but less detrimental problems. For example, if
a new resource is added to the service and that resource is
independent from the existing ones, no former URLs will be
affected. However, if the organization and the taxonomy of
the resources is changed and the path for a new resource
is added in a position that affects the structure of existing
URLs, this will break clients issuing these requests. For a
simple example, let us consider a service for biological data,
which have resources about plants and animals, and under
those it defines resources for specific species, e.g. pine trees,
rose bushes, dogs, mice and so on. Let us assume that in the
second version, some new classes are considered that are more
specific than plants and animals but more generic than the
species, e.g. trees, bushes, mammals, birds and so on. In this
case, existing requests will have to be changed in order to add
the intermediate resources. Renaming or changing the structure
(subresources, methods) of existing resources may have the
same breaking results for clients, but as long as the resources
can be mapped between the two versions, the changes are
adaptable by clients applications, since they are already in
possession of the required data to reissue the requests in the
new format. We consider two elements (resources, parameters
or methods) to be mapped between two versions if they retain
their names or their attributes (or both) or carry the same
information in both versions.

The impact of changes in the parameters of REST methods
depends on the importance of these parameters. If a new
required parameter is added to an existing method, current
client requests will break. If the parameter is optional, or
has a default value, then current requests will still be valid
in the new version. An interesting difference between REST
and SOAP services is that, in REST, parameters types are
not explicitly declared, but inferred from their values and
appropriately handled by the service. From the client’s per-
spective, all parameters are specified as alphanumerics and
are passed to the service. Therefore, changes to the type of a
parameter are of no effect to the client. Finally, unlike other
programming styles, the order of parameters in REST requests
plays no role whatsoever. If the type of the output parameters
is changed, then the impact on the client will depend on how
the consuming application handles the service response data.
For example, if the client expected a particular type and cast
the corresponding variable without first checking the returned

type, then the application would break, if the type of the
returned parameter changed.

III. THE WSDarwin REST TOOLKIT

WSDarwin [12] offers a collection of tools to support the
evolution of web services and the adaptation of service clients,
complying with web-services principles and aware of actual
development practices. WSDarwin operates under the assump-
tions that providers and clients share the minimum required
information regarding the implementation of their software,
i.e., services and applications, and that evolution decisions are
made independently, without consultation between providers
and clients. As a result, service clients may have to deal
with unexpected breaking changes to web services with little
information. WSDarwin offers the ability to analyse software,
generate middleware assets, and manipulate client applications
using only publicly available software artifacts in a systematic
and interactive manner.

In order to support the development and evolution of REST
applications, we extend the WSDarwin toolkit to enable the
automatic generation of WADL interfaces for REST services.
This extension is built in accordance to the general philosophy
of REST services; it is lightweight and easy to use, and it
operates under the realistic assumption that some best practices
may not necessarily followed. We have made the method-
ological commitment to reflect and accommodate the practical
realities of RESTful development rather than dictating best
practices. Its simple interface and degree of automation is
conceived to make it a useful tool for service developers
and client developers alike. Service developers can use the
application to provide additional information to their clients
about the application in an efficient and cost-effective manner.
Service clients can obtain more information about a service
even when this information is not provided by the service
developers.

A. WADL Generation

WSDarwin can produce the WADL specification for a
REST service simply by exercising the service and analysing
its requests and responses. The availability of an automated
tool for generating a well-define service-interface specification
on demand relieves the provider from the responsibility of
constructing this specification beforehand. Second, it allows
service clients to use this interface to generate client proxies,
compare similar alternative services or service versions, and,
in general, take advantage of the software-engineering tools
available for web service development.

In order to generate the WADL interface, WSDarwin re-
quires as input one or more URLs corresponding to service
requests, at least one request per method. Clearly, the more
URLs are given to WSDarwin, the more complete the interface
specification that it will generate. During the batch analysis of
multiple requests, the intermediate results are merged to avoid
duplicates and eventually a single WADL file is produced for
the service under examination. The generated file is valid as
per the WADL schema provided by W3C [5].

The input URLs are analysed using the rules provided by
the RestDescribe tool [20], which is a similar tool to generate
WADL interfaces. Figure 1 shows how a request is parsed
according to these rules. The first part (authority) corresponds
to the service endpoint, i.e., the address of the service. In the
WADL, the endpoint is the base attribute of the resources
element. The next part of the URL (path) specifies the individ-
ual resources, whose paths are separated by a slash (“/”). The
individual resources are organized hierarchically in the WADL
file and each resource is nested within the previous one.

Fig. 1. The analysis of an input URL in its components

Each URL request is a method that is added to the last
resource specified by the URL. The HTTP operation of the
method, i.e., GET, PUT, POST, DELETE, is not part of the
URL and has to be specified explicitly by the user. If the
resources in the URL are followed by a question mark (“?”),
this means that the method has parameters, which come in
name-value pairs, separated with an ampersand (“&”). These
parameters, along with their inferred types (the type-resolution
heuristic method is describe din detail in Section III-A1), are
added to the request part of the method. If the URL has no
parameters, in which case the URL tries to access a specific
resource or a collection of resources, the method does not have
a request part.

Once the requests have been analysed, they are used to
invoke the service and obtain the corresponding responses,
which are returned either as XML or as JSON. WSDarwin au-
tomatically determines the format of the response, since this is
not always explicitly specified, which is then specified as the
mediaType of the response. The response is then parsed and
analysed to infer the underlying schema. The identified types
of the output parameters and their structure are added as an
XML schema in the grammars element of the WADL file. A
representation element is added in the response part
of the WADL method with a reference to the corresponding
type in the grammars part.

The generated WADL file becomes available to the devel-
oper, who can further edit it by changing the attributes of an
element, or adding and removing elements, or editing attribute
types.

A significant feature of WSDarwin is its ability to batch
process multiple requests for a service. This enables the tool
to resolve parameter types with high confidence, to identify
enumeration types, and to identify resources with variable
identifiers. The assumption that the user of the tool will be
easily able to provide multiple URLs is quite realistic. To
begin with, developers can use the URLs mentioned in the
service HTML documentation. Furthermore, they are likely to
have further request URLs as part of their application testing.

A second important WSDarwinfeature of WSDarwin’s on-
demand WADL generation is that the produced WADL spec-
ifies only the parts of the service used by the client applica-
tion. This results in a concise and compact interface without
unnecessary data, a fact that can facilitate the maintenance
of the client application. While this may somewhat limit the
extendibility of the client application (a service method not
currently used might still become useful in the future), the
WADL-generation process is so simple that it can be invoked
at any point in time to produce a new WADL to meet the
current client-application requirements.

1) Type Resolution: Given that REST requests and re-
sponses do not specify types for their parameters, the iden-
tification of a parameter’s type by analysing its value is a
critical part of the WADL generation. WADL specifications
must include type information because certain programming
languages, for which client proxies can be generated, explicitly
require them.

WSDarwin can identify a variety of primitive types as
specified in the W3C definition for the XML Schema 1:
string, double, float, long, int, short, byte,
dateTime, date, boolean and anyURI. Each type is
determined based on a regular expression and, if necessary,
by a set of specific conditions (Table II). Given the value
of a parameter, the expressions are checked from the most
specific to the most general type. In essence, everything can
be expressed as a string and every number can be expressed
as a double. So, these general types are checked last. Numeric
types differ from each other based on the specific range of
numbers they cover. Therefore, numeric values are subjected
to additional conditions to check for the particular range they
belong to. If a parameter is a list of values, then a complex
type is created for the list and XSD element is added to the
type for the contents of the list. The type of the element is
determined as previously and an additional attribute is added
(maxoccurs=‘‘unbounded’’).

When processing multiple URLs, if a parameter is found to
have more than one different types for different requests, then
the final type is the most generic type of all the identified
candidate types (e.g., string is more generic than int)
under the assumption that the generic type can subsume the
values of all the more specific types. When presenting the
final WADL file, the tool also presents its level of confidence
for each identified type, where confidence is measured as the
percentage of the total requests processed. For example, if a
parameter was found to be string in 7 out of 10 processed
URLs, then it is reported as string with 70% confidence.

a) Identifying Enumerations: Enumerations are a special
type, whose values are restricted within a predefined set. In
a WADL file, enumerations can be implemented in one of
two ways, either as option elements of a param or as
simpleType in the XML schema with a restriction
element that contains the possible values as enumeration
elements. The WSDarwin WADL generator adds param

1http://www.w3.org/TR/xmlschema-2/

TABLE II
REGULAR EXPRESSIONS TO IDENTIFY PARAMETER TYPES.

Type Regex
double [̂-+]?[0-9]+[.]?[0-9]*

([eE][-+]?[0-9]+)?$ AND
parseDouble == TRUE

float [̂-+]?[0-9]+[.]?[0-9]*
([eE][-+]?[0-9]+)?$ AND
parseFloat == TRUE

long [̂-+]?\\d*$ AND parseLong ==
TRUE

int [̂-+]?\\d*$ AND parseInteger ==
TRUE

short [̂-+]?\\d*$ AND parseShort ==
TRUE

byte [̂-+]?\\d*$ AND parseByte ==
TRUE

dateTime (̂\\d{4})-(\\d{2})-(\\d{2})[T]?
(\\d{2}):(\\d{2}):(\\d{2})[Z]?$

date (̂\\d{4})-(\\d{2})-(\\d{2})$
boolean true|false
anyURI \\b(https?|ftp|file)://

[-a-zA-Z0-9+&@#/%?=˜_|!:,.;]*
[-a-zA-Z0-9+&@#/%=˜_|]

email [̂_A-Za-z0-9-\\+]+(\\.
[_A-Za-z0-9-]+)*
@[A-Za-z0-9-]+
(\\.[A-Za-z0-9]+)*
(\\.[A-Za-z]{2,})$

elements for method requests, since requests usually have
a limited number of input parameters (if any at all), and
representation elements that refer to the XML schema
simpleTypes for method responses, because responses may
be as long as a JSON or XML file.

Naturally, it is impossible to determine that a parameter is
an enumeration if a single URL is examined. This is one of
the reasons why WSDarwin supports the batch processing
of multiple URL requests. The tool keeps a record of all
the values for all the parameters along with the frequency
they are encountered in the given set of URLs. To determine
the frequency of a value, exact matching is used rather
than a fuzzy textual or numeric similarity. This is because
partial matching may be coincidental, while exact matching
clearly indicates that the exact same value was encountered in
more than one different URLs. If, for a parameter, a single
value occurs in more than one URLs, then the parameter
is highlighted to inform the user that it may potentially be
an enumeration. The user can then choose to confirm this
inference, in which case WSDarwin automatically refactors
the parameter into a simpleType with enumerations.

B. Resources with Variable ID

The ability of WSDarwin to recognize resources with vari-
able identifiers and appropriately specify them in the WADL
enables the construction of concise and compact interface
specifications. The alternative would be to record each instance
of a resource class (e.g. each different account identifier
under the accounts resource) as a different resource, which
could result in a long interface depending on the number of
instances.

The identification of classes of resources occurs during the
batch processing of the URL requests. The various resource
paths comprising the URL are compared and counted and the
tool looks for systematic differences in the same part of the
URL. For every such path, its prefixes and suffixes in every
URL are also checked. If the path component that differs
between URLs is found to have a common prefix in all the
examined URLs and a common suffix in all the URLs that
are at least as long (in terms of number of path components)
as the longest examined URL, then this path component is
considered to correspond to a resource class. The reason for
the last condition is because it is expected for the examined
URLs to have different lengths (covering different parts of the
API) and, thus, it is unrealistic to expect that a path will have
a common suffix in all the examined URLs. Furthermore, a
path is not examined with respect to its variable identifier, if
it occupies the last position in the longest examined URL,
since this might just correspond to different resources instead
of a class of resources. Eventually, different paths that are
surrounded by the same resources are clear indications of
resources with variable identifiers.

Another method to confirm that a resource has a variable
id, especially for resources whose path lies at the end of a
URL, is by checking the responses produced by the requests.
If two or more requests accessing different resources produce
exactly the same responses in terms of structure, we can
confirm that these requests correspond in fact to the same
class of resources, which should be treated as having variable
identifiers. However, the validity of this method depends on
the quality and the coverage of the requests. If the requests are
constructed in a way, so that they use different parameters to
access the resources, then the responses might be different or
they may be incomplete and the method would fail. Therefore,
this method should be used as a complement to others and it
should always be subjected to the user’s judgement.

Once a resource with variable identifier is found, it is
specified accordingly in the WADL file. A resource is
added, whose path attribute is the term resource along with
the position of the path in the URL surrounded by curly
brackets, e.g. {resource3}. Moreover, a param is added
in the resource with the same id as the path and its style
is set to template (instead of query, which is the norm
for input parameters). This parameter is used to indicate to
the middleware, which will generate the client proxy based
on the WADL interface, that a concrete identifier needs to be
specified before trying to access the particular resource of the
service.

C. Implementation Status

We have implemented the WADL generation on the WSDar-
win platform. The tool is part of the WSDarwin Eclipse plug-
in2 for the support of the development, evolution and main-
tenance of service client application. As part of the Eclipse

2http://hypatia.cs.ualberta.ca/∼fokaefs/index.php?option=com
content&view=article&id=51&Itemid=68

platform, the tool is fully integrated with the client’s devel-
opment environment making the provided support seamless to
the general development process of the client application. The
tool is also offered as part of a web application3 specifically
targeted to support REST applications. The application is not
integrated to a development environment, but it can provide
support for the generation and comparison of lightweight
artifacts like the WADL interface and the client proxies. Both
implementations of the tool are still in their beta version and
we are looking towards perfecting and extending them.

IV. THE TUMBLR CASE STUDY

Tumblr4 is a microblogging platform and social-networking
website, which allows its users to upload multimedia content,
including text, photos, video and audio, to a short-form blog.
The REST API [8] of the website exposes to client software
all the data of its blogs assuming that the client application
has authorization and has been granted an application key.
There are two versions of the API still available; version 15

and version 26.
For our study, we prepared 7 and 16 requests for the

two versions, focusing more on accessing the blog posts,
since this resource seems to have the greatest correspondence
between the two versions. Using these requests, we were
able to produce a WADL specification for each version using
WSDarwin7. We then proceed to discuss how the API changed
from version 1 to version 2 based on the differences in the
WADL files and what impact these changes may have on client
applications.

A. WADL interface and client proxy generation

Figure 2 shows part of the WADL files (focusing on the
service part and omitting the schema details) produced for the
two versions of the Tumblr API by WSDarwin. We ran the
interface generator 10 times for each version and the average
execution time was approximately 9 ms (st. dev. 1 ms) for
version 1 and 16.5 ms (st. dev. 3.5 ms) for version 2. These
time measurements indicate two things. First, the execution
time for the generator depends on the number of the input
requests and the complexity of the produced interface. This is
expected since the interface generator has the time complexity
of a depth-first search (DFS) algorithm. The WADL interface
has the structure of a tree and the complexity of the DFS is
linear to the number of its edges, or in the case of WADL
relative to the branching factor (how many subresources and
methods each resource has) and the depth of the interface.
Every time a request is processed, a tree is created and it is
compared and merged to the one created in the previous step.
Each node of the two trees is compared and merged once (a

3http://ssrg17.cs.ualberta.ca/wsdarwin/
4Description partially from Wikipedia: http://en.wikipedia.org/wiki/Tumblr
5https://www.tumblr.com/docs/en/api/v1
6https://www.tumblr.com/docs/en/api/v2
7All data used and produced in this study including input request

URLs, generated WADL interfaces and generated client proxies can
be found at: http://hypatia.cs.ualberta.ca/∼fokaefs/index.php?option=com
content&view=article&id=60&Itemid=69

node is not revisited once it has been merged). Therefore, the
total time for the generator equals the execution of a DFS for
the interface tree times the number of the input requests. In
practice, this time is negligible even for a medium-sized set of
input requests which makes the generator a practical tool that
can be invoked on demand and frequently without significant
effort or overhead.

In version 1, as we can see from Figure 2(a), the API
accesses each blog as a separate service and as a result WSDar-
win adds two different service endpoints (resources) for
the two blogs specified in the input requests. Unlike single
resource elements that can have parameterized identifiers,
service endpoints cannot be merged under a variable identifier
according to the WADL schema. This can be characterized as
a poor design choice for the Tumblr API, since it results in a
number of WADL files (one for each blog) or in one complex
one (depending on how many blogs we want to access), which
is rigid and hard to maintain. This will make the use of a
WADL-generated interface more problematic than helpful and,
returning to our motivating arguments, it is likely to hinder the
maintenance of a REST application.

Another observation that we can draw from the figure
concerns the input parameters for the two blogs and the
fact that they are different. This shows the sensitivity of
WSDarwin to the input requests. The user should carefully
specify these requests in order to extract as much information
as possible about the API. One simple heuristic is to specify all
the possible input parameters for all the requests or provide as
many requests as possible with many parameter combinations.

In version 2, as shown in Figure 2(b), the blog’s name is no
longer the the service endpoint but a resource. As such, the
various blog names can be merged under a single resource
with a variable identifier. This was correctly identified by
WSDarwin and the corresponding resource was given the
variable id {resource2}, since it’s the third path component
(indexing starts from 0) in the input requests. A user can
manually change the id to something more meaningful.

Another observation about version 2 is the variety and the
organization of the resources. Blog posts can be accessed
as a collection or by a particular media type. All resources
for each individual type can be accessed with the same (or
similar) set of input parameters, again depending on the quality
and completeness of the input requests. According to the
API documentation, the various resources return a common
set of output parameters and some additional ones that are
specific to the particular media type. However, in the JSON
implementation of the API responses, the parameters, whether
common or different, are organized under the same complex
types regardless of the accessed resource. WSDarwin uses the
“exact matching” heuristic, also used to compare different ver-
sions of the same interface [21], and as a result, it recognizes
the complex types with the same name as different “views”
of the same type and merges them in a single type with all
the elements, common and different. This is the reason why
WSDarwin reports the same element for the response of all
methods. The “exact matching” heuristic is reinforced in this

(a) WADL file for Tumblr API V1. (b) WADL file for Tumblr API V2.

Fig. 2. WADL specifications produced for the Tumblr API by WSDarwin.

case, since the responses are examined within a single version
of the same API and it is expected for elements with the same
name to refer to one and the same entity.

Fig. 3. The autogenerated client proxy for version 2 of the Tumblr API.

To confirm the validity of the generated WADL inter-
faces, we were able to generate fully compilable and exe-
cutable client proxies in Java using the Glassfish WADL2Java
tool [18]. The structure of the generated proxy for version 2 of
the Tumblr API is shown in Figure 3. One can see the nested
resources of the REST service and the getAsJson methods
to access the posts resource. In order to execute the client,
we first had to bind it with Jersey [22], the Oracle toolkit to
develop REST services in Java as part of the Glassfish project.

We were able to successfully test the clients using the input
parameters.

B. The Evolution of the Tumblr API

The most significant change between versions 1 and 2 was
to remedy the service-endpoint issue. In version 2, the API
defines a common endpoint for all resources (and blogs) and
the blog name becomes a separate parameterized resource.
This is a more rational design choice and it results in a
more concise service interface. Nevertheless, the change will
break any clients currently using version 1, since the service
endpoint changed. This change is a good example of an
evolution decision with a tradeoff. On one hand, the change is
incompatible with current clients, but on the other hand, it is
necessary to improve the design of the service and facilitate
the development and maintenance of client applications.

Another change from version 1 to version 2 has to do with
how posts of different media types are accessed. In version 1,
there was a “type” parameter defined in the request. In version
2, each media type is represented by a different resource within
the posts resource. This may reflect a change in how the data is
stored by Tumblr; in version 1, all the posts could have been
stored in one resource (e.g. a database table) for each blog
and then filtered by their type, while, in version 2, each type
is stored in a different table for all blogs and the posts resource
is a union of all the different media types. A peculiarity around
this change is that the “type” parameter is retained in the
requests of version 2. Although the parameter is ignored when
used on a specific resource and it returns the same results
when used on the posts resource, the decision to retain it in
the new version was probably for consistency purposes. If a
client is able to deal with the change in the service endpoint,

the old requests are not affected by the introduction of specific
resources for the media types, which can still be indirectly
accessed by specifying the “type” parameter.

A third interesting change that occurred in version 2 is
the renaming of some input parameters. More specifically,
the “start” parameter, indicating the index of the first post
from which the service will start returning, was renamed to
“offset”, “num”, which indicates how many posts the service
will return, was renamed to “limit”, and “tagged”, which limits
the response to posts with the specified tag, was renamed to
“tag”. Since we have to deal with simple types (strings and
numbers), it is impossible to map the parameters between the
two versions simply by comparing their names and structures.
In such a case, we have to confirm that the renamed elements
correspond to the same parameters by comparing their values
in the two versions, as in the method we proposed in our
previous work to map different services [23]. If two parameters
of a request have the same value in both versions, then they
are mapped and labelled as renamed.

Some request parameters that were added in version 2, like
“reblog info” and “notes info”, are not required and, there-
fore, this change will not affect existing requests. However,
the “api key” parameter that was also added is considered
required and therefore old requests have to be changed in this
case. This change, although breaking for current clients, was
necessary to increase the API’s privacy and security properties.

V. RELATED WORK

Our work is mainly related to the development and evolution
of REST applications. With the rise of REST services as
dominant software components, the interest for their evolution
and their software ecosystems has also peaked and this has
spawned a number of research works around these topics.
More specifically, in this work, we discuss a number of
empirical studies around the evolution of REST and web APIs.

Wang et al. [24] perform an empirical study on how
REST APIs evolve. They take the social approach and argue
about the changes on a variety of REST APIs based on the
discussions these changes raised among client developers in
StackOverflow. The authors recognize similar changes to those
we report in this paper, mainly changes in the requests and the
responses of the APIs. Additionally, they report changes in the
authentication method of the API, which can be considered a
special change in the request of the API and changes in the
rate limit, i.e. how often a client can access the API, which
is usually something that is specified in the Service Level
Agreement (SLA) and not in the service interface. According
to the findings of the study, adding new methods raised the
most questions in StackOverflow, although without a clear
justification by the authors, while deleting existing methods
produced the longest discussions, since this is a breaking
change.

Li et al. [25] present another empirical study on the
evolution of web APIs how it affects the clients, but they
focus more on the technical aspects of the problems. Their
data and arguments are derived by examining the native

client development toolkits on various programming languages
provided by the service vendors. This way they can actually
argue on the impact of the changes on client applications and
about which ones of them can be addressed automatically by
client developers. Once again their findings are in accordance
to our claims and our findings in our previous work on the
evolution of SOAP services [19] both in terms of the identified
changes as well as about their impact.

Finally, Espinha et al. [26] present a very complete study on
the evolution of web APIs both from a social and a technical
perspective. They conduct interviews with developers of large
and popular REST APIs and separate interviews with develop-
ers of client applications of these APIs. Among other things,
these interviews revealed certain evolution policies from the
providers, like Twitter’s blackout tests and Google’s extensive
grace period for client migration to a new version of the
API, policies which were generally received with appreciation
by the client developers. Then, the authors examined two
open source web APIs and their clients, which are also open
source. The access to the source code of both the services and
the clients gave the opportunity to the authors to examined
the dependencies between the two software systems, when
the service evolves. This study confirmed two of our most
important claims; first, that there are great variations and
inconsistencies on how REST applications are developed and
evolve and, second, that these evolution strategies actually
create strong dependencies between providers and clients.

Another set of relevant works concerns our contribution of
an automatic tool to generate WADL service interfaces for
REST APIs. RestDescribe8 is a web application developed by
Thomas Steiner [20]. The tool works very similarly to WSDar-
win; it receives one or more URL requests, which are parsed
to generate the WADL interface. The interface is presented in
an editor, so that the user can manually change the WADL
by adding, removing or changing elements. Finally, the tool
offers the generation of a client proxy based on the generated
proxy on a number of programming languages. Despite their
similarities, RestDescribe has several shortcomings compared
to WSDarwin. First, it does not exercise the service with
the provided requests and as a result no response element is
produced, and by extend no schema is inferred for the service,
although there is functionality to infer a schema if the user
manually provides the response elements. Second, when batch
analysing requests, the tool doesn’t merge common elements
but rather appends the analysed elements in the same WADL.
As a result, the tool is also incapable to recognize resources
with variable identifiers.

Another tool that has the capability of producing WADL
interfaces is soapUI [27]. Unlike RestDescribe, soapUI does
exercise the REST service given a URL request and as a result
it can infer the XML schema of the service. However, unlike
WSDarwin, soapUI can only process one request at a time and
it has no batch processing option. Furthermore, the capabilities
of the tool stop at the schema inference and it cannot produce

8http://tomayac.com/rest-describe/latest/RestDescribe.html

a complete WADL from the URL request. Finally, soapUI
cannot recognize certain types that WSDarwin can, including
anyURI and email.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present an overview of the REST archi-
tectural style for service-oriented systems and its principles
and discuss how these principles are practically implemented
in real-world REST services and applications. We argue that,
in practice, these principles are only followed in a rather ad
hoc manner and the development of REST applications could
benefit from systematic and standardized methods and tools.

Of particular interest is the ability to efficiently and ef-
fectively support the development and maintenance of REST
applications. Towards this end, we also present a tool for
automatically generating WADL specifications for REST ser-
vices, as part of the WSDarwin platform. The tool analyses
REST requests and the corresponding responses, to infer a
specification of the service interface. The client can then use
this specification to perform a number of tasks, including
to generate client proxies for a variety of programming lan-
guages, and to compare different versions of the service to
understand its evolution.

To confirm that our argument about the deviation between
theory and implementation of REST principles stands on valid
grounds, we discuss the case of the Tumblr API and study
its two versions. Our study indicates that Tumblr is a typical
case of a REST API, whose original version was rather poorly
designed and that it was greatly improved in the next version
when it complied better with the REST principles. Tumblr also
gave us the opportunity to demonstrate the WSDarwin WADL
generator and show how such a tool can help us better study
the history of a REST API.

Although we have built prototypes of the WADL generator,
the tool is still in its infancy. We plan to further develop it,
test it with more APIs and use it to complement the rest
of the WSDarwin platform and other third-party tools in
order to offer a more complete solution for the support of
REST application development and maintenance. Next, we
plan to use the more complete and robust WSDarwin toolkit
to conduct an extensive empirical study on how REST services
are implemented and evolve and how much they deviate from
theoretical principals, if at all. This study will be along the
lines of our previous work on SOAP service [19].

ACKNOWLEDGMENT

The authors would like to acknowledge the generous support
of NSERC, iCORE, and IBM.

REFERENCES

[1] Monsoon Stone Edge User Forum, “Amazon soap being discontinued,”
http://www.stoneedge.net/forum/pop printer friendly.asp?TOPIC ID=
12687, June 2011.

[2] E. Tholomé, “A well earned retirement for the soap search
api,” http://googlecode.blogspot.ca/2009/08/well-earned-retirement-for-
soap-search.html, August 2009.

[3] T. Anderson, “Ws-* vs the rest,” http://www.theregister.co.uk/2006/04/
29/oreilly amazon/, April 2006.

[4] A. Trachtenberg, “Php web services without soap,” http:
//www.onlamp.com/pub/a/php/2003/10/30/amazon rest.html, October
2003.

[5] M. Hadley, “Web application description language,” http://www.w3.org/
Submission/wadl/, August 2009.

[6] A. R. Roberto Chinnici, Jean-Jacques Moreau and S. Weerawarana,
“Web services description language (wsdl) version 2.0 part 1: Core
language,” http://www.w3.org/TR/wsdl20/, June 2007.

[7] Twitter, “REST APIs,” https://dev.twitter.com/rest/public, 2014.
[8] “Tumblr API,” https://www.tumblr.com/docs/en/api/v2.
[9] G. Developers, “The Google Geocoding API,” https:

//developers.google.com/maps/documentation/geocoding/, October
2014.

[10] RottenTomatoes, “API Overview,” http://developer.rottentomatoes.com/
docs.

[11] J. McKendrick, “Cloud Computing’s Vendor Lock-In Problem: Why
the Industry is Taking a Step Backward,” http://www.forbes.com/
sites/joemckendrick/2011/11/20∼/cloud-computings-vendor-lock-in-
problem-∼why-the-industry-is-taking-a-step-backwards/, November
2011.

[12] M. Fokaefs and E. Stroulia, “The WSDarwin Toolkit for Service-Client
Evolution,” in Proceedings of the 2014 IEEE Internation Conference on
Web Services, Work In Progress (ICWS’14 WIP. Anchorage, Alaska,
USA: IEEE, 2014, pp. 716–719.

[13] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[14] C. House, “How restful is your api?” http://www.bitnative.com/2012/
08/26/how-restful-is-your-api/, August 2012.

[15] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving
web services,” in Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research - CASCON ’06. New York,
New York, USA: ACM Press, Oct. 2006, p. 23.

[16] M. Fokaefs, E. Stroulia, and P. R. Messinger, “Software Evolution in the
Presence of Externalities: A Game-Theoretic Approach,” in Economics-
Driven Software Architecture, I. Mistrik, R. Bahsoon, R. Kazman,
K. Sullivan, and Y. Zhang, Eds. Elsevier, 2013.

[17] A. CXF, “wadl2java command line tool,” http://cxf.apache.org/
docs/jaxrs-services-description.html#JAXRSServicesDescription-
wadl2javacommandlinetool.

[18] Glassfish, “wadl2java Tool Documentation,” https://wadl.java.net/
wadl2java.html, 2013.

[19] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau, “An
Empirical Study on Web Service Evolution,” in Proceedings of the
2011 IEEE International Conference on Web Services, ser. ICWS ’11,
Washington, DC, USA, 2011, pp. 49–56.

[20] T. Steiner, “Automatic multi language program library generation for
rest apis,” Ph.D. dissertation, 2007.

[21] M. Fokaefs and E. Stroulia, “Wsdarwin: Studying the evolution of web
service systems,” in Advanced Web Services. Springer, 2014, pp. 199–
223.

[22] Jersey, “Restful web services in java.” https://jersey.java.net/, September
2014.

[23] B. Bazelli, M. Fokaefs, and E. Stroulia, “Mapping the responses of
restful services based on their values,” in Web Systems Evolution (WSE),
2013 15th IEEE International Symposium on. IEEE, 2013, pp. 15–24.

[24] S. Wang, I. Keivanloo, and Y. Zou, “How do developers react to restful
api evolution?” in Service-Oriented Computing. Springer, 2014, pp.
245–259.

[25] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service api
evolution affect clients?” in Web Services (ICWS), 2013 IEEE 20th
International Conference on. IEEE, 2013, pp. 300–307.

[26] T. Espinha, A. Zaidman, and H.-G. Gross, “Web api growing pains:
Loosely coupled yet strongly tied,” Journal of Systems and Software,
2014.

[27] “Soapui,” http://www.soapui.org/.

3.2 Mapping the responses of RESTful ser-

vices based on their values

Bazelli, B., Fokaefs, M., Stroulia, E., 2013. Mapping the responses of restful

services based on their values. In: IEEE International Symposium on Web

Systems Evolution (WSE 2013). IEEE, pp. 15-24.

101

Mapping the Responses of RESTful Services
Based on their Values
Blerina Bazelli, Marios Fokaefs, Eleni Stroulia

Computing Science
University of Alberta
Edmonton, Canada

{bazelli, fokaefs, stroulia}@ualberta.ca

Abstract—The distributed nature of service-oriented
architectures imposes some very interesting challenges to the
participants of a service system, i.e., the provider and the client.
For example, the service may change in a way that no longer
satisfies the client’s needs, either due to its reduced offered
functionality or quality, due to its reduced availability or due to
its increased price. In this case, the client may seek to replace the
consumed service with another from a competitive provider. The
client will also have the challenging task of mapping the elements
of the old service to those of the new service, in order to apply the
appropriate changes to the client application. In this work, we
propose a novel approach to perform this mapping based on the
data exchanged by the service and the application (i.e., the values
of the input and the output parameters of the service). This
technique allows us to avoid any potential ambiguities in the
vocabulary or the structure of service interfaces between
different vendors. Eventually, we evaluate the performance of
our mapping technique on different services from two domains,
namely movie and geolocation services.

Keywords—service-oriented architectures; RESTful web
services; service interface mapping

I. INTRODUCTION
Service-oriented architecture rose to become the prevalent

paradigm for developing modular software. In the SOA style,
systems are constructed as compositions of services, which, at
run time, exchange data through their web-accessible XML-
defined interfaces. Changes in the availability of the service,
i.e., server downtime or changes in the interface or the price of
the service, may cause disruptions in the proper function of a
client application and may motivate the client to switch to a
comparable service. To that end, three steps are necessary:
a) service discovery, b) service selection and c) service
mapping. In service discovery, the client aims to find a set of
similar and eventually substitutable services from a repository
that corresponds to a specific domain. With service selection,
the client attempts to find the service that best satisfies his
functional and quality requirements from this set of
substitutable services. Finally, service mapping refers to the
task of finding the correspondence between the elements of a
source service, which the client already consumes, and the
elements of a target service, which is the result of the selection
process, in order to eventually adapt the client application from
consuming the source service to now consume the target
service.

In our work, we focus on the last step. The problems of
service mapping and matching (i.e., the process of identifying
equivalence between two services) have been extensively
studied by the research community. Structure-matching
techniques compare service elements according to their method
signatures (i.e., number of parameters, types of parameters
etc.). Across vendors, similar service elements may use
different types to refer to the same concept (e.g., an integer can
be expressed either as a number or as a string). Lexical-
matching techniques rely on the etymology or the taxonomic
and patronymic relationships of the elements’ identifiers.
These techniques may fail to appropriately map service
elements, if the different vendors use a completely different
vocabulary to refer to similar concepts. Semantic-matching
techniques require semantic-web metadata for the specification
of the service interfaces, which are not always available.

In this work, we propose a novel approach for service
mapping that relies on the values of the data that services
consume and produce at run time. This approach is particularly
useful for mapping resource-based RESTful (Representational
State Transfer) services [6]. These services have recently
gained popularity as they rely on a stateless and simple client-
server communication protocol where the HTTP protocol is
used. Client applications can issue simple HTTP requests to a
RESTful service in order to send, retrieve, modify or delete
data.

Clients of these services acquire and manipulate data from
the services, through CRUD operations. Therefore, in order to
assess the degree to which two alternative services are
substitutable from the perspective of a client, one needs to map
the data received from the two services in question. The
proposed method compares the instance values of two services
and reports to the client-developers a ranked mapping so that
they can a) identify the target elements that correspond to the
source elements, b) know the degree of similarity between the
elements and c) what the necessary transformations are, so that
the instance values of the target service are translated in the
values of the source service. We have evaluated our method
and the accuracy of the ranked mapping in terms of (Table IV)
age precision by applying it on different services from two
domains, namely geolocation services and movie database
services.

The rest of this paper is organized as follows. In Section II,
we give an overview of the related research. In Section III, we

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 15

present our methodology and in Section IV the evaluation of
our method. Finally, Section V concludes this work with a
discussion about our future plans.

II. RELATED WORK
Significant research has been done on the topic of matching

web services. Most of these works focus on the semantics [4, 8,
19] and the structure of service interfaces. Similar work on
schema matching has been performed in the database field in
the context of migrating one database structure to another.

A. Service Interoperability
Aversano et al. [1, 2] have focused on the evolution of

Service-Oriented Systems. They proposed an approach, which
identifies relationships among services. These relationships
rely on 1) the similarity among services (when a particular
service can replace others, then they are considered to be
similar), 2) the inheritance factor (some services perform more
abstract functionalities than others) and 3) similar
characteristics (services that may share similar characteristics
but cannot replace one another). In order to identify the above
relationships, they define the Formal Concept Analysis tool.
By using it, a lattice of semantically related words that
describes the relationships among services is built. Moreover,
multiple lattices not only show the relationships but also the
evolution of the services being involved. However, the use of
semantics may not be reliable since services from different
vendors tend to use different words to describe similar
functionality and also they provide a mapping on a higher level
and not on a per-element basis like we do.

Wang and Stroulia [8], in their work focused on the topic of
service discovery process. The methods that may lead to
relevant web services categorized by their functionalities are:
1) signature matching and 2) specification matching. The
former implies that, based on the WordNet1 tool (a dictionary
that contains semantically related words) applied on the Web
Services Description Language (WSDL) descriptions, a group
composed of relevant web services is being found. A further
refinement is performed on the relevant web services found
previously by applying a structure-matching algorithm which
searches for similar input and output messages (by comparing
the data types of the input and output parameters). A score is
assigned for each pairwise comparison that indicates the degree
of similarity. Finally, the pairs of services having the highest
scores are considered similar.

Nonetheless, although some methods may have the same
signature types, they may have different functionalities. In such
cases, the semantics of identifiers are taken into account. More
specifically, based on WordNet when two identifiers are
identical or synonyms then a high score is being given.
However, this technique is not sufficient enough as not only
the identifiers must be words having a meaning but also it fails
to map components that use identifiers in different languages
(multiple dictionaries support).

Khorasgani et al. [7] aim to match RESTful web services
based on the semantic similarities among web services by

1 http://wordnet.princeton.edu/

relying on the semantics of the service described on the
WADL2 (Web Application Description Language) files. They
propose a graph-theoretic matching technique called Semantic
Flow Matching (SFM). First it creates a network of WADL
elements by associating them based on their structure (methods
are connected to the resources where they belong to and to the
parameters they include) and semantically (elements with
synonym terms or identifiers having the same root are
connected). The WordNet tool and the Porter stemming
algorithm are used to find similar terms. However, the results
are not promising even when combining these two techniques
together as although some words may refer to the same
concept, they may not be synonyms according to WordNet nor
sharing the same root according to the Porter stemming
algorithm (e.g., the words 'bookmark' and 'tag' are not
synonyms according to WordNet despite the fact that they refer
to the same concept).

Ponnekanti and Fox [9, 10] focus on the topic of
substitution among services provided by different vendors. If a
service could substitute another service, then their vendors
could compete in terms of price, quality of service and
availability. They propose a solution based on four
incompatibilities: structural, value (e.g., unexpected forms that
require input values), encoding and semantic. The structural
and value incompatibilities derive generally from
additions/deletions of methods and fields from source and
target services. In order to identify these incompatibilities, they
convert the WSDL descriptions and the XML schema types
into JAVA classes and then generate usage tuples that indicate
all the calls performed during while the application is running.
In our work, we do not define services as incompatible based
on their methods or fields used by other applications but based
on their response values. Therefore, we consider two services
substitutable when for a given input, their responses’ values
match to some extent.

While all the above work on the area of service matching
focused mostly on the semantics and the structure of the web
services, the results depending on these two factors are not
satisfactory as there may be no commonalities among the
names given to elements that constitute a web service among
the vendors. Nonetheless, in our work we focus directly on the
input and output values as they do not depend on the vendors.

Gokhale et al. [13] attempted to map two APIs in method
level through their tool, Rosetta. First, they collect manually a
number of applications having the same functionality (e.g.,
different implementations of the TicTacToe game). Then, a
user performs manually the same functionality on both
applications. On the background, the tool traces all the method
calls made on both applications in order to be able to map the
appropriate methods while they are executed. As a result, there
is a collection of API call pairs. In addition, they take into
account the number of method calls per trace. For example,
three calls to method A (of application 1) and B (of application
2), indicate that these methods are more likely to be mapped.
This approach differs from ours in the sense that we map the
output elements of a RESTful API request.

2 http://www.w3.org/Submission/wadl/

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 16

B. Schema Migration
The problem of schema matching is also applied in many

other fields besides web-services such as in the filed of
Databases [14, 15, 18] and Graph Theory among others.
Schema matching refers to the process of matching two
elements that are somehow semantically related and able to
substitute one another. Shvaiko and Euzenat [3] proposed a
classification of techniques applied that lead to schema
matching. They rely on techniques related to ontology
matching such as structural and semantic. Drumm et al. [4]
proposed a semi-automatic approach to migrate data from one
application’s database to another. This process requires two
important steps: 1) schema matching and 2) mapping
discovery. Since they focus on the interoperability of legacy
systems the involvement of users is unavoidable. Thus, the first
step of their approach is to ask the users of the source system to
provide information about the schemas. It is also important to
store a sample of missing instances from the target system to
the source system. By doing this, they ensure that there is
definitely a mapping among elements between the two
systems. Finally, several matchers are applied to pairs of
source and target elements in order to map them based on their
instance values (equality matcher, split-concat matcher etc.).

Rahm et al. [12] have classified the most widely used
techniques that lead to schema matching. They define two
main categories of automatic schema matching: 1) schema-
level matching and 2) instance-level matching. The former
relies on the information included in the schema. These pieces
of information are being approached based on linguistic
characteristics (e.g., synonyms, hypernyms) or based on
constraints such as relationship types, data types etc. The
instance level approach is related to the values of the schema
elements and is usually used to refine the results given by the
previously mentioned techniques. The techniques that prevail
in instance level matching depend on information retrieval
approaches for text elements and constraints for structured
defined data (e.g., numerical and string elements). Finally,
hybrid matchers, combine multiple techniques in order to
achieve satisfactory matching results. There are two ways to
perform a hybrid matching, either apply all the techniques at
the same time or apply them one after another one has finished.

Islam et al. [14] have focused on the mapping in element
level of large corpus text in databases by taking into
consideration the elements’ identifiers. They proposed a
method of schema matching that uses two methods, 1) the
word similarity method and 2) the word segmentation model.
The first one is related to the probability of two words to co-
occur within a text corpus whereas the second refers to the
distinguishing of concatenated words into multiple meaningful
ones. These approaches cannot be applied in our work as we
map output data based on their values. The values are usually
numerical or strings. Therefore there are not concatenated
words where the word segmentation model could be applied.

From the database schema-matching field, the work of
Miller et al. [15] is the closest to our work as they consider the
values as the most important factor to map two elements
originated from two different databases. They focus on the
ability to transform a query created to get data from a source

database to a query to get data from a target database. The tool
significantly interacts with users as they need to give as input
all the value correspondences (the functions that define a
relationship between multiple elements) from the source to the
target schema [20]. In our work, we have to deal with
unstructured data values in the sense that we cannot assume
any relations between them. As a result, we cannot use the
same technique used by Miller et al. and for this reason we
have defined our own mapping rules based only on the type of
the values.

Few of the techniques described above could also be
applied in the case of RESTful web service mapping (use of
semantics, word segmentation). The reason is that these
techniques require extensive involvement and technical/
domain knowledge by the user. Furthermore, we have already
discussed the issues of using semantics in order to map web
service elements.

III. METHODOLOGY
Our methodology requires as input a set of requests; more

specifically, at least one request per operation for each
RESTful service involved. We use these requests to invoke the
services and acquire the responses. We then proceed to map the
elements of the responses according to a set of pre-defined
rules based on the elements’ data types, i.e., different rules are
applied on numerical and string elements.

We assume that the client-application developer has already
identified a set of candidate RESTful web services from a
desired domain that can potentially substitute the source
service, i.e., the service that the client application already
invokes. Based on the requests that the client applications
already issues to the source service, we further assume that the
client developer can formulate requests for candidate web
services, which implies that the developer has to be able to
map the input parameters of the source-service requests to
input parameters for the requests to the candidate target
services.

The first step of the process then is to invoke the requests
for the source and target web services in order to get the
response files (typically in JSON or XML format). The
responses are parsed and translated in a lightweight java
representation specified by the WSDarwin tool [17], in order to
facilitate the comparison process.

In the second step, our method proceeds to map the values
returned by the invoked service operations. A response element
may be either a primitive type or a complex type. Primitive
types are considered the following data types: Integer, Double,
Long, Float, String, Boolean, Date, and URL. We observed
that the URLs are often vendor specific, and therefore we
decided to exclude them from our mapping process. A complex
type consists of primitive types either by composition or by
aggregation (i.e. sets of primitive types). The complex types
are processed in a transitive manner and eventually only the
primitive types participate in the mapping process.

We define several comparison rules that we apply to a pair
of elements, according to their types. These rules rely on two
metrics: similarity and inclusion. Similarity refers to how
“close” two instance values are given their types. Similarity is

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 17

computed differently for strings and numerical elements. The
inclusion criterion examines whether a sequence of characters
in one service-response is included in a character sequence in
another service response. The intuition for this criterion is that
in RESTful services, differences in the schema of the
underlying resource frequently manifest themselves as
reorganizations of the values of the resource instances. For
example, one resource may distinguish between “first” and
“last names” where a second may simply have a single element
for a “name”; in this case, two values included in separate
JSON elements in the first response will be included in a single
value of a single element in the second response.

The similarity between two numerical elements (Integer,
Double, Float, Long) is computed as follows:

 𝑑𝑖𝑠𝑡 𝑛1, 𝑛2 = !"# !! , !! !!"# !! , !!
!"# !! , !!

 (1)

𝑤ℎ𝑒𝑟𝑒 𝑛1 , 𝑛2 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑛1, 𝑛2

The range of the two numeric values n1 and n2 depends on
the JSON elements that are being compared.

In order to compute the distance among sequences of
characters (strings) we use the Levenshtein edit distance metric
[11], which counts the minimum number of characters required
to change one sequence of characters into the other. This
similarity metric takes as input two sequences of characters
(a, b) and is calculated as follows:

𝑙𝑒𝑣𝑎,𝑏 𝑖, 𝑗 =

max 𝑖, 𝑗

𝑚𝑖𝑛
𝑙𝑒𝑣𝑎,𝑏 𝑖 − 1, 𝑗 + 1
𝑙𝑒𝑣𝑎,𝑏 𝑖, 𝑗 − 1 + 1

𝑙𝑒𝑣𝑎,𝑏 𝑖 − 1, 𝑗 − 1 + [𝑎𝑖 ≠ 𝑏𝑗]

, min(i, j) = 0

, else

Although the Levenshtein distance metric gives satisfactory
results for pairs of single-element strings, it fails to identify
sequences of words separated by special characters (delimiters)
as similar. Let us illustrate this point with an example. Let us
suppose that we need to compare two address values, one for
the Google geolocation service and one for the Bing
geolocation service. The actual address we give as input is:

“8619 111 St Edmonton, AB”.

Both services add their own defined delimiters between the
spaces and the actual address is transformed as:

“8619+111+St+Edmonton,+AB” (in Google)
“8619%20111St%20Edmonton,%20AB” (in Bing)

According to the Levenshtein metric, the above addresses

have a distance of 44.2%. However, the reason why the
distance is that high is the use of delimiters. In order to avoid
the noise of delimiters that may significantly affect the distance
metric’s results, we gathered several types of widely used
delimiters for RESTful web services, such as +, ||, %, %20,
space, tab, underscore etc. We import this list of special
delimiters into our implementation and, if any of them are
found in the compared strings, they are removed. In the above
example, the addresses will be transformed into:

8619111StEdmonton,AB
8619111StEdmonton,AB

This time the Levenshtein metric returns a distance of 0%,
which implies a perfect similarity. Clearly, different service
providers can define their own delimiters, which may not be
included in the above list. Still the above set is quite
comprehensive and, even with the appearance of more rare
delimiters, a low Levenshtein distance indicates that the values
are very likely to be the same. The similarity (%) is given by
the following formula:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 100 1 − 𝑑𝑖𝑠𝑡
where dist is the distance computed in (eq.1) for numerical elements
or the Levenshtein distance for string elements.

 In order to map the response elements, all pairwise
combinations of element values are compared. Since the
primitive types of the pair under comparison may differ, we
have defined the following heuristic rules to cover all the
possible data type combinations. We explain the heuristics in
terms of examples shown in Table I.

String vs. String: When the two elements to be compared
are both strings, they are both transformed in lowercase, in
order to make them consistent and avoid spurious mismatches,
as in the case of “Movie” and “movie” for example. Then, we
calculate the Levenshtein distance, which shows how different
two strings are. Furthermore, we have set “Inclusion” to
“TRUE” when one of the two string elements to be mapped is
included into the other.

String vs. Number: In the case of a string-to-number
comparison, the inclusion of a numerical value in the string is
examined. More specifically, our proposed methodology starts
by extracting all the number sequences from a string and
storing them as a set of numbers. Next, it compares each
element of this set with the target number and if they are the
same, they are mapped (Table I, Row 3). This heuristic
accounts for the cases where one resource associates units to
the value of an element property while others do not.

Number vs. Number: According to our methodology, we
map numerical elements based on their maximum computed
similarity. A numerical element may be an Integer, Double,
Float or Long. As we can observe in the example shown in
Table I Row 4, the parameters “release_year” and “year” are
mapped with a similarity of 100%. In Table I Row 6, the
elements “average score” and “rating” are also mapped as they
have a similarity of approximately 86%, which is the
maximum similarity that can be accomplished when attempting
to map each of these elements against any other numerical
element of the other service. Even though numbers could, in
principle, be viewed as strings and the inclusion heuristic could
be applied, we do not consider inclusion when comparing
numbers. If two numbers refer to the same property, then they
are likely to be close, barring differences due to precision
variations. Consider for example the variations across
geolocation service providers (Table I Row 11). These cases
can be correctly mapped through the number similarity
criterion above.

Date vs. Date: The implementation of our methodology
recognizes many typical formats of Date types, which it
translates into a common format. Once an element has been
recognized as a Date, it is compared only against other Date
elements, and a pair is considered mapped only if the inclusion

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 18

is “TRUE” i.e., the dates refer to the same point in time (Table
I Row 2).

Set vs. Set: According to our technique, we compare sets
that contain elements of the same data type. The similarity
between two sets of strings is computed as follows:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑆1, 𝑆2) = 100(1 −
|𝑆1 ∩ 𝑆2|

𝑚𝑖𝑛 |𝑆1|, |𝑆2|
)

where S1, S2 two sets containing string data types and |S1|, |S2| the
number of elements in S1 and S2 respectively.

An example of a mapped pair of sets of strings is shown in
Table I Row 1. In this case, all the actors’ names contained in
the source set “name” are included in the set “actors”. Since all
of them are included, the similarity is 100%. Two Set elements
are mapped when the similarity is the maximum among all the
pairs where the source Set element participates in.

In cases where we have two Set elements of numerical data

types, our implementation performs all the distance
computations among all the combinations among the source
and target elements in a similar way we compute the distance
for numerical elements (1). We encountered many such cases
within the responses of the geospatial services. Two sets
contained the latitude and longitude values are mapped by
comparing each element of the source element to each one of
the elements contained into the target Set element (Table I
Row 10). Each source element is mapped with a target element
only if at least one value in the source set has a maximum
similarity with a value from the target set.

Boolean vs. Boolean: The presence of boolean data type
elements is challenging as they have a very limited range of
values (true, false). Two boolean elements set to TRUE or
FALSE may (or may not) refer to two semantically related
elements. Therefore, we exclude comparisons of cases where
two elements are of boolean type.

 TABLE I. ILLUSTRATIVE EXAMPE OF THE OUTPUT OF THE MAPPING PROCESS

Row Type Source Element Source Value Target Element Target Value Similarity (%)

1 Set-Set name

[Carrie Underwood,
Lorraine Nicholson,
Annasophia Robb,
Helen Hunt,
Dennis Quaid]

Actors

[Carrie Underwood,
Chris Brochu,
AnnaSophia Robb,
Sonya Balmores,
Lorraine Nicholson,
Craig T. Nelson,
Dennis Quaid,
Helen Hunt…]

100.00

2 Date-Date release_date 20110408 Theater 2011-04-08 100.00
3 String-Integer runtime USA: 106 min Runtime 106 100.00
4 Integer-Integer release_year 2011 Year 2011 100.00
5 String-String title_localized Soul Surfer Title Soul surfer 100.00
6 Double-Double average_score 5.95 Rating 6.9 86.23
7 Integer-String imdb 1596346 imdb_id tt1596346 100.00
8 Integer-String id 771037147 imdb_id tt1596346 20.00
9 String-String surname McNamara Type M 12.50
10 String-String length null runtime USA: 106min 0.00

11 Double-Double coordinates
[-113.5177994,
-113.5173264,
53.5225983]

lng -113.518802 99.98

IV. EVALUATION
Our methodology is useful under the assumption that a

web-service client has already identified a family of potentially
substitutable set of services. Given the need to substitute a
particular service with another from this family in a client
application, our technique offers client developers the ability to
select the service that requires the minimum manipulation of its
response data in order to be transformed into the response data
of the original service used by the client application.

The method described in Section III can be implemented as
a tool in two ways: (a) either as a fully automated tool where
an element can be mapped only with one other element or (b)
as an interactive tool which suggests several mappings between
a source element and elements from the target service
according to their values. In the second case, the user of such a
tool can assess not only the similarity between the elements of
the two services, but also the data in his disposal to call and
process the output of the target service. For the purpose of our

evaluation, we implemented the proposed approach as an
embedded feature into the WSDarwin tool [5] and evaluated its
results for both implementation scenarios.

We evaluated the effectiveness of our methodology by
mapping the responses of RESTful services from two service
families, in the domains of maps and movies. In the first
domain, we examined (a) Google Maps3, (b) Microsoft Bing
Maps4 and (c) CloudMade Maps5. In the second domain, we
chose to examine (a) the Internet Movie Database (IMDb)6, (b)
Rotten Tomatoes7, (c) Filmaster8 and (d) TheMovieDB9.

3 https://developers.google.com/maps/
4 http://www.microsoft.com/maps/developers/web.aspx
5 http://maps.cloudmade.com/
6 http://www.imdb.com/
7 http://developer.rottentomatoes.com/docs
8 http://filmaster.org/
9 http://www.themoviedb.org/

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 19

As we have already mentioned, our methodology only
compares the responses of two services, mainly because this
will greatly facilitate he migration of a client from a source
service to a target, but also because input mapping is rather
challenging. The reason is that while we can have two
responses for the two responses, we need to construct the input
of the target service. This could be achieved by generating
requests based on all combinations of source values with target
parameters until a meaningful response is obtained. However,
this may be practically impossible since many service
providers typically cap the number of requests that a client may
issue and sometimes an authentication step is required in order
to access a vendor’s API. For instance, Google allows 2,500
geolocation requests per day and up to 100,000 requests per
day for business purposes. However, Google does not track the
requests based on any specific API key but on IP addresses. On
the other hand, Bing requests have a required query parameter
referred to the API key. All the clients who want to use the
web services provided by Bing should register and obtain a
key. Some of the types of keys provided by Bing are: trial,
basic key, key for education or non-profit purposes. The limit
of the requests per day depends on the type of the key that the
client had chosen when he first registered. As noted on both
Google and Bing terms of use website, the numbers related to
the requests are not fixed and may change at any time.

Another challenge in mapping the input of two services is
that some of them may require special authentication data. For
this study, we assume that the client knows whether a vendor
needs their clients to authenticate/purchase an API key in order
to use their services or not. Therefore, this piece of information
and consequently the parameter related to authentication
should be known before the invocation of the web service. The
Google service does not need an authentication key and it takes
only two parameters, one for the address and one for the sensor
(which indicates whether the application is using a locator such
as a GPS or not). On the other hand, Bing and CloudMade
requests may take several parameters (not all of them are
required) and among all the key parameter, which is an
identification sequence of characters obtained by the client
through the developers’ website. Three examples of service
invocations are shown below. The parameters are highlighted
as bold.
Google request:

http://maps.googleapis.com/maps/api/geocode.json?address=86
19+111+St+NW,+Edmonton,+AB&sensor=false

Bing request:

https://dev.virtualearth.net/REST/v1/Locations.json?CountryRegion
=CA&adminDistrict=AB&locality=Edmonton&addressLine=861
9%20111St.%20Edmonton,%20AB&postalCode=t6g2
w1&key=APIKEY

CloudMade request:

http://geocoding.cloudmade.com/APIKEY/geocoding/v2/find.json?
query=8619+111+St+NW,Edmonton,AB

A. Precision & Recall
We measured the performance of our methodology in terms

of precision and recall. In the geolocation domain, we have six
pairs of service providers (Table II). In the movies domain,
four service providers lead to twelve combinations for which
the precision and recall are presented in Table III. In order to
compute the precision and recall, we first count the source and
target elements that have been mapped correctly (manually and
automatically matching) (True-Positive: TP). Then we count
the parameters that have been wrongly mapped as correct ones
(our implementation shows that a source element has been
mapped with a target parameter, whereas we have mapped it
manually with another element (False-Positive: FP)). Finally,
we count the elements that we have mapped manually and our
implementation reveals that the particular elements cannot be
mapped with any of the target elements (False-Negative: FN).
Therefore, we compute the precision and recall as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

1) One to One Mapping

In order to manually map the responses of two requests
corresponding to different service providers, one should have
to look at them side by side and decide which parameters of
one service provider correspond to which parameters of the
other. In the geolocation domain, the parameters address
(Google) and addressLine (Bing) refer to the same element
and must be mapped. Moreover, the rest of the parameters for
Bing do not add any new information but split the information
into categories (a reason may be the fact that by splitting an
address into lower level components such as country, city etc.
may improve significantly the performance as an address can
be found much faster; the same technique is being applied in
telephone numbers).

Furthermore, by inspecting the results of each request, we
can see the fields of latitude-longitude for both service
providers. For the same address, the point specified on the
map for each service provider may be the same or very similar
(agreeing up to the 5th decimal).

Since the output may be a long response with several
parameters, we compare all the “allowed” combination values.
We consider a combination as “allowed” when we can apply
one of the heuristics explained in our methodology section. In
Figure 1 we can see a partial response of the Google and Bing
services.

The manual inspection is being performed on all the
combinations of the response elements. The amount of data
returned by the services is an important factor as the user must
be able to get back “enough data” in order to support the client
application's functionality. Therefore, although we select the
maximum similarity for a parameter, when the maximum value
is found to occur more than once, we report all the mapped
pairs, in case when a single value may be reused for multiple
purposes. Therefore our implementation reports all the
combinations along with their similarity scores. On the
opposite side, our methodology does not report a mapping

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 20

when the distance between two values is zero and/or the
inclusion criterion is false, where applicable.

"location_type":
 "ROOFTOP",
 "viewport" : {
 "northeast" : {
 "lat" : 53.52,
 "lng" : -113.51
 },
 "southwest" : {
 "lat" : 53.52,
 "lng" : -113.51
 }
 }

"geocodePoints": [{
 "type": "Point",
 "coordinates": [
 53.52,
 -113.51],
 "calculationMethod":
 "Rooftop",
 "usageTypes":
 ["Display"]
 }]

Fig. 1 Responses from Google (left) and Bing (right)

a) Geolocation Domain
The precision and recall results for the geolocation domain

are presented in Table II. Overall, the average precision and
recall are 67.10% and 84.52% respectively. The highest
precision is observed for Google and Bing (90.91%) and the
lowest for the pair of CloudMade and Google (33.33%). The
high precision above is due to the fact that Google uses
multiple sets to store instance values. These values are being
mapped with multiple output elements of the Bing geolocation
service. Since we aim to assist clients on the data construction,
“one to many” mappings are allowed only when the maximum
values are all the same. The low precision between
CloudMade and Google is due to a single numerical data type
element, which is included into the address given as input.
Since there are many elements that have as value the address,
this comparison is performed between all of them.
Consequently, there are multiple FPs, which result into a low
precision value. The recall measurements range from 66.67%
to 100%. The reason behind the low recall values is that
CloudMade and Google are not highly compatible. Only three
elements can be manually mapped whereas two of them are
correctly mapped automatically.

b) Movie Domain
For the movie domain, we have selected the “search by

movie” operation, which typically takes as parameter a movie
and gives as response details related to it. Both IMDb and
Rotten Tomatoes support this operation; however, IMDb does
not require any authentication whereas Rotten Tomatoes
requires from their clients to first register in order to obtain a
key, which is a required parameter in the requests. Therefore,
after registering and obtaining a key, we were able to create
several requests. Below is an example of such a request for
IMDB and Rotten Tomatoes respectively:

http://imdbapi.org/?title=hunger+games&type=json&limit=10
&lang=en-US

http://api.rottentomatoes.com/api/public/v1.0/movies.json?apikey=hq
mxm7bm2r8bme9dzcs2&q=Soul%20Surfer&page_limit=10

The JSON responses for both IMDb and Rotten Tomatoes
contain information about the year the movie was released, the
country, the cast, rating etc. We first map manually the
response parameters by getting the list that combines all the
response elements from our implementation in order to
calculate the metrics of precision and recall.

As we can see in Table III, the maximum precision and
recall is 100% between IMDb - RottenTomatoes and
TheMovieDB - IMDb. The main reason for low values in
precision (such as in the case of RottenTomatoes and
TheMovieDB or between IMDb and TheMovieDb where the
precision is 33.33%) is that when we compare numbers we
translate the maximum similarity value of the mapping process
into a pair of mapped parameters. However, the maximum
value may be very low (e.g., a similarity value of 2.59E-07 has
led to a wrongly mapped pair of parameters as it was the
maximum one). The results reported may be reviewed
manually by the user who will disambiguate such cases and
discard the wrong mappings. Our methodology achieved a
precision of 100% between RottenTomatoes and IMDb.
According to ProgrammableWeb10 these two service providers
are very popular and receive a large number of visitors on daily
basis. When two service providers are both popular, then they
tend to be more competitive i.e., when one adds a certain
functionality (e.g., rating, ability of users to write comments on
movies) the other one responds by adding a similar
functionality, especially when it is successful and attracts more
users. Therefore, these service providers tend to be more
compatible, offering not only very similar operations but also
similar data through their APIs. Consequently, our
implementation’s results can be used as a guide for checking
the compatibility among web services in terms of data. The
mapping of multiple source elements to multiple target
elements indicates that the two services are highly compatible,
as opposed to pairs of services where only few elements can be
mapped.

In order to normalize the results, after the user discards and
disambiguates incorrect mappings, they may calculate the
numbers of parameters mapped, divided by the total number of
parameters of both the source and target web services. By
doing so, they have an overview of the extent to which the two
web services are compatible with each other. A low value of
this metric implies that although two services are presented to
have similar functionalities, they are not compatible, in the
sense that they do not provide the same data and therefore the
migration from one service to another is likely to be too
difficult or even impossible. In such cases clients should look
for other web services that would probably offer the same data.

2) One to Many Mapping

Since we focus on RESTful web services, mapping of one
element with many is equally important as the one to one. In
this case, we select the top ten results based on the similarity
metric. After removing all the duplicates (if there is any) we
present these results to the users for disambiguation purposes.
We calculate the mean average precision (MAP) taking into

10 http://www.programmableweb.com/

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 21

consideration the number of correct mappings included into
the top ten results, according to (2).

 ΜΑΡ =
!"#$%#(!)!

!!!

!
, (2)

where p is a pair of elements, P the number of elements that
can be mapped and AvePre the average precision per element

a) Geolocation Domain
Table IV shows the values of MAP for each service provider
combination. As we can see, the MAP ranges from 17.85 to
79.52%. The highest values are observed between Google and
Bing whereas the lowest occur between CloudMade and
Google/Bing. A possible explanation is that Google and Bing
are more popular compared to CloudMade, which is less
compatible as many elements cannot be mapped.
b) Movie Domain
The mean average precision for the movie domain ranges
from 33.33% for the pair of TheMovieDB-IMDB and 80% for
the pair of Filmaster-TheMovieDB. The reason behind the low
values is the presence of numerical elements. Based on the
rules defined, our methodology relies only on the maximum
value of the similarity metric when examining numerical
values. Moreover, we do not employ any thresholds, since it is
impossible to find a global threshold value for all elements
and across domains.

B. Threats to validity
We chose two domains for our evaluation namely, geolocation
and movie service. Both these domains are related to ground
truth information. For instance, a movie has a director, a list of
actors and a production country. Two services that provide
movie information would provide the same information for a
particular movie. We ran our experiments on three service
providers for the first domain and four for the second domain.
At this point, we cannot generalize our results for every
possible domain as there may be a selection bias while
choosing the above service providers. However, in order to
mitigate these threats to validity we plan to run more
experiments on different domains in the future.

In addition, it can be argued that we have experimenter
bias since the evaluation was performed by the authors. We
tried to avoid the bias in our results by applying the manual
mapping before the automatic mapping. Finally, it should be
noted that the manual mapping was performed by the
developers of the implementation although we tried to be as
objective as possible. This problem would have been
mitigated, if we had assigned the manual mapping to people
who had no knowledge about the implementation and most
importantly the rules being applied to map the elements.

C. Limitations
An important problem we encountered was the null values

of several parameters. Since our approach relies on the output
values, we miss the cases where a parameter value is null. For
example (Table I Row 10), we have manually mapped the

parameter “runtime” of IMDb with the parameter “length” of
Filmaster. However, our implementation is not able to give us
a strong similarity score for these elements because the value
of the former is “USA:106 min” whereas the value of the
latter is set to “null”. We noticed that the null value of the
parameter “length” is not always null by invoking a new
request after changing the query parameter with another movie
title. This problem may easily be solved if the user gives a
different request associated with another movie. However, the
cases of null values are important, especially when they occur
in the web services considered as candidates for substituting a
service. If the client application needs this missing piece of
information, then the target web service is not suitable, as
although it may perform a similar functionality with the
source target, it cannot replace it in terms of data.

Moreover, there are URLs and IDs specific to service
providers, which cannot be mapped since their values change
from one service provider to another. In Table I Row 8 we can
see that the RottenTomatoes ID value is different from the ID
of the IMDb. The comparison between these two elements
gives a similarity of 20%. Therefore, although the elements
“id” and “imdb_id” are semantically related as they refer to
the same concept (i.e., a unique identifier internal to each of
the two providers), our technique is not able to map them.
However, we are able to map IDs that refer to the same
service provider (Table I Row 7). For instance, since IMDb is
considered one of the most popular movie information related
website, some other web-services who offer movie
information data include in their dataset the IMDb ID. In this
case, the number included in the String “tt1596346” is
extracted and compared with the integer value of the “imdb”
element. Since they have a similarity of 100, they are
successfully mapped.

Single letter instance values may cause errors in the sense
that there is a high probability a single letter word to be
included into another sequence of characters. An example is
given in Table I Row 9 where the surname of the director of a
movie is McNamara and an element’s value on the target
element is “M” that refers to the type of the entry, which is a
movie. Although the similarity value between these two strings
may not be considered high, it is the maximum among the
other comparisons and the inclusion value is set to TRUE. As a
result, we report this pair of strings as mapped to the user who
has to disambiguate it.

We report the results to the users as shown in Table I.
However, we do not report the cases shown in Rows 8, 10. We
have added these cases to Table I only for the purpose of
illustration special cases we run into while running our
experiments.

Although the results of our methodology may be greatly
improved by manual inspection from the user, especially in
the case of ranked results, our experiments have shown that
the total manual effort required is 7 (for the movies domain)
or 6 (for the geolocation domain) times less than the effort
required to completely manually map the service responses
(Table V).

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 22

TABLE II. PRECISION & RECALL FOR THE GEOLOCATION DOMAIN

 Source

Target

Google Bing CloudMade
TP FP FN P (%) R (%) TP FP FN P (%) R (%) TP FP FN P (%) R (%)

Google 10 1 1 90.91 90.91 2 3 1 40.00 66.67

Bing 13 3 1 81.25 92.86 11 2 0 84.62 100.00

CloudMade 2 4 1 33.33 66.67 9 3 1 75.00 90.00

TABLE III. PRECISION & RECALL FOR THE MOVIE DOMAIN

 Source

Target

IMDb RottenTomatoes
TP FP FN P (%) R (%) TP FP FN P (%) R (%)

IMDb 7 3 3 70.00 70.70
Rotten

Tomatoes 8 0 2 100.00 80.00

Filmaster 11 4 3 73.33 78.57 4 5 3 44.44 57.14

TheMovieDB 5 2 1 71.43 83.33 3 6 1 33.33 75.00

 Source

Target

Filmaster TheMovieDB
TP FP FN P (%) R (%) TP FP FN P (%) R (%)

IMDb 9 2 2 81.82 81.82 3 6 0 33.33 100.00
Rotten

Tomatoes 4 2 3 66.67 57.14 3 3 1 50.00 75.00

Filmaster 5 3 1 62.50 83.33

TheMovieDB 4 5 2 44.44 66.67

TABLE IV. MEAN AVERAGE PRECISION

(a) Geolocation Domain (b) Movies Domain

 Source

Target

Google Bing CloudMade

P (%) P (%) P (%)

Google 79.52 25.00

Bing 58.62 17.85

CloudMade 20.00 30.83

 Source

Target
IMDB RottenTomatoes Filmaster TheMovieDB
P (%) P (%) P (%) P (%)

IMDB 57.16 67.00 67.00

RottenTomatoes 58.33 38.00 35.00

Filmaster 75.00 57.14 80.00

TheMovieDB 33.33 50.00 74.00

TABLE V. COMPARISON OF THE MANUAL EFFORT NEEDED TO MAP TWO SERVICE RESPONSES TO THE MANUAL EFFORT NEEDED TO REFINE THE
IMPLEMENTATION’S RESULTS

(a) Geolocation Domain (b) Movies Domain

Manual Mapping Effort (in min)
 Source

Target
Google Bing CloudMade

Google 2.47 3.14

Bing 4.23 3.28

CloudMade 3.17 3.29

Manual Refinement Effort (in min)
 Source

Target
Google Bing CloudMade

Google 0.51 0.37

Bing 1.23 0.47

CloudMade 0.28 0.35

Manual Mapping Effort (in min)
 Source

Target
IMDB RottenTomatoes Filmaster TheMovieDB

IMDB 4.48 5.46 3.49

RottenTomatoes 3.38 4.15 2.08

Filmaster 3.27 4.37 2.49

TheMovieDB 3.05 3.43 2.53

Manual Refinement Effort (in min)
 Source

Target
IMDB RottenTomatoes Filmaster TheMovieDB

IMDB 1.18 1.14 0.28

RottenTomatoes 0.43 0.44 0.33

Filmaster 0.56 0.36 0.31

TheMovieDB 0.50 0.26 0.22

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 23

V. CONCLUSIONS AND FUTURE WORK

Within the context of this work, we aimed to map service
response elements based on their instance values by following
several rules we defined. These rules rely on the data types of
the elements to be mapped. We implemented the methodology
on the WSDarwin tool [17]. Our approach assumes that users
have already mapped input elements and can create the
appropriate requests to invoke source and target web services.
Our contribution aims to assist clients as to what changes need
to be made in the processing of the output data of the service.

Several studies have tried to match web services based on
their semantics (by utilizing dictionaries such as the WordNet
tool and different kind of algorithms such as the Porter
stemming algorithm) and the structure of the elements included
in the WADL files. However, while they focus on mapping
services, we focus on mapping output data elements, which is
equally important. When a client decides to migrate from one
service to another, they need to know that the target service
provides the data they need to either view or process.

We chose two different domains (geolocation and movies)
in order to evaluate our methodology. For each one of these
domains, three and four service providers had been chosen
respectively. The results are promising as our tool achieved
high values of precision and recall among service providers.

In the future, we will be focusing on integrating our work
with other techniques that have already been implemented such
as mapping by IDs (semantics) and mapping by structure (e.g.,
parameter data types). Moreover, we would like to run
experiments by changing the order of these techniques and
discover which one gives better results. For example, we would
like to see if results are improved when performing the
mapping process firstly by value, then by structure and finally
by ID. Furthermore, we plan to apply the above methodology
into more complicated web services in terms of operations
(e.g., services that include several methods) and on services
that are not “ID focused”.

REFERENCES

[1] Aversano, L., Bruno, M., Di Penta, M., Falanga, A., & Scognamiglio, R.
(2005, September). Visualizing the evolution of web services using
formal concept analysis. In Principles of Software Evolution, Eighth
International Workshop on (pp. 57-60). IEEE.

[2] Aversano, L., Bruno, M., Canfora, G., Di Penta, M., &Distante, D.
(2006). Using concept lattices to support service selection. International
Journal of Web Service Research (IJWSR), 3(4), 32-51

[3] P. Shvaiko and J. Euzenat, “A survey of schema-based matching
approaches,” in Journal on Data Semantics IV, ser. Lecture Notes in
Computer Science, 2005, ch. 5, pp. 146–171.

[4] Drumm, C., Schmitt, M., Do, H. H., & Rahm, E. (2007 November).
Quickmig: automatic schema matching for data migration projects. In
Proceedings of the sixteenth ACM conference on Conference on
information and knowledge management (pp. 107-116).

[5] Fokaefs, M., & Stroulia, E. (2012, November). WSDarwin:automatic
web service client adaptation. In Proceedings of the 2012 Conference of
the Center for Advanced Studies on Collaborative Research(pp. 176-
191). IBM Corp.

[6] Fielding, R. T. (2000). Architectural styles and the design of network-
based software architectures (Doctoral dissertation, University of
California).

[7] Khorasgani, R. R., Stroulia, E., & Zaiane, O. R. (2011, September). Web
service matching for RESTful web services. In Web Systems Evolution
(WSE), 2011 13th IEEE International Symposium on (pp. 115-124).
IEEE.

[8] Wang, Y., Stroulia, E.: Semantic structure matching for assessing Web-
service similarity. In: Proceedings of First International Conference on
Service Oriented Computing (ICSOC03), pp. 194–207. Springer, Berlin,
2003

[9] Ponnekanti, Shankar R., and Armando Fox. "Interoperability among
independently evolving web services." Middleware 2004. Springer
Berlin Heidelberg, 2004. 331-351.

[10] Ponnekanti, S. R., & Fox, A. (2003, March). Application-service
interoperation without standardized service interfaces. In Pervasive
Computing and Communications, 2003.(PerCom 2003). Proceedings of
the First IEEE International Conference on (pp. 30-37). IEEE.

[11] Heeringa, W. J. (2004). Measuring dialect pronunciation differences
using Levenshtein distance (Doctoral dissertation, University Library
Groningen][Host]).

[12] Rahm, E., & Bernstein, P. A. (2001). On matching schemas
automatically.VLDB Journal, 10(4), 334-350.

[13] Gokhale A., Ganapathy V., Padmanaban Y. Inferring Likely Mappings
between APIs. In the proceedings of the 35th International Conference
on Software Engineering, 2013.

[14] Islam, A., Inkpen, D., & Kiringa, I. Database Schema Matching using
Corpus-based Semantic Similarity and Word Segmentation.

[15] Miller, R. J., Haas, L. M., & Hernández, M. A. (2000, September).
Schema mapping as query discovery. In Proceedings of the 26th
international conference on very large data bases (pp. 77-88).

[16] Pathak, J., Koul, N., Caragea, D., & Honavar, V. G. (2005, November).
A framework for semantic web services discovery. In Proceedings of the
7th annual ACM international workshop on Web information and data
management(pp. 45-50). ACM.

[17] M. Fokaefs and E. Stroulia, “WSDARWIN: Studying the Evolutionof
Web Service Systems.” in Advanced Web Services,B. Benatallah, M. S.
Hacid, A. Leger, C. Rey, , and F. Toumani,Eds. Springer Berlin /
Heidelberg, 2013, ch. 9.

[18] Doan, A., Noy, N. F., & Halevy, A. Y. (2004). Introduction to the
special issue on semantic integration. ACM Sigmod Record, 33(4), 11-
13.

[19] Li, N., & Cai, H. (2009, October). Functionality semantic indexing and
matching method for RESTful Web Services based on resource state
descriptions. InComputer Science and Engineering, 2009. WCSE'09.
Second International Workshop on (Vol. 2, pp. 371-375). IEEE.

[20] Fagin, R., Haas, L. M., Hernández, M., Miller, R. J., Popa, L., &
Velegrakis, Y. (2009). Clio: Schema mapping creation and data
exchange. In Conceptual Modeling: Foundations and Applications (pp.
198-236). Springer Berlin Heidelberg.

978-1-4799-1608-5/13/$31.00 ©2013 IEEE 24

3.3 WSDarwin: A Web Application for the

Support of REST Service Evolution

Fokaefs, M., Oprescu, M., Stroulia, E., 2015. WSDarwin: A Web Application

for the Support of REST Service Evolution. In: IEEE International Confer-

ence on Software Engineering (ICSE 2015). IEEE.

Note: This paper has been submitted to the tool demo track of the Inter-

national Conference on Software Engineering (ICSE 2015) pending review.

112

WSDarwin: A Web Application for the Support of
REST Service Evolution

Marios Fokaefs, Mihai Oprescu and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

Email: {fokaefs,oprescu,stroulia}@ualberta.ca

Abstract—REST has become a very popular architectural
style for service-oriented systems primarily due to its ease of
use and flexibility. However, their lightweight nature does not
necessitate the use of systematic methods and tools. In this work,
we argue that such tools can greatly facilitate complex engineering
tasks such as service evolution and service discovery. We present
the WSDarwin set of tools to generate WADL interfaces for
REST services, compare service interfaces to identify differences
between two versions and compare cross-vendor web services
to facilitate service discovery and interoperability. Video URL:
http://youtu.be/52CclMbJt6M

I. INTRODUCTION

Service-oriented architectures have become the prevalent
paradigm for development of modular software. REST services
are particularly popular for their ease of use and flexibility,
since they can be easily invoked through simple HTTP re-
quests. Almost every language has libraries to allow HTTP
requests and no additional software is required. REST services
have also been gaining popularity over other service architec-
tures like SOAP services. In fact, big companies like Amazon1

and Google2 have discontinued their SOAP APIs in favour of
their RESTful counterparts. Amazon has also reported that 8%
of the requests to their services comes through their REST
API3 and that querying the services using REST is 6 times
faster than with SOAP4.

The REST architectural style does not enforce any stan-
dardized specification. Although there exist standard interface
formats like WADL5 or WSDL 2.06 to specify REST services,
providers keep publishing REST APIs as non-standardized,
free-text HTML pages, which are easily understandable by
humans but not as easily consumable by software. This lack
of standardization allows for a variability in how client de-
velopers interpret the specification of a service and how the
service’s functions can be accessed. This flexibility deprives
the developers from a systematic support towards developing
and maintaining REST client applications. This lack of sys-
tematicity is a coin with two sides. On one hand, it facilitates
the adaptation of REST services, but on the other, it makes

1http://www.stoneedge.net/forum/pop printer friendly.asp?TOPIC ID=
12687

2http://googlecode.blogspot.ca/2009/08/well-earned-retirement-for-soap-search.
html

3http://www.theregister.co.uk/2006/04/29/oreilly amazon/
4http://www.onlamp.com/pub/a/php/2003/10/30/amazon rest.html
5http://www.w3.org/Submission/wadl/
6http://www.w3.org/TR/wsdl20/

handling the evolution of a service a difficult task for client
developers.

In this work, we present a web application7 that offers a
variety of tools to support developers of REST services and
service clients. The application works in a complementary and
optional manner for both providers and clients, meaning that
it doesn’t add any overhead towards the production of the
consumption of REST services, but rather facilitates both of
these tasks. The application contributes three tools.

• The WADL generator automatically generates
WADL interface specifications for REST services and
using the wadl2java tool 8 provided by Oracle, it
can also generate Java-based client proxies from the
WADL files.

• The service-interface comparator automatically
identifies differences between two versions of a ser-
vice’s WADL interface to study its evolution.

• The cross-vendor service mapper semi-automatically
maps the response elements between two different
services from the same domain to determine their
substitutability.

The rest of the paper is organized as follows. In Section II,
we present an overview of the application’s tools and their
functionality. In Section III we briefly review some existing
tools relevant to the WSDarwin web application and Section IV
concludes this work.

II. WEB APPLICATION OVERVIEW

The WSDarwin web application is itself built based on
a service-oriented architecture. In the back-end a web service
contains the main functionality of the tools. A Javascript front-
end receives the input from the users and visualizes the results
of the web service. A PHP middleware listens for events from
the front-end and invokes the web service with the appropriate
parameters. Then, it parses the results and passes them to the
front-end.

7More information about the tool, along with a screencast and a link to the
web application can be found at http://hypatia.cs.ualberta.ca/∼fokaefs/index.
php?option=com content&view=article&id=60&Itemid=69

8https://wadl.java.net/wadl2java.html

A. WADL generator

Figure 1 shows the application’s screen for the WADL
generator. At the top of the screen, the user can provide as
input one or more URLs that correspond to HTTP requests
for the service, whose interface needs to be generated. The
user needs to specify the type of the HTTP methods (GET,
PUT, POST, DELETE) that corresponds to the URL and can
add or remove URLs at will.

Fig. 1. The WADL generator.

The analysis of the input requests begins once the user
hits the “Generate” button. The first step of the analysis is to
parse every input URL. The URL string is split to determine
the REST resources and their paths as shown in Figure 2.
The first component corresponds to the resources path or,
in other words, the service endpoint. The rest of the resources
are nested within each other in a cascaded manner. If the URL
contains a question mark (“?”), this implies a parameterized
request and the parameters are separated by ampersands (“&”).
The parameters come in pairs of name-value. The value of
the parameter is used to determine the parameter’s type.
WSDarwin resolves types by using regular expressions on the
value of the parameter. The tool can recognize a variety of
primitive types including integer, long, float, double,
short, byte, date, dateTime, anyURI, email and
string. The analysis of an input request determines the
resource structure of the REST service, the methods that are
available and the input parameters of each method along with
their type.

The second step of the WADL generation is to use the
provided URL requests to invoke the service in order to get
its response for the particular request. Once the response

Fig. 2. Analysis of an input URL request.

is received, the WADL generator automatically determines
whether it is in XML or in JSON format (the two most com-
mon response formats for REST services) and parses the file
accordingly. The format is added as the mediaType attribute
of the representation of the response element During
the parsing of the response, its structure and the types of the
data elements are determined, similarly to the input parameters.
The result of this step is the inference of the XML schema
of the WADL interface, which is added in the grammars
element of the WADL.

After all provided URLs are analysed, the results are
merged and a single WADL file is constructed and it is
presented to the user with the appropriate XML annotation.
The file is editable to allow the user to override the tool’s
decisions. The user can change the name or the type of a
parameter and add or remove WADL elements. Eventually, the
user can download the generated and edited WADL file locally.
The user can also download a zipped file of a Java-based
client proxy for the corresponding WADL file. The zipped file
contains all the Java classes generated by the wadl2java
tool provided by Oracle.

The batch processing of multiple URL requests gives to the
WSDarwin web application three abilities; a) to resolve param-
eter types with certain confidence, b) to identify resources with
variable identifiers and c) to identify enumerations.

The confidence with which a type is resolved depends on
the number of provided URLs and how many of those this type
was encountered in. For example, if out of the total 10 URLs
that were analysed, the type for a parameter was found to be
integer in 7 of them, then the tool reports the type as integer
with confidence 70%. In case, multiple types are identified
for the same parameter, the one with the highest confidence is
reported or in case of ties, the largest type in terms of memory
size (i.e., string > double > float > long > integer). The
confidence is reported next to an element in the schema as a
colour-coded circle; green for confidence between 100% and
75%, orange between 74% and 50%, yellow between 49% and
25% and red between 25% and 0%.

Resources with variable identifiers correspond to classes
of entities, whose ID differs between instances. Examples
of such resources include usernames and account IDs. The
identification of variable IDs is performed during the analysis
of the input URLs. If there is a path component that is different
between the URLs, it is identified as a candidate. If this
component is preceded by exactly the same path components
and is succeeded by at least one common component, then
it is identified as a resource with variable ID. In the WADL
file, the actual ID of the resource is resource followed by
the index of the corresponding path in the URLs, surrounded
by curly brackets, e.g. {resource2}. A parameter with the
same name is also added in the resource, whose style
is template. This parameter informs the developer that a

concrete value needs to be provided by the client code to
complete the construction of the URL request.

Enumerations are parameters, whose values are restricted
within a particular set, e.g. countries, languages, gender and
so on. The generator uses two heuristics to identify potential
enumerations. First, it keeps track of the values for a parameter
and if a value appears in more than one of the input URLs, this
is an indication for an enumeration. Second, if the type of the
parameter is string and the values are capitalized, which is
a convention to specify enumerations, then this is a clearer
indication. Nevertheless, the confidence for an enumeration
depends on how complete the input URLs are, thus, the final
decision lies with the user. The generator offers a button next
to each potential enumeration, which refactors the element into
a xs:simpleType with the enumeration values. This action
is undoable.

B. Service-interface comparator

Figure 3 shows the screen of the application for the
comparison of two versions of the same REST service. The
comparator requires as input either two WADL files or a
WADL file and a set of URLs or two sets of URLs corre-
sponding to different versions of the service. In case a set of
URLs is provided, the WADL generator is is invoked first.

Fig. 3. The service interface comparison.

The comparison [1] first tries to map the service elements
between the two versions. If the element has the same identifier
between the two versions, then it is considered mapped. Alter-
natively, an element is considered mapped if it has retained the
same structure between the two versions even if its identifier
has changed.

After an element has been mapped, it is further compared
to identify the particular changes between the two versions.
WSDarwin can identify 5 types of changes: addition, deletion,
move, change, and move and change. If an element cannot
be mapped in the new version, it is considered deleted. If an
element cannot be mapped in the old version, it is considered
added. If an element’s attribute or structure has changed, it is
considered changed. To identify moves, the algorithm performs
a second step. It compares all added elements with all deleted
elements regardless of the level on which they were identified.
If an added element can be mapped to a deleted element, then

it is considered moved. If the element’s attributes or structure
have also changed, then it is considered moved and changed.

After the comparison, the results are presented to the
user. The two WADL files are presented side-by-side with the
changes clearly marked in the two files. Added elements are
annotated with green on the right-hand file, deleted elements
with red on the left-hand file, changed elements with orange,
moved elements with blue and moved and changed elements
with purple in both files.

C. Cross-vendor service mapper

Figure 4 shows the application’s screen for the cross-vendor
service comparison to map the elements between two different
services from the same domain. The mapper requires as input
one URL request from each service, since the mapping is
performed on a single-method basis.

Fig. 4. The cross-vendor service comparison.

The goal of the mapper is to identify the compatibility be-
tween two services in terms of the data they return, in order to
assess their substitutability and facilitate the client’s migration
from one service to the other [3]. Using the provided URLs,
the tool invokes the services and obtains the corresponding
responses. The responses are parsed and pairs of name-value
are constructed for each response parameter. The types of the
parameters are resolved as in the case of the WADL generation.
The values of all the parameters from one file are compared
to the values of the parameters of the other file assuming they
are of the same type. Strings are compared based on their
Levenshtein distance [2] and numbers based on their numeric
distance. The mappings for each parameter are ranked from
more similar to less similar. We allow many-to-many mappings
under the assumptions that there can exist complex parameters
whose data can correspond to more than one parameters from
the other service.

After the comparison, the results are presented to the user.
The two generated WADL files are shown side-by-side as
in the case of the version comparison. On the left of the
screen, there is an index with the identified mappings. The left
column of the index correspond to the parameters of the first
service. The right column shows the mapped elements from
the second service. The colour of each parameter corresponds

to its similarity with the parameter from the left column; green
corresponds to similarity between 100%-75%, yellow to 74%-
50%, orange to 49%-25% and red to 24%-0%. The parameters
from the index are clickable and the user is navigated to the
corresponding WADL element in the file, which is highlighted
in the file editor.

III. RELEVANT TOOLS

In our previous work, we have already evaluated the
version [1] and the cross-vendor [3] comparisons and have
compared them with similar tools. In this section, we focus
more on the generation of the WADL interface, since there
are tools that perform this exact task. In this paper, we review
two such tools namely soapUI9 and RESTDescribe10.

soapUI is a platform for web service development with
support for both SOAP and REST services. The platform has
functionality for schema inference and WADL generation from
a URL request to an existing REST service. The tool invokes
the service using the URL request and then parses the request
and the response to construct the WADL interface, similarly to
WSDarwin. However, unlike our web application, soapUI has
a significant drawback; it can only process a single request at
a time. This results in an incomplete interface with a single
method that corresponds to the single request. WSDarwin
allows for the processing of multiple requests in order to
produce as a complete interface as possible for the whole
service and not just for a single method. Furthermore, soapUI
fails in other occasions. For example, it failed to resolve the
type of parameter as boolean but instead it reported it as
string since the values “true” or “false” appear as strings
in the response. In other cases, the tool failed to produce a
WADL file altogether. Finally, soapUI infers only the schema
of the response, but not the rest of the WADL file (resources,
methods), which is assumed that is already provided.

RESTDescribe is an online tool, which is the product of
a Master’s thesis [4]. The tool accepts one or more URL
requests for a REST service in order to produce the corre-
sponding WADL interface. The tool then presents the interface
to the user, who can further edit it and save it locally. In
case of types of parameters, RESTDescribe reports the level
of confidence for the accuracy of the particular type. The
WSDarwin generator is greatly inspired by RESTDescribe,
but it goes one step further and it also invokes the service to
analyse the responses as well. RESTDescribe creates WADL
interfaces with only requests. Another difference is that when
RESTDescribe encounters a purely RESTful request (i.e.,
without parameters), it does not assign an ID to the method
element. Conversely, WSDarwin assigns to the method the
same name as the resource that contains it (see Figure 1 for
an example). This is not illegal since we are talking about
different types of elements (resource and method). The
anonymity of a WADL element can cause problems in the
mapping step of any comparison task.

IV. CONCLUSION

In this work, we have presented the WSDarwin web appli-
cation, a practical tool to support REST service developers

9http://www.soapui.org/
10http://tomayac.com/rest-describe/latest/RestDescribe.html

and service client developers and especially to support the
evolution of this style of services. The application offers a
variety of tools in a lightweight and easy to use fashion; a
tool to automatically generate the WADL interface for a REST
service from a set of service requests, a tool to compare two
versions of a WADL interface and a tool to compare the WADL
interfaces from two different providers.

The tool makes two significant contributions. On one hand,
it provides a set of tools, whose interface is in accordance
with the general RESTful philosophy; a lightweight, easy
to use application without the imposition of standards and
standardized software artifacts. Although for SOAP services or
other modular architectures, there is an amplitude of standards
and tool support, REST insists on an ad hoc approach on
development without too much tool support especially for
complex tasks like service evolution. The WSDarwin web
application attempts to provide this support without violating
the general principles of the REST architectural style.

On the other hand, the proposed web application is a
tool intended for everyone involved with the development and
maintenance of REST services, be that providers, clients or re-
searchers. Service providers can use the application to provide
additional information to their clients about the service with
minimal effort, thus not interfering with the actual development
of the service. Service clients can obtain this information by
themselves through this application even if it is not provided
by the service vendors. Finally, researchers can use the tool
to study the evolution of REST services and evaluate their
methods on service discovery and interoperability.

ACKNOWLEDGMENTS

The authors would like to acknowledge the generous sup-
port of NSERC, iCORE, and IBM. They would also like to
thank Lukas Ziegler for his contribution to the development of
the WADL generator.

REFERENCES

[1] M. Fokaefs and E. Stroulia, “Wsdarwin: Studying the evolution of web
service systems,” in Advanced Web Services. Springer New York, 2014,
pp. 199–223.

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
February 1966.

[3] B. Bazelli, M. Fokaefs, and E. Stroulia, “Mapping the responses of restful
services based on their values,” in Web Systems Evolution (WSE), 2013
15th IEEE International Symposium on. IEEE, 2013, pp. 15–24.

[4] T. Steiner, “Automatic multi language program library generation for rest
apis,” Master’s thesis, Institute for Algorithms and Cognitive Systems,
University of Karlsruhe, 2007.

Chapter 4

Service Evolution Economics

Service-oriented architectures have gained considerable popularity and have

now become the prevalent architectural paradigm for the development of mod-

ular and distributed systems. Unlike other more traditional modular systems,

e.g. software libraries, service systems have a set of unique properties. First,

the components of the system may lie outside the domain and control of a

single entity. Second, web services are published through a service interface,

which serves as a usage contract for the client, and very little information

is exchanged between the provider and the client other than that, which is

necessary for the service system to function. Third, as web architectures,

service-oriented architectures require the existence of a continuous and live

web connection between the web service and the client application. In the

event of evolution, and especially in the case of an incompatible change, which

will break the service interface, i.e., the agreed contract between the provider

and the client, the developers of the various components of the service will

have to consider the technical implications of these changes and take action,

i.e., identify the nature of the change, create adapters for the new version and

recompile client proxies. Given that web services are also business software

components, since they were introduced to expose expertise or proprietary

data, these technical considerations have direct and parallel economic and

business implications. The evolution of a web service will create direct and

indirect (externalities) costs to providers and clients, it will affect the price of

the service and of its competitive software and it will potentially reshape the

117

market.

An externality (Laffont, 2008) is an indirect effect of production or con-

sumption activity that does not work through the pricing system. The effect

is indirect in the sense that it impacts entities in the ecosystem other than the

originator of the activity or decision. In the context of service ecosystems, the

externalities for a client may be the adaptation costs caused by the evolution

of the service that the client is currently using, a better opportunity offered

by a competitive provider or the change in service prices. For a provider, an

externality may be the increased competition caused by the improvement of a

competitive service or the entrance of new competitors, new or lost opportu-

nities caused by a change in the market (a client switching to a competitive

provider or new clients entering the market). By taking into account the ex-

ternalities of their decision, the participants of the ecosystem may be lead to

better outcomes, which may not seem optimal at first glance. This coincides

with the “The General Theory of Second Best” (Lipsey and Lancaster, 1956),

which states that it is possible to move one or more variables away from their

optimal value, in order to obtain a more efficient outcome. In the context

of service ecosystems, this efficient outcome may also correspond to a more

socially efficient outcome. This last statement leads to another relevant theo-

rem, the Coase theorem (Coase, 1960). According to this theorem, an efficient

outcome can be achieved through negotiations and further payments between

the involved parties under certain conditions (the parties act rationally, trans-

actions costs are minimal, and property rights are well-defined). In the context

of service ecosystems, the Coase theorem applies when providers support their

clients during the evolution of the service and the clients stay with the same

providers, for their own benefit, creating a stable environment characterized

by strong business relationships.

Therefore, the decision around the evolution of a web service is a com-

plex socio-technical task with economic implications. In my work, I propose

that service evolution should be studied as such a problem and that game

theory can be used as a tool to capture the complicated interactions between

providers,their competitors and their clients. Initially, I study service evolution

118

within the context of a very simple ecosystem between one provider and one

client to show that the economic implications of software evolution in service

systems may be exaggerated compared to other software architectures and to

demonstrate the use of game theory as a tool to make decisions about this

issue (Fokaefs et al., 2013). I proved mathematically that the price of the new

version is directly related to the client’s adaptation costs, and therefore how

externalities can be incorporated in the pricing system. I also showed that the

combination of actions that maximizes the financial benefits for the provider

and the client is the one that also maximizes the social welfare, i.e., the cu-

mulative benefits (economic and technical) of all the participants, which is for

the provider to evolve and support the client during the adaptation process

and for the client to stay with the current provider and adapt.

Using this mathematical proof, I create a simple tool in the form of a

decision tree to guide the provider towards this particular decision that will

maximize the ecosystem’s welfare (Fokaefs and Stroulia, 2013a). The provider

can calculate the economic parameters of the service evolution and the decision

tool will provide the best possible decision. The tool can also guide the provider

to shape some of the parameters, e.g. the nature of the change and the price

of the new version, in order to make the optimal decision according to the

mathematical proof.

Motivated by the last statement about the decision variables of the prob-

lem, i.e., the evolution effort and the price, I developed an economic model

consisting of a set of functions to calculate the economic parameters of the

problem, including costs and values of software, and a set of optimizations

to estimate the best possible value for the decisions variables. This model

is developed within an extended software ecosystem of a competitive mar-

ket with multiple competitive providers and multiple clients. The model was

built under certain assumptions to support the understandability of the model,

without reducing the importance of considering externalities and the realism

and practicality of the problem. The most important assumption is that there

is considerable information flow between providers and clients. This is rein-

forced by another assumption; that the model is concerned with paid services.

119

The monetary incentives motivate providers and clients to acquire more in-

formation from their counterparts within the ecosystem including information

about requirements, how services are used and what clients expect to gain

from using a service. This information can help us estimate values for (evo-

lution/adaptation) costs, expected returns, which are required as input to the

model. In Section 4.3, I provide more detailed explanations about the various

assumptions around the construction of the model.

Within the context of this expanded ecosystem, I redefine the game model,

which now becomes a two-stage game. In the first stage, the providers decide

simultaneously whether to evolve their respective services and how (support

clients or not) and in the second stage, clients react to the providers’ decisions

by choosing whose provider’s the service they will use after one or more of

those has evolved. The solution of the game (i.e., the identification of a Nash

equilibrium), which also constitutes the final decision for the participants,

consists of the evolution strategy of each of the providers and the resulting

market decision after the clients’ actions. I demonstrate the use of these models

within the context of a realistically synthetic case study of cloud computing

ecosystem using a combination of real and generated data. In this example,

I also show some simple methods to find a Nash equilibrium even for larger

problem spaces and also discuss the social and economic implications for some

of the possible outcomes of the game.

4.1 Software Evolution in the Presence of Ex-

ternalities: A Game-Theoretic Approach

Fokaefs, M., Stroulia, E., Messinger, P. R., 2013. Software Evolution in the

Presence of Externalities: A Game-Theoretic Approach. In: Mistrik, I., Bah-

soon, R., Kazman, R., Sullivan, K., Zhang, Y. (Eds.), Economics-Driven Soft-

ware Architecture. Elsevier, Ch. 11, pp. 243-258.

120

Software Evolution in the Presence of Externalities: A

Game-Theoretic Approach

Marios Fokaefsa, Eleni Strouliaa, Paul R. Messingerb

aDepartment of Computing Science, University of Alberta, Edmonton, AB, Canada
bSchool of Business, University of Alberta, Edmonton, AB, Canada

Abstract

The architecture of service-oriented systems is defined by the services
involved and the network of their usage interdependencies. Changes in an
individual service may lead to the evolution of the overall architecture, as
(a) different or new interactions may become possible and (b) existing part-
ners may leave the network if their dependency needs are no longer fulfilled.
Therefore studying the evolution of a service and the impact it may have
on services and business partners that depend on it is essential to studying
software-architecture evolution in the age of SOA. In such an environment
with different and possibly independent parties, there may exist conflicting
goals, e.g., one party may aim for evolution while another may desire sta-
bility. In this work, we model the interactions and decision-making process
during the evolution of a system using a game-theoretic approach and we ex-
plore how variations in the dependencies and the information flow between
the service provider and the clients impact the provider’s decision-making
process regarding the evolution of the service.

Keywords: software evolution, software engineering economics,
service-oriented architectures, game theory, externalities

1. Introduction

Software evolves over time to include various enhancements, and these
changes may increase its value. From a technical standpoint, evolution oc-

Email addresses: fokaefs@ualberta.ca (Marios Fokaefs), stroulia@ualberta.ca
(Eleni Stroulia), paul.messinger@business.ualberta.ca (Paul R. Messinger)

Preprint submitted to Economics-Driven Software Architecture March 30, 2013

curs to fix issues with the software behaviour, to extend its functionality
with improved and new features, and to improve its design qualities such as
maintainability, performance and security. Clearly these changes have finan-
cial implications for both revenues and costs. On the one hand, maintenance
and evolution imply development costs, related to modifying and retesting
the software, and a learning curve for the users who need to become aware
of the changes and how they may benefit from them. On the other hand,
evolution should add value for the software users, which may be associated
with an increased usage fee.

Our understanding of how software is developed and consumed has been
changing, as have the underlying technologies, architecture styles and lifecy-
cle processes, and so has the process of software evolution and the economic
concerns around it. In order to calculate revenues and costs when consid-
ering the evolution of software, one should be aware of the architecture of
said software and the nature of the relationship between production and
consumption.

From an architectural perspective, software was originally thought of as
a “product” of a development team. In this scenario, the decision on when
and how exactly to evolve the software has to consider the estimated cost of
the change, in relation to the anticipated increase of revenue that the change
may bring. Eventually, technologies like software frameworks and off-the-
shelf components enabled the modularization of the software architecture
and its development as an agglomeration of parts, developed and evolved
by independent teams. In this scenario, the community recognized that, in
addition to the trade-offs in the cost and value of the change of a compo-
nent, the evolution of that component has to take into account the impact
of the change on its clients, who have to decide whether to continue using
the deprecated component version, or to “catch-up with the evolution” by
adapting their own software. More recently, software is increasingly viewed
as the composition and orchestration of “services”. In this scenario, when
service providers consider evolving their offerings, they also have to consider
the impact of the service evolution on the consumers of their services. The
decision-making process is similar to the second scenario of component evo-
lution, yet different in an important respect: old service versions typically
cease to be available (it is too costly to support the operations of multiple
versions at the same time), which makes the impact of the change to the
client immediate and potentially severe.

Clearly, software evolution presents complex challenges for the software-

2

market participants, governed by several factors. First, the software pro-
duction and consumption relations, enabled by software-reuse technologies,
imply complex dependencies among various development teams. Second,
the various parties may have different, even competing, goals during the
software-evolution process; for example, while providers envision extensions
to potentially attract new clients, existing clients may prefer stability. Third,
the various parties may have different levels of technical adeptness and knowl-
edge; while component providers have deep knowledge of their implementa-
tion and can easily plan its evolution, the component consumers may find it
difficult to understand the change and to trace its impact throughout their
own software. And fourth, economic considerations, particularly pricing, can
influence the extent to which the parties involved want to develop, acquire,
maintain, and utilize the software.

In the presence of such complex relationships between the various parties,
the reactions of one party to the decisions of another may affect the outcome
of the evolution process. When one party makes a decision and some of the
associated costs or benefits are borne by another party, such costs or benefits
are known in the economic literature as externalities (Laffont, 2008). Applied
in the context of software evolution, providers’ decisions (e.g., evolution)
often give rise to external effects (i.e., externalities) borne by clients (e.g.,
adaptation costs). By their very definition, externalities on downstream users
are typically not fully factored into the decisions taken by the providers in
the process of software creation and enhancement. Yet the welfare of the
ecosystem as a whole - including providers and consumers - depends on the
actions of all the parties, and typically the presence of externalities leads to
suboptimal outcomes for a system as a whole. We are interested in studying
the extent to which such issues arise in the context of software evolution
and identify possible remedies for this problem, including concerted action
by providers and users.

In this paper, we study the software-evolution process from the perspec-
tives of two parties simultaneously: the perspective of the provider, which
is the party that develops and enhances the software, and the perspective
of the client, which is the party that consumes the software and adapts to
its changes. We study the relationships of these two parties in the process
of software evolution, in the context of three different software-architecture
settings. We view each setting as a game, where the two parties take ac-
tions that affect the outcomes for both parties, and, for each game, we de-
fine the players’ actions and calculate their payoff. Eventually, we focus on

3

service-oriented architecture, as the most prevalent one today, and we de-
velop a theoretical framework to study the relationship between providers
and clients and the constraints that it imposes in the ecosystem. We then
examine whether there can exist a viable solution for all involved parties in a
service system whereby software evolves in a beneficial way for all concerned.
We describe the other architectural styles in order to stress the special condi-
tions and challenges that web services may impose and in order to show that
each newer architecture introduces new parameters and constraints in the
software evolution problem. We conclude our work with propositions that
summarize the results of our study and provide guidelines to providers and
clients on how to make the best possible decision.

The rest of the document is outlined as follows. In Section 2, we pro-
vide the background of this work and we discuss the related literature. In
Section 3, we describe in detail the various evolution scenarios and examine
in detail the relationship between the provider and the client in each one of
them. Finally, Section 4 concludes this work.

2. Background

This work touches upon the areas of software-engineering economics, soft-
ware evolution and theories of software cost and value.

2.1. Software Engineering Economics

Software economics is a mature research area that deals with the ever
challenging issue of valueing software and estimating the costs involved in
its production. These issues may be exacerbated in the case of service
systems, because of the peculiarities of such systems, some of which we
have highlighted in this work. In their work, Boehm and Sullivan (Boehm,
1981; Boehm and Sullivan, 1999, 2000) outline these challenges and also how
software-economics principles can be applied to improve software design, de-
velopment and evolution. They define software engineering fundamentally as
an activity of decision making over time with limited resources and usually
in the face of significant uncertainties. Uncertainties pose a crucial challenge
in software development that can lead to failure of systems. Uncertainties
can arise from inaccurate estimation. For example, cost-estimation models
developed for traditional development processes no longer apply to mod-
ern architectural styles and development processes, such as the ones around
service-oriented software systems. Furthermore, due to lack or inadequacy of

4

economic and business information software projects may be at risk. Boehm
and Sullivan also recognize the need of including the value added from any
design or evolution decision. However, as they point out, usually there are
no explicit links between technical issues and value creation. It is critical to
understand that the value added by evolving a system does not only depend
on technical success but also on market conditions. It is stressed that the
cost should not be judged in isolation. As Parnas suggests “for a system to
create value, the cost of an increment should be proportional to the benefits
delivered” (Parnas, 1972). Finally, the authors claim that there is a need
for not only better cost estimation models but also stronger techniques for
analyzing benefits.

2.2. The provider-client relationship

The provider-client game as presented in this work is a clear example of
an ecosystem where externalities exist. An externality is an indirect cost or
benefit of consumption or production activity, i.e., effects on agents, other
than the originator of such activity, which do not work through the price sys-
tem (Laffont, 2008). External effects such as these can lead to suboptimal,
or inefficient outcomes, for the system as a whole, whereby both parties by
acting independently end up less well off than they could do if they coordi-
nated their actions or if the decision maker (in this case the provider) took
into account the external effects of any action.

The Coase theorem (Coase, 1960) argues that an efficient outcome can
be achieved through negotiations and further payments between the involved
parties under certain conditions (the parties act rationally, transactions costs
are minimal, and property rights are well-defined). In this work, the last
scenario, where the provider supports the client in the adaptation process, is
an example of the Coase theorem.

The relationship between a producing party (provider) and a consuming
party (client) is a prevalent concept in many economic and business fields.
More specifically, in the field of operations management, the relationship
between the provider and the client is a special case of a supply-chain rela-
tionship, where we have the provider of an input interacting with a firm using
that input in the production process (Nagurney, 2006; Gokhan and Needy,
2010; Oliver and Webber, 1992). In the field of marketing, the relationship
is referred to the channel of distribution (Choi, 1991; McGuire and Staelin,
2008). In both of these fields, there is an external relationship between the
upstream supplier/provider and the downstream producer/client.

5

Hoffmann (2007) studies the interbusiness relationships as a portfolio of
strategic alliances and how an evolving environment can affect these alliances.
According to the author, there can exist three strategies in managing the
portfolio and coping with a changing environment; (a) actively shaping the
environmental development according to firm strategy, (b) stabilizing the en-
vironment in order to avoid organizational change, and (c) reactively adapting
to the changing environment. In the context of our work, we can perceive
the different strategies as being part of different business partners. For in-
stance, the provider is the one that shapes the environment by evolving the
software, the client is trying to catch-up with the evolved software in order
to stabilize the environment and reach a previous point of balance and other
providers are trying to adapt to the changed environment in order to stay in
the competition.

2.3. The value and cost of software evolution

Software evolution has been extensively studied, both as a technical prob-
lem as well as a decision-making process. In this section, we review several
works that touch upon various aspects of the software-evolution problem as
described in our work.

In order to calculate the value that the provider expects to receive from
the change, first the type of change has to be determined. According to Swan-
son (1976) changes in software systems can be either perfective (e.g., to add
new features), corrective (e.g., to fix a bug), adaptive (e.g., to migrate to a
new language) or preventive (e.g., refactorings). For each of these types of
changes the value for the provider depends on different factors. For example,
the value from fixing a bug can depend on the popularity of the bug (i.e., how
many developers follow its updates), the importance of the code where the
bug was found, its severity and so on. To calculate the value from adding new
features, Tansey (2008) used financing and accounting measures, namely the
Net Present Value index (NPV) along with software metrics to calculate cost
and effort and projected the evolution of the system in the future in order
to select the most profitable scenario. Finally, to calculate the value of pre-
ventive changes a lot of works in the field of software maintenance have used
traditional software metrics to calculate the improvement in design quality,
maintainability and understandability of the code.

Ozkaya et al. (2007) propose a quality-guided model to evaluate architec-
tural patterns and design decisions to support the decision process of software
designers and architects. They employ real-options analysis to identify the

6

best available design decision. In their analysis, they take into account and
study the effect of the decision on a set of quality properties (rather than
just one).

Many methods have been proposed to estimate the implementation cost
of changing software. One of the most popular ones is COCOMO II (Boehm
et al., 2000). This model calculates cost as the programmatic effort required
to change the software in terms of source lines of code or function points. An
issue with this model is that it requires knowledge about the system’s source
code. When the source code is not available, for example in the third scenario
we describe, the provider cannot predict the adaptation cost for the client
and therefore cannot make an informed decision. This issue is mitigated
by an extension of COCOMO II, called COCOTS, which calculates costs
when the system is using COTS. In particular, a sub-model of COCOTS,
the volatility model, calculates the costs to adapt to changed COTS, when
the source code is unavailable. However, this approach requires knowledge
about the source code of the client applications, which does not facilitate the
provider’s decision-making process.

Srivastava and Sorenson (2010) propose a method to select between func-
tionally equivalent services based on “quality of service” (QoS) properties.
They study how the clients value the quality of the service and how they
would react in case of a change in the QoS properties. These QoS proper-
ties are usually contained in the Service Level Agreement (SLA) which is an
artifact that can be used by the provider to calculate variables concerning
the value of service such as. Finally, the authors also argue (but not fur-
ther investigate) that the client’s reaction to a change in QoS properties also
depend on the price fluctuation for the service.

Having reviewed the aforementioned works (concerning both value and
cost of evolution) we recognize the need for a model of the software-evolution
process, in the context of an ecosystem, rather than just as a process carried
out by the service provider as an independent entity. This model should
include all the relevant costs and benefits for providers and clients alike. As
we have seen in this work, certain decisions, which might look optimal for
one party, might not be optimal for ecosystem as a whole, and thus lead to
inferior outcomes for the individual parties.

7

3. The software evolution game

Adopting a game-theory perspective to analyze the provider-consumer
relationship in the context of software evolution, we distinguish three dif-
ferent scenarios in the software-evolution game. The distinction is based on
the architecture and underlying technologies of the evolving software sys-
tem, which, to an important extent, dictates how the software is delivered
and shapes the relationship between the developing party (provider) and the
consuming party (client).

• Software is a monolithic product, produced by a single independent en-
tity (individual or organization). The decision on whether or not to
change it is made by the producing organization with full knowledge of
the complete software; thus, the decision makers can assess the full
scope of the change and estimate its cost. At the same time, the
software organization can also estimate the additional value that the
change will embed in the software, and develop a plan for its eventual
monetization.

• Software is built and delivered as a module, either an off-the-shelf com-
ponent (COTS) or an extensible framework; the client application is
built using these modules. The various constituent parts are owned
and are being developed by different and independent organizations.
Therefore, the evolution of the reusable modules may impact their
clients if they decide to migrate to the newer version. However, the
clients may choose to keep using the older module versions, which re-
main typically available but may no longer be supported or maintained
by the provider.

• Software is built as a service; the client application is built by composing
a number of services. Software is still modular but the fundamental
distinction between this scenario and the one above is that, in this case,
the reusable components are available online and accessible at run time;
the client does not own “copies of earlier service versions” but rather the
right to use/invoke the services, which are deployed by the provider.
Given this type of tight run-time relationship between the provider
and the client of reusable software components, the decision-making
process around service evolution occurs in the presence of externalities.
Although externalities exist in both the previous scenario and this one,

8

in the latter case they are more pronounced. Older versions of services
cannot be available to the client, if they are not supported by the
provider.

In fact, Kaminski et al. (2006) argue that backwards compatibility
should be offered when evolving a web service, but at least until support
for the older version is formally withdrawn. Practically this means that
there should be a grace period during which the clients should make
efforts to migrate to the newer version. Consider for example Twitter 1

that released API v1.1 in September 2012 as a replacement for the old
v1, which is supposed to be completely retired in March 2013. At this
point, the provider will cease to offer the older version since there are
costs associated with the maintenance of multiple versions simultane-
ously, and the clients will have to decide whether they will migrate to
the new version or they will have to find a more suitable alternative.

Another important aspect of service-oriented architectures that is dif-
ferent from other architectures is the relationship between providers
and clients. Services are conceived to implement (or support) high-
level business offerings, and influence business interactions at a higher
level than interdependencies between typical software components and
libraries. After all, some of the most popular examples that are used
to explain service systems (e.g. loan approval, product orders etc.) de-
scribe eponymous business transactions were some data needs to persist
in the system, unlike the usually anonymous interactions in modular
systems. Therefore, the nature of these transactions impose a stronger
type of relationship between the provider and the client: that of busi-
ness partners. In this scenario, the provider and the client may act
completely independently, but, because of this business partnership,
the provider may choose to support the client in the adaptation pro-
cess, thus internalizing some of the client’s cost for migrating to the
new service version. This tighter relationship between the provider
and the client and the motivation of the former to support the latter
can also be explained by Williamson’s transaction cost approach. In
cases of tight relationship between two parties, where the cost of trans-
actions between the parties is high, one party may opt to include the

1https://dev.twitter.com/blog/planning-for-api-v1-retirement (last accessed
15 February 2013

9

other in what is called the “efficient boundary” of the organization thus
internalizing the transaction costs.

Although these settings differ from each other with respect to their com-
plexity and the details of the relationship between the provider and the client,
they share certain common aspects which, in this paper, we aim to capture
in a coherent provider-client game-theoretic framework. In particular, we
consider a situation in which a software provider is contemplating changing
old software and making the new version available to the client. We write
V C

o as the value to the client of the old software (before the change), and we
write po as the price the client pays for the old software.

In order to evolve the old software, the provider is assumed to incur a
cost Ce (for such things as conceptual development and implementation).
The software also requires investment of effort on the part of the client to
adapt, assimilate, and use in the client’s own systems and to teach the client
team how to make use of the new system elements. We refer to these costs
on the part of the client as adaptation costs, which we write as Ca.

In some cases, there is inherent value to the provider in improving the
software, and this value, as perceived by the provider, we denote by V P

e ; for
example, improvements may allow the software to more efficiently utilize the
provider’s resources. In all cases in our model, we assume that there is an
increased value of the new version of the software to the client; this value,
as perceived by the client, we denote by V C

e . Naturally, V P
e depends on the

costs incurred to change the software, which we refer to as the evolution
costs; the more effort the provider puts in the evolution, the greater the
improvement that can be achieved. However, V C

e does not depend on the
adaptation costs. This is because the improvement is specific to the software
and the provider’s efforts; no matter how much effort the client puts in the
adaptation, the improvement will be the same. The increase in the value
for the client depends on the degree to which the client can benefit from the
improvements that the provider built in the evolution.

Table 1 summarizes all the variables in our model. We observe that
the notation distinguishes between two states for the software: before the
evolution of the software and after the evolution. All the variables referring
to the former state have the subscript o to denote that they are specific to the
old version of the software, the variables referring to differentials (increase
or decrease) have the subscript e and the variables referring to the new
state have the subscript n. We distinguish between three types of variables:

10

Table 1: The variables and their definitions as used in the evolution model.

Variables Definition
Before the evolution

V C
o the value of the software before evolution (based on

its features and qualities)
po the price the client pays for the software (assumed

to be either an one-time fixed price or based on a
pay-per-use contract of some duration)

After the evolution
Ce the cost of the evolution process
Cai the cost of adaptation to the new version of the cur-

rent provider’s software for the client application
Caj the cost of migration to provider j’s software for the

client application
pE

e the price differential for the updated software when
the provider just evolves

pE
n the new price for the updated software when the

provider just evolves (pE
n = po + pE

e)
pS

e the price change for the updated software when the
provider supports the client

pS
n the new price for the updated software when the

provider supports the client (pS
n = po + pS

e)
pj the price the client pays for provider j’s software
V P

e the change in the value of the updated software, as
perceived by the provider

V C
e the change in the value of the updated software, as

perceived by the client
V C

n the value of the new version of the software, as per-
ceived by the client (V C

n = V C
o + V C

e)
V C

j the the value of provider j’s software, as perceived by
the client

a the subsidy rate, which determines what portion of
the adaptation costs the provider will cover

b the final portion of the adaptation costs that remains
for the client after the provider’s support

11

costs (denoted with the letter C), software prices (denoted with the letter p
for price) and non-monetary benefits (denoted with the letter V for value).
Finally, the variables that are specific to the “other” provider (to whom the
client may choose to switch) have the subscript j.

3.1. Software as a monolithic product

In the case of a monolithic system, there is a single organization that
designs, develops and maintains a single piece of software. As far as the
delivery and usage of the system we can distinguish between two scenarios;
either the firm develops the software for internal purposes or the firm sells
the software as a shrink wrap to anonymous end users. In both cases, the
development and the maintenance of the software, as well as all decisions
concerning these activities are internal to the firm, which can make fully-
informed decisions on this matters. The firm (i.e., the provider) then controls
who is using the software (i.e., who the clients are) and can adapt the other
processes or educate the personnel to use the new version of the software.
All the costs incurred from the evolution process are internal for the provider
of the software. In other words, the only cost present in this scenario is
Ce. Furthermore, the benefit to be obtained through the evolution process
is the system improvements with respect to its features and qualities, i.e.,
performance, design, efficiency etc., V P

e . As a result the problem of software
evolution becomes a linear optimization problem, where the provider has to
choose the evolution scenario that maximizes the “profit”:

maximize Π = V P
e − Ce (1)

s.t. V P
e ≥ 0 (2)

Ce ≥ 0 (3)

In this scenario, there are no interactions external to the system. Both
decision variables in this setting (V P

e and Ce) are determined solely by the
opportunities present in the environment, since there is no strategic interac-
tion between players with divergent interests. As a result, the decision maker
will have to, first, confirm that there exists an evolution scenario that will
create a profit (i.e. V P

e − Ce > 0) and, second, select the most profitable
scenario.

Even if the software is a shrink wrap product sold to anonymous clients,
these clients are not strategic players; instead they are an environmental

12

variable that feeds into the estimation of V P
e (as a function of the proposed

price per piece multiplied by the estimated number of customers)
The system might reach technological stagnation if no such evolution

scenario exists. This may occur if the evolution cost becomes prohibitively
high, due to the low technological adeptness of the provider. In such a
situation, opportunities for evolution will not be pursued and the ecosystem
will stagnate until the environment changes.

3.2. Software as a module

In this scenario, the decision maker has only partial control of the out-
come, because the provider and the client are two independent entities that
jointly influence the outcome. In this case, the client develops a software
application that would consume the service and as a result the design, devel-
opment and maintenance of the system is divided between an upstream (the
provider) and a downstream developer (the client. Therefore, the costs and
benefits are no longer internal to a single party and the information flow be-
tween them is somewhat reduced. Furthermore, the behaviour of each party
and their reaction to the evolution event may affect the other, in the presence
of externalities.

In the special case where the provider evolves the software but offers some
backward compatibility so that old versions of the software are still available,
the client applications continue to function as intended. We call this scenario
“asynchronous evolution”, in order to stress the fact that the client is not
disrupted immediately after the evolution takes place. An example of such
a scenario is programming libraries. This kind of software is usually offered
as a compressed file, which the client can download locally and use. When
the library changes, a new version is created and becomes available to the
clients. However, the client may opt to keep using the old (now local) copy
of the software, which, however, is no longer supported by the provider.

An implication of the fact that the software is now delivered as a module
to an external client is that the module is offered for a price. This price
can follow any pricing model, including a fixed one-time price, a pay-per-
use pricing model or a subscription model. In any case, the price can be a
function of time or instances (i.e., number of users, number of requests etc).
We do not make any particular assumptions on how the price is calculated,
but we consider as an input to our model.

Let us formulate this scenario as a game. On one hand, the provider
has two choices: either to retain the status quo of the software and make no

13

changes (SQ), or to evolve the software (E). On the other hand, the client can
continue to use the old version (O) or migrate to the new one (N). Figure 1
presents the offline evolution game in its extensive form.

If the client stays with the old version, then the provider still may perceive
benefits from the new software, V P

e (due, for example, to greater ease of
maintaining the software), and the provider, of course, still incurs the cost
of software change, Ce. But the provider does not receive revenue pE

e for the
new software, and the client does not pay for the new software. In contrast,
if the client migrates to the new software, the provider does receive this
revenue and the client has to pay for it. Furthermore, the client receives the
net benefit of the new software, V C

e − Cai (the value of the new software net
of the adaptation costs).

Figure 1: The provider-client game in the evolution of software as a module.

Table 2: best-response analysis for the evolution of software as a module game.

When the client prefers...

O ≻ N N ≻ O

Provider E ≻ SQ 1. V P
e > Ce 2. V P

e + pE
e > Ce

Client N ≻ O 3. V C
e > pE

e + Cai

Using the best-response analysis as shown in Table 2, we find under what
conditions each leaf of the tree is an optimal solution.The client will always

14

prefer to migrate to the new version (N ≻ O), when the value of the new
software for the client (V C

e) exceeds the cost of its adaptation to the new
version (Cai) plus the associated price differential (pE

e). On the other hand,
if the client prefers to continue using the old version, the provider may still
to choose to evolve if the value of the new software for the provider exceeds
the evolution costs (Ce). If the client prefers to migrate to the new version,
the provider will evolve the software if the value of the new software for the
provider (V P

e) plus the additional income pE
e exceed the evolution costs.

Unlike the previous scenario, where the decision-making process involved
environmental variables only, in this scenario the provider has a decision to
make regarding the value of the price differential (pE

e); by controlling this
value, the provider has the power to avoid stagnant situations (where the
software is not evolved).

In this scenario, the client will still work with the provider after the
evolution, whether through the old software version or by migrating to the
new one, thus guaranteeing an income for the provider. The problem for the
provider becomes to decide on a price that will motivate the client to migrate
to the new version, in order to obtain the additional income associated with
the price increase of the new software version. In principle, the client prefers
a lower price increase for a higher additional value. In fact, from inequalities
2 and 3 we have that Ce − V P

e < pE
e < V C

e − Cai, which defines the range
for the price increase within which the client will select the new version and
the provider will still make profit. Naturally, the provider will try to push
towards the higher end of the price range, to increase the profit. Therefore,
we have p∗E

e = V C
e − Cai, provided that V C

e − Cai > Ce − V P
e . This means

that the final decision is driven by client-oriented factors, even if there is no
immediate positive outcome for the provider. Furthermore, the provider’s net
software development costs (Ce − V P

e) must be covered by the price increase
which will equal the net value of the evolution for the client. This amount
for the price differential (p∗E

e) is the solution for this scenario.

3.3. Software as a service

In this scenario, the nature of the provider-client dependency is different
from the one above. In the service-oriented paradigm, client applications are
developed by consuming and composing services. Therefore, the provider
and the client are highly coupled and if a change happens to the service the
consuming party is affected. Unlike the previous scenario, in the evolution
of software as a service, if the sum of adaptation costs and price increase is

15

too high, then it may be easier for the client to opt to abandon the provider.
In this case, the provider not only tries to increase revenues, by evolving the
software, but at the same time must take into consideration the possibility
that current clients will abandon the new software.

The game corresponding to this scenario is shown in Figure 2. The
provider has the same options as previously (SQ and E), but the client can
now stay with the current provider and adapt to the new version (A) or leave
the provider (L). We consider this setting to be a closed environment and as a
result we do not examine how the client will choose the new provider, but we
include in the model the parameters that are relevant to the other provider.
These parameters, which will be noted with the subscript j (as opposed to
the subscript i for the current provider), include the value the client will get
from using the other provider’s service (V C

j), the price for provider j’s service
(pj) and the costs for the client to adapt to provider j’s service (Caj).

Figure 2: The provider-client game in the evolution of software as a service.

Table 3: best-response analysis for the evolution of software as a service game.

When the client prefers...

A ≻ L L ≻ A

Provider E ≻ SQ 1. V P
e + pE

e > Ce 2. V P
e > po + Ce

Client A ≻ L 3. V C
n − V C

j > pE
n − pj + Cai − Caj

The best-response analysis for this game is shown in Table 3. The client
will always prefer to adapt to the new version (A ≻ L) when the total value
of the service (including the original value of the service (V C

o) and the value
of the new software for the client (V C

e)) exceeds the adaptation costs plus the

16

price differential pE
e and the original price po. In this case, the provider will

prefer to evolve the service if the value of the new software for the provider
plus the extra income pE

e exceed the evolution costs of the provider.
On the other hand, if the client opts to leave the current provider, the

latter will always prefer to evolve, if the value of the new software for the
provider is greater than the evolution costs plus the current revenue from the
client (po) that the provider will lose in this case.

Unlike the previous scenario, this is not a simple pricing problem, because
now the provider has to consider the competition. In order for the evolution
to be a profitable option, the provider will have to either increase their own
benefits or make an effort to retain the client. The former can be achieved
by

(a) increasing the value of the service (V P
e),

(b) increasing the price for the new version of the service (pE
n) and/or

(c) decreasing the evolution costs.

The latter option can be achieved by

(i) increasing the value of the service for the client (V C
n) by offering addi-

tional features or better quality,

(ii) offering the service at a more competitive price (pE
n) than the other

provider and/or

(iii) decreasing the adaptation costs of the client.

Since improving the value of the service will require more effort from the
provider, it becomes obvious that condition (c) is in conflict with conditions
(a) and (i). Furthermore, conditions (b) and (ii) naturally contradict each
other. Therefore, the only option that remains for the provider is to somehow
assist the client in reducing the adaptation costs.

This can only be shown by condition 3 from Table 3. If we solve this
condition for pE

n , it will give us an upper bound for the price of the new version
of the service pE

n < pj + V C
n − V C

j + Caj − Cai. Therefore, by increasing the
value of the service or by decreasing the adaptation costs, the provider can
increase the price of the service without losing any competitive advantage.
In the next scenario, we are going to discuss how the provider can efficiently
facilitate the client with the adaptation costs in order to increase the price
of the new service.

17

3.3.1. Evolution with support.

The two previous scenarios may lead to suboptimal solutions (and prob-
ably stagnation) if the adaptation costs are so high that the net benefit of
the client cannot cover the provider’s potential loss (i.e., Ce − V P

e > 0 and
V C

e −Ca < Ce−V P
e). This can happen due to technological inadequacy on the

client’s part, or lack of communication and reduced information flow between
the two parties. For this reason, in this scenario, we consider a particular
type of information flow from the provider to the client, where the provider
covers part of the adaptation costs by means of providing additional techni-
cal support to the client, to simplify its adaptation to the new version. The
concept of technical assistance in the adaptation process has been a subject
of extensive research and various methods have been proposed. Chow and
Notkin (1996) have proposed that the provider give additional information
about the evolution process so as to help the client in the adaptation process.
On the other hand, Benatallah et al. (2005) propose a methodology to pro-
vide web service adapters on the provider side to make changes transparent
to the client. Finally, Fokaefs and Stroulia (2012) propose an algorithm to
support the automatic adaptation of applications on the client side.

By providing support to the client, the provider effectively “subsidizes”
part of the adaptation cost. Assuming that the provider is more knowledge-
able and technologically equipped with respect to the evolving service, then
the provider can provide adapters with less effort than the client would need
to create them. Therefore, if the provider produces adapters as a portion of
the adaptation costs, say aCa, where 0 < a ≤ 1, then instead of the remain-
ing cost ((1 − a)Ca), the client will bear a portion of the adaptation cost,
say bCa, such that b < 1 − a. Therefore, the provider can take advantage of
this difference and charge a different price when supporting the client (pS

n)
than when just evolving the service (pE

n). The corresponding game is similar
to the previous scenario with the difference that the provider now has the
additional option of supporting the client (S) as shown in Figure 3.

If we solve inequalities 7 and 8, we obtain an upper bound for the new
price when the provider evolves with and without supporting the client adap-
tation. Naturally, the provider will push towards these upper bounds to
maximize revenue and we can say that the two prices can marginally equal
their upper bounds. Therefore, we have that pS

n = V C
n −V C

j +Caj − bCai +pj

and pE
n = V C

n − V C
j + Caj − Cai + pj. If we subtract the second equation

from the first, we have that pS
n − pE

n = (1 − b)Cai, which means that the

18

Figure 3: The provider-client game with support from the provider.

Table 4: best-response analysis for the evolution with support game.

When the client prefers...

A ≻ L L ≻ A

P
ro

v
id

er E ≻ SQ 1. V P
e + pE

n > Ce + po 2. V P
e > Ce + po

S ≻ SQ 3. V P
e + pS

n > Ce + aCai + po 4. V P
e > Ce + aCai + po

S ≻ E 5. aCai < pS
n − pE

n 6. −aCai > 0 (ALWAYS FALSE)

When the provider prefers...

E ≻ S S ≻ E

C
li
en

t

A ≻ L 7. V C
n − V C

j > pE
n − pj + Cai − Caj 8. V C

n − V C
j > pS

n − pj + bCai − Caj

provider can charge a higher price for the new version, while supporting
the client. However, the difference between this higher price and the nor-
mal price of the new version should not be higher than the adaptation costs
the client will save from the provider’s support. Eventually, we have that
aCai < pS

n − pE
n < (1− b)Cai. Within this range the provider will make profit

even after supporting the client and the client will be motivated to adapt to
the new version rather than to switch to a different provider. If the client
decides to abandon the current provider, the provider will not provide any
support since this would be a frivolous and pointless action. This is reflected
by condition 6 which is always false.

19

3.4. Propositions

Based on the analysis of the previous scenarios, we draw some conclusions
about software evolution and the relationship between the provider and the
client. These conclusions are summarized in the following propositions.

Proposition 1. The Nash equilibrium for the provider-client game
is (S,A).
Let us assume that the provider sets pS

n = (1 − b)Ca + pE
n . If the client

already prefers to adapt when the provider evolves (i.e., condition 7 in Ta-
ble 4 holds), then condition 8 (from the same table) also holds (it becomes
the same as condition 7, in fact). Therefore, the client will always prefer to
adapt. If condition 7 does not hold (i.e., V C

n − V C
j < pE

n − pj + Cai − Caj),
condition 8 becomes V C

n − V C
j > pE

n − pj + Cai − Caj; this means that
V C

n − V C
j = pE

n − pj + Cai − Caj, which will make the client indifferent
between adapting or leaving the provider.
Similarly, if the provider prefers to evolve over supporting the client, condi-
tion 1 from Table 4 holds, and so does condition 2, which, in fact, becomes
the same as condition 1. Therefore, the provider will never prefer to retain
the status quo. If condition 1 does not hold (i.e., V P

e + pE
n < Ce + po), condi-

tion 2 becomes V P
e +pE

n < Ce +po; this implies that V P
e +pE

n = Ce +po, which
makes the client indifferent between retaining the status quo and evolve or
support. Finally, we know that aCai < pS

n − pE
n < (1 − b)Cai, which means

that condition 5 holds and the provider will always prefer to support than just
evolve.
Therefore, if the provider selects a slightly lower value for pS

n, then both play-
ers will strictly prefer the outcome (S,A) over any other outcome of the
game.

Proposition 2. Collaboration between the client and the provider
can guarantee greater payoff for the ecosystem overall.
In the presence of competition, the only feasible option for the provider in
order to retain the current client is to provide technical support when evolv-
ing the software. Using knowledge about the software and its changes, the
provider can be more efficient in covering part of the adaptation costs than
the client; the savings that this efficiency makes possible can be translated in
an increase to the price that the client may be able to pay for the new software
version, which eventually implies increased income for the provider. If the
provider simply evolves and the client adapts, the accumulative payoff of the

20

ecosystem will be V P
e +V C

e −Ce −Cai. If the provider supports and the client
adapts, the total payoff will be V P

e + V C
e − Ce − aCai − bCai which is greater

than the previous payoff because Cai > (a + b)Cai.

The provider’s support towards alleviating the client’s adaptation costs
will result in the client’s increased trust of the provider. Client support
is a widespread concept in modern business. For example, the automotive
industry has implemented for a long time the concept of “after-sales service”
with great success. Eventually, client care may guarantee greater revenue for
the provider through brand loyalty.

Trust and commitment have been a central theme in marketing research.
Morgan and Hunt (1994) propose a model of relationship marketing where
trust and commitment have a central role. In such a model, certain activities
by the business partners such as sharing values and better communication
may result in increasing trust which in turn will strengthen the relationship
commitment. Eventually, the propensity of the business partners to aban-
don the relationship and the uncertainty of the environment is reduced. In
a service-oriented system, where the provider assists the client during the
evolution process, trust and commitment have a similar role. Information
sharing is also discussed by Li et al. (2006) as a process that enables global
optimization and strengthens the relationship between the producing party
and the consuming party.

4. Conclusion

In this work, we studied the evolution of software in the context of
a provider-client ecosystem. We identified a number of distinct software-
architecture styles, and their implications on how the software is delivered
by the provider and used by the client for the downstratem development of
new software. We then examined a number of corresponding evolution sce-
narios and developed game-theoretic models of the decision-making processes
of the involved parties, i.e., provider and client, in each of these scenarios.
Our game-theoretic approach enables us to better model the concerns around
software evolution in the presence of externalities. In this work, we argue
that the evolution of modern software cannot be studied from a single entity’s
point of view. Externalities play a very important role and should be taken
into account by the decision makers. We further argue that decisions should
be made with the aim to optimize the welfare of the ecosystem as a whole,

21

and not driven simply by the interests of a single organization. Because
of the relationship between the provider and the client, self-interested deci-
sions will lead to sub-optimal, even undesirable, outcomes in the longer run.
Eventually, we put forward two propositions when evolving a service-oriented
software system.

1. The Nash equilibrium for the software evolution game is reached when
the provider supports client in the adaptation process and the client
stays with the current provider and adapts to the new version (S, A).
This equilibrium promotes technological progress (since the software
evolves and the new version is adopted) and collaboration between the
parties that can control this technological progress.

2. This collaboration between the provider and the client can lead to
larger payoff for the ecosystem as a whole, since the provider’s support
induces the client to adapt to the new version and enables the provider
to receive a higher price for its software.

References

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., Toumani, F., 2005.
Developing adapters for web services integration. In: CAiSE. pp. 415–429.

Boehm, B., Sullivan, K., 1999. Software economics: status and prospects.
Information and Software Technology 41 (14), 937–946.

Boehm, B. W., 1981. Software Engineering Economics. Prentice Hall, Engle-
wood Cliffs, NJ.

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R.,
Steece, B., 2000. Software Cost Estimation with Cocomo II with Cdrom,
1st Edition. Prentice Hall PTR, Upper Saddle River, NJ, USA.

Boehm, B. W., Sullivan, K. J., 2000. Software economics: A roadmap. In:
Proceedings of the Conference on the Future of Software Engineering. ACM
Press, pp. 319–343.

Choi, S. C., 1991. Price Competition in a Channel Structure with a Common
Retailer. Marketing Science 10 (4), 271–296.

22

Chow, K., Notkin, D., 1996. Semi-automatic update of applications in re-
sponse to library changes. In: Software Maintenance 1996, Proceedings.,
International Conference on. IEEE, pp. 359–368.

Coase, R. H., 1960. The Problem of Social Cost. Journal of Law and Eco-
nomics 3, 1–44.

Fokaefs, M., Stroulia, E., 2012. Wsdarwin: Automatic web service client
adaptation. In: CASCON ’12.

Gokhan, N. M., Needy, N., December 2010. Development of a simultaneous
design for supply chain process for the optimization of the product design
and supply chain configuration problem. 22 (4), 20–30.

Hoffmann, W. H., Aug. 2007. Strategies for managing a portfolio of alliances.
Strategic Management Journal 28 (8), 827–856.

Kaminski, P., Litoiu, M., Müller, H., 2006. A design technique for evolving
web services. In: Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research. CASCON ’06.

Laffont, J., 2008. externalities. In: Durlauf, S. N., Blume, L. E. (Eds.), The
New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke.

Li, J., Sikora, R., Shaw, M. J., Woo Tan, G., Oct. 2006. A strategic analysis of
inter organizational information sharing. Decision Support Systems 42 (1),
251–266.

McGuire, T. W., Staelin, R., Jan. 2008. An industry equilibrium analysis of
downstream vertical integration. Marketing Science 27 (1), 115–130.

Morgan, R. M., Hunt, S. D., Jul. 1994. The Commitment-Trust Theory of
Relationship Marketing. Journal of Marketing 58 (3), 20.

Nagurney, A., 2006. Supply Chain Network Economics: Dynamics of Prices,
Flows, and Profits. Edward Elgar Publishing.

Oliver, R. K., Webber, M. D., 1992. Supply-chain management: logistics
catches up with strategy. Logistics: The Strategic Issues.

23

Ozkaya, I., Kazman, R., Klein, M., May 2007. Quality-Attribute Based Eco-
nomic Valuation of Architectural Patterns. In: 2007 First International
Workshop on the Economics of Software and Computation. IEEE, pp. 5–
5.

Parnas, D. L., Dec. 1972. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15 (12), 1053–1058.

Srivastava, A., Sorenson, P. G., 2010. Service selection based on customer
rating of quality of service attributes. Web Services, IEEE International
Conference on 0, 1–8.

Swanson, E. B., 1976. The dimensions of maintenance. In: Proceedings of
the 2nd international conference on Software engineering. ICSE ’76. IEEE
Computer Society Press, Los Alamitos, CA, USA, pp. 492–497.

Tansey, B., 2008. Valuing software services: The real options-based modu-
larity analysis framework. University of Alberta (Canada).

24

4.2 WSDarwin: A Decision-Support Tool for

Web-Service Evolution

Fokaefs, M., Stroulia, E., 2013a. Wsdarwin: A decision-support tool for web-

service evolution. In: IEEE International Conference on Software Mainte-

nance, Early Research Achievement (ICSM 2013 ERA). IEEE, pp. 444-447.

145

WSDARWIN: A Decision-Support Tool for
Web-Service Evolution

Marios Fokaefs and Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

Email: {fokaefs,stroulia}@ualberta.ca

Abstract—Service-oriented systems are fundamentally dis-
tributed in nature, relying on external services accessible through
their public interfaces. Distributed ownership and lack of imple-
mentation transparency imply special challenges in the evolution
of such systems. In order to alleviate the challenge faced by
the consumers of their services, providers should, in principle,
take into account the impact that service changes may have on
the client applications, in addition to considering the potential
benefits to be gained from the evolution of these services. In
this paper, we present a decision tree to support the provider’s
service-evolution decision-making process. Using game theory, we
construct the tree that makes explicit the value-cost trade-offs
involved in considering the potential evolution of services.

I. INTRODUCTION

The service-oriented system paradigm and associated tech-
nologies were conceived to support the reuse of functionality
in the context of the development of large-scale distributed
systems. Since services are consumed through standard public
specifications (primarily in XML), service systems are tech-
nology agnostic and do not require any knowledge about
implementation details of the services they rely upon. Al-
though these properties have led to the easy development of
component-based applications, they have also given rise to new
challenges. One of them concerns the evolution of such sys-
tems. Due to the lack of implementation information between
the two parties, i.e., the provider and the client, the latter is not
in a position to reason about the changes of the service or the
motivation behind the change. This can potentially increase the
cost of adaptation for client applications and can potentially
motivate the client to abandon the current provider.

When changing a service, a provider aims at maximizing
some anticipated benefits, originating from the improvement of
the service functionality or the extension of its features in order
to acquire more revenue from clients, while, at the same time,
minimizing the costs associated with actually implementing
the change. These benefits and costs are direct and visible to
the provider. On the other hand, there are indirect benefits and
costs (also known in economic theory as externalities [1]) for
the provider stemming from the client’s reaction to the change.
If the change improves the service and its quality, and meets
better (or more of) the clients’ needs, then they may become
more committed to the service and they may be willing to
pay more for it, thus generating additional revenue for the
provider. On the other hand, if the clients’ cost to adapt to

the provider’s evolved service far exceeds the benefits from
the new version or there are other alternatives in the market
that better suit their requirements, they may decide to switch
to a competitor service, depriving the current provider from
a source of income. The implication is that service providers,
while being in principle self-interested, should also consider
their clientèle, since they would risk losing clients and/or
failing to attract new ones. When calculating the implications
of a particular service change, the provider must also consider
the properties of the ecosystem (providers-services-clients) and
work towards the mutual benefit of all involved parties.

In this work, we extend our previous work [2], where we
proposed a provider-client game to analyse their interactions
during service evolution. In this paper, we propose a deci-
sion tree as a decision support tool, based on the provider-
client game. We, first, revise the game and outline how it
is changed from the previous version to allow for a more
realistic ecosystem with potentially many providers and many
clients. We also revise the best-response analysis to define
the conditions, under which certain decisions are made and
which are used as the decision nodes in the proposed tree.
The resulting decision tree not only allows providers to make
optimal decisions, but also to understand why these decisions
are optimal for them and for the ecosystem as a whole. The
tool is currently being built as part of WSDARWIN, our web-
service evolution platform [3].

The rest of the paper is organized as follows. Section II de-
scribes the proposed framework. In Section III, we provide an
overview of this work’s background by presenting a selection
of related papers. Finally, Section IV concludes the paper.

II. THE DECISION SUPPORT FRAMEWORK

A. The Provider-Client Game

In our previous work [2], we argued that the provider-client
relationship involves conflicting interests and contradicting
goals. For this reason, we proposed a provider-client game
to capture this relationship. Table I shows the variables used
in the game and their description. We denote provider specific
variables with the superscript P and client-specific variables
with the superscript C. We denote the current provider with
the subscript i and the competitor with the subscript j. The
differential values with subscript ei refer to the different
value/price of the old version of the current service and the

new version. The differential values with subscript ej refer to
the different value/price of the current service (old or new)
and the competitive service.

TABLE I: The variables and their definitions as used in the
provider-client game.

Variables Definition
V C
ei the differential value of the service of the current provider

i
poi the original price the client pays for the service before the

evolution
Ce the cost of the evolution process

Cai|j the cost of adaptation to the new version of the current
provider’s service i or the competitive service j for the
client application

p
E|S
ei the price differential for the updated software when the

provider just evolves (E) or when the provider also supports
the client’s adaptation (S)

pej the price differential between the current provider and the
competitor

V C
j the the value of the competitor provider j’s software for the

client
a the subsidy rate, which determines what portion of the

adaptation costs the provider will cover
b the final portion of the adaptation costs that remains for the

client after the provider’s support

Fig. 1: The provider-client game in extensive form with the
payoffs as the values for the leaves.

Figure 1 shows the provider-client game in its extensive
form. The two values in the leaves of the tree correspond to
the payoffs for the provider (first value) and the client (second
value). In the game, the provider plays first and the possible

actions are to:
1) Maintain the status quo (SQ) of the service and make

no change. In this case, there is no difference in the
provider’s payoff, if the client decides to stay, but the
provider loses the original income poi, if the client
decides to leave.

2) Evolve the service (E), gain the increased revenues pEei,
if the client stays or lose the original income poi, if the
client leaves and incur the evolution costs Ce.

3) Support the client’s adaptation (S) and evolve the
service. In this case, the provider gains the increased
revenues pSei, if the client stays or loses the original
income poi, if the client leaves and incur the evolution
Ce and part of the adaptation costs aCai.

Then the client responds and the possible actions are to:
1) Adapt to the change (A), gain the differential of the

value of the service from the old version to the new V C
ei

(or zero if the provider doesn’t evolve the service) and
incur the price differential (zero, if the provider doesn’t
evolve the service, pEei, if the provider evolves or pSei, if
the provider evolves and supports) and any adaptation
costs (zero, if the provider doesn’t evolve the service,
Cai, if the provider evolves or bCai, if the provider
evolves and supports, where Cai > bCai).

2) Leave the current provider (L), gain the differential
of the value of service between the current provider and
the competitor V C

ei and incur the price differential pej
and any adaptation costs Caj .

The reason why we permit only two alternatives for the
client is due to the nature of service systems. Unlike other
modular software, for which clients can have a local copy
of the software module and invoke on demand, in service
systems, the web service has to be always online, since it
is accessible over a network. Any change in the service may
disrupt the proper function of the clients. Maintaining multiple
versions of the service at the same time may prove very costly
for the provider. In this case, the provider has two options. The
first is to give to the clients a grace period before making the
changes to the service, so that they have time to react properly
to the change. An example of this case is Twitter 1, which
released API v1.1 in September 2012 as a replacement for the
old v1, which was completely retired in March 2013. At the
end of the grace period, the clients will still have to decide
whether they will adapt to the new version or switch providers.
The second option is that the provider creates adapters that
have the old version’s interface but invoke the new version
of the service. This idea was proposed and investigated by
Kaminski et al. [4] and Fokaefs and Stroulia [3]. This option
is in fact modelled by the support action of the provider in
the proposed game.

A first difference between this game and its previous ver-
sion [2] is that we no longer consider a value of the service for
the provider and the income is only represented by the price.

1https://dev.twitter.com/blog/planning-for-api-v1-retirement (last accessed
17 June 2013

Another very important difference is that the client can now
leave the current provider even if the latter retains the status
quo. Assuming rationality from the client’s part, if no provider
evolves their services, then the client has no reason to switch
providers. However, if one of them evolves the service, the
client may opt to leave the current provider, if a competitor
offers a better service. For simplicity purposes, we do not
include the competitors as strategic players in the game, but we
rather include the effect of their decisions in the calculations
of the payoffs of the client.

Our analysis can be easily extended for multiple clients. We
can safely argue that a client’s decision does not depend on
the other clients’ decisions. Therefore, the outcomes and the
payoffs for all players depend only on the provider’s decisions
and the competition. Therefore, we can run an instance of the
game for each client and then aggregate the results and make
the decisions that satisfies as many clients as possible.

B. Solution Concepts and the Decision Tree

Having defined the interactions between the provider and
the client, we can now proceed to analyse the game using
the backward induction algorithm and the method of best-
response analysis, i.e., what action a player prefers given the
preferences of the other players. Backward induction is a
solution algorithm for sequential games, which first calculates
the optimal decision for the player that plays last for each
of the previous player’s actions. Then these optimal actions
are taken as a given for the previous player. The process is
continued until we reach the player that plays first. The final
path gives us the equilibrium of the game. The best-response
analysis will give us the conditions under which a player has
certain preferences and which we will use to construct the
decision nodes of the decision tree.

Table II presents the best-response analysis for the provider-
client game. As we can see from the table, conditions 2, 4
and 6 (i.e., when its more preferable for the client to leave the
current provider) will never hold. This means that if the client
leaves (i.e., conditions 7 and 8 do not hold), the provider will
opt to retain the status quo of the service since this is the action
that minimizes the losses for the provider. In an expanded
ecosystem with many clients, the provider may balance the
losses from clients that leave by attracting potentially new
clients.

Figure 2 shows the final decision tree for the provider when
considering the evolution of a service. The decision nodes are
shown as rectangles with the number of the corresponding
conditions. For each of the decisions we have two edges; one
when the conditions is True in the left and another when the
condition is False in the right. The end nodes of the tree
representing the outcome of the decision process are shown
as solid triangles with the final action for the provider.

As discussed above, all the paths for which the client leaves
(i.e., 1(T)− > 5(T)→ 3(T)→ 8(F), 1(T)→ 5(F)→ 7(F)
and 1(F) → 5(T) → 3(T) → 8(F)) lead the provider to
retain the status quo of the service. The provider is led to the
same outcome in two more paths (1(F)→ 5(F) and 1(F)→

TABLE II: Best-response analysis for the provider-client
game.

When the client prefers...

A � L L � A

Pr
o v

id
er E � SQ 1. pEei > Ce 2. −Ce > 0

S � SQ 3. pSei > Ce+aCai 4. −Ce−aCai > 0

S � E 5. aCai < pSei −
pEei

6. −aCai > 0

When the provider prefers...

E � S S � E

C
lie

nt

A � L 7. V C
ei − V C

ej >

pEei−pej+Cai−
Caj

8. V C
ei − V C

ej >

pSei − pej +
bCai − Caj

5(T)→ 3(F), in which, independently of the client’s decision,
it is not in the interest of the provider to evolve since the costs
exceed any potential income. For the other outcomes, one path
leads to the evolution of the service (1(T)→ 5(F)→ 7(T)).
The subpath 5(T) → 3(T) → 8(T) leads to the evolution of
the service with support to the client regardless of whether
condition 1 holds or not. In the leftmost subtree under the
root, condition 3 can never be false, since, because conditions
1 and 5 are true, we have that S � E � SQ. Furthermore,
under the same subtree, when condition 5 is false, we have
that E � SQ and E � S, which means that action E is a
dominant strategy for the provider and we don’t have to check
condition 3.

Fig. 2: The evolution decision tree for the service provider.

This decision tree is a simple tool that requires a considerate
amount of information to be useful. However, this information
is reasonably easy to obtain and in fact good enough estimates
can be produced for all the variables required. First of all,
there are variables that can be manipulated to guide the
provider’s decision towards a desired outcome. The provider
can increase the value of the service at will and offer it at
a competitive price, thus effectively overcoming competition.
Furthermore, the provider can decide on the level of support

to the client to ease the adaptation process giving the client
the incentive to stay. We can estimate the rest of the variables
either by using formal models (i.e., for costs) or by surveying
the environment of the service (i.e., for values and prices of
competitive services).

III. SOFTWARE ENGINEERING ECONOMICS BACKGROUND

Although software economics is a relatively mature field,
analysing the cost and value of a particular software-
engineering activity is an ever challenging problem. This
problem is exacerbated in the case of service systems, because
of the peculiarities of such systems, some of which we have
highlighted in this work. In their work, Boehm and Sulli-
van [6], [7] outline these challenges and also how software-
economics principles can be applied to improve software
design, development and evolution.

Boehm and Sullivan define software engineering funda-
mentally as an activity of making decisions over time with
limited resources, and usually in the face of significant un-
certainties. Uncertainties pose a crucial challenge in software
development that can lead to failure of systems. Uncertain-
ties can arise from inaccurate estimation. For example, cost-
estimation techniques and models that used to work for
traditional development processes may not apply directly to
modern architecture styles and development processes, such
as web services. Furthermore, due to lack (or inadequacy) of
economic and business information software projects may be
at risk. They recognize the need of including the value added
from any design or evolution decision. However, as they point
out usually there are no explicit links between technical issues
and value creation. It is critical to understand that the value
added by evolving a system does not only depend on technical
success but also on market conditions. It is stressed that the
cost should not be judged in isolation. As Parnas suggests “for
a system to create value, the cost of an increment should be
proportional to the benefits delivered” [8]. Finally, the authors
claim that there is a need for not only better cost estimation
models but also stronger techniques for analysing benefits.

The provider-client game as presented in this work is a
clear example of an ecosystem where externalities exist. An
externality is an indirect cost or benefit of consumption or
production activity, in other words, effects on agents other
than the originator of such activity which do not work through
the price system [1]. External effects such as these can lead to
suboptimal, or inefficient outcomes, for the system as a whole,
whereby both parties by acting independently end up less well
off than they could do if they coordinated their actions or if the
decision maker (in this case the provider) took into account
the external effects of any action.

The Coase theorem [5] argues that an efficient outcome
can be achieved through negotiations and further payments
between the involved parties under certain conditions (the
parties act rationally, transactions costs are minimal, and
property rights are well-defined). In this work, the relationship
between the provider and the client as we have described it
through the game is an example of the Coase theorem.

IV. CONCLUSION AND FUTURE PLANS

We argue that evolution in service-oriented architectures is
a complicated task due to the complex dependencies between
the participants of the service ecosystem. These dependencies
are not only of technical nature but they also have economic
and business implications. As a result strategic decisions
concerning the evolution of a service should consider both
technical and business dimensions of the ecosystem. In this
paper, we showed how Game Theory can be used to model
these dependencies and interactions between a service provider
and a service client. We also proposed a decision tree as a tool
to support the provider’s decision-making process. This tool
is based on estimates of economic parameters such as values,
costs and prices and takes into account the clients’ reactions
to providers’ decisions while at the same time considering the
competition.

Although the model presented in this paper focuses on a
single provider and a single client, it can be easily extended for
more complicated ecosystems, while the general idea remains
the same; service evolution in the presence of externalities.
To this end, we plan to create decision trees for providers
in different market settings: few clients with many providers
(oligopsony), few providers with many clients (oligopoly), or
many providers with many clients (free/competitive market).
Another important part of our future plans is the validation
of the decision support system. This can be achieved by
simulating various evolution scenarios and testing our decision
tree with (pseudo)randomly generated values. An alternative
is an on-site evaluation of the decision tree by real service
providers when considering the evolution of their service.

REFERENCES

[1] J. Laffont, “externalities,” in The New Palgrave Dictionary of Economics,
S. N. Durlauf and L. E. Blume, Eds. Basingstoke: Palgrave Macmillan,
2008.

[2] M. Fokaefs, E. Stroulia, and P. R. Messinger, “Software Evolution in the
Presence of Externalities: A Game-Theoretic Approach,” in Economics-
Driven Software Architecture, I. Mistrik, R. Bahsoon, R. Kazman, K. Sul-
livan, and Y. Zhang, Eds. Elsevier, 2013.

[3] M. Fokaefs and E. Stroulia, “Wsdarwin: Automatic web service client
adaptation,” in CASCON ’12, 2012.

[4] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for evolving
web services,” in Proceedings of the 2006 conference of the Center for
Advanced Studies on Collaborative research - CASCON ’06. New York,
New York, USA: ACM Press, Oct. 2006, p. 23.

[5] R. H. Coase, “The Problem of Social Cost,” Journal of Law and
Economics, vol. 3, pp. 1–44, 1960.

[6] B. W. Boehm, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice Hall, 1981.

[7] B. Boehm and K. Sullivan, “Software economics: status and prospects,”
Information and Software Technology, vol. 41, no. 14, pp. 937–946, 1999.

[8] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

4.3 Software Evolution in Web-Service Ecosys-

tems: A Game-Theoretic Model

Fokaefs, M., Stroulia, E., 2015. Software Evolution in Web-Service Ecosys-

tems: A Game-Theoretic Model. IEEE Transactions on Services Computing.

Note: This paper has been submitted to IEEE Transactions on Services

Computing pending review.

150

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Software Evolution in Web-Service
Ecosystems: A Game-Theoretic Model

Marios Fokaefs, Student Member, IEEE, and Eleni Stroulia, Member, IEEE

Abstract—Service orientation is the prevalent paradigm for modular distributed systems, giving rise to service ecosystems
defined by software dependencies, which, at the same time, carry business and economic implications. And as the software
evolves, so do the business relationships among the ecosystem participants with corresponding economic impact. Therefore, a
more comprehensive model of software evolution is necessary in this context, in order to support the decision-making processes
of the ecosystem participants. In this work, we view the ecosystem as a market environment, with providers offering competing
services and evolving these services to attract more clients by better satisfying their requirements. Based on an economic
model for calculating the costs and values associated with service evolution, we develop a game-theoretic model to capture the
interactions between providers and clients and support the providers’ decision-making process. We demonstrate the use of our
model with a realistic example of a cloud-services ecosystem.

Index Terms—web-service ecosystems, software evolution, game theory, software cost

F

1 INTRODUCTION

W EB services are independently built and func-
tionally autonomous pieces of software. Sys-

tems comprised of web services are fundamentally
distributed in nature, with their constituent services
typically provided by more than one organization.
As a result, web-service systems create both technical
and business dependencies between organizations,
and they implicitly give rise to fairly tightly coupled
business ecosystems.

In these ecosystems, the problem of software evo-
lution is no longer simply technical. When a ser-
vice changes, the client systems that use this ser-
vice also need to adapt. In the presence of business
relationships – client applications typically pay for
the services they use – the provider’s decision (on
whether and how to evolve a service) and the client’s
decision (on whether to adapt to the evolved offering
or switch to a competitor) have to take into account
more information than what is conveyed by the public
API of the service. As we have discussed in our
previous work [1], the partners also have to consider
the indirect effects, known as externalities [2], of their
potential actions to the rest of the ecosystem. For ex-
ample, when providers decide to evolve their service
offerings, they have to consider the adaptation costs
that the clients will have to bear and how these clients
may react to this eventuality and also take into con-
sideration the availability of similar and competitive
services; similarly, when a client decides to abandon a
provider after its service has evolved (potentially due
to the high adaptation costs associated), the resulting

• M. Fokaefs and E. Stroulia are with the Department of Computing
Science, University of Alberta, Edmonton, AB, Canada
E-mail: {fokaefs,stroulia}@ualberta.ca

loss of income is an externality for the provider in
question.

The objective of our work is to develop a concep-
tual framework for reasoning about the evolution of
service-oriented systems, recognizing the importance
of economics in the decision-making process. This
framework is an essential precondition for developing
meaningful support for providers to consider whether
and how to evolve their services, which is the spe-
cific technical objective of our work. Providers that
offer similar services need to optimize their service-
evolution strategy by balancing a trade-off. On one
hand, they have to evolve their services so that they
satisfy, to the best degree possible, the clients’ set of re-
quirements; on the other hand, they have to constrain
the amount of effort (and corresponding development
costs) they invest in this evolution, or else the clients’
adaptation costs may be prohibitively high and may
lead them to abandon the evolved service, at a loss
for the provider. This paper makes three contributions
towards modelling this complex phenomenon and
reasoning about the providers’ trade-off.

1) We have developed a game-theoretic model to
capture the interests and relationships between
competing providers and their clients account-
ing for the relevant externalities.

2) We have developed an economic model to cal-
culate the relevant service-evolution parameters,
including evolution and adaptation costs and
corresponding service values. This model also
includes algorithms to systematically calculate
optimal values (or close approximations) for ser-
vice prices and development effort.

3) Finally, we have developed a decision-support
method to assist providers in making the best

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

decision about service evolution. The method
involves “solving the game” to identify the
equilibrium that corresponds to the providers’
evolution actions and effort, the prices for the
new services’ versions and the division of the
clients among the providers.

The rest of this paper is organized as follows. In
Section 2, we discuss the related literature that applies
on our work. In Section 3 we define the service
ecosystem we will be using in our analysis on service
evolution. In Section 4, we analyse service evolution
in a competitive market environment using game
theory and in Section 5, we present the economic
model to calculate the economic aspects of service
evolution. In Section 6, we describe how we can solve
the game to find an equilibrium. In Section 7, we
describe how the models can be used in an artificial
example, inspired by real web services. Finally, in
Section 8 we discuss the assumptions of our models
and how they affect the validity of our findings and
Section 9 concludes our work.

2 RELATED WORK

In this section, we provide a background on soft-
ware engineering economics and discuss methods
on estimating the cost and value of software evolu-
tion. Moreover, we discuss works that have studied
the business and technical relationships that can be
formed in a software ecosystem.

2.1 Software-Engineering Economics

Software economics is a mature research area that
deals with the ever challenging issue of valuing soft-
ware and estimating the costs involved in its produc-
tion. These issues are exacerbated in the case of service
systems, because of the peculiarities of such systems,
some of which we are highlighting in our work.

In their work, Boehm and Sullivan [3], [4], [5] out-
line these challenges and also discuss how software-
economics principles can be applied to improve soft-
ware design, development and evolution. They define
software engineering fundamentally as an activity of
decision making over time with limited resources and
usually in the face of significant uncertainties. Uncer-
tainties pose a crucial challenge in software develop-
ment that can lead to failure of systems. Uncertain-
ties can arise from inaccurate estimation. For exam-
ple, cost-estimation models developed for traditional
development processes no longer apply to modern
architectural styles and development processes, such
as the ones around service-oriented software systems.

Boehm and Sullivan [5] put forward a utilitarian
view for software evolution, according to which the
system in order to create value for any involved
party, it must create value for all whose contributions
are critical to the project’s success. Failure to satisfy

any of those critical contributors will mean overall
failure of the project thus failing to satisfy any of the
involved parties. Through our work, we emphasize
the importance of the utilitarian approach.

2.2 Values and Costs of Software Evolution

Software evolution has been extensively studied, both
as a technical problem as well as a decision-making
process. In this section, we review several works that
touch upon various aspects of the software-evolution
problem as described in our work.

The value that a change is expected to contribute
to a software system and how it will be calculated
depends on the nature of the change. To calculate
the value from adding new features, Tansey [6] used
financing and accounting measures, namely the Net
Present Value index (NPV) along with software met-
rics to calculate cost and effort and projected the
evolution of the system in the future in order to
select the most profitable scenario. To calculate the
value of changes to fix the design of the system
previous software-maintenance research [7] has used
traditional software metrics to calculate the improve-
ment in design quality, maintainability and under-
standability of the code.

Ozkaya et al. [8] propose a quality-guided model to
evaluate architectural patterns and design decisions
to support the decision process of software designers
and architects. They employ real-options analysis to
identify the best available design decision. In their
analysis, they take into account and study the effect
of the decision on a set of quality properties (rather
than just one).

Many methods have been proposed to estimate the
implementation cost of changing software. One of the
most popular ones is COCOMO II [9]. This model
calculates cost as the programmatic effort required
to change the software in terms of source lines of
code or function points. An issue with this model is
that it requires knowledge about the system’s source
code. When the source code is not available, as is the
case for service-oriented systems, the provider cannot
predict the adaptation cost for the client and there-
fore cannot make an informed decision. This issue
is mitigated by an extension of COCOMO II, called
COCOTS, which calculates costs when the system
is using Commercial-off-the-shelf (COTS) software.
In particular, a sub-model of COCOTS, the volatility
model, calculates the costs to adapt to changed COTS,
when the source code is unavailable. However, this
approach requires knowledge about the source code
of the client applications, which does not facilitate the
provider’s decision-making process.

Although these works use financial and economic
methods, they focus mostly on the technical aspects
of the problems and not so much on the social
aspects, which are an essential part of economics.

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

However, they clearly point out the need for a model
of the software-evolution process, in the context of an
ecosystem, rather than just as a process carried out
by the service provider as an independent entity. This
model should include all the relevant costs and ben-
efits for providers and clients alike. In our work, we
attempt to show that certain decisions, which might
look optimal for one party, might not be optimal
for ecosystem as a whole, and thus lead to inferior
outcomes for the individual parties.

Focusing on the price (and the value) of web ser-
vices, Lyons et al. [10], [11] recognize the distinctive
characteristics of web services as business artifacts
and study various business models to deliver and
price web services. These business models and the
strategic decisions around them may dictate the re-
lationship between providers and clients, the target
market segments and competition. The authors dis-
cuss different pricing models for web services in-
cluding the freemium model, pay-per-use and the
ad-based model. In our work, we do not assume a
particular pricing model, but we are concerned about
the service price as the final income for the provider
(and consequently the expense for the clients).

In this paper, we expand on our previous work [1],
where we studied the evolution of service systems
from a theoretical perspective focusing more on the
dual relationship between a single provider and a sin-
gle client. In this work, we propose a game based on a
expanded ecosystem. We still have two general types
of strategic players, namely providers and clients, but
we consider more than one player of each type. The
implication is that now we can capture the compe-
tition between providers to attract as many clients
as possible by evolving their services to offer more
functionality with better quality. Moreover, we allow
clients more choices with respect to which provider’s
service they will use.

2.3 Web-Service Ecosystems

In this section, we selectively review previous re-
search on ecosystems whose participants conduct fi-
nancial transactions as they exchange goods and ser-
vices. This review is by no means complete and it is
meant to set the broad background of our framing of
service-system evolution as a software AND business
interaction.

The provider-client game as presented in this work
is a clear example of an ecosystem where externalities
exist. An externality is an indirect cost or benefit
of consumption or production activity, i.e., effects
on agents, other than the originator of such activity,
which do not work through the price system [2].
External effects such as these can lead to suboptimal,
or inefficient outcomes, for the system as a whole,
whereby both parties by acting independently end up
less well off than they could do if they coordinated

their actions or if the decision maker (in this case the
provider) took into account the external effects of any
action.

The Coase theorem [12] argues that an efficient
outcome can be achieved through negotiations and
further payments between the involved parties under
certain conditions (the parties act rationally, transac-
tions costs are minimal, and property rights are well-
defined). In our work, the evolution scenario, where
the provider supports the client in the adaptation
process, is an example of the Coase theorem.

Hoffmann [13] studies the inter-business relation-
ships as a portfolio of strategic alliances and how an
evolving environment can affect these alliances. Ac-
cording to the author, there can exist three strategies
in managing the portfolio and coping with a changing
environment; (a) actively shaping the environmental
development according to firm strategy, (b) stabiliz-
ing the environment in order to avoid organizational
change, and (c) reactively adapting to the changing
environment. In the context of our work, we can
perceive the different strategies in the activities of the
different business partners involved. For instance, the
provider is the one that shapes the environment by
evolving the software, the client is trying to catch-
up with the evolved software in order to stabilize the
environment and reach a previous point of balance
and other providers are trying to adapt to the changed
environment in order to stay in the competition.

Barros et al. [14] and Barros and Dumas [15] de-
scribe how web-service ecosystems have risen to be-
come the predominant model in software solutions.
Traditionally centralized domains, such as business
solutions, electronic shops and electronic auctions are
now publishing pieces of their functionality to create
web service ecosystems. In their work, the authors de-
scribe the ecosystem on a very high level and include
various roles such as provider, broker, intermediary,
client, end-user and so on. In our work, the scope of
the ecosystem is narrower to only include providers
and clients and to study a very specific event within
this scope, namely the evolution of a service and how
this may affect the ecosystem. The authors also point
out the challenges that service evolution may impose
especially from a behavioural and policy perspective.
They also stress the need for tool support for this
problem since “maintaining adapters to deal with [the]
multiplicity of interfaces can be costly and error-prone.”

Caswell et al. [16] describe an expanded service
ecosystem, with multiple providers and clients, where
any partner can be a provider and a client at the
same time. This work studies how value is created
and exchanged within the ecosystem and proposes
business models to calculate this value based on in-
tangible concepts such as the relationship between the
partners and the client’s satisfaction. In the proposed
work, the scope of the ecosystem is much narrower
and it examines the reaction of the ecosystem on very

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

TABLE 1
The model variables and their definitions. Units: pm = person-months, $ = dollars

Type of
variable

Variables
(units)

Definition Values for
example

Input M i (pm) the amount of effort for a provider i to achieve 100% satisfaction of a client’s x
requirements in person-months

Table 4

Input ERx ($) the expected return for a client x for using a service Table 6
Input wi|x ($) the wage (the cost for each person-month) for a provider i or a client x Tables 5, 6
Input mi

o (pm) the amount of effort already invested by provider i for the development of the service
up to the point when evolution is considered

Table 4

Input/
Decision

pi
o|n ($) the price for the old version (o) or the new version (n) of a service i Tables 5, 5

Computed m
i|x
ai (pm) the amount of effort for a client x to adapt to a new version of the service i (mx

ai) or
for a provider i to support the client in the adaptation process (mi

ai) in person-months.
It is assumed that the effort required to adapt or support is directly analogous to the
size and the complexity of the change.

Tables 4, 7

Computed V x
i ($) the value of the software of provider i for client x.

Computed Ci
e ($) the cost associated with service evolution for provider i.

Computed C
i|x
ai ($) the cost for a client to adapt to a new version of service i or for a provider i to support

their clients.
Decision mi

e (pm) the amount of effort for a provider i to evolve a service. Table 4
Decision Xi the clientèle of a provider i as a set of client indices Table 5

Fig. 1. Economic and technical interactions between providers and clients, during service evolution

specific events such as the evolution of a service.

3 WEB-SERVICE ECOSYSTEMS AND EVO-
LUTION

Recapping the problem at hand, web-service ecosys-
tems consist of providers, who offer competitive ser-
vices with similar features, and clients, who consume
these services. Such ecosystems are fundamentally
business environments and service evolution is an

engineering task with direct economic implications.
Clients may request changes and if their requirements
are not satisfied they may switch to another offering.
Therefore, they can push providers towards service
evolution and technological advancement. Providers
can use evolution as a marketing tool to create more
competitive services and attract more clients. Evolu-
tion may also indirectly dictate pricing policies based
on the new features of the service and the new
division of the market. It is worth mentioning that in

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

this context the clients also represent business entities
and not end-users. Therefore, we are talking about
business-to-business relationships and transactions.

Let us first review the software transactions be-
tween the ecosystem participants. As Figure 1 shows,
ClientX develops a client application, which con-
sumes the service of Provider1 through a public and
programming-language-agnostic (usually in XML)
service interface. In order to consume the service, a
middleware is typically used to generate a client
proxy, which is a representation of the service in the
client application’s language according to the service
interface. In the event of service evolution, Provider1
changes the service, which might affect the service
interface, and consequently, ClientX will have to re-
generate the client proxy and adapt to the new service
interface. Provider1 may assist ClientX’s adaptation
process by providing additional evolution informa-
tion [17] or adapters [18], [19] that will preserve the
old service interface invoking the new functionality,
thus minimizing the client’s effort to adapt to the new
version. A third alternative scenario is that the client
chooses to switch to Provider2, in which case a new
proxy needs to be generated and the client application
needs to be migrated to the new service [20].

These software transactions create corresponding
and parallel economic transactions between the par-
ticipants. Table 1 lists all the variables used in our
models to describe these economic transactions. The
variables related to providers are indexed with i, j . . .
and those related to clients with x, y Special sub-
scripts are also used to show the version of the service
(o for old -before the evolution- and n for new -
after the evolution-) or the development action (e for
service evolution and a for client adaptation).

Focusing on the economic implications of the above
software transactions, we observe that when Provider1
offers a service to ClientX, the latter receives value
V x
1 from using this service and the former receives

monetary payment p1 for providing the service. In
the event of service evolution, the provider has a
cost C1

e to change the service and the client has a
corresponding cost Cx

a1 to adapt to the new version. If
the provider decides to support the client, then there
is an additional support cost C1

a1 for the provider
which is subsidized from the total adaptation cost of
the client. Finally, if the client decides to switch to
Provider2, the client will have to cover the adaptation
cost Cx

a2 to migrate to the other service, and at the
same time the client will receive a different value V x

2

and will have to pay a different price p2.
The value of the service (further explained in Sec-

tion 5.1) and the cost of a change (further explained
in Section 5.2), either for evolution or for adaptation,
directly depend on the features and the functional-
ity of the service. These features are specified and
implemented according to the clients’ requirements.
The requirements are determined by studying the

environment and understanding its needs on a par-
ticular problem or they are explicitly solicited from
the clients. These requirements are then formulated
as use cases for the service [21], which in turn can
be translated into Use Case Points (UCP) [22] or
Function Points (FP) [23]. Using UCP as a metric to
determine the size of a feature or of the software
as a whole, we can estimate the effort required for
the implementation of the features using COCOMO II
measured in person-months (me or ma for evolution
and adaptation respectively). Thus, we showed that
there is indirect but explicit correlation between fea-
tures and effort. Having gathered all the requirements
from all the different clients, the provider can now
estimate the total effort required to satisfy the full set
of requirements (M1 for Provider1 in Figure 3).

Although based on the same set of features, the
effort is perceived differently by providers and clients
in monetary terms. The value the clients receive from
a service depends on their expected return ERx. This
return specifies how much the clients value each
feature and its quality (functional and non-functional
requirements) and it is different for each client. How-
ever, the return is not specific to particular service
since the clients evaluate the desired features and not
how those are implemented. The actual value that
a client receives from a specific service (e.g. V x

1 for
Provider1) depends on the effort that the provider
of this service has invested towards satisfying the
complete set of all its clients. The proposed model
receives the expected return as an input and the
calculation of which features each particular client
requires and how much they value them is beyond
the scope of this work. The monetary cost of the
evolution (adaptation) effort can be estimated based
on the monthly developer wage w as the nominal cost
for a person-month.

The price p of a version and the total effort me

invested by the provider in the evolution of a service
vary based on the needs of the clients and the state of
the ecosystem at a given time. As in any market envi-
ronment, the provider will have to offer a service that
best satisfies the clients’ requirements at a competitive
price. The estimation of price and effort, while taking
into account the environment, is analysed in Section 6.

Finally, the decisions whether to evolve a service,
support clients or switch providers are based on the
economic parameters of the ecosystem calculated as
previously, the interactions between the participants
and the environment. This process is analysed in
Sections 4 and 6.

4 THE PROVIDERS-CLIENTS GAME

The fundamental premise of this work is that any
decision about software evolution should be made
taking into account its implications for the whole
software ecosystem. More specifically, when making

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

decisions concerning evolution in a service ecosys-
tem, participants will have to consider not only the
development costs and the expected gains (i.e., in-
creased income for providers and better services for
clients), but also the externalities of these actions on
other participants [1]. For example, the decision of
a provider to evolve will create externalities (more
competitive service and/or price) for their clients
and their competitors. Similarly, a client’s decision to
switch providers will create externalities (loss/gain
of revenue for the original/new provider) for the
providers involved.

Since self-interested competing parties are consid-
ered in the ecosystem, the service environment can
be modelled as a game and their interactions and be-
haviours are studied using game theory. The service-
evolution game is a two-stage game. In the first stage,
the providers decide independently from each other
whether to maintain the status quo of their services,
or evolve them, or evolve and support their clients.
This stage is a simultaneous game and it can be
represented as a normal form game.

In the second stage of the game, the clients react
to the providers’ collective actions represented by the
Cartesian product of their action sets: Ai×Aj ,∀i, j ∈ I .
This stage of the game is solved for each client sep-
arately to find the final market division. The second
stage of the game can be represented in an extensive
form, where the provider group plays first and then
the clients choose a service.

The service-evolution game is formally defined in
Equation 1 in terms of the set of players P , the set
of actions for each player A, the set of states of the
game S as a combination of the players’ actions and
the set of utility functions for each player U per game
state. The set of players for the service-evolution game
consists of providers in set I and clients in set X .
Each provider can either (a) retain the status quo of
its service (SQ), (b) evolve its service (E), or (c) evolve
its service and support its clients’ adaptation (S).
The actions of the clients correspond to the available
services from set I ; they can opt to adopt any one
of them. It is assumed that each client uses a service
and the question is whether the client will stay with
the current service or switch to another provider in
case the ecosystem changes (i.e., if any of the services
has evolved). The states refer to the conditions of the
ecosystem after a specific combination of player ac-
tions have been performed (i.e. at a leaf of the second
stage of the game). Therefore, a state is characterized
as said combination.

P = {I = {i, j, . . . }, X = {x, y, . . . }}
A = {Ai = {SQ,E, S}, Ax = {I}}, ∀i ∈ I, x ∈ X

S = (Ai)n ×Ax, ∀i ∈ I, x ∈ X,n = |I|
U = {U i(ai, a−i), U

x(i, s)}, ∀i ∈ I, x ∈ X, s ∈ S
(1)

The utility of the client x (Equation 2) is a function

of the chosen provider i and the current state of the
game s. It depends on three factors; the value that the
client receives from the service, the price of the service
(new if the provider has evolved, and old otherwise)
and any necessary adaptation costs.

Ux(i, s) = V x
i (mi

o +mi
e)− pio|n − Cx

ai(m
x
ai) (2)

The utility of a provider i (Equation 3) is a func-
tion of the provider’s action a, relative to all other
providers’ actions (a−i). It is the sum of the revenue
the provider receives from its clients, minus the costs
of service evolution (if the provider has chosen to
evolve its service), minus any support costs (if the
provider has chosen to support its clients’ adaptation).

U i(SQ, a−i) = |Xi| · pio (3)

U i(E, a−i) = |Xi| · pin − Ci
e(m

i
e)

U i(S, a−i) = |Xi| · pin − Ci
e(m

i
e)− Ci

ai(m
i
ai)

TABLE 2
A two-provider game in normal form

SQ2 E2 S2

SQ1 U1(SQ1, SQ2), U1(SQ1, E2), U1(SQ1, S2),
U2(SQ2, SQ1) U2(E2, SQ1) U2(S2, SQ1)

E1 U1(E1, SQ2), U1(E1, E2), U1(E1, S2),
U2(SQ2, E1) U2(E2, E1) U2(S2, E1)

S1 U1(S1, SQ2), U1(S1, E2), U1(S1, S2),
U2(SQ2, S1) U2(E2, S1) U2(S2, S1)

Fig. 2. The second stage of the game for two providers
and one client

Based on this description, Table 2 shows an example
of the provider normal-form game for two providers.
The table contains the utilities for the two providers
for every combination of their actions. The utilities are
calculated according to Equation 3. Figure 2 shows
an example of the client extensive-form game for two
providers and one client. The leaf nodes contain the

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

utility of the client when selecting one provider given
the combination of the two providers’ actions. For this
particular example, there 32 = 9 combinations for the
providers’ actions.

5 COSTS AND VALUES

Having modelled the interactions among service
providers and clients as a game, we develop an
economic model to formalize the ecosystem in terms
of values, costs, prices and development effort, cap-
turing the effect of service evolution on these param-
eters. All these economic parameters of the model are
defined in the context of the ecosystem considering
all the externalities.

5.1 The Value of the Service

The value for the service as perceived by a client is
determined by the amount of effort invested by the
provider towards satisfying the client’s requirements.
The provider (i) estimates how much effort in person-
months is required to fully satisfy global and uniform
set of requirements as this was gathered from the
clients and the ecosystem (M i). The actual effort mi

that the provider invests in the evolution of its service
determines the degree to which the clients’ require-
ments are satisfied. The final value of the service is
the corresponding portion of the return that the client
expects from using the service (ERx).

Any effort invested by the provider towards sat-
isfying the clients’ requirements will add value to
the client. When calculating the value of a particular
version of the service, the cumulative amount of
effort mi

o invested by the provider up to this version
is considered. When mi = M i, then the value is
equal to the client’s expected return. Any additional
investment by the provider will not have any effect
on the value of the service as perceived by the client
but they will incur additional adaptation costs, which
will indirectly affect the value of the service as it will
be shown in the next section. Equation 4 shows the
function for the value of service.

V x
i (mi) =

{
Rx mi

Mi mi < M i

Rx mi ≥M i (4)

5.2 Evolution and Adaptation Costs

All software-development costs are functions of the
effort in person-months and the wage w as the nomi-
nal cost for a single person-month as shown in Equa-
tion 5. Cost as a function of effort is linear.

C(m) = wm (5)

The adaptation costs depend on the providers’ and
the clients’ actions, as shown in Table 3.

5.2.1 Provider Evolves; Client Adapts
The effort required to adapt to a new version of a
service is proportional to the effort required to evolve
the service, since they both depend on the scope and
the nature of the change itself. Further, it is assumed
that it is easier to evolve the service than to adapt to
it, since the provider has more information concerning
the change itself. Formally, we have that mai = ame,
where a > 1. This assumption is further discussed in
Section 8.

5.2.2 Provider Evolves and Supports; Client Adapts
Providers want their clients to “follow” and catch up
with the evolution of their services and, in order to
encourage them, they may choose to support their
adaptation. In our previous work [1], we studied
this process and we argued that providers are more
efficient i.e., they require less effort in person-months
to create adapters for their changed services than their
clients, because they are more familiar with the service
implementations. Since the adaptation process is spe-
cific to the service for which the adapters are created
and not to the clients that use it, familiarity with the
service implementation implies lower cognitive costs
in the adapter creation.

To estimate the cost of the client’s effort to migrate
from one version of the service to a newer one, we rely
on the IBM Rational Unified Process [24] model. Ac-
cording to RUP, software development involves four
phases (inception, elaboration, construction and transi-
tion), the second and third of which consume 75%
of the total development effort. Our model assumes
that the provider’s inception and transition costs are
negligible, since the provider has complete knowledge
of the service being evolved, while, on the other
hand, the client would have to assume the full costs
for the adaptation. Therefore, the provider’s cost of
supporting the client’s adaptation is 75% of the client’s
total adaptation cost. Eventually, what remains for
the client is 25% of the original estimation for the
adaptation cost.

5.2.3 Provider Evolves and Supports; Client Migrates
The third scenario involves the client abandoning its
current provider, preferring an alternative service. In
this case, the client’s adaptation must address all the
differences between the service it used to invoke and
the newly chosen service. This adaptation effort is
considered to be a portion of the new provider’s total
effort up to the version considered or, more formally,
b(mj

o +mj
e), where b < 1.

5.3 Cost-Value Relationship
Figure 3 illustrates the above value and cost func-
tions. The value that the client receives from a par-
ticular service provider is maximized to ERx when
the provider’s effort equals M i. When ERx

Mi > awx

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

(a) Feasible client. (b) Marginal client. (c) Infeasible client.

Fig. 3. The value and cost functions.

TABLE 3
Adaptation-cost functions

Provider Action Client Adapts Client Migrates
SQ 0 awxb(mj

o +mj
e)

E awxmi
e awx(mj

e + b(mj
o +mj

e))

S 0.25awxmi
e awx(mj

e + b(mj
o +mj

e))

(Figure 3(a)), the cost curve intersects with that of
the value when the effort equals to m∗, as shown
in the figure. If the provider’s effort is less than
m∗, the client receives a value somewhere in the
efficient area (the shaded area in the Figure), where the
client is satisfied since the received value exceeds the
adaptation costs. For m < m∗, the difference between
the value and the cost determines how much the price
may increase for the new version while still satisfying
the client. If ERx

Mi = awx (Figure 3(b)), then m∗ =M i,
which implies that this particular client cannot afford
any price increase. If ERx

Mi < awx (Figure 3(c)), then the
two lines do not intersect and this client can never be
supported by this provider.

6 THE DECISION-SUPPORT SYSTEM

Having discussed how software costs and values can
be calculated, let us now discuss the decisions around
the price of the new version of the service, the devel-
opment effort and the final evolution strategy of the
provider. The solution of the service-evolution game is
a Nash equilibrium, where all providers have selected
an evolution strategy, the clients have chosen which
service to adopt, and no strategic player (provider or
client) has any benefit from changing their decision.

In the context of this work, we assume that the
decision around the evolution of a service is an in-
stantaneous event. This implies that at the time of the
time decision all the parameters have been considered
and the environment is stable; no extra requirements
are expected and no participants are expected to enter
or exit the market. The implications of this assumption
is further discussed in Section 8.

Furthermore, the decision on evolution is specific
to a single service. If a client uses more services and

the evolution of one affects the others (most probable
due to quality or policy conflicts), these dependencies
are factored in the adaptation costs, outside the scope
of the proposed model, and are provided as input.

6.1 Price and Development Effort

The uniformity of client requirements assumption for
each service implies that all clients of the service
will pay the same price for it and the provider will
estimate a single value for the effort to satisfy these
requirements. The optimal evolution effort is the re-
maining effort to fully satisfy the client requirements,
mi

e =M i−mi
o. This is the best response of a provider

to the competitors’ actions. If a provider invests less
effort than this amount, a competitor can win over the
client simply by offering a marginally better service
(by slightly increasing the effort).

The service price is calculated under the assump-
tion that there is a correlation between the price and
the number of clients that use the service. If the
provider increases the price of the service, the new
service may be too expensive for some clients, who
may choose to leave the current provider. Conversely,
if the provider decreases the price, more clients may
find it affordable and decide to switch to it. Therefore,
the correlation between the price and the number
of clients adopting the service is negative. If it is
assumed that the relationship is also linear we have
that:

pi = α− β|Xt
i | (6)

Although linearity is a simplification, it does not affect
the steps of the analysis. Any type of relationship can
be used, as long as the resulting revenue function can
be maximized to find the optimal number of clients
for a state.

In order to calculate the coefficients of the line,
two points are needed as shown in Figure 4(a). The
first point corresponds to the minimum possible price
(pmin) to satisfy as many clients as possible (Xmax),
then the second point is the maximum possible price
(pmax) to satisfy at least one client (Xmin). If more
clients can be satisfied by pmax, then Xmin > 1.
By solving the equation for the two points the final

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

(a) The price vs clients curve.

(b) The profit of the provider.

Fig. 4. The price vs clients analysis

function for the price-clients line is:

pi =
|Xmin|pmin − |Xmax|pmax

|Xmin| − |Xmax|
− pmax − pmin

|Xmin| − |Xmax|
|X| (7)

From Equation 7 for price, the total revenue (Ri) of
the provider is defined as:

Ri = |Xi|pi (8)

=
|Xmin|pmin − |Xmax|pmax

|Xmin| − |Xmax|
|Xi| −

pmax − pmin

|Xmin| − |Xmax|
|Xi|2

Next, the first derivative of Equation 8 is calculated
and the optimal number of clients is the point where
the revenue function is optimized. As a quadratic
function, this happens when (note that the result is
rounded to the closest integer to the actual result):

|X∗| =
[|Xmin|pmin − |Xmax|pmax

2(pmax − pmin)

]
(9)

For each client in this set, Inequality 10 is solved
for pin. The left side of the inequality is the utility of
the client for the provider, whose price needs to be
calculated, and the right side the utility for a competi-
tor. It is assumed that if either or both the providers

evolve their service, they both try to fully satisfy
the client’s requirements, and so mi

e = M i. Given
the competitor’s price, an upper bound is calculated
for the price of provider i. If there are more than
one competitors, the lowest of these upper bounds is
selected, because this would satisfy the client against
all competitors.

Ux(i, s) ≥ Ux(j, s) (10)

If the X∗ set is sorted according to the upper
bounds calculated for each client in descending order,
then the optimal price is that of the last client in the
sorted set. This method is applied for all states of the
game so that an optimal price is calculated according
to all the competitors’ different actions.

6.2 The Nash Equilibrium

Having calculated the right amount of effort to in-
vest in the service evolution and the right price to
ask for the evolved version, the second stage of the
game (Figure 2) is solved to determine the new client
distribution among the providers. For each state of the
provider game, the utility of a client is calculated for
each provider and they are compared with each other.
The maximum utility determines the provider whose
service the client will use for the particular state. The
aggregate results of the second stage, for all clients
and states of the game, determines each provider’s
clients for each state.

Note that the price has been calculated ceteris
paribus, i.e., considering the estimated future price for
the competitor as a given. If the competitor’s future
price was to be considered as a variable and subject
to calculation, its calculation would create an infinite
loop; as a result, one should note that the actual
set of the provider’s clients may differ from the set
determined with X∗.

With the actual price, the actual evolution effort and
the actual set of clients for each provider for each state
of the game, a complete picture of the state of the
game i.e., the ecosystem after the service evolution is
formed. The extra incentive behind modelling service
evolution as a game is that, as a finite game, it is
guaranteed to have at least one solution in the form
of a Nash equilibrium as it has been proven [25].
The resulting game is a N-player general-sum game
(depending on the number of providers). Such games
are PPAD-complete [26] and cannot be solved in
polynomial time. However, if the number of providers
is relatively small, the following steps can be taken to
compute an equilibrium.

6.2.1 Dominated-Strategies Removal
The first step involves the iterative removal of domi-
nated strategies of the providers. The first provider’s
actions are examined and if a dominated one is found,

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

it is removed from this provider’s action set. Given
the updated action set, the second provider’s actions
are examined in a similar way. After all providers
have been examined, the process is repeated starting
again from the first provider. The process is repeated
until only one action remains for each provider or no
actions are removed in a cycle (i.e., a single iteration
of all the providers).

6.2.2 Mixed Nash Equilibrium
If the above process has not resulted in a single
action for each provider, the next step attempts to
identify a mixed-strategy Nash equilibrium, where the
providers randomly decide on an action according to
a given probability distribution. To find the distribu-
tion for a given provider, probability variables are
assigned to the actions, e.g. si = {p, q, 1 − p − q}1.
The distribution that corresponds to an equilibrium
is that for which the other providers become indiffer-
ent between their actions, formally, U j(SQj , s−j) =
U j(Ej , s−j) = U j(Sj , s−j). This system is solved to
find the probability distribution. If no proper prob-
ability distribution is found, this implies that there
might exist dominated strategies. In order to find the
potential dominated strategies, a subsystem is solved
with only two of the three actions of provider j’s
actions. If the probability of one of the actions is found
to be negative in all subsystems that it participates,
then this action is dominated and it can be removed.
The process repeats until a mixed strategy equilibrium
is found or no more actions can be removed.

6.2.3 Weak Nash Equilibrium
If an equilibrium cannot be found with either of
the above methods, an extraneous condition may be
imposed. The action combinations that satisfy the
condition may not correspond to a true equilibrium,
but they still represent valid decisions.

One such condition is that the providers form a
cartel. In a cartel, the providers will agree on specific
evolution strategies that maximize the total payoff
for the collective of the providers. This may be a
fragile collaboration, since there can exist at least one
provider who will be benefited by switching to a
different strategy.

An alternative extraneous condition is to maximize
the total welfare of the ecosystem. The welfare of the
ecosystem is defined as the sum of all the providers’
and clients’ utilities. Such an equilibrium may cre-
ate opportunities for collaboration between providers
and clients. This can be a realistic scenario for small
ecosystems or for very tightly dependent software
components that may dictate stronger relationships
and collaboration between the providers and the
clients.

1. Each probability is a positive number less than 1 and all
together add up to 1.

7 THE CLOUD-SERVICES CASE STUDY
We illustrate our decision-support system with a
synthetic but realistic example, inspired by the
ecosystem of PaaS (Platform-as-a-Service) and IaaS
(Infrastructure-as-a-Service) cloud providers. We have
three fictional providers: Amzn, Macroshift and Gog-
gle. In this ecosystem, we consider a synthetic popu-
lation of five clients with the same set of requirements
as per the uniformity assumption.

Even though the example case study is synthetic,
it serves to illustrate two important points regarding
our contribution. First, the case study helps us walk
through the steps of our decision-support method and
discuss the implications of its suggestions. Second,
and perhaps more importantly, it illustrates that the
values assumed as input by our decision-support
methodology are available, some in publicly accessi-
ble resources (like the developers’ wages) and some
are part of the participating organization’s record (like
the effort invested in developing the current version
of the service) (see also discussion in Section 8).

7.1 The Ecosystem Context
Each provider offers software services to manage
virtual machines and images on their respective cloud
infrastructures. At the point where evolution is con-
sidered, the three providers offer slightly different
features and, therefore, each provider requires dif-
ferent amounts of effort to fully satisfy the clients’
requirements. Table 4 shows the effort that each of
these providers has invested in their offerings up to
now, the effort required to fully satisfy the clients’ re-
quirements, and the effort required to create adapters
for these clients once the services have evolved. The
values for the current and total effort were randomly
generated from normal distributions (between 5 to 12
person-months and 15 to 20 person-months respec-
tively). The adaptation effort is calculated based on
the service-evolution effort, assuming a factor a = 1.2
(mai = ami

e).
Table 5 shows prices, wages and the current market

division for the three providers in our example. The
prices that the providers charge their clients for the
purchase of virtual-machine instances were obtained
from the web sites of three actual service providers
and correspond to five medium to high capability in-
stances. The wages were obtained from Glassdoor2, a
web site that contains information (including salaries)
from employers worldwide. For this example, we use
wages that correspond to a medium-level software
engineer. The market is roughly divided based on a
recent market surveys [27], according to which three
major providers have 53%, 12% and 10% of the market
share.

For the clients of the ecosystem, we have randomly
generated their expected return to be around $250K

2. http://www.glassdoor.com/index.htm

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

TABLE 4
Current, total and adaptation effort in person-months

for the cloud-services ecosystem

Providers Current Total Adaptation
(mi

o) (M i) (mi
ai)

Amzn 10 16 7
Macroshift 7 19 14
Goggle 10 18 9

TABLE 5
Providers: Prices, wages, and market division

Providers Current Future Wage Market
Price Price division

(pio) (pin) (wi) (Xi)
Amzn $31,859.60 $147,312.00 $9,925.00 A,B,C
Macroshift $30,127.40 $145,843.20 $8,658.10 D
Goggle $36,310.20 $84,283.20 $9,9 16.33 E

and the wages of their software developers to be
between $5,000 and $10,000 as shown in Table 6.

Table 7 shows the estimated adaptation effort for
each client-provider combination, according to the
market division, the provider’s evolution and adap-
tation effort based on the functions from Table 3.

7.2 Solving the Example

Having established the market division of the service
ecosystem, the amount of effort invested in devel-
oping the various service offerings and their current
prices, the wages of the software developers, and
the amounts of effort necessary to fully meet the
anticipated client requirements, we can now proceed
to solve the service-evolution game.

First, we find the optimal price and the evolution
effort of the providers for each state of the game. We
will demonstrate the process for a single game state
as an example. In this example state, Amzn chooses to
evolve (E), Macroshift chooses to support its clients

TABLE 6
Clients: Expected returns and wages

Clients Expected Return Wage
(ERx) (wx)

A $254,903.80 $8,013.10
B $268,499.60 $7,629.72
C $289,261.40 $7,337.00
D $257,957.50 $6,604.00
E $258,585.30 $5,991.41

TABLE 7
Client-adaptation effort

Amzn Macroshift Goggle
Clients SQ E S SQ E S SQ E S
A 0 8 2 4 18 18 5 15 15
B 0 8 2 4 18 18 5 15 15
C 0 8 2 4 18 18 5 15 15
D 5 13 13 0 15 4 4 15 15
E 5 13 13 4 18 18 0 10 3

(S) and Goggle chooses to retain the status quo of the
service (SQ). Since the provider game is simultaneous
and the providers decide independently and in the
same way for each state of the game, the same process
is applied for all states of the game.

An additional piece of information needed for this
analysis is the price for each service after they have
evolved. Although this price is the result of the analy-
sis, when considering it from a single provider’s point
of view it is required that the competitors’ prices be
known. For this reason, estimates can be used that
can be the results of regression analysis of historic
data for example. In our case study, the instances
that will come from the evolution process of the three
providers already exist in reality. Therefore, we can
use those prices from the providers’ web sites as the
future prices that are shown in Table 5. Again, the
table contains the total yearly cost for 5 instances.

As an example, we will analyse the situation from
Amzn’s perspective as the decision maker, to find the
optimal price for this state for Amzn. We follow the
same process for all other providers. Table 8 shows
the upper bounds calculated for the Amzn price for
all competitor-client pairs.

TABLE 8
Price bounds for Amzn

Clients Macroshift Goggle
A $244,901.17 $102,090.45
B $246,779.37 $100,734.33
C $250,876.98 $100,419.80
D $172,405.66 $54,223.92
E $201,406.20 $18,319.05

According to Table 8 and Equation 9, the optimal
number of clients in this case is 3, with optimal
price at $100, 419.80 for Amzn. Similarly, the optimal
number of clients and the optimal price for Macroshift
are 1 and $27, 661.45 respectively. We don’t need to
calculate a new price for Goggle, because in this par-
ticular state the Goggle service doesn’t change. We use
these prices in the second stage of the game. The result
of this game will give the new market division for this
state which is: Amzn={A,B,C}, Macroshift={D,E} and
Goggle={}.

At first glance, it appears that retaining the status
quo in an evolving environment proved to be a mis-
take for Goggle, while choosing to support its clients
adaptation allowed Macroshift to retain its client
against the stronger competitor, Amzn. Macroshift
also managed to claim client E from Goggle over
Amzn, in spite of the higher adaptation costs, since
Macroshift could offer the same service in a more
competitive price for client E than Amzn. This did
not hurt Amzn, because they managed to retain their
original clients for a higher price. They would not
be in a better position by lowering their price just to
satisfy client E. This example shows that our approach
produces prices that result in a balanced ecosystem for

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

TABLE 9
The provider game for cloud services

SQ3
SQ2 E2 S2

SQ1 $95,578.80 $95,578.80 $95,578.80
E1 $95,578.80 $95,578.80 $95,578.80
S1 $95,578.80 $95,578.80 $95,578.80

E3
SQ2 E2 S2

SQ1 $342,129.19 $139,326.16 $139,326.16
E1 $241,709.39 -$59,550.00 -$59,550.00
S1 $241,709.39 -$59,550.00 -$59,550.00

S3
SQ2 E2 S2

SQ1 $270,669.19 $67,866.16 $67,866.16
E1 $170,249.39 $175,580.75 $175,580.75
S1 $170,249.39 $175,580.75 $175,580.75

SQ3
SQ2 E2 S2

SQ1 $30,127.40 $0.00 $0.00
E1 -$93,302.93 -$98,600.06 -$98,600.06
S1 -$217,979.57 -$223,276.70 -$223,276.70

E3
SQ2 E2 S2

SQ1 $0.00 $0.00 $0.00
E1 -$48,574.30 -$60,981.01 -$60,981.01
S1 -$173,250.94 -$185,657.65 -$185,657.65

S3
SQ2 E2 S2

SQ1 $0.00 $0.00 $0.00
E1 -$48,574.30 -$32,332.93 -$32,332.93
S1 -$173,250.94 -$157,009.57 -$157,009.57

SQ3
SQ2 E2 S2

SQ1 $36,310.20 $20,370.85 -$74,825.91
E1 $0.00 -$29,479.89 -$124,676.66
S1 $0.00 -$29,479.89 -$124,676.66

E3
SQ2 E2 S2

SQ1 $36,310.20 -$1,778.34 -$96,975.11
E1 $0.00 -$35,693.50 -$130,890.27
S1 $0.00 -$42,196.13 -$137,392.90

S3
SQ2 E2 S2

SQ1 $36,310.20 -$1,778.34 -$96,975.11
E1 $0.00 $882.38 -$94,314.39
S1 $0.00 -$63,984.82 -$159,181.59

the particular state of the game.
Having the prices and the clients determined for all

providers and all game states we can now calculate
the provider utilities for the first stage of the game. Ta-
ble 93 shows the normal form game for the providers
of the example with all the utilities fully calculated.
The first set of three tables contain the utilities for
Amzn, the second for Macroshift and the last one for
Goggle. In each table of each set the provider actions
are indexed according to which provider takes what
action; 1 is for Amzn, 2 is Macroshift and 3 is for
Goggle.

Table 9 shows that there are no dominated strategies
for any of the providers. However, looking at the total
payoffs of all the providers for each state in Table 10, it
appears that there is a state (SQ1, SQ2, E3), that max-
imizes the providers’ total payoff. Incidentally, this
point is also a Nash equilibrium as no provider would
gain anything from switching to another action. At

3. Table 9 is an instance of Table 2.

TABLE 10
Total provider payoffs for the provider game

SQ3
SQ2 E2 S2

SQ1 $162,016.40 $115,949.66 $20,752.89
E1 $2,275.87 -$32,501.16 -$127,697.92
S1 -$122,400.77 -$157,177.80 -$252,374.56

E3
SQ2 E2 S2

SQ1 $378,439.39 $137,547.81 $42,351.05
E1 $193,135.09 -$156,224.51 -$251,421.28
S1 $68,458.45 -$287,403.79 -$382,600.55

S3
SQ2 E2 S2

SQ1 $306,979.39 $66,087.81 -$29,108.95
E1 $121,675.09 $144,130.20 $48,933.43
S1 -$3,001.55 -$45,413.64 -$140,610.41

TABLE 11
Total payoffs for the ecosystem

SQ3
SQ2 E2 S2

SQ1 $746,610.97 $744,412.95 $692,354.33
E1 $679,523.64 $688,615.32 $636,556.71
S1 $626,170.20 $635,261.88 $583,203.27

E3
SQ2 E2 S2

SQ1 $896,647.97 $813,082.94 $761,024.33
E1 $781,632.55 $493,956.31 $441,897.70
S1 $728,279.11 $440,602.87 $388,544.26

S3
SQ2 E2 S2

SQ1 $949,278.99 $865,713.97 $813,655.35
E1 $834,263.58 $820,990.95 $768,932.33
S1 $780,910.14 $767,637.51 $715,578.89

the very least Macroshift and Goggle are indifferent
to their actions while Amzn retains its status quo.

Examining the total payoffs for all the participants
of the ecosystem (providers and clients) in Table 11,
one can see that the payoff is maximized in the state
SQ1, SQ2, S3. Again, this is another Nash equilibrium
for the same reason as before. This state results in
a smaller payoff for the providers than the previous
equilibrium but more for the clients. This can be an
opportunity for collaboration among the providers,
who can decide to simultaneously increase their prices
until the market division remains the same. This
would result in a cooperative game, which is a topic
for future research and it is not covered in this work.

8 ASSUMPTIONS AND THREATS
TO VALIDITY

The decision-support system that we have described
in this paper examines a service ecosystem circum-
scribed by three basic assumptions.

Uniformity of client requirements. This assumption is
logically based on how a provider may gather and
implement client requirements. In practice, a provider
will not create one service for each client, but rather a
service with multiple features that can satisfy a larger
number of clients. If the requirements start to differ
significantly, then the provider may decide to split
the offerings into two services, which will then be

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

charged differently. For example, in our case study,
Amzn may offer on-demand instances charged on a
per-hour basis, reserved instances for a fixed price or
spot instances charged based on an auction-scheme4.
Therefore, since we are talking about different services
and different prices, the evolution of each one of them
will be addressed as a different game with different
clients for each one of them. If changes in the services
affect each other, then the provider can play the client
game for each service and accumulate its outcomes
on the provider game. From a client’s perspective, the
difference in the perception of the features’ implemen-
tation by the providers is included in the expected
return. In the future, we plan to investigate how the
expected return is estimated by each functional and
non-functional requirement of a client.

Paid services. This business relationship between
providers and clients creates contractual depen-
dencies between the participants, thus forcing the
providers to consider the externalities of their deci-
sions concerning the evolution of their services. The
strong relationships in the examined ecosystem also
imply that providers and clients are close enough
to exchange information that may be important for
service-evolution decisions. This information includes
values for the input variables of the decision support
system. Although we recognize the existence of other
pricing mechanisms, such as the freemium model
and the advertisement-based model, these ecosystems
imply different, more subtle, externalities than what
we considered in this paper.

Instantaneous nature of service evolution. The basis of
this assumption is that the volatility of the service
ecosystem is very hard to predict and therefore any
decision would be based on very rough estimates.
Therefore, it is preferable to constrain the knowledge
about the ecosystem on a short period and make
decisions based on whatever is known or it can easily
be estimated. The implication of this assumption is
that any long-term effects are not factored in the
decision process and this is something we plan to
explore in the future but rather as a complement to
the constrained decision due to the sensitivity of the
associated predictions.

Another threat to validity is implied by the assump-
tions concerning the the knowledge/availability of
certain economic parameters in our models.
ERx. The client’s expected return for a service is

considered to be the opportunity cost of choosing
to pay for the service, as opposed to developing
an in-house solution. If the in-house solution is the
more expensive option, then the anticipated return
corresponds to the funds the client saves. For target
clients (i.e., clients that the provider tries to “steal”
from competitors), these values could be estimated
by taking advantage of publicly available information,

4. http://aws.amazon.com/ec2/purchasing-options/

such as marketing surveys or SLAs (Service Level
Agreements), which can indicate how much clients
value similar services from the domain and also how
different clients value each feature offered by the
services from the ecosystem.
M i. The client communicates its requirements to

the provider by making direct feature requests or,
conversely, the provider solicits these requirements
from market research. The provider then estimates
how much effort is required to implement the new
features and this effort is added to whatever effort
was already invested up to the current version of the
service to comprise the M i variable.
pi and w. Software prices and wages for software

developers are usually public information, easy to ob-
tain or, at least, estimated. In order to estimate future
price of competitive services (i.e., after evolution), the
providers can perform regression analysis on utilize
historic data. Future value of a competitive service
can be assessed by studying the new features and
improvements in quality properties of the service.
mj

e. The competitors development effort can be esti-
mates by taking into account information from public
software artifacts including service interfaces and pos-
sibly business processes. In our previous work [28],
we have initiated a discussion about a possible way
of assessing the impact of changes in the service
interface to client applications. This assessment can be
quantified into a metric, which enables us to estimate
the cost of a change, based on the abstract information
conveyed by the service interface. Assuming that ser-
vices offer similar features, a provider may estimate
the effort required by his competitors to implement
those features. The differences in processes or de-
velopment capabilities can be inferred from public
sources and used in the estimation.
mx

a. The idea that adaptation effort depends on the
changes of the service (i.e., the evolution effort) is
fairly broadly accepted. In fact, it is the key intu-
ition for estimating testing effort, based on software
changes using, for example, Function Point Analysis
(FPA) [29]. Similar techniques can be used to estimate
adaptation effort from changes in the service, its size
and its new functionality.

In general, the manner in which the input variables
are calculated does not affect the robustness of the
models, which are valid by construction. Clearly, the
actual values of the input variables will affect the
final decision, which is the objective of the proposed
models after all.

9 CONCLUSION

In this work, we emphasize the need to study service
evolution taking into account the broader context
of the business ecosystem implied by the software
interdependencies between service providers and ser-
vice clients. The evolution of services may exhibit

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

non-typical, and even exaggerated, consequences to
this ecosystem. For example, a small change on the
service side may result in a series of complicated
and expensive changes on the client side. Continuous
incompatible changes to the service may cause the
client to distrust the provider. The potential loss of
income from clients switching providers is not cur-
rently accounted for when a provider considers the
evolution of a service. Thus, service evolution requires
novel support methods, to balance the interests of all
the participants involved, and to increase the value
they receive from the innovations brought about by
the evolution.

The work presented in this paper makes three con-
tributions towards this objective. We first developed
a game-theoretic model to capture the relationships
and complex interactions between the self-interested
partners of the service ecosystem, which includes
competing providers and clients. Second, we formu-
lated an economics model to calculate the relevant
economic parameters when considering the evolution
of a service. Finally, we presented a decision-support
method to assist providers in estimating the optimal
levels of the effort they need to invest in evolving
their services and supporting the adaptation of their
clients, as well as, the optimal price they can demand
for their new service versions. We have demonstrated
this methodology with a synthetic yet realistic case
study.

Our framework substantially informs the decision-
making process of service providers, who, originally,
might have only considered their services, the de-
velopment costs associated with the evolution, and
potential value of the evolution in terms of additional
income to be accrued due to increased prices to be
commanded for the additional service features. Such
a simpler problem formulation, ignorant of the exter-
nalities implied by the business relationships between
providers and clients, is bound to lead to “naive”
decisions with potentially negative results for the
ecosystem. With our deeper analysis of the decision-
making context, the provider can reach a decision that
maximizes its own revenue, while, at the same time,
maintaining the stability in the ecosystem as a whole.

REFERENCES

[1] M. Fokaefs, E. Stroulia, and P. R. Messinger, “Software Evo-
lution in the Presence of Externalities: A Game-Theoretic Ap-
proach,” in Economics-Driven Software Architecture, I. Mistrik,
R. Bahsoon, R. Kazman, K. Sullivan, and Y. Zhang, Eds.
Elsevier, 2013.

[2] J. Laffont, “externalities,” in The New Palgrave Dictionary of
Economics, S. N. Durlauf and L. E. Blume, Eds. Basingstoke:
Palgrave Macmillan, 2008.

[3] B. W. Boehm, Software Engineering Economics. Englewood
Cliffs, NJ: Prentice Hall, 1981.

[4] B. Boehm and K. Sullivan, “Software economics: status and
prospects,” Information and Software Technology, vol. 41, no. 14,
pp. 937–946, 1999.

[5] B. W. Boehm and K. J. Sullivan, “Software economics: A
roadmap,” in Proceedings of the Conference on the Future of
Software Engineering. ACM Press, 2000, pp. 319–343.

[6] B. Tansey, Valuing software services: The real options-based modu-
larity analysis framework. University of Alberta (Canada), 2008.

[7] M. Lanza, R. Marinescu, and S. Ducasse, Object-oriented metrics
in practice. Springer, 2006.

[8] I. Ozkaya, R. Kazman, and M. Klein, “Quality-Attribute Based
Economic Valuation of Architectural Patterns,” in 2007 First
International Workshop on the Economics of Software and Compu-
tation. IEEE, May 2007, pp. 5–5.

[9] B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani,
R. Madachy, and B. Steece, Software Cost Estimation with Cocomo
II with Cdrom, 1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2000.

[10] K. Lyons, C. Playford, P. Messinger, R. Niu, and E. Stroulia,
“Business models in emerging online services,” in Value Cre-
ation in E-Business Management, ser. Lecture Notes in Business
Information Processing, M. Nelson, M. Shaw, and T. Strader,
Eds. Springer Berlin Heidelberg, 2009, vol. 36, pp. 44–55.

[11] K. Lyons, P. R. Messinger, R. H. Niu, and E. Stroulia, “A tale
of two pricing systems for services,” Inf. Syst. E-bus. Manag.,
vol. 10, no. 1, pp. 19–42, Mar. 2012.

[12] R. H. Coase, “The Problem of Social Cost,” Journal of Law and
Economics, vol. 3, pp. 1–44, 1960.

[13] W. H. Hoffmann, “Strategies for managing a portfolio of
alliances,” Strategic Management Journal, vol. 28, no. 8, pp. 827–
856, Aug. 2007.

[14] A. Barros, M. Dumas, and P. Bruza, “The move to Web service
ecosystems,” BPTrends, no. September, pp. 1–9, 2005.

[15] A. Barros and M. Dumas, “The Rise of Web Service Ecosys-
tems,” IT Professional, vol. 8, no. 5, pp. 31–37, Sep. 2006.

[16] N. S. Caswell, C. Nikolaou, J. Sairamesh, M. Bitsaki, G. D.
Koutras, and G. Iacovidis, “Estimating value in service sys-
tems: A case study of a repair service system,” IBM Systems
Journal, vol. 47, no. 1, pp. 87–100, 2008.

[17] K. Chow and D. Notkin, “Semi-automatic update of applica-
tions in response to library changes,” in Software Maintenance
1996, Proceedings., International Conference on. IEEE, 1996, pp.
359–368.

[18] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and
F. Toumani, “Developing adapters for web services integra-
tion,” in CAiSE, 2005, pp. 415–429.

[19] P. Kaminski, M. Litoiu, and H. Müller, “A design technique for
evolving web services,” in Proceedings of the 2006 conference
of the Center for Advanced Studies on Collaborative research -
CASCON ’06. New York, New York, USA: ACM Press, Oct.
2006, p. 23.

[20] S. R. Ponnekanti and A. Fox, “Interoperability among indepen-
dently evolving web services,” in Middleware ’04. New York,
NY, USA: Springer-Verlag New York, Inc., 2004, pp. 331–351.

[21] L. Maciaszek, Requirements analysis and system design. Pearson
Education, 2007.

[22] G. Karner, “Resource estimation for objectory projects,” Objec-
tive Systems SF AB, vol. 17, 1993.

[23] A. Albrecht, “Measuring application development productiv-
ity,” in Proceedings of IBM Applic. Dev. Joint SHARE/GUIDE
Symposium, Monterey, CA, USA, 1979, pp. 83–92.

[24] P. Kruchten, The rational unified process: an introduction.
Addison-Wesley Professional, 2004.

[25] J. F. Nash et al., “Equilibrium points in n-person games,”
Proceedings of the national academy of sciences, vol. 36, no. 1,
pp. 48–49, 1950.

[26] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The
complexity of computing a nash equilibrium,” SIAM Journal
on Computing, vol. 39, no. 1, pp. 195–259, 2009.

[27] J. Bort, “Amazon is crushing ibm, microsoft, and google in
cloud computing, says report,” web site, November 2013, last
accessed 2014-04-13.

[28] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau,
“An Empirical Study on Web Service Evolution,” in Proceedings
of the 2011 IEEE International Conference on Web Services, ser.
ICWS ’11, Washington, DC, USA, 2011, pp. 49–56.

[29] C. R. Symons, “Function point analysis: difficulties and
improvements,” Software Engineering, IEEE Transactions on,
vol. 14, no. 1, pp. 2–11, 1988.

Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

Software evolution presents special challenges in the context of service-oriented

systems. This is not only because of their modular and distributed nature, but

also due to the very nature of the interaction between providers and clients:

clients only have access to the provided service-interface specification (the ser-

vice implementation is hidden) and need a “live” run-time connection with the

service (they cannot own ”local” service copies). Given these constraints, best

practices, like backwards compatibility, are not or may not always be followed.

Recognizing this phenomenon, in my thesis, I have developed WSDarwin, a

set of automated and interactive tools to support both providers and clients

during the evolution of service-oriented systems.

My work makes three contributions towards addressing the problem of

service-oriented system evolution.

1. I have developed tools and methods to support the adaptation of client

applications in response to evolved WS-* services (RP2-WS) (Chap-

ter 2). The WS-* toolkit allows developers to identify changes in a

web service by comparing different versions of its WSDL interface (Sec-

tion 2.3) based on WSMeta, a compact and concise service interface

meta-model (Section 2.2). The results of the comparison are then used

to adapt client applications to the new service version (Section 2.4). The

toolkit is implemented as an Eclipse plug-in so that its offerings are inte-

165

grated with the development environment and allow for testing the client

application after the adaptation process (Section 2.5). The automation

and integration of the plug-in aims at minimizing the developers’ effort

to ensure backwards compatibility for client applications between two

versions of a web service.

2. I have developed tools and methods to support the development and

maintenance of REST client applications (RP1-REST) (Chapter 3). The

REST toolkit enables the automatic generation of WADL interfaces for

REST services based on example invocations, which are typically avail-

able in the REST-service developer documentation. Based on the gener-

ated WADL interface specification, the automatic generation of a Java

client proxy becomes possible to mediate the client’s use of the service

(Section 3.1). The toolkit also offers version-comparison capabilities and

cross-vendor service mapping to facilitate the migration of client applica-

tions between similar services offered by different providers (Section 3.2).

The toolkit is implemented in a web application offering a simple and

easy-to-use interface (Section 3.3). The simplicity of the web applica-

tion provides automation for the development and maintenance of REST

applications without adding overhead to developers.

3. I have developed a system to support the service-evolution decision-

making process taking into account both the technical and economic

implications of evolution (RP2) (Chapter 4). This is achieved through

an economic model to calculate all the economic parameters of the evo-

lution and a game-theoretic model to capture the technical and business

interactions between providers and clients (Sections 4.1 and 4.3). The

models enable decision-support systems for service ecosystems of various

complexities (Sections 4.2 and 4.3). The systems can lead the ecosys-

tem participants to outcomes that are efficient with respect to technical,

social and financial criteria.

The thesis of my work is that service evolution can and should be not

only technically but also socially and economically conscious through support

166

from automated tools. WSDarwin demonstrates the plausibility of this state-

ment. The anticipated impact of my work is to increase, through tool support,

the systematicity of service evolution and client adaptation. The automation

will minimize the effort required to ensure backwards compatibility between

different versions of a web service. Tool support implies that developers of

client applications will now be able to efficiently and effectively react to ser-

vice changes even if evolution standards are not followed completely. With

respect to the decision-making process, my work will enable stakeholders to

better budget the evolution of service-oriented systems by taking into account

not only the direct and technical implications of their decisions but also the

indirect and economical ones. This will also help the participants of a web

service ecosystem to form stronger business relationships with their partners.

5.2 Future Plans and Directions

Through my work, one of my goals is to emphasize on the importance of struc-

tured software interfaces and automatically generated code. The uniformity

that these artifacts provide can significantly facilitate automation for many

development tasks. Service evolution is one of those tasks and I have demon-

strated in this dissertation how it can be systematized through support from

automated and interactive tools. Other tasks such as service discovery, selec-

tion and migration can be further automated. Interfaces are between the few

artifacts that are publicly available within a service ecosystem and the way

they are consumed by auto-generated client proxies is also common knowledge.

I am interested in using this public knowledge to enable developers estimate the

cost of software development and evolution without having extended knowl-

edge about the specifics of software components that might not be publicly

available. This estimation can also help the decision-making process as it was

discussed in Chapter 4.

All of the methods proposed in this dissertation or discussed as future work

can, in principal, be applied on any software system or development paradigms

that rely on structured interfaces and auto-generated source code. Model-

167

driven software development is such a paradigm. The ability to track and

propagate changes along the various layers of models and meta-models is highly

desirable in model-driven techniques. Tools that identify differences in abstract

and standard interfaces, like those of models, and adapt the auto-generated

instances to these changes could automate this functionality. Other fields

where the methods and tools of this thesis can be useful include mobile and

cloud applications. Since such systems rely heavily on standard and structure

interfaces for their development, deployment and configuration, tools like the

comparator and the mapper can be used to systematically migrate applications

between platforms.

Another goal of my work is to raise awareness about the economic and

social implications of software development and maintenance. This partic-

ular question became rather popular during the 80’s when software started

to be developed on an industrial scale and became of critical importance for

many tasks. However, ever since the research on software economics reached a

plateau, despite the fact that new technologies, new processes and new software

architectures have emerged. These novelties have made most of the previous

methods and considerations to become outdated. The degree of distribution

of modern architectures and the variability of their components imply that

decisions on economic issues have to now be made under greater uncertainty

with minimal information. The ideas proposed in this work, for example using

Game Theory as a tool to capture the interactions between these separate and

independent entities within the software ecosystem and consider the external-

ities of their decisions, can address many of the issues introduced by modern

architectures. In combination with other traditional software economics tech-

niques, including cost estimation and software pricing models, the methods I

propose can be applied on a variety of modern software engineering problems.

For example, in the domain of cloud computing, problems like cloud provider

selection and migration, the vendor lock-in problem and pricing of virtual

infrastructures are very similar in nature as the ones discussed in this disser-

tation. Similarly, in the domain of mobile computing, there are problems like

mobile platform selection and migration and developing native applications

168

against generic web applications are problems with economic consideration

that can benefit from methods such as the ones proposed here.

169

Bibliography

Albrecht, A., 1979. Measuring application development productivity. In: Pro-
ceedings of IBM Applic. Dev. Joint SHARE/GUIDE Symposium. Monterey,
CA, USA, pp. 83–92.

Ali, N., Babar, M. A., 2009. Modeling service oriented architectures of mobile
applications by extending soaml with ambients. In: Euromicro Conference
on Software Engineering and Advanced Applications. SEAA ’09. pp. 442–
449.

Ali, N., Nellipaiappan, R., Chandran, R., Babar, M. A., 2010. Model driven
support for the service oriented architecture modeling language. In: Inter-
national Workshop on Principles of Engineering Service-Oriented Systems.
PESOS ’10. pp. 8–14.

Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2004. Web services: concepts,
architectures and applications. Springer.

Anderson, T., April 2006. Ws-* vs the rest. http://www.theregister.co.
uk/2006/04/29/oreilly_amazon/.

Andrikopoulos, V., Benbernou, S., Papazoglou, M. P., 2008. Managing the
evolution of service specifications. In: International Conference on Advanced
Information Systems Engineering (CAiSE 2008). Springer-Verlag, Berlin,
Heidelberg, pp. 359–374.

Apache, S. F., 2012. Apache Axis2/Java. http://axis.apache.org/axis2/
java/core/.

Aversano, L., Bruno, M., Canfora, G., Di Penta, M., Distante, D., 2006. Using
Concept Lattices to Support Service Selection. International Journal of Web
Services Research 3 (4), 32–51.

Aversano, L., Bruno, M., Penta, M. D., Falanga, A., Scognamiglio, R., 2005.
Visualizing the Evolution of Web Services using Formal Concept Analysis.
International Workshop on Principles of Software Evolution, 57–60.

Barros, A., Dumas, M., Sep. 2006. The Rise of Web Service Ecosystems. IT
Professional 8 (5), 31–37.

Barros, A., Dumas, M., Bruza, P., September 2005. The move to Web service
ecosystems. BPTrends 3 (3), 1–9.

Bazelli, B., Fokaefs, M., Stroulia, E., 2013. Mapping the responses of restful
services based on their values. In: IEEE International Symposium on Web
Systems Evolution (WSE 2013). IEEE, pp. 15–24.

170

Benatallah, B., Casati, F., Grigori, D., Nezhad, H. R. M., Toumani, F., 2005.
Developing adapters for web services integration. In: International Con-
ference on Advanced Information Systems Engineering (CAiSE 2014). pp.
415–429.

Boehm, B., Sullivan, K., 1999. Software economics: status and prospects.
Information and Software Technology 41 (14), 937–946.

Boehm, B. W., 1981. Software Engineering Economics. Prentice Hall, Engle-
wood Cliffs, NJ.

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece,
B., 2000. Software Cost Estimation with Cocomo II with Cdrom, 1st Edition.
Prentice Hall PTR, Upper Saddle River, NJ, USA.

Boehm, B. W., Sullivan, K. J., 2000. Software economics: A roadmap. In:
Proceedings of the Conference on the Future of Software Engineering. ACM
Press, pp. 319–343.

Bordbar, B., Staikopoulos, A., September 2004. Automated generation of
metamodels forweb service languages. In: European Workshop on Model
Driven Architecture. MDA’04.

Bort, J., November 2013. Amazon is crushing ibm, microsoft, and google in
cloud computing, says report. web site, last accessed 2014-04-13.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge Univer-
sity Press, New York, NY, USA.

Cao, F., Bryant, B. R., Zhao, W., Burt, C. C., Raje, R. R., Olson, A. M.,
Auguston, M., 2004. A meta-modeling approach to web services. In: IEEE
International Conference on Web Services (ICWS 2004). ICWS ’04. pp. 796–
800.

Caswell, N. S., Nikolaou, C., Sairamesh, J., Bitsaki, M., Koutras, G. D., Ia-
covidis, G., 2008. Estimating value in service systems: A case study of a
repair service system. IBM Systems Journal 47 (1), 87–100.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., Widom, J., 1996. Change
Detection in Hierarchically Structured Information. ACM Sigmod Interna-
tion Conference on Management of Data, 493–504.

Chemuturi, M., 2009. Software estimation best practices, tools & techniques:
a complete guide for software project estimators. J. Ross Publishing.

Choi, S. C., 1991. Price Competition in a Channel Structure with a Common
Retailer. Marketing Science 10 (4), 271–296.

Chow, K., Notkin, D., 1996. Semi-automatic update of applications in response
to library changes. In: Internation Conference on Software Maintenance
(ICSM 1996). IEEE, pp. 359–368.

Coase, R. H., 1960. The Problem of Social Cost. Journal of Law and Economics
3, 1–44.

CXF, A., 2013. wadl2java command line tool. http://cxf.apache.org/
docs/jaxrs-services-description.html#JAXRSServicesDescription-
wadl2javacommandlinetool.

171

Daskalakis, C., Goldberg, P. W., Papadimitriou, C. H., 2009. The complexity
of computing a nash equilibrium. SIAM Journal on Computing 39 (1), 195–
259.

Developers, G., October 2014. The Google Geocoding API. https://
developers.google.com/maps/documentation/geocoding/.

Dulucq, S., Tichit, L., September 2003. Rna secondary structure comparison:
exact analysis of the zhang–shasha tree edit algorithm. Theoretical Com-
puter Science 306, 471–484.

Elio, R., Stroulia, E., Blanchet, W., Apr. 2009. Using interaction models to
detect and resolve inconsistencies in evolving service compositions. Web In-
tellgence and Agent Systems 7 (2), 139–160.

Espinha, T., Zaidman, A., Gross, H.-G., 2014. Web api growing pains: Loosely
coupled yet strongly tied. Journal of Systems and Software.

Fensel, D., Bussler, C., 2002. The web service modeling framework wsmf.
Electronic Commerce Research and Applications 1 (2), 113–137.

Fielding, R. T., 2000. REST: architectural styles and the design of network-
based software architectures. Doctoral dissertation, University of California,
Irvine.

Fluri, B., Würsch, M., Pinzger, M., Gall, H. C., 2007. Change Distilling:
Tree Differencing for Fine-Grained Source Code Change Extraction. IEEE
Transactions on Software Engineering 33 (11), 725–743.

Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A., 2011. An Empir-
ical Study on Web Service Evolution. In: IEEE International Conference on
Web Services (ICWS 2011). ICWS ’11. Washington, DC, USA, pp. 49–56.

Fokaefs, M., Stroulia, E., 2012. WSDarwin: automatic web service client adap-
tation. In: Conference of Center for Advanced Studies (CASCON 2012). pp.
176–191.

Fokaefs, M., Stroulia, E., 2013a. Wsdarwin: A decision-support tool for web-
service evolution. In: IEEE International Conference on Software Mainte-
nance, Early Research Achievement (ICSM 2013 ERA). IEEE, pp. 444–447.

Fokaefs, M., Stroulia, E., 2013b. WSMeta: a meta-model for web services to
compare service interfaces. In: Panhellenic Conference on Informatics (PCI
2013). ACM, pp. 1–8.

Fokaefs, M., Stroulia, E., June 2014a. The WSDarwin Toolkit for Service-
Client Evolution. In: IEEE Internation Conference on Web Services, Work
In Progress (ICWS 2014 WIP). IEEE, Anchorage, Alaska, USA, pp. 716–
719.

Fokaefs, M., Stroulia, E., 2014b. WSDarwin: Studying the Evolution of Web
Service Systems. Advanced Web Services. Springer, Ch. 9, pp. 199–223.

Fokaefs, M., Stroulia, E., Messinger, P. R., 2013. Software Evolution in the
Presence of Externalities: A Game-Theoretic Approach. In: Mistrik, I.,
Bahsoon, R., Kazman, R., Sullivan, K., Zhang, Y. (Eds.), Economics-Driven
Software Architecture. Elsevier, Ch. 11, pp. 243–258.

172

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., 1999. Refactoring
Improving the Design of Existing Code. Addison Wesley, Boston, MA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Nov. 1994. Design Patterns:
Elements of Reusable Object-Oriented Software, 1st Edition. Addison-
Wesley Professional.

Gebhart, M., Baumgartner, M., Oehlert, S., Blersch, M., Abeck, S., 2010.
Evaluation of service designs based on soaml. In: International Conference
on Software Engineering Advances (ICSEA 2010). ICSEA ’10. pp. 7–13.

Gokhan, N. M., Needy, N., December 2010. Development of a simultaneous
design for supply chain process for the optimization of the product design
and supply chain configuration problem. Engineering Management Journal
22 (4), 20–30.

Hadley, M., August 2009. Web application description language. http://www.
w3.org/Submission/wadl/.

Harsanyi, J. C., 1968. Games with incomplete information played by
”bayesian” players, i-iii. part iii. the basic probability distribution of the
game. Management Science 14 (7), pp. 486–502.

Hoffmann, W. H., Aug. 2007. Strategies for managing a portfolio of alliances.
Strategic Management Journal 28 (8), 827–856.

House, C., August 2012. How restful is your api? http://www.bitnative.
com/2012/08/26/how-restful-is-your-api/.

Jegadeesan, H., Balasubramaniam, S., 2008. An MOF2-based Services Meta-
model. Journal of Object Technology 7 (8), 71–96.

Jersey, September 2014. Restful web services in java. https://jersey.java.
net/.

Kaminski, P., Litoiu, M., Müller, H., Oct. 2006. A design technique for evolv-
ing web services. In: Conference of the Center for Advanced Studies on
Collaborative research (CASCON 2006). ACM Press, New York, New York,
USA, p. 23.

Karner, G., 1993. Resource estimation for objectory projects. Objective Sys-
tems SF AB 17.

Kelter, U., Wehren, J., Niere, J., 2005. A Generic Difference Algorithm for
UML Models. Software Engineering 2005, Fachtagung des GI-Fachbereichs
Softwaretechnik, 105–116.

Kruchten, P., 2004. The rational unified process: an introduction. Addison-
Wesley Professional.

Laffont, J., 2008. externalities. In: Durlauf, S. N., Blume, L. E. (Eds.), The
New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke.

Lanza, M., Marinescu, R., Ducasse, S., 2006. Object-oriented metrics in prac-
tice. Springer.

Levenshtein, V. I., February 1966. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10 (8), 707–710.

173

Li, J., Sikora, R., Shaw, M. J., Woo Tan, G., Oct. 2006. A strategic analysis of
inter organizational information sharing. Decision Support Systems 42 (1),
251–266.

Li, J., Xiong, Y., Liu, X., Zhang, L., 2013. How does web service api evolution
affect clients? In: IEEE International Conference on Web Services (ICWS
2013). IEEE, pp. 300–307.

Lipsey, R. G., Lancaster, K., 1956. The general theory of second best. The
review of economic studies, 11–32.

Lyons, K., Messinger, P. R., Niu, R. H., Stroulia, E., Mar. 2012. A tale of two
pricing systems for services. Information Systems and E-Business Manage-
ment 10 (1), 19–42.

Lyons, K., Playford, C., Messinger, P., Niu, R., Stroulia, E., 2009. Business
models in emerging online services. In: Nelson, M., Shaw, M., Strader, T.
(Eds.), Value Creation in E-Business Management. Vol. 36 of Lecture Notes
in Business Information Processing. Springer Berlin Heidelberg, pp. 44–55.

Maciaszek, L., 2007. Requirements analysis and system design. Pearson Edu-
cation.

McGuire, T. W., Staelin, R., Jan. 2008. An industry equilibrium analysis of
downstream vertical integration. Marketing Science 27 (1), 115–130.

McKendrick, J., November 2011. Cloud Computing’s Vendor Lock-
In Problem: Why the Industry is Taking a Step Backward.
http://www.forbes.com/sites/joemckendrick/2011/11/20/cloud-
computings-vendor-lock-in-problem-why-the-industry-is-taking-
a-step-backwards/.

Metzger, A., Di Nitto, E., Nov. 2012. Addressing Highly Dynamic Changes
in Service-Oriented Systems: Towards Agile Evolution and Adaptation. In:
Wang, X., Ali, N., Ramos, I., Vidgen, R. (Eds.), Agile and Lean Service-
Oriented Development. IGI Global, Ch. 2, pp. 33–46.

Mikhaiel, R., Lin, G., Stroulia, E., 2006. Simplicity in RNA Secondary Struc-
ture Alignment: Towards biologically plausible alignments. In: IEEE Sym-
posium on Bioinformatics and Bioengineering. pp. 149–158.

Mikhaiel, R., Stroulia, E., 2006. Examining Usage Protocols for Service Discov-
ery. In: International Conference on Service Oriented Computing (ICSOC
2006). pp. 496–502.

Monsoon Stone Edge User Forum, June 2011. Amazon soap being discon-
tinued. http://www.stoneedge.net/forum/pop_printer_friendly.asp?
TOPIC_ID=12687.

Morgan, R. M., Hunt, S. D., Jul. 1994. The Commitment-Trust Theory of
Relationship Marketing. Journal of Marketing 58 (3), 20.

Nagurney, A., 2006. Supply Chain Network Economics: Dynamics of Prices,
Flows, and Profits. Edward Elgar Publishing.

Nash, J. F., 1950. Equilibrium points in n-person games. Proceedings of the
national academy of sciences 36 (1), 48–49.

174

Oberle, D., September 2011. D1 report on landscapes of existing service de-
scription efforts. http://www.w3.org/2005/Incubator/usdl/wiki/D1.

Oliver, R. K., Webber, M. D., 1992. Supply-chain management: logistics
catches up with strategy. Logistics: The Strategic Issues.

Oracle, 2013. wadl2java Tool Documentation. https://wadl.java.net/
wadl2java.html.

Ortiz, G., Hernandez, J., 2007. A case study on integrating extra-functional
properties in web service model-driven development. In: International Con-
ference on Internet and Web Applications and Services. pp. 35–40.

Ozkaya, I., Kazman, R., Klein, M., May 2007. Quality-Attribute Based Eco-
nomic Valuation of Architectural Patterns. In: International Workshop on
the Economics of Software and Computation. IEEE, pp. 5–5.

Parnas, D. L., Dec. 1972. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15 (12), 1053–1058.

Pasquale, L., Laredo, J., Ludwig, H., Bhattacharya, K., Wassermann, B.,
2009. Distributed cross-domain configuration management. In: ICSOC-
ServiceWave ’09. pp. 622–636.

Pautasso, C., Zimmermann, O., Leymann, F., 2008. Restful web services vs.
big’web services: making the right architectural decision. In: International
Conference on World Wide Web (WWW 2008). ACM, pp. 805–814.

Ponnekanti, S., Fox, A., 2003. Application-service interoperation without stan-
dardized service interfaces. In: IEEE International Conference on Pervasive
Computing and Communications (PerCom 2003). IEEE Comput. Soc, pp.
30–37.

Ponnekanti, S. R., Fox, A., 2004. Interoperability among independently evolv-
ing web services. In: Middleware ’04. Springer-Verlag New York, Inc., New
York, NY, USA, pp. 331–351.

Roberto Chinnici, Jean-Jacques Moreau, A. R., Weerawarana, S., June 2007.
Web services description language (wsdl) version 2.0 part 1: Core language.
http://www.w3.org/TR/wsdl20/.

RottenTomatoes, 2014. API Overview. http://developer.rottentomatoes.
com/docs.

Ryu, S. H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R., 2008.
Supporting the Dynamic Evolution of Web Service Protocols in Service-
Oriented Architectures. ACM Transactions on the Web 2 (2), 1–46.

Seacord, R. C., Plakosh, D., Lewis, G. A., 2003. Modernizing Legacy Sys-
tems: Software Technologies, Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Shoham, Y., Leyton-Brown, K., Dec. 2008. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press.
URL http://www.worldcat.org/isbn/0521899435

Smartbear, 2014. Soapui. http://www.soapui.org/.

175

Srivastava, A., Sorenson, P. G., 2010. Service selection based on customer
rating of quality of service attributes. In: IEEE International Conference
on Web Services (ICWS 2010). IEEE Computer Society, Los Alamitos, CA,
USA, pp. 1–8.

Staikopoulos, A., Bordbar, B., 2005. A comparative study of metamodel in-
tegration and interoperability in uml and web services. In: European con-
ference on Model Driven Architecture: foundations and Applications. pp.
145–159.

Steiner, T., 2007. Automatic multi language program library generation for
rest apis. Master’s thesis, Institute for Algorithms and Cognitive Systems,
University of Karlsruhe.

Swanson, E. B., 1976. The dimensions of maintenance. In: International Con-
ference on Software Engineering. ICSE ’76. IEEE Computer Society Press,
Los Alamitos, CA, USA, pp. 492–497.

Symons, C. R., 1988. Function point analysis: difficulties and improvements.
IEEE Transactions on Software Engineering 14 (1), 2–11.

Tansey, B., 2008. Valuing software services: The real options-based modularity
analysis framework. Ph.D. thesis, University of Alberta (Canada).

Tholomé, E., August 2009. A well earned retirement for the soap search api.
http://googlecode.blogspot.ca/2009/08/well-earned-retirement-
for-soap-search.html.

Trachtenberg, A., October 2003. Php web services without soap. http://www.
onlamp.com/pub/a/php/2003/10/30/amazon_rest.html.

Treiber, M., Truong, H.-L., Dustdar, S., 2008. Semf - service evolution man-
agement framework. In: Euromicro Conference Software Engineering and
Advanced Applications. SEAA ’08. pp. 329–336.

Tumblr, 2014. Tumblr API. https://www.tumblr.com/docs/en/api/v2.

Twitter, 2014. REST APIs. https://dev.twitter.com/rest/public.

UDDI Consortium, Nov. 2001. UDDI Executive White Paper. http://uddi.
org/pubs/UDDI_Executive_White_Paper.pdf.

Villegas, N. M., Müller, H. A., Tamura, G., Duchien, L., Casallas, R., 2011. A
framework for evaluating quality-driven self-adaptive software systems. In:
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2011). ACM, New York, NY, USA, pp. 80–89.

W3C, 2001. Web Services Description Language (WSDL) 1.1. http://www.
w3.org/TR/2001/NOTE-wsdl-20010315.

W3C, 2007a. SOAP Version 1.2. http://www.w3.org/TR/soap/.

W3C, 2007b. SOAP Version 1.2 Part 0: Primer (Second Edition). http://
www.w3.org/TR/2007/REC-soap12-part0-20070427/.

W3C, 2007c. SOAP Version 1.2 Part 1: Messaging Framework (Second Edi-
tion). http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

176

W3C, 2013. Web of Services. http://www.w3.org/standards/
webofservices/.

Wang, S., Capretz, M. A. M., 2009. A Dependency Impact Analysis Model for
Web Services Evolution. In: IEEE International Conference on Web Services
(ICWS 2009). pp. 359–365.

Wang, S., Keivanloo, I., Zou, Y., 2014. How do developers react to restful api
evolution? In: Service-Oriented Computing. Springer, pp. 245–259.

Xing, Z., 2010. Model Comparison with GenericDiff. In: 25th IEEE/ACM
International Conference on Automated Software Engineering. pp. 135–138.

Xing, Z., Stroulia, E., 2005a. Analyzing the Evolutionary History of the Log-
ical Design of Object-Oriented Software. IEEE Transactions on Software
Engineering 31 (10), 850–868.

Xing, Z., Stroulia, E., 2005b. UMLDiff: An Algorithm for Object-Oriented
Design Differencing. In: 20th IEEE/ACM International Conference on Au-
tomated Software Engineering. pp. 54–65.

Xing, Z., Stroulia, E., 2006. Refactoring Detection based on UMLDiff Change-
Facts Queries. In: 13th Working Conference on Reverse Engineering. pp.
263–274.

Zhang, K., Stgatman, R., Shasha, D., 1989. Simple fast algorithm for the edit-
ing distance between trees and related problems. SIAM Journal on Com-
puting 18, 1245–1262.

177

