

The Development of Random Generators of Weather and Industrial Pipelines Data

using Parametric and Non-Parametric Approaches

by

Mubarak Khamis AL-Alawi

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Mubarak Khamis AL-Alawi, 2017

ii

ABSTRACT

Construction projects are unique and complex in nature. They are associated with

many challenges regarding the randomness, complexity, and interdependency related

to the operation/process, the environment hosting the operation, and the product being

constructed. These challenges are also common in the area of simulation and modeling

of a construction operation. Research in this field demands real life data but

unfortunately the availability of such data is one of the major challenges. Also, the

random generation of complex construction data structures that contain correlated

attributes make it difficult to replicate real systems behaviors. The objective of this

research is to investigate alternative techniques that can be used to randomly generate

complex construction data structures while preserving the correlation between their

formations’ attributes.

This research focuses on two different types of construction-related data: weather data,

and industrial pipelines data. A non-parametric approach in the form of bootstrapping

technique was applied in the generation of weather data, and its performance was

measured against a parametric weather generator constructed in the field of modelling

construction operations. The validation results showed that the proposed technique

performed in a manner similar to that of the parametric weather generator and

outperformed it in some cases. A parametric approach in the form of Markov chain

technique was applied to randomly generate industrial pipeline data structures, and its

performance was tested against real pipeline data. The validation results showed that

the proposed Markov chain model was able to generate an industrial pipeline data

iii

structure similar to those in reality. The majority (89%) of generated pipelines shared

characteristics with 85.5 % of the original pipelines.

This research demonstrates the application of the developed generators in two areas.

The first application modelled an earthmoving operation in oil sand mining and used

the weather generator to analyse the effect of temperature on breakdown and repair

durations. The second application involved building a pipe-spooling optimization

model and used the industrial pipelines data generator to randomly generate instance

problems to test the computational efficiency of the optimization’s solution algorithm.

iv

DEDICATION

This thesis is dedicated with love, gratitude, and respect to

 my parents;

my wife and my children;

my brothers and sisters;

my friends

v

ACKNOWLEDGMENT

First and foremost all praise and thanks to Allah. I would like to express my sincere

gratitude and appreciation to my supervisor Dr. Yasser Mohamed and to my co-

supervisor Dr. Ahmed Bouferguene for their guidance, encouragement and unlimited

support in my study.

I would like to express my great gratitude and thanks to my doctoral committee: Dr.

Aminah Robinson, Dr. Osama Moselhi, and Dr. Vivek Bindiganavile for their valuable

comments and suggestions.

I would like to express my great gratitude to Sultan Qaboos University, Oman, for their

financial support during my study at the University of Alberta.

Finally, I would like to express my sincere thanks and gratitude to my wife and my

children, my father and mother, and my brothers and sisters for their continuous

supports, and encouragements.

vi

Table of Contents

Chapter 1 ... 1

Introduction .. 1

1.1 Background and problem statement .. 1

1.2 Research objectives ... 5

1.3 Research methodology .. 6

1.4 Thesis organization .. 9

Chapter 2 ... 12

Non-Parametric Weather Generator for Modelling Construction Operations:

Comparison with the Parametric Approach and Evaluation of Construction-

Based Impacts ... 12

2.1 Introduction ... 12

2.2 Experimenting with the Parametric and Non-Parametric Approaches 18

2.3 Construction of Weather Generators ... 21

2.3.1 Parametric weather generator .. 21

2.3.2 Non-parametric weather generator .. 28

2.4 Weather Generators’ Evaluation ... 32

2.4.1 Evaluation of weather generators’ assumptions .. 32

2.4.2 Evaluation of weather generators’ outputs .. 46

2.4.3 Evaluation of weather generators’ performance in weather-sensitive

construction models .. 59

2.4.3.1 Estimating temperature-wind speed effects in construction labor 60

2.4.3.2 Estimating temperature effects on tower cranes .. 70

2.5 Conclusion ... 76

Chapter 3 ... 78

Application of the Non-Parametric Weather Generator in Modeling a

Construction Operation ... 78

3.1 Introduction ... 78

3.2 Overview of distributed simulation and HLA standards 81

3.3 Oil sands mining process in Alberta, Canada .. 83

3.4 The development of the mining earthmoving operation model 85

vii

3.5 Weather federate .. 89

3.5.1 Historical weather database ... 89

3.5.2 The weather generation process ... 90

3.6 Simulation run and testing scenario results ... 94

3.6.1 Simulation run.. 94

3.6.2 Results of scenarios ... 98

3.7 Conclusion ... 103

Chapter 4 ... 105

Random Generation of Industrial Pipelines’ Data Structure using a Markov

Chain Model .. 105

4.1 Introduction ... 105

4.2 Overview of pipeline data ... 110

4.3 Statistical Data Analysis .. 116

4.4 Markov chain pipeline generation model .. 123

4.5 Validation of Markov chain pipeline generation model 130

4.5.1 Pipelines feature vectors .. 133

4.5.2 Number of components evaluation and correlation analysis 139

4.5.3 Clustering-based model validation .. 143

4.5.4 Model validation using distances between all feature vectors 146

4.6 Conclusion ... 158

Chapter 5 ... 160

Application of industrial pipeline data generator for testing the efficiency pipe

modules optimization algorithms .. 160

5.1 Introduction ... 160

5.2 Overview of modularization, modules, and pipe spools in industrial projects:

The defined problem statement .. 163

5.2.1 Modules and pipe spools.. 167

5.2.2 The generation of pipe-spool cut-sheets .. 171

5.2.3 The problem definition of pipe spooling ... 173

5.2.4 Mathematical formulation.. 175

5.3 The packing problem, bin-packing, and heuristics overview 178

5.3.1 The bin-packing problem overview ... 179

viii

5.3.2 The bin-packing heuristics ... 180

5.3.3 Pipe spooling as a three-dimensional bin-packing problem 181

5.3.4 The branch-and-bound heuristic .. 184

5.4 The generation of pipeline problem instances using the industrial pipelines’

data generator ... 189

5.4.1 Layer I: The generation of component lengths and diameters................... 190

5.4.1.1 The generation of component lengths .. 190

5.4.1.2 The generation of components’ diameters ... 193

5.4.2 Layer II: The generation of components’ running direction 195

5.5 Computational experiment-Testing the computational performance of the bin-

packing algorithm ... 197

5.6 Conclusion ... 199

Chapter 6 ... 201

Conclusion ... 201

6.1 Conclusion ... 201

6.2 Research contributions .. 204

6.2.1 The academic research contributions: .. 204

6.2.2 The industrial research contributions:.. 205

6.3 Limitations and future research ... 205

References ... 210

Appendix A.. 231

Appendix B. ... 237

Appendix C.. 243

Appendix D.. 246

Appendix E. ... 247

Appendix F. ... 248

Appendix G. .. 250

Appendix H. .. 253

Appendix I. .. 279

ix

List of Tables

Table 2- 1 Parameters used in constructing the parametric weather generator 27

Table 2- 2 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of maximum temperature (MAXTEMP) .. 34

Table 2- 3 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of minimum temperature (MINTEMP) ... 34

Table 2- 4 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of maximum relative humidity (MAXRH) 35

Table 2- 5 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of minimum relative humidity (MINRH) ... 35

Table 2- 6 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of maximum temperature (MAXTEMP)... 37

Table 2- 7 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of minimum temperature (MINTEMP) ... 37

Table 2- 8 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of maximum relative humidity (MAXRH) ... 38

Table 2- 9 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of minimum relative humidity (MINRH) .. 38

Table 2- 10 Analysis of length of wet spells ... 50

Table 2- 11 Number of months rejected by 𝑡 and 𝐹 tests for four weather variables 55

Table 2- 12 Minimum wind speeda required for freezing exposed skin [17] 61

Table 2- 13 Work warm-up schedule for outdoor activities [18] 63

Table 2- 14 Minutes lost per four-hour shift.. 64

Table 3- 1 "CurrentWeather" interaction class and its attributes in the FOM

(S=subscribe, P=publish, PS= publish and subscribe) ... 89

Table 3- 2 Durations of expected breakdown and maintenance events for trucks and

excavators ... 95

Table 3- 3 Expected percentages of breakdown repair durations of each scenario in

the mining earthmoving operation.. 103

Table 4- 1 Pipeline data table .. 116

Table 4- 2 Descriptive statistical measures for the number of components 121

Table 4- 3 Probability distribution functions for components’ state periods 127

Table 4- 4 Starting states in the first pipeline branch (Phase 1) 130

Table 4- 5 Starting states in branches extending from the first pipeline branch (Phase

2) ... 130

Table 4- 6 Attributes , , for pipelines A, B, A* 138

Table 4- 7 Number of components in original and generated pipelines 141

Table 4- 8 P-values of Kruskal-Wallis, Mood-Median, and Mann-Whitney tests .. 141

Table 4- 9 Results summary of clustering models ... 144

Teen TeeT TeeD

x

Table 4- 10 Calculation of histograms intersection: (a) histograms of normalized

distances between original pipeline vectors that represent the 95% of the population,

and (b) histogram of normalized distances between generated pipeline vectors that

represent the 95% of the population ... 153

Table 4- 11 Calculation of histograms’ intersection; (a) histograms of normalized

distances between original pipeline vectors that represent the higher 5% of the

population, and (b) histogram of normalized distances between generated pipeline

vectors that represent the higher 5% of the population .. 157

Table 5- 1 Areas of consideration in planning transportation and logistics strategies

[110] 165

Table 5- 2 List of the common types of modules in the petrochemical industry [109]

 .. 169

Table 5- 3 Probability distribution functions for components' lengths (mm) 191

Table 5- 4 Statistical measures’ results for the real and generated components'

lengths... 193

Table 5- 5 Probability distribution functions for tube’s and reducer’s diameters ... 194

Table 5- 6 Statistical measures’ results for the real and generated components'

diameters... 195

Table 5- 7 Pipeline dataset generated using the updated industrial pipeline generator

 .. 197

Table 5- 8 Pipeline solutions results .. 199

xi

List of Figures

Figure 1- 1 A graphical definition of complex data structure and areas found in

construction engineering research .. 4

Figure 1- 2 Research methodology .. 7

Figure 2- 1 Study methodology…………………………………………………… 20

Figure 2- 2 A parametric weather generation flow chart ... 22

Figure 2- 3 Two-state Markov chain precipitation model ... 23

Figure 2- 4 Non-parametric weather generation flow chart 31

Figure 2- 5 Normal probability plot of the residuals of maximum temperature

(MAXTEMP) ... 39

Figure 2- 6 Normal probability plot of the residuals of minimum temperature

(MINTEMP) ... 39

Figure 2- 7 Normal probability plot of the residuals of maximum relative humidity

(MAXRH)... 40

Figure 2- 8 Normal probability plot of the residuals of minimum relative humidity

(MINRH) .. 40

Figure 2- 9 Serial correlation coefficients of maximum temperature 41

Figure 2- 10 Serial correlation coefficients of minimum temperature 42

Figure 2- 11 Serial correlation coefficients of maximum relative humidity 42

Figure 2- 12 Serial correlation coefficients of minimum relative humidity 43

Figure 2- 13 10 years’ distribution of correlation coefficients between maximum

temperature and wind speed ... 44

Figure 2- 14 10 years’ distribution of correlation coefficients between minimum

temperature and wind speed ... 44

Figure 2- 15 10 years’ distribution of correlation coefficients between maximum

relative humidity and wind speed ... 45

Figure 2- 16 10 years’ distribution of correlation coefficients between minimum

relative humidity and wind speed ... 45

Figure 2- 17 Monthly averages of maximum temperature .. 47

Figure 2- 18 Monthly averages of minimum temperature ... 47

Figure 2- 19 Monthly averages of maximum relative humidity 48

Figure 2- 20 Monthly averages of minimum relative humidity 48

Figure 2- 21 Monthly averages of precipitation .. 49

Figure 2- 22 Monthly averages of wind speed .. 49

Figure 2- 23 Standard deviation of maximum temperature 52

Figure 2- 24 Standard deviation of minimum temperature 52

Figure 2- 25 Standard deviation of maximum relative humidity 53

Figure 2- 26 Standard deviation of minimum relative humidity 53

Figure 2- 27 Standard deviation of precipitation ... 54

Figure 2- 28 Standard deviation of wind speed ... 54

xii

Figure 2- 29 Distribution of 10 runs of cross correlation coefficient of maximum

temperature ... 56

Figure 2- 30 Distribution of 10 runs of cross correlation coefficient of minimum

temperature ... 57

Figure 2- 31 Distribution of 10 runs of cross correlation coefficient of maximum

relative humidity ... 57

Figure 2- 32 Distribution of 10 runs of cross correlation coefficient of minimum

relative humidity ... 58

Figure 2- 33 Distribution of 10 runs of cross correlation coefficient of precipitation

 .. 58

Figure 2- 34 Distribution of 10 runs of cross correlation coefficient of wind speed 59

Figure 2- 35 Minutes lost per month due to maximum temperature and average wind

speed (with no consideration of construction working period) 66

Figure 2- 36 Minutes lost per month due to maximum temperature and average wind

speed (with no consideration of construction working period) 66

Figure 2- 37 Deviation of minutes lost per month due to maximum temperature and

average wind speed from historical average (with no consideration of construction

working period) .. 67

Figure 2- 38 Deviation of minutes lost per month due to minimum temperature and

average wind speed from historical average (with no consideration of construction

working period) .. 67

Figure 2- 39 Minutes lost per month due to maximum temperature and average wind

speed (with consideration of construction working period) 68

Figure 2- 40 Minutes lost per month due to minimum temperature and average wind

speed (with consideration of construction working period) 69

Figure 2- 41 Deviation from historical average of minutes lost per month due to

maximum temperature and average wind speed (with consideration of construction

working period) .. 69

Figure 2- 42 Deviation from historical average of minutes lost per month due to

minimum temperature and average wind speed (with consideration of construction

working period) .. 70

Figure 2- 43 Loss in operational days due to maximum temperature (with no

consideration of construction working period)... 72

Figure 2- 44 Loss in operational days due to minimum temperature (with no

consideration of construction working period)... 72

Figure 2- 45 Deviation from historical average of loss in operational days due to

maximum temperature (with no consideration of construction working period) 73

Figure 2- 46 Deviation from historical average of loss in operational days due to

minimum temperature (with no consideration of construction working period) 73

xiii

Figure 2- 47 Loss in operational days due to maximum temperature (with

consideration of construction working period)... 74

Figure 2- 48 Loss in operational days due to minimum temperature (with

consideration of construction working period)... 74

Figure 2- 49 Deviation from historical average of loss in operational days due to

maximum temperature (with consideration of construction working period) 75

Figure 2- 50 Deviation from historical average of loss in operational days due to

minimum temperature (with consideration of construction working period) 75

Figure 3- 1 Oil sand open pit mining process [65]……………………………………. 85

Figure 3- 2 Earthmoving simulation structure ... 87

Figure 3- 3 Weather database breakdown structure .. 90

Figure 3- 4 Federation interface .. 92

Figure 3- 5 Weather generation flow chart .. 93

Figure 3- 6 Performance benchmark results for trucks ... 97

Figure 3- 7 Performance benchmark results for excavators 97

Figure 3- 8 Truck breakdown repair durations under three testing scenarios (SC1,

SC2, and SC3) and on different temperature limit values 𝑇; (a) the expected

minimum repair durations, (b) the expected average repair durations, and (c) the

expected maximum repair durations .. 100

Figure 3- 9 Excavator breakdown repair durations under three testing scenarios

(SC1, SC2, and SC3) and on different temperature limit values (T); (a) the expected

minimum repair durations, (b) the expected average repair durations, and (c) the

expected maximum repair durations .. 101

Figure 4- 1 Design data flow of pipeline facility project………………….. 111

Figure 4- 2 Section of industrial pipeline .. 113

Figure 4- 3 Pipeline branching process ... 115

Figure 4- 4 Percentage of each component in the entire population 117

Figure 4- 5 Percentage of each component in the first pipeline branch 117

Figure 4- 6 Percentage of each component in branches extending from the first

branch ... 118

Figure 4- 7 Distribution of the number of components in each pipeline 119

Figure 4- 8 Distribution of the number of components in the first pipeline branch 120

Figure 4- 9 Distribution of the number of components in branches extending from

the first pipeline branch .. 120

Figure 4- 10 Flow chart of Markov chain pipeline generation model 128

Figure 4- 11 Validation process flow chart ... 132

Figure 4- 12 Example of generation of pipeline features vector 135

Figure 4- 13 Pipeline A* structure .. 136

Figure 4- 14 Eigenvalue distributions of component correlation matrices from

original and generated pipeline population .. 142

Figure 4- 15 Attributes centroids in the high density cluster 145

xiv

Figure 4- 16 Attributes centroids in the low density cluster.................................... 145

Figure 4- 17 Histograms of distances between pipeline vectors for the original and

the generated pipeline populations ... 148

Figure 4- 18 Probability plots of distances between pipelines vectors from the

original and generated pipeline data ... 149

Figure 4- 19 Histograms of distances between pipelines vectors that represent the

95% in (a) the original and (b) the generated pipeline populations 150

Figure 4- 20 Probability plots of distances between pipelines vectors that represent

the 95% in (a) the original and (b) the generated pipeline populations 151

Figure 4- 21 Histograms intersection between: (a) histograms of normalized

distances between original pipeline vectors that represent the 95% of the population,

and (b) histogram of normalized distances between generated pipeline vectors that

represent the 95% of the population ... 153

Figure 4- 22 Changes in match value H with respect to the increase of histograms’

bin number in the distances that underlie the 95% of the total population 154

Figure 4- 23 Histograms of distances between pipelines vectors that represent the

higher 5% in (a) the original and (b) the generated pipeline populations 155

Figure 4- 24 Probability plots of distances between pipelines vectors that represent

the higher 5% in (a) the original and (b) the generated pipeline populations 156

Figure 4- 25 Histogram intersection between; (a) histograms of normalized distances

between original pipeline vectors that represent the higher 5% of the population, and

(b) histogram of normalized distances between generated pipeline vectors that

represent the higher 5% of the population .. 156

Figure 4- 26 Changes in match value H with respect to the increase of histograms’

bin number in the distances that underlie the higher 5% of the population 158

Figure 5- 1 Module production processes in industrial project construction 170

Figure 5- 2 Pipe-spooling optimization process .. 173

Figure 5- 3 Graphical representation of pipeline ISO and on-module envelope 176

Figure 5- 4 Graphical example of (a) induced graph, and (b) subgraph 183

Figure 5- 5 Tree representation of pipeline- problem instance 185

Figure 5- 6 Calculation flow of the solution weight value Sij 188

Figure 5- 7 Pipe-spooling solution’s run time with respect to the number of pipeline

instances problems.. 198

1

Chapter 1

Introduction

1.1 Background and problem statement

The construction industry is complex and unique. Research in this industry grows

rapidly to overcome its associated problems. Analysing and solving construction-

related problems require collecting and using data. However, this data is not readily

available. Collecting data plays a critical role in performing reliable research because

it represent the nature of real systems. However, real systems’ data can be complex, as

it may be composed of a set of inter-dependent/correlated attributes. Preserving

dependencies between data’s attributes is challenging. Furthermore, preserving

dependencies limits the available size of real case data which can be used for research.

For instance, experimental analysis is normally performed to address and test

variations of a real system with respect to changes in the system’s formation

components or variables. It is used to test new algorithms and procedures to solve real

2

world problems. To provide valuable insight into and information about the system of

study, experimental analysis depends greatly on the availability or size of data sets and

their quality. Papageriou et al. [1] reported that there are no publicly available

benchmark instances on which researchers, in the context of operational research, can

test their algorithms. Otto, Otto, and Scholl [2] stated that due to the limited number

of real-world problems reported in the literature, generating problem instances using

random generators is a valuable source of test data. They also stated that choosing

adequate test data sets is a focus of discussions in computational experiment

guidelines. In information discovery and analysis systems, having data sets is

important to develop test cases to cover hypothetical future scenarios. Privacy or the

challenge and cost associated with collecting real data impose the need of generators

capable of producing data sets [3]. Jeske et al. [3] emphasize the importance of

generating test data sets to support performance studies of statistical and artificial

intelligence techniques used in information discovery and system analysis.

In modeling and simulation, Trypula [4] noted that 10% to 40% of the total time

required to build a simulation model is attributed to data gathering, cleaning, and

validation. Perera and Liyanage [5] reported that the development of simulation

models is delayed when the right data are not available in the right format at the right

time. Perera and Liyanage [5] also concluded that poor data availability is ranked first

among major pitfalls in input data collection. Input modeling is the practice of

selecting probability distributions to represent the random nature of a system and that

choosing the most appropriate distribution is easier if data are available [6]. Assuming

that data are available and the system’s objective and formation variables are well-

3

defined, input modeling is performed by applying three steps: (1) selecting different

probability distributions for an input model, (2) estimating the parameters of the

model, and (3) assessing the goodness of fit. These steps are applied when the system

variables are assumed independent from each other (called univariate input modeling).

This practice in input modeling is widely applied in the simulation of construction

operations. AbouRizk et al. [7] illustrated a numerical technique that can be used to fit

beta distributions to sample data for construction engineering and examined its

applicability to heavy construction operations. However, system variables may exert

interdependency with each other. For instance, construction operations are subjected

to uncertainty factors that causes variabilities in their work performance and weather

is one of them [8]. In generating, weather variables for modeling construction

operations, weather data in each day are represented in the form of a vector, as 𝑠 in

Figure 1- 1, containing hourly/daily weather variables (e.g. precipitation, temperature,

relative humidity, etc.), and each variable may have a dependency in daily or hourly

manners (dashed arrow) or may exert interdependency (solid arrow) with other

variables. Such dependencies add complexity in modeling weather variables but it is

important to preserve them in order to achieve a realistic modeling environment [9].

4

Figure 1- 1 A graphical definition of complex data structure and areas found in

construction engineering research

Referring to Perera and Liyanage [5], the right data may not be available in the right

format; in this study, we define data format as a data structure. Different applications

may require different data structures. For example, in industrial construction projects

such as refineries and chemical plants, piping represents a major element. Piping work

goes through three major stages: (1) pipe spool fabrication, (2) module assembly, and

(3) site installation [10]. In modeling piping stages, each stage may require sets of

inputs with each set comprised of vectors containing attributes such as type (nominal),

diameter (numerical), length (numerical), and weight (numerical). Considering the

diversity and the uniqueness associated with input data is crucial to maintain a proper

modeling results [11] [12]. This diversity in the type of data in a single vector creates

a challenge in input modeling for optimization studies because (refer to Figure 1- 1)

(𝑥11, 𝑥21, 𝑥31,…, 𝑥𝑛𝑠)

(𝑥12, 𝑥22, 𝑥32,…, 𝑥𝑛𝑠)

(𝑥13, 𝑥23, 𝑥33,…, 𝑥𝑛𝑠)

(𝑥14, 𝑥24, 𝑥34,…, 𝑥𝑛𝑠)

(𝑥15, 𝑥25, 𝑥35,…, 𝑥𝑛𝑠)

s1

s2

s3

s4

s5

Day1-(P
1
, Temp.

1
, RH

1
, Wind Speed

1
)

Day2-(P
2
, Temp.

2
, RH

2
, Wind Speed

2
)

Day3-(P
3
, Temp.

3
, RH

3
, Wind Speed

3
)

Generation of daily weather data

G1 = (N1, E1) N1 = (n11, ni1) n11 = (Type1,

Dia.1, Length1)

G2 = (N2, E2) N2 = (n12 , ni2) n12 = (Type2, Dia.2,

Length2)

Generation of industrial pipelines data

Legend: dependency; interdependency; s = sample in the form of a vector,

x vector variable; P= precipitation; Temp: temperature; RH: relative humidity; G a tree graph

contains nodes N and edges E; N= a collection of tree nodes; Dia. =Diameter

5

when pipeline data are generated, each pipeline is represented in the form of a tree

structure 𝐺 containing a collection of nodes 𝑁 and edges 𝐸. Each node 𝑛 in 𝑁 is

presented in the form of a vector containing properties such as the type of pipeline

component, its diameter, and length. The connectivity between nodes or the

reproduction of the type of node is depedendent on its neighbor, which adds more

complexity in modeling such data. Furhermore, unlike the generation of weather

variables, pipeline data structure represents a construction product. To maintain

realistic data, it is necessary to take into consideration the topological structure in the

generation process.

From the above perspective, it is clear that having data available on hand to support

research studies is a critical issue. Furthermore, based on the modeled system, different

types of data structures may exist. These range from a simple numerical type of data

to a complex combinatorial type of data. The main thrust of this study is to investigate

the use of mathematical techniques to construct and formulate reliable data generators

capable of generating complex construction-based data sets with highly correlated

attributes.

1.2 Research objectives

The main objective of this research is to investigate the use of parametric and non-

parametric approaches for random generation of construction-related data structures.

It focuses on two types of data structures: the weather, and the industrial pipelines data

structures. The first one represent a sample of the external factors that affect

construction operations. The second is a sample of the complex data structures that

6

characterize construction products. The selection of these two is also affected by the

availability of data sets that can be used during modeling and validation phases of the

research. The more specific research objectives can be defined as follows:

1. To evaluate the use of a non-parametric approach in the form of bootstrapping

technique to randomly generate weather data.

2. To develop and evaluate the use a parametric approach in the form of a Markov

chain technique to randomly generate industrial pipelines data.

3. To investigate different validation approaches for testing the accuracy of the

proposed techniques.

4. To demonstrate the application of the proposed techniques in construction-

related case studies.

1.3 Research methodology

Figure 1- 2 shows the implemented research methodology. This research is split into

two parts with a number of steps in each part. The following sections provide a

summary of each step.

7

Step 1 Study the field of interest and identify the

required data for modeling

Select the mathematical

technique

(Bootstrapping)

Develop the weather

data generator

Validate the weather

data generator

Select the mathematical

technique

(Markov chain)

Collect industrial

pipeline data

Develop industrial

pipeline data generator

Validate industrial

pipeline data generator

Collect weather data

Apply the proposed data generators in the

field of construction engineering research

R
a
n
d
o
m

 g
e
n
e
ra

ti
o
n
 o

f
v
e
c
to

r
w

it
h
 c

o
rr

e
la

te
d
 a

tt
ri

b
u
te

s

R
a
n
d
o
m

 g
e
n
e
ra

ti
o
n
 o

f
tr

e
e
 s

tr
u
c
tu

re
 w

it
h
 c

o
rr

e
la

te
d
 n

o
d
e
s

W
e
a
th

e
r
 G

e
n

e
r
a
to

r
I
n

d
u

s
tr

ia
l P

ip
e
lin

e
 G

e
n

e
r
a
to

r

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 1- 2 Research methodology

Step 1: In this step, the field of interest is studied and the required data to be modeled

is identified. As mentioned in the objectives, complex construction data structures are

targeted; therefore, two types of data that differ in nature and complexity were selected

to be investigated and modeled. The first data is related to weather variables that

8

represent the environment that hosts the construction operation and the second type of

data is related to industrial pipeline data that represent a construction product.

Step 2: In this step, data collection is performed. Records of 40 years of historical

weather data were collected for modeling weather variables and records from about

1052 pipelines from an industrial construction project were collected to model pipeline

data structure. Data collected from different sources usually require cleaning and

preparation. More specifically, they require restructuring to serve the modeling

objective of the research. In the context of weather data, historical weather records are

normally clean and tabulated in the form of hourly or daily records. However, pipeline

data are represented in the form of three-dimensional models, which require data

extraction, extensive data cleaning, and data restructuring so that the properties of the

pipeline tree structures can be analysed.

Step 3: In this step, mathematical techniques that be can be used in modeling and

generating weather variables and pipeline data structure are investigated. The selection

of what mathematical technique can be used for each type of data depends on the

previous step. A non-parametric approach in the form of bootstrapping technique is

selected to randomly generate weather variables with replacement, and a Markov chain

model is selected to generate the industrial pipeline tree structure randomly.

Step 4: In this step, weather and industrial pipeline data generators are developed and

implemented using Python [13]. The weather generator provides data containing

weather variables which may affect construction operations. The industrial pipeline

9

data generator provides data containing pipeline components’ properties and their

connectivity relationships with other components.

Step 5: In this step, a comprehensive three-stage validation process is performed to

test the reliability of both the weather and the industrial pipeline data generators in

generating realistic data. The performance of both generators is tested using different

validation methods. The difficulty associated with this step is related to the validation

of pipeline data structures. More specifically, the challenge lies in how to statistically

measure the similarity between synthetic and original pipeline tree structures. This

challenge is overcome by converting the tree structure of the pipelines to feature

vectors capable of preserving the component properties and their unique location in

the pipeline structure.

Step 6: Data generators are built for certain objectives/applications. In this step, the

use of each data generator (the weather, and the industrial pipeline data generators) is

demonstrated in two different applications. The weather generator is implemented in

the context of simulation modeling, and the industrial pipeline data generator is

implemented in the context of computational efficiency of optimization algorithms.

1.4 Thesis organization

Chapter 2 reviews the effect of weather on the construction operation and justifies the

importance of integrating weather effects in modeling construction operations. It also

reviews the parametric weather generation approach which has been recently used in

the field of construction engineering research to generate weather variables. Its

drawbacks are highlighted in this chapter and a non-parametric weather generation

10

approach, in the form of the bootstrapping technique, is proposed. For the purpose of

validation and evaluation of the non-parametric weather generation approach, two

weather generation models were developed for this chapter: the parametric and the

non-parametric weather generation approaches. This chapter also presents a

comprehensive evaluation process that includes evaluating the assumptions used in

building the models, their generated outputs, and their performances when applied on

two weather-sensitive construction models.

Chapter 3 illustrates the application of the weather generator in modeling a

construction operation. It highlights the weather effect in earthmoving operations,

more specifically in earthmoving mining. In this chapter, mining the earthmoving

operation located in Fort McMurray is modeled using distributed simulation with high

level architecture (HLA) standards. A weather generator was built and integrated into

the simulation model. The simulation model studies the effect of extreme winter

temperature on the breakdown and repair duration of trucks and excavators. The

weather generator rule was to provide different testing scenarios. At the end of this

chapter, the weather scenario’s effect on breakdown repair duration is analysed and

reported.

Chapter 4 reviews the general input modeling technique. It highlights difficulties

associated with modeling the tree structure type of industrial pipelines and proposes a

Markov chain model in the generation process. In this chapter, the Markov chain model

is used in the branching process of the industrial pipeline data structure. Furthermore,

this chapter presents a detailed overview of the industrial pipeline data. It includes data

collection, preparation, structuring, and statistical analysis processes that are

11

performed before building the industrial pipelines data generator. As in the weather

generation chapter, this chapter applies a comprehensive validation process. This

chapter also shows a methodology of converting the industrial pipeline tree structure

into a feature vector and demonstrates a three stage-validation process.

Chapter 5 illustrates how to apply the industrial pipeline data generator to test the

efficiency of optimization algorithms. This chapter defines an optimization problem in

the area of industrial construction, proposes an optimization algorithm, and tests the

efficiency of the optimization algorithm using a data test set generated from the

industrial pipeline data generator.

Chapter 6 presents the conclusions of this research, contributions, limitations, and

future directions.

12

Chapter 2

Non-Parametric Weather Generator for

Modelling Construction Operations:

Comparison with the Parametric Approach and

Evaluation of Construction-Based Impacts

2.1 Introduction

The construction industry is subject to a wide range of uncontrollable external factors

that cause uncertainty in the planning, scheduling, and controlling phases of a project.

Among these factors are changing weather conditions, which are environmental

factors that significantly influence the efficiency of construction operations. The effect

of weather conditions on construction projects is variable and is based on numerous

factors, including types of construction, location, and season. Ahuja and Nandakumar

[14] have stated that the reliability of project duration forecasting depends on the

accuracy of network logic, individual activity duration estimates, and various

13

uncertainty variables in the project environment including weather. Losses in man-

hours can also result from changes in weather conditions, with the impacts of weather

on labour cost being classified into five groups: (1) bad weather time (describes the

scenario where workers are paid, but no work progress is made), (2) reduced

productivity (describes the scenario where worker output is reduced and additional

paid man-hours are required), (3) repetition of work resulting from damage caused by

weather variables such as wind, rain, or ice, (4) stood-off time (describes the scenario

where workers are dismissed, absent, or reported late due to bad weather), and (5) a

reduced working schedule due to bad weather [15].

Randolph et al. [16]found that 30% of loss in steel operation productivity is due to cold

winter temperatures. Kohen and Brown [17]indicated that three-quarters of worker

compensation claims during the cold season are due to frostbite-related injuries. To

maintain a healthy working environment, the American Conference of Governmental

Industrial Hygienists (ACGIH) [18] developed a warm-up schedule for construction

trades in cold regions. Productivity is most affected by changes in weather conditions

when construction activity is entirely dependent on labour. For example, high wind

speeds dramatically exacerbate drops in temperature, making it impossible to sustain

a constant labour production rate under these conditions.

In earthmoving operations required for highway construction, weather conditions are

a critical factor that must be considered in productivity estimates. Material excavation

and hauling activities are sensitive to rainfall and in some instances work may either

be stopped or suspended as a result of unworkable soil conditions [19]. Experts in

highway construction have indicated that the impact of rainfall is dependent on rainfall

14

amount and timing, as well as on drying conditions. They also reported that an average

of 1.5 days of earthmoving productivity is lost when rainfall intensity is between 13-

25 mm [19].

Previous studies investigated the effects of weather variables on construction

activities. Ahuja and Nandakumar [14] and Kavanaga [20]considered the effect of

weather as a percentage in their construction modelling and measured how frequently

weather resulted in reduced activity. Moselhi et al. [21] quantified the impact of

weather conditions on daily construction activity. El-Rayes and Moselhi [19]

presented a decision support system for quantifying the impact of rainfall on

productivity and duration of highway construction operations. Wales and AbouRizk

[22] and Shahin et al. [23] developed a stochastic weather generator that produces

weather variables for use in construction simulation models. Apipattanavis et al. [24]

proposed a framework for quantifying and predicting weather-related highway

construction delays, which included a weather generator to provide a probabilistic

forecast of weather threshold values. Although methodologically different, these

investigations followed a similar pattern to build the required models and quantify their

impacts on real projects by: (1) studying construction processes, (2) understanding

weather impact on processes, (3) determining the weather variables that affect the

studied process, (4) searching for source(s) of weather data, (5) selecting a modelling

technique, (6) generating weather variables (the generation of weather variables is

normally performed by developing a weather generator tool), and, finally, (7) applying

the model to a case study project.

15

Fatichi et al. [25] defined weather generators as numerical tools capable of generating

a time-series of climatic variables with statistical properties similar to the observed

climate. These generators are used to generate synthetic weather series to help study

weather-dependent processes. Depending on the process being modelled, weather

generators differ in terms of time steps, single or multiple locations, and number of

variables (e.g., temperature, precipitation, and wind speed).

A universal weather generator framework was proposed by Shahin [26] to be used in

construction engineering and management research. The framework illustrated the use

of the parametric stochastic weather generation approach to generate synthetic weather

series with multiple variables. It used a first-order Markov chain model to generate

precipitation, a multivariate generation model to generate temperature and relative

humidity, and a probability distribution model to generate wind speed. This approach

is associated with drawbacks such as the selection of the order of the Markov chain

model. Although the first-order Markov chain model is commonly applied to generate

precipitation, this selection has been unjustified [27]. Chin [27] analysed 25-years

records of precipitation from 100 weather stations in the United States and concluded

that the first-order Markov chain model is adequate in resampling the wet and dry

spells in the summer season. However, during the winter season, a higher-order

Markov chain model was better than the first-order model at re-sampling the wet and

dry spells. Chin also concluded that the geographical location of the studied area

affects the selection order of the Markov Chain model. Another drawback associated

with generating precipitation is the amount generated. The parametric approach

samples the amount of precipitation from a probability distribution function. The main

16

challenge associated with this model is its ability to reflect the features found in

precipitation data, including bimodality, skewness, and long tail [28]. In addition, the

parametric approach assumes weather data to be normally distributed, so that the

multivariate generation model can be used to generate temperature and relative

humidity variables. However, weather data from different locations may exert different

distribution behaviour. Doubrovsky [29] constructed a stochastic weather generator

called Met&Roll using the classical approach presented by Richardson [9], and

conducted validation by comparing the generated monthly means with observed means

from historical weather records. He concluded that weather variables such as solar

radiation, maximum temperature, and minimum temperature did not follow a normal

distribution. Another drawback associated with the parametric approach used in the

universal weather generator framework is created by the gap between the large time

scale (on a daily basis) of the generated weather variables and the time scale required

by the application at which the weather generator is used. Most construction operations

consider the effect of changes in weather conditions on a daily basis. However, other

operations, such as earthmoving in the mining industry, which often takes place in cold

regions, require hourly weather monitoring. This case adds complexity to the

generation of weather variables. Bridging this gap represents a challenging problem in

assessing such operations. Although parametric approaches are expected to improve

generated weather series, they still have several inadequacies: (1) the choice of model

is subjective (e.g., modelling weather variables by fitting them into their distribution

independently or using multivariate models) and rarely tested on a site-by-site basis

[30], (2) the distribution of weather variables used at one site may not be appropriate

17

for all sites [30], and (3) the multivariate models require data to be normally

distributed. In case in which they are not normally distributed, a transformation to

normality is required. This is a difficult task that may negatively affect model

performance [31].

Detailed records of historical weather data for almost all locations in the world are

publicly available. Using such high quality records, it is possible to directly sample

realistic weather parameters for different times and locations. Realistic extreme cases

can also be generated from these records. This paper illustrates a simplified, non-

parametric weather generation approach that uses the classical bootstrapping technique

to generate synthetic weather series.

Unlike the parametric approach, the non-parametric approach does not require a

theoretical probability distribution function for weather variables. This approach

preserves serial dependence between weather variables by using a block-resampling

scheme that considers a block of observations as a single observation and generates

daily and hourly weather variables. However, the generated weather series in the non-

parametric approach is limited by historical records, as simulated samples are selected

from available (past) weather data. Therefore, an experiment on both parametric and

non-parametric approaches is conducted to highlight differences between both

approaches from two perspectives: the generated weather series and their performance

when applied on weather-sensitive construction models.

For the purposes of comparison, this experiment uses a weather generator framework

developed by Shahin et al. [32] to simulate construction operations. The framework

18

applies the parametric approach to generate weather variables. The parametric

approach used by Shahin et al. [32] shares the same drawbacks discussed previously.

In addition, wind speed is modelled independently with no correlation to other weather

variables and the generated weather data is limited to a daily scale.

This chapter is organized as follows. In Section 2.2, a detailed description of the

experiment applied to both parametric and non-parametric weather generators is

presented. Section 2.3 describes how both generators are developed. Section 2.4

illustrates a comprehensive weather generation evaluation process, which tests the

weather generators’ performances from the perspectives of the assumptions applied

and outputs generated. It also assesses the generators’ performances when applied on

construction simulation models. The conclusions of this chapter are outlined in Section

2.5.

2.2 Experimenting with the Parametric and Non-Parametric Approaches

Here, a simplified non-parametric weather generator is developed and its performance

compared to a previous weather generator using historical records as a baseline. Figure

2- 1 shows a summary of the study methodology, which begins by selecting the

location of study. This step is performed to determine the weather variables that may

directly affect construction operation performance at that location. For the purpose of

this investigation, Fort McMurray, Alberta is selected as the location of study.

However, a different location may be chosen, provided that weather records are

available. Fort McMurray is located in the northern part of the province of Alberta,

Canada (56°44’ N, 111° 23’ W) and is characterized by large seasonal temperature

19

differences. Known worldwide for its oil sands, this region has witnessed tremendous

industrial activities, including oil extraction, mining, and construction, which are

currently driving the province’s economy.

The second step consists of importing historical weather data for the location of study.

Most countries have their own meteorological agencies that record and save weather

time series. In Canada, Environment Canada maintains historical weather records that

can be used to construct a weather generator. Moreover, historical weather data about

most locations can be found in the National Climatic Data Center on the National

Oceanic and Atmospheric Administration (NOAA) website [33].

After an historical weather database is created, two weather generators are constructed

(see Appendix A). The first is constructed using the classical parametric approach and

the second is constructed using a non-parametric approach. The two generators’

outputs are evaluated based on a defined testing scenario. For the scenario, two

synthetic weather series data sets are created, each corresponding to a 10-year period

from both generators. A statistical analysis is performed to compare both datasets

against historical records. Comparison with historical records will determine the

degree of similarity between the synthetic and the real weather time series. Another

weather generator evaluation test will also be conducted. The second test measures

how imperfections associated with the weather generators’ outputs affects the results

obtained from a model that uses weather series as an input. A similar evaluation was

conducted by Dubrovsky et al. [34]. This evaluation assumes that model outputs fed

by synthetic weather series should have similar characteristics to those fed by historical

records. The discrepancies between outputs from two different sources of input

20

(historical and synthetic) are due to the sensitivity of the model to certain

characteristics of weather variables. Accordingly, low discrepancies indicate that

weather variables are perfectly reproduced by the weather generator and vice versa.

Figure 2- 1 Study methodology

Feed inFeed in

Determine the location

of study

Import historical

weather forecast

Build weather-sensitive

construction model

Investigate weather

effects on construction

operations

Build two weather

generator models

Parametric Weather

Generator

Non-Parametric

Weather Generator

Define testing scenario

and apply it in both

generators

Output from

parametric weather

generator

Output from non-

parametric weather

generator

Compare

Construction model

output when using

parametric weather

generator

Construction model

output when using

non-parametric

weather generator

Compare

21

2.3 Construction of Weather Generators

2.3.1 Parametric weather generator

In classical weather generation, the stochastic relationships underlying meteorological

processes are always considered in modelling weather variables. Normally two main

relationships are considered in any weather modelling: (1) the time dependence within

each variable, and (2) the interdependence among the weather variables [9].

Richardson’s [9] stochastic simulation approach to weather generation represents the

foundation of most weather modelling studies. Its general generation process flow

chart is shown in Figure 2- 2.

22

Start

Determine the precipitation

status

Is the first day wet?

Sample the amount of

precipitation

Determine the first day

residuals

Calculate other weather

variables

The required set of

weather series achieved?

End

Y

Y

Advance calendar one day

N

N

Figure 2- 2 A parametric weather generation flow chart

23

In Richardson’s seminal work, precipitation, which serves to label days as dry or wet,

is used to construct any other relevant weather parameter required by the model. The

amount of precipitation is determined independently using a distribution function that

represents the amount of rainfall throughout a year. Prior to determining the amount

of precipitation, a first-order, two-state Markov chain concept is used to describe the

occurrence of wet and dry days, as shown in Figure 2- 3.

Figure 2- 3 Two-state Markov chain precipitation model

According to Figure 2- 3, given a wet day (or dry day), the conditional transition

probability to a dry day (or a wet day) satifies the following equations:

 2-1

To initialize the computation, the state of the first day (i.e., wet or dry) is determined

using the unconditional probability 𝑃𝑚(𝑤) associated with month m (or

   

   

| | 1

| | 1

i i

i i

P d w P w w

P d d P w d

 


 

Wet Dry
𝑃𝑖(𝑑|𝑑)

𝑃𝑖(𝑑| 𝑤)

𝑃𝑖(𝑤|𝑑)

𝑃𝑖(𝑤| 𝑤)

24

equivalently 𝑃𝑚(𝑑) = 1 − 𝑃𝑚(𝑤)) in conjunction with the algorithm given in

equation (2-2):

 2-2

In which is a randomly generated number from a uniform distribution. As for the

daily precipitation, it is usually modeled independently by means of an appropriately

selected distribution function. For instance, Richardson [9] used the exponential

distribution function, , for its simplicity but stated that mixed

exponential, , and gamma distribution functions

are better at describing the amount of precipitation. Wales and AbouRizk [22]and

Shahin [26] used a two-state gamma distribution, due to its flexibility in using two

parameters to describe the distribution.

Once the wet or dry day state condition is determined, the other weather variables are

calculated using a continuous multivariate stochastic process with daily mean and

standard deviations conditional on the day (wet/dry). This technique was described by

Yevjevich [35] and it begins by reducing the time series of each variable to time series

of residual elements by removing the periodic means and standard deviations. It is

performed by first determining the mean and standard deviation for wet and dry days

for all variables from the historical weather records. Then, the Fast Fourier Transform

method is performed in order to smooth the daily means and standard deviations.

Finally, the following equations are utilized to calculate the residual elements:

 if Wetn mr P w   

nr

 () expn n nf x x  

   () exp expn n n n nf x a b x c d x   

25

 2-3

where:

𝑥𝑑(𝑖) = the residual element of parameter 𝑖 for day 𝑑 in the records,

𝑋𝑑(𝑖) = the value of parameter 𝑖 for day 𝑑 in the records,

𝜎𝑑
0(𝑖) = the periodic standard deviation of parameter 𝑖 for a dry day 𝑑 in the historical

records,

𝑋𝑑
0̅̅ ̅̅ (𝑖) = the periodic mean of parameter 𝑖 for a dry day 𝑑 in the historical records,

𝜎𝑑
1(𝑖) = the periodic standard deviation of parameter 𝑖 for a wet day 𝑑 in the historical

records,

𝑋𝑑
1̅̅ ̅̅ (𝑖) = the periodic mean of parameter 𝑖 for a wet day 𝑑 in the historical records, and

= the amount of precipitation for day 𝑑 in the records.

A weakly stationary generating process is then used to generate residual elements of

the weather parameters. The weakly stationary generating process used in this

approach was defined by Matalas [36] and its equation for n weather parameters is as

follows:

𝑥𝑑 = 𝑨𝑥𝑑−1 + 𝑩𝜀𝑑 2-4























0)(if,
)(

)()(
)(

0)(if,
)(

)()(
)(

1

11

0

00

dP
i

iiX
ix

dP
i

iiX
ix

d

dd

d

d

dd

d









)(dP

26

where:

𝑥𝑑= the (nx1) matrix of residual elements for day d for parameters 1 to n,

𝑥𝑑−1 = the (nx1) matrix of residual elements for d-1 for parameters 1 to n,

A and B = the (nxn) matrices defined so that the correlations within and among the

residual series are preserved, and

𝜀𝑑 = the (nx1) matrix of random components sampled from a standard normal

distribution with a mean of 0 and a standard deviation of 1.

This approach implies that the weather parameters are normally distributed and that

the serial correlation within each parameter can be described by a first-order linear

autoregressive model. Therefore, matrices A and B may be determined from the

following matrix equations:

𝐀 = 𝑴𝟏𝑴𝟎
−𝟏 2-5

𝑩𝑩𝑻 = 𝑴𝟎 − 𝑴𝟏𝑴𝟎
−𝟏𝑴𝟏

𝑻 2-6

where:

𝑴0 = the (nxn) lag0 covariance matrix of the residual series, and

𝑴𝟏 = the (nxn) lag1 covariance matrix of the residual series.

A full description of the construction of parametric weather generators can be found

in Shahin [26]. Shahin applied his framework in two different locations, one of which

was Fort McMurray. All parameters used in the parametric weather generator are

extracted from his work and are listed in Table 2- 1.

27

Table 2- 1 Parameters used in constructing the parametric weather generator

Weather

variable

Mathematic

al model
Parameter values used in the generation process

Wet and

dry states

of the day

First-order

two-state

Markov chain

Month (m) Jan Feb Mar Apr May Jun

𝑃𝑚(𝑤) 0.406 0.369 0.316 0.262 0.338 0.452

𝑃𝑚(𝑤|𝑤) 0.536 0.545 0.48 0.429 0.476 0.56

𝑃𝑚(𝑤|𝑑) 0.317 0.265 0.24 0.203 0.27 0.364

Month (m) Jul Aug Sept Oct Nov Dec

𝑃𝑚(𝑤) 0.498 0.422 0.412 0.349 0.415 0.41

𝑃𝑚(𝑤|𝑤) 0.581 0.548 0.577 0.508 0.574 0.534

𝑃𝑚(𝑤|𝑑) 0.416 0.331 0.296 0.264 0.302 0.324

Precipitati

on

Fitted to a

two-state

gamma

distribution

Month Jan Feb Mar Apr May Jun

α 0.731 0.736 0.611 0.53 0.46 0.556

β 2.085 1.999 2.764 5.151 7.848 9.432

Month Jul Aug Sept Oct Nov Dec

α 0.518 0.41 0.431 0.481 0.747 0.666

β 10.024 12.795 9.389 5.516 2.52 2.422

Maximum

temperatur

e,

minimum

temperatur

e,

maximum

relative

humidity,

and

minimum

relative

humidity

Weekly

stationary

generation

process

𝐀 = [

𝟎. 𝟑𝟔𝟖 −𝟎. 𝟎𝟏𝟒 𝟎. 𝟎𝟕𝟕 −𝟎. 𝟎𝟓𝟖
𝟎. 𝟐𝟐𝟏 𝟎. 𝟎𝟎𝟒 𝟎. 𝟎𝟎𝟒 𝟎. 𝟎𝟑𝟕
𝟎. 𝟎𝟖𝟓 −𝟎. 𝟎𝟎𝟓 𝟎. 𝟒𝟎𝟔 𝟎. 𝟐𝟒𝟔
𝟎. 𝟎𝟐𝟎 𝟎. 𝟎𝟎𝟐 𝟎. 𝟎𝟗𝟓 𝟎. 𝟒𝟏𝟏

]

𝐁 = [

𝟎. 𝟗𝟐𝟑 𝟎 𝟎 𝟎
𝟎. 𝟑𝟗𝟑 𝟎. 𝟖𝟗𝟒 𝟎 𝟎

−𝟎. 𝟎𝟏𝟔 −𝟎. 𝟎𝟎𝟓 𝟎. 𝟖𝟐𝟕 𝟎
−𝟎. 𝟐𝟓𝟐 𝟎. 𝟏𝟑𝟓 𝟎. 𝟑𝟎𝟒 𝟎. 𝟕𝟖𝟒

]

The mean and standard deviation of each day are divided into two

values representing a wet and a dry status and their values are

calculated from the historical weather records.

Average

daily wind

speed

Fitted to a

two-state

gamma

distribution

Mont

h Jan Feb Mar Apr May Jun

α 2.319 3.579 4.522 6.525 6.431 5.904

β 3.622 2.519 2.176 1 .68 1.707 1.634

Mont

h Jul Aug Sept Oct Nov Dec

α 5.176 4.693 4.588 4.651 3.794 2.019

β 1.735 1.856 2.076 2.215 2.337 4.146

28

2.3.2 Non-parametric weather generator

Most non-parametric methods use resampling techniques to generate samples

repeatedly and randomly from a given dataset. One of these techniques, which came

to be known as bootstrapping, was introduced by Efron [37] and has been widely used

by practitioners to construct confidence intervals and/or approximate sampling

distributions. In the context of this approach, the original dataset plays the role of a

population from which samples of equal size are randomly drawn with replacement.

In generating weather series, the time dependence within each variable and

interdependence among the weather variables should be preserved. However, since the

resampled observations are selected independently, the serial dependence may not be

preserved. This issue was resolved by using the block-resampling scheme introduced

by Kunsch [38], which considers a block of observations as a single observation. In

our case, a block that has a daily weather forecast (e.g., temperature, precipitation,

relative humidity) is considered a single observation. Using the block-resampling

scheme, the serial dependence can be preserved within the block, but not across.

Assuming there are no dramatic climatic change effects, the dependence across the

blocks can be preserved by considering each year’s record as a single independent

sample. The bootstrapping resampling technique can then be performed by:

 First, constructing an empirical probability distribution,𝐹𝑛, from the observed

sample by placing a probability of 1/𝑛 (where 𝑛= the number of years in the

record) at each year.

 Second, drawing a random sample of size 𝑛 with a replacement.

29

 Third, calculating a statistic of interest from the resampled set.

 Finally, repeating the second and the third steps until the required number of

sets is achieved [39].

The construction of the non-parametric weather generator starts with the creation of a

database of historical weather forecasts of the studied location. Weather parameters

created in the database are those that have a direct effect on construction operations.

However, all weather parameters can be added to the database for the purposes of

covering most of the weather requirements in modelling construction operations. Once

the database is created, a computer model is developed to generate random weather

parameters. The random generation of weather parameters in this simplified approach

begins with the random selection of the year from the database. When the user defines

the day and month that represent the construction operation date, the generator begins

sampling directly from the initialized date of operation. The weather generator reflects

the generated weather in the form of a block containing all of the construction

operation’s weather parameters of interest. This block represents weather parameters

that have been recorded and saved by weather stations, ensuring that correlations and

dependencies amongst meteorological variables are well preserved. For this simplified

approach to generating large-time and small-time-scale weather variables, daily and

hourly historical weather forecast tables were created in the database. As shown in

Figure 2- 4, after initializing the weather generation starting date, the generator

provides the user with the flexibility of choosing between hourly and daily time

intervals. If the construction operation of study requires daily weather forecasts, the

generator samples directly from the daily forecast table in the database and advances

30

the calendar one day before generating a second weather update. Where an hourly

weather forecast is required, weather variables are sampled from the hourly forecast

table, with the exception of certain weather variables, such as precipitation and snow

depth, whose parameters are recorded in the daily weather forecast table. In this case,

the weather update is performed after the time is advanced one hour and is moved to

the second day in the calendar when 24-hour weather forecasts are generated.

31

StartStart

Determine location & start date

(month, day)

Determine location & start date

(month, day)

Randomly select yearRandomly select year

Initialize weather generator based

on (year,month,day)

Initialize weather generator based

on (year,month,day)

Precipitation and snow depth

equal zero

Precipitation and snow depth

equal zero

Get other parameters from the

hourly table in the database

Get other parameters from the

hourly table in the database

Get precipitation and snow depth

,if selected, from the daily

forecast table in the database

Get precipitation and snow depth

,if selected, from the daily

forecast table in the database

Update weather parametersUpdate weather parameters

Is the operation

finished?

Is the operation

finished?

EndEnd

Select weather variables to be

generated

Select weather variables to be

generated

Hourly forecast

required

Hourly forecast

required

Time= 0 am?Time= 0 am?

Advance watch one hourAdvance watch one hour

Yes

Get weather parameters from the

daily table in the database

Get weather parameters from the

daily table in the database

Update weather parametersUpdate weather parameters

Is the operation

finished?

Is the operation

finished?
Advance calendar one

day

Advance calendar one

day

No

No

Yes

Yes

No

No

Yes

Figure 2- 4 Non-parametric weather generation flow chart

32

2.4 Weather Generators’ Evaluation

The evaluation of the parametric and non-parametric weather generators is performed

in three stages as follows:

 Evaluation of weather generators’ assumptions.

 Evaluation of weather generators’ outputs.

 Evaluation of weather generators’ performance in weather-sensitive

construction models.

2.4.1 Evaluation of weather generators’ assumptions

This stage is performed by applying the conceptual model validation approach [40],

which determines if content, theories, and assumptions are correct and if the problem

representation in the model logic, structure, and mathematical relationships is

reasonable. In addition, a comparison with historical records is used to assess the

reliability of the generated weather variables.

In the parametric approach, it was assumed that temperature and relative humidity

were normally distributed, so that the serial correlation within these variables could be

described using a first-order linear autoregressive model. This assumption is tested by

calculating mean, standard deviation, skewness, and kurtosis and then comparing them

to the normal distribution values. Assuming the residual series are normally distributed

means that the skewness and kurtosis of the data should have values of 0 and 3

respectively. Moreover, the mean and standard deviation of the data should be values

of 0 and 1 respectively in order to satisfy the standard normal distribution

characteristics. Therefore, data from the historical records were grouped in a monthly

33

basis and the required four statistical measures were calculated. This calculation was

applied on four weather variables: maximum and minimum temperature, and

maximum and minimum relative humidity. Wind speed and precipitation were not

included in this test because they were generated independently by sampling from their

distribution functions which were actually driven by the historical records. Table 2- 2

to Table 2- 5 show results of mean, standard deviation, skewness and kurtosis of

maximum temperature, minimum temperature, maximum relative humidity, and

minimum relative humidity. Results show that the mean and standard deviation for

most of weather variables are close to the standard normal distribution values;

however, the skewness and kurtosis of weather variables showed a deviation from

normality. In addition, maximum relative humidity somehow showed a different

distribution behaviour throughout the year. For example, it shows almost normal

distribution behaviour from July to November, but is not normally distributed in the

rest of the year. This result contradicts the assumption made on the distribution

behaviour of weather data, which means that weather variables may have different

distribution behaviour throughout the year.

34

Table 2- 2 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of maximum temperature (MAXTEMP)

Month
MAXTEMP

Mean STD Skewness Kurtosis

Jan 0 1 0.32 -0.58

Feb 0.1189 1.0323 -0.04 -0.89

Mar -0.0937 1.016 -0.17 -0.78

Apr 0.0001 0.9857 -0.32 0.32

May 0 1 0.03 -0.17

Jun -0.0699 1.059 -0.27 -0.34

Jul 0 1 -0.25 0.07

Aug 0 1 0.02 -0.6

Sep -0.0308 1.0009 0.13 -0.37

Oct 0 1 -0.25 0.06

Nov 0.0517 1.025 -0.12 -0.41

Dec 0 1 0 -0.52

Table 2- 3 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of minimum temperature (MINTEMP)

Month
MINTEMP

Mean STD Skewness Kurtosis

Jan 0 1 0.06 -0.81

Feb 0.0987 1.019 -0.27 -0.61

Mar 0.0409 0.9294 -0.48 -0.42

Apr -0.0183 1.0023 -0.8 0.83

May 0 1 -0.46 0.9

Jun -0.1393 1.2777 -1.6 5.11

Jul 0 1 -0.19 0.05

Aug 0 1 -0.38 0.4

Sep -0.0754 1.0898 -0.93 1.45

Oct 0 1 -0.64 0.37

Nov 0.0216 0.9999 -0.54 -0.06

Dec 0 1 -0.21 -0.7

35

Table 2- 4 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of maximum relative humidity (MAXRH)

Month
MAXRH

Mean STD Skewness Kurtosis

Jan -0.0004 0.9989 -0.75 -0.05

Feb 0.0432 1.0078 -0.76 0.22

Mar 0.0757 1.6941 -0.79 0.44

Apr 0.08 1.903 -0.71 0.01

May 0 1 -0.73 -0.18

Jun -0.0105 1.0045 -1.09 0.58

Jul 0 1 -1.29 2.13

Aug 0 1 -1.37 2.7

Sep -0.0335 1.0346 -1.58 2.95

Oct 0 1 -1.31 2.21

Nov -0.0185 1.0259 -1.25 2.22

Dec -0.0013 1.0008 -0.97 0.49

Table 2- 5 Mean, standard deviation, skewness coefficient, and kurtosis coefficient

of the residuals of minimum relative humidity (MINRH)

Month
MINRH

Mean STD Skewness Kurtosis

Jan -0.0011 0.9991 -0.33 0.22

Feb -2.6161 1.3498 -0.23 -0.22

Mar 0.0572 1.0545 0.16 -0.61

Apr 6.644 2.5539 0.86 0.11

May 0 1 1.33 1.85

Jun 0.0236 1.0013 0.91 0.22

Jul 0 1 0.83 0.35

Aug 0 1 0.84 0.3

Sep 0.0025 0.9921 0.6 -0.31

Oct 0 1 0.25 -0.87

Nov -0.0441 1.0288 -0.65 0.16

Dec -0.0006 0.9998 -0.39 -0.24

36

Two normality tests were applied: Anderson-Darling, and Kolmogorov-Smirnov tests.

These are two of the Empirical Distribution Function (EDF) tests that are based on the

measure of discrepancy between the empirical and the hypothesized distributions [41].

Both tests start by defining the null hypothesis (Ho), which presumes that the data are

normally distributed, and the alternative hypothesis, (H1) which presumes they are not.

The acceptance and rejection of the null hypothesis is made using the corresponding

p-value; if the 𝑝-value is less than α (significance level) then the null hypothesis is

rejected and vice versa. Table 2- 6 to Table 2- 9 show results of 𝑝-values of maximum

temperature, minimum temperature, maximum relative humidity, and minimum

relative humidity (a significance level of 5% was used in both tests). Results show that

both tests rejected the null hypothesis, which means that the residuals of weather

variables are not normally distributed. In addition, normal probability plots of the

historical records were plotted to assess the normality assumption. These plots are

shown in Figure 2- 5 to Figure 2- 8. The weather variables exerted some deviation

from normality, especially with the maximum relative humidity, which largely

deviated from normality.

37

Table 2- 6 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of maximum temperature (MAXTEMP)

Month
MAXTEMP

Anderson-Darling Normality Kolmogorov-Smirnov Normality

Jan 4.97E-14 ✖ 0.0003871 ✖

Feb 3.73E-15 ✖ 1.47E-11 ✖

Mar 6.77E-14 ✖ 9.03E-06 ✖

Apr 2.20E-16 ✖ 1.83E-07 ✖

May 0.000112 ✖ 0.003748 ✖

Jun 2.20E-16 ✖ 1.99E-08 ✖

Jul 2.76E-12 ✖ 0.0001548 ✖

Aug 6.36E-08 ✖ 0.02612 ✖

Sep 8.53E-11 ✖ 6.89E-08 ✖

Oct 4.13E-14 ✖ 3.15E-08 ✖

Nov 0.0003603 ✖ 0.003747 ✖

Dec 9.83E-06 ✖ 0.04865 ✖

Table 2- 7 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of minimum temperature (MINTEMP)

Month
MINTEMP

Anderson-Darling Normality Kolmogorov-Smirnov Normality

Jan 2.20E-16 ✖ 1.44E-06 ✖

Feb 2.20E-16 ✖ 8.55E-14 ✖

Mar 2.20E-16 ✖ 3.01E-14 ✖

Apr 2.20E-16 ✖ 5.78E-11 ✖

May 1.68E-10 ✖ 0.00196 ✖

Jun 2.20E-16 ✖ 0.006914 ✖

Jul 0.0003931 ✖ 0.002608 ✖

Aug 3.87E-05 ✖ 0.03094 ✖

Sep 2.20E-16 ✖ 0.06237 ✔

Oct 2.20E-16 ✖ 9.69E-13 ✖

Nov 2.20E-16 ✖ 6.66E-16 ✖

Dec 2.20E-16 ✖ 0.0001827 ✖

38

Table 2- 8 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of maximum relative humidity (MAXRH)

Month
MAXRH

Anderson-Darling Normality Kolmogorov-Smirnov Normality

Jan 2.20E-16 ✖ 2.11E-15 ✖

Feb 2.20E-16 ✖ 2.20E-16 ✖

Mar 2.20E-16 ✖ 2.20E-16 ✖

Apr 2.20E-16 ✖ 2.20E-16 ✖

May 2.20E-16 ✖ 6.18E-12 ✖

Jun 2.20E-16 ✖ 2.20E-16 ✖

Jul 2.20E-16 ✖ 2.20E-16 ✖

Aug 2.20E-16 ✖ 2.20E-16 ✖

Sep 2.20E-16 ✖ 2.20E-16 ✖

Oct 2.20E-16 ✖ 2.20E-16 ✖

Nov 2.20E-16 ✖ 1.44E-15 ✖

Dec 2.20E-16 ✖ 2.20E-16 ✖

Table 2- 9 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the

residuals of minimum relative humidity (MINRH)

Month
MINRH

Anderson-Darling Normality Kolmogorov-Smirnov Normality

Jan 7.16E-05 ✖ 0.001314 ✖

Feb 2.88E-06 ✖ 2.20E-16 ✖

Mar 3.19E-09 ✖ 1.14E-05 ✖

Apr 2.20E-16 ✖ 2.20E-16 ✖

May 2.20E-16 ✖ 2.20E-16 ✖

Jun 2.20E-16 ✖ 5.55E-11 ✖

Jul 2.20E-16 ✖ 2.05E-11 ✖

Aug 2.20E-16 ✖ 8.87E-14 ✖

Sep 2.20E-16 ✖ 1.77E-08 ✖

Oct 2.20E-16 ✖ 1.20E-06 ✖

Nov 2.20E-16 ✖ 0.00021 ✖

Dec 9.76E-15 ✖ 9.46E-06 ✖

39

Figure 2- 5 Normal probability plot of the residuals of maximum temperature

(MAXTEMP)

Figure 2- 6 Normal probability plot of the residuals of minimum temperature

(MINTEMP)

543210-1-2-3-4

99.99

99

95

80

50

20

5

1

0.01

MAXTEMP

P
er

ce
n

t

5.02.50.0-2.5-5.0

99.99

99

95

80

50

20

5

1

0.01

MINTEMP

P
er

ce
n

t

40

Figure 2- 7 Normal probability plot of the residuals of maximum relative humidity

(MAXRH)

Figure 2- 8 Normal probability plot of the residuals of minimum relative humidity

(MINRH)

5.02.50.0-2.5-5.0-7.5

99.99

99

95

80

50

20

5

1

0.01

MAXRH

P
er

ce
n

t

543210-1-2-3-4

99.99

99

95

80

50

20

5

1

0.01

MINRH

P
er

ce
n

t

41

In addition to the normality assumption, another assumption was that the first-order

autoregressive model in the parametric approach and the block-resampling scheme in

the non-parametric approach can approximate the serial dependence of weather

variables. Therefore, serial correlation coefficients of lags up to five days for each

residual series were calculated and then compared with serial correlation coefficients

of residual series of the historical records. Figure 2- 9 to Figure 2- 12 illustrate the

analysis results. The parametric weather generator provided a better serial correlation

coefficients’ approximation for the maximum and minimum temperature than did the

non-parametric weather generator. Meanwhile, the non-parametric weather generator

performed better in approximating the serial correlation coefficients of the maximum

and minimum relative humidity. In general, both generators provided acceptable

approximations of serial correlation coefficients.

Figure 2- 9 Serial correlation coefficients of maximum temperature

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

S
er

ia
l

C
o
rr

el
at

io
n

Lag, Days

MAXTEMP Parametric

Non-Parametric

Historical

42

Figure 2- 10 Serial correlation coefficients of minimum temperature

Figure 2- 11 Serial correlation coefficients of maximum relative humidity

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

S
er

ia
l

C
o

rr
el

at
io

n

Lag, Days

MINTEMP
Parametric

Non-Parametric

Historical

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

S
er

ia
l

C
o
rr

el
at

io
n

Lag, Days

MAXRH
Parametric

Non-Parametric

Historical

43

Figure 2- 12 Serial correlation coefficients of minimum relative humidity

Wind speed in the parametric approach was assumed as an independent weather

variable which has no correlation with other variables; it was modeled by fitting its

daily average values to a two-state gamma distribution. However, a relationship

between wind speed, temperature, and relative humidity may exist. Therefore, a

correlation test based on Pearson's product moment correlation coefficient was applied

between wind speed, temperature and relative humidity. The test was applied on

weather series generated from both generators and on the historical records as well.

Correlation coefficients were calculated for each generated year and 10-year values

were plotted as shown in Figure 2- 13 to Figure 2- 16. The historical averages of

correlation coefficients indicate the existence of a positive relationship between wind

speed and temperature, and a negative relationship between wind speed and relative

humidity. The non-parametric weather generator provided the same relationship with

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

S
er

ia
l

C
o

rr
el

at
io

n

Lag, Days

MINRH Parametric

Non-Parametric

Historical

44

higher correlation coefficients. Likewise, the parametric weather generator, although

the wind speed was modeled independently, also maintained the same relationships.

Figure 2- 13 10 years’ distribution of correlation coefficients between maximum

temperature and wind speed

Figure 2- 14 10 years’ distribution of correlation coefficients between minimum

temperature and wind speed

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Year

Parametric Non-Parametric Historical-Average

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Year

Parametric Non-Parametric Historical-Average

45

Figure 2- 15 10 years’ distribution of correlation coefficients between maximum

relative humidity and wind speed

Figure 2- 16 10 years’ distribution of correlation coefficients between minimum

relative humidity and wind speed

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

1 2 3 4 5 6 7 8 9 10

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Year

Parametric Non-Parametric Historical-Average

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 10

C
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t

Year

Parametric Non-Parametric Historical-Average

46

2.4.2 Evaluation of weather generators’ outputs

The second stage in the evaluation process is concerned with testing the reliability of

weather generators’ outputs in terms of monthly means and standard deviations. Figure

2- 17 to Figure 2- 22 illustrate the comparison between the monthly averages of

maximum temperature, minimum temperature, maximum relative humidity, minimum

relative humidity, precipitation, and wind speed generated from both the parametric

and non-parametric weather generator against the historical averages. In the context of

maximum and minimum temperatures, both the parametric and the non-parametric

weather generators provided almost similar averages compared to the historical

records. The parametric weather generator provided more accurate averages than the

non-parametric weather generator (see Appendix B for more details on the output

results). This result was expected because in the parametric weather generation

mechanism the residuals of weather variables are generated and added to historical

monthly averages. However, while the parametric model is expected to perform better

than its non-parametric counterpart, the differences between the synthetic time series,

with respect to historical records, is approximately a fraction of a degree Celsius apart,

which, from a practical view, is acceptable. The same result was also observed in the

averages of relative humidity.

47

Figure 2- 17 Monthly averages of maximum temperature

Figure 2- 18 Monthly averages of minimum temperature

-20

-15

-10

-5

0

5

10

15

20

25

30

A
v
er

ag
e

T
em

p
er

at
u

re
 (

C
el

si
u

s)

Parametric Non-Parametric Historical

-30

-25

-20

-15

-10

-5

0

5

10

15

A
v
er

ag
e

T
em

p
er

at
u
re

 (
C

el
si

u
s)

Parametric Non-Parametric Historical

48

Figure 2- 19 Monthly averages of maximum relative humidity

Figure 2- 20 Monthly averages of minimum relative humidity

74

76

78

80

82

84

86

88

90

92

94

A
v
er

ag
e

R
el

at
iv

e
H

u
m

id
it

y
 (

%
)

Parametric Non-Parametric Historical

0

10

20

30

40

50

60

70

80

A
v
er

ag
e

R
el

at
iv

e
H

u
m

id
it

y
 (

%
)

Parametric Non-Parametric Historical

49

Figure 2- 21 Monthly averages of precipitation

Figure 2- 22 Monthly averages of wind speed

0

10

20

30

40

50

60

70

80

90

A
v
er

ag
e

P
re

ci
p

it
at

io
n

 (
m

m
)

Parametric Non-Parametric Historical

0

2

4

6

8

10

12

A
v
er

ag
e

W
in

d
 S

p
ee

d
 (

k
m

/h
r)

Parametric Non-Parametric Historical

50

Regarding the amount of generated precipitation (see Figure 2- 21), the non-parametric

generator led to the same maximum average precipitation at the same period of time

while the parametric generator produced a skewed maximum precipitation peak. Such

discrepancy maybe related to the shape parameters (α) and the inverse scale parameter

(β) used in the two-state gamma distribution function. In addition to comparing

weather generators based on the amount of monthly precipitation, a comparison based

on the length of wet spells (shown in Table 2- 10) was conducted on outputs from both

generators. The comparison is based on three measures: (1) the average number of wet

days, (2) the average number of wet intervals that lasted for more than two days, and

(3) the average duration of wet intervals.

Table 2- 10 Analysis of length of wet spells

Mon

th

Number of wet days
Number of wet

intervals

Average duration of wet

intervals

P*
NP

*
H* P* NP* H* P* NP* H*

Jan 12.4 13.9 12.6 2.9 3.4 3.0 2.7 3.3 3.4

Feb 10.4 8.9 10.4 3 2.1 2.6 2.7 3.3 3.2

Mar

ch
7.7 8.3 9.8 1.1 2 2.6 2.6 2.9 3.0

Apr 7.6 10.3 7.8 1.6 2.9 2.0 2.4 2.7 2.6

May 11.2 10.7 10.4 3 2.9 2.6 2.2 2.7 2.8

Jun 13.6 12.2 13.5 3.9 3.8 3.6 2.6 2.6 3.1

Jul 14.6 15.5 15.4 3.6 4.6 3.9 2.8 2.9 3.1

Aug 11.6 11.2 12.95 3.1 2.2 3.2 2.4 3.5 3.3

Sep 12.1 13.1 12.3 3.1 3.4 3.2 2.6 3.1 3.3

Oct 11.9 11.9 10.8 2.4 3 2.6 2.6 3.2 3.1

Nov 12.2 12.5 12.4 2.9 3 3.05 2.5 3.3 3.3

Dec 13.3 13 12.6 3.4 3.5 3.3 3.0 3.1 3.1

 *(P: Parametric, NP: Non-Parametric, H: Historical)

51

Table 2- 10 demonstrates that both weather generators produced a very similar

monthly average number of wet days. While the parametric generator outperforms the

non-parametric, in the case of the average number of wet intervals, the non-parametric

weather generator provided more accurate durations of wet intervals than did the

parametric counterpart. Finally, in the case of wind speed, both weather generators

(see Figure 2- 22) generated almost identical wind speed averages when compared to

the historical records.

In contrast to the output averages, when comparing the standard deviation of each

weather variable from both generators, the non-parametric weather generator had a

better performance (see Figure 2- 23 to Figure 2- 28). This is clearly noticeable in

Figure 2- 25. In this figure, the parametric weather generator showed large differences

when compared to the standard deviation of the historical records of maximum relative

humidity. Meanwhile, the behaviour of the non-parametric weather generator came

close to matching the historical records. For that reason, additional tests such as 𝑡 and

𝐹 tests were conducted for each month to obtain better insight into the behaviour of

the mean and variance of the generated weather series compared to the historical

record. These tests were conducted to determine whether the generated weather series

from both generators was significantly different from those in the historical record.

The two tests were applied on four weather variables: maximum and minimum

temperature, and maximum and minimum relative humidity. Table 2- 11 shows the

test results.

52

Figure 2- 23 Standard deviation of maximum temperature

Figure 2- 24 Standard deviation of minimum temperature

0

2

4

6

8

10

12

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Parametric Non-Parametric Historical

0

2

4

6

8

10

12

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

Parametric Non-Parametric Historical

53

Figure 2- 25 Standard deviation of maximum relative humidity

Figure 2- 26 Standard deviation of minimum relative humidity

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Parametric Non-Parametric Historical

0

2

4

6

8

10

12

14

16

18

20

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

Parametric Non-Parametric Historical

54

Figure 2- 27 Standard deviation of precipitation

Figure 2- 28 Standard deviation of wind speed

0

5

10

15

20

25

30

35

40

45

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Parametric Non-Parametric Historical

0

1

2

3

4

5

6

7

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

Parametric Non-Parametric Historical

55

Table 2- 11 Number of months rejected by 𝑡 and 𝐹 tests for four weather variables

Test
MAXTEMP MINTEMP MAXRH MINRH

P* NP* P* NP* P* NP* P* NP*

𝑡-test (rejection) 4 4 4 5 2 2 2 4

𝐹-test (rejection) 0 0 5 2 12 0 1 0

*(P: Parametric, NP: Non-Parametric)

Table 2- 1 shows that the non-parametric weather generator outperforms the

parametric weather generator, which means that the non-parametric weather generator

provides a data spread similar to those in the historical records. The parametric weather

generator showed poor results in maximum relative humidity; the data spread

generated is significantly different. Failure in generating a similar data spread can be

interpreted as the parametric weather generator failing to provide wider possible

relative humidity scenarios that may exist in reality.

In addition to average and standard deviation-based analysis, a cross correlation test

was applied to measure the similarity between the generated time series from both

generators with the time series from the historical records. This test was performed by

first randomly selecting a baseline year for the comparison from the historical records.

Two independent years were generated from both generators and, finally, a cross

correlation test was applied for each weather variable in the time series. The test was

performed 10 times to show the cross correlation coefficients’ behaviour of the

parametric and non-parametric weather generators against the historical year (see

Figures 2-29 to 2-34). Both generators have almost the same behaviour when

compared to the historical baseline year, except in some runs. For instance, in

56

MAXTEMP, the parametric and non-parametric weather generators provided different

cross correlation coefficients through the first three runs and were almost the same in

the rest of the runs. Likewise, MAXRH showed that for the non-parametric weather

generator, no correlation exists with the historical year in the eighth and ninth runs,

but the parametric weather generator provided better cross correlation coefficients for

the same runs. In general, both generators have performed well in the cross correlation

test with the preference given to the parametric weather generator.

Figure 2- 29 Distribution of 10 runs of cross correlation coefficient of maximum

temperature

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Run

Parametric-Historical Non-Parametric-Historical

57

Figure 2- 30 Distribution of 10 runs of cross correlation coefficient of minimum

temperature

Figure 2- 31 Distribution of 10 runs of cross correlation coefficient of maximum

relative humidity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Run

Parametric-Historical Non-Parametric-Historical

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Run

Parametric-Historical Non-Parametric-Historical

58

Figure 2- 32 Distribution of 10 runs of cross correlation coefficient of minimum

relative humidity

Figure 2- 33 Distribution of 10 runs of cross correlation coefficient of precipitation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Run

Parametric-Historical Non-Parametric-Historical

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n
 C

o
ef

fi
ci

en
t

Run

Parametric-Historical Non-Parametric-Historical

59

Figure 2- 34 Distribution of 10 runs of cross correlation coefficient of wind speed

At the end of this section and despite the inadequacies associated with the parametric

weather generator such as the assumption of distribution and the missing correlation

between wind speed and other weather variables, the above monthly based weather

analysis showed that both weather generators performed well in generating synthetic

weather variables.

2.4.3 Evaluation of weather generators’ performance in weather-sensitive

construction models

This stage of evaluation is performed to investigate the way in which imperfections

associated with the generated weather series from both weather generators affect

weather-sensitive construction models. In Figure 2- 13 to Figure 2- 16, wind speed is

correlated to temperature. Both generators maintained the relationship to different

degrees, although the non-parametric weather generator provided higher correlation

coefficients than the parametric model. While the differences in correlation

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

C
ro

ss
 C

o
rr

el
at

io
n

 C
o

ef
fi

ci
en

t

Run

Parametric-Historical Non-Parametric-Historical

60

coefficients caused no effect when the monthly averages of generated weather series

were compared to the historical records, it is expected that differences would emerge

when a certain simulation output were co-dependent on temperature and wind speed.

This was investigated by developing a construction model that uses temperature and

wind speed as input variables to predict construction performance. Results from Table

2- 11 showed that there is a difference in the minimum temperature data spreads of

both generators when compared to historical records. Therefore, another weather

sensitive construction model that uses minimum temperature as an input variable was

developed to assess the performance of both weather generators in modelling

construction operations.

2.4.3.1 Estimating temperature-wind speed effects in construction labor

In the construction industry, projects are executed in an open work environment, which

can directly affect productivity and efficiency. The performance of construction

operations changes depending on the working season because changes in weather

conditions affect construction manpower through work-related disorders that occur as

a result of extreme weather conditions. In hot regions, high temperature, high relative

humidity, heat, and ultraviolet radiation are examples of weather variables that affect

construction labourers. These variables produce injuries such as heat stroke, sunburn,

and heat exhaustion and their associated risk level varies from dehydration to fatality.

In cold regions, injuries are often due to a combination of low temperature and wind

speed. Frostbite is the most common injury in this working environment. Its injurious

effect is enhanced on wet skin, as wet skin has a higher effective temperature for

freezing than dry skin, as described by Kohen and Brown [17] in Table 2-12. In cold

61

weather regions, the combination of weather variables such as temperature and wind

speed can be used to quantify the effect of weather changes on labour productivity.

Occupational health and safety regulation guidelines are a reliable source that can be

used in modelling weather-sensitive construction models.

Table 2- 12 Minimum wind speeda required for freezing exposed skin [17]

Temperature (Co) Wet skin (miles/hour) Dry skin (miles/hour)

-1 15 -

-7 7 30

-12 4 15

-18 3 10

-23 2 7

-29 1 5

-34 - 3

The Canadian Center for Occupational Health and Safety (CCOHS) has a cold

exposure guideline for workers. These guidelines include a work warm-up schedule

for outdoor activities, as shown in Table 2- 13. The schedule is adopted from the

American Conference of Governmental Industrial Hygienists (ACGIH) [18] and

recommends maximum work periods and break numbers for four-hour shifts,

conditional on the temperature and wind speed values. CCOHS also identified the

effect of the combination of relative humidity and temperature on construction

working periods. CCOHS provided a recommendation for the number of breaks to be

taken in accordance to the humidex reading.

Table 2- 13 is transformed to Table 2- 14 to simplify the quantification of weather

effects on labourers’ productivity. Table 2- 14 illustrates minutes lost per four-hour

shifts due to temperature and wind speed and is used as a black box model. The model

will receive inputs of weather series generated from the parametric and non-parametric

62

weather generators and will provide an output in the form of expected minutes lost in

a four-hour shift cycle.

The parametric weather generator generates a daily weather series, whereas its non-

parametric counterpart has the flexibility of generating daily and hourly weather series.

To maintain test consistency between the two weather generators, only daily weather

series were considered. However, two different input testing scenarios were conducted

using different combinations of temperature and wind speed:

Input scenario 1: Daily maximum and minimum temperatures combined with daily

average wind speed, generated from both generators with no consideration of

construction working period. In this scenario, weather variables represent the average

of weather records over 24 hours.

Input scenario 2: Daily maximum and minimum temperatures combined with daily

average wind speed; the non-parametric weather generator in this case provided

weather series for the specified construction working period (from 8:00 to 17:00). This

testing scenario is applied to address the effect of considering weather variables from

a specific time interval when estimating construction performance.

63

Table 2- 13 Work warm-up schedule for outdoor activities [18]

T
No Noticeable

Wind
Wind 8 km/h Wind 16 km/h Wind 24 km/h Wind 32 km/h

Co

Max.

work

period

No. of

breaks

Max.

work

period

No. of

breaks

Max.

work

period

No. of

breaks

Max.

work

period

No. of

breaks

Max.

work

period

No. of

breaks

-26 to -

28
(Norm breaks) 1 (Norm breaks) 1 75 min. 2 55 min. 3 40 min. 4

-29 to -

31
(Norm breaks) 1 75 min. 2 55 min. 3 40 min. 4 30 min. 5

-32 to -

34
75 min. 2 55 min. 3 40 min. 4 30 min. 5

Non-emergency

work should cease

-35 to -

37
55 min. 3 40 min. 4 30 min. 5

Non-emergency

work should cease

-38 to -

39
40 min. 4 30 min. 5

Non-emergency

work should cease

-40 to -

42
30 min. 5

Non-emergency

work should cease
- 43 -

Non-emergency

work should

cease

64

Table 2- 14 Minutes lost per four-hour shift

Temperature C Wind Speed km/h

From To 0 1 8 16 24 32

-43 -65 240 240 240 240 240 240

-40 -43 60 60 240 240 240 240

-38 -39 40 40 60 240 240 240

-35 -37 20 20 40 60 240 240

-32 -34 15 15 20 40 60 240

-29 -31 0 0 15 20 40 60

-26 -28 0 0 0 15 20 40

0 -25 0 0 0 0 0 0

65

The combination of maximum temperature and average wind speed in each scenario

represents the minimum expected loss in minutes per shift. The combination of

minimum temperature and average wind speed represents the maximum expected loss

in minutes per shift. Figure 2- 35 to Figure 2- 38 illustrate the output results of the first

testing scenario; Figure 2- 35 demonstrates that the non-parametric weather generator

provided a better estimation in terms of the minimum expected loss in minutes per

four-hour shift. However, the parametric weather generator outperforms the non-

parametric weather generator when it comes to estimating the maximum expected loss

in minutes per four-hour shift, as shown in Figure 2- 36. Figure 2- 37 and Figure 2- 38

illustrate the way in which the estimated values of maximum and minimum expected

loss in minutes per four-hour shift differ from the historical average. For the minimum

expected loss, the trend of the non-parametric weather generator was similar to that of

the historical record when compared to the parametric weather generator. However,

the parametric weather generator outperformed the non-parametric weather generator

in maximum expected loss.

66

Figure 2- 35 Minutes lost per month due to maximum temperature and average wind

speed (with no consideration of construction working period)

Figure 2- 36 Minutes lost per month due to maximum temperature and average wind

speed (with no consideration of construction working period)

0

20

40

60

80

100

120

140

160

180

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

0

200

400

600

800

1000

1200

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

67

Figure 2- 37 Deviation of minutes lost per month due to maximum temperature and

average wind speed from historical average (with no consideration of construction

working period)

Figure 2- 38 Deviation of minutes lost per month due to minimum temperature and

average wind speed from historical average (with no consideration of construction

working period)

0

50

100

150

200

250

300

350

400

450

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Prametric Historical

0

100

200

300

400

500

600

700

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

68

Figure 2- 39 to Figure 2- 42 illustrate the second testing scenario outputs. Here, the

output results contradict those of the first testing scenario. The parametric weather

generator performed better than the non-parametric weather generator in estimating

the minimum expected loss; however, the non-parametric weather generator provided

a better estimation of maximum expected loss. These results indicate that the

parametric weather generator provides a better estimation of the maximum effect of

temperature and wind speed on construction labour, if no specific construction period

is assumed (this means that the average daily values of weather variables are used).

However, in the case of estimating the maximum effect of temperature and wind speed

in a specified construction period, the non-parametric weather generator provides a

better estimation.

Figure 2- 39 Minutes lost per month due to maximum temperature and average wind

speed (with consideration of construction working period)

0

50

100

150

200

250

300

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

69

Figure 2- 40 Minutes lost per month due to minimum temperature and average wind

speed (with consideration of construction working period)

Figure 2- 41 Deviation from historical average of minutes lost per month due to

maximum temperature and average wind speed (with consideration of construction

working period)

0

100

200

300

400

500

600

700

800

900

1000

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

0

50

100

150

200

250

300

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Prametric Historical

70

Figure 2- 42 Deviation from historical average of minutes lost per month due to

minimum temperature and average wind speed (with consideration of construction

working period)

2.4.3.2 Estimating temperature effects on tower cranes

Extreme weather conditions affecting cranes are normally controlled by two weather

variables: wind speed and temperature. The wind speed mainly affects the lifted load.

The combination of heavy load and high wind speed creates an unpleasant working

environment for cranes and construction labourers [42]. This condition may cause

either a partial or complete stoppage of crane work onsite. Temperature also causes

stoppage due to the allowable operational temperature set for cranes.

There are many types of cranes. All belong to a class of construction equipment.

Included in this class mobile and tower cranes. Tower cranes are selected for this study

because the occupational health and safety regulations in British Columbia [43] specify

winter operational rules: the minimum allowable temperature at which a tower crane

can operate is -18 degrees Celsius. This rule is used as a black box model to estimate

0

100

200

300

400

500

600

Nov Dec Jan Feb March Apr

M
in

u
te

s
L

o
st

Parametric Non-Parametric Historical

71

the loss of operational days in winter. Similar to the previous construction model, two

testing scenarios were applied, as follows:

Input scenario 1: Daily maximum and minimum generated from both generators with

no consideration of construction working period.

Input scenario 2: Daily maximum and minimum temperatures from both generators;

the non-parametric weather generator in this case provided weather series for the

specified construction working period (from 8:00 to 17:00).

Figure 2- 43 to Figure 2- 46 and Figure 2- 47 to Figure 2- 50 illustrate the output

results of both scenarios, respectively. In the first testing scenario, both generators

provided almost the same estimation of loss in operational days. However, when the

differences from historical averages were compared, the parametric weather generator

provided a better trend than the non-parametric weather generator. In the case of the

second testing scenario, the non-parametric weather generator outperformed the

parametric weather generator in both the estimation of loss in operational days and the

deviation from historical averages. Therefore, although both generators performed

well on a daily basis, the non-parametric weather generator performed better when the

construction period was specified.

72

Figure 2- 43 Loss in operational days due to maximum temperature (with no

consideration of construction working period)

Figure 2- 44 Loss in operational days due to minimum temperature (with no

consideration of construction working period)

0

2

4

6

8

10

12

14

Nov Dec Jan Feb March Apr

L
o

ss
 i

n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

0

5

10

15

20

25

Nov Dec Jan Feb March Apr

L
o
ss

 i
n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

73

Figure 2- 45 Deviation from historical average of loss in operational days due to

maximum temperature (with no consideration of construction working period)

Figure 2- 46 Deviation from historical average of loss in operational days due to

minimum temperature (with no consideration of construction working period)

0

1

2

3

4

5

6

7

8

Nov Dec Jan Feb March Apr

L
o

ss
 i

n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Prametric Historical

0

1

2

3

4

5

6

7

Nov Dec Jan Feb March Apr

L
o

ss
 i

n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

74

Figure 2- 47 Loss in operational days due to maximum temperature (with

consideration of construction working period)

Figure 2- 48 Loss in operational days due to minimum temperature (with

consideration of construction working period)

0

2

4

6

8

10

12

14

16

Nov Dec Jan Feb March Apr

L
o

ss
 i

n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

0

5

10

15

20

25

Nov Dec Jan Feb March Apr

L
o
ss

 i
n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

75

Figure 2- 49 Deviation from historical average of loss in operational days due to

maximum temperature (with consideration of construction working period)

Figure 2- 50 Deviation from historical average of loss in operational days due to

minimum temperature (with consideration of construction working period)

0

1

2

3

4

5

6

Nov Dec Jan Feb March Apr

L
o

ss
 i

n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Prametric Historical

0

1

2

3

4

5

6

7

8

9

Nov Dec Jan Feb March Apr

L
o
ss

 i
n
 o

p
er

at
io

n
al

 d
ay

s

Parametric Non-Parametric Historical

76

2.5 Conclusion

A simplified weather generator using a non-parametric approach, built using the

bootstrap sampling technique, was proposed in this study. An experiment was

conducted to evaluate the way in which parametric and non-parametric weather

generators performed in comparison to each other. Another experiment was

performed, this one to evaluate the generators’ imperfections when applied on

weather-sensitive construction models. In the context of resembling a real weather

series, it was found that the proposed approach has the same performance as the

parametric weather generator and, moreover, it exhibits better performance than the

parametric weather generator for some weather variables, such as maximum relative

humidity and minimum temperature. When measuring the generators’ imperfections

in terms of the weather-sensitive construction model, it was found that the parametric

weather generator outperforms the non-parametric weather generator in estimating

extreme weather effects in construction labour when compared to outputs generated

using historical records. This result applied when there was no specific construction

working period identified for the modelling construction operation. However, when a

specified construction period was applied, the non-parametric weather generator

provided a better estimation of extreme weather effects on construction labour.

Likewise, in estimating the extreme weather effects of tower crane operation, the non-

parametric weather generator provided a better estimation than the parametric weather

generator when a specified construction period was applied. It was found that both

generators are reliable in generating synthetic weather series and in modelling

construction operations from a daily perspective. However, the non-parametric

77

weather generator outperforms the parametric weather generator when a smaller time-

scale flexibility (e.g. hourly) is required in modelling a construction operation.

78

Chapter 3

Application of the Non-Parametric Weather

Generator in Modeling a Construction

Operation

3.1 Introduction

Weather variables play different roles in estimating the performance of earthmoving

operations. Earthmoving machinery is most affected. For instance, the rolling

resistance factor is calculated based on the amount of tire penetration into the ground.

Different soils have different tire interaction behaviour. In the winter, snow cover or

snow depth affects such interactions and varies the rolling resistance from two

perspectives: first, if the snow cover is not packed, the tire penetration rate becomes

higher, which results in a higher rolling resistance. Second, if the snow cover is packed,

the rolling resistance is lower [44]. In the spring and summer, precipitation is the

governing factor for rolling resistance. Precipitation increases the water content in the

79

soil, which in turn increases the tire penetration rate. The increase in rolling resistance

decreases hauling truck speed, which affects the productivity of the earthmoving cycle

[45]. Furthermore, the increase in rolling resistance has a negative impact on a truck’s

fuel economy, which means that it has a direct relationship with fuel consumption [46].

Visibility in meteorology is defined as “the greatest distance at which a black object

of suitable dimensions can be seen and recognized against the horizon sky during

daylight. It could also be seen and recognized during the night if the general

illumination were raised to the normal daylight level” [47]. Visibility is an important

factor used to estimate a truck’s hauling productivity since it controls the maximum

speed that can be obtained in the hauling journey [48]. The high wind speed on a snowy

or rainy day creates blowing snow that can be a hazard in transportation since it

significantly reduces visibility. On a clear summer day, a truck can achieve maximum

speed in its hauling journey while on a foggy or snowy winter day truck speed is

affected and often limited by visibility on the road [49].

The low temperature in the winter season influences properties of soil, especially its

strength. Wet soils are comprised of pores, water, and soil particles. When water in

soil pores is subjected to a temperature below the freezing point, it results in changing

the state of water from a liquid to solid state. This change gives the soil some ice

characteristics like strength, increasing its strength by one or two orders of magnitude

[50]. For example, a coarse-grained soil with a medium to high unit weight becomes

very strong when water in the soil freezes. This change in soil strength has a direct

effect on the excavation process [51]. In contrast, an increase in temperature initiates

the thawing process which reduces soil strength [52].

80

The variation in temperature from one season to another has a direct effect on a truck’s

operational cost, specifically breakdown repairs and maintenance costs. For example,

a truck’s performance depends on tire life, and the most significant environmental

factor that affects tire life is temperature [53]. Li, Liu and Frimpong [53] identified

that dump truck tires are subjected to high stress and deformation when working under

severe temperature conditions ranging from 40 to -40 oC. As a result, tire failure may

occur in earthmoving operations [54]. Heavy rain and snow are also considered to be

among the environmental factors affecting tires [55]. Temperature also has a negative

effect on a wide range of equipment operations. For instance, low temperature has an

adverse effect on engine performance; extreme low temperatures increase the number

of engine failures and reduce fuel efficiency [56]. Furthermore, low temperatures

significantly change the brittleness of metals, resulting in an increase in vehicle

breakdowns and machine part failures [57].

Weather variables effects, based on the above discussion, on earthmoving operations

is contained within three processes: (1) excavation, (2) loading, and (3) hauling. In the

context of a simulation of an earthmoving operation, it is important to integrate such

effects to create a realistic simulation environment. In each simulation run, weather

variables should be generated carefully so that time dependency between weather

variables is preserved. This way each weather variable generated for a certain

earthmoving operation (e.g., excavation) will be correlated to other weather variables

generated for other operations (e.g., hauling). Furthermore, all earthmoving operations

should be controlled by a simulation time step (e.g., hourly or daily), allowing the

simulation model to preserve the operational dependency among all resources. Getting

81

all earthmoving operations and a weather generator working in harmony based on a

specified time step is a complex task. To accomplish this task, a high-level architecture

(HLA) standard is one of the solutions offered in the field of simulation research. This

chapter illustrates the integration of weather effects in earthmoving operations through

the use of a distributed simulation with HLA standards. The modeled earthmoving

operation is related to oil sands’ mining operations and the non-parametric weather

generation approach described in Chapter 2. This chapter also focuses on

demonstrating the effect of temperature on trucks and on the time it takes to repair

breakdowns in trucks and excavators. The effect of temperature on breakdown repair

durations is analysed using different weather scenarios generated by the embedded

weather generator in the simulation model. The results are reported accordingly.

3.2 Overview of distributed simulation and HLA standards

Distributed simulation or parallel/distributed simulation technology is defined as a

technology that enables a program to be executed on a system composed of multiple

computers [58]. Fujimoto [58] identified four principal benefits for applying

distributed simulation: (1) reduced execution time, (2) geographical distribution of

simulation or computer components, (3) integrating multiple simulators, and (4) fault

tolerance. The first principal benefit, “reduced execution time,” was the actual main

objective of proposing the distributed simulation. Thus a time effect technology to

develop and execute large simulation programs was highly desired.

In real world applications, the flexibility requirements of the distributed simulation

extended beyond the geographical distribution of simulation components and the

82

integration of multiple simulators. An interaction between simulation components was

of great interest. The US military initiated such a requirement because it wanted

effective and economical ways to train personnel. The military’s main objective was

to develop a virtual environment capable of allowing interactions between

geographically distributed hardware and personnel in a real-time framework [59]. This

led to a proposal for a Distributed Interactive Simulation (DIS). DIS is “an

infrastructure that enables heterogeneous simulators to interoperate in a time and space

coherent environment” [60]. Despite the ability of DIS to enable interaction between

different simulation components, it was associated with challenges related to

uncontrolled latencies and lack of time management services [61]. Furthermore,

building simulation components in different environments limit the reusability of the

simulation system. As a result related to these challenges, an HLA standard was

developed to improve the concept of standardization of simulation building and to

improve data processing and acquisition through a time management infrastructure.

The HLA standard is a general purpose framework that supports the simulation of a

system composed of multiple simulation components working independently [62]. It

was developed by the United States Department of National Defense with the main

objectives to incorporate interoperability (the ability to integrate different simulation

components created in different development environments), modularity (the

standardization of the framework so it can be adopted in different applications), and

reusability (the ability to use the simulation component in different scenarios or

applications) into long-term simulation objectives [63]. It includes three core

83

components: federation and federates rules, the federate object model (FOM), and

HLA interface specification.

Federation and federates rules are a set of rules or conventions that must be followed

to regulate interactions between different federates (a federate represents an

independent simulation component) during the execution stage. Each federate may

contain objects of different attributes, interactions or both and all are standardized by

the FOM. The FOM describes all sets of objects, attributes, and interactions which are

shared across the federation (a federation contains multiple federates). The Simulation

Object Model (SOM) identifies what objects, attributes, or interactions are required by

each federate in the simulation. These two objects models FOM and SOM are

documented using a standard form called the Object Model Template (OMT), which

is shared by all federates [64]. Federates can either publish or subscribe objects or

interactions from other federates. This process is controlled by the HLA interface

specification that describes the runtime services. These runtime services is provided

by the Run Time Infrastructure (RTI) which is federates coordinator capable of

synchronizing different federates time models and coordinate the exchange of events

(objects and interaction) between them at a predefined point in time.

3.3 Oil sands mining process in Alberta, Canada

The oil sands regions, mainly located in the province of Alberta, Canada, are the fastest

growing area in the world of developing petroleum resources [65]. Two main

production processes are applied to oil extraction: (1) in-situ and (2) surface mining

[66]. The in-situ technique uses a steam injection method to heat the oil, and after

84

which it can be pumped. Meanwhile, in surface mining, large shovels and trucks are

used to extract oil sands from the surface. Open pit mining processes, as shown in

Figure 3- 1, are usually performed when the oil sand is located near the surface, which

is the case in Alberta; 20 % of oil sands reserves are located less than 75 meters

underground [67]. The open-pit mining process used in the oil sand mining involves

the following:

1. Ore material collection trucks: in this step, the oil sand is loaded into hauling

trucks via large shovels and then transported to crushers.

2. Material handling (includes crushing conveying): in this step, the oil sand is

stored as earth clumps and is moved to crushers on conveyors to produce small

sizes of oil sand material.

3. Slurry conditioning and transfer: in this step, hot water is added to the crushed

oil sand to produce oil sand slurry, which is then transferred to the extraction

process.

4. Extracting: in this step, the bitumen is separated from the oil sand slurry by

adding more hot water. The bitumen is then allowed to settle in the separation

vessel.

5. Tailings, froth treatment: in this step, the by-product of the oil sand separation

process is transferred to the oil sand tailings ponds and the extracted bitumen

froth is further diluted and refined.

6. Upgrading: in this step, the extracted bitumen is transformed into a synthetic

crude oil so it can be transferred to refineries to produce oil products.

85

The ore material collection step involves an earthmoving operation; it uses shovels and

trucks as the main resources. These resources are exposed to the environment which

means that changes in weather conditions may affect their productivity. Therefore, this

step has been selected to be modeled and used as an illustration of the application of

the non-parametric weather generator in an earthmoving operation. In order to better

understand the earthmoving operation in oil sand mining and its resources, and to

clearly define the simulation components of the operation, a discussion was conducted

with experts in this field.

Figure 3- 1 Oil sand open pit mining process [65]

3.4 The development of the mining earthmoving operation model

The earthmoving process cycle, as per the discussion with experts, involves loading

ore material into the hauling trucks using shovels/loaders. Trucks move the ore

material from the excavation pit to the dump pit at the extraction facility, unload the

86

ore material in the dump pit, and then return to the excavation pit. The experts agreed

that the simulation model should contain three major components: excavators, trucks,

and equipment breakdown and maintenance.

The earthmoving operation is comprised of resources integrated to develop an

earthmoving process cycle. Each resource has its own earthmoving operational cycle.

For instance, hauling soil from an excavation pit to the dumping site and back again to

excavation pit represents a full hauling cycle for a truck. On the other hand,

excavators/shovels operate in two different locations, each with a different operational

cycle. The first cycle is located at the mining pit where excavators excavate oil sand

and load it into the trucks. The second cycle is located at oil sand earth clumps where

excavators/shovels move the oil sand to crushers. These earthmoving operational

cycles are operated continuously by different types of trucks and loaders to maintain

high productivity and lower operational cost. The major factor influencing the

equipment performance is the unanticipated equipment’s breakdown event. Therefore,

the simulation model of the mining earthmoving operation should be allowed to test

the operation under different resource scenarios.

The modeled mining operation is located in a cold, harsh environment; therefore, the

experts asked to integrate a weather effect into the model of the mining earthmoving

operation. Since weather can change dramatically throughout the day and the mining

operation runs nonstop (i.e., for 24 hours), it was agreed that the simulation time step

should represent a working hour and the weather generator should be developed in a

way to provide hourly basis weather variables. Moreover, it was decided that all

mining earthmoving operational cycles should run and interact with each other on an

87

hourly basis. This was achieved by applying HLA standards to regulate the processing

time. It was concluded from the discussion with experts that (1) the simulation model

should have six simulation components interacting with each other, and (2) each

simulation components should consider the weather variable that affects its

performance. These components with the simulation structure are shown in Figure 3-

2.

Figure 3- 2 Earthmoving simulation structure

Each simulation component represents a federate in the mining earthmoving federation

and is developed by a different team of researchers. The work description of each

federate is as follows:

1. Controller: responsible for initializing the simulation model, defining testing

scenarios, and analysing the operation performance.

88

2. Mover: responsible for simulating the hauler behaviour in its cycle.

3. Loader: responsible for simulating the loader behaviour such as loading and

dumping.

4. Equipment breakdown and maintenance: responsible for simulating the trend

of breakdown and maintenance in the truck and loader cycles.

5. Weather: responsible for generating dynamic and realistic weather variables.

6. 3D visualizer: responsible for animating the earthmoving operation and

visually identifying the location of the trucks and loaders.

After all federates of the mining earthmoving federation are identified, the SOM for

each federate is constructed so that the object class and its attribute, whether needed

or provided by the federate, is clearly identified. Also, an investigation was conducted

to determine which weather variables are affecting each federate and how. Once all

SOM are created, they are all combined to create the mining earthmoving FOM. Table

3- 1, below, shows a sample of the FOM containing weather variables as an interaction

class called “CurrentWeather.” This interaction class is published by the weather

federate to provide others with a block containing all weather variables required in the

simulation process.

89

Table 3- 1 "CurrentWeather" interaction class and its attributes in the FOM

(S=subscribe, P=publish, PS= publish and subscribe)

Attribute Controller Mover
Loade

r

Breakdown &

Maintenance

Weathe

r

Visualize

r

Interaction Class

Temperature

S S S S P S

WindSpeed

Float

Visibility

Float

Snowfall

Float

Precipitation

Float

3.5 Weather federate

3.5.1 Historical weather database

The bootstrapping approach to randomly generate weather variables is integrated into

the weather federate. The weather federate is linked to an historical weather database

containing the location of operation. It reflects weather parameters to other federates.

The location of the oil sand mining operation is Fort McMurray, Alberta, and the

historical weather database is extracted from the Environment Canada website. The

weather variables listed in the database are those requested by other federates and listed

in the FOM. The weather variables are as follows:

- Temperature

- Wind speed

- Visibility

- Precipitation

90

- Snow depth

Figure 3- 1, below, shows the weather database breakdown structure and two tables

created in the database to maintain hourly and daily weather variables in accordance

with the need for the mining earthmoving simulation model. The daily weather forecast

table classifies the temperature into three groups: maximum, minimum and average

temperature of each day. Wind speed is classified into two groups: maximum and

average. This classification of weather parameters is important to create different

testing scenarios of weather conditions and to study their impact on the mining

earthmoving operation.

Figure 3- 3 Weather database breakdown structure

3.5.2 The weather generation process

The weather generation in this study extracts real historical weather variables from the

database for the purpose of preserving correlations and dependencies among

91

meteorological variables. Hourly and daily forecast tables in the Fort McMurray

weather database provide flexibility to generate different scenarios. In this stage of the

research, the weather federate provides other federates with weather parameters in the

following three scenarios:

1. The first scenario (SC1) generates weather variables from the database based

on the random selection of a year between 1961 and 2002. The hourly

generated weather variables represent the daily average. This scenario is

considered the conservative daily scenario.

2. The second scenario (SC2) is also based on generating weather variables from

randomly selected years. However, the generated hourly weather variables

represent the minimum daily values in winter and maximum daily values in

summer. This scenario is considered the extreme daily scenario.

3. The third scenario (SC3) is based on generating weather variables from

randomly selected years. The generated hourly weather variables in this

scenario represent the actual values of weather variables which have been

experienced at that particular hour. This scenario is considered the actual

hourly scenario.

The weather generation process starts, as shown in Figure 3- 4, by first determining

the location and the expected starting date of the operation. After the user enters the

location and the date of operation, the weather generator randomly selects the year of

operation from the database (see Figure 3- 5). The generator is initialized based on

year, month, day, and location. These values are used to indicate the weather records

to be generated for other federates. All weather variables are provided on an hourly

92

basis and in accordance with the selected testing scenario, except for snow depth and

precipitation, because the measured records of those variables are normally presented

in the form of accumulated amounts per day. Snow depth and precipitation are

generated at hour 0 AM of each simulated day. The model assumes that the operation

works for 24 hours, and each simulation run represents one minute. Therefore the

weather federate updates its weather interaction class values after the run time of every

60 simulations and moves to the second day forecast when a full day of operation is

completed.

Figure 3- 4 Federation interface

93

Start

Determine location & start date

(month, day)

Randomly select year

Initialize weather generator based on

(year, month, day)

Is time

0 am?

Assume precipitation and snow depth

equal zero

Get other parameters from Table 2 in

the database

Yes
Get precipitation and snow depth

from Table 1 in the database

Update weather parameters

Is earthmoving

operation finished?

End

No

Yes

No

Figure 3- 5 Weather generation flow chart

94

3.6 Simulation run and testing scenario results

3.6.1 Simulation run

The simulation run of the operation is controlled and initiated by the controller

federate. The controller federate is composed of two parts: (1) the interface and (2) the

federate. The interface allows the user to enter the operation attributes such as project

information (includes project location and starting date, seen in Figure 3- 4), road

condition, truck types and their quantity, excavator types and their quantity, and the

topological map of the site. This information is provided by the user and represents the

attributes that are subscribed by the controller federate. These attributes are published

by the controller to the other federates in the simulation model. The controller federate

uses this information to start the simulation by populating the number of instances of

each object class. For example, nine instances of object class “Truck” and three

instances of object class “Excavator” are populated, each associated with their

attributes such as the truck model and its capacity to simulate the mining operation.

Following the population stage of the resources class objects, the road section that

hosts the hauling and returning routes of trucks is initiated. The road section is

composed of multiple segments, each of which has different attributes such as road

segment materials and layouts. The road section length used to haul and return trucks

is equal to 2.2 km.

The mover federate subscribes road conditions in terms of layouts and materials, truck

models, and breakdown and maintenance states from other federates. The mover

federate publishes a truck’s location dynamically using road layouts and truck speed.

95

The loader federate subscribes both trucks and excavator to load trucks with soil. If all

excavators are busy loading pre-arrived trucks, the mover federate will acquire the

ownership of the newly arrived truck until it is filled with soil and released for hauling.

Both the mover and the loader federates performances are controlled by the availability

of trucks and excavators. These resources are associated with breakdown and

maintenance events that control the percentage of utilization for each resource. These

events are controlled by the breakdown and maintenance federates, which employ four

crews for repair and maintenance. It uses information (shown in Table 3- 2) to create

a breakdown and maintenance events in the mining earthmoving operation.

Table 3- 2 Durations of expected breakdown and maintenance events for trucks and

excavators

Event Duration

Truck breakdown interval Exponential (200)

Truck maintenance interval Constant (400)

Truck repair time Uniform (20,24)

Truck maintenance time Triangular (18,21,24)

Time increase in truck repair due to a

specified temperature threshold value

(𝑇)

20%

Excavator breakdown interval Exponential (250)

Excavator maintenance interval Constant (350)

Excavator repair time Uniform (20,24)

Excavator maintenance time Triangular (18,21,25)

Time increase in excavator repair due to

a specified temperature threshold value

(𝑇)

20%

Table 3- 2 shows that the breakdown repair time is controlled by the temperature

experienced in the operation location. The repair time for both the trucks and

excavators is expected to increase by 20% depending on a pre-specified temperature

96

threshold value(𝑇). This percentage is experts-driven for a temperature less than or

equal to -30 Co. However, Nguyen et al. [68] highlighted that in the context of

construction contracts, no single temperature threshold value exists because different

construction projects have different working characteristics. Kohen and Brown [17],

in the context of labour productivity, identified -29 Co as the temperature threshold

value at which labors must stop work is at and -18 Co as the threshold value at which

labour productivity starts deteriorating at. A sensitivity analysis which will apply a

range of temperature threshold values (𝑇) from -18 Co to -30 Co will be used to study

the effect of temperature on breakdown events.

The breakdown and maintenance federate subscribes temperature so that a

temperature-based analysis can be performed. As previously described, the

temperature is published within the interaction class called “CurrentWeather” that is

provided by weather federate (refer to Table 3- 1). The weather federate publishes the

“CurrentWeather” interaction class based on three scenarios: (1) SC1 (the conservative

daily scenario), (2) SC2 (the extreme daily scenario), and (3) SC3 (the actual hourly

scenario. To analyze these scenarios combined with the temperature limit sensitivity

analysis, a performance benchmark result for the trucks and excavators is generated

based on the assumption that the working condition will not achieve any temperature

threshold value. Figure 3- 6 and Figure 3- 7 show the performance benchmark results

for both trucks and excavators running for a total duration of 8760 hours (a one-year

working period). The average working duration of all trucks represents 83% and their

breakdown and maintenance averages are 10% and 7% respectively. A similar

percentage is found for excavators. Refer to Appendix C for a detailed results

97

description for each truck and excavator working duration, number of breakdowns and

maintenance, and breakdown repair and maintenance durations.

Figure 3- 6 Performance benchmark results for trucks

Figure 3- 7 Performance benchmark results for excavators

0

1000

2000

3000

4000

5000

6000

7000

8000

Truck1 Truck2 Truck3 Truck4 Truck5 Truck6 Truck7 Truck8 Truck9

D
u
ra

ti
o

n
 (

h
r)

Available Breakdown Maintenance

0

1000

2000

3000

4000

5000

6000

7000

8000

Excavator1 Excavator2 Excavator3

D
u
ra

ti
o

n
 (

h
r)

Available Breakdown Maintenance

98

3.6.2 Results of scenarios

The mining earthmoving operation was tested under three different scenarios. The

weather federate generated 10 randomly selected years, and an hourly based

“CurrentWeather” interaction class was published to other federates. The effect of

temperature on truck and excavator breakdown events was tested under different

temperature limit values (𝑇) ranging from -18 Co to -30 Co. The analysis was

individually performed for each truck and excavator participating in the simulation.

However, the results are summarized to reflect the overall breakdown repair duration

expected for a truck or an excavator. The result includes the minimum, average and

maximum expected breakdown repair durations for a truck and excavator in the

operation.

Figure 3- 8 and Figure 3- 9 show the breakdown repair durations for a truck and an

excavator respectively. Figure 3- 8 (a) shows the minimum breakdown repair duration

expected for a truck. The results show that using the daily minimum temperature (SC2)

generates on average a repair duration that is 1.2 % more than SC1, SC3, which is

equivalent to 7.5 more hours. Comparing SC1 (average daily temperature) to SC3

(actual hourly temperature), both scenarios provided the same breakdown repair

durations when the temperature limit value (𝑇) was less than or equal to -21 Co and

SC3 generated a slightly higher repair duration when (𝑇) was greater than -21 Co.

Comparing the total averages of the minimum expected repair duration of each

scenario with the truck breakdown benchmark result (616.5 hrs) led to the following:

99

(1) SC1 generated a 0.05% more repair duration, (2) SC2 generated a 1.32 % more

repair duration, and (3) SC3 generated a 0.16% more repair duration.

100

Figure 3- 8 Truck breakdown repair durations under three testing scenarios (SC1,

SC2, and SC3) and on different temperature limit values (𝑇); (a) the expected

minimum repair durations, (b) the expected average repair durations, and (c) the

expected maximum repair durations

615

620

625

630

635

640

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Min SC2-Min SC3-Min

880

885

890

895

900

905

910

915

920

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Average SC2-Average SC3-Average

1130

1140

1150

1160

1170

1180

1190

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Max SC2-Max SC3-Max

(a)

(b)

(c)

101

Figure 3- 9 Excavator breakdown repair durations under three testing scenarios

(SC1, SC2, and SC3) and on different temperature limit values (T); (a) the expected

minimum repair durations, (b) the expected average repair durations, and (c) the

expected maximum repair durations

744
746
748
750
752
754
756
758
760
762
764
766

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Min SC2-Min SC3-Min

840

845

850

855

860

865

870

875

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Average SC2-Average SC3-Average

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

-30 -28 -26 -24 -22 -20 -18

D
u
ra

ti
o

n
 (

h
r)

𝑇 (oC)

SC1-Max SC2-Max SC3-Max

(a)

(b)

(c)

102

Figure 3- 8 (b) shows the average breakdown repair durations for a truck in the mining

earthmoving operation. SC2 generates a 1.5 % more repair duration than SC1 and SC3,

which is equivalent to 13.5 more repair hours. Both SC1 and SC3 generated the same

breakdown repair duration, equal to 892 hours when tested against different

temperature limit values (𝑇). Comparing the total averages of the expected average

breakdown repair duration with the truck breakdown benchmark result (876.7 hrs) led

to the following: (1) SC1 generated a 1.7% more repair duration, (2) SC2 generates a

1.6 % more repair duration, and (3) SC3 generates a 3.1 % more repair duration. In the

context of calculating the maximum expected breakdown repair duration, shown in

Figure 3- 8 (c), the results of SC1 and SC3 show different behavior: SC3 generates a

slightly higher breakdown repair duration. The percentage of differences between SC2

and both SC1 and SC2 is 1.3% and the comparison with the truck breakdown

benchmark result (1108.7 hrs) results in (1) SC1 and SC3 generating approximately

3.5% more breakdown repair duration, and (2) SC2 generating 4.8% more breakdown

repair duration.

Figure 3- 9 (a), (b), and (c) show the expected minimum, average, and maximum

excavator breakdown repair durations. Figure 3- 9 (a) and (b) show that scenarios SC1

and SC3 have a similar behavior with respect to temperature limit values (𝑇).

Meanwhile, they exert different behaviour when calculating the maximum breakdown

repair duration; SC1 generates higher repair durations when the temperature limit

value is less than or equal to -26 Co. On the other hand, as shown in in Figure 3-9 (a),

(b), and (c), SC2 generates a 1.1% higher repair durations than SC1 and SC3.

103

The conclusion results in this section are shown in Table 3- 3. Based on calculating

the expected breakdown repair duration with respect to different temperature limit

values (𝑇) and based on different temperature scenarios (SC1, SC2, and SC3), the

expected contribution of each resource breakdown repair duration in the overall mining

earthmoving operation is:

1. Of the total operation duration for each working truck, 7.04 % to 13.29 % of

contributed to the breakdown repair duration, and

2. Of the total operation duration for each working excavator, 8.54 % to 12.03 %

contributed to the breakdown repair duration.

Table 3- 3 Expected percentages of breakdown repair durations of each scenario in

the mining earthmoving operation

Scenario

% of Breakdown Repair Duration

Trucks Excavators

Min Average Max Min Average Max

SC1 7.04 10.18 13.12 8.54 9.71 11.90

SC2 7.13 10.32 13.29 8.63 9.82 12.03

SC3 7.05 10.17 13.13 8.54 9.71 11.88

3.7 Conclusion

A distributed simulation approach with HLA standards has been used to model the

earthmoving operation of oil sand mining. The model integrated different simulation

components including trucks, excavators, breakdown and maintenance, and weather

simulation components. The weather effect on truck and excavator breakdowns was

addressed and modeled. Furthermore, the weather generator provided different

weather testing scenarios to analyze the truck and excavator breakdown repair

104

durations. The weather-based breakdown analysis provided a range of the percentage

of breakdown repair duration that trucks and excavators may experience in a one-year

mining operation.

105

Chapter 4

Random Generation of Industrial Pipelines’

Data Structure using a Markov Chain Model

4.1 Introduction

Pipelines and gas projects have increased rapidly throughout the world to meet energy

requirements. In 2016, Pipelines and Gas Journal [69] reported that 33% of pipeline

projects are in North America. Thus research in this field increased accordingly.

Research in this field is classified in accordance with the components of industrial

projects. For example, industrial projects may be composed of two major components:

the construction of pipeline facilities and the construction of pipelines connecting two

pipeline facilities located in two different locations. The complexity associated with

these components differs in terms of the required resources, construction methods,

materials supply chain, etc. To study the integration effects of all factors, different

106

modeling approaches have been employed. There are four phases to building a

simulation model: (1) product abstraction, (2) process abstraction, (3) modeling, and

(4) experimentation [70]. The first three phases involve two major processes, namely

systems’ knowledge acquisition and data collection. Data collection plays a critical

role in simulation modeling, especially in cases where the numerical data required in

building the simulation models may not be readily available [71]. Ten to 40% of total

time in building simulation models is usually devoted to data collection, data

preparation, and validation [72]. The collected data is used in input modeling of the

simulated operation because it inherits the randomness associated with the system

properties. It is valuable in modeling and in conducting experimental studies for the

purpose of understanding the systems’ behavior under different circumstances.

Input modeling for simulation purposes can be viewed as the practice of selecting a

probability distribution that best represents randomness in input sources [73]. Input

modeling is performed by fitting collected data to theoretical probability distributions

using the assessment of goodness of fit as a metric for quality. The case where a single

event is modeled is called a univariate model. The generated sample from the

distribution is a single numerical value representing a single possible event of a

specific process. When randomly generating events from a probability distribution

function, the collection of these events represents the approximated randomness

property of the modeled process. Generally speaking, the univariate model is used to

randomly generate independent variables and has been widely applied in the

simulation of pipeline projects. For example, each process involved in pipeline

construction is represented by a probability distribution function; Tommelein [74]

107

assigned uniform and triangular distribution functions to welding and trenching

processes respectively [75]. The probability distribution functions are also applied in

simulation modeling of industrial fabrication processes. For example, in modeling pipe

spool processes, beta and normal distribution functions were assigned to the

fabrication and transportation processes respectively [74]. These examples, as

mentioned previously, represent independent events. However, different

events/variables in the simulation model of a complex problem may be dependent on

each other. Randomly generating a correlated variable is imperative to construct a

realistic simulation behavior. Moreover, failure to capture such dependencies may lead

to inaccurate input models which eventually results in generating errors in the

performance estimates [76] [77]. A multivariate distribution approach has been

proposed to preserve dependencies between input variables. Multivariate distributions

rely on joint distribution functions to preserve the correlation between randomly

generated variables. Each variable is represented by a distribution function called

marginal distribution. The correlation between the correlated variables is maintained

using the covariance matrix [78]. Such an approach is widely implemented in

construction, especially in modeling the total cost of construction projects. The total

project cost is considered a vector of correlated variables, each representing the cost

of a certain construction component or work package. A joint distribution function is

used to randomly generate total project cost vectors [79] [80] [81].

The above description of the random generation of inputs is confined to a numerical

type of data. However, in construction engineering research, the complexity of data

extends beyond a numerical type of data; it includes a combinatorial data type. The

108

complexity associated with such data types is that the randomly generated variables

are not single numerical values or jointly correlated values. Rather, they represent a

structure such as graphs or trees. Such cases are present in modeling the construction

of industrial projects, specifically, pipe spools fabrication. The nature of industrial

spool fabrication in construction is, to some extent, similar to industrial manufacturing.

However, it is characterized as a low volume and high product mix production process

[82]. As a result, the product routing and the time required for its fabrication may vary

widely according to the product features as well as its complexity [83]. Consequently,

randomly generating inputs using a probability distribution describing the fabrication

time without considering the randomness and complexity associated with the product

itself, may result in the improper modeling of fabrication processes [82]. Hence,

randomly generating combinatorial data of a product along with its processing time is

expected to improve the simulation model accuracy and provide additional flexibility

for testing the efficiency of different models under different scenarios.

In modeling a spool fabrication process, spool pipe is defined as a collection of

sequenced components with unique attributes such as type, size, and material [11].

Pipe spools, on the other hand, are parts of a high-level product, a pipeline, in industrial

construction projects [84]. This study looks at modeling pipelines to randomly

generate products of a combinatorial type of data to model construction processes of

industrial construction. A pipeline data structure can be represented as a tree structure

composed of nodes that represent the pipeline component and edges that represent

connectivity between pipeline components. The random generation of trees has been

widely covered in literature. Drmota [85] described different classes of random trees

109

including combinatorial, recursive, and search trees. A random generation of a set of

combinatorial trees represents a subclass of a structurally defined class of finite trees

such as binary trees. The generation of recursive trees is based on randomly generating

the number of children (or branches) and then recursively generating the branches of

the branches and so on. The major differences between these trees is that a recursive

tree does not necessary follow a certain class of trees; it can take the shape of unary-

binary tree (a unary-binary tree is a tree whose inner nodes may have a single child or

two children [86], this generally known as a k-array tree in general). Search trees are

more devoted toward storing and searching data in computer science applications.

When projecting definitions of these types of random trees into the random generation

of industrial pipeline data structures, the most relevant class of random tree is the

recursive tree.

An industrial pipeline, as described previously, is composed of a collection of different

types of components. Only a certain type of component has the ability to generate two

branches such a tree connection component. Furthermore, the reproduction of each

type of pipeline component may depend on the pre-generated component. For this

reason, this chapter proposes applying a branching process in terms of a Markov chain

generation model to randomly generate industrial pipeline data structure in the form of

a recursive tree. This chapter is organized as follows:

1. In Section 4.2, an overview of industrial pipeline data is presented. This

includes pipeline data preparation and structuring.

110

2. In Section 4.3, a statistical analysis of pipeline data is presented. This is

performed to gain insight and knowledge about pipeline components, their

properties, and correlations.

3. In Section 4.4, the construction of process of the Markov-chain pipelines

generation model is presented.

4. In Section 4.5, a comprehensive validation process is conducted. The process

starts by converting the topological structure of the pipelines into a feature

vector capable of preserving the structural properties. After this, the three-stage

validation process is applied.

4.2 Overview of pipeline data

A dataset from an existing industrial construction project located in Alberta, Canada

is used in this study. Referring to Figure 4- 1, industrial construction projects are

presented in terms of a building information model (BIM) that contains layers showing

different project properties for different disciplines such as electrical, mechanical, and

structural. The project design data flow starts by combining drawings of and

information about different parts of the project from different engineering divisions

into a single BIM model. Then, all of the information about project components is

transferred to a database so that it can be used in both construction and research

activities.

111

Figure 4- 1 Design data flow of pipeline facility project

The industrial construction project database includes the following component

properties:

1. Unique component id number,

2. Pipeline number to which the component belongs

3. Component property that describes the type of component (e.g., Tube, Valve,

Flange, etc.)

4. Location (minimum (x,y,z), maximum (x,y,z)) of the component in the BIM

model

5. Components’ diameter

6. Components’ length

This information is valuable to study the topology of pipelines (e.g., components’

sequential patterns and their properties). However, when exploring the type of

components that form a pipeline, it was found that there are many pipelines that have

112

types of components that are not primary components. In this study, pipelines’ primary

components are defined as a sequence of components attached to one another (e.g.,

tube, tee, and elbow as shown in Figure 4- 2) for the purpose of directing the flow of

fluids such as oil or liquidated gas. In piping systems, the collection of these

components is called a pipeline section [84]. Due to the considerations of project

design functionality, these pipeline sections have unique configurations when

assembled. Therefore, secondary components (e.g. supports, shown in Figure 4- 2) are

attached to pipelines to satisfy the design functionality. When pipelines were filtered

based on primary components, the result was that the types of components were

reduced to 13, and they are listed as follow;

1. Tube: a pipeline element that hosts the material flow.

2. Elbow: a pipeline element that changes the flow direction.

3. Flange: a pipeline element that connects two pipeline sections without

permanently joining them.

4. Tee: a pipeline element that connects a perpendicular branch.

5. Valve: a pipeline element that regulates the material flow.

6. Fblind/ blind flange: a disk-shaped pipeline component used to block

off a pipeline.

7. Ftube/ blind tube: a cylindrically shaped pipeline component used to

block off a pipeline.

8. Reducer: a pipeline element that changes the pipeline flow diameter.

9. Closure: a pipeline element that seals the end of the pipe.

10. Cap: a pipeline element that seals the end of the pipe.

113

11. Instrument: a pipeline element that measures a certain pipeline property

such as pressure.

12. Pcomponent: a general pipeline component.

13. Coupling: a pipeline element that connects two threaded pipes of the

same size.

Figure 4- 2 Section of industrial pipeline

Studying the properties of these components provides insight into industrial pipeline

structure (i.e., components’ formation and their physical properties). However, it does

not reflect the unique sequence of the pipeline components; two pipelines may contain

the same number of each type of components, but they may differ regarding their

sequence. Furthermore, studying component sequencing in pipeline structures is

considered the base of the random generation study of pipeline data structures.

Therefore, it is important to arrange and prepare a pipeline data table to support the

analysis of both pipeline component properties and sequences. A recursive function is

114

employed to extract and generate a data table with components ordered according to

their sequence in the pipeline structure.

The recursive function uses two tables from the database to branch and sequence

pipeline components. The first table contains information about pipeline component

properties such as lengths and diameters and the second table provides information

about component connectivity. Figure 4- 3 illustrates the branching process used in the

recursive function. The recursive function starts by first randomly selecting a

component with one connectivity from the first pipeline set of components

(component/node 1 in Figure 4- 3). The next step is to append the first component in

the first branch list. Then, using the connectivity table in the database, the second

connectivity point (component/node 2 in Figure 4- 3) is determined and appended to

the same branch list. In the case of a component branching the pipeline into two

branches, such as component/node 2, one of the components will be appended in the

first branch and the second will be appended in the second branch. Once all the

components are processed, the branches are ordered in the pipeline data table based on

the branch number. In the case of a branch having sub-branches, each branch extending

from the first branch connection is treated as a block containing all branches ordered

according to their position in the pipeline structure. This process is applied on 1052

pipelines with a total number of components equal to 33324. A sample of the final

pipeline data table used in this study is shown in Table 4- 1.

115

Figure 4- 3 Pipeline branching process

5 9

1

2

3

3

4

6

7

8

1

Branches’ order in

the data table

2
3

Pipeline structure

1

2

3

4

5

Branch 1

7

6

Branch 2

9

8

Branch 3

Branching direction

116

Table 4- 1 Pipeline data table

Line No. Branch No. Seq. Component ID Type Dia. Length

5 7 1 SB-XXXXX-01A03_33 Elbow 72 106

5 7 2 SB- XXXXX -01A03_34 Tube 60 100

5 7 3 SB- XXXXX -01A03_35 Flange 213 0

5 7 4 SB- XXXXX -01A03_37 Valve 213 0

5 7 5 SB- XXXXX -01A03_39 Fblind 20 213

5 8 1 SB- XXXXX -01A03_48 Elbow 72 106

5 8 2 SB- XXXXX -01A03_49 Tube 60 100

5 8 3 SB- XXXXX -01A03_50 Flange 213 0

5 8 4 SB- XXXXX -01A03_52 Valve 213 0

5 8 5 SB- XXXXX -01A03_54 Fblind 20 213

4.3 Statistical Data Analysis

In this section, a basic statistical analysis is performed to provide a better

understanding about pipeline data before structuring the pipeline generator model.

Figure 4- 4 to Figure 4- 6 demonstrate the percentage of each component in the entire

pipelines’ population, in the first pipeline branch (based on the branching process

described in Section 5.2 and equivalent to “Branch 1” shown in Figure 4- 3), and the

other branches extending from the first pipeline branch respectively (equivalent to

“Branch 2” and “Branch 3” shown in Figure 4- 3). As shown in Figure 4- 4, the

dominant components of the population are tube, elbow, flange, tee, and valve, which

account for 85.9% of all components in the pipeline population. This percentage

increases to 91.4% if the analysis is restricted to the first branch and goes down to

117

78.9% for other branches extending from the first one, see Figure 4- 5 and Figure 4-

6.

Figure 4- 4 Percentage of each component in the entire population

Figure 4- 5 Percentage of each component in the first pipeline branch

3
6

.5

1
9

.2

1
2

.4

9
.9

7
.9

3
.5

3
.4

2
.4

1
.7

1
.5

1
.4

0
.3

0
.1

3
9

.8

2
1

.8

1
1

.9

1
1

.1

5
.8

2
.6

1
.6

1
.6

1
.4

1
.1

0
.9

0
.2

0
.2

118

Figure 4- 6 Percentage of each component in branches extending from the first

branch

The second in rank comes to components ftube and closure which account for 6.9% of

the entire population. These two components are more condensed in the population

representing branches extending from the first pipeline branch. This can be related to

the main function of these components, which is sealing the pipeline flow. Component

instrument shows the same trend as in ftube and closure, and component pcomponent

demonstrates the opposite trend which shows that it is mostly condensed in the first

pipeline branch population. Components coupling and cap, on the other hand, have the

lowest contribution in the pipeline population, accounting for less than 0.8 %. This can

be attributed to the design requirements which normally allow coupling to be installed

in low-pressure pipes. Likewise, the cap is used to seal low-pressure pipes using a

threaded connection. Unlike other pipeline components, the occurrence of component

3
1

.4

1
5

.2

1
3

.0

1
1

.0

8
.1

6
.5

6
.0

2
.6

2
.4

2
.1

1
.0

0
.7

0
.1

119

reducer is almost consistent in Figure 4- 4, Figure 4- 5, and Figure 4- 6, meaning that

its occurrence is highly controlled by its design objective, which is to change the

pipeline flow diameter.

Figure 4- 7 to Figure 4- 9 show the distribution of the number of components in the

entire pipeline population, in the first pipeline branch and the other branches extending

from the first pipeline branch, respectively. The majority of the number of pipeline

components is less than 50 components with a high proportion devoted toward to the

first pipeline branch that account for 60% (see Table 4- 1) of the entire population. The

branches extending from the first pipeline branch are skewed toward a number of

components less than 10 and representing 40% (see Table 4- 2) of the entire

population.

Figure 4- 7 Distribution of the number of components in each pipeline

120

Figure 4- 8 Distribution of the number of components in the first pipeline branch

Figure 4- 9 Distribution of the number of components in branches extending from

the first pipeline branch

121

The results in Table 4- 2 show that the number of pipelines which have branches

extending from the first pipeline branch is 760 pipelines. This result does not

necessarily mean that the remaining pipelines have no component of type tee; however,

when investigating the pipeline database, it was found that some of the pipelines have

a tee connection for the purpose of connecting to different pipelines, which means that

two pipelines with different properties are designed to flow in parallel and connect to

a branch that extend from one of them.

Table 4- 2 Descriptive statistical measures for the number of components

Statistic
Total no. of

components

No. of

components in

the first

pipeline branch

No. of

components in

branches

extending from

the first pipeline

branch

Sample Size/ Components 33324 19943 13423

Mean 32 19 18

Variance 1070 213.2 817.75

Std. Deviation 32.711 14.601 28.596

No. of occurrences in pipelines 1052 1052 760

From the above analysis it is concluded that different branches located in the same

pipeline may have different characteristics. This adds more complexity to the

generation process since the degree of correlations and dependencies between pipeline

components may differ according to the location of components in the pipeline

structure (i.e., whether it is located in the first pipeline branch or in other branches).

This conclusion can be verified by calculating the symmetric correlation coefficients’

matrices on both types of branches. These matrices are illustrated in (4-1) and (4-2).

122

The first matrix illustrates the correlation coefficients of pipeline components in the

first pipeline branch, and the second matrix illustrates the correlation coefficients of

pipeline components in branches extending from the first branch. In the first matrix,

all components show positive relationships except to components closure, cap, ftube,

and fblind. However, positive relationships among all pipeline components are shown

in the second matrix. Also, a higher degree of correlation coefficients between

components is generated in the second matrix.

14

1

0.12-1

0.020.111

0.17-0.450.04-1

0.05-000.05-1

0.15-0.03-0.05-0.12-0.291

0.120.060.240.080.01-0.241

0.14-0.09-0.030.08-0.130.270.361

0.03-0.07-0.110.03-0.150.320.670.821

0.01-00.09-0.18-0.030.350.440.290.371

0.060.410.08-0.080.180.290.310.130.220.571

0.090.050.070.130.280.50.220.120.240.370.381

0.170.170.080.310.140.310.090.110.110.380.180.121

Fblind

Ftube

Cap

Closure

Coupling

Reducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent



















































24

1

0.271

0.220.351

0.020.050.121

0.020.050.120.051

0.180.190.20.170.111

0.480.440.40.440.050.481

0.340.340.260.380.090.460.811

0.390.360.30.390.090.50.90.951

0.530.460.470.40.050.410.640.530.571

0.590.810.320.690.070.460.640.550.580.71

0.460.460.270.380.090.330.460.320.380.640.621

0.330.210.210.170.030.310.410.280.320.50.410.371

Fblind

Ftube

Cap

Closure

Coupling

Reducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent















































123

4.4 Markov chain pipeline generation model

Referring to Figure 4- 3 in section 4.2, the pipeline data structure can be presented in

terms of a tree structure containing nodes that represent the type of component (e.g.,

tube, elbow, flange, tee, etc.), and edges that represent the connectivity between two

nodes. The branching of a pipeline tree structure is controlled by the component of

type tee. The number of occurrences of component type tee and its location in pipelines

differs from one pipeline to another, which results in a unique pipeline topological

structure. The occurrence of type tee components also depends on other pipeline

components such as a component of type tube. This case is applied to all pipeline

components. Incorporating such dependencies (correlation between pipeline

components and the connectivity relationships among them) in the pipeline generation

model is important to create a realistic sequential pattern for pipeline components.

Thus, a Markov chain model is proposed to generate a realistic random sequence of

pipeline components.

A Markov chain is described as a sequence of random variables or events constructed

using Markov property that defines what happens next according to the current state

of the system [87]. It describes a system that follows a linked chain of different states.

Its mathematical statement is described as follows:

 4-3

The mathematical statement of the Markov chain model can be described as giving a

set of random variables or states 𝑋𝑖. The Markov chain’s sequence of states is

)|(),...,,|(122111 nnnnnn xXxXPxXxXxXxXP  

124

dependent on the present state 𝑋𝑛 at step 𝑛 and the selection of the next step 𝑛 + 1 is

conditioned by the probability value of the current state 𝑃(𝑋𝑛 = 𝑥𝑛).

To apply a Markov chain model, first the system and its states should be defined. The

pipeline is considered as a system represented by a chain of 13 dependent states which

are pcomponent, instrument, valve, tube, elbow, tee, coupling, cap, reducer, flange,

ftube, fblind, and closure. The transition from one state to another in the pipeline

system is conditioned by the probabilities of a collection of states which may follow

the present state. These probabilities are called transition probabilities. They regulate

the movement between pipeline states. These probabilities are combined in the form

of a matrix called a transition matrix shown in (4-4).

4-4

321

2232221

1131211





























nnp...npnpnp

.....

.....
np...ppp
np...ppp

P

The Markov chain transition matrix is a matrix containing transition probabilities

such as that represent the probability of state 𝑖 returning to itself and

representing the probability of state 𝑖 moving to state 𝑗. Since the database of the

pipelines previously described is prepared and organized to reflect the connectivity

between different components, it is possible to generate the transition matrix of

pipeline states. However, based on the statistical analysis performed in section 4.3,

which showed that the degree of dependencies between pipeline components is

controlled by their locations in the pipelines’ structure (whether in the first branch or

nn

iip ijp

125

in branches extending from the first branch), the pipeline system is split into two sub-

systems, each with its own transition matrix. The transition matrix (4-5) below refers

to the first pipeline branch and the transition matrix (4-6) refers to branches extending

from the first pipeline branch. The order of the pipeline states shown in each row in

the transition matrix is the same in the matrix columns. The values within each matrix

are in the form of a percentage.

5-4

1.83.701.91.8000033.954.102.8

0.501.5000.749.912.30.88.214.75.75.7

1.31.73.81.31.33.87.207.261.211.400

00000043.600056.400

00.516.30030.816.3019.9016.300

00.111.100.311.712.65.625.813.5142.72.8

1.71.914.61.81.714.815.30.432.00.814.50.30.2

0.10.216.20.10.116.416.30.0532.40.916.30.30.3

00.012.700.13.38.729.75.317.53.114.914.8

0.40.411.10.20.213.412.85.423.94.2194.94.2

5.1136.73.52.78.36.80.114.329.3811.1

00.54.0004.17.705.565.912.300

00.30.70018.80.7035322.800

Fblind

Ftube

Cap

Closure

Coupling

Reducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent

















































6-4

19.238.5019.219.200003.8000

006.80.400.10.460.23.576.23.23.1

18.837.5018.82500000000

16.733.3016.716.70000016.700

6.813.610.26.86.811.910.2020.3010.23.40

0011.300.812.712.33.322.715.217.31.72.8

0.91.915.61.20.915.715.80.430.71.115.40.20.2

0.30.615.90.30.316.1160.531.91.715.90.20.3

00300410.427.45.918.33.313.813.7

3.42.88.61.41.49.89.43.817.15.426.36.74

17.95.91.735.832.11..70.23.415.428.52.4

002..4002.49.504.877.42.401.2

3.203.2003.23.206.358.720.61.60

Fblind

Ftube

Cap

Closure

Coupling

Reducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent

















































126

Most states in pipeline properties may remain the same since and the majority

of states in different pipelines return to the original state in multiple steps except for

state “Tube,” which is considered a free-floating component with no restriction on the

periodicity. Therefore, to regulate the occurrence of pipeline states in the pipeline

structure, a Markov chain property called state periodicity is integrated into the

generation model. A state is called periodic if it has the ability to be repeated in

multiple steps larger than one. Moreover, since the number of pipeline components

varies according to the type of pipeline branch, it is expected that state periods may

show different behavior, which adds complexity to the generation process. Therefore,

similar to the Markov chain transition matrices, periods of pipeline states are calculated

both for states representing the first pipeline branch and states of branches extending

from the first pipeline branch. These periods are fitted to theoretical probability

distribution functions that best approximate their behaviors.

Based on the definitions of types of pipeline components in section 5.2, periods of

pipelines state can be reduced to seven instead of 13. Three factors contribute to this:

first, components of the “Closure,” “Cap,” “Ftube,” and “Fblind” main functions

block off the pipeline product flow. These components have a single connectivity

which means that they are located last in the pipeline structure, i.e., they are the

absorbing states. Second, the component “Coupling” has small probability values; at a

certain state in the Markov transition matrix can move toward it. Finally, as mentioned

previously, component “Tube” is assumed to be a free-floating pipeline component

because it is the dominant component in the entire pipeline population. These factors

help to reduce the number of state period distribution functions to seven and are

0, iip

127

illustrated with their associated pipeline state in Table 4- 3. These state period

distribution functions are expected when working in conjunction with Markov chain

transition matrices to generate pipeline structures that reflect realistic pipeline

component sequences.

Table 4- 3 Probability distribution functions for components’ state periods

Pipeline state

Probability distribution function

Located in the first

pipeline branch

Located in branches

extending from the first

pipeline branch

“Pcomponent’ Exponential (0.19245) Exponential (0.31376)

‘Instrument” Gamma (2.086, 7.042) Gamma (2.4545, 9.1897)

“Valve’ Lognormal (0.795,1.899) Gamma (1.437,5.584)

‘Flange” Pareto (0.82625,1) Pareto (0.94902,1)

“Elbow’ Normal (2.7367,3.1097) Laplace (0.51675,3.1097)

‘Tee” Gamma (1.454, 5.307) Gamma (0.95639, 5.3605)

“Reducer” Lognormal (0.809,2.073) Lognormal (0.8612,2.159)

The pipeline generation flow chart using the Markov chain model is shown in Figure

4- 10 and is split into two phases. The first phase (Phase1) generates the sequences of

components in the first pipeline branch. The output from Phase 1 is then used to

generate a state sequence that represents the second pipeline (Phase 2), which is a

sequences of components in branches extending from the first pipeline branch.

128

Phase 1 Phase 2

Start

Randomly sample

the number of

components in the

first pipeline branch

(n)

Determine the

starting state for the

first pipeline branch

model

(Si)

Determine the state

period (PSi) of (Si),

if applicable

Determine the state

(Si+1) of the

following

component using the

first pipeline branch

transition matrix

Is Si = Si+1 ?Is Psi achieved?

Determine the state

period (PSi+1) of

(Si+1), if applicable

No

Yes

No

Yes

Is Si+1 = n

No

Is Si = “Tee”?

Initialize the number

of branches

extending from the

first branch (yi) to 0

No

yi+1= yi +1 Yes

Randomly sample

the number of

components (ny) for

the first branch in y

Determine the

starting state for the

pipeline branch

model

(Syi)

Determine the state

period (PSyi) of

(Syi), if applicable

Determine the state

(Syi+1) of the

following

component using

branches extending

from the first

pipeline branch

transition matrix

Is Syi = Syi+1 ?
Is PSyi

achieved?

Determine the state

period (PSyi+1) of

(Syi+1), if applicable

No

Yes

No

Yes

Is Syi+1 = ny

No

Is Syi = “Tee”?

No

yi+1= yi +1Yes

No

Are all branches

in y covered?

Is Si = “Tee”?yi+1= yi +1

No

Yes

Is Syi = “Tee”? yi+1= yi +1Yes

No

Yes

FinishYes

Yes

Is y >0 ?

Yes

No

Figure 4- 10 Flow chart of Markov chain pipeline generation model

129

It starts by randomly generating the number of components expected in the first

pipeline branch. It is sampled from a gamma distribution function (α = 1.7039, β =

11.023) that is driven by the histogram plot of the number of components shown in

Figure 4- 8. The model then initializes the number of branches expected from the

first sub-system to 0 and later changed according to the occurrence of state tee in the

first pipeline branch. Thereafter, the starting state of the pipeline component

sequence is initialized. The initialization of the starting states is performed by first

calculating the probability of states at which a pipeline may starts with. However, an

assumption is made in the first and the second pipeline sub-systems which limits the

starting states to 7 and 9 respectively. The assumption defines the starting state, shown

in Table 4- 4 and Table 4- 5, as a state whose main objective is to host the flow of the

material in the pipeline. In the case of a starting state selected as tee, a branch will be

added into , and its state period will be randomly sampled from its associated

probability distribution function shown in Table 4-3. The remaining states of the

pipeline components are then generated using the Markov chain transition matrix. In

cases in which a Markov chain transition matrix generates two similar states

consecutively or apart in multiple steps, a check is conducted. The check is based on

whether or not the state period condition is satisfied (i.e., whether the distance between

two similar states is equal to their state period). If the condition is satisfied, another

state period, , is sampled for the current state and the following state is generated

using the Markov chain transition matrix shown in (5). On the other hand, if the

condition is not satisfied, another state is generated for the current step, and the same

process is repeated until a sequence of pipeline components is achieved that is

n

y

iS

y iPS

1iPS

130

equivalent to the number of components generated by the first pipeline sub-system.

Once the first pipeline subsystem (Phase 1) has completed generating the first branch

and if the number of branches in y is greater than 0, then the pipeline’s second sub-

system (Phase 2) will start generating pipeline state sequences for each additional

branch; otherwise, the model will end the pipeline generation process. The generation

of pipeline branches in Pahse 2 is equivalent to that in Phase 1 with differences related

to the used Markov chain transition matrix, state period probability distribution

functions, the number and type of states in the initializing step, and the number of

components in each branch that is sampled from a Lognormal distribution function (σ

= .88575, µ = 1.2818).

Table 4- 4 Starting states in the first pipeline branch (Phase 1)

State Pcomponent Instrument Valve Flange Tube Elbow Reducer

% 0.96 2.1 10.8 13 40.63 15.37 14.54

Table 4- 5 Starting states in branches extending from the first pipeline branch (Phase

2)

State Instrument Valve Flange Tube Elbow Tee Reducer Coupling Ftube

% 0.2 0.66 16.18 40.16 5.65 1.12 1.66 0.15 34.22

4.5 Validation of Markov chain pipeline generation model

In this section, the performance of the Markov chain pipeline generation model is

measured against a population of real pipelines. It is conducted to examine how the

integrated Markov chain transition matrix and state period distribution perform when

generating a pipeline sequential pattern similar to sequential patterns in the actual

population. The validation is performed on components which host the flow of material

131

in the pipeline: pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and

coupling. Two pipeline properties are used in the validation process: (1) the number

of each type of component in each pipeline, and (2) the component’s location in the

pipeline structure. The validation process (Figure 4-11) starts by randomly generating

pipelines using the Markov-chain pipeline generation model. The number of pipelines

generated is equivalent to the original number of pipelines, which is 1052. Then each

pipeline is converted to a feature vector capable of capturing pipeline properties.

Finally, a three-stage validation process is performed starting with the evaluation of

the number of each type of component and correlation analysis, clustering-based

validation, and validation by measuring and comparing similarity distances between

all feature vectors in the pipeline space.

132

Original

pipeline

data

Generated

pipeline

data

Generation of

pipelines feature

vectors

Generated

pipelines

feature

vector

data

Original

pipelines

feature

vectors

data

Evaluation of number of components and

correlation analysis

Validation of distance between feature vectors

Finish

Start

Clustering-based validation

Figure 4- 11 Validation process flow chart

133

4.5.1 Pipelines feature vectors

The conversion of the pipeline into a feature vector in this section is performed using

a methodology described by Liu et al. [88]. The methodology’s main objective was to

represent deoxyribonucleic acid (DNA) sequences as a point in the DNA n-

dimensional space, which represents the number of nucleotides in a DNA sequence,

their distance from the origin, and their distribution along the sequence. Similarly, all

pipelines are converted to a feature vector representing a point in the pipeline n-

dimensional space. To achieve consistency in applying this methodology to both the

original and generated data, the pipeline generation model was built to represent its

outputs in the same way the original data is presented; after applying the pipeline

branching process (see Figure 4- 3). Both original and generated pipelines will have

the same linearly structured data representation. Therefore, three numerical attributes

will be calculated for each pipeline component.

The first numerical attribute is the total number of each type of component in the

pipeline and is denoted as ; where = pcomponent, instrument, valve, flange, tube,

elbow, tee, reducer, and coupling. It is used to define the pipeline formation

components and also dictate the total number of components in the pipeline. Using

Figure 4- 12 as an illustration, , , and in pipelines A and B are equal to

5, 2, and 2 respectively. Since nine types of pipeline components are considered in the

validation, the other component types which did not occur in pipelines A and B will

have a value of 0. Both pipelines have the same number of branches and components.

However, the distribution of components is not the same. For example, pipeline A has

in i

Tuben Elbown Teen

134

component tee located in node 2 and 5. In pipeline B, they are located in node 2 and

4. The same holds true for component tube: it is located in nodes 1, 3, 4, 7 and 9 in

pipeline A, and in nodes 1, 3, 5, 7, and 9 in pipeline B. Therefore, a second numerical

attribute is proposed to distinguish the sequences of pipeline components. The second

attribute represents the total distance of each type of pipeline component from the

starting point. It is denoted as and is calculated as per equation (4-7).

 4-7

where;

= pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling, and

= the distance of each type of pipeline component from the starting point.

iT





in

j

ji tT
1

i

jt

135

Figure 4- 12 Example of generation of pipeline features vector

Branch 2 Branch 1 Branch 3

2 3 4
5

6 7

8

9 1

Pipeline A

Branch 2 Branch 1 Branch 3

2 3

4
5

6 7

8

9 1

Pipeline B

136

It is assumed that the starting point for both pipelines is equal to 0 and the node

numbers shown in Figure 4- 12 are the distances of each component from the starting

point. Therefore, , , and for pipeline A are equal to 24 (the sum of the

tubes’ node location in the pipeline A strucutre, 1+3+4+7+9), 14 (the sum of the

elbows’ node location in the pipeline A strucutre, 6+8), and 7 (the sum of the elbows’

node location in the pipeline A strucutre, 2+5) respectively; and they are equal to 25,

14, and 6 in pipeline B. The components’ total distance from the starting point

provides a good presentation of the components’ location in the pipeline sequence,

making it possible to identify the differences between the two pipelines (as in tube and

tee) as well as the similarities between them (as in elbow) . However, there might be

some cases where alone is not sufficient to represent the location differences

between components from different pipelines. As an example of such case can be

shown by relocating components tee in pipeline A from node 2 to node 1. The modified

pipeline A structure is named A* and is shown in Figure 4- 13.

Figure 4- 13 Pipeline A* structure

TubeT ElbowT TeeT

iT

iT

9

8

 7 6
5

4 3 2 1

Branch 3 Branch 1 Branch 2

137

This case changes the of pipeline A to 6 instead of 7 which is equivalent to the

of pipeline B. This result means that both pipelines have the same total distance of

components tee from the starting point and, more specifically, it means that the

components’ location is the same in both pipelines. However, in reality tee components

in both pipelines are in different locations: they are located in nodes 1 and 5 in pipeline

A, and in nodes 2 and 4 in pipeline B. Therefore, a third numerical attribute is proposed

to work concurrently with the component total distance attribute to further

distinguish the location of each component in the pipeline sequence.

The third numerical attribute is the distribution of each component in the pipeline

sequence and is denoted as . It uses the variance of the distance of each component

in the pipeline sequence to describe the distribution, and is defined as follows:

 4-8

 4-9

where,

 = pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling,

 = the distance of each type of pipeline component from the starting point,

 = the average total distance of each pipeline component,

TeeT TeeT

iT

iD







in

j i

ij

i
n

t
D

1

2)(

i

i
i

n

T


i

jt

i

138

 = the total distance of each component from the starting point, and

 = the total number of each type of pipelines’ components.

As an illustration of how may create unique component location characteristics,

Table 4- 6 shows all three numerical attributes for component tee in pipelines A, B,

and A*. The tee component in all pipelines has a unique location. Furthermore, when

comparing pipeline B and pipeline A*, adding attribute created a good

differentiation base between pipeline component with the same and attributes.

Table 4- 6 Attributes , , for pipelines A, B, A*

Pipeline

Pipeline A 2 7 2.25

Pipeline B 2 6 1

Pipeline A* 2 6 4

As described above, each pipeline from the two sources, the original and the generated

populations, is converted to a feature vector so it can be used to validate the Markov-

chain pipeline generation model. Since nine components have been selected in the

validation process, the pipeline feature vector is going to have 27 dimensions and the

order of each attribute in pipeline feature vector should be consistent in both the

original and generated data. The selected order of pipeline components is:

- 1st: Pcomponent [, ,]

- 2nd: Instrument [, ,]

- 3rd: Valve [, ,]

iT

in

iD

iD

in iT

Teen TeeT TeeD

Teen TeeT TeeD

Pcomponentn PcomponentT PcomponentD

Instrumentn InstrumentT InstrumentD

Valven ValveT ValveD

139

- 4th: Flange [, ,]

- 5th: Tube [, ,]

- 6th: Elbow [, ,]

- 7th: Tee [, ,]

- 8th: Reducer [, ,]

- 9th: Coupling [, ,]

and the final representation of each pipeline feature vector is:

[, , ,……………………., , ,]

4.5.2 Number of components evaluation and correlation analysis

In this section, the number of components generated by the Markov-chain pipeline

generation model is compared to that in the original pipeline population. Table 4- 7

shows summary results of the number of each type of pipelines’ components. The

Markov-chain pipeline generation model generated approximately the same total

number of components with 2.5% higher what than the original pipeline populations.

However, the breakdown of each component in the two populations differs in some

ways. Significant differences can be seen between the original and the generated

pipelines at components pcomponent, instrument, and tee; meanwhile, the rest of the

components showed small differences. This indicates that the assumptions regarding

the number of components when constructing the Markov-chain model worked well

for six out of nine components. Additionally, assessing the number of occurrences of

each component in each pipeline in the two populations can provide good insight into

Flangen
FlangeT FlangeD

Tuben TubeT TubeD

Elbown ElbowT ElbowD

Teen TeeT TeeD

ducernRe ducerTRe ducerDRe

Couplingn CouplingT CouplingD

Pcomponentn PcomponentT PcomponentD Couplingn CouplingT CouplingD

)(n

140

how the original and generated pipeline populations are similar. For this work, since

the distributions describing the pipeline components are not normally distributed (as

indicated by the Anderson-Darling procedure, see Table D-1 in Appendix D), the two-

sample t-test cannot be applied. As a result, non-parametric tests in the form of

Kruskal-Wallis, Mood-Median, and Mann-Whitney tests were applied to assess the

ways in which the two populations are similar. Table 4- 8 shows p-values of all three

tests when applied to each pipeline component. P-values of Kruskal-Wallis and Mood-

Median tests are greater than the significance level (α=0.05), which means that in terms

of the number of each component, there are no significant differences between the

original and the generated pipeline populations. However, the Mann-Whitney test

showed different results: components tube, elbow, reducer, and coupling did not differ

significantly from the two populations. Meanwhile, the rest of the components showed

the opposite result. These tests are one-dimensional and applied to each component

independently from others. Furthermore, the combination of all components including

their attributes, and the number of components and their location in the pipeline

sequence actually represent the overall pipeline characteristics. For this reason, the

other two validation methods proposed in this study will complement the results driven

by this section.

141

Table 4- 7 Number of components in original and generated pipelines

Component
Original Generated

 % %

Pcomponent 451 1.5 935 3.0

Instrument 557 1.8 199 0.6

Valve 2611 8.6 1947 6.3

Flange 4101 13.6 3036 9.8

Tube 12036 39.9 13888 44.9

Elbow 6332 21.0 8699 28.1

Tee 3268 10.8 1505 4.9

Reducer 788 2.6 670 2.2

Coupling 55 0.2 59 0.2

Total No. of pipeline components 30199 30938

Table 4- 8 P-values of Kruskal-Wallis, Mood-Median, and Mann-Whitney tests

Component
p-value

Kruskal-Wallis Mood-Median Mann-Whitney

Pcomponent 0.276 0.092 0

Instrument 0.241 0.267 0

Valve 0.185 0.123 0

Flange 0.7 0.809 0

Tube 0.314 0.835 0.2452

Elbow 0.797 0.809 0.2358

Tee 0.415 0.345 0

Reducer 0.624 0.585 0.767

Coupling 0.929 1 0.748

n n

142

In building the Markov chain pipeline generation model, it was assumed that the

integration of both the Markov chain transition matrix and the state periods of each

component can preserve the correlation between pipeline components. Therefore,

correlation coefficient matrices for pipeline components in both the original and

generated data were calculated (see Appendix E), and to measure the similarity

between both matrices, an eigenvalue-based similarity measure was employed. Figure

4- 14 illustrates the comparison between eigenvalues calculated from the correlation

matrices associated with the original and simulated data. Since in both cases, the

eigenvalues are comparable except for the component coupling which exerted a

noticeable difference, and since this component accounts only for 0.1-0.15 % in both

populations, it is possible to conclude that the Markov-chain pipeline generation model

was capable of maintaining the correlation between the components.

Figure 4- 14 Eigenvalue distributions of component correlation matrices from

original and generated pipeline population

0

1

2

3

4

5

6

7

E
ig

n
ev

al
u
e

Eigenvalues from original data Eigenvalues from generated data

143

4.5.3 Clustering-based model validation

In this section, a clustering-based validation method is proposed to measure

similarities between the original and generated pipeline spaces. A clustering technique

was employed in this study because of its ability to find a true topology of certain data

[89]. The main concept of this validation method was to assess the performance of a

clustering model built using two different sets of data. A similar methodology was

implemented by Sikonja [90] to compare the similarity of a generated data set against

an original data set. Many clustering algorithms were proposed to carry the task of

clustering analysis. A density-based clustering algorithm is selected in this study. It

was selected because it does not require the pre-determination of the number of clusters

to be generated; it has the ability to define clusters of higher density, and provides the

optimum number of clusters accordingly (refer to [91] for more details on density

based clustering). Table 4- 9 shows a summary of the clustering of the original and

generated pipeline feature vectors (refer to Table F- 1 and Table F- 2 in Appendix F

for more details on the clustering results). It has two parts: the clustering model and

the test results. The clustering model is built using 80% of the total population and the

rest of the data is used to test the model. The density-based clustering resulted in

generating two clusters for each pipeline space: one that was high density cluster

(cluster 0 from the original data source shown in Table 4- 9) and one that was low

density cluster (cluster 1 from the original data source shown in Table 4- 9). In the

original data clusters, the distribution of the number of instances in the high and low

density clusters was 75.4% to 24.6% respectively. In the generated data clusters, the

distribution of the number of attributes was 73.65 to 26.4% respectively; 1.8%

144

different from the original data. The same trend was found in test results using the

remaining 20% of total data, which means that the spread of pipeline feature vectors

from different sources in the pipeline space was approximately the same. However,

using these results alone is not sufficient to verify that the original and generated

pipeline spaces share the same characteristics. There might be a case where two

datasets share the same number of clusters, but the location of these clusters may differ

significantly. Analyzing cluster centroids can provide a good comparison basis. Figure

4- 15 and Figure 4- 16 illustrate the centroids of the high and low density clusters

generated from both the original and generated pipeline feature vectors. The centroids

of clusters calculated from the original and generated pipeline feature vectors have a

similar trend. The degree of similarity between the original and the generated centroids

in both the high and low density clusters was equal to 64%. These results confirm that

in terms of the number and location of components in the pipeline, the Markov-chain

pipeline generation model is producing reasonable outputs.

Table 4- 9 Results summary of clustering models

Model Data source Total no. of attributes Clusters Attribute SSE

Clustering model

Original

841

0 793

 1 48

Generated
0 67

1 774

Test results

Original

221

0 179
165.6

1 32

Generated
0 39

115.6
1 172

145

Figure 4- 15 Attributes centroids in the high density cluster

Figure 4- 16 Attributes centroids in the low density cluster

0

20

40

60

80

100

120

140

160

180

200

P
co

m
p

o
n

en
t_

n

P
co

m
p

o
n

en
t_

T

P
co

m
p

o
n

en
t_

D

In
st

ru
m

en
t_

n

In
st

ru
m

en
t_

T

In
st

ru
m

en
t_

D

V
al

v
e_

n

V
al

v
e_

T

V
al

v
e_

D

F
la

n
g

e_
n

F
la

n
g

e_
T

F
la

n
g

e_
D

T
u

b
e_

n

T
u

b
e_

T

T
u

b
e_

D

E
lb

o
w

_
n

E
lb

o
w

_
T

E
lb

o
w

_
D

T
ee

_
n

T
ee

_
T

T
ee

_
D

R
ed

u
ce

r_
n

R
ed

u
ce

r_
T

R
ed

u
ce

r_
D

C
o
u

p
li

n
g
_

n

C
o
u

p
li

n
g
_

T

C
o
u

p
li

n
g
_

D

Original Generated

0

500

1000

1500

2000

2500

3000

3500

4000

P
co

m
p

o
n

en
t_

n

P
co

m
p

o
n

en
t_

T

P
co

m
p

o
n

en
t_

D

In
st

ru
m

en
t_

n

In
st

ru
m

en
t_

T

In
st

ru
m

en
t_

D

V
al

v
e_

n

V
al

v
e_

T

V
al

v
e_

D

F
la

n
g

e_
n

F
la

n
g

e_
T

F
la

n
g

e_
D

T
u

b
e_

n

T
u

b
e_

T

T
u

b
e_

D

E
lb

o
w

_
n

E
lb

o
w

_
T

E
lb

o
w

_
D

T
ee

_
n

T
ee

_
T

T
ee

_
D

R
ed

u
ce

r_
n

R
ed

u
ce

r_
T

R
ed

u
ce

r_
D

C
o
u

p
li

n
g
_

n

C
o
u

p
li

n
g
_

T

C
o
u

p
li

n
g
_

D

Original Generated

146

4.5.4 Model validation using distances between all feature vectors

In this section, the distance between all feature vectors in both the original and

generated pipeline data sets are calculated using the Euclidian distance. The distance

between feature vectors indicates the degree of similarity between pipelines; if two

pipelines are similar, the distance between their vectors should be small, and if not, the

distance should be large. This approach is well used for data clustering and

classification [92]; however, it is used herein to assess the similarity of distances

between pipelines feature vectors calculated from the original and the generated

pipeline populations. The Euclidian distance formulation is defined as:

 4-10

where,

= the Euclidian distance between pipelines vectors,

 = pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling,

and

and satisfying .

Since the total number of pipelines in each population is equal to 1052, by using the

equation , it is expected to have 552826

distance data points for each population. The distance data points’ distribution is

shown in the histogram plots in Figure 4- 17. The data shown in both histograms are

 
j i

ii jjE 2')(

E

i

 DTnjj ,,',  'jj 

2

)1pipelines of no.(pipelines of no. 

147

highly skewed to the right, which requires a careful attention to the tests being used to

assess the similarity between the two populations. According to Figure 4- 18, it turns

out that both populations are not normally distributed as confirmed by the Anderson-

Darling normality test results for which the p-value < 0.05. As a result, parametric

methods such as the “t” or “f” test, which rely on the normality of the data, cannot be

applied. However, the distance between pipeline vectors represents the degree of

similarity which lies between [0, ∞). Grouping these distances leads to the

identification of the similarity of topological structures of both the original and the

generated pipeline populations. Furthermore, the histogram plots shown in Figure 4-

17 represent the similarity between topological structures of both populations.

Thereafter, using histogram similarity measures in the form of histogram intersections

can provide a good basis for assessing degrees of similarity.

Another result which can be derived from Figure 4- 18 is that there is a gap separating

the generated pipeline data from the points in the probability plots of the distance

between pipeline vectors. Although both populations have approximately the same

mean values, as shown in Figure 4- 18, this gap created significant differences in the

standard deviations. This result justifies the clustering-based validation method

in 4.5.3, which concluded that both populations were split into two clusters. As a result,

the population of the distances between pipelines is split into two: the distances that

represent the 95% of the whole population and the distances that represent the higher

5% of the population. Each population is then analyzed individually.

148

Figure 4- 17 Histograms of distances between pipeline vectors for the original and

the generated pipeline populations

149

Figure 4- 18 Probability plots of distances between pipelines vectors from the

original and generated pipeline data

Figure 4- 19 shows the distribution of the distances between pipelines vectors that

underlies 95% of the total populations. The distribution of the distances calculated

from the original pipeline population represents 899 pipelines (equivalent to 85.5 % of

the total number of pipelines) and in the generated pipeline population, it represents

936 pipelines (equivalent to 89% of the total number of pipelines). Both distributions

are highly skewed with no trace of normality. Figure 4- 20 shows the probability plot

of the distances that underlie the 95% of the total population. Both data have

approximately the same mean (=658.4, =668.1), and they are slightly

different in terms of the standard deviations (=1176, =985). These

original generated

original generated

150

results indicate that in terms of mean and standard deviations, 89% of the pipelines

generated from the Markov chain pipeline generation model have characteristics

similar to 85.5 % of pipelines in the original populations.

Figure 4- 19 Histograms of distances between pipelines vectors that represent the

95% in (a) the original and (b) the generated pipeline populations

151

Figure 4- 20 Probability plots of distances between pipelines vectors that represent

the 95% in (a) the original and (b) the generated pipeline populations

The other test to apply in this section is the histograms intersection. It is proposed by

Swain and Ballard [93] and described as follows: given a pair of histograms

(histogram of distances between generated pipelines) and (histogram of distances

between original pipelines), with each having the same number of bins , the

intersection between histograms is defined as:

∑ min (𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1 4-11

where,

𝑥𝑖= bin 𝑖 in histogram 𝑥,

𝑦𝑖= bin 𝑖 in histogram 𝑦.

x

y

n

152

Equation (4-11) is then normalized, as in (4-12), to calculate a fractional match value

between the two histograms . The fractional match value 𝐻 lies between [0, 1]

and the degree of similarity is interpreted as if is equal to 0, which means the

histograms are not identical. If is equal to 1, the histograms are identical.

𝐻(𝑥, 𝑦) =
∑ min (𝑥𝑖,𝑦𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 4-12

Figure 4- 21 illustrates the intersection between the histograms of the normalized

distance of the original and generated pipeline populations. Visually, the two

histograms are almost identical. This conclusion is supported by calculating the match

value. Table 4- 10 shows a sample calculation of the match value. The match value

is found to equal to 0.979 which means that the two histograms are almost identical.

This result is based on the number of bins equal to seven, which is driven by Sturges’

formula (). However, the match value, based on Equation 4-13, is sensitive

to the number of bins. The higher the number of bins used, the more accurate the

measure is. Therefore, the calculation shown in Table 4- 10 is repeated 10 times with

a 10-bin increment added in each run. The changes in with respect to the bin

number are shown in Figure 4- 22. The value converges to 0.88 which represents

the actual similarity measure between the two histograms.

),(yxH

H

H

H

1)(log2 n

H

H

153

Figure 4- 21 Histograms intersection between: (a) histograms of normalized

distances between original pipeline vectors that represent the 95% of the population,

and (b) histogram of normalized distances between generated pipeline vectors that

represent the 95% of the population

Table 4- 10 Calculation of histograms intersection: (a) histograms of normalized

distances between original pipeline vectors that represent the 95% of the population,

and (b) histogram of normalized distances between generated pipeline vectors that

represent the 95% of the population

Bin #
Bin density

H
𝑥-Histogram (a) -Histogram (b)

1 6.065 6.000 6.000

2 0.572 0.696 0.572 0.979

3 0.146 0.136 0.136

4 0.078 0.089 0.078

5 0.030 0.043 0.030

6 0.088 0.032 0.032

7 0.020 0.004 0.004

∑ 7.000 7.000 6.852

y),min(ii yx

154

Figure 4- 22 Changes in match value H with respect to the increase of histograms’

bin number in the distances that underlie the 95% of the total population

Figure 4- 23 shows the distribution of distances between pipelines that represents the

higher 5% of the total population. Distances calculated from the original pipeline

population represent 156 pipelines. Distances calculated from the generated pipeline

population represent 116 pipelines. A significant difference in terms of mean and

standard deviation can be seen in Figure 4- 24, which means that these two populations

are significantly different. Moreover, when a histogram intersection measure was

applied, as shown in Figure 4- 25 and Table 4- 11, the match value was equal to

0.504. The match value is calculated based on a bin number equal to 14, driven by

Sturges’ formula, but when increasing the number of bins, the value converges

towards 0.29. Figure 4- 26 shows 10 runs with an increment of 10 bins added in each

run. The values change dramatically. When extending the increase in the number

of bins to 1000, the value becomes steady at 0.21. This confirms that the distances

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

H

Number of Bins

H

H

H

H

155

representing the higher 5% of the total original and generated populations share a small

trace of similarity equivalent to 0.21 in the range of 0 to 1.

Figure 4- 23 Histograms of distances between pipelines vectors that represent the

higher 5% in (a) the original and (b) the generated pipeline populations

156

Figure 4- 24 Probability plots of distances between pipelines vectors that represent

the higher 5% in (a) the original and (b) the generated pipeline populations

Figure 4- 25 Histogram intersection between; (a) histograms of normalized distances

between original pipeline vectors that represent the higher 5% of the population, and

(b) histogram of normalized distances between generated pipeline vectors that

represent the higher 5% of the population

157

Table 4- 11 Calculation of histograms’ intersection; (a) histograms of normalized

distances between original pipeline vectors that represent the higher 5% of the

population, and (b) histogram of normalized distances between generated pipeline

vectors that represent the higher 5% of the population

Bin #
Bin density

H
𝑥-Histogram (a) -Histogram (b)

1 3.315 8.511 3.315

0.508

2 4.608 2.639 2.639

3 1.142 0.000 0.000

4 0.048 0.000 0.000

5 0.442 0.000 0.000

6 0.836 0.000 0.000

7 1.251 0.000 0.000

8 1.123 0.000 0.000

9 0.002 0.000 0.000

10 0.010 0.000 0.000

11 0.005 0.000 0.000

12 0.017 0.005 0.005

13 0.068 0.014 0.014

14 1.134 2.831 1.134

∑ 14.000 14.000 7.107

y),min(ii yx

158

Figure 4- 26 Changes in match value H with respect to the increase of histograms’

bin number in the distances that underlie the higher 5% of the population

4.6 Conclusion

In this study, a Markov-chain model is proposed to randomly generate pipeline data

structures. Model development is motivated by the need to generate random input that

represents the diverse and complex nature of the product to support simulation of

construction fabrication processes. The construction of the Markov-chain model was

preceded by original pipeline data preparation and analysis and succeeded by intensive

validation processes. The study also illustrated how to convert pipeline data structure

to a feature vector that can preserve pipeline characteristics prior to applying validation

processes. The performance of the Markov-chain pipeline generation model was

measured against a real dataset. In terms of the number of the generated pipelines’

components, the model generated approximately the same collection of components

as in the original pipelines. The model also maintained the correlation between the

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

H

Number of Bins

159

generated pipeline components that existed in the original pipelines. The results show

that the model is reasonably similar to the original pipelines. Using a clustering-based

model validation as a similarity measure shows that the Markov-chain model generated

a reasonable performance. In the context of model validation using the distance

between all feature vectors, it was found that the majority of the generated pipelines

(89% of the total population) shared characteristics similar to 85.5% of the original

pipeline populations with a degree of similarity of 0.88 (on a scale of 0 to 1 with 0

meaning not identical, and 1 meaning identical). Meanwhile, the rest of the generated

pipelines (11% of the total population) were significantly different when compared to

the original pipelines. This confirms that the Markov chain model used to randomly

generate pipeline data structure is capable of generating the dominant characteristics

of pipelines found in reality.

160

Chapter 5

Application of industrial pipeline data

generator for testing the efficiency pipe modules

optimization algorithms

5.1 Introduction

Three approaches have been the main pillars in analyzing and evaluating the efficiency

of solution algorithms: theoretical worst-case analysis, theoretical average-case

analysis and experimental analysis [94]. Experimental analysis is the most widely used

method of growing interest in the operational research community [95]. It is used to

test and analyze the performance of algorithms by running them on sets of instance

problems. These sets of problems are either extracted from a real-world system or

randomly generated using a synthetic data generator, which in both cases results in

generating valuable knowledge. However, the use of real-world instances is associated

161

with difficulties related to the size and the number of the available test instances. In

addition, although it represents a problem’s real behavior, the high cost of the data

collection and documentation limits testing scenarios that researchers may examine

[96]. Synthetic data generators provide a solution to such difficulties, as well as

flexibility in generating test instances of different properties such as the size and

complexity of an instance problem. Such properties are of great importance in the

experimental analysis of NP-hard problems in which the computational time increases

dramatically with the size of the problem [95] [97].

Data generators, in the context of experimental design and analysis, are highly

recommended to be used [98]. Different data generators for different problems, in the

field of operational research, have been well documented and referenced in literature

for researchers to generate data sets for computational experiments. For example,

Drexl et al. [99] introduced an activity network generator to generate instance

problems for a resource-constrained project scheduling problem. Gau and Wascher

[100] introduced a problem generator for a one-dimensional cutting stock problem,

and Silva et al. [101] introduced a problem generator for a two-dimensional rectangular

cutting and packing problem. These examples of instance problem generators are used

in a defined class of problems. They provide flexibility in generating a large number

of instance problems with different properties and define a standard data set to be used

in evaluating the efficiency of newly developed algorithms [100]. Similarly, in this

chapter, an industrial pipeline data generator constructed in the previous chapter is

introduced as a pipeline instance problem generator. The pipeline instance problem

generator is designed to generate test sets for testing solutions’ algorithms applied on

162

industrial project problems. However, it is first important to identify and define the

problem at which the industrial pipelines’ data generator will be targeted. Therefore,

this chapter is structured as follows:

1. Section 5.2 presents an overview of industrial projects related to

modularization, modules, and pipe spools. It includes the problem definition

and mathematical formulation. The problem definition, which is related to the

pipe-spooling process in industrial construction, was conducted in cooperation

with a partner company which has significant experience in industrial

construction.

2. Section 5.3 presents background about the bin-packing problem. The selection

of this class of problem is based on the mathematical formulation of the pipe-

spooling problem. This section includes an overview of the bin-packing

problem and its heuristics, the projection of the pipe-spooling problem as a

three-dimensional bin-packing problem, and the heuristic (branch-and-bound)

that is proposed to approximate the pipe-spooling solution.

3. Section 5.4 presents the generation of pipeline instance problems. It includes a

description of the additional pipeline attributes (pipeline component lengths,

diameter and running direction) required by the pipe-spooling problem and the

integration of these attributes in the industrial pipeline generator.

4. In Section 5.5, a computational experiment is conducted, and its results are

reported as benchmark results for the proposed heuristic in approximating the

pipe-spooling solution.

163

5. Section 5.6 presents the future use of the industrial pipeline data generator and

Section 5.7 presents the conclusion of this chapter.

5.2 Overview of modularization, modules, and pipe spools in industrial

projects: The defined problem statement

In industrial projects such as petrochemical plants, petroleum refineries, and oil and

gas production facilities, piping systems are the major and most complex elements,

accounting for ; 40% of the total time and budget [102]. These costs lead the project

owners to increase their demands for safety, quality, productivity and performance of

their projects [103]. Such demands have led to an increased interest in using time- and

cost-efficient construction techniques. The modularization of construction elements

has a positive impact on construction operations throughout the industrial project life

cycle. Modularization has improved productivity in the construction industry,

resulting in (1) improved project schedules, (2) budget and cost reductions, (3)

improved site safety, (4) waste reduction, (5) reduced weather impact on the

fabrication process, (6) reduced field labour requirements, and (7) improved quality

[104].

Modularization is defined as “the preconstruction of a complete system away from the

job site that is then transported to the site” [105]. The system may be too large to

transport, so is broken into smaller units called modules. These modules are defined

as “a major section of a plant resulting from a series of remote assembly operations

and may include portions of many systems; usually the largest transportable unit or

component of a facility” [106]. The modularization technique is part of a construction

methodology called “prework” that includes prefabrication, preassembly,

164

modularization, and off-site fabrication processes (PPMOF) [107]. The adoption of

“prework” has increased in the construction industry; it was found that during the past

15 years, the implementation of prefabrication has increased by 86% and the

implementation of both prefabrication and preassembly increased by 90% [108].

Modularization as a part of the “prework” construction method has demonstrated great

potential in terms of increasing efficiency in industrial construction. However, it is

also associated with disadvantages, identified by Dawar et al. [109], such as (1) the

increase in engineering and home office costs, (2) the increase in fabricator quality

surveillance, expediting and logistical costs, (3) additional cost and scheduling for

transportation and logistics, (4) additional cost and scheduling for preliminary studies

in the early stages of the project, and (5) an increase in installation costs due to heavy

modules. In general, these disadvantages can be divided into two major groups: (1) the

expensive mode of transportation and excessive logistics planning required in the area

of modular construction, (2) and the excessive requirements of engineering [110]. The

first group, transportation and logistics, plays a critical role in modularization. Failure

to properly plan the transportation and logistics of industrial projects may cause

catastrophic costs and scheduling damages. For example, the Kearl oil sands project

located in northern Alberta, Canada experienced cost and schedule overruns due to

transportation and logistics problems [111]. Korean-made modules were shipped to

Canada, but due to their large size and the transportation regulations, Kearl had to

break 200 modules into smaller pieces for shipping and then reassemble them on site.

This unanticipated problem increased the project cost by $2 billion. Constructing

transportation and logistics strategies is imperative to increase the efficiency of

165

modularization in an industrial project, but building these strategies is a complex

process. It involves route identification, constraints, transportation envelopes, and

scheduling availability. Murtaza et al. [110] identified and defined areas of

consideration in planning transportation and logistics strategies. These areas, their

definition, and citations are shown in Table 5- 1.

Table 5- 1 Areas of consideration in planning transportation and logistics strategies

[110]

No. Area Definition Reference

1

Total

delivered cost

management

“Ability to analyze and predict the total

supply chain costs from the source to

the point of distribution. It includes the

capability to roll up both international

and domestic logistics costs by product

and delivery route, plus the ability to

accurately calculate all the applicable

duty, tariffs and other customs-related

costs while factoring in any preferential

trade agreements. More advanced

capabilities would include the ability to

model and estimate inventory levels and

total carrying costs”

SupplyChainDigest

[112]

2

Supplier

portals and

advance ship

notice (ASN)

capability

“Web portals that provide some level of

visibility, the ability to generate ASNs,

and print barcode labels. Shippers post

freight movement requests and/or detail

ASN notices delivered”

SupplyChainDigest

[112]

3

Total product

identification

and regulatory

compliance

“Systemized approach to identify

products and ensure conformance to

regulatory and export rules”

SupplyChainDigest

[112]

4

Dynamic

routing

“System modeled rates/lanes give

realistic view of cost/service advantages

between shipping alternatives”

SupplyChainDigest

[112]

166

No. Area Definition Reference

5

Variability

management

“Ability to manage in-transit exceptions

more effectively”
SupplyChainDigest

[112]

6

Integrated

international

and domestic

workflow

“Reduction in total logistics costs

through a more holistic approach to

process and carrier/mode coordination

across international and domestic

moves”

SupplyChainDigest

[112]

7

Integrated

planning and

execution

platform

“End-to-end, optimized global logistics

control and cost minimization”
SupplyChainDigest

[112]

8

Global

logistics

process

automation

“Transitioning from manual intensive

processes and adopting such things as

internet-based transaction automation

technology”

AberdeenGroup [113]

9

End-to-end

visibility

“Increased visibility of logistics process

steps creates control”
AberdeenGroup [113]

10

Financial

supply chain

management

“Financial supply chain management is

about looking at how to optimize

working capital of a company”

Kristofik et al. [114]

Reading through Table 5- 1 and from the industrial construction perspective, the areas

of consideration which have a potential effect on modularization are total product

identification and regulatory compliance, integrated international and domestic

workflow, and the integrated planning and execution platform. Improving these areas

increase confidence in selecting modular construction in an industrial project. This fact

is supported by results obtained by O’Connor et al. [115], who determined 21

influential critical success factors that led to an effective use of modularization. These

167

factors were generated from a survey conducted on more than 170 modular projects

located in 13 countries with industry representatives made up of owners, contractors,

design firms, and fabricators (a detailed description of each critical success factor is

presented in Appendix G.). The most influential success factor was understanding the

module envelope limitations, a factor that aligned with the finding in Table 5-1, which

is the consideration of total product identification (standardizing the module design)

and regulation compliance in modular construction. It is important to accurately define

and identify the product/module in accordance with the transportation envelope limit.

This makes it possible to recognize modularization’s cost savings in the front-end-

planning stage.

Cost recognition is achieved the advanced planning for contractors’ resources; it

includes testing construction methods and transportation strategies under different

expected scenarios. Knowing that owners/contractors may use local and international

fabricators or suppliers to achieve the most cost efficient modular construction

strategies [116] results in an investigation of new research directions in the field of

modularizing industrial projects. A research direction that integrates product

optimization with the optimization of transportation process to support decision

making in the front-end planning stage.

5.2.1 Modules and pipe spools

In industrial construction projects, a module is the main construction element/product.

There are different types, identified by Dawar et al. [109] and shown in Table 5- 2.

Most require prefabrication, preassembly, and transportation. Most of the modules in

168

industrial projects have common formation components which are structural steel

frames that include racks of pipes, cables, and equipment [117]. More specifically,

they are composed of construction materials and installed equipment. These

components account for 50 to 60% of the total cost of the industrial project [118].

Construction materials are further classified as off-the-shelf (e.g., nuts, bolts, steel

sheets, elbows, small pipes, and hand valves), long-lead bulks (items or material

require a long time to design and fabricate) and engineered items (e.g., pipe spools)

[119]. Of these categories, engineered items in the form of pipe spools are featured as

high-cost unique items that require more front-end planning effort [120].

169

Table 5- 2 List of the common types of modules in the petrochemical industry [109]

No. Module type Definition

1 Pipe rack and

pipe bridge

modules

Modules loaded with pipes, electrical trays, and

attachments. These modules are usually fully fabricated

and loaded at the shop and then installed in the field on

pile and concrete foundations.

2 Structural

modules

Modules without any equipment or pipes.

3 Skidded

packages

A small vendor furnished modules

4 Process

structure

modules

Multilevel-process open-frame or enclosed structures

including single or multiple equipment, piping, electrical

and instrumentation. These modules may weigh 20 tons to

4,000 tons or more.

5 Dressed towers Vertical vessels that have been pre-assembled with all the

insulation, ladders, platforms, lighting, and

instrumentations.

6 Pump modules Modules that include platform-supported pumps, weather

shelters, piping, electrical and instrumentation.

7 Pre-assembled

units

Units that are broken down into smaller components such

as pre-assembled units due to volume and size constraints

in shipping and transporting large complex structures.

Pipe spools are unique in terms of their components such as tee connections and a tube

and elbow [121]. They are also unique in shape, material, and finish [122]. Pipe-spool

manufacturing starts with cutting the pipes to the required size, fitting and welding

(pipe spool shape formation), testing (e.g., hydro testing), and transporting the product

to the module yard for assembly [123]. This process represents the first stage in

modular construction, shown in Figure 5- 1. The other processes include module

170

assembly (installing the manufactured pipe spools inside a module), and transporting

and installing modules on the project site. It is obvious from Figure 5- 1 that the pipe

spool is the controlling element in modular construction because although the module

size may be standardized, the cost and time required to produce a module may vary

significantly. This variation is driven by the fact that each module may be composed

of multiple unique pipe spools (in shape, size, and materials) with each acquiring a

different number of man-hours to be produced.

Figure 5- 1 Module production processes in industrial project construction

Also, transporting the pipe spool from the fabrication shop to the module yard creates

a transition state in the production process, a transition from a controlled

manufacturing environment to an uncontrolled environment. This transition more

specifically affects the welding and testing processes. Contractors prefer to perform

pipe-spool welding and testing in a controlled environment because the cost associated

with these two processes is higher in an un-controlled environment (e.g., project site).

Project

site

Fabricati-

-on shop

Module

yard

M
o
d
u
le

in
st

al
la

ti
o
n
 Positioning

Welding

Testing

M
o
d
u
le

 a
ss

em
b
ly

Fitting

Welding

Testing P
ip

e
sp

o
o
l

m
an

u
fa

ct
u
ri

n
g
 Cutting

Fitting

Welding

Testing

Transport

pipe spool

to module

yard

Transport

module to

project site

171

However, welding in a module yard or project site is unavoidable, which results in cost

variations from one module to another. Furthermore, producing different sizesmakes

it more expensive to transport the pipe stools to the module yard or project site. In the

case of contractors employing different fabricators, the contractors prefer to optimize

the size of the pipe spools to minimize additional cost due to transportation, off-site

welding, and testing; thereafter, the total manufacturing cost of the module is also

optimized. However, the question to be answered before proceeding with this

discussion is “How pipe-spools are designed, and how is their configuration

optimized?

5.2.2 The generation of pipe-spool cut-sheets

In industrial construction, the typical production process starts with the delivery of

International Organization for Standardization (ISO) drawings, drafting, material

delivery, followed by the rest of processes shown in Figure 5- 1 [124]. These ISO

drawings are provided by the client and represent a piping system that includes the

pipe section, dimensional properties, transition pieces, in-line instrumentation, and

support. These drawings can either represent a pipeline or a pipeline partition. Upon

receiving the drawings, the contractors break the drawings into smaller drawings called

cut-sheets [125]. These cut-sheets break the pipeline partition illustrated in the ISO

drawing into smaller elements called pipe spools. Since clients provide ISO drawings,

contractors have little-to-no control over the pipelines partitioning process. However,

they have full control over the optimization of the pipe-spooling process (optimizing

the generation of pipe-spool cut-sheets). The generation of pipe spool cut-sheets is

performed based on different rules and heuristics. The common rules are (1) limiting

172

the spool length to the transportation envelope [125], or (2) limiting the spool volume

to the fabrication shop clearance limit so that roll fitting and welding (i.e., main pipe

rotating and fitter/welder position is fixed) are maximized and the position fitting and

welding (i.e., pipe position is fixed and fitter/welder moving around the main pipe to

perform fitting and welding) are minimized [126]. Both rules are performed by

fabrication shop personnel, and it is difficult for each rule to reach a degree of

consistency while applied in the generation of pipe-spool cut-sheets. This is due to the

human factor employed in the process; generally speaking, two fabrication shop

personnel may generate different spool-pipe cut-sheets for the same pipeline ISO

drawing. Moreover, none of the generated cut-sheets may represent the optimum

configuration that serves the described objectives: (1) maximize the pipe-spool size to

optimize the transportation cost and generate efficient transportation and logistics

strategy, (2) maximize the welding and testing process in a controlled environment

(fabrication shop), and (3) minimize welding and testing in an uncontrolled

environment (project site). Therefore, it is important to identify the dominant rules

used in the generation of the pipe-spools’ cut-sheet. The selection of such rules is

dependent on the area of study, and since the decision support system in front-end

planning in industrial construction is the area of consideration in this study, the

selected rule to be investigated and modeled is “limiting the spool length to

transportation envelope.” This rule identifies an optimization problem in the field of

industrial construction which is the “pipe-spooling optimization problem.” It is defined

in the following section.

173

5.2.3 The problem definition of pipe spooling

The defined pipe-spooling problem is given a transportation envelope (𝐸𝑉) with a

dimensional limit (𝐿, 𝑊, 𝐻) and a pipeline data structure. This raises the question,

what is the optimum configuration of pipe spools that can be generated from the given

pipeline data structure while considering the dimensional limitation of the

transportation envelope? Figure 5- 2 shows the graphical representation of the

proposed pipe-spooling optimization process and includes three major stages: (1) input

(the determination of the instance problem), (2) optimization model (the identification

of the optimization algorithm suitable to solve the pipe-spooling problem), and (3) the

expected optimization output.

Figure 5- 2 Pipe-spooling optimization process

Starting from the last stage (output), the main contractor requirements from the pipe-

spooling optimization problem are: (1) to generate the minimum number of pipe spools

for each pipeline(𝑃𝑆), (2) to maximize welding and testing requirements in the

Off-

-module

On-module

-Alberta size

(120, 18, 18)

-Overseas size

(35, 7.5, 7.5)

-Alberta size

(54, 8, 12)

-Overseas size

(35, 7.5, 7.5)

S1 {PS, FW, SW}

S2 {PS, FW, SW}

S3 {PS, FW, SW}

S4 {PS, FW, SW}

Input Optimization Model Output

174

fabrication shop (𝐹𝑊), and (3) to minimize welding and testing requirements on the

project site (𝑆𝑊). These requirements are considered the optimization variables. The

contractor also highlighted the importance of adding a decision weight factor 𝑐𝑘 (𝑘=

PS, FW, SW) for each variable so that the effect of different cost-time trade-off

scenarios can be studied and analysed. Part of these scenarios includes testing the

optimum configuration of pipe spools under a different selection of transportation

envelopes such as Alberta and overseas sizes, as shown in the optimization model stage

in Figure 5- 2. This will make it possible to investigate the transportation and logistics

strategies to be applied in case different fabrication companies are involved in the

industrial project. These sizes are further classified to two categorizes: On-Module and

Off-Module. The main difference between these two categories is that when the piping

system in the industrial project is broken down to modules, some of pipeline

spools/components may branch out of the module. These are called off-modules spools

or components while spools or components contained within the module are called on-

module spools or components. Furthermore, off-modules spools or components are

not transported to the module assembly yard; rather, they are transported directly to

the project site.

The first stage shown in Figure 5- 2 is the input modeling of the instance problem.

Pipelines, as mentioned previously, are the problem instances and as per the contractor

requirements these instances should include types of pipelines components (tube,

valve, etc.), their connectivity information (the sequential pattern of the pipeline

components), and their physical properties (such as length, diameter, running

direction). These properties are important to quantify the required fabrication shop

175

weld (𝐹𝑊), and project site weld (𝑆𝑊) for each pipe-spool generated. For instance,

there is no weld required in the case of two flanges connected, but welding is required

in the case of two tubes that are supposed to be connected.

5.2.4 Mathematical formulation

As per the problem definition in 5.2.3 the mathematical formulation of the pipe-

spooling optimization objective function is defined as:

𝑂𝑃𝑆𝑗 = 𝑀𝑖𝑛 [𝑆𝑖𝑗] 5-1

Where,

𝑂𝑃𝑆𝑗 = optimum configurations of pipe spools in pipeline 𝑗 (𝑗 = 1, … , 𝑛).

𝑆𝑖𝑗 = solution weight value of each pipe spool configuration 𝑖 (𝑖 = 1, … , 𝑚) in

pipeline 𝑗.

The pipe-spooling optimization objective function provides the optimum configuration

of pipe spools from the 𝑖 expected solutions 𝑆𝑖𝑗 of pipeline 𝑗 and the solution

incorporates all optimization variables that are (1) the number of generated pipe spools

(𝑁), (2) the fabrication shop weld (𝐹𝑊), and (3) the project site weld (𝑆𝑊). Thereby,

the mathematical formulation of the solution weight value is defined as:

𝑆𝑖𝑗 = (𝑐𝑃𝑆 × 𝑁) + (𝑐𝐹𝑊 × ∑ 𝐹𝑊𝑖) + (𝑐𝑆𝑊 × ∑ 𝑆𝑊𝑖) 5-2

where,

𝑐𝑃𝑆 = weight factor for the number of generated pipe spools (𝑃𝑆).

176

𝑐𝐹𝑊 = weight factor for the number of fabrication shop welds (𝐹𝑊).

𝑐𝑆𝑊 = weight factor for the number of project site welds (𝑆𝑊).

𝑁 = the number of generated pipe spools for solution 𝑖.

∑ 𝐹𝑊𝑖 = the sum of the number of expected fabrication shop welds for solution 𝑖.

∑ 𝑆𝑊𝑖 = the sum of the number of expected project site welds for solution 𝑖.

The number of expected solutions for each pipeline is driven by the possible number

of starting points. For example, Figure 5- 3 shows a graphical representation of

pipeline ISO fitted to an on-module envelope. The pipe spooling can start from three

possible starting components denoted as 𝑆𝑡11, 𝑆𝑡21, and 𝑆𝑡31.

Figure 5- 3 Graphical representation of pipeline ISO and on-module envelope

Elbow-2

Elbow-1

H

W

L

Tee

St31

St11

St21

z

y

x

177

Each starting component may have a different number of pipe spools because the

sequential pattern of pipeline components differs from one starting component to

another. Moreover, these components have unique properties such as the type of

component and length. These properties, in addition to the unique sequential pattern

of pipeline components, control the allowable size of the generated pipe spool. Also,

the pipe-spooling process is subject to other constraints along with the modules’

dimensional limits, shown in Figure 5- 3. These constraints are explained as follows:

1. If any component, except for components of type tube, extends beyond the

envelope boundary 𝐸𝑉 (𝐿, 𝑊, 𝐻) by ≤ 25 cm, then the component can be

considered an on-module spool/component. For example, if “Èlbow-1”

branch in the y direction, shown in Figure 5- 3, is extending out from the

boundary (𝑊) by less than 25 cm, it is considered part of the on-module

spool/component. If not, it is considered an off-module spool/component.

2. If a pipeline component of type tube extends beyond the envelope boundary

𝐸𝑉 (𝐿, 𝑊, 𝐻) by ≥ 25 cm, the component can be cut into two pieces. The

component piece inside the module is considered an on-module component and

the one outside is considered an off-module component.

3. Any connectivity between components tube, tee, elbow, reducer, and flange

requires either a fabrication shop weld or a project site weld. However, other

connectivity with other components such as valve, instrument, or closure

requires a bolt connection. This constraint limits the calculation of both 𝐹𝑊

and 𝑆𝑊 to certain types of components.

178

 In this section, the pipe-spooling problem statement and its mathematical formulation

of the optimization objective function have been defined. However, the pipeline data

structure is a combinatorial structure, and it is important to identify the

heuristic/approximation algorithm that can provide the optimum pipe-spooling

solution. Therefore, the following section will identify the class/type of optimization

problem and the heuristic/approximation algorithm which can be adopted in pipe-

spooling optimization modeling.

5.3 The packing problem, bin-packing, and heuristics overview

The problem definition of pipe-spooling presented in Section 5.2.3 is closely related

to packing problems, specifically to container-loading problems. The container-

loading problem is defined as packing a set of rectangular-shaped items into a

rectangular fixed-shape container [127]. Pisinger [127] defined different types of

container-loading packing problems in accordance with their objective function. These

packing problems are:

- Strip packing: in this problem, the container has a fixed height and width, and

infinite depth. The objective function in this problem is to pack all the items in

a way that minimizes the container depth.

- Knapsack loading: in this problem each packed item is associated with profit

and the objective function is to choose the set of items to be packed in the

container so that each container is loaded with maximum profit.

179

- Bin-packing: in this problem all containers have a fixed height, width, and

depth. The objective function is to pack all the items into a minimum number

of containers.

- Multi-container loading: in this problem the shipping containers may have

different dimensions and the objective function is to choose a set of containers

that minimizes the shipping cost.

Of these packing problems, the bin-packing container-loading problem is more

relevant than the pipe-spooling optimization because the optimum pipe-spool

configuration is constrained by a transportation envelope (a transportation envelope is

equivalent to the container size described in the container loading problem). Also, the

packed items in the pipe-spooling process are pipeline components. Although they are

of an irregular shape, they can all be represented by rectangular- shaped components

with different dimensions.

5.3.1 The bin-packing problem overview

Given 𝑛 items, each with a different weight 𝑤𝑖, and an infinite number of bins with

capacity 𝑐, the bin-packing problem is defined as packing all items in a way that the

number of bins used is minimized and their capacity usage is maximized [128]. Based

on the bin-packing definition, the problem is dependent on two elements: packed items

and bins used. These two elements control the dimensionality of the bin-packing

problem, imposing different dimensionality features. The one-dimensional bin-

packing problem is the classical version that represents both the packed item and the

bin size with an integer number. It was initially used to model a range of real-world

problems such as packing trucks having a weight limit and assigning station breaks on

180

television [129]. The different application, specifically in the manufacturing industry,

highlighted the need to model a higher-dimensional bin-packing problem. For,

example the steel, glass, and wood industries imposed the need for an optimization

model to cut these items to a specific area so that produced waste would be minimized

[130]; thus, the two-dimensional bin-packing was one of the offered optimization

modeling approaches [131]. Also, a three-dimensional bin-packing problem was

presented to solve a complex problem such as container loadings in the field of

transportation and logistics. However, all bin-packing problem, regardless of their

dimensionality differences, are considered NP-hard problems [132] [133] ,which

normally require heuristic methods to generate a solution in a reasonable time frame

[134] [135].

5.3.2 The bin-packing heuristics

Heuristic (or approximation algorithms) is defined as “a procedure to reduce search in

problem-solving activities, or a means to obtain acceptable solutions within a limited

computing time” [136]. Four bin-packing heuristics were first presented and evaluated

by Garey et al. [137] to generate good placement of bins: (1) first fit, (2) best fit, (3)

first fit decreasing, and (4) best fit decreasing. The differences between the first and

the last two heuristics are that the earlier heuristics start packing items in an increasing

order (small items first), while the later ones start packing items in decreasing order

(large items first). However, the common characteristics are that the previously

processed bins can be considered to pack the currently processed item. Some

applications prevent the consideration of any processed bin. Therefore, another bin-

packing heuristic called “next fit” was proposed. The packing process of the next fit

181

heuristic starts packing items in a sequential order, regardless of their weight or size,

until the bin capacity is achieved. After that the bin is closed with no future

consideration. These are the classical types of heuristics, applied on both on-line

(packing the item with no knowledge about the successive items), and off-line

(information about all items is available before packing) approximation algorithm

classes, and applied on one- or higher-dimensional packing problems [138]. The

described heuristics (or the approximation algorithms) consider packing one item at a

time; in other words, the described heuristics represent a one-directional instances

problem with no multidimensional connectivity relationships between the packed

items. However, if modeling a pipe-spooling process as a three-dimensional bin-

packing problem, two questions should be first answered:

1. How to consider the combinatorial structure of the pipeline problem instances

for modeling packings?

2. How to adopt the pipe-spooling process constraints described in Section 5.2.4

in the bin-packing problem definition?

5.3.3 Pipe spooling as a three-dimensional bin-packing problem

Pipeline data structure, as mentioned in the previous chapter, is treated as a tree

structure. It contains vertices/nodes that describe the pipeline component and edges

that describe the connectivity relationships between pipeline components.

Furthermore, at the design stage of pipeline systems, the pipeline system is assigned

to either one or multiple modules (based on industrial practices) and each pipeline

component assigned to a pipeline partition is tagged with a coordinate to identify its

location in reality. In addition, the pipe-spooling process starts by first identifying the

182

possible starting point in the pipeline (refer to 𝑆𝑡11,𝑆𝑡21 and 𝑆𝑡31 in Figure 5- 3) and

thereafter follows the running direction of the second component. Therefore, the

pipeline instance problem can be treated as a directed graph 𝐺 = (𝑉, 𝐸); where 𝑉 is

the graph vertices and 𝐸 is the graph edges. This type of data structure creates a

challenge in constructing optimal solutions for packing problem; however, Fekete and

Schepers [139] presented an approach to construct feasible packing using a graph-

theoretic characterization of the relative position of the packed items. The same

approach is to be applied to reflect the pipe-spooling optimization problem into a three-

dimensional bin-packing problem.

The approach starts by first defining the input data for the three-dimensional bin-

packing problem; the input is a set of components 𝑉 that form the pipeline partition

(more specifically, components that form the pipeline ISO shown in Figure 5- 3) and

a size vector 𝑤. The size vector 𝑤 represents the minimum and maximum point

coordinates of the box that contains the component. The other input is the size of the

container 𝑊 which is equivalent to the module sizes illustrated in Figure 5- 2 and to 𝐸𝑉

envelope shown in Figure 5- 3. Fekete and Schepers [139] used a graph characteristic

called an induced subgraph to construct a feasible solution. The induced graph

represents the set of vertices associated with their edges that can be enclosed within

the container. However, in the case of pipe spooling, using only an induced graph may

not produce the feasible solution because spools generated from pipeline ISO may take

the form of either an induced graph or a subgraph. The main difference between these

two graphs is that the induced graph has a set of edges, 𝐸, that connect all vertices. In

other words, any vertex can return to itself by passing through other vertices. This

183

condition does not necessary apply in the subgraph. As an illustration example, Figure

5- 4 shows both the induced graph and subgraph. It can be seen that vertex 1 in the

induced graph can return to itself by passing through vertices 2, 3, and 4. However, it

is not possible for the same vertex to return to itself in the subgraph because of the

missing edge between vertices 3 and 4.

Figure 5- 4 Graphical example of (a) induced graph, and (b) subgraph

Therefore, we consider that the feasible solution is a set of pipe spools, 𝑃𝑆𝑖,, each

presented in the form of an induced graph or subgraph and denoted as 𝑝𝑠𝑗 =

(𝐶𝑛𝑗, 𝐸[𝐶𝑛𝑗]), where 𝐶𝑛𝑗 is a set of components, 𝑛, forming pipe spool 𝑗 (𝐶𝑛𝑗 ∈ 𝑉)

and 𝐸[𝐶𝑛𝑗] is the edges connecting the pipe spool 𝑗 components. The pipe spool 𝑝𝑠𝑗 is

called feasible only if ∑ 𝑤(𝐶𝑛𝑗) ≤ 𝑊𝐶𝑛𝑗∈ 𝑝𝑠𝑗
, and the arrangement of pipe-spool

components in the three-dimensional packing should generally satisfy the following

constraints [140]:

1. Orthogonality: the pipe spool component should be parallel to the container

face.

1

2

3

4

1

2

3

4

(a) Induced Graph (b) Subgraph

184

2. Closedness: no pipe spool component should exceed the container boundaries.

3. Disjointness: no two pipe-spool components may overlap.

4. Fixed orientations: no component should be rotated once the packing starts.

The above description of the use of graph-theoretic characterization answers the

question of how to consider the combinatorial structure of pipeline problem instances

for modeling packings. However, the arrangement constraint “closedness” in three-

dimensional packing contradicts the first and the second pipe-spooling process

constraints described in section 5.2.4. The first pipe-spooling process constraint is

overcome by adding a marginal level of 25 cm to the container size 𝑊 while running

a heuristic or approximation algorithm,. The second pipe-spooling constraint, where a

pipe-spool component of type tube can be cut into two pieces to maximize the

component’s inclusion in the container, can be maintained by employing the item

fragmentation feature of the bin-packing problem. The bin-packing problem that

applies item fragmentation is called the Bin-Packing Problem with Item Fragmentation

(BPPIF). It allows the packed item (𝑎𝑖) to be fragmented to two pieces (𝑎𝑖1 + 𝑎𝑖2) to

minimize the number of bins in the packing process [141]. Based on the above

discussion, this section concludes with the following: (1) a graph-theoretic

characterization is used to reflect the pipe-spooling problem as a bin-packing problem,

and (2) the item fragmentation feature of the bin-packing problem is employed to adopt

the pipe-spooling constraints.

5.3.4 The branch-and-bound heuristic

As explained in the previous section, the pipeline-instance problem is a combinatorial

type of structure. The instance problem is treated as a directed graph 𝐺 = (𝑉, 𝐸) and

185

the bin-packing process starts from pre-determined vertices in graph 𝐺. The feasible

pip- spool solution 𝑝𝑠𝑗 is either an induced or subgraph from 𝐺 that is constrained by

a dimensional limit or size. Therefore, the obvious heuristic or approximation

algorithm that can be applied in this case is the classical branch-and-bound heuristic.

The branch-and-bound heuristic is “an intelligently structured search of the space of

all feasible solutions. Most commonly, the space of all feasible solutions is repeatedly

partitioned into smaller and smaller subsets” [142]. The branch-and-bound heuristic

was first introduced by Land and Doig [143] and is most often used in constrained

optimization problems [144]. The heuristic first identifies the number of possible

solutions. Figure 5- 5 provides an example in the form of an illustration; the figure

shows a tree representation of the pipeline data structure. The number of possible

solutions is determined by the number of possible components that the packing process

starts with. In this example, four possible solutions can be identified by starting with

components 1, 3, 7, and 8.

Figure 5- 5 Tree representation of pipeline- problem instance

1

2

3

4

5

6

7

8

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5

𝑤6 𝑤7

𝑤8

186

As mentioned previously, the solution is defined as a set of pipe spools, 𝑃𝑆𝑖 . Each

pipe spool 𝑝𝑠𝑗 is called feasible only if it satisfies the following condition:

∑ 𝑤(𝐶𝑛𝑗) ≤ 𝑊𝐶𝑛𝑗∈ 𝑝𝑠𝑗
 5-3

where,

𝑤(𝐶𝑛𝑗) = the size vector of component 𝐶𝑛 that belongs to pipe spool 𝑝𝑠𝑗. The size

vector contains the location of the minimum (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) and maximum

(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) points of the component. In short, it is a cuboidal envelope that

contains the component.

𝑊 = the size vector of the container/module envelope. It also contains the location of

the minimum (0, 0, 0) and maximum (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) points of the container.

Starting from Component 1, shown in Figure 5- 5, the branch-and-bound heuristic first

tests the component to determine whether it satisfies condition (3) or not. If 𝑤1(𝐶1)

≤ 𝑊, then Component 𝐶1is packed in the container/module envelope and considered

as the first component of pipe spool 𝑝𝑠1. The packing arrangement, on the other hand,

follows the “bottom-left” procedure, such that the first component is to be located at

the lower bound of the container. The branch-and-bound then moves to component

(𝐶2) and applies the same test as in component (𝐶1). Assuming that the second

component passes the test, it will be added to 𝑝𝑠1. Component (𝐶2) branches to

components (𝐶3) and (𝐶4); therefore the branch-and-bound will test the condition

under two scenarios. The first scenario, ranked first, is to pack both components if they

187

satisfy 𝑤3(𝐶3) + 𝑤4(𝐶4) ≤ 𝑊. Otherwise, the second scenario is applied which packs

the component that has the longest span (e.g. component 𝐶4). If it is assumed that the

first scenario can be applied, then both components 3 and 4 are packed in the container

and added to 𝑝𝑠1. The same packing procedure is applied until no possible component

can be packed. For example, if component 𝑤5(𝐶5) ≥ 𝑊, then the applicability of

packing 𝐶5 is checked in accordance with the first and the second constraints in the

pipe-spooling process described in Section 5.2.4. This step is performed to check

whether 𝐶5 can be fragmented or not. If 𝐶5 cannot be fragmented, then the packing

process is ended for the first pipe spool 𝑝𝑠1 and the second packing process starts from

𝐶5 to generate the second pipe spool 𝑝𝑠2. Once the branch-and bound heuristic that

started from 𝐶1 covers all components, the set of generated pipe spools is called 𝑃𝑆1.

The generated set of pipe spools, 𝑃𝑆1, works as the foundation in calculating the

solution weight value 𝑆𝑖𝑗 described in equation (5-2) in Section 5.2.4 Refer to Figure

5- 6 for a graphical illustration on how the pipe spooling solution weight value 𝑆𝑖𝑗 is

calculated.

188

Figure 5- 6 Calculation flow of the solution weight value Sij

The generated set of pipe spools, 𝑃𝑆1, from the branch-and-bound heuristic search

started from 𝐶1 resulted in providing two optimum pipe spools, 𝑝𝑠1 and 𝑝𝑠2, as

shown in Figure 5- 6. The weight value of this solution, denoted as 𝑆11, is calculated

by first determining the three variables of equation (2); 𝑁1, ∑ 𝐹𝑊1 and ∑ 𝑆𝑊1. The

number of pipe spools, 𝑁1, is equivalent to the number of pipe spools in set 𝑃𝑆1 , which

is 2. However, the other variables, ∑ 𝐹𝑊1 and ∑ 𝑆𝑊1, are determined by relating to

the generated induced graph or subgraph of both pipe spools

(𝑝𝑠1=
(𝐶1→4, 𝐸[𝐶1→4]), 𝑝𝑠2=

(𝐶5→8, 𝐸[𝐶5→8])). Both graphs have the components’

properties and their connectivity relationship. Therefore, using this information makes

it possible to determine the required fabrication shop (𝐹𝑊11, and 𝐹𝑊12) and project

site weld (𝑆𝑊11, and 𝑆𝑊12), after which 𝑆11 can be calculated.

𝑁1

 𝑝𝑠1 (𝐶1→4, 𝐸[𝐶1→4])

𝐹𝑊11

𝑆𝑊11

∑ 𝐹𝑊1

 𝑝𝑠2 (𝐶5→8, 𝐸[𝐶5→8]) 𝐹𝑊12

𝑆𝑊12

∑ 𝑆𝑊1

 𝑃𝑆1 𝑆11

189

5.4 The generation of pipeline problem instances using the industrial pipelines’

data generator

In the previous section, a pipe-spooling process was described and modeled as a three-

dimensional bin-packing problem. A branch-and-bound heuristic is proposed and

described in detail to construct a feasible packing solution, and the remaining is to test

the computational efficiency of the proposed heuristic using a pipeline problem

instances test set. The pipeline problem instances can be extracted from either the real

industrial project or can be generated using a data generator. The first option is

normally challenging because of the high cost of data collection, cleaning, and

preparation. Randomly generating pipeline problem instances from a data generator

provides more flexibility in testing and improving the studied approximation

algorithms. Therefore, the industrial pipelines’ data generator described in the previous

chapter will be used to randomly generate a data test set of different pipeline problem

instances.

The validation processes applied on the generated pipeline data structure proved the

ability of the pipeline data generator to provide characteristic behavior of pipeline

components that was approximately similar to the behavior in reality. The generated

pipelines are composed of a set of components, each defined by its type (pcomponent,

instrument, valve, flange, tube, elbow, tee, reducer, coupling, closure, cap, ftube, and

fblind) and its connectivity relationships with the other components. In addition to

these properties, the packing process of the pipe spool components requires the size

𝑤𝑖 ([𝑥
𝑚𝑖𝑛

, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛], [(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥]) of each component. The size 𝑤𝑖 of each

component represents the boundary box that contains the component. In order to

190

allocate the minimum and maximum points of the component boundary box, three

additional properties should be added to the pipeline components:(1) component’s

length, (2) component’s diameter, and (3) component’s running direction. To

accommodate these properties two additional layers of component properties will be

added to the pipeline generator. The first layer will generate the length and diameter

for each component, and the second layer will generate a running direction for each

component. These two layers will make it possible to generate a data test set of pipeline

problem instances that can be used to test the computational efficiency of the proposed

heuristic. A detailed description of each layer is given in the following subsections.

5.4.1 Layer I: The generation of component lengths and diameters

In this layer, the same industrial pipeline data used in the previous chapter to construct

the pipeline data generator is used to extract the length and diameter properties.

5.4.1.1 The generation of component lengths

Each pipeline may be formed from a different combination of pipeline components

(refer to Table 5-3), and each component may exert different length properties.

Therefore, each component length from the real pipeline data is fitted to a theoretical

probability distribution function that best approximates its behavior. Table 5-3 shows

the theoretical probability distribution functions for each pipeline component. Most of

the components either have a different distributional behavior when compared with

others, or they have a similar distributional behavior with different approximation

parameters. Unlike other components, instrument, valve, flange, and closure, were

191

given a value of 0 because the real pipelines data showed that these components do not

have any length properties.

Table 5- 3 Probability distribution functions for components' lengths (mm)

Components Type Probability distribution function

Pcomponent Wald (726.79, 1072.6)

Instrument 0

Valve 0

Flang 0

Tube Wald (2323.2, 489.58)

Elbow Laplace (339.860,0.00111)

Tee Uniform (57,432)

Reducer Gamma (3.4645, 51.749)

Coupling Beta (0.02229, 0.42713)

Closure 0

Cap Lognormal (0.8399,4.4939)

Ftube Uniform (75.394,76.985)

Fblind Uniform (122, 777.19)

The industrial pipeline data generator was updated so that each generated pipeline

component would be tagged with its expected length. For the purpose of validating the

overall pipeline length characteristics, 1000 pipelines were randomly generated using

the industrial pipeline data generator and compared with 1000 pipelines from the real

pipeline data set. The applied validation process does not evaluate each type of pipeline

192

component individually; rather, the set of all components’ lengths in the entire pipeline

population is considered in the validation process.

Table 5-4 shows the comparison between the generated and original components’

lengths using different statistical measures. Both data sets have a mean of component

length approximately equal to one meter. The generated components’ lengths have a

higher standard deviation compared to the real components’ lengths. In general, the

generated components’ lengths provided higher values (first-quartile, median, third-

quartile, and maximum values) than those in the real data set. The generated median

has a higher value when compared to the median of the original data (almost twice the

size of the real median). The same applies to the third-quartile and maximum values

since they are 20-25% higher than the normal values.

The minimum length in both data sets is 0. It is not realistic for a component to have a

length of 0. An investigation of this issue showed that the length of some components,

such as closure and the flange, was given a value of 0 in the original pipeline data set.

This case shows that the original pipeline data missed some of components’ properties.

Therefore, it is assumed in the generation process of components’ lengths, that any

component with a length value of 0 was substituted with a length value of 350 mm.

This value was used to produce realistic industrial pipeline data.

193

Table 5- 4 Statistical measures’ results for the real and generated components'

lengths

Statistical measure Real components’ length Generated components’ length

Mean (mm) 967.8 1125

SE mean 19.6 20.4

Standard deviation 3309.3 3454

Minimum (mm) 0 0

Q1 (mm) 0 134

Median (mm) 158.5 339

Q3 (mm) 508 612

Maximum (mm) 86299.1 107396

5.4.1.2 The generation of components’ diameters

The design of pipeline systems is based on achieving functionality of the pipeline

facilities. As previously described, the pipeline is a collection of different types of

components, and when analyzing the 1000 real pipelines, it was found that components

of type tube are dominant in the whole real dataset. Moreover, any component

connected to component of type tube share the same diameter, except for “Reduced”

where the reduction of flow diameter exists at this particular component. The industrial

pipeline data generator should include a pipeline flow diameter so that a pipeline

problem instance can be generated. It is assumed that all components will share the

same flow diameter that is controlled by component tube, and the value of the flow

diameter is to be sampled from a theoretical probability distribution function that best

approximates the distributional behavior of the tube’s diameter. Since the reduction in

flow diameter is controlled by the reducer, a theoretical probability distribution

194

function for the reducer’s diameter will also be determined. Table 5- 5 shows the

probability distribution functions for both the tube and reducer. Both components have

the same distributional behavior.

Table 5- 5 Probability distribution functions for tube’s and reducer’s diameters

Component Probability distribution function

Tube Burr (0.7444, 1.9, 135.11)

Reducer Burr (0.76059, 2.858, 124.3)

The industrial pipelines’ data generator was updated to include the flow diameter in

the pipeline data structure. When generating a pipeline component, the generator first

samples a flow diameter value from the tube’s probability distribution function shown

in Table 5- 5. The value is then assigned to all following components. In the case of

generating a reducer, the flow diameter will be reduced or increased based on a value

generated from the probability distribution function of component reducer. The

validation process in this sub-section will be based on the same approach described in

Section 5.4.1.1, “The generation of components’ lengths.”. The collection of generated

flow diameters from 1000 generated pipelines will be compared to a collection of flow

diameters from 1000 real pipelines. Different statistical measures applied in the

comparison and their results are shown in Table 5- 6.

195

Table 5- 6 Statistical measures’ results for the real and generated components'

diameters

Statistical measure Real Tubes’ Diameter Generated Tubes’ Diameter

Mean (mm) 193.56 170.87

SE mean 7.65 7.68

Standard deviation 198.2 198.85

Minimum (mm) 1.39 2.84

Q1 (mm) 72 63.28

Median (mm) 114.45 114.84

Q3 (mm) 220 192.61

Maximum (mm) 1453.94 1793.32

Table 5- 6 shows that both the real and generated pipeline datasets have similar

statistics. However, it is worth mentioning that the average minimum flow diameter is

found to be 2.115 mm (
1.39+2.84

2
), which is not an acceptable pipe diameter. For that

reason, the generation of the flow diameter is conditioned to have a minimum value

equivalent to the first-quartile value of 72 mm.

5.4.2 Layer II: The generation of components’ running direction

In Layer I, two components’ properties, length and diameter, were added in the

generation process of the pipeline data structure. These two properties are used to

define the minimum and maximum point locations of each component envelope. These

points are located in a three-coordinates’ space. To identify the required coordinates,

each generated component should have an expected running direction. The industrial

pipeline data generator is updated so that each component is associated with its running

196

direction. The running direction of any pipeline component is driven by the running

direction of the previous component. For example, if the first component is found to

be a tube and is flowing from direction x, then the coming component will the follow

the same direction except for components of types tee or elbow. These two components

alter the component running direction to a different axis. Component elbow alters the

running direction by moving it to a different single direction (refer to component

number 4006 in Table 5- 7), and component tee branches the pipeline into either one

or two different directions. Table 5- 7 shows a sample of a pipeline data set generated

using the industrial pipelines’ data generator. Only a positive x, y, z running direction

(RD) is considered in the pipeline generation process. Meanwhile, in the real pipelines’

data structure, components’ running directions may be altered to either a positive or

negative directional axis. This case is not integrated into the current pipeline data

generator. However it should be considered in future research.

197

Table 5- 7 Pipeline dataset generated using the updated industrial pipeline generator

Pipeline Branch C#* Connected to Type D* L* RD*

1 Main_Line 4001 4002 Instrument 314 0 x

1 Main_Line 4002 4001 Flange 314 0 x

1 Main_Line 4003 4002 Tube 314 2651 x

1 Main_Line 4004 4003 Elbow 314 339 y

1 Main_Line 4005 4004 Tube 314 572 y

1 Main_Line 4006 4005 Elbow 314 339 z

1 Main_Line 4007 4006 Tube 314 2614 z

1 Main_Line 4008 4007 Elbow 314 339 x

1 Main_Line 4009 4008 Tube 314 221 x

1 Main_Line 4010 4009 Pcomponent 314 898 x

1 Main_Line 4011 4010 Reducer 54 266 x

1 Main_Line 4012 4011 Tube 54 121 x

1 Main_Line 4013 4012 Elbow 54 339 y

1 Main_Line 4014 4013 Tube 54 1519 y

*(C#: Component number, D: Diameter (mm), L: Length(mm), RD: Running direction)

5.5 Computational experiment-Testing the computational performance of the

bin-packing algorithm

The branch-and-bound heuristic was proposed to approximate the pipe-spooling

solution in the three-dimensional bin-packing modeling of the pipe-spooling process.

It was implemented in C# and tested on a DELL Xeon 3.5 GHz processor. The

pipelines’ data test sets were randomly generated using the industrial pipelines’ data

generator. One-thousand pipelines with a total number of components equal to 28602

198

were randomly generated to test the performance of the applied heuristic. The popular

performance indicators used to evaluate the efficiency of algorithms are (1) CPU

processing/run time, (2) operations’ count, (3) number of iterations, (4) storage

requirements, (5) robustness, (6) accuracy, and (7) reliability [145]. These indicators

are normally used in the context of comparing two different algorithms solving a

certain problem. However, a processing-time indicator will be used in this

computational experiment to report the differences in the performances of the proposed

heuristic when applied on two different container sizes: Alberta and overseas sizes.

The results are to be used as benchmarks when the defined pipe-spooling problem is

solved using a different solution’s algorithm. The CPU run times to solve 1000

pipelines in two different container configurations is shown in Figure 5- 7. A detailed

result for each pipeline instance problem is given in Appendix H.

Figure 5- 7 Pipe-spooling solution’s run time with respect to the number of pipeline

instances problems

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

R
u
n
 T

im
e

(m
s)

x
 1

0
0

0
0

0

No. of Pipelines

Alberta size solution Overseas size solution

199

The solution run-time results are summarized in Table 5- 8. Table 5- 8 illustrates the

average solution’s CPU run time that is expected to solve the instance problems. The

average solution’s CPU run time is associated with different instance problem sizes.

The problem instance size is measured in terms of the number of components in a

pipeline. Also, the average solution’s CPU run time is associated with the average

number of pipe spools generated.

Table 5- 8 Pipeline solutions results

No. of

pipelines

components

Alberta Size Overseas Size

Average

No. of

Spools

Average solution’s

CPU run time (ms)

Average

no. of

spools

Average solution’s

CPU run time (ms)

<=10 2 1186.13 2 1466.29

11-20 2 2804.44 4 3575.53

21-30 3 5008.36 6 6349.72

31-40 4 7249.30 9 9247.07

41-50 6 10527.44 11 13199.69

51-60 6 13644.07 12 16035.77

61-70 7 14139.92 14 16802.92

71-80 9 17113.25 17 19520.13

81-90 9 24240.39 19 28523.33

91-100 9 23424.17 24 29984.17

101-110 11 33520.00 23 38008.40

111-120 14 41015.14 27 48196.00

121-130 14 38085.20 28 44562.80

131-140 19 59687.00 36 74076.00

141-150 16 56819.33 36 66339.33

>150 26 60093.00 46 69625.75

5.6 Conclusion

An application of an industrial pipeline data generator was presented in the context of

experimental analysis of optimization of an algorithm’s efficiency. The pipe-spooling

200

optimization problem identification, definition, and mathematical model were

described in detail. The instance problem attributes of the pipe-spooling problem were

identified, and the industrial pipelines’ data generator was updated accordingly to

integrate the additional attributes. A test set of 1000 randomly generated pipelines’

instance problems was generated using the pipeline data generator to test the efficiency

of the proposed branch-and-bound heuristic in approximating the pipe-spooling

solution. The solution approximation was tested in configurations of two different

envelope sizes. The heuristic efficiency in terms of CPU run-time performance was

reported as performance benchmark results.

201

Chapter 6

Conclusion

6.1 Conclusion

In construction engineering and management research, modeling data is a vital process

to capture the variation of the construction systems’ behavior. Construction-related

data varies in terms of structure and dependencies between variables within and across

each sample. This research was designed to investigate mathematical techniques that

are capable of randomly generating data sets while preserving the relationships and the

dependencies embedded within the generated data sets variables. It was also intended

to develop data generators and illustrate the application of the developed generators in

the field of construction research.

Two different types of data with different degrees of complexity were selected in this

research; the first is weather variables and the second is pipeline data structure. Two

different modeling approaches were used to model these data types: a bootstrapping

202

technique was used to generate weather variables and a Markov chain model was used

to randomly generate the industrial pipeline data structure.

In Chapter 2, a non-parametric weather generation approach in the form of a

bootstrapping technique was proposed to randomly generate weather variables and

develop a weather data generator. The generator’s performance was evaluated against

a parametric weather generator constructed in the field of modeling construction

operations. It was found that the non-parametric approach performed in a way similar

to that of the parametric approach. The parametric and non-parametric weather

generators were applied in two different weather-sensitive construction models: the

first estimated the temperature and wind speed effect on construction labors and the

second estimated temperature effects on tower crane operation. Two testing scenarios

were applied in both models: the first considered the expected weather variables every

day and the second considered the weather variables expected within the eight working

hours. The results showed that the non-parametric weather generator outperformed the

parametric weather generator when a specified construction period (e.g., an eight-hour

window in a day) was considered. The parametric weather generator provided a better

result when no consideration of a working period was applied.

In Chapter 3, the non-parametric weather generator was applied to model earthmoving

operations in oil sand mining. The weather generator was used to provide different

weather scenarios for testing the effect of temperature on truck and excavator

breakdowns and repair durations. It was found that 7% to 13.3% of truck operational

time contributed to breakdown repair duration, and 8.5% to 12% of excavator

operational time contributed to the same event.

203

In Chapter 4, a Markov chain model was presented to generate industrial pipeline tree

structures. The Markov chain model used a transition matrix to generate a sequence of

pipeline components. The matrix used state periodicity (a Markov chain property) to

regulate the reproduction of the pipeline components. In the validation section, the

generated pipelines were converted to feature vectors and a three-stage validation

process was applied. The process included (1) evaluation of the number of components

and correlation analysis, (2) a clustering-based model validation, and (3) model

validation using distances between feature vectors. The Markov chain model was able

to generate a collection of pipeline components similar to those found in real pipelines.

It was also found that the Markov chain model preserved the correlation between

pipelines’ components. When comparing the topological structure of the generated

pipelines to the original industrial pipelines using a density-based clustering and

histogram intersection of the similarity distance between pipelines feature vectors,

some discrepancies were found. The majority of generated pipelines (89%) shared

characteristics with 85.5% of the original pipelines. No similarities were found

between the remaining generated pipelines (11%) and the remaining 14.5% of the

original pipelines.

In Chapter 5, the application of the industrial pipelines’ data generator was

demonstrated. Pipeline instance problems were generated to test the computational

efficiency of an optimization solution for the pipe-spooling process. The pipe-spooling

problem was intended to identify the optimum configurations of pipe spools that can

be generated from a certain pipeline. The industrial pipelines’ data generator was

updated to integrate the pipelines’ components’ properties required by the optimization

204

problem. The length, diameter and running direction of each component were added

in the generation process of the industrial pipelines’ data structure. Including such

components’ properties provided a good foundation for generating a realistic pipelines

instance problem. A dataset containing 1000 industrial pipelines was generated,

structured, and used to test the efficiency of a branch-and-bound heuristic applied to

approximate the pipe-spooling solution. The efficiency in terms of CPU run-time

performance was reported as a benchmark performance result.

6.2 Research contributions

6.2.1 The academic research contributions:

The main academic research contributions are:

1. The study presented a simplified weather generation approach in the form of

a bootstrapping technique to generate correlated weather variables.

2. The study showed that a Markov chain model can adopt the heterogeneity

associated with pipeline components’ properties and can generate industrial

pipelines’ tree structures.

3. The study presented a three-stage validation methodology to generate a set of

weather variables and an industrial pipelines’ data structure. It also

demonstrated the use of different statistical measures to validate the

assumptions used in each model and the generated outputs from each model.

4. The study presented the advantage of using a feature vector concept in

converting an overall system into a manageable vector while at the same time

205

preserving the uniqueness associated with the component properties and their

topological structures.

6.2.2 The industrial research contributions:

This research also presented indirect industrial contributions. These contributions are:

1. The study presented three weather-sensitive construction models: the first

estimates the temperature and wind speed effects on construction labour, the

second estimates the temperature effect on tower cranes, and the third estimates

the temperature effect on breakdown and repair durations. These models

represent applications in simulation that utilize the developed weather

generator and demonstrate its potential benefits to the industry.

2. The study demonstrated the potential use of the industrial pipelines data

generator for testing module optimization algorithm. It was used to generate a

set of industrial pipelines instance problems with characteristics similar to

those found in reality. The generator can also be very beneficial for modeling

and simulation fabrication operations. It can generate a vast range of unique

industrial pipelines to assess the performance of pipelines fabrication

processes.

6.3 Limitations and future research

This limitations of and areas of improvement in this research are:

1. In the non-parametric weather generator, the bootstrapping technique relies on

the size of data available. Hence the size of the available data controls the

variation in the generated samples. For example, if the performance of a

206

construction operation is studied with respect to changes in weather conditions

in a certain month and the size of historical records is 40 years, then the

bootstrapping technique will sample from 40 different months only. This raises

an issue related to the limited range of values the non-parametric weather

generator is generating for the weather variables. Furthermore, the

bootstrapping technique generates a historical weather data with no forecasting

abilities.

2. In the application of the non-parametric weather generator in modelling

construction operation, the weather generator was used to analyze the

temperature effects on trucks’ and excavators’ breakdown and repair durations.

The simulation model was built using industrial practitioners’ feedback to

identify its inputs and outputs. The limitation in this part is related to the

validation of the model’s output. A comparison with actual operation data was

not conducted. Although this part was motivated to illustrate the application of

the non-parametric weather generator in modelling construction operation, a

future research can be performed to upgrade the simulation model and

validated using actual data.

3. The generation process of the industrial pipelines’ data assumes that the

pipelines are branching in the positive directions of x, y, and z axes only;

however, in reality, the branching process may also take place in negative

directions. Therefore, the future update of the industrial pipelines’ data

generator should be formulated by integrating all possible running directions

which pipelines’ components may experience in reality. This future update can

207

be performed by studying two major pipelines’ components: “Elbow” and

“Tee.” These components are responsible for altering the pipelines’ running

directions. Successfully integrating all possible running directions can provide

more realistic physical properties of industrial pipelines.

4. The industrial pipelines’ data generator was developed to provide researchers

with a realistic industrial pipelines’ data structure. It uses the number of

pipelines as an input and provides a detailed pipeline data structure including,

as an output, components’ connectivity and components’ physical properties.

The limitation to this part is that the industrial pipelines’ generator relies on a

probability distribution function derived from original pipeline data to generate

the expected number of components for the pipeline’s first branch. In the

future, the industrial pipelines’ data generator can be expanded by adding

flexibility to generate pipelines based on a certain number of components. This

update will support the area of pipeline optimization problems. It will make it

possible to test the computational efficiency of optimization algorithms under

a different number of components’ scenarios. Furthermore, it will make it

possible to create different data test sets of benchmark pipelines’ instance

problems. Researchers can use these test sets to test new methods to solve the

pipe-spooling optimization problem.

5. The applied validation process in both the generation of weather and industrial

pipelines data used the same data sets for both modelling and validation. This

practice limits the verification whether both generators can provide a realistic

208

data. Therefore, it is recommended to use different data set for validation

purposes.

6. The application of the industrial pipelines’ data generator has been illustrated

in the field of pipe-spooling in industrial projects. The pipe-spooling

optimization problem was clearly defined, as were its instance problem data

structure and attributes. Another application of the industrial pipelines’ data

generator that can be pursued in the future is modules’ optimization in

industrial projects. As described in Chapter 5, the industrial construction

project is broken down into small entities of different sizes, called modules.

Future investigations can answer the following questions related to these

entities:

 How are industrial construction projects broken into modules?

 Are the number of modules and their configurations optimized?

 If modules are not optimized, is it possible to formulate and solve the

modules’ optimization problem?

 What is the instance problem to be used in the modules’ optimization

problem?

The industrial pipelines’ data generator can be used in this area of study to

generate a set of pipeline case studies. These pipeline case studies can be used

to conduct in-house experiments, analysis, and testing before applying any

proposed solution to the modules’ optimization problem in large-scale real

projects. Furthermore, the time and cost associated with data collection and

209

preparation can be minimized, which will allow more time for the modelling

stage of industrial construction research.

210

References

[1] D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M.-S. Cheon and A. B. Keha,

"MIRPLib – A library of maritime inventory routing problem instances:

Survey, core model, and benchmark results," European Journal of Operational

Research, vol. 235, no. 2, pp. 350-366, 2014.

[2] A. Otto, C. Otto and A. Scholl, "Systamatic data generation and test design for

solution algorithms on the example of SALBPGen for Assembly line

balancing," European Journal of Operational Research, vol. 228, no. 1, pp.

33-45, 2013.

[3] D. R. Jeske, B. Samadi, P. J. Lin, L. Ye, S. Cox, R. Xiao, T. Younglove, M.

Ly, Holt Douglas and R. Rich, "Generation of synthetic data sets for

evaluating the accuracy of knowledge discovery systems," in International

conference on Knowledge discovery in data mining, New York, 2005.

[4] W. J. Trypula, "Building simulation models without data," in International

Conference of Systems, Man and Cybernetics, 1994.

[5] T. Perera and K. Liyanage, "Methodology for rapid identication and collection

of input data in the simulation of manufacturing systems," Simulation Practice

and Theory, pp. 645-656, 2000.

[6] B. L. Nelson and M. Yamnitsky, "Input modeling tools for complex

problems," in Winter Simulation Conference, 1998.

211

[7] S. M. AbouRizk, D. W. Halpin and J. R. Wilson, "Fitting beta distributions

based on sample data," Journal of Construction Engineering and

Management, pp. 288-305, 1994.

[8] R. J. Wales, Incorporating weather effects in project simulation, Edmonton:

University of Alberta, 1994.

[9] C. W. Richardson, "Stochastic simulation of daily precipitation, temperature,

and solar radiation," Water Resources Research, vol. 17, no. 1, pp. 182-190,

1981.

[10] D. Hu and Y. Mohamed, "Pipe spool fabrication sequencing by automated

planning," in Construction Research Congress, 2012.

[11] P. Wang, Y. Mohamed, S. M. AbouRizk and T. A. Rawa, "Flow production of

pipe spool fabrication: Simulation to support implementation of lean

technique," Journal of Construction Engineering and Management, vol. 135,

no. 10, pp. 1027-1038, 2009.

[12] D. Hu and Y. Mohamed, "A Dynamic programming solution to automate

fabrication sequencing of industrial construction components," Automation in

Construction, vol. 40, pp. 9-20, 2014.

[13] "python," Python Software Foundation, 2016. [Online]. Available:

https://www.python.org.

212

[14] H. N. Ahuja and V. Nandakumar, "Simulation model to forecast completion

time," Journal of Construction Engineering and Management, vol. 111, no. 4,

pp. 325-342, 1985.

[15] T. H. Randolph and I. Yikamoumis, "Factor model of construction

productivity," Journal of Construction Engineering and Management, vol.

113, no. 4, pp. 623-639, 1987.

[16] T. H. Randolph, R. R. David and E. S. Victor, "Loss of labour productivity due

to delivery methods and weather," Journal of Construction Engineering and

Management, vol. 125, no. 1, pp. 39-46, 1999.

[17] E. Koehn and G. Brown, "Climatic effects on construction," Journal of

Construction Engineering and Management, vol. 111, no. 2, pp. 129-137,

1985.

[18] ACGIH, "Threshold Limit Values (TLV) and Biological Exposure Indices

(BEI)," ACGIH, Cincinnati, 2008.

[19] K. El-Rayes and O. Moselhi, "Impact of rainfall on the productivity of

highway construction," Journal of Construction Engineering and

Management, vol. 127, no. 2, pp. 125-131, 2001.

[20] D. P. Kavanaga, "SIREN: A epetitive construction simulation model," Journal

of Construction Engineering and Management, vol. 111, no. 3, pp. 308-323,

1985.

213

[21] O. Moselhi, G. Daji and K. El-Rayes, "Estimating weather impact on the

duration of construction activities," Canadian Journal of Civil Engineering ,

pp. 359-366, 1997.

[22] R. Wales and S. AbouRizk, "An integrated simulation model for construction,"

Simulation Practice and Theory, pp. 401-420, 1996.

[23] A. Shahin, S. M. AbouRizk and Y. Mohamed, "Modeling weather-sensitive

construction activity using simulation," Journal of Construction Engineering

and Management, vol. 137, no. 3, pp. 238-246, 2011.

[24] S. Apipattanavis, K. Sabol, K. Molenaar, B. Rajagopalan, Y. Xi, B. Blakard

and S. Patil, "Integrated framework for quantifying and predicting weather-

related highway construction delays," Journal of Construction Engineering

and Management, vol. 136, no. 11, pp. 1160-1168, 2010.

[25] S. Fatichi, V. Ivanov and E. Caporali, "Simulation of of future climate

scenarioswith a weather generator," Advances in Water Resources, pp. 448-

467, 2011.

[26] A. Shahin, A framework for cold weather construction simulation, Edmonton:

University of Alberta, 2007.

[27] E. H. Chin, "Modeling daily precipitation occurrence process with Markov

chain," Water Resource Research, vol. 13, no. 6, pp. 949-956, 1977.

214

[28] B. Rajagopalan, J. D. Salas and U. Lall, "Stochastic methods for modeling

precipitation and stream flow," in Advances in Data-based Approaches for

Hydrologic Modeling and Forecasting, Singapore, World Scientific Publishing

Co. Pte. Ltd, 2010, pp. 17-52.

[29] M. Dubrovsky, "Creating daily weather series with use of the weather

generator," Environmetrics, vol. 8, pp. 409-424, 1997.

[30] B. Rajagopalan, U. Lall, D. Tarboton and D. Bowles, "Multivariate

nonparametric resampling scheme for generation of daily weather variables,"

Stochastic Hydrology and Hydraulics, vol. 11, no. 1, pp. 65-93, 1997.

[31] S. Apipattanavis, G. Podesta and B. Rajagopalan, "A semiparameric

multivariate and multisite weather," Water Resources Research, Vols. VOL.

43, W11401, 2007.

[32] A. Shahin, S. M. AbouRizk and Y. Mohamed, "A weather generator for use in

construction simulation models," International Journal of Architecture,

Engineering and Construction, vol. 2, no. 2, pp. 73-87, 2013.

[33] "National Centers for Environmental Information," NOAA, [Online].

Available: http://www.ncdc.noaa.gov/.

[34] M. Dubrovsky, J. Buchtele and Z. Zalud, "High-frequency and low-frequency

variability in stochastic daily weather qenerator and its effect on agricultural

215

and hydrologic modelling," Climatic Change, vol. 63, no. 1, pp. 145-179,

2004.

[35] V. Yevjevich, "Structural analysis of hydrological time series," Colorado State

University Hydrology Paper No.56, 1972.

[36] N. C. Matalas, "Mathematical assessment of synthetic hydrology," Water

Resources Research, vol. 3, no. 4, pp. 937-945, 1967.

[37] B. Efron, "Bootstrap methods: Another look at the jacknife," The Annals of

Statistics, vol. 7, no. 1, pp. 1-26, 1979.

[38] H. Kunsch, "The jackknife and the bootstrap for general stationary

observations," Ann Stat. 17, pp. 1217-1241, 1989.

[39] B. Efron and R. Tibshirani, An introduction to the bootstrap, London:

Chapman and Hall, 1993.

[40] S. Robinson, Simulation : The practice of model development and use, John

Wiley & Sons., 2004.

[41] N. Razali and Y. B. Wah, "Power comparisons of Shapiro–Wilk,

Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests," Journal of

Statistical Modeling and Analytics, pp. 21-33, 2011.

216

[42] A. Shapira and B. Lyachin, "Identification and analysis of factors affecting

safety on construction sites with tower cranes," Journal of Construction

Engineering and Management, pp. 24-33, 2009.

[43] Bclaws.ca, "Occupational Health and Safety Regulation," 29 Jul. 2015.

[Online]. Available:

http://www.bclaws.ca/Recon/document/ID/freeside/296_97_11.

[44] P. W. Richmond, S. A. Shoop and G. L. Blaisdell, "Cold regions mobility

models," Cold Regions Research & Engineering Laboratory- US Army Corps

of Engineers, 1995.

[45] S. D. Smith, J. R. Osborne and M. C. Forde, "Analysis of earth-moving

systems using discrete-events simulation," Journal of Construction

Engineering and Management, vol. 121, no. 4, pp. 388-396, 1995.

[46] T. J. LaClair and R. Truemner, "Modeling of fuel consumption for heavy-duty

trucks and the impact of tire rolling resistance," SAE international,

Warrendale, 2005.

[47] Environment Canada, "Weather and Meteorology - Glossary," 08 05 2014.

[Online]. Available: https://ec.gc.ca/meteo-

weather/default.asp?lang=En&n=B8CD636F-1&def=allShow.

[48] R. L. Peurifoy and W. B. Ledbetter, Construction planning equipment and

methods, N.Y.: McGraw-Hill, 2006.

217

[49] M. Kyte, Z. Khatib, P. Shannon and F. Kitchener, "Effect of weather on free-

flow speed," Transportation Research Record, pp. 60-68, 2014.

[50] D. P. Lindroth, W. R. Berglund and C. F. Wingquist, "Microwave thawing of

frozen soils and gravels," Journal of Cold Regions Engineering, vol. 9, no. 2,

pp. 53-63, 1995.

[51] A. Orlando and L. Branko, Frozen ground engineering, Hobokin, New Jersey:

John Wiley & Sons, 2004.

[52] K. A. Czurde, "Freezing effects on soils: comprehensive summary of the ISGF

82," Cold Regions Science and Technology, vol. 8, pp. 93-107, 1983.

[53] Y. Li, W. Y. Liu and S. Frimpong, "Effect of ambient temperature on stress,

deformation and temperature on dump truck tire," Engineering Failure

Analysis, vol. 23, pp. 55-62, 2012.

[54] J. Meech and J. Parreira, "Predicting wear and temperature of autonomous

haulage truck tires," in 16th IFAC Symposium on Automation in Mining,

Mineral and Metal Processing, San Diego, 2013.

[55] G. Year, "Tire maintenance manual-Goodyear Off-The-Road (OTR),"

Goodyear, 2008.

[56] D. Diemand and J. H. Lever, "Cold regions issues for off-road autonomous

vehicles," Engineer Research and Development Center-US Army Corps of

Engineers, 2004.

218

[57] D. R. Freitag and T. McFadden, Introduction to Cold Regions Engineering,

New York: ASCE PRESS, 1997.

[58] R. M. Fujimoto, Parallel and Distributed Simulation Systems, New York: John

Wiley & Sons, 2000.

[59] R. M. Fujimoto, "Parallel and distributed simulation," in Winter Simulation

Conference, 1995.

[60] S. Cheung and M. Loper, "Synchronizing simulations in distributed interactive

simulation," in Winter Simulation Conference, 1994.

[61] A. Hakiri, P. Berthou and T. Gayraud, "Addressing the challenge of distributed

interactive simulation with data distribution service," arXiv.org, 2010.

[62] N. Cen and E. Irene, "Adopting HLA standard for interdependency study,"

Reliability Engineering and System Safety, pp. 149-159, 2011.

[63] Department of Defence, "High level architecture run-time programmers guide

(ver 3.2)," 2000.

[64] J. S. Dahmann, R. M. Fujimoto and R. M. Weatherly, "The department of

defence high level architecture," in Winter Simulation Conference, 1997.

[65] R. Paes and M. Throckmorton, "An overview of canadaian oil sand mega

projects," in Petrolume and Chemical Industry Conferene, Weimar, 2008.

219

[66] SUNCOR, "Getting oil from the oil sand," SUNCOR, 15 08 2016. [Online].

Available: http://www.suncor.com/about-us/oil-sands/process. [Accessed 16

08 2016].

[67] G. o. Canada, "Natural Resources Canada," Givernment of Canada, 19 02

2016. [Online]. Available: http://www.nrcan.gc.ca/energy/oil-sands/18094.

[Accessed 15 08 2016].

[68] L. D. Nguyen, J. Kneppers, B. G. de Soto and W. Ibbs, "Analysis of adverse

weather for excusable delays," Journal of Construction Engineering and

Management, vol. 136, no. 12, pp. 1258-1267, 2010.

[69] P. &. R. Tubb, "Worldwide Construction Report," Pipeline & Gas Journal,

2016.

[70] S. AbouRizk, "Role of simulation in construction engineering and

management," Journal of Construction Engineering and Management, vol.

136, no. (10), pp. 1140-1153, 2010.

[71] S. AbouRizk, D. Halpin, Y. Mohamed and U. Hermann, "Research in

modeling and simulation for improving construction engineering operations,"

Journal of Construction Engineering and Management, vol. 137, no. (10), pp.

843-582, 2011.

[72] W. J. Trybula, "Building simulation models without data," in Systems, Man,

and Cybernetics, San Antonio, TX, 1994.

220

[73] B. Biller and C. Gunes, "Introduction to simulation input modeling," in Winter

Simulation Conference, 2010.

[74] I. D. Tommelein, "Pull-driven scheduling for pipe-spool installation:

Simulation of lean construction technique," Journal of Construction

Engineering and Management, vol. 124, no. (4), pp. 279-288, 1998.

[75] J. Shi and S. AbouRizk, "Continuous and combined event-process models for

simulating pipeline construction," Construction Management and Economics,

vol. 16, pp. 489-498, 1998.

[76] B. Biller and S. Gosh, "Mutlivariate input processes," in Handbooks in

Operations and Management Science, vol. 13, 2006, pp. 123-153.

[77] B. Biller and B. L. Nelson, "Modeling and generating multivariate time-series

input processes using a vector autoregressive technique," ACM Transactions

on Modeling and Computer Simulation, vol. 13, no. 3, pp. 211-237, 2003.

[78] A. Touran and E. P. Wiser, "Monte carlo techniques with correlated random

variables," Journal of Construction Engineering and Management, vol. 118,

no. 2, pp. 258-272, 1992.

[79] A. Touran, "Probabilistic cost estimating with subjective correlations," Journal

of Construction Engineering and Management, vol. 119, no. 1, pp. 58-71,

1993.

221

[80] Y. Moret and H. H. Einstein, "Modeling correlations in rail line construction,"

Journal of Construction Engineering and Mangement, vol. 138, no. 9, pp.

1075-1084, 2012.

[81] A. Firouzi, W. Yang and C.-Q. Li, "Prediction of total cost of construction

project with dependent cost items," Journal of Construction Engineerng and

Management, 2016.

[82] L. Song, P. Wang and S. AbouRizk, "A virtual shop modeling system for

industrial fabrication shops," Simulation Modelling Practice and Theory, vol.

14, pp. 649-662, 2006.

[83] D. Hu and Y. Mohamed, "Simulation-model-structuring methodology for

industrial construction fabrication shops," Journal of Construction

Engineering and Management, vol. 140, no. 5, 2014.

[84] I. D. Tommelein, "Process benefits from use of standard products —

simulation experiments using the pipe spool model," in Conference of the

International Group for Lean Construction, Santiago, 2006.

[85] M. Drmota, Random trees, An interplay between combinatorics and

probability, NewYork: SpringerWien, 2009.

[86] L. Alonso and R. Schott, Random Gneration of Trees, Boston: Kluwer

Acamdemic Publishers, 1995.

[87] D. Revuz, Markov chains, Amesterda: New York: North Holland, 1984.

222

[88] L. Liu, Y.-K. Ho and S. Yau, "Clustering DNA sequences by feature vectors,"

Molecular Phylogenetics and Evolution, vol. 41, pp. 64-69, 2006.

[89] B. Everitt, Cluster Analysis, New York: Wiley & Sons, 1980.

[90] M. Robnik-Sikonja, "Data generators for learning systems based on RBF

networks," IEEE Transactions on Neural Networks and Learning Systems,

2014.

[91] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-based algorithm for

discovering clusters in large spatial databases with noise," in Proceedings of

the Second International Conference on Knowledge Discovery and Data

Mining (KDD-96), 1996.

[92] C. C. Aggarwal, Data classification: algorithms and applications, CRC Press,

2015.

[93] M. . J. Swain and D. H. Ballard, "Color indexing," International journal of

computer vision, vol. 7.1, pp. 11-32, 1991.

[94] N. G. Hall and M. E. Posner, "Generating experimental data for computational

testing with machine scheduling applications," Institute for Operations

Research and the Management Sciences, vol. 49, no. 6, pp. 854-865, 2001.

[95] A. Otto, C. Otto and A. Scholl, "Systematic data generation and test design for

solution algorithms on the example of SALBPGen for assembly line

223

balancing," European Journal of Operational Research, vol. 339, pp. 33-45,

2013.

[96] H. P. Crowder, R. S. Dembo and J. M. Mulvey, "Reporting computational

experiments in mathematical programming," Mathematical Programming, vol.

15, pp. 316-329, 1978.

[97] M. Cadoli, A. Giovanardi and M. Schaerf , "Experimental analysis of the

computational cost of evaluating quantified boolean formulae," Advances in

Artificial Intelligence, vol. 1321, pp. 207-218, 1997.

[98] C.-Y. LEE, J. Bard, M. Pinedo and W. E. Wilhelm, "Guidlines for reporting

computational results in IIE transactions," IIE Transactions, vol. 25, no. 6, pp.

121-123, 1993.

[99] A. Drexl, . R. Nissen, J. H. Patterson and F. Salewski, "ProGen/px ± An

instance generator for resource-constrained project scheduling problems with

partially renewable resources and further extensions," European Journal of

Operational Research, vol. 125, pp. 59-72, 2000.

[100] T. Gau and G. Wascher, "CUTGENI" A problem generator for the standard

one-dimensional cutting stock problem," European Journal of Operational

Research, vol. 84, pp. 572-579, 1995.

224

[101] E. Silva , J. F. Oliveira and G. Wascher , "2DCPackGen: A problem generator

for two-dimensional rectangular cutting and packing problems," European

Journal of Operational Research , vol. 237, pp. 846-856, 2014.

[102] J.-J. Kim and W. C. Ibbs, "Work-Package-Process model for piping

construction," Journal of Construction Engineering and Management, vol.

121, no. 4, pp. 381-387, 1995.

[103] J. Song, W. R. Fagerlund, C. T. Hass, C. B. Tatum and J. A. Vanegas,

"Considering prework on industrial projects," Journal of Construction

Engineering and Management, vol. 131, no. 6, pp. 723-733, 2005.

[104] McGraw-Hill, "Prefabrication and modularization: Increasing productivity in

construction industry," McGraw-Hill, Bedford, MA, 2011.

[105] C. T. Haas, J. T. O'Connor, R. L. Tucker, J. A. Eickmann and W. R.

Fagerlund, "Prefabrication and preassembly trends and effects on the

construction workforce," Center for Construction Industry Studies, 2000.

[106] C. B. Tatum, J. A. Vanegas and J. M. Williams, "Constructability

improvement using prefabrication, preassembly, and modularization,"

Construction Industry Institute, Austin, TX, 1987.

[107] J. O. Choi, J. T. O'Connor and T. W. Kim, "Recipes for cost and schedule

successes in industrial modular projects: qualitative comparative analysis,"

Journal of Construction Engineering and Management, vol. 142, no. 10, 2016.

225

[108] C. T. Hass and W. R. Fagerlund, "Preliminary research of fabrication, pre-

assembly, modularization and off-site fabrication in construction," The

Construction Industry Institute, The University of Texas at Austin, Austin,

Texas, 2002.

[109] P. E. Dawar Naqvi, P. E. Eric Wey, P. Jayesh and S. Glenn, "Modularization

in the petrochemical industry," in Structure Congress, 2014.

[110] M. B. Murtaza, D. J. Fisher and M. J. Skibniewski, "Knowledge-based

approach to modular construction decision support," Journal of Construction

Engineering and Management, vol. 119, no. 1, pp. 115-130, 1993.

[111] C. News, "Kearl oilsands project price tag increases by $2B," CBC News, 1 2

2013. [Online]. Available: http://www.cbc.ca/news/business/kearl-oilsands-

project-price-tag-increases-by-2b-1.1380005. [Accessed 19 7 2016].

[112] SupplyChainDigest, "The 10 keys to global logistics excellence,"

SupplyChainDigest, 2007.

[113] AberdeenGroup, "Best practices in international logistics," AberdeenGroup,

2006.

[114] P. Kristofic, J. Kok, S. de Vries and J. v. S.-v. Hoff, "Financial supply chain

management – Challenges and obstacles.," in Proceedings in Finance and Risk

Percpectives, 2012.

226

[115] J. T. O'Connor, W. J. O'Brien and J. O. Choi, "Critical success factors and

enablers for optimum and maximum industrial modularization," Journal of

Construction Engineering and Management, vol. 140, no. 6, 2014.

[116] C. B. Tatum, "Management challenges of integrating construction methods

and design approaches," Journal of Construction Engineering and

Management, vol. 5, no. 2, pp. 139-154, 1989.

[117] H. Taghaddos, U. Hermann, S. AbouRizk and Y. Mohamed, "Simulation-

based scheduling of modular construction using multi-agent resource

allocation," in International Conference on Advances in System Simulation,

2010.

[118] K. U. Damodaru, "Materials management: The key to successful project

management," Journal of Construction Engineering and Management, vol. 15,

no. 1, pp. 30-34, 1999.

[119] F. F. Alireza Ahmadian, A. Akbarnezhad, T. H. Rashidi and S. T. Waller,

"Accounting for transport times in planning off-site shipment of construction

materials," Journal of Construction Engineering and Management, vol. 142,

no. 1, p. 04015050, 2016.

[120] J. Song, C. T. Haas, C. Caldas, E. Ergen and B. Akinci, "Automating the task

of tracking the delivery and receipt of fabricated pipe spools in industrial

projects," Automation in Construction, vol. 15, pp. 166-177, 2006.

227

[121] M. Al-Alawi, A. Bouferguene and Y. Mohamed, "Random generation of

complex data structures for the simulation of construction operations," in

Construction Research Congress, Puerto Rico, 2016.

[122] J. Song, C. Haas, C. Caldas, E. Ergen, B. Akini, C. R. Wood and J.

WadephulL, "Field trials of RFID technology for tracking fabricated pipe-

phase II," FIATECH, Austin,TX, 2004.

[123] P. Wang , Y. Mohamed, S. M. Abourizk and A. R. Tony Rawa, "Flow

production of pipe spool fabrication: Simulation to support implementation of

lean technique," Journal of Construction Engineering Management, vol. 135,

no. 10, pp. 1027-1038, 2009.

[124] P. Wang and S. M. AbouRizk, "Large-scale simulation modeling system for

industrial construction," Candian Journal of Civil Engineering , vol. 36, pp.

1517-1529, 2009.

[125] I. D. Tommelein, "Process benefits from use of standard products- Simulation

experiments using the pipe spool model," in Conference of International

Group of Lean Construction, Santiego, 2006.

[126] D. HU and Y. MOHAMED, "Pipe spool fabrication sequencing by automated

planning," in Construction Research Congress, West Lafayette, Indiana, 2012.

[127] D. Pisinger, "Heuristics for the container loading problem," European Jpurnal

of Operational Research, vol. 141, pp. 382-392, 2002.

228

[128] E. G. Coffman, J. Y.-T. Leung and D. W. Ting, "Bin packing: maximizing the

number of pieces packed," Acta Informatics, vol. 9, pp. 263-271, 1978.

[129] M. R. Garey and D. S. Johnson, "Approximation algorithms for bin packing

problems: A survey," in Analysis and Design of Algorithms in Combinatorial

Optimization, Springer-Verlag Wien, 1981, pp. 147-172.

[130] S. P. Fekete and J. Schepers, "On more-dimensional packing I: Modeling,"

Center for Applied Computer Science, Universitat¨ zu Koln, 2000.

[131] J. M. Valerio de Carvalho, "LP models for bin packing and cutting stock

problems," European Journal of Operational Research, vol. 141, pp. 253-273,

2002.

[132] J. O. Berkey and P. Y. Wang, "Two-dimensional finite bin-packing

algorithms," The Journal of the Operational Research Society, vol. 38, no. 5,

pp. 423-429, 1987.

[133] K. Fleszar and K. S. Hindi, "New heuristics for one-dimensional bin-packing,"

Computers & Operations Research, vol. 29, pp. 821-839, 20002.

[134] D. Mack and A. Bortfeldt, "A heuristic for solving large bin packing problems

in two and three dimensions," Central European Journal of Operations

Research, vol. 20, pp. 337-354, 2012.

229

[135] M. Delorme, M. Iori and S. Martello, "Bin packing and cutting stock

problems: Mathematical models and exact algorithms," European Journal of

Operational Research, vol. 255, pp. 1-20, 2016.

[136] S. H. Zanakis and J. R. Evans, "Heuristic "Optimization": Why, When, and

How to Use It," The Instituete of Management Sciences, vol. 11, no. 5, pp. 84-

91, 1981.

[137] M. R. Garey, R. L. Graham and J. D. Ullman, "Worst-case analysis of memory

allocation algorithms," in Proceedings of the fourth annual ACM symposium

on Theory of computing, New York, 1972.

[138] E. G. Coffman J., J. Csirik, G. Galambos, S. Martello and D. Vigo, "Bin

packing approximation algorithms: survey and classification," in Handbook of

Combinatorial Optimization, New York, Springer Science+Business Media,

2013, pp. 455-531.

[139] S. P. Fekete and J. Schepers, "A combinatorial characterization of higher-

dimensional orthogonal packing," Mathematics of Operations Research, vol.

29, no. 2, pp. 353-368, 2004.

[140] S. P. Fekete and J. Schepers, "On more-dimensional packing II: Bounds,"

Applied Computer Science, Universitat¨ zu Koln, 2000.

230

[141] H. Shachni, T. Tamir and O. Yehezkely, "Approximation schemes for packing

with item fragmentation," Theory of Computing Systems, vol. 43, no. 1, pp. 81-

89, 2008.

[142] E. L. Lawler and D. E. Wood, "Branch-and-Bound methods: A survey,"

Operations Research, vol. 14, no. 4, pp. 699-719, 1966.

[143] A. H. Land and A. G. Doig, "An automatic method for solving discrete

programming problems," Econometrica, vol. 28, no. 3, pp. 497-520, 1960.

[144] R. T. Haftka and Z. Gurdal, Elements of structural optimizarion, The

Netherlands: Kluwer Academics Publishers, 1992.

[145] R. H. Jackson and J. M. Mulvey, "A critical review of comparisons of

mathematical programming algorithms and software (1953-1977)," Journal of

Research of the National Bureau of Standards, vol. 83, no. 6, pp. 563-584,

1977.

231

Appendix A.

1. Parametric weather generator- Python code

import numpy
import math
import os, sys
import pyodbc
import random

def Paraweather(day, month, length,filenumber):

(1) Connect to the database which contains all parameters needed for generating
weather series

 conect="DSN=DataParametric"

 c1=pyodbc.connect(conect)

(2) Initialize first-day residuals, matrix A and matrix B

IRS=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0
,1),random.normalvariate(0,1)]

 A=numpy.matrix([[0.368,-0.014,0.077,-0.058],[0.221, 0.004, 0.004, 0.037],[0.085,-
0.005, 0.406, 0.246],[0.02,0.002,0.095,0.411]])

 B=numpy.matrix([[0.923,0,0,0],[0.393,0.894,0,0],[-0.016,-0.005,0.406,0],[-
0.252,0.135,0.304,0.784]])

(3) Generate weather series using input "length"

 file = open("ParametricWeatherSeries"+str(filenumber)+".txt", "w")

file.write("Number"+","+"Day"+","+"Month"+","+"State"+","+"MAXTEMP"+","+"MINTE
P"+","+"MAXRH"+","+"MINRH"+","+"PRECIPITATION"+","+"WINDSPEED"+"\n")

 for y in range (1,length+1):

 x= day

(4) Define SQL queries that will be used to extract information from the database

 SQL1= ''' SELECT MON,DY, P_w, P_w_w, P_w_d FROM wet_dry WHERE
MON='''+str(month)+''';'''

232

 SQL2= ''' SELECT MON,DY , a, b FROM Precipitation WHERE
MON='''+str(month)+''';'''

 SQL4= ''' SELECT MON,DY, a, b FROM WindSpeed WHERE
MON='''+str(month)+''';'''

(5) The “if statement” below will make sure that each month will use different
parameters as per the database

 if month <=12:

(6) Generate average wind speed for each day in a month

 for row in c1.execute(SQL4):

 wdsp= random.gammavariate(row.a,row.b)

(7) Define the state of the day (wet/dry) and other weather variables

 for row in c1.execute(SQL1):

 if x <= row.DY: # moves from one month to another

The probability that a day in month m will be wet Pm(w)

 P_w=row.P_w

The probability that a wet day in month m is preceded by a wet day Pm(w/w)

 P_w_w=row.P_w_w

The probability that a wet day in month m is preceded by a dry day Pm(w/d)

 P_w_d=row.P_w_d

######## Define the dry state of the day########

 if (random.uniform(0,1)-P_w)>0:

 State=0

 P_w= P_w_d

 preci=0

generate the mean and standard deviation of the correlated weather variables

233

 SQL3= ''' SELECT MON,DY, State, TMAXM, TMAXSTD, TMINM,
TMINSTD, RHMaxM, RHMaxSTD, RHMinM, RHMinSTD FROM MSTD WHERE
MON='''+str(month)+'''AND DY='''+str(day)+''' AND State='''+str(State)+''';'''

 for row in c1.execute(SQL3):

 # calculate weather residuals

 # (we call it ed)= (nx1) matrix of random components sampled from a standard
normal distribution with a mean of 0 and a standard deviation of 1.

ed=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0,
1),random.normalvariate(0,1)]

xd= (nx1) matrix of residual elements for day d for parameters 1 to n

 xd=numpy.dot(A,IRS)+numpy.dot(B,ed)

Calculate values of all weather variables

 TMAXV=(xd[0,0]*row.TMAXSTD)+row.TMAXM

 TMINV=(xd[0,1]*row.TMINSTD)+row.TMINM

 RHMAXV=(xd[0,2]*row.RHMaxSTD)+row.RHMaxM

 RHMINV=(xd[0,3]*row.RHMinSTD)+row.RHMinM

######## defines the dry state of the day########

 else:

 State=1

 P_w= P_w_w

 SQL3= ''' SELECT MON,DY, State, TMAXM, TMAXSTD, TMINM,
TMINSTD, RHMaxM, RHMaxSTD, RHMinM, RHMinSTD FROM MSTD WHERE
MON='''+str(month)+'''AND DY='''+str(day)+''' AND State='''+str(State)+''';'''

 # generate precipitation

 for row in c1.execute(SQL2):

 preci= random.gammavariate(row.a,row.b)

generate the mean and standard deviation of the correlated weather variables

234

 for row in c1.execute(SQL3):

 # calculate weather residuals

 # ?_d (we call it ed)= (nx1) matrix of random components sampled from a
standard normal distribution with a mean of 0 and a standard deviation of 1.

ed=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0,
1),random.normalvariate(0,1)]

xd= (nx1) matrix of residual elements for day d for parameters 1 to n

 xd=numpy.dot(A,IRS)+numpy.dot(B,ed)

 # Calculate values of all weather variables

 TMAXV=(xd[0,0]*row.TMAXSTD)+row.TMAXM

 TMINV=(xd[0,1]*row.TMINSTD)+row.TMINM

 RHMAXV=(xd[0,2]*row.RHMaxSTD)+row.RHMaxM

 RHMINV=(xd[0,3]*row.RHMinSTD)+row.RHMinM

Advance the calendar by one day

file.write(""+str(y)+","+str(x)+","+str(month)+","+str(State)+","+str(TMAXV)+","+str(T
MINV)+","+str(RHMAXV)+","+str(RHMINV)+","+str(preci)+","+str(wdsp)+"\n")
 day+=1
 IRS=[xd[0,0],xd[0,1],xd[0,2],xd[0,3]]
 print(y,x,month,State,TMAXV,TMINV,RHMAXV,RHMINV,preci,wdsp)

advance the calender by one month

 else:

 day=1

 month+=1

when full year is reached, initialize the generator to January
 else:

 month=1

 file.close()

235

print ('Please enter the day, month, length of weather series required and the file
registered number')
userinput= [input(),input(),input(),input()]
Paraweather(int(userinput[0]),int(userinput[1]),int(userinput[2]),userinput[3])

2. Non-Parametric weather generator- Python code

import numpy
import math
import os, sys
import pyodbc
import random

def NonParaweather(day,month,length,filenumber):

(1) Connect to the database which contains all parameters needed to generate
weather series

 conect="DSN=FortMcmurray"

 c1=pyodbc.connect(conect)

 year=int(random.uniform(1962,2002))

(2) Save the generated data in an external text file

 file = open("NonParaWeatherSeries"+str(filenumber)+".txt", "w")

file.write("Number"+","+"Day"+","+"Month"+","+"Year"+","+"MAXTEMP"+","+"MINTE
P"+","+"MAXRH"+","+"MINRH"+","+"PRECIPITATION"+","+"WINDSPEED"+"\n")

 for y in range (1,length+1):

first make sure to iterate the selection of the year within the database range

 if year<=2002:

add the feature to move from one year to another whenever the end of the month
of December is reached

 if month<=12:

 SQL1= ''' SELECT MON, DY FROM Days_in_Months WHERE
MON='''+str(month)+''';'''

236

 for row in c1.execute(SQL1):

 SQL2= ''' SELECT Year, Month, Day, MaxTemp, MinTemp,
MaxRel_Hum,MinRel_Hum, AvgOfWind_Spd,Total_Precip_mm FROM daily
WHERE Year='''+str(year)+'''AND Month='''+str(month)+''' AND Day='''+str(day)+''';'''

Add the feature to move from one month to another whenever the end of the
month is reached

 if day <= row.DY:

 for row in c1.execute(SQL2):

 print(y,row.Day,row.Month,row.Year,row.MaxTemp,row.MinTemp,
row.MaxRel_Hum,row.MinRel_Hum,row.Total_Precip_mm,row.AvgOfWind_Spd)

 # write all weather variables in the text file

file.write(""+str(y)+","+str(day)+","+str(month)+","+str(year)+","+str(row.MaxTemp)+",
"+str(row.MinTemp)+","+str(row.MaxRel_Hum)+","+str(row.MinRel_Hum)+","+str(ro
w.Total_Precip_mm)+","+str(row.AvgOfWind_Spd)+"\n")

 day+=1

 else:

 day=1

 month+=1
 else:

 month=1
 year+=1

 else:

 year=int(random.uniform(1962,2002))

print('Please inter the day, month, length of weather series required and the file
registered number')
userinput= [input(),input(),input(),input()]

NonParaweather(int(userinput[0]),int(userinput[1]),int(userinput[2]),userinput[3])

237

Appendix B.

Table B- 1 Monthly averages of maximum temperature (MAXTEMP)

Month
MAXTEMP

Parametric Non-Parametric Historical

Jan -15.139 -15.270 -14.491

Feb -7.383 -7.932 -8.180

March -0.017 0.657 -0.785

Apr 9.134 8.846 9.048

May 16.529 16.244 16.016

Jun 20.949 19.629 20.147

Jul 23.480 21.336 21.932

Aug 22.281 21.598 20.810

Sep 16.418 13.792 14.595

Oct 8.022 7.744 8.156

Nov -4.836 -3.251 -4.174

Dec -11.312 -11.115 -12.229

Table B- 2 Monthly averages of minimum temperature (MINTEMP)

Month
MINTEMP

Parametric Non-Parametric Historical

Jan -24.649 -24.209 -23.918

Feb -20.458 -18.797 -19.541

March -14.301 -12.086 -13.905

Apr -3.784 -3.622 -3.908

May 2.681 3.128 3.129

Jun 7.634 7.678 8.139

Jul 10.276 10.316 10.549

Aug 8.578 8.940 8.943

Sep 3.256 2.622 3.408

Oct -2.167 -3.269 -2.621

Nov -14.103 -11.553 -12.680

Dec -21.061 -19.167 -20.764

238

Table B- 3 Monthly averages of maximum relative humidity (MAXRH)

Month
MAXRH

Parametric Non-Parametric Historical

Jan 83.601 83.678 83.199

Feb 83.514 83.889 82.999

March 81.963 81.623 82.395

Apr 81.542 82.527 81.259

May 82.721 81.265 81.957

Jun 87.694 85.967 87.322

Jul 90.787 90.960 90.647

Aug 92.701 90.374 92.374

Sep 91.505 91.723 91.943

Oct 89.508 88.548 89.178

Nov 87.577 88.557 88.183

Dec 83.948 84.416 84.949

Table B- 4 Monthly averages of minimum relative humidity (MINRH)

Month
MINRH

Parametric Non-Parametric Historical

Jan 65.321 67.085 65.562

Feb 59.637 61.350 58.809

March 47.819 47.829 48.578

Apr 38.598 40.510 37.834

May 34.587 33.200 33.807

Jun 39.863 38.977 39.925

Jul 44.982 45.460 44.434

Aug 46.956 42.487 46.344

Sep 48.288 50.560 50.513

Oct 56.144 54.619 54.798

Nov 67.422 70.627 68.567

Dec 66.826 69.158 68.498

239

Table B- 5 Monthly Averages of Precipitation (mm)

Month
Precipitation

Parametric Non-Parametric Historical

Jan 20.552 22.060 19.190

Feb 18.442 11.840 15.331

March 14.375 12.820 16.560

Apr 24.247 30.600 21.414

May 41.980 35.980 37.679

Jun 78.921 52.240 70.900

Jul 64.941 78.330 79.971

Aug 57.318 52.180 68.352

Sep 45.191 40.480 49.621

Oct 40.844 36.480 28.748

Nov 24.661 25.090 23.424

Dec 22.682 19.170 20.388

Table B- 6 Monthly averages of wind speed

Month
Wind speed

Parametric Non-Parametric Historical

Jan 8.666 7.628 8.397

Feb 9.160 8.726 9.012

March 9.820 10.154 9.840

Apr 11.064 11.298 11.015

May 10.844 10.996 10.979

Jun 9.876 9.634 9.647

Jul 8.583 8.595 8.978

Aug 9.068 8.668 8.710

Sep 9.391 9.134 9.524

Oct 10.120 10.252 10.301

Nov 8.694 8.216 8.866

Dec 8.581 8.181 8.371

240

Table B- 7 Standard deviation of maximum temperature (MAXTEMP)

Month
MAXTEMP

Parametric Non-Parametric Historical

Jan 10.326 10.719 10.516

Feb 10.310 9.537 10.055

March 8.206 8.165 8.338

Apr 7.305 7.123 6.907

May 5.803 6.199 5.921

Jun 4.871 5.167 5.117

Jul 4.218 4.423 4.750

Aug 5.107 6.009 5.549

Sep 6.165 6.225 5.794

Oct 6.935 6.586 6.667

Nov 7.845 7.910 8.269

Dec 9.686 9.179 9.867

Table B- 8 Standard deviation of minimum temperature (MINTEMP)

Month
MINTEMP

Parametric Non-Parametric Historical

Jan 9.392 10.583 9.819

Feb 9.979 9.882 9.816

March 9.671 8.790 8.989

Apr 5.667 6.267 6.351

May 4.122 4.923 4.911

Jun 3.584 3.724 3.625

Jul 2.871 2.844 3.029

Aug 3.810 3.896 3.783

Sep 3.949 4.415 4.675

Oct 5.032 5.695 5.588

Nov 8.123 7.927 7.731

Dec 8.256 8.862 9.351

241

Table B- 9 Standard deviation of maximum relative humidity (MAXRH)

Month
MAXRH

Parametric Non-Parametric Historical

Jan 5.493 8.506 9.037

Feb 5.573 9.373 9.224

March 5.703 9.258 9.661

Apr 8.778 11.432 12.099

May 8.957 12.965 13.321

Jun 7.343 10.172 10.420

Jul 4.971 7.056 7.685

Aug 3.703 6.796 6.700

Sep 5.312 7.051 7.725

Oct 5.547 8.527 8.663

Nov 4.605 7.116 7.437

Dec 5.133 8.622 8.609

Table B- 10 Standard deviation of minimum relative humidity (MINRH)

Month
MINRH

Parametric Non-Parametric Historical

Jan 10.827 9.294 9.863

Feb 13.166 12.038 12.401

March 13.256 14.937 13.978

Apr 16.427 17.511 16.140

May 15.773 14.613 15.441

Jun 16.381 16.243 16.310

Jul 14.774 14.052 14.323

Aug 14.061 14.092 14.522

Sep 17.735 17.925 17.183

Oct 17.137 16.966 17.370

Nov 12.059 12.433 12.239

Dec 9.912 10.319 10.363

242

Table B- 11 Standard deviation of precipitation

Month
Precipitation

Parametric Non-Parametric Historical

Jan 5.781 9.482 9.698

Feb 9.826 13.524 9.679

March 8.195 7.689 8.986

Apr 14.289 11.155 12.798

May 24.999 27.474 23.538

Jun 20.118 26.310 35.203

Jul 25.420 29.374 33.208

Aug 24.820 30.693 39.455

Sep 16.753 32.923 30.901

Oct 13.041 24.846 18.716

Nov 10.549 11.652 11.780

Dec 6.827 10.125 9.418

Table B- 12 Standard deviation of wind speed

Month
Wind speed

Parametric Non-Parametric Historical

Jan 6.015 4.586 4.684

Feb 4.627 4.585 4.459

March 4.361 4.504 4.446

Apr 4.380 4.328 4.167

May 4.399 4.207 4.278

Jun 4.029 4.194 3.930

Jul 3.810 4.087 4.024

Aug 4.109 4.074 4.002

Sep 4.356 4.568 4.281

Oct 4.930 4.903 4.599

Nov 4.035 4.007 4.482

Dec 5.536 4.901 4.807

243

Appendix C.

Table C- 1 Performance benchmark results for trucks and excavators

Resou

rce

Type/

No.

Total

working

Duratio

n

Number

of

Breakd

own

Total

Breakdo

wn

Duratio

n

Numb

er of

Maint

enanc

e

Total

Maintena

nce

Duration

%

Availa

-ble

Bre

akd

own

Mai

nten

-

ance

Truck1 7217.75 50 1108.70 21 433.55 82.39
12.6

6
4.95

Truck2 7338.21 39 858.70 21 563.09 83.77 9.80 6.43

Truck3 7508.23 35 765.40 21 486.37 85.71 8.74 5.55

Truck4 7165.69 47 1033.60 21 560.71 81.80
11.8

0
6.40

Truck5 7355.33 32 711.40 21 693.27 83.96 8.12 7.91

Truck6 7464.24 28 616.50 21 679.26 85.21 7.04 7.75

Truck7 7060.24 45 991.00 21 708.76 80.60
11.3

1
8.09

Truck8 7235.85 40 874.56 21 649.59 82.60 9.98 7.42

Truck9 7174.80 42 930.30 21 654.90 81.90
10.6

2
7.48

Excava

tor1
7396.68 35 757.66 23 605.66 84.44 8.64 6.91

Excava

tor2
7123.33 35 1013.40 23 623.27 81.32

11.5

7
7.11

Excava

tor3
7404.59 34 746.76 23 608.65 84.53 8.52 6.95

244

Table C- 2 First scenario (SC1) results with respect to different temperature limit (T)

(T)

SC1 Breakdown repair durations

Trucks Excavators

SC1-Min SC1-Average SC1-Max SC1-Min SC1-Average SC1-Max

-18 620.66 901.41 1161.41 751.41 858.45 1053.31

-19 616.50 900.09 1161.41 751.41 856.88 1048.80

-20 616.50 898.82 1161.41 751.41 855.41 1048.80

-21 616.50 896.43 1152.72 746.76 853.70 1048.80

-22 616.50 893.61 1148.93 746.76 851.36 1048.80

-23 616.50 892.93 1152.72 746.76 850.74 1044.23

-24 616.50 891.36 1143.92 746.76 849.58 1040.05

-25 616.50 890.20 1143.92 746.76 848.70 1035.86

-26 616.50 888.47 1143.92 746.76 847.83 1035.86

-27 616.50 887.11 1143.92 746.76 846.95 1035.86

-28 616.50 886.09 1143.92 746.76 846.48 1035.86

-29 616.50 884.32 1143.92 746.76 845.02 1035.86

-30 616.50 882.73 1135.72 746.76 844.45 1035.86

Table C- 3 Second scenario (SC2) results with respect to different temperature limit

(T)

(T)

SC2 Breakdown repair durations

Trucks Excavators

SC2-Min SC2-Average SC2-Max SC2-Min SC2-Average SC2-Max

-18 634.79 915.27 1183.66 764.50 868.84 1066.37

-19 629.22 912.41 1170.48 760.25 866.65 1057.60

-20 625.51 910.61 1170.18 760.25 865.46 1057.42

-21 625.51 909.07 1170.18 760.25 863.43 1057.42

-22 625.51 907.83 1170.18 760.25 862.43 1057.42

-23 625.51 906.32 1165.75 760.25 861.70 1053.31

-24 625.05 904.23 1161.41 760.25 860.68 1053.31

-25 625.05 902.31 1161.41 755.63 858.88 1053.31

-26 620.88 900.59 1161.41 751.01 857.57 1053.31

-27 620.88 899.33 1157.21 751.01 856.10 1053.31

-28 620.88 897.90 1157.21 751.01 854.92 1044.93

-29 620.88 896.54 1152.72 751.01 853.75 1044.93

-30 620.88 894.99 1152.72 746.76 852.88 1044.93

245

Table C- 4 Third scenario (SC3) results with respect to different temperature limit

(T)

(T)

SC3 Breakdown repair durations

Trucks Excavators

SC3-Min SC3-Average SC3-Max SC3-Min SC3-Average SC3-Max

-18 620.67 900.85 1165.69 755.66 858.23 1052.92

-19 620.67 898.16 1157.14 751.08 855.59 1048.80

-20 620.67 896.24 1157.14 751.08 854.30 1048.80

-21 616.50 894.81 1157.14 746.76 853.32 1048.80

-22 616.50 893.24 1157.14 746.76 853.01 1048.80

-23 616.50 891.54 1148.29 746.76 850.75 1044.33

-24 616.50 890.52 1148.29 746.76 849.13 1044.33

-25 616.50 889.11 1148.29 746.76 848.56 1040.14

-26 616.50 888.00 1148.29 746.76 847.84 1031.39

-27 616.50 886.48 1143.58 746.76 846.66 1031.39

-28 616.50 885.57 1143.58 746.76 845.95 1031.39

-29 616.50 884.14 1138.79 746.76 845.06 1031.39

-30 616.50 882.99 1134.11 746.76 844.63 1031.39

246

Appendix D.

Table D- 1 𝑃-values of Anderson-Darling normality test on the number of

components in the original and generated pipelines populations

Component
𝒑-value

n (original pipelines) n (generated pipelines)

Pcomponent <0.005 <0.005

Instrument <0.005 <0.005

Valve <0.005 <0.005

Flange <0.005 <0.005

Tube <0.005 <0.005

Elbow <0.005 <0.005

Tee <0.005 <0.005

Reducer <0.005 <0.005

Coupling <0.005 <0.005

247

Appendix E.

1. Correlation coefficients matrix of pipelines components in the original data:



































118.0008.009.0008.012.006.0

18.0142.043.045.033.047.041.02.0

042.0167.085.057.074.054.015.0

08.043.067.019.045.05.033.008.0

09.045.085.09.0152.062.046.011.0

033.057.045.052.0172.064.032.0

08.047.074.05.062.072.0164.026.0

12.041.054.033.046.064.064.0123.0

06.02.015.008.011.032.026.023.01

Re

Coupling

ducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent

2. Correlation coefficients matrix of pipelines components in the generated data:



































127.031.031.031.03.034.028.022.0

27.016.06.064.054.055.039.052.0

31.06.0191.093.083.089.077.063.0

31.06.091.0198.087.089.076.067.0

31.064.093.098.0189.09.076.069.0

3.054.083.087.089.0186.072.068.0

34.055.089.089.09.086.0174.061.0

26.039.077.076.076.072.074.015.0

22.052.063.067.069.068.061.05.01

Re

Coupling

ducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent

248

Appendix F.

Table F- 1 Feature vectors centroids of pipeline components generated from the

original data

Original data Cluster #

Attribute
Full data 0 1

841 793 48

Pcomponent_n 0.4281 0.4086 0.75

Pcomponent_T 7.8383 4.6494 60.5208

Pcomponent_D 13.0392 2.1354 193.1806

Instrument_n 0.5268 0.4023 2.5833

Instrument_T 21.1225 9.5914 211.625

Instrument_D 50.0707 8.9261 729.8142

Valve_n 2.4792 1.9912 10.5417

Valve_T 97.9382 44.6873 977.6875

Valve_D 129.6558 53.8997 1381.2085

Flange_n 3.8621 3.0895 16.625

Flange_T 127.874 54.2018 1345

Flange_D 119.0875 45.5125 1334.6078

Tube_n 11.6183 9.4061 48.1667

Tube_T 363.4732 183.4704 3337.2708

Tube_D 132.9783 59.6594 1344.2678

Elbow_n 6.132 5.0984 23.2083

Elbow_T 184.5517 97.9269 1615.6667

Elbow_D 125.4065 53.4814 1313.6688

Tee_n 3.1344 2.425 14.8542

Tee_T 93.2033 43.1337 920.3958

Tee_D 114.3336 41.1956 1322.6335

Reducer_n 0.7705 0.6419 2.8958

Reducer_T 22.9964 9.9685 238.2292

Reducer_D 30.8026 7.9494 408.356

Coupling_n 0.0511 0.0467 0.125

Coupling_T 1.2545 0.739 9.7708

Coupling_D 0.0963 0.0794 0.375

249

Table F- 2 Feature vectors centroids of pipeline components generated from the

generated data

Generated data Cluster #

Attribute
Full data 0 1

841 67 774

Pcomponent_n 0.7491 2.5821 0.5904

Pcomponent_T 13.2033 93.7761 6.2287

Pcomponent_D 32.2485 328.8507 6.5736

Instrument_n 0.1807 0.7313 0.1331

Instrument_T 6.8288 53.3134 2.8049

Instrument_D 20.0452 240.4627 0.9651

Valve_n 1.6623 5.9403 1.292

Valve_T 44.2973 329.597 19.6008

Valve_D 88.5731 762.3881 30.2455

Flange_n 2.8145 8.0896 2.3579

Flange_T 59.2235 396.6269 30.0168

Flange_D 103.7277 837.0448 40.2494

Tube_n 10.9952 39.2388 8.5504

Tube_T 290.5208 2048.403 138.3527

Tube_D 95.5505 707.6418 42.5659

Elbow_n 5.9501 21.2687 4.624

Elbow_T 165.9263 1179.8209 78.1602

Elbow_D 94.805 706.7463 41.8333

Tee_n 1.2747 5.2687 0.9289

Tee_T 33.1641 260.209 13.5103

Tee_D 71.8478 681.7612 19.0517

Reducer_n 0.6052 1.8955 0.4935

Reducer_T 13.2663 78.8507 7.5891

Reducer_D 35.6052 360.4328 7.4871

Coupling_n 0.0464 0.1791 0.0349

Coupling_T 1.2913 9.3582 0.593

Coupling_D 0.8347 10.4776 0

250

Appendix G.

Table G- 1 21 influential critical success factors that leads to an effective use of

modularization [22]

No.
Critical Success

Factor
Definition

Impact

Rate

1
Module Envelope

Limitations

Preliminary transportation evaluation should result

in understanding module envelope limitations.
3.83

2
Alignment on

Drivers

Owner, consultants, and critical stakeholders

should be aligned on important project drivers as

early as possible in order to establish the

foundation for a modular approach.

3.79

3

Owner’s Planning

Resources and

Processes

As a potentially viable option to conventional

stick building, early modular feasibility analysis is

supported by owner’s front-end planning and

decision support systems, work processes, and

team resources support

3.58

4
Timely Design

Freeze

Owner and contractor are disciplined enough to

effectively implement timely staged design

freezes so that modularization can proceed as

planned.

3.58

5
Early Completion

Recognition

Modularization business cases should recognize

and incorporate the economic benefits from early

project completion that result from modularization

and those resulting from minimal site presence

and reduction of risk of schedule overrun.

3.42

6
Preliminary Module

Definition

Front-end planners and designers need to know

how to effectively define scope of modules in a

timely fashion

3.42

7

Owner-

Furnished/Long

Lead Equipment

Specification

Owner-furnished and long-lead equipment (OFE)

specification and delivery lead time should

support a modular approach.

3.42

8
Cost Savings

Recognition

Modularization business case should incorporate

all cost savings that can accrue from the modular

approach. Project teams should avoid the knee-

jerk misperception that modularization always has

a net cost increase.

3.42

251

No.
Critical Success

Factor
Definition

Impact

Rate

9
Contractor

Leadership

Front-end contractor(s) should be proactive—

supporting the modular approach on a timely basis

and prompting owner support, when owner has yet

to initiate.

3.39

10
Contractor

Experience

Contractors (supporting all phases) have sufficient

previous project experience with the modular

approach.

3.37

11
Module Fabricator

Capability

Available, well equipped module-fabricators have

adequate craft, skilled in high-quality/tight-

tolerance modular fabrication.

3.37

12
Investment in

Studies

In order to capture the full benefit, owner should

be willing to invest in early studies into

modularization opportunities.

3.32

13

Heavy Lift/Site

Transport

Capabilities

Necessary heavy lift/site transport equipment and

associated planning/ execution skills are available

and cost competitive.

3.32

14 Vendor Involvement

Original Equipment Manufacturer (OEMs) and

technology partners need to be integrated into the

modularized solution process in order to maximize

related beneficial opportunities.

3.28

15

Operations and

Maintenance

(O&M) Provisions

Module detailed designs should incorporate and

maintain established O&M space/access needs.
3.26

16
Transport

Infrastructure

Needed local transport infrastructure is available

or can be upgraded/modified in a timely fashion

while remaining cost competitive

3.22

17
Owner Delay

Avoidance

Owner has sufficient resources and discipline to

be able to avoid delays in commitments on

commercial contracts, technical scope, and

finance matters.

3.16

18
Data for

Optimization

Owner and Pre-FEED/ FEED contractor(s) need

to have management tools/data to determine the

optimal extent of modularization, i.e., maximum

net present value (NPV) (that considers early

revenue streams) versus % modularization

3.05

19
Continuity through

Project Phases

Disconnects should be avoided in any contractual

transition between Assessment, Selection, Basic

Design, or Detailed Design phases; their impacts

can be amplified with modularization.

3.0

252

No.
Critical Success

Factor
Definition

Impact

Rate

20
Management of

Execution Risks

Project risk managers need to be prepared to deal

with any risks shifted from the field to

engineering/procurement functions.

3.0

21
Transport Delay

Avoidance

Environmental factors such as hurricanes, frozen

seas, or lack of permafrost, in conjunction with

fabrication shop schedules, do not result in any

significant project delay.

3.0

253

Appendix H.

Table H- 1 Pipe spooling solution and CPU run time for each pipeline instance

problem

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

1 13 2 1186 2 1249

2 10 1 516 2 640

3 8 1 750 4 1181

4 14 1 1544 3 1790

5 4 1 767 1 827

6 17 5 4188 7 5475

7 7 1 1370 1 1548

8 40 6 13796 10 16516

9 43 7 14610 12 18354

10 3 1 98 1 97

11 61 5 6411 8 5984

12 20 6 3057 11 3334

13 14 2 979 2 1001

14 8 1 402 1 349

15 8 1 355 5 528

16 8 1 425 2 478

17 18 4 1831 6 1863

18 28 3 3544 6 3523

19 20 2 4938 5 5013

20 30 3 1954 7 2110

21 38 3 5603 8 6257

22 12 1 719 2 952

23 13 2 1743 2 1884

24 49 10 8451 22 12808

25 11 1 721 4 1111

26 29 1 2581 4 3277

27 17 1 1223 2 1505

28 35 3 2851 8 3767

29 6 1 561 5 1193

30 52 7 7607 16 9779

31 7 1 631 1 745

32 9 1 907 3 1119

33 31 10 2233 12 2726

34 37 5 3863 9 4890

35 8 1 754 1 852

254

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

36 18 2 2637 3 3056

37 3 1 431 1 518

38 38 6 9106 7 9963

39 41 5 5561 14 7686

40 23 3 3223 10 5072

41 10 2 2096 2 2208

42 25 2 4173 4 4736

43 28 2 4617 5 5306

44 22 2 4088 5 5101

45 12 1 1569 3 2168

46 25 1 4113 3 4936

47 46 5 9024 9 10698

48 87 15 33690 25 37887

49 49 3 8491 7 10328

50 12 1 1751 2 2337

51 25 4 4425 7 5760

52 43 6 12397 9 14316

53 20 2 3716 3 4500

54 28 2 5171 3 5973

55 22 2 4284 6 5725

56 31 3 6676 6 8226

57 25 3 4066 3 4741

58 81 9 30906 18 35114

59 26 2 5806 3 6607

60 51 6 10984 10 12983

61 23 2 4198 4 5430

62 28 2 5190 5 6747

63 37 5 7679 19 13723

64 29 2 5481 5 7110

65 12 1 1973 3 2744

66 3 1 750 2 1210

67 10 1 2374 3 3168

68 42 4 8878 10 11717

69 32 3 6847 6 8409

70 10 3 2516 3 2785

71 42 4 10757 12 14813

72 11 1 2420 4 3689

73 17 3 4897 7 7398

74 7 1 1519 1 1711

75 39 7 10994 9 13217

255

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

76 21 2 4839 2 5274

77 13 2 2891 4 3770

78 18 1 3784 4 5500

79 3 1 812 1 968

80 13 1 2719 2 3738

81 15 1 3317 4 5127

82 8 2 2163 2 2442

83 3 1 971 1 1060

84 54 12 29671 14 29631

85 18 1 4135 1 4783

86 17 1 3591 2 4483

87 83 11 36651 17 41757

88 41 4 13542 12 18481

89 67 6 21020 10 24255

90 9 2 2963 2 3515

91 7 1 1824 1 1948

92 35 3 10178 10 14450

93 60 11 23694 19 29182

94 23 3 7749 4 9203

95 2 1 829 1 964

96 48 6 16184 14 22003

97 34 6 11794 10 15066

98 61 4 21120 16 29806

99 8 1 2205 5 4688

100 24 1 586 3 805

101 17 1 507 2 567

102 58 6 9483 12 9666

103 11 2 544 2 526

104 9 1 361 2 344

105 60 4 8511 9 8662

106 14 3 983 3 1024

107 10 1 315 6 377

108 10 1 229 4 418

109 15 1 930 5 605

110 88 14 13855 26 14988

111 39 4 3425 10 3323

112 17 2 1237 4 1446

113 24 1 1843 5 2061

114 40 2 3267 5 3376

115 23 2 1952 4 1987

256

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

116 13 2 1130 5 1147

117 61 7 8812 18 9479

118 19 3 4500 5 4611

119 14 1 536 1 391

120 12 1 1506 4 1453

121 55 4 4526 13 4906

122 11 1 633 1 510

123 15 2 1423 2 1315

124 14 1 551 3 573

125 9 1 329 1 325

126 11 1 404 3 520

127 66 6 2858 9 3067

128 93 10 17104 23 21132

129 18 2 1108 2 1433

130 4 1 205 1 170

131 17 4 670 8 920

132 15 2 1527 2 1542

133 7 1 731 5 921

134 7 1 620 1 542

135 18 1 1114 4 1203

136 6 1 509 1 403

137 4 1 197 1 200

138 72 11 13872 21 14354

139 25 3 2490 4 2806

140 13 2 845 4 860

141 29 3 1225 10 1495

142 24 3 3677 5 3859

143 48 6 11144 14 13981

144 29 4 2492 11 3232

145 21 1 1374 2 1443

146 14 1 540 3 559

147 25 2 2244 6 2498

148 8 1 375 1 406

149 118 10 28031 24 29046

150 11 1 441 3 583

151 188 26 49154 53 53786

152 54 7 7452 10 7507

153 15 1 715 1 507

154 29 4 2790 10 2837

155 22 1 1421 4 1607

257

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

156 18 2 1252 5 1347

157 30 3 1428 5 1503

158 63 8 12508 12 13117

159 3 1 164 1 205

160 32 5 4639 5 4601

161 60 1 8477 1 8676

162 12 1 1854 4 1990

163 2 1 157 1 147

164 9 1 422 4 614

165 36 3 3423 7 3547

166 10 1 661 1 627

167 24 2 1672 6 1913

168 35 3 13792 8 14203

169 37 5 4543 7 4458

170 8 1 362 1 398

171 55 5 6238 9 6696

172 13 2 932 3 858

173 30 3 2902 8 2918

174 124 12 30951 23 31884

175 7 1 394 1 419

176 64 5 7453 13 7927

177 17 3 1739 6 1920

178 32 3 3199 8 3529

179 19 1 4305 3 4453

180 24 3 1757 7 2182

181 88 9 12506 13 13169

182 7 1 377 1 336

183 14 2 1507 2 1323

184 9 2 720 2 716

185 30 3 3639 5 3745

186 8 1 461 1 469

187 76 9 7637 16 8271

188 41 5 5819 8 6209

189 98 7 18177 23 20119

190 14 1 2170 1 2244

191 62 5 4864 15 5938

192 5 1 307 1 311

193 10 1 638 1 651

194 14 1 1038 1 1121

195 19 3 2058 8 2340

258

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

196 41 3 5077 8 5596

197 11 2 1005 2 837

198 58 6 9853 12 10616

199 19 2 2070 3 2265

200 18 1 1799 3 2092

201 35 3 2967 4 2912

202 74 10 20577 16 21629

203 4 1 261 1 273

204 33 4 4942 9 5630

205 11 3 1090 3 1351

206 61 8 9785 16 10905

207 38 3 4910 4 5132

208 9 1 550 1 547

209 5 2 547 2 655

210 40 4 3442 9 4082

211 6 2 553 2 552

212 26 3 1489 9 2221

213 34 4 3686 7 4057

214 5 1 421 1 470

215 14 1 911 3 1087

216 47 6 4113 13 5116

217 18 1 1804 5 2247

218 20 1 1189 2 1579

219 3 1 296 1 264

220 48 9 4989 19 5403

221 45 14 3602 23 4240

222 37 4 6257 5 6658

223 18 2 1549 8 2178

224 30 1 2597 5 3053

225 46 4 4091 16 5398

226 3 1 311 1 257

227 7 1 466 1 440

228 76 7 10031 13 10894

229 24 3 2685 4 2989

230 68 6 14979 9 15333

231 42 4 4643 9 5501

232 15 1 1573 2 1787

233 4 1 373 1 331

234 29 4 3391 5 3670

235 26 1 1626 3 2045

259

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

236 5 1 434 1 380

237 5 3 498 4 684

238 27 3 4295 5 4562

239 61 6 12373 9 12761

240 11 1 676 3 882

241 9 1 820 1 870

242 20 2 2220 5 2463

243 5 1 391 1 417

244 17 2 1293 6 1703

245 26 1 2345 4 2767

246 48 5 3622 12 4396

247 38 1 3990 3 4537

248 35 4 5915 7 6269

249 14 1 968 1 1088

250 22 1 2988 3 3304

251 16 1 1514 3 1813

252 13 1 751 1 868

253 195 22 48361 36 53962

254 15 1 1271 4 1638

255 25 1 2342 3 2739

256 11 1 1029 4 1328

257 124 9 30422 24 33729

258 7 1 790 1 821

259 14 1 1082 2 1251

260 117 22 23829 28 24351

261 53 7 8709 11 9538

262 3 1 293 1 319

263 19 2 1820 3 2035

264 8 1 627 3 895

265 30 2 3367 6 4065

266 17 1 1192 3 1634

267 16 3 1802 5 2085

268 16 1 1192 4 1626

269 13 1 1137 2 1232

270 4 1 380 1 419

271 15 1 2949 3 3449

272 107 11 35810 26 38613

273 6 1 464 1 494

274 38 3 5495 9 6507

275 96 11 14296 23 15908

260

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

276 38 6 4856 10 5895

277 7 1 605 1 655

278 8 1 672 2 841

279 12 1 839 1 880

280 84 8 8898 15 10222

281 48 6 10358 12 11417

282 44 4 6530 8 7170

283 12 1 1244 3 1398

284 19 3 2456 5 3028

285 11 2 1103 2 1244

286 7 1 588 1 603

287 31 3 5292 8 6272

288 50 8 6804 12 7595

289 10 1 708 1 823

290 17 3 1546 11 2817

291 26 1 9310 3 10208

292 46 3 7753 8 8589

293 18 2 1521 6 2103

294 37 6 6551 7 7371

295 128 15 20721 33 26272

296 16 3 1970 4 2236

297 61 11 16663 13 17323

298 83 6 19752 14 21273

299 6 1 788 1 851

300 34 5 5915 8 6862

301 7 1 565 1 632

302 50 4 6709 10 7838

303 33 4 3842 6 4183

304 19 3 2973 3 3076

305 138 24 51578 41 65044

306 30 5 7663 14 12693

307 3 1 366 1 371

308 7 1 642 1 624

309 23 1 2948 3 3436

310 7 1 667 1 611

311 32 5 7378 8 7966

312 38 5 6153 13 7672

313 15 1 1276 3 1610

314 5 1 737 2 744

315 49 6 9881 7 10229

261

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

316 31 2 3594 6 4235

317 2 1 320 1 344

318 16 1 1240 2 1430

319 23 3 2645 6 3364

320 34 4 3767 9 4859

321 13 1 1456 1 1275

322 11 2 1374 2 1324

323 23 2 2537 5 3011

324 62 6 11355 11 12572

325 10 1 849 1 923

326 18 1 2311 3 2762

327 24 3 3220 8 4360

328 22 1 2490 3 2693

329 7 1 727 1 733

330 51 7 5477 15 6349

331 29 7 7655 11 8562

332 3 1 357 1 384

333 35 6 7506 12 9072

334 32 3 4454 5 5076

335 35 2 3963 6 4659

336 7 2 911 2 967

337 4 1 432 1 488

338 13 3 1561 5 1882

339 53 6 10030 14 11700

340 6 2 821 2 860

341 56 7 14110 11 15530

342 24 2 3332 3 3778

343 35 4 5841 8 6656

344 46 4 7692 11 8994

345 28 4 4791 5 5339

346 16 1 1507 2 1754

347 19 1 1677 3 2119

348 3 1 441 1 461

349 26 6 7079 6 7341

350 28 3 11518 4 11989

351 26 1 3398 3 4269

352 39 4 5365 9 6183

353 3 1 368 1 402

354 18 2 3018 4 3654

355 81 9 22383 20 24636

262

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

356 42 4 6026 10 7725

357 5 1 503 1 569

358 31 4 4118 7 4719

359 8 1 1032 1 1109

360 14 1 1177 3 1868

361 34 3 4212 6 5152

362 40 3 5714 11 7552

363 31 3 4539 5 5079

364 30 4 5337 7 6075

365 20 2 2975 4 3514

366 24 3 3740 6 4012

367 26 2 4528 5 5046

368 37 3 3847 9 5191

369 22 1 2613 3 3102

370 26 1 3784 6 4754

371 33 3 4686 6 5509

372 42 4 6481 7 7291

373 77 8 15318 20 18178

374 34 3 4312 8 5714

375 53 8 13878 8 14553

376 32 2 5340 6 6566

377 26 5 3600 8 4512

378 10 1 1826 1 1899

379 7 1 744 1 806

380 19 1 2665 3 3241

381 12 1 1562 1 1488

382 35 3 3725 12 5642

383 38 3 4885 4 5392

384 31 3 5527 8 6860

385 25 1 2968 3 3803

386 18 1 4775 2 5158

387 62 7 11377 12 12801

388 12 1 1139 3 1618

389 40 2 6146 5 6986

390 4 1 483 1 557

391 13 2 1623 2 1959

392 33 4 4582 5 5244

393 27 2 3489 4 4207

394 34 1 4083 4 5251

395 33 5 6430 10 7809

263

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

396 13 2 2054 2 2261

397 20 4 3518 6 4041

398 19 1 2485 8 4056

399 31 4 5201 11 6680

400 32 3 5115 6 6055

401 11 2 1270 3 1635

402 28 2 4803 5 5731

403 19 3 3522 4 3965

404 13 1 1732 3 2309

405 24 2 2835 8 4193

406 3 1 435 1 467

407 31 11 4195 16 4628

408 25 3 4613 3 4779

409 43 4 6029 7 7105

410 32 2 5607 7 6853

411 24 2 3931 7 5060

412 15 1 1687 1 1785

413 34 3 5633 7 6721

414 141 18 55143 40 64202

415 7 1 804 2 1134

416 86 9 17461 15 20338

417 23 1 2309 5 3514

418 4 1 672 1 590

419 20 2 3320 3 3647

420 10 1 1587 5 2467

421 10 2 1599 2 1818

422 12 1 2674 3 3168

423 24 3 3176 7 4223

424 20 2 2252 4 3030

425 21 4 2846 4 3029

426 30 2 3619 9 5345

427 58 5 13652 9 14639

428 20 1 2690 7 4065

429 11 1 1263 2 1477

430 4 1 545 1 611

431 10 3 1496 2 1500

432 15 1 1711 4 2496

433 42 1 5573 9 7133

434 17 3 2849 3 2773

435 30 6 6079 12 8061

264

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

436 19 1 2060 3 2750

437 35 3 4348 4 4860

438 27 5 6130 8 7052

439 71 8 19619 16 23106

440 7 1 888 1 924

441 37 5 8987 12 11033

442 19 2 3659 5 4459

443 61 11 13754 23 17649

444 12 3 3089 3 3346

445 21 2 3952 4 4569

446 25 1 3390 2 4045

447 18 2 2715 6 3676

448 21 3 3832 8 5165

449 33 6 5430 9 6673

450 13 1 1407 3 2176

451 10 1 1162 1 1385

452 17 1 2387 3 2997

453 11 1 1267 1 1757

454 40 6 6485 15 9548

455 29 2 4809 2 5247

456 30 3 5173 8 6814

457 9 1 1329 2 1595

458 52 6 10712 12 12497

459 17 1 2414 2 2910

460 13 1 1918 2 2042

461 20 1 2517 3 3015

462 5 1 802 1 739

463 33 6 6229 12 8642

464 63 5 14902 8 16476

465 14 2 2501 4 2698

466 18 1 2152 4 3088

467 61 6 14827 11 16838

468 150 16 43128 38 52382

469 46 2 9489 5 10982

470 21 1 2879 2 3702

471 39 5 7492 9 8736

472 27 3 4753 4 5251

473 31 2 5283 5 6242

474 34 3 5994 8 7580

475 36 3 6490 7 7603

265

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

476 13 2 2491 2 2548

477 14 1 1853 3 2480

478 5 1 911 1 921

479 21 3 3767 3 4498

480 13 2 2012 3 2579

481 16 4 3350 4 3662

482 29 4 6830 8 8239

483 31 2 4762 7 6344

484 2 1 69 1 69

485 30 3 5466 10 7509

486 27 3 4669 2 5148

487 15 1 2121 3 2787

488 51 7 8427 9 10131

489 3 1 514 1 610

490 9 1 1885 1 1936

491 50 5 8097 12 10645

492 69 8 13073 17 15907

493 26 1 4928 3 5625

494 39 3 7967 8 9365

495 12 2 2265 2 2121

496 18 4 3332 8 4870

497 21 1 2592 6 4151

498 30 5 7282 6 8125

499 32 3 6444 6 7596

500 26 5 6358 12 8963

501 9 1 1470 1 1503

502 43 4 9777 7 11165

503 18 1 2668 2 3251

504 22 2 4010 4 4711

505 2 1 435 1 499

506 23 3 4443 6 5558

507 24 3 5263 3 5249

508 39 1 5724 8 8664

509 102 10 27771 24 33197

510 24 2 3916 4 4744

511 24 4 4712 12 7197

512 29 2 5942 2 6290

513 21 1 2739 3 3713

514 30 2 6638 5 7712

515 14 1 2083 3 2933

266

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

516 22 2 4658 3 5224

517 14 1 1790 1 2166

518 47 5 10861 15 15268

519 17 4 4324 8 6403

520 16 3 4977 7 6409

521 12 3 3537 5 4433

522 52 6 11134 6 12233

523 27 11 2907 14 3052

524 86 10 22790 25 31442

525 13 1 1882 4 3194

526 33 5 8852 11 11717

527 21 1 3336 2 3988

528 8 1 1281 1 1319

529 34 5 8914 5 9834

530 6 1 950 1 1030

531 16 1 2213 2 2769

532 10 1 2107 3 2712

533 18 2 3644 2 4430

534 17 1 2753 3 3557

535 22 4 5636 4 6091

536 18 2 2630 5 3870

537 39 5 9501 11 12096

538 27 3 4051 4 5189

539 16 4 3600 6 4760

540 38 5 7653 11 10114

541 152 21 70005 35 79834

542 7 1 1041 1 1163

543 20 2 3584 2 3830

544 79 7 22131 18 27366

545 3 1 580 1 666

546 32 3 7005 8 9000

547 33 4 7589 4 8340

548 57 5 13605 13 16974

549 31 4 4487 10 6952

550 10 1 1682 2 2144

551 84 10 24329 18 28226

552 8 1 1228 3 1895

553 54 6 13255 11 15485

554 9 1 1955 1 2106

555 12 1 1693 1 1945

267

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

556 4 1 755 1 980

557 28 6 5056 10 6887

558 24 3 6031 5 6932

559 28 2 5374 5 6976

560 26 5 5072 8 6909

561 19 4 4072 6 5250

562 58 6 18230 9 20130

563 27 3 4331 6 5924

564 19 2 3397 6 5047

565 59 7 17239 14 20713

566 23 2 4694 3 5308

567 32 4 8096 7 9911

568 45 4 11997 7 14069

569 65 8 15125 13 18050

570 54 5 12091 7 14128

571 5 1 844 1 982

572 6 1 1057 2 1472

573 51 4 12648 8 14458

574 3 1 627 1 697

575 4 1 945 1 1062

576 9 11 770 14 821

577 19 1 3249 5 4949

578 13 3 3118 3 3359

579 18 2 3860 3 4137

580 30 4 6281 5 7198

581 105 8 37945 19 43189

582 4 1 740 1 865

583 31 2 6257 7 8151

584 15 2 3567 2 3673

585 12 1 1744 4 2741

586 23 3 5502 4 6197

587 15 1 2472 3 3314

588 27 4 5424 7 6962

589 34 5 8863 8 10623

590 30 3 5777 5 6812

591 51 6 18086 17 21723

592 37 2 7538 7 10269

593 37 5 9640 6 11263

594 21 5 4084 8 17894

595 59 3 15685 10 18680

268

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

596 14 1 2427 2 2877

597 17 3 3937 5 4810

598 29 1 5504 8 8348

599 24 4 6618 8 8296

600 16 2 3153 2 3476

601 14 1 2908 1 2922

602 22 1 4318 4 5814

603 43 4 11010 8 12877

604 8 3 2544 6 3809

605 39 4 9386 13 13015

606 9 1 1663 1 1855

607 25 2 5626 7 8039

608 14 2 2873 2 3349

609 57 5 11039 9 13596

610 15 1 2288 3 3353

611 10 1 2048 1 2185

612 18 2 3924 4 4871

613 10 1 1792 6 4031

614 9 1 1495 1 1701

615 21 1 7447 2 8560

616 5 1 961 1 1106

617 14 1 2515 1 2930

618 11 1 1766 1 2153

619 34 2 6950 7 9368

620 18 2 3632 6 5330

621 14 2 2854 4 3840

622 21 2 4002 2 4698

623 9 2 1924 4 2974

624 19 1 3500 3 4523

625 18 2 3066 4 4080

626 12 2 2815 2 3127

627 9 1 2354 1 2591

628 24 1 5471 2 6195

629 18 3 4654 4 5408

630 24 3 4489 8 6620

631 40 7 11392 10 13345

632 38 3 9190 7 11187

633 37 3 7724 5 9632

634 22 2 4209 6 6138

635 21 2 4173 5 5582

269

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

636 53 2 10552 5 13207

637 16 1 2631 3 3540

638 26 3 6917 4 8206

639 88 8 28711 19 34826

640 56 5 16998 9 20050

641 9 1 1580 1 1717

642 31 6 7214 16 12845

643 8 1 1454 1 1678

644 25 1 4030 5 5888

645 23 2 5043 4 6240

646 9 2 2035 2 2411

647 29 3 6517 4 7683

648 23 3 4290 6 6168

649 24 1 3770 5 5720

650 58 6 13237 16 18130

651 6 1 1111 1 1294

652 51 4 12305 9 15572

653 4 1 1081 1 1119

654 50 6 10727 10 13297

655 10 2 2189 2 2415

656 10 1 1708 1 2036

657 7 1 1340 4 2615

658 6 3 1679 3 1873

659 5 1 973 1 1112

660 17 2 3603 5 4923

661 19 2 4091 2 4326

662 9 1 1586 2 2108

663 20 3 3980 10 6823

664 85 8 21790 14 25053

665 89 6 25380 14 29882

666 11 9 1798 15 2546

667 19 2 3964 6 5951

668 58 7 18513 17 23717

669 7 1 1561 1 1711

670 43 6 12335 10 14565

671 19 2 4078 4 5123

672 29 2 7092 3 8187

673 34 5 8682 5 8933

674 29 3 6770 6 8299

675 86 10 31624 25 39147

270

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

676 3 1 710 1 809

677 11 1 2189 1 2424

678 31 3 5953 7 7842

679 16 3 4403 4 5114

680 20 4 5135 10 8256

681 266 34 72852 60 90921

682 7 1 1410 2 1857

683 32 4 6150 8 8493

684 25 3 5926 6 7535

685 16 1 2710 4 4151

686 2 1 680 1 666

687 18 2 3820 4 4885

688 16 1 3031 4 4413

689 68 5 16885 11 20615

690 46 4 11846 9 14606

691 63 10 18667 20 24980

692 5 1 1194 1 1252

693 15 2 3202 3 4018

694 21 3 4851 8 7693

695 9 1 2074 1 2304

696 18 1 3200 1 3659

697 20 3 4021 3 4525

698 28 3 6872 7 8882

699 36 6 10650 8 12624

700 47 4 12159 8 14779

701 9 1 1907 1 2118

702 44 5 12331 6 14420

703 5 1 1050 1 1211

704 33 4 6944 13 11342

705 32 4 7127 8 9576

706 6 1 1315 1 1499

707 15 2 3654 5 5334

708 27 5 7297 9 9683

709 24 2 5644 4 6833

710 10 1 1959 1 2053

711 52 4 12214 12 16401

712 6 1 1249 1 1378

713 20 2 5375 2 5777

714 50 6 13566 12 16904

715 10 1 1823 3 2724

271

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

716 16 3 4318 8 6810

717 13 1 2273 3 3234

718 15 1 4641 1 4985

719 10 2 2445 2 2797

720 21 2 4994 2 5513

721 83 5 29191 17 34465

722 25 4 6451 7 8227

723 27 2 5558 5 7480

724 31 2 6903 3 8435

725 40 3 11059 6 13268

726 8 1 1612 4 2978

727 9 1 1764 1 2071

728 19 3 4521 3 5140

729 19 2 4269 2 4846

730 15 1 4076 3 5288

731 29 6 13008 11 16804

732 45 3 8425 11 12614

733 31 2 7362 8 10059

734 8 1 1762 1 1774

735 32 4 9394 8 11494

736 23 2 6859 3 7494

737 10 1 1881 2 2517

738 33 5 9312 14 14244

739 21 3 4612 3 5108

740 18 3 4081 4 4885

741 6 1 1294 4 2677

742 6 1 1327 1 1484

743 30 4 7752 5 9170

744 8 1 1689 1 1943

745 121 13 58441 28 69789

746 23 3 4816 6 7051

747 12 1 2157 3 3250

748 6 1 1275 1 1486

749 31 2 7441 6 9420

750 9 1 1987 3 2793

751 40 4 11137 12 15185

752 18 3 6865 3 7352

753 34 4 8093 15 13460

754 25 1 4651 5 6915

755 33 5 9493 8 11618

272

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

756 5 1 1147 1 1279

757 33 1 9739 5 11910

758 5 1 1193 5 2976

759 36 3 9608 7 11907

760 27 4 7869 8 10378

761 22 4 5598 9 8192

762 8 1 1647 1 1809

763 30 5 7583 10 10401

764 13 1 2545 4 4165

765 20 1 4026 5 5549

766 33 2 7857 7 10637

767 21 2 5339 3 6022

768 84 7 21504 18 29796

769 4 1 966 1 1079

770 116 12 33325 27 42730

771 57 7 21131 13 25031

772 32 3 7287 3 8105

773 50 9 19514 13 23658

774 20 3 4544 6 6094

775 31 2 6750 6 9167

776 20 4 5210 9 8110

777 2 1 647 1 739

778 48 3 12850 12 17940

779 14 1 3192 2 3750

780 22 3 4757 7 7537

781 19 3 4819 4 5695

782 14 1 3049 2 3791

783 8 2 2363 2 2464

784 18 2 4506 6 6829

785 6 1 1321 1 1521

786 10 2 2770 2 3052

787 22 1 4191 3 5557

788 34 1 7198 3 8765

789 35 3 8898 7 11729

790 9 1 2543 1 2717

791 61 9 24517 19 30758

792 12 1 2320 2 3098

793 7 1 1610 1 1693

794 26 4 6873 8 9360

795 13 1 2489 1 2883

273

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

796 36 3 10245 11 14666

797 5 1 1171 4 2621

798 23 3 6829 3 7662

799 19 3 5550 6 7433

800 27 2 6409 6 8244

801 22 4 5990 10 9550

802 18 3 4407 7 6594

803 18 3 4227 8 6753

804 42 5 13254 7 15134

805 3 1 959 1 979

806 15 1 3476 3 4545

807 13 3 3598 6 5028

808 5 1 1356 1 1447

809 21 1 4821 2 5354

810 22 3 6587 3 7150

811 17 1 3506 3 4628

812 61 5 14006 13 18934

813 6 1 1340 1 1578

814 22 1 4837 2 5770

815 7 1 1927 3 2835

816 12 1 2610 4 4367

817 142 14 72187 28 82434

818 11 1 2570 1 2678

819 13 2 3581 7 6259

820 20 5 6502 11 10253

821 4 1 1051 1 1236

822 21 1 5198 2 6450

823 56 5 20867 9 24266

824 9 2 2483 2 2899

825 14 1 3590 1 3867

826 27 1 5637 3 6601

827 11 1 2368 3 3310

828 50 4 14359 11 19320

829 4 1 1088 1 1249

830 3 1 901 1 1070

831 38 5 11808 11 15144

832 39 4 11324 6 13694

833 23 5 7619 8 9665

834 23 3 7552 5 9197

835 24 4 7061 12 11526

274

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

836 15 2 3859 5 5550

837 17 1 3770 3 5267

838 21 5 7068 5 8134

839 7 1 1657 1 1805

840 11 1 3326 1 3641

841 58 7 19962 14 24449

842 5 1 1270 1 1416

843 14 2 3437 4 5273

844 24 3 6527 3 7800

845 96 6 33099 15 40255

846 23 3 6896 4 8365

847 14 1 2886 3 4304

848 10 1 2166 1 2522

849 21 3 5217 5 6808

850 43 6 14271 11 18332

851 6 1 1545 1 1774

852 23 2 6330 5 8742

853 13 1 3092 5 5571

854 5 1 1314 1 1379

855 34 4 9550 9 13439

856 27 2 6649 4 8316

857 14 1 3258 1 3678

858 23 1 5389 3 6885

859 16 3 5218 3 5846

860 7 1 1725 3 2569

861 5 1 1281 1 1518

862 54 5 18615 8 21183

863 56 6 21445 10 25508

864 16 4 4457 4 5209

865 21 5 6072 9 9160

866 3 1 894 1 1032

867 10 1 2311 3 3372

868 19 2 4567 5 6267

869 70 8 21483 17 27126

870 18 1 4648 3 6135

871 10 1 2218 1 2581

872 42 4 14589 8 17792

873 20 1 4908 3 6026

874 29 7 5602 11 7501

875 35 4 9985 6 12000

275

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

876 10 1 3089 3 4380

877 17 1 4207 1 4567

878 115 13 45484 30 56696

879 13 2 3800 2 4331

880 8 1 2022 3 2953

881 93 9 27477 31 42522

882 6 1 1496 1 1652

883 17 1 3546 3 5174

884 57 4 16105 13 22793

885 21 1 5626 5 8029

886 7 1 1734 2 2342

887 26 1 6258 3 7900

888 59 11 4077 13 5136

889 13 1 2864 2 3885

890 31 1 8058 4 10123

891 67 10 24681 18 31472

892 22 2 5909 4 7205

893 47 6 16952 11 20737

894 17 3 4794 4 5984

895 13 1 2765 1 3409

896 108 11 43664 23 52006

897 20 1 5052 4 6701

898 21 2 5561 2 5856

899 25 5 7452 10 10871

900 19 4 5731 4 5979

901 36 6 13474 12 18072

902 37 8 12720 19 21126

903 6 1 1492 1 1784

904 18 1 3918 2 5274

905 28 2 7611 5 10128

906 21 5 6990 11 11027

907 13 2 3609 2 4161

908 32 2 8216 10 13134

909 54 5 21508 9 24848

910 8 1 2003 2 2705

911 9 1 2198 1 2508

912 24 4 8152 6 9796

913 24 1 5734 3 7494

914 45 4 13237 11 17754

915 29 3 9315 6 11485

276

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

916 22 2 5849 4 7154

917 56 3 18307 13 23922

918 16 1 4549 6 7311

919 23 2 6864 8 10239

920 10 1 2890 1 3187

921 5 1 1574 4 3203

922 15 1 3525 5 6202

923 140 14 67796 31 83108

924 9 1 2196 1 2531

925 12 1 2718 1 3214

926 14 1 3164 4 5110

927 23 1 5085 3 6794

928 18 2 5267 4 7020

929 12 4 5146 4 5547

930 46 8 18778 15 23540

931 22 3 5670 5 7776

932 18 2 5260 2 5868

933 12 2 3147 3 4221

934 7 1 2081 2 2887

935 21 4 7967 5 9035

936 5 1 1364 1 1613

937 24 2 8272 8 11813

938 28 3 8912 8 12524

939 115 19 61397 26 67960

940 9 1 3084 5 5835

941 3 1 1106 1 1170

942 81 8 34906 16 41199

943 24 3 6285 2 6830

944 16 2 6613 3 7456

945 20 1 4990 2 6207

946 19 1 4297 2 5490

947 42 7 16505 13 21066

948 10 2 3057 2 3451

949 8 1 2115 3 3324

950 117 13 58465 22 67269

951 2 1 839 1 944

952 6 4 3232 6 4933

953 8 1 2024 1 2340

954 41 6 14270 13 19790

955 115 9 36575 27 49320

277

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

956 32 2 9116 7 12493

957 4 1 1247 4 3052

958 31 6 11331 15 17926

959 18 4 5614 8 8525

960 12 3 3615 3 4184

961 16 4 5298 5 6697

962 13 1 3037 3 4494

963 124 17 49891 32 61140

964 36 6 15600 10 18730

965 19 1 4898 3 6446

966 39 3 11065 10 16051

967 5 1 1466 1 1631

968 34 3 10998 8 14957

969 26 2 7615 3 9099

970 28 3 9264 6 11633

971 42 4 13660 10 18573

972 11 3 3987 5 6061

973 27 2 7721 7 11221

974 35 3 9880 9 14079

975 37 3 11828 7 15445

976 15 1 4070 5 6229

977 15 2 5665 2 6070

978 26 1 6067 3 8038

979 100 10 30392 24 39969

980 6 1 1807 1 2053

981 9 1 2413 1 2851

982 11 1 2734 1 3167

983 23 1 6494 4 8996

984 36 6 13392 12 18096

985 71 9 27721 12 32363

986 43 3 13904 8 17976

987 39 3 11820 5 14162

988 20 4 6804 9 11104

989 4 1 1293 1 1489

990 42 3 14495 8 18177

991 14 3 4471 3 4899

992 39 6 13237 15 20239

993 12 3 3821 8 7626

994 25 2 7508 4 9529

995 35 8 12200 16 19422

278

Pipelin

e No.

No. of

Component

s

Alberta Size Overseas Size

No. of

Spools

Solution Time

(ms)

No. of

Spools

Solution Time

(ms)

996 48 5 14409 11 19328

997 5 1 1531 1 1723

998 21 1 5736 5 9131

999 49 4 18621 12 25344

1000 107 14 22410 20 23037

279

Appendix I.

Industrial Pipeline Data Generator-Python Code

import numpy as np
import math
import os, sys
import pyodbc
import random
import sqlite3
from collections import deque
import csv
from scipy import stats
from scipy.stats import burr

def PipelineGenerator(number_of_pipelines):

 def starting_component_state_main_line():

 # Initialize the starting component in the main line(excluding start and finish
components)
 # This function is made to generate starting component, in case if the generator
stop
 initialize_starting_component=np.random.uniform(0,100)

 if initialize_starting_component <= 7.1:

 starting_component="REDUCER"
 return starting_component

 elif initialize_starting_component <= 18.9 :

 starting_component="VALVE"
 return starting_component

 elif initialize_starting_component <= 31.5:

 starting_component="TEE"
 return starting_component

 elif initialize_starting_component <= 47:

 starting_component="FLANGE"
 return starting_component

 elif initialize_starting_component <= 70:

 starting_component="ELBOW"
 return starting_component

280

 else:
 starting_component="TUBE"
 return starting_component

 def starting_component_state_branch():

 # Initialize the starting component in the branch(excluding start and finish
components)
 # This function is made to generate starting component, in case if the generator
stop

 initialize_starting_component=np.random.uniform(0,100)

 if initialize_starting_component <= 0.96:

 starting_component="PCOMPONENT"
 return starting_component

 elif initialize_starting_component <= 3.06 :

 starting_component="REDUCER"
 return starting_component

 elif initialize_starting_component <= 5.66:

 starting_component="INSTRUMENT"
 return starting_component

 elif initialize_starting_component <= 20.2:

 starting_component="TEE"
 return starting_component

 elif initialize_starting_component <= 31.0:

 starting_component="VALVE"
 return starting_component

 elif initialize_starting_component <= 44.0:

 starting_component="FLANGE"
 return starting_component

 elif initialize_starting_component <= 59.37:

 starting_component="ELBOW"
 return starting_component

 else:

 starting_component="TUBE"

281

 return starting_component

 ###############Components Diameter##############################
 c,d= 2.8574,0.76059

 mean, var, skew, kurt = burr.stats(c, d, moments='mvsk')

 rv = burr(c, d)
 #########################

 ######################## Main Line Generator ######################

 file = open("Pipelines_Data_Set.txt", "w")

file.write("Line_Number"+","+"Type_of_Branch"+","+"Component_No"+","+"Previosu
ly_Connected_to"+","+"Component_Type"+","+"Diameter"+","+"Length"+","+"Runnin
g_Direction"+"\n")

print("Line_Number",",","Type_of_Branch",",","Seq_in_branch",",","Previosuly_Conn
ected_to",",","Component_Type",",","Diameter",",","Length",",","Running_Direction")

 #(1) Generate the number of components in the main line

 for line_no in range (1,int(number_of_pipelines)+1):

 # Initialize components first step value:

 cap_step=1
 instrument_step=1
 tube_step=1
 valve_step=1
 fblind_step=1
 ftube_step=1
 flange_step=1
 clousre_step=1
 pcomponent_step=1
 tee_step=1
 reducer_step=1
 coupling_step=1
 elbow_step=1

 component_number=1

 running_direction= "x"

 running_direction_list=deque()

 components_diameter = burr.rvs(c, d, loc=0, scale=124.3, size=1)

 no_of_main_line_components=int(math.ceil(np.random.gamma(2, 10.5)))

282

 if no_of_main_line_components <3:

 no_of_main_line_components=3

 #(2) Initialize the starting component of the main line

 initialize_starting_component=np.random.uniform(0,100)

 if initialize_starting_component <= 0.1:

 starting_component="TEE"

 elif initialize_starting_component <= 0.4:

 starting_component="FTUBE"

 elif initialize_starting_component <= 1.6:

 starting_component="ELBOW"

 elif initialize_starting_component <= 3.9:

 starting_component="INSTRUMENT"

 elif initialize_starting_component <= 6.3:

 starting_component="CAP"

 elif initialize_starting_component <= 13.0:

 starting_component="TUBE"

 elif initialize_starting_component <= 20.9:

 starting_component="VALVE"

 elif initialize_starting_component <= 30.2:

 starting_component="FBLIND"

 elif initialize_starting_component <= 48.5:

 starting_component="PCOMPONENT"

 elif initialize_starting_component <= 71.8:

 starting_component="FLANGE"

 else:

283

 starting_component="CLOSURE"

 # Use Markov-chain transition matrix and state distribution to generate the rest of
components

 # Create probability transition matrix

main_line_transition_matrix=np.matrix([[7.17,1.69,0,7.2,1.27,0,3.81,1.28,61.18,11.3
9,1.28,0,3.8],[5.45,0.45,0,7.73,0,0,4.1,0,65.91,12.27,0,0,4.09],[0,3.67,0,0,1.83,0,0,1.
84,33.94,54.13,1.85,2.75,0],[32.01,1.92,0.44,15.29,1.7,0.27,14.61,1.69,0.75,14.53,1
.76,0.24,14.78],[32.43,0.19,0.5,16.33,0.11,0.27,16.22,0.1,0.9,16.23,0.12,0.25,16.38]
,[0.78,0,12.34,49.87,0.51,5.67,1.54,0,8.23,14.65,0,5.66,0.77],[5.28,0.01,29.68,8.7,0,
14.86,2.67,0.13,17.45,3.13,0,14.84,3.25],[3.02,0.34,0,0.69,0.68,0,0.67,0,53.02,22.8
2,0,0,18.79],[19.91,0.45,0,17.3,0,0,16.29,0,0,16.31,0,0,30.77],[23.92,0.38,5.35,12.8
4,0.44,4.93,11.11,0.17,4.15,18.98,0.16,4.18,13.42],[14.26,13,0.1,6.8,5.42,1,6.68,2.7
1,29.32,7.98,3.51,1.1,8.33],[0,0,0,43.62,0,0,0,0,0,56.38,0,0,0],[25.76,0.13,5.6,12.61,
0,2.7,11.13,0.27,13.49,13.96,0,2.8,11.67]])

 # Create column legends of probability transition matrix

matrix_legend=np.array([["TUBE","FTUBE","ELBOW","TEE","FBLIND","INSTRUME
NT","CAP","COUPLING","FLANGE","VALVE","CLOSURE","PCOMPONENT","RED
UCER"]])

 main_line=[]

 branch=[]

 Tee=deque()

 tee_diameter=deque()

 branch_count=0

 # Start generating components sequence

 for i in range (1,1200):

 if (len(main_line)+1) <= (no_of_main_line_components):

 initialize_sequence=np.random.uniform(0,100)

 ############################ Component CAP #####################

 if starting_component == "CAP":
 # Define the next CAP state step
 # No state distribution was found for Component State Cap, which
means it is found once in any pipeline

284

 next_component=main_line_transition_matrix[0,:]

 # Sort from smallest to largest

 next_component0=np.sort(next_component)

 # Transpose the row

 next_component1=next_component0.T

 x=[]

 if i == 1:

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CAP",",",
components_diameter,",",int(np.random.lognormal(0.83986,4.4939)),",",running_dire
ction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CAP"+","+str(components_diameter)+","+str(int(np.random.lognormal(0
.83986,4.4939)))+","+str(running_direction)+"\n")

 main_line.append("CAP")

 component_number+=1

 # Find the location of the next component in legends matrix

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

285

 elif len(main_line) == (no_of_main_line_components):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CAP",",",
components_diameter,",",int(np.random.lognormal(0.83986,4.4939)),",",running_dire
ction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CAP"+","+str(components_diameter)+","+str(int(np.random.lognormal(0
.83986,4.4939)))+","+str(running_direction)+"\n")

 main_line.append("CAP")

 component_number+=1

 # Find the location of the next component in legends matrix

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 cap_step+=1

 starting_component= starting_component_state_main_line()

 ############################ Component Instrument ################

 elif starting_component == "INSTRUMENT":

286

 next_component=main_line_transition_matrix[1,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if instrument_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","INSTRU
MENT",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"INSTRUMENT"+","+str(components_diameter)+","+str(350)+","+str(run
ning_direction)+"\n")

 main_line.append("INSTRUMENT")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next INSTRUMENT state step

 instrument_next_step=len(main_line)+ int(np.random.gamma(2.0857,
7.042))

 instrument_step= instrument_next_step

287

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Fblind ####################

 elif starting_component == "FBLIND":

 next_component=main_line_transition_matrix[2,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 # Limit the location of Cap to either the first of the last in the sequence

 if i == 1:

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FBLIND",
components_diameter,",",int(np.random.uniform(122,777.19)),",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FBLIND"+","+str(components_diameter)+","+str(int(np.random.uniform(
122,777.19)))+","+str(running_direction)+"\n")#revise

 main_line.append("FBLIND")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

288

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elif len(main_line)== no_of_main_line_components:

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FBLIND",
components_diameter,",",int(np.random.uniform(122,777.19)),",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FBLIND"+","+str(components_diameter)+","+str(int(np.random.uniform(
122,777.19)))+","+str(running_direction)+"\n")

 main_line.append("FBLIND")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 fblind_step+=1

 starting_component=starting_component_state_main_line()

 ############################ Component Tee #####################

 elif starting_component == "TEE":

289

 next_component=main_line_transition_matrix[3,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if running_direction=="x":

 coming_from_x=["y","z"]

running_direction_list.append([component_number,random.choice(coming_from_x)]
)

 elif running_direction=="y":

 coming_from_y=["x","z"]

running_direction_list.append([component_number,random.choice(coming_from_y)]
)

 else:

 coming_from_z=["x","y"]

running_direction_list.append([component_number,random.choice(coming_from_z)]
)

 if tee_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","TEE",",",
components_diameter,",",int(np.random.uniform(57,432)),",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"TEE"+","+str(components_diameter)+","+str(int(np.random.uniform(57,
432)))+","+str(running_direction)+"\n")

 tee_diameter.appendleft([component_number,components_diameter])

 main_line.append("TEE")

 Tee.append(component_number)

290

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next TEE state step

 tee_next_step=len(main_line)+ int(np.random.gamma(1.4539,
5.3071))## revise the distribution

 tee_step= tee_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Elbow #####################

 # we assume elbow as free floating element, therefore no state distribution is
required

 elif starting_component == "ELBOW":

 next_component=main_line_transition_matrix[4,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

291

 if elbow_step<=(len(main_line)+1):

 if running_direction=="x":

 coming_from_x=["y","z"]

 running_direction= random.choice(coming_from_x)

 elif running_direction=="y":

 coming_from_y=["x","z"]

 running_direction= random.choice(coming_from_y)

 else:

 coming_from_z=["x","y"]

 running_direction= random.choice(coming_from_z)

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","ELBOW"
,",",
components_diameter,",",int(np.random.laplace(339.86,0.00111)),",",running_directi
on)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"ELBOW"+","+
str(components_diameter)+","+str(int(np.random.laplace(339.86,0.00111)))+","+str(r
unning_direction)+"\n")

 main_line.append("ELBOW")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

292

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elbow_next_step=len(main_line)+
int(np.random.laplace(0.51675,3.1097))

 elbow_step= elbow_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Ftube ####################

 elif starting_component == "FTUBE":

 next_component=main_line_transition_matrix[5,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FTUBE",
",",components_diameter,",",int(np.random.uniform(75.394,76.985)),",",running_dire
ction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FTUBE"+","+str(components_diameter)+","+str(int(np.random.uniform(7
5.394,76.985)))+","+str(running_direction)+"\n")

 main_line.append("FTUBE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

293

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 ############################ Component Tube #####################

 # Component tube is assumed as a free floating element, therefore no state
distribution is required

 elif starting_component == "TUBE":

 next_component=main_line_transition_matrix[6,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if tube_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","TUBE",",
",components_diameter,",",int(np.random.wald(2323.2,489.58)),",",running_direction
)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"TUBE"+","+str(components_diameter)+","+str(int(np.random.wald(2323
.2,489.58)))+","+str(running_direction)+"\n")

 main_line.append("TUBE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

294

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 tube_next_step=len(main_line)+ 1

 tube_step= tube_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Pcomponent ################

 elif starting_component == "PCOMPONENT":

 next_component=main_line_transition_matrix[7,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if pcomponent_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","PCOMP
ONENT",",",components_diameter,",",int(np.random.wald(726.79,1072.6)),",",runnin
g_direction)#int(np.random.exponential(0.0017)))

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"PCOMPONENT"+","+str(components_diameter)+","+str(int(np.random.
wald(726.79,1072.6)))+","+str(running_direction)+"\n")

 main_line.append("PCOMPONENT")

 component_number+=1

295

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next PCOMPONENT state step

 pcomponent_next_step=len(main_line)+
int(np.random.exponential(0.19245))

 pcomponent_step= pcomponent_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Coupling ##################

 elif starting_component == "COUPLING":

 next_component=main_line_transition_matrix[8,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","COUPLI
NG",",",components_diameter,",",int(np.random.beta(0.02229,0.42713)),",",running_
direction)

296

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"COUPLING"+","+str(components_diameter)+","+str(int(np.random.beta(
0.02229,0.42713)))+","+str(running_direction)+"\n")

 main_line.append("COUPLING")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 ############################ Component Flange ###################

 elif starting_component == "FLANGE":

 next_component=main_line_transition_matrix[9,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if flange_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FLANGE
",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main

297

_line)))+","+"FLANGE"+","+str(components_diameter)+","+str(350)+","+str(running_
direction)+"\n")

 main_line.append("FLANGE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next FLANGE state step

 flange_next_step=len(main_line)+ int(np.random.pareto(0.82625,1))

 flange_step= flange_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Valve ###################

 elif starting_component == "VALVE":

 next_component=main_line_transition_matrix[10,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

298

 if valve_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","VALVE",
",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"VALVE"+","+str(components_diameter)+","+str(350)+","+str(running_dir
ection)+"\n")

 main_line.append("VALVE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 valve_next_step=len(main_line)+
int(np.random.lognormal(0.7945,1.8998))

 valve_step= valve_next_step

 else:

 starting_component=starting_component_state_main_line()

 ############################ Component Closure ##################

 elif starting_component == "CLOSURE":

 next_component=main_line_transition_matrix[11,:]

299

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if i == 1:

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CLOSUR
E",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CLOSURE"+","+str(components_diameter)+","+str(350)+","+str(running
_direction)+"\n")

 main_line.append("CLOSURE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elif len(main_line) == no_of_main_line_components:

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CLOSUR
E",",",components_diameter,",",350,",",running_direction)

300

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CLOSURE"+","+str(components_diameter)+","+str(350)+","+str(running
_direction)+"\n")

 main_line.append("CLOSURE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 clousre_step+=1

 starting_component=starting_component_state_main_line()

 ############################ Component Reducer #################

 elif starting_component == "REDUCER":

 next_component=main_line_transition_matrix[12,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

301

 reducer_diameter=int(burr.rvs(c, d, loc=0, scale=124.3, size=1))

 components_diameter= reducer_diameter

 if reducer_step <=(len(main_line)+1):

print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","REDUC
ER",",",components_diameter,",",int(np.random.gamma(3.4645,51.749)),",",running_
direction)

file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"REDUCER"+","+str(components_diameter)+","+str(int(np.random.gam
ma(3.4645,51.749)))+","+str(running_direction)+"\n")

 main_line.append("REDUCER")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next REDUCER state step

 reducer_next_step=len(main_line)+
int(np.random.lognormal(0.80974,2.0731))

 reducer_step= reducer_next_step

 else:

302

 starting_component=starting_component_state_main_line()

 else:

 initialize_sequence=np.random.uniform(0,100)

 else:

 break

 ################################ Branches Generator ################

 try:

 while len(Tee)>0:

 for i in range (len(Tee)):

 branch_count+=1

 cap_step=1
 instrument_step=1
 tube_step=1
 valve_step=1
 fblind_step=1
 ftube_step=1
 flange_step=1
 clousre_step=1
 pcomponent_step=1
 tee_step=1
 reducer_step=1
 coupling_step=1
 elbow_step=1

 no_of_branch_components=int(math.ceil(np.random.lognormal(0.88575,
1.2818)))

 if no_of_branch_components <1:

 no_of_branch_components=1

 # Initialize the starting component for each branch

 initialize_starting_component=np.random.uniform(0,100)

 # The following statement constrains the type of component to be processed
in case of the number of components=1

303

 if no_of_branch_components <= 1:

 if initialize_starting_component <=0.59:

 starting_component="CAP"

 elif initialize_starting_component <=1.2:

 starting_component="FTUBE"

 elif initialize_starting_component <=2.9:

 starting_component="REDUCER"

 elif initialize_starting_component <=5.4:

 starting_component="TUBE"

 elif initialize_starting_component <=15.9:

 starting_component="INSTRUMENT"

 elif initialize_starting_component <=29.2:

 starting_component="FLANGE"

 else:

 starting_component="CLOSURE"

 else:

 if initialize_starting_component <= 0.2:

 starting_component="COUPLING"

 elif initialize_starting_component <= 0.35:

 starting_component="INSTRUMENT"

 elif initialize_starting_component <= 1.01:

 starting_component="VALVE"

 elif initialize_starting_component <= 2.13:

 starting_component="TEE"

 elif initialize_starting_component <= 3.79:

 starting_component="REDUCER"

304

 elif initialize_starting_component <= 9.44:

 starting_component="ELBOW"

 elif initialize_starting_component <= 25.62:

 starting_component="FLANGE"

 elif initialize_starting_component <= 59.84:

 starting_component="FTUBE"

 else:

 starting_component="TUBE"

 # Use Markov-chain transition matrix and state distribution to generate the
rest of components

 # Create probability transition matrix (modified to branches)

main_line_transition_matrix=np.matrix([[0,37.5,0,0,18.81,0,0,25,0,0,18.8,0,0],[4.8,0,
0,9.5,0,0,2.4,0,77.4,2.41,0,1.2,2.411],[0,38.5,0,0,19.2,0,0,19.21,3.8,0,19.21,0,0],[30.
7,1.9,0.4,15.8,0.94,0.21,15.6,0.93,1.1,15.4,1.,0.2,15.7],[31.9,0.6,0.5,16.0,0.31,0.2,1
5.9,0.3,1.7,15.91,0.311,0.301,16.1],[0.2,0,6,0.41,0,3.2,6.8,0,3.5,76.2,0.4,3.1,0.1],[5.
9,0.0,27.4,10.4,0,13.8,3,0,18.3,3.3,0,13.7,4.0],[6.3,0,0,3.2,3.21,1.6,3.211,0,58.7,20.
6,0,0,3.211],[20.3,13.6,0,10.2,6.8,3.4,10.21,6.81,0,10.211,6.811,0,11.9],[17.1,2.8,3.
8,9.4,3.4,6.7,8.6,1.4,5.4,26.3,1.41,4,9.8],[3.4,5.9,0.2,1.7,17.9,8.5,1.71,3.0,15.4,2,35.
8,2.4,2.1],[0,33.3,0,0,16.7,0,0,16.71,0,16.711,16.7111,0,0],[22.7,0,3.3,12.3,0,1.7,11.
3,0.8,15.2,17.3,0,2.8,12.7]])

 # Create column legends of probability transition matrix

matrix_legend=np.array([["TUBE","FTUBE","ELBOW","TEE","FBLIND","INSTRUME
NT","CAP","COUPLING","FLANGE","VALVE","CLOSURE","PCOMPONENT","RED
UCER"]])

 # Start generating components sequence

 for i in range (1,2000):

 if i ==1:

 previously_connected=Tee.popleft()

 else:

305

 previously_connected= component_number-1

 for row in tee_diameter:

 if row[0]== previously_connected:

 components_diameter=row[1]

 for row in running_direction_list:

 if row[0]==previously_connected:

 running_direction=row[1]

 if (len(branch)) <= (no_of_branch_components-1):

 initialize_sequence=np.random.uniform(0,100)

 ############################ Component CAP #################

 if starting_component == "CAP":

 # define the next CAP state step

 # No state distribution was found for Component State Cap, which
means it is found once in any pipeline

 next_component=main_line_transition_matrix[0,:] #

 # Sort the above array from smallest to largest

 next_component0=np.sort(next_component)

 # Transpose the array

 next_component1=next_component0.T

 x=[]

 # Limit the location of Cap to either the first of the last in the
sequence

 if i == 1:

306

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CAP",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CAP"+","+str(components_diameter)+","+str(350)
+","+str(running_direction)+"\n")

 branch.append("CAP")

 component_number+=1

 # Find the location of the next component in the sorted array

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elif len(branch) == (no_of_branch_components):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CAP",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CAP"+","+str(components_diameter)+","+str(350)
+","+str(running_direction)+"\n")

 branch.append("CAP")

307

 component_number+=1

 # Find the location of the next component in legends matrix

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 cap_step+=1

 starting_component= starting_component_state_branch()

 ############################ Component Instrument ############

 elif starting_component == "INSTRUMENT":

 next_component=main_line_transition_matrix[1,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if instrument_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","INSTRUMENT",",",components_diameter,",",350,",",running_direction)

308

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"INSTRUMENT"+","+str(components_diameter)+",
"+str(350)+","+str(running_direction)+"\n")

 branch.append("INSTRUMENT")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next INSTRUMENT state step

 instrument_next_step=len(branch)+ int(np.random.uniform(-2.381,
47.492))

 instrument_step= instrument_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Fblind ################

 elif starting_component == "FBLIND":

 next_component=main_line_transition_matrix[2,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

309

 x=[]

 # Limit the location of Cap to either the first of the last in the sequence

 if i == 1:

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FBLIND",",",components_diameter,",",int(np.random.uniform(19,50)),",
",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FBLIND"+","+str(components_diameter)+","+str(in
t(np.random.uniform(19,50)))+","+str(running_direction)+"\n")

 branch.append("FBLIND")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elif len(branch)== no_of_branch_components:

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FBLIND",",",components_diameter,",",int(np.random.uniform(19,50)),",
",running_direction)

310

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FBLIND"+","+str(components_diameter)+","+str(in
t(np.random.uniform(19,50)))+","+str(running_direction)+"\n")

 branch.append("FBLIND")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 fblind_step+=1

 starting_component=starting_component_state_branch()

 ############################ Component Tee #################

 elif starting_component == "TEE":

 next_component=main_line_transition_matrix[3,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if running_direction=="x":

311

 coming_from_x=["y","z"]

running_direction_list.append([component_number,random.choice(coming_from_x)]
)

 elif running_direction=="y":

 coming_from_y=["x","z"]

running_direction_list.append([component_number,random.choice(coming_from_y)]
)

 else:

 coming_from_z=["x","y"]

running_direction_list.append([component_number,random.choice(coming_from_z)]
)

 if tee_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","TEE",",",components_diameter,",",int(np.random.uniform(57,432)),",",r
unning_direction)#,int(np.random.gamma(1.3782,145.74)))

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"TEE"+","+str(components_diameter)+","+str(int(n
p.random.uniform(57,432)))+","+str(running_direction)+"\n")#

 branch.append("TEE")

tee_diameter.appendleft([component_number,components_diameter])

 if len(Tee)==0:

 Tee.append(component_number)

 else:

 Tee.appendleft(component_number)

 component_number+=1

 if initialize_sequence > np.max(next_component1):

312

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next TEE state step

 tee_next_step=len(branch)+ int(np.random.gamma(0.95639,
5.3605))

 tee_step= tee_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Elbow ################

 elif starting_component == "ELBOW":

 next_component=main_line_transition_matrix[4,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if elbow_step<=(len(branch)+1):

 if running_direction=="x":

 coming_from_x=["y","z"]

 running_direction= random.choice(coming_from_x)

313

 elif running_direction=="y":

 coming_from_y=["x","z"]

 running_direction= random.choice(coming_from_y)

 else:

 coming_from_z=["x","y"]

 running_direction= random.choice(coming_from_z)

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","ELBOW",",",components_diameter,",",int(np.random.laplace(339.86,0.
00111)),",",running_direction)#int(np.random.gamma(1.0652,257.04)))

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"ELBOW"+","+str(components_diameter)+","+str(in
t(np.random.laplace(339.86,0.00111)))+","+str(running_direction)+"\n")

 branch.append("ELBOW")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elbow_next_step=len(branch)+
int(np.random.laplace(0.51675,3.1097))

314

 elbow_step= elbow_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Ftube #################

 elif starting_component == "FTUBE":

 next_component=main_line_transition_matrix[5,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FTUBE",",",components_diameter,",",int(np.random.uniform(56,99.82))
,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FTUBE"+","+str(components_diameter)+","+str(int
(np.random.uniform(56,99.82)))+","+str(running_direction)+"\n")

 branch.append("FTUBE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

315

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 ############################ Component Tube #################

 # Component tube is assumed as a free floating element, therefore no
state distribution is required

 elif starting_component == "TUBE":

 next_component=main_line_transition_matrix[6,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if tube_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","TUBE",",",components_diameter,",",int(np.random.wald(2323.2,489.58
)),",",running_direction)#int(math.ceil(np.random.gamma(0.21074,11024))+50))#
revise no 50

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"TUBE"+","+str(components_diameter)+","+str(int(
np.random.wald(2323.2,489.58)))+","+str(running_direction)+"\n")

 branch.append("TUBE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

316

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 tube_next_step=len(branch)+ 1

 tube_step= tube_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Pcomponent ############

 elif starting_component == "PCOMPONENT":

 next_component=main_line_transition_matrix[7,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if pcomponent_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","PCOMPONENT",",",components_diameter,",",int(np.random.wald(726.
79,1072.6)),",",running_direction)#int(math.ceil(np.random.lognormal(0.86246,6.266
))+50)) #revise

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"PCOMPONENT"+","+str(components_diameter)+
","+str(int(np.random.wald(726.79,1072.6)))+","+str(running_direction)+"\n")

 branch.append("PCOMPONENT")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

317

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next PCOMPONENT state step

 pcomponent_next_step=len(branch)+
int(np.random.exponential(0.31376))

 pcomponent_step= pcomponent_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Coupling ##############

 elif starting_component == "COUPLING":

 next_component=main_line_transition_matrix[8,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","COUPLING",",",components_diameter,",",int(np.random.beta(0.02229,
0.42713)),",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"COUPLING"+","+str(components_diameter)+","+s
tr(int(np.random.beta(0.02229,0.42713)))+","+str(running_direction)+"\n")

 branch.append("COUPLING")

 component_number+=1

318

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 ############################ Component Flange ###############

 elif starting_component == "FLANGE":

 next_component=main_line_transition_matrix[9,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if flange_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FLANGE",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FLANGE"+","+str(components_diameter)+","+str(
350)+","+str(running_direction)+"\n")

 branch.append("FLANGE")

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

319

 component_number+=1

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 # Define the next FLANGE state step

 flange_next_step=len(branch)+ int(np.random.pareto(0.94902,1))

 flange_step= flange_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Valve ################

 elif starting_component == "VALVE":

 next_component=main_line_transition_matrix[10,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if valve_step <=(len(branch)+1):

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","VALVE",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"

320

,"+str(previously_connected)+","+"VALVE"+","+str(components_diameter)+","+str(35
0)+","+str(running_direction)+"\n")

 branch.append("VALVE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 valve_next_step=len(branch)+ int(np.random.gamma(1.437,5.584))

 valve_step= valve_next_step

 else:

 starting_component=starting_component_state_branch()

 ############################ Component Closure ###############

 elif starting_component == "CLOSURE":

 next_component=main_line_transition_matrix[11,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 if i == 1:

321

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CLOSURE",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CLOSURE"+","+str(components_diameter)+","+st
r(350)+","+str(running_direction)+"\n")

 branch.append("CLOSURE")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 elif len(branch) == no_of_branch_components:

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CLOSURE",",",components_diameter,",",350,",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CLOSURE"+","+str(components_diameter)+","+st
r(350)+","+str(running_direction)+"\n")

 branch.append("CLOSURE")

 component_number+=1

322

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 else:

 clousre_step+=1

 starting_component=starting_component_state_branch()

 ############################ Component Closure ################

 elif starting_component == "REDUCER":

 next_component=main_line_transition_matrix[12,:]

 next_component0=np.sort(next_component)

 next_component1=next_component0.T

 x=[]

 reducer_diameter=int(burr.rvs(c, d, loc=0, scale=124.3, size=1))

 components_diameter= reducer_diameter

 if reducer_step <=(len(branch)+1):

323

print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","REDUCER",",",components_diameter,",",int(np.random.gamma(3.464
5,51.749)),",",running_direction)

file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"REDUCER"+","+str(components_diameter)+","+st
r(int(np.random.gamma(3.4645,51.749)))+","+str(running_direction)+"\n")

 branch.append("REDUCER")

 component_number+=1

 if initialize_sequence > np.max(next_component1):

 location= np.max(next_component1)

 else:

 for i in next_component1:

 if initialize_sequence < i:

 x.append(i)

 location=(x[0])

 x.clear()

 a=np.array(next_component)

 y=np.where(a==location)

 starting_component=matrix_legend[y]

 reducer_next_step=len(branch)+
int(np.random.lognormal(0.86124,2.1598))

 reducer_step= reducer_next_step

 else:

 starting_component=starting_component_state_branch()

 else:

 initialize_sequence=np.random.uniform(0,100)

324

 else:

 break

 cap_step=1
 instrument_step=1
 tube_step=1
 valve_step=1
 fblind_step=1
 ftube_step=1
 flange_step=1
 clousre_step=1
 pcomponent_step=1
 tee_step=1
 reducer_step=1
 coupling_step=1
 elbow_step=1

 branch.clear()

 except IndexError:

 break

print('Please inter the number of industrial pipelines!')
userinput= [input()]
PipelineGenerator(int(userinput[0]))

