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ABSTRACT 

Construction projects are unique and complex in nature. They are associated with 

many challenges regarding the randomness, complexity, and interdependency related 

to the operation/process, the environment hosting the operation, and the product being 

constructed. These challenges are also common in the area of simulation and modeling 

of a construction operation. Research in this field demands real life data but 

unfortunately the availability of such data is one of the major challenges. Also, the 

random generation of complex construction data structures that contain correlated 

attributes make it difficult to replicate real systems behaviors.  The objective of this 

research is to investigate alternative techniques that can be used to randomly generate 

complex construction data structures while preserving the correlation between their 

formations’ attributes.    

This research focuses on two different types of construction-related data: weather data, 

and industrial pipelines data. A non-parametric approach in the form of bootstrapping 

technique was applied in the generation of weather data, and its performance was 

measured against a parametric weather generator constructed in the field of modelling 

construction operations. The validation results showed that the proposed technique 

performed in a manner similar to that of the parametric weather generator and 

outperformed it in some cases.  A parametric approach in the form of Markov chain 

technique was applied to randomly generate industrial pipeline data structures, and its 

performance was tested against real pipeline data. The validation results showed that 

the proposed Markov chain model was able to generate an industrial pipeline data 
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structure similar to those in reality. The majority (89%) of generated pipelines shared 

characteristics with 85.5 % of the original pipelines. 

This research demonstrates the application of the developed generators in two areas.  

The first application modelled an earthmoving operation in oil sand mining and used 

the weather generator to analyse the effect of temperature on breakdown and repair 

durations. The second application  involved building a pipe-spooling optimization 

model and used the industrial pipelines data generator to randomly generate instance 

problems to test the computational efficiency of the optimization’s solution algorithm. 
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Chapter 1 
 

Introduction 
 

 

 

1.1 Background and problem statement  

The construction industry is complex and unique. Research in this industry grows 

rapidly to overcome its associated problems. Analysing and solving construction-

related problems require collecting and using data. However, this data is not readily 

available. Collecting data plays a critical role in performing reliable research because 

it represent the nature of real systems. However, real systems’ data can be complex, as 

it may be composed of a set of inter-dependent/correlated attributes. Preserving 

dependencies between data’s attributes is challenging. Furthermore, preserving 

dependencies limits the available size of real case data which can be used for research.  

For instance, experimental analysis is normally performed to address and test 

variations of a real system with respect to changes in the system’s formation 

components or variables. It is used to test new algorithms and procedures to solve real 
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world problems. To provide valuable insight into and information about the system of 

study, experimental analysis depends greatly on the availability or size of data sets and 

their quality.  Papageriou et al. [1] reported that there are no publicly available 

benchmark instances on which researchers, in the context of operational research, can 

test their algorithms. Otto, Otto, and Scholl [2] stated that due to the limited number 

of real-world problems reported in the literature, generating problem instances using 

random generators is a valuable source of test data. They also stated that choosing 

adequate test data sets is a focus of discussions in computational experiment 

guidelines. In information discovery and analysis systems, having data sets is 

important to develop test cases to cover hypothetical future scenarios. Privacy or the 

challenge and cost associated with collecting real data impose the need of generators 

capable of producing data sets [3]. Jeske et al. [3] emphasize the importance of 

generating test data sets to support performance studies of statistical and artificial 

intelligence techniques used in information discovery and system analysis. 

In modeling and simulation, Trypula [4] noted that 10% to 40% of the total time 

required to build a simulation model is attributed to data gathering, cleaning, and 

validation. Perera and Liyanage [5] reported that the development of simulation 

models is delayed when the right data are not available in the right format at the right 

time. Perera and Liyanage [5] also concluded that poor data availability is ranked first 

among major pitfalls in input data collection. Input modeling is the practice of 

selecting probability distributions to represent the random nature of a system and that 

choosing the most appropriate distribution is easier if data are available [6]. Assuming 

that data are available and the system’s objective and formation variables are well-
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defined, input modeling is performed by applying three steps: (1) selecting different 

probability distributions for an input model, (2) estimating the parameters of the 

model, and (3) assessing the goodness of fit. These steps are applied when the system 

variables are assumed independent from each other (called univariate input modeling). 

This practice in input modeling is widely applied in the simulation of construction 

operations. AbouRizk et al. [7] illustrated a numerical technique that can be used to fit 

beta distributions to sample data for construction engineering and examined its 

applicability to heavy construction operations.  However, system variables may exert 

interdependency with each other.  For instance, construction operations are subjected 

to uncertainty factors that causes variabilities in their work performance and weather 

is one of them [8]. In generating, weather variables for modeling construction 

operations, weather data in each day are represented in the form of a vector, as 𝑠 in 

Figure 1- 1, containing hourly/daily weather variables (e.g. precipitation, temperature, 

relative humidity, etc.), and each variable may have a dependency in daily or hourly 

manners (dashed arrow) or may exert interdependency (solid arrow) with other 

variables. Such dependencies add complexity in modeling weather variables but it is 

important to preserve them in order to achieve a realistic modeling environment [9]. 
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Figure 1- 1 A graphical definition of complex data structure and areas found in 

construction engineering research 

Referring to Perera and Liyanage [5], the right data may not be available in the right 

format; in this study, we define data format as a data structure. Different applications 

may require different data structures. For example, in industrial construction projects 

such as refineries and chemical plants, piping represents a major element. Piping work 

goes through three major stages: (1) pipe spool fabrication, (2) module assembly, and 

(3) site installation [10]. In modeling piping stages, each stage may require sets of 

inputs with each set comprised of vectors containing attributes such as type (nominal), 

diameter (numerical), length (numerical), and weight (numerical). Considering the 

diversity and the uniqueness associated with input data is crucial to maintain a proper 

modeling results [11] [12]. This diversity in the type of data in a single vector creates 

a challenge in input modeling for optimization studies because (refer to Figure 1- 1) 
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(𝑥14, 𝑥24, 𝑥34,…, 𝑥𝑛𝑠) 
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when pipeline data are generated, each pipeline is represented in the form of a tree 

structure 𝐺 containing a collection of nodes 𝑁 and edges 𝐸. Each node 𝑛 in 𝑁 is 

presented in the form of a vector containing properties such as the type of pipeline 

component, its diameter, and length. The connectivity between nodes or the 

reproduction of the type of node is depedendent on its neighbor, which adds more 

complexity in modeling such data. Furhermore, unlike the generation of weather 

variables, pipeline data structure represents a construction product. To maintain 

realistic data, it is necessary to take into consideration the topological structure in the 

generation process. 

From the above perspective, it is clear that having data available on hand to support 

research studies is a critical issue. Furthermore, based on the modeled system, different 

types of data structures may exist. These range from a simple numerical type of data 

to a complex combinatorial type of data. The main thrust of this study is to investigate 

the use of mathematical techniques to construct and formulate reliable data generators 

capable of generating complex construction-based data sets with highly correlated 

attributes. 

1.2 Research objectives 

The main objective of this research is to investigate the use of parametric and non-

parametric approaches for random generation of construction-related data structures. 

It focuses on two types of data structures: the weather, and the industrial pipelines data 

structures. The first one represent a sample of the external factors that affect 

construction operations. The second is a sample of the complex data structures that 
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characterize construction products. The selection of these two is also affected by the 

availability of data sets that can be used during modeling and validation phases of the 

research. The more specific research objectives can be defined as follows:  

1. To evaluate the use of a non-parametric approach in the form of bootstrapping 

technique to randomly generate weather data. 

2. To develop and evaluate the use a parametric approach in the form of a Markov 

chain technique to randomly generate industrial pipelines data. 

3. To investigate different validation approaches for testing the accuracy of the 

proposed techniques. 

4. To demonstrate the application of the proposed techniques in construction-

related case studies. 

1.3 Research methodology  

Figure 1- 2 shows the implemented research methodology. This research is split into 

two parts with a number of steps in each part. The following sections provide a 

summary of each step.   
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Figure 1- 2 Research methodology 

Step 1: In this step, the field of interest is studied and the required data to be modeled 

is identified.  As mentioned in the objectives, complex construction data structures are 

targeted; therefore, two types of data that differ in nature and complexity were selected 

to be investigated and modeled. The first data is related to weather variables that 
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represent the environment that hosts the construction operation and the second type of 

data is related to industrial pipeline data that represent a construction product.  

Step 2: In this step, data collection is performed. Records of 40 years of historical 

weather data were collected for modeling weather variables and records from about 

1052 pipelines from an industrial construction project were collected to model pipeline 

data structure.  Data collected from different sources usually require cleaning and 

preparation. More specifically, they require restructuring to serve the modeling 

objective of the research. In the context of weather data, historical weather records are 

normally clean and tabulated in the form of hourly or daily records. However, pipeline 

data are represented in the form of three-dimensional models, which require data 

extraction, extensive data cleaning, and data restructuring so that the properties of the 

pipeline tree structures can be analysed. 

Step 3: In this step, mathematical techniques that be can be used in modeling and 

generating weather variables and pipeline data structure are investigated. The selection 

of what mathematical technique can be used for each type of data depends on the 

previous step. A non-parametric approach in the form of bootstrapping technique is 

selected to randomly generate weather variables with replacement, and a Markov chain 

model is selected to generate the industrial pipeline tree structure randomly.  

Step 4: In this step, weather and industrial pipeline data generators are developed and 

implemented using Python [13]. The weather generator provides data containing 

weather variables which may affect construction operations. The industrial pipeline 
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data generator provides data containing pipeline components’ properties and their 

connectivity relationships with other components. 

Step 5: In this step, a comprehensive three-stage validation process is performed to 

test the reliability of both the weather and the industrial pipeline data generators in 

generating realistic data. The performance of both generators is tested using different 

validation methods. The difficulty associated with this step is related to the validation 

of pipeline data structures. More specifically, the challenge lies in how to statistically 

measure the similarity between synthetic and original pipeline tree structures. This 

challenge is overcome by converting the tree structure of the pipelines to feature 

vectors capable of preserving the component properties and their unique location in 

the pipeline structure.  

Step 6: Data generators are built for certain objectives/applications. In this step, the 

use of each data generator (the weather, and the industrial pipeline data generators) is 

demonstrated in two different applications. The weather generator is implemented in 

the context of simulation modeling, and the industrial pipeline data generator is 

implemented in the context of computational efficiency of optimization algorithms.  

1.4 Thesis organization 

Chapter 2 reviews the effect of weather on the construction operation and justifies the 

importance of integrating weather effects in modeling construction operations. It also 

reviews the parametric weather generation approach which has been recently used in 

the field of construction engineering research to generate weather variables. Its 

drawbacks are highlighted in this chapter and a non-parametric weather generation 
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approach, in the form of the bootstrapping technique, is proposed. For the purpose of 

validation and evaluation of the non-parametric weather generation approach, two 

weather generation models were developed for this chapter: the parametric and the 

non-parametric weather generation approaches. This chapter also presents a 

comprehensive evaluation process that includes evaluating the assumptions used in 

building the models, their generated outputs, and their performances when applied on 

two weather-sensitive construction models. 

Chapter 3 illustrates the application of the weather generator in modeling a 

construction operation. It highlights the weather effect in earthmoving operations, 

more specifically in earthmoving mining. In this chapter, mining the earthmoving 

operation located in Fort McMurray is modeled using distributed simulation with high 

level architecture (HLA) standards. A weather generator was built and integrated into 

the simulation model. The simulation model studies the effect of extreme winter 

temperature on the breakdown and repair duration of trucks and excavators. The 

weather generator rule was to provide different testing scenarios. At the end of this 

chapter, the weather scenario’s effect on breakdown repair duration is analysed and 

reported.   

Chapter 4 reviews the general input modeling technique. It highlights difficulties 

associated with modeling the tree structure type of industrial pipelines and proposes a 

Markov chain model in the generation process. In this chapter, the Markov chain model 

is used in the branching process of the industrial pipeline data structure. Furthermore, 

this chapter presents a detailed overview of the industrial pipeline data. It includes data 

collection, preparation, structuring, and statistical analysis processes that are 
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performed before building the industrial pipelines data generator. As in the weather 

generation chapter, this chapter applies a comprehensive validation process. This 

chapter also shows a methodology of converting the industrial pipeline tree structure 

into a feature vector and demonstrates a three stage-validation process.  

Chapter 5 illustrates how to apply the industrial pipeline data generator to test the 

efficiency of optimization algorithms. This chapter defines an optimization problem in 

the area of industrial construction, proposes an optimization algorithm, and tests the 

efficiency of the optimization algorithm using a data test set generated from the 

industrial pipeline data generator.  

Chapter 6 presents the conclusions of this research, contributions, limitations, and 

future directions. 
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Chapter 2 

 

Non-Parametric Weather Generator for 

Modelling Construction Operations: 

Comparison with the Parametric Approach and 

Evaluation of Construction-Based Impacts  

 

 

2.1 Introduction 

The construction industry is subject to a wide range of uncontrollable external factors 

that cause uncertainty in the planning, scheduling, and controlling phases of a project. 

Among these factors are changing weather conditions, which are environmental 

factors that significantly influence the efficiency of construction operations. The effect 

of weather conditions on construction projects is variable and is based on numerous 

factors, including types of construction, location, and season. Ahuja and Nandakumar 

[14] have stated that the reliability of project duration forecasting depends on the 

accuracy of network logic, individual activity duration estimates, and various 
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uncertainty variables in the project environment including weather. Losses in man-

hours can also result from changes in weather conditions, with the impacts of weather 

on labour cost being classified into five groups: (1) bad weather time (describes the 

scenario where workers are paid, but no work progress is made), (2) reduced 

productivity (describes the scenario where worker output is reduced and additional 

paid man-hours are required), (3) repetition of work resulting from damage caused by 

weather variables such as wind, rain, or ice, (4) stood-off time (describes the scenario 

where workers are dismissed, absent, or reported late due to bad weather), and (5) a 

reduced working schedule due to bad weather [15]. 

Randolph et al. [16]found that 30% of loss in steel operation productivity is due to cold 

winter temperatures. Kohen and Brown [17]indicated that three-quarters of worker 

compensation claims during the cold season are due to frostbite-related injuries. To 

maintain a healthy working environment, the American Conference of Governmental 

Industrial Hygienists (ACGIH) [18] developed a warm-up schedule for construction 

trades in cold regions. Productivity is most affected by changes in weather conditions 

when construction activity is entirely dependent on labour. For example, high wind 

speeds dramatically exacerbate drops in temperature, making it impossible to sustain 

a constant labour production rate under these conditions. 

In earthmoving operations required for highway construction, weather conditions are 

a critical factor that must be considered in productivity estimates. Material excavation 

and hauling activities are sensitive to rainfall and in some instances work may either 

be stopped or suspended as a result of unworkable soil conditions [19]. Experts in 

highway construction have indicated that the impact of rainfall is dependent on rainfall 
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amount and timing, as well as on drying conditions. They also reported that an average 

of 1.5 days of earthmoving productivity is lost when rainfall intensity is between 13-

25 mm [19]. 

Previous studies investigated the effects of weather variables on construction 

activities. Ahuja and Nandakumar [14] and Kavanaga [20]considered the effect of 

weather as a percentage in their construction modelling and measured how frequently 

weather resulted in reduced activity. Moselhi et al. [21] quantified the impact of 

weather conditions on daily construction activity. El-Rayes and Moselhi [19] 

presented a decision support system for quantifying the impact of rainfall on 

productivity and duration of highway construction operations. Wales and AbouRizk 

[22] and Shahin et al. [23] developed a stochastic weather generator that produces 

weather variables for use in construction simulation models. Apipattanavis et al. [24] 

proposed a framework for quantifying and predicting weather-related highway 

construction delays, which included a weather generator to provide a probabilistic 

forecast of weather threshold values. Although methodologically different, these 

investigations followed a similar pattern to build the required models and quantify their 

impacts on real projects by: (1) studying construction processes, (2) understanding 

weather impact on processes, (3) determining the weather variables that affect the 

studied process, (4) searching for source(s) of weather data, (5) selecting a modelling 

technique, (6) generating weather variables (the generation of weather variables is 

normally performed by developing a weather generator tool), and, finally, (7) applying 

the model to a case study project.  
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Fatichi et al. [25] defined weather generators as numerical tools capable of generating 

a time-series of climatic variables with statistical properties similar to the observed 

climate. These generators are used to generate synthetic weather series to help study 

weather-dependent processes. Depending on the process being modelled, weather 

generators differ in terms of time steps, single or multiple locations, and number of 

variables (e.g., temperature, precipitation, and wind speed). 

A universal weather generator framework was proposed by Shahin [26] to be used in 

construction engineering and management research. The framework illustrated the use 

of the parametric stochastic weather generation approach to generate synthetic weather 

series with multiple variables. It used a first-order Markov chain model to generate 

precipitation, a multivariate generation model to generate temperature and relative 

humidity, and a probability distribution model to generate wind speed. This approach 

is associated with drawbacks such as the selection of the order of the Markov chain 

model. Although the first-order Markov chain model is commonly applied to generate 

precipitation, this selection has been unjustified [27]. Chin [27] analysed 25-years 

records of precipitation from 100 weather stations in the United States and concluded 

that the first-order Markov chain model is adequate in resampling the wet and dry 

spells in the summer season. However, during the winter season, a higher-order 

Markov chain model was better than the first-order model at re-sampling the wet and 

dry spells. Chin also concluded that the geographical location of the studied area 

affects the selection order of the Markov Chain model. Another drawback associated 

with generating precipitation is the amount generated. The parametric approach 

samples the amount of precipitation from a probability distribution function. The main 
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challenge associated with this model is its ability to reflect the features found in 

precipitation data, including bimodality, skewness, and long tail [28]. In addition, the 

parametric approach assumes weather data to be normally distributed, so that the 

multivariate generation model can be used to generate temperature and relative 

humidity variables. However, weather data from different locations may exert different 

distribution behaviour. Doubrovsky [29] constructed a stochastic weather generator 

called Met&Roll using the classical approach presented by Richardson [9], and 

conducted validation by comparing the generated monthly means with observed means 

from historical weather records. He concluded that weather variables such as solar 

radiation, maximum temperature, and minimum temperature did not follow a normal 

distribution. Another drawback associated with the parametric approach used in the 

universal weather generator framework is created by the gap between the large time 

scale (on a daily basis) of the generated weather variables and the time scale required 

by the application at which the weather generator is used. Most construction operations 

consider the effect of changes in weather conditions on a daily basis. However, other 

operations, such as earthmoving in the mining industry, which often takes place in cold 

regions, require hourly weather monitoring. This case adds complexity to the 

generation of weather variables. Bridging this gap represents a challenging problem in 

assessing such operations. Although parametric approaches are expected to improve 

generated weather series, they still have several inadequacies: (1) the choice of model 

is subjective (e.g., modelling weather variables by fitting them into their distribution 

independently or using multivariate models) and rarely tested on a site-by-site basis 

[30], (2) the distribution of weather variables used at one site may not be appropriate 
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for all sites [30], and (3) the multivariate models require data to be normally 

distributed. In case in which they are not normally distributed, a transformation to 

normality is required. This is a difficult task that may negatively affect model 

performance [31]. 

Detailed records of historical weather data for almost all locations in the world are 

publicly available. Using such high quality records, it is possible to directly sample 

realistic weather parameters for different times and locations. Realistic extreme cases 

can also be generated from these records. This paper illustrates a simplified, non-

parametric weather generation approach that uses the classical bootstrapping technique 

to generate synthetic weather series. 

Unlike the parametric approach, the non-parametric approach does not require a 

theoretical probability distribution function for weather variables. This approach 

preserves serial dependence between weather variables by using a block-resampling 

scheme that considers a block of observations as a single observation and generates 

daily and hourly weather variables. However, the generated weather series in the non-

parametric approach is limited by historical records, as simulated samples are selected 

from available (past) weather data. Therefore, an experiment on both parametric and 

non-parametric approaches is conducted to highlight differences between both 

approaches from two perspectives: the generated weather series and their performance 

when applied on weather-sensitive construction models.  

For the purposes of comparison, this experiment uses a weather generator framework 

developed by Shahin et al. [32] to simulate construction operations. The framework 
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applies the parametric approach to generate weather variables. The parametric 

approach used by Shahin et al. [32] shares the same drawbacks discussed previously. 

In addition, wind speed is modelled independently with no correlation to other weather 

variables and the generated weather data is limited to a daily scale.  

This chapter is organized as follows. In Section 2.2, a detailed description of the 

experiment applied to both parametric and non-parametric weather generators is 

presented. Section 2.3 describes how both generators are developed. Section 2.4 

illustrates a comprehensive weather generation evaluation process, which tests the 

weather generators’ performances from the perspectives of the assumptions applied 

and outputs generated. It also assesses the generators’ performances when applied on 

construction simulation models. The conclusions of this chapter are outlined in Section 

2.5. 

2.2 Experimenting with the Parametric and Non-Parametric Approaches 

Here, a simplified non-parametric weather generator is developed and its performance 

compared to a previous weather generator using historical records as a baseline. Figure 

2- 1 shows a summary of the study methodology, which begins by selecting the 

location of study. This step is performed to determine the weather variables that may 

directly affect construction operation performance at that location. For the purpose of 

this investigation, Fort McMurray, Alberta is selected as the location of study. 

However, a different location may be chosen, provided that weather records are 

available. Fort McMurray is located in the northern part of the province of Alberta, 

Canada (56°44’ N, 111° 23’ W) and is characterized by large seasonal temperature 
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differences. Known worldwide for its oil sands, this region has witnessed tremendous 

industrial activities, including oil extraction, mining, and construction, which are 

currently driving the province’s economy. 

The second step consists of importing historical weather data for the location of study. 

Most countries have their own meteorological agencies that record and save weather 

time series. In Canada, Environment Canada maintains historical weather records that 

can be used to construct a weather generator. Moreover, historical weather data about 

most locations can be found in the National Climatic Data Center on the National 

Oceanic and Atmospheric Administration (NOAA) website [33]. 

After an historical weather database is created, two weather generators are constructed 

(see Appendix A). The first is constructed using the classical parametric approach and 

the second is constructed using a non-parametric approach. The two generators’ 

outputs are evaluated based on a defined testing scenario. For the scenario, two 

synthetic weather series data sets are created, each corresponding to a 10-year period 

from both generators. A statistical analysis is performed to compare both datasets 

against historical records. Comparison with historical records will determine the 

degree of similarity between the synthetic and the real weather time series. Another 

weather generator evaluation test will also be conducted. The second test measures 

how imperfections associated with the weather generators’ outputs affects the results 

obtained from a model that uses weather series as an input. A similar evaluation was 

conducted by Dubrovsky et al. [34]. This evaluation assumes that model outputs fed 

by synthetic weather series should have similar characteristics to those fed by historical 

records. The discrepancies between outputs from two different sources of input 
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(historical and synthetic) are due to the sensitivity of the model to certain 

characteristics of weather variables. Accordingly, low discrepancies indicate that 

weather variables are perfectly reproduced by the weather generator and vice versa.  

 

Figure 2- 1 Study methodology 
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2.3 Construction of Weather Generators 

2.3.1 Parametric weather generator 

In classical weather generation, the stochastic relationships underlying meteorological 

processes are always considered in modelling weather variables. Normally two main 

relationships are considered in any weather modelling: (1) the time dependence within 

each variable, and (2) the interdependence among the weather variables [9]. 

Richardson’s [9] stochastic simulation approach to weather generation represents the 

foundation of most weather modelling studies. Its general generation process flow 

chart is shown in Figure 2- 2. 
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Figure 2- 2 A parametric weather generation flow chart 
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In Richardson’s seminal work, precipitation, which serves to label days as dry or wet, 

is used to construct any other relevant weather parameter required by the model. The 

amount of precipitation is determined independently using a distribution function that 

represents the amount of rainfall throughout a year. Prior to determining the  amount 

of precipitation, a first-order, two-state Markov chain concept is used to describe the 

occurrence of wet and dry days, as shown in Figure 2- 3. 

 

Figure 2- 3 Two-state Markov chain precipitation model 

 

According to Figure 2- 3, given a wet day (or dry day), the conditional transition 

probability to a dry day (or a wet day) satifies the following equations:  

 2-1 

To initialize the computation, the state of the first day (i.e., wet or dry) is determined 

using the unconditional probability 𝑃𝑚(𝑤) associated with month m (or 
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equivalently 𝑃𝑚(𝑑) = 1 −  𝑃𝑚(𝑤)) in conjunction with the algorithm given in 

equation (2-2): 

 2-2 

In which  is a randomly generated number from a uniform distribution. As for the 

daily precipitation, it is usually modeled independently by means of an appropriately 

selected distribution function. For instance, Richardson [9] used the exponential 

distribution function, , for its simplicity but stated that mixed 

exponential, , and gamma distribution functions 

are better at describing the amount of precipitation. Wales and AbouRizk [22]and 

Shahin [26] used a two-state gamma distribution, due to its flexibility in using two 

parameters to describe the distribution.  

Once the wet or dry day state condition is determined, the other weather variables are 

calculated using a continuous multivariate stochastic process with daily mean and 

standard deviations conditional on the day (wet/dry). This technique was described by 

Yevjevich [35] and it begins by reducing the time series of each variable to time series 

of residual elements by removing the periodic means and standard deviations. It is 

performed by first determining the mean and standard deviation for wet and dry days 

for all variables from the historical weather records. Then, the Fast Fourier Transform 

method is performed in order to smooth the daily means and standard deviations. 

Finally, the following equations are utilized to calculate the residual elements: 

 if    Wetn mr P w   

nr

 ( ) expn n nf x x  

   ( ) exp expn n n n nf x a b x c d x   
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 2-3 

where: 

𝑥𝑑(𝑖) = the residual element of parameter 𝑖 for day 𝑑 in the records, 

𝑋𝑑(𝑖) = the value of parameter 𝑖 for day 𝑑 in the records, 

𝜎𝑑
0(𝑖) = the periodic standard deviation of parameter 𝑖 for a dry day 𝑑 in the historical 

records, 

𝑋𝑑
0̅̅ ̅̅ (𝑖) = the periodic mean of parameter 𝑖 for a dry day 𝑑 in the historical records, 

𝜎𝑑
1(𝑖) = the periodic standard deviation of parameter 𝑖 for a wet day 𝑑 in the historical 

records, 

𝑋𝑑
1̅̅ ̅̅ (𝑖) = the periodic mean of parameter 𝑖 for a wet day 𝑑 in the historical records, and 

= the amount of precipitation for day 𝑑 in the records. 

A weakly stationary generating process is then used to generate residual elements of 

the weather parameters. The weakly stationary generating process used in this 

approach was defined by Matalas [36] and its equation for n weather parameters is as 

follows: 

𝑥𝑑 = 𝑨𝑥𝑑−1 + 𝑩𝜀𝑑 2-4 
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where: 

𝑥𝑑= the (nx1) matrix of residual elements for day d for parameters 1 to n, 

𝑥𝑑−1 = the (nx1) matrix of residual elements for d-1 for parameters 1 to n, 

A and B = the (nxn) matrices defined so that the correlations within and among the 

residual series are preserved, and 

𝜀𝑑 = the (nx1) matrix of random components sampled from a standard normal 

distribution with a mean of 0 and a standard deviation of 1. 

This approach implies that the weather parameters are normally distributed and that 

the serial correlation within each parameter can be described by a first-order linear 

autoregressive model. Therefore, matrices A and B may be determined from the 

following matrix equations: 

𝐀 =  𝑴𝟏𝑴𝟎
−𝟏   2-5 

𝑩𝑩𝑻 =  𝑴𝟎 − 𝑴𝟏𝑴𝟎
−𝟏𝑴𝟏

𝑻  2-6 

where: 

𝑴0 = the (nxn) lag0 covariance matrix of the residual series, and  

𝑴𝟏 = the (nxn) lag1 covariance matrix of the residual series. 

A full description of the construction of parametric weather generators can be found 

in Shahin [26]. Shahin applied his framework in two different locations, one of which 

was Fort McMurray. All parameters used in the parametric weather generator are 

extracted from his work and are listed in Table 2- 1. 
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Table 2- 1 Parameters used in constructing the parametric weather generator 

Weather 

variable 

Mathematic

al model 
Parameter values used in the generation process 

Wet and 

dry states 

of the day 

 

First-order 

two-state 

Markov chain 

 

Month (m) Jan Feb Mar Apr May Jun 

𝑃𝑚(𝑤) 0.406 0.369 0.316 0.262 0.338 0.452 

𝑃𝑚(𝑤|𝑤) 0.536 0.545 0.48 0.429 0.476 0.56 

𝑃𝑚(𝑤|𝑑) 0.317 0.265 0.24 0.203 0.27 0.364 

Month (m) Jul Aug Sept Oct Nov Dec 

𝑃𝑚(𝑤) 0.498 0.422 0.412 0.349 0.415 0.41 

𝑃𝑚(𝑤|𝑤) 0.581 0.548 0.577 0.508 0.574 0.534 

𝑃𝑚(𝑤|𝑑) 0.416 0.331 0.296 0.264 0.302 0.324 

Precipitati

on 

Fitted to a 

two-state 

gamma 

distribution 

 

Month  Jan Feb Mar Apr May Jun 

α 0.731 0.736 0.611 0.53 0.46 0.556 

β 2.085 1.999 2.764 5.151 7.848 9.432 

Month  Jul Aug Sept Oct Nov Dec 

α 0.518 0.41 0.431 0.481 0.747 0.666 

β 10.024 12.795 9.389 5.516 2.52 2.422 

Maximum 

temperatur

e, 

minimum 

temperatur

e, 

maximum 

relative 

humidity, 

and 

minimum 

relative 

humidity 

Weekly 

stationary 

generation 

process 

𝐀 =  [

𝟎. 𝟑𝟔𝟖 −𝟎. 𝟎𝟏𝟒 𝟎. 𝟎𝟕𝟕 −𝟎. 𝟎𝟓𝟖
𝟎. 𝟐𝟐𝟏 𝟎. 𝟎𝟎𝟒 𝟎. 𝟎𝟎𝟒 𝟎. 𝟎𝟑𝟕
𝟎. 𝟎𝟖𝟓 −𝟎. 𝟎𝟎𝟓 𝟎. 𝟒𝟎𝟔 𝟎. 𝟐𝟒𝟔
𝟎. 𝟎𝟐𝟎 𝟎. 𝟎𝟎𝟐 𝟎. 𝟎𝟗𝟓 𝟎. 𝟒𝟏𝟏

] 

𝐁 =  [

𝟎. 𝟗𝟐𝟑 𝟎 𝟎 𝟎
𝟎. 𝟑𝟗𝟑 𝟎. 𝟖𝟗𝟒 𝟎 𝟎

−𝟎. 𝟎𝟏𝟔 −𝟎. 𝟎𝟎𝟓 𝟎. 𝟖𝟐𝟕 𝟎
−𝟎. 𝟐𝟓𝟐 𝟎. 𝟏𝟑𝟓 𝟎. 𝟑𝟎𝟒 𝟎. 𝟕𝟖𝟒

] 

The mean and standard deviation of each day are divided into two 

values representing a wet and a dry status and their values are 

calculated from the historical weather records. 

Average 

daily wind 

speed 

 

Fitted to a 

two-state 

gamma 

distribution 

 

Mont

h Jan Feb Mar Apr May Jun 

α 2.319 3.579 4.522 6.525 6.431 5.904 

β 3.622 2.519 2.176 1 .68  1.707 1.634 

Mont

h Jul Aug Sept Oct Nov Dec 

α 5.176 4.693 4.588 4.651 3.794 2.019 

β 1.735 1.856 2.076 2.215 2.337 4.146 
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2.3.2 Non-parametric weather generator 

Most non-parametric methods use resampling techniques to generate samples 

repeatedly and randomly from a given dataset. One of these techniques, which came 

to be known as bootstrapping, was introduced by Efron [37] and has been widely used 

by practitioners to construct confidence intervals and/or approximate sampling 

distributions. In the context of this approach, the original dataset plays the role of a 

population from which samples of equal size are randomly drawn with replacement. 

In generating weather series, the time dependence within each variable and 

interdependence among the weather variables should be preserved. However, since the 

resampled observations are selected independently, the serial dependence may not be 

preserved. This issue was resolved by using the block-resampling scheme introduced 

by Kunsch [38], which considers a block of observations as a single observation. In 

our case, a block that has a daily weather forecast (e.g., temperature, precipitation, 

relative humidity) is considered a single observation. Using the block-resampling 

scheme, the serial dependence can be preserved within the block, but not across. 

Assuming there are no dramatic climatic change effects, the dependence across the 

blocks can be preserved by considering each year’s record as a single independent 

sample. The bootstrapping resampling technique can then be performed by: 

 First, constructing an empirical probability distribution,𝐹𝑛, from the observed 

sample by placing a probability of 1/𝑛 (where 𝑛= the number of years in the 

record) at each year.  

 Second, drawing a random sample of size 𝑛 with a replacement.  
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 Third, calculating a statistic of interest from the resampled set. 

 Finally, repeating the second and the third steps until the required number of 

sets is achieved [39]. 

The construction of the non-parametric weather generator starts with the creation of a 

database of historical weather forecasts of the studied location. Weather parameters 

created in the database are those that have a direct effect on construction operations. 

However, all weather parameters can be added to the database for the purposes of 

covering most of the weather requirements in modelling construction operations. Once 

the database is created, a computer model is developed to generate random weather 

parameters. The random generation of weather parameters in this simplified approach 

begins with the random selection of the year from the database. When the user defines 

the day and month that represent the construction operation date, the generator begins 

sampling directly from the initialized date of operation. The weather generator reflects 

the generated weather in the form of a block containing all of the construction 

operation’s weather parameters of interest. This block represents weather parameters 

that have been recorded and saved by weather stations, ensuring that correlations and 

dependencies amongst meteorological variables are well preserved. For this simplified 

approach to generating large-time and small-time-scale weather variables, daily and 

hourly historical weather forecast tables were created in the database. As shown in 

Figure 2- 4, after initializing the weather generation starting date, the generator 

provides the user with the flexibility of choosing between hourly and daily time 

intervals. If the construction operation of study requires daily weather forecasts, the 

generator samples directly from the daily forecast table in the database and advances 
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the calendar one day before generating a second weather update. Where an hourly 

weather forecast is required, weather variables are sampled from the hourly forecast 

table, with the exception of certain weather variables, such as precipitation and snow 

depth, whose parameters are recorded in the daily weather forecast table. In this case, 

the weather update is performed after the time is advanced one hour and is moved to 

the second day in the calendar when 24-hour weather forecasts are generated.  
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( month, day)

Determine location & start date

( month, day)

Randomly select yearRandomly select year

Initialize weather generator based 

on (year,month,day)

Initialize weather generator based 

on (year,month,day)

Precipitation and snow depth 

equal zero

Precipitation and snow depth 

equal zero

Get other parameters from the 

hourly table in the database

Get other parameters from the 

hourly table in the database

Get precipitation and snow depth 

,if selected, from the daily 

forecast table in the database

Get precipitation and snow depth 

,if selected, from the daily 

forecast table in the database

Update weather parametersUpdate weather parameters

Is the operation 

finished?

Is the operation 

finished?

EndEnd

Select weather variables to be 
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Select weather variables to be 
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Hourly forecast 

required

Hourly forecast 

required
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Advance watch one hourAdvance watch one hour

Yes

Get weather parameters from the 

daily table in the database

Get weather parameters from the 
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Update weather parametersUpdate weather parameters

Is the operation 
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Advance calendar one 
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No

No

Yes

Yes

No

No

Yes

 

Figure 2- 4 Non-parametric weather generation flow chart 

  



32 
 

2.4 Weather Generators’ Evaluation 

 

The evaluation of the parametric and non-parametric weather generators is performed 

in three stages as follows: 

 Evaluation of weather generators’ assumptions. 

 Evaluation of weather generators’ outputs.  

 Evaluation of weather generators’ performance in weather-sensitive 

construction models. 

2.4.1 Evaluation of weather generators’ assumptions 

This stage is performed by applying the conceptual model validation approach [40], 

which determines if content, theories, and assumptions are correct and if the problem 

representation in the model logic, structure, and mathematical relationships is 

reasonable. In addition, a comparison with historical records is used to assess the 

reliability of the generated weather variables. 

In the parametric approach, it was assumed that temperature and relative humidity 

were normally distributed, so that the serial correlation within these variables could be 

described using a first-order linear autoregressive model. This assumption is tested by 

calculating mean, standard deviation, skewness, and kurtosis and then comparing them 

to the normal distribution values. Assuming the residual series are normally distributed 

means that the skewness and kurtosis of the data should have values of 0 and 3 

respectively. Moreover, the mean and standard deviation of the data should be values 

of 0 and 1 respectively in order to satisfy the standard normal distribution 

characteristics. Therefore, data from the historical records were grouped in a monthly 
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basis and the required four statistical measures were calculated. This calculation was 

applied on four weather variables: maximum and minimum temperature, and 

maximum and minimum relative humidity. Wind speed and precipitation were not 

included in this test because they were generated independently by sampling from their 

distribution functions which were actually driven by the historical records. Table 2- 2 

to Table 2- 5 show results of mean, standard deviation, skewness and kurtosis of 

maximum temperature, minimum temperature, maximum relative humidity, and 

minimum relative humidity. Results show that the mean and standard deviation for 

most of weather variables are close to the standard normal distribution values; 

however, the skewness and kurtosis of weather variables showed a deviation from 

normality. In addition, maximum relative humidity somehow showed a different 

distribution behaviour throughout the year. For example, it shows almost normal 

distribution behaviour from July to November, but is not normally distributed in the 

rest of the year. This result contradicts the assumption made on the distribution 

behaviour of weather data, which means that weather variables may have different 

distribution behaviour throughout the year.  
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Table 2- 2 Mean, standard deviation, skewness coefficient, and kurtosis coefficient 

of the residuals of maximum temperature (MAXTEMP) 

Month 
MAXTEMP 

Mean STD Skewness Kurtosis 

Jan 0 1 0.32 -0.58 

Feb 0.1189 1.0323 -0.04 -0.89 

Mar -0.0937 1.016 -0.17 -0.78 

Apr 0.0001 0.9857 -0.32 0.32 

May 0 1 0.03 -0.17 

Jun -0.0699 1.059 -0.27 -0.34 

Jul 0 1 -0.25 0.07 

Aug 0 1 0.02 -0.6 

Sep -0.0308 1.0009 0.13 -0.37 

Oct 0 1 -0.25 0.06 

Nov 0.0517 1.025 -0.12 -0.41 

Dec 0 1 0 -0.52 

 

 

Table 2- 3 Mean, standard deviation, skewness coefficient, and kurtosis coefficient 

of the residuals of minimum temperature (MINTEMP) 

Month 
MINTEMP 

Mean STD Skewness Kurtosis 

Jan 0 1 0.06 -0.81 

Feb 0.0987 1.019 -0.27 -0.61 

Mar 0.0409 0.9294 -0.48 -0.42 

Apr -0.0183 1.0023 -0.8 0.83 

May 0 1 -0.46 0.9 

Jun -0.1393 1.2777 -1.6 5.11 

Jul 0 1 -0.19 0.05 

Aug 0 1 -0.38 0.4 

Sep -0.0754 1.0898 -0.93 1.45 

Oct 0 1 -0.64 0.37 

Nov 0.0216 0.9999 -0.54 -0.06 

Dec 0 1 -0.21 -0.7 
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Table 2- 4 Mean, standard deviation, skewness coefficient, and kurtosis coefficient 

of the residuals of maximum relative humidity (MAXRH) 

Month 
MAXRH 

Mean STD Skewness Kurtosis 

Jan -0.0004 0.9989 -0.75 -0.05 

Feb 0.0432 1.0078 -0.76 0.22 

Mar 0.0757 1.6941 -0.79 0.44 

Apr 0.08 1.903 -0.71 0.01 

May 0 1 -0.73 -0.18 

Jun -0.0105 1.0045 -1.09 0.58 

Jul 0 1 -1.29 2.13 

Aug 0 1 -1.37 2.7 

Sep -0.0335 1.0346 -1.58 2.95 

Oct 0 1 -1.31 2.21 

Nov -0.0185 1.0259 -1.25 2.22 

Dec -0.0013 1.0008 -0.97 0.49 

 

 

Table 2- 5 Mean, standard deviation, skewness coefficient, and kurtosis coefficient 

of the residuals of minimum relative humidity (MINRH) 

Month 
MINRH 

Mean STD Skewness Kurtosis 

Jan -0.0011 0.9991 -0.33 0.22 

Feb -2.6161 1.3498 -0.23 -0.22 

Mar 0.0572 1.0545 0.16 -0.61 

Apr 6.644 2.5539 0.86 0.11 

May 0 1 1.33 1.85 

Jun 0.0236 1.0013 0.91 0.22 

Jul 0 1 0.83 0.35 

Aug 0 1 0.84 0.3 

Sep 0.0025 0.9921 0.6 -0.31 

Oct 0 1 0.25 -0.87 

Nov -0.0441 1.0288 -0.65 0.16 

Dec -0.0006 0.9998 -0.39 -0.24 
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Two normality tests were applied: Anderson-Darling, and Kolmogorov-Smirnov tests. 

These are two of the Empirical Distribution Function (EDF) tests that are based on the 

measure of discrepancy between the empirical and the hypothesized distributions [41]. 

Both tests start by defining the null hypothesis (Ho), which presumes that the data are 

normally distributed, and the alternative hypothesis, (H1) which presumes they are not. 

The acceptance and rejection of the null hypothesis is made using the corresponding 

p-value; if the 𝑝-value is less than α (significance level) then the null hypothesis is 

rejected and vice versa. Table 2- 6 to Table 2- 9 show results of 𝑝-values of maximum 

temperature, minimum temperature, maximum relative humidity, and minimum 

relative humidity (a significance level of 5% was used in both tests). Results show that 

both tests rejected the null hypothesis, which means that the residuals of weather 

variables are not normally distributed. In addition, normal probability plots of the 

historical records were plotted to assess the normality assumption. These plots are 

shown in Figure 2- 5 to Figure 2- 8. The weather variables exerted some deviation 

from normality, especially with the maximum relative humidity, which largely 

deviated from normality.  
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Table 2- 6 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the 

residuals of maximum temperature (MAXTEMP) 

Month 
MAXTEMP 

Anderson-Darling Normality Kolmogorov-Smirnov Normality 

Jan 4.97E-14 ✖ 0.0003871 ✖ 

Feb 3.73E-15 ✖ 1.47E-11 ✖ 

Mar 6.77E-14 ✖ 9.03E-06 ✖ 

Apr 2.20E-16 ✖ 1.83E-07 ✖ 

May 0.000112 ✖ 0.003748 ✖ 

Jun 2.20E-16 ✖ 1.99E-08 ✖ 

Jul 2.76E-12 ✖ 0.0001548 ✖ 

Aug 6.36E-08 ✖ 0.02612 ✖ 

Sep 8.53E-11 ✖ 6.89E-08 ✖ 

Oct 4.13E-14 ✖ 3.15E-08 ✖ 

Nov 0.0003603 ✖ 0.003747 ✖ 

Dec 9.83E-06 ✖ 0.04865 ✖ 

 

 

Table 2- 7 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the 

residuals of minimum temperature (MINTEMP) 

Month 
MINTEMP 

Anderson-Darling Normality Kolmogorov-Smirnov Normality 

Jan 2.20E-16 ✖ 1.44E-06 ✖ 

Feb 2.20E-16 ✖ 8.55E-14 ✖ 

Mar 2.20E-16 ✖ 3.01E-14 ✖ 

Apr 2.20E-16 ✖ 5.78E-11 ✖ 

May 1.68E-10 ✖ 0.00196 ✖ 

Jun 2.20E-16 ✖ 0.006914 ✖ 

Jul 0.0003931 ✖ 0.002608 ✖ 

Aug 3.87E-05 ✖ 0.03094 ✖ 

Sep 2.20E-16 ✖ 0.06237 ✔ 

Oct 2.20E-16 ✖ 9.69E-13 ✖ 

Nov 2.20E-16 ✖ 6.66E-16 ✖ 

Dec 2.20E-16 ✖ 0.0001827 ✖ 
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Table 2- 8 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the 

residuals of maximum relative humidity (MAXRH) 

Month 
MAXRH 

Anderson-Darling Normality Kolmogorov-Smirnov Normality 

Jan 2.20E-16 ✖ 2.11E-15 ✖ 

Feb 2.20E-16 ✖ 2.20E-16 ✖ 

Mar 2.20E-16 ✖ 2.20E-16 ✖ 

Apr 2.20E-16 ✖ 2.20E-16 ✖ 

May 2.20E-16 ✖ 6.18E-12 ✖ 

Jun 2.20E-16 ✖ 2.20E-16 ✖ 

Jul 2.20E-16 ✖ 2.20E-16 ✖ 

Aug 2.20E-16 ✖ 2.20E-16 ✖ 

Sep 2.20E-16 ✖ 2.20E-16 ✖ 

Oct 2.20E-16 ✖ 2.20E-16 ✖ 

Nov 2.20E-16 ✖ 1.44E-15 ✖ 

Dec 2.20E-16 ✖ 2.20E-16 ✖ 

 

Table 2- 9 P-values of Anderson-Darling and Kolmogorov-Smirnov tests of the 

residuals of minimum relative humidity (MINRH) 

Month 
MINRH 

Anderson-Darling Normality Kolmogorov-Smirnov Normality 

Jan 7.16E-05 ✖ 0.001314 ✖ 

Feb 2.88E-06 ✖ 2.20E-16 ✖ 

Mar 3.19E-09 ✖ 1.14E-05 ✖ 

Apr 2.20E-16 ✖ 2.20E-16 ✖ 

May 2.20E-16 ✖ 2.20E-16 ✖ 

Jun 2.20E-16 ✖ 5.55E-11 ✖ 

Jul 2.20E-16 ✖ 2.05E-11 ✖ 

Aug 2.20E-16 ✖ 8.87E-14 ✖ 

Sep 2.20E-16 ✖ 1.77E-08 ✖ 

Oct 2.20E-16 ✖ 1.20E-06 ✖ 

Nov 2.20E-16 ✖ 0.00021 ✖ 

Dec 9.76E-15 ✖ 9.46E-06 ✖ 
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Figure 2- 5 Normal probability plot of the residuals of maximum temperature 

(MAXTEMP) 

 

 

Figure 2- 6 Normal probability plot of the residuals of minimum temperature 

(MINTEMP) 
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Figure 2- 7 Normal probability plot of the residuals of maximum relative humidity 

(MAXRH) 

 

Figure 2- 8 Normal probability plot of the residuals of minimum relative humidity 

(MINRH) 
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In addition to the normality assumption, another assumption was that the first-order 

autoregressive model in the parametric approach and the block-resampling scheme in 

the non-parametric approach can approximate the serial dependence of weather 

variables. Therefore, serial correlation coefficients of lags up to five days for each 

residual series were calculated and then compared with serial correlation coefficients 

of residual series of the historical records. Figure 2- 9 to Figure 2- 12 illustrate the 

analysis results.   The parametric weather generator provided a better serial correlation 

coefficients’ approximation for the maximum and minimum temperature than did the 

non-parametric weather generator. Meanwhile, the non-parametric weather generator 

performed better in approximating the serial correlation coefficients of the maximum 

and minimum relative humidity. In general, both generators provided acceptable 

approximations of serial correlation coefficients.  

 

Figure 2- 9 Serial correlation coefficients of maximum temperature 
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Figure 2- 10 Serial correlation coefficients of minimum temperature 

 

 

Figure 2- 11 Serial correlation coefficients of maximum relative humidity 
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Figure 2- 12 Serial correlation coefficients of minimum relative humidity 
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higher correlation coefficients. Likewise, the parametric weather generator, although 

the wind speed was modeled independently, also maintained the same relationships. 

 

Figure 2- 13 10 years’ distribution of correlation coefficients between maximum 

temperature and wind speed 

 

 

Figure 2- 14 10 years’ distribution of correlation coefficients between minimum 

temperature and wind speed 
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Figure 2- 15 10 years’ distribution of correlation coefficients between maximum 

relative humidity and wind speed 

 

 

 

Figure 2- 16 10 years’ distribution of correlation coefficients between minimum 

relative humidity and wind speed 
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2.4.2 Evaluation of weather generators’ outputs 

The second stage in the evaluation process is concerned with testing the reliability of 

weather generators’ outputs in terms of monthly means and standard deviations. Figure 

2- 17 to Figure 2- 22 illustrate the comparison between the monthly averages of 

maximum temperature, minimum temperature, maximum relative humidity, minimum 

relative humidity, precipitation, and wind speed generated from both the parametric 

and non-parametric weather generator against the historical averages. In the context of 

maximum and minimum temperatures, both the parametric and the non-parametric 

weather generators provided almost similar averages compared to the historical 

records. The parametric weather generator provided more accurate averages than the 

non-parametric weather generator (see Appendix B for more details on the output 

results). This result was expected because in the parametric weather generation 

mechanism the residuals of weather variables are generated and added to historical 

monthly averages. However, while the parametric model is expected to perform better 

than its non-parametric counterpart, the differences between the synthetic time series, 

with respect to historical records, is approximately a fraction of a degree Celsius apart, 

which, from a practical view, is acceptable. The same result was also observed in the 

averages of relative humidity. 
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Figure 2- 17 Monthly averages of maximum temperature 

 

 

Figure 2- 18 Monthly averages of minimum temperature 
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Figure 2- 19 Monthly averages of maximum relative humidity 

 

 

Figure 2- 20 Monthly averages of minimum relative humidity 
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Figure 2- 21 Monthly averages of precipitation 

 

 

 

Figure 2- 22 Monthly averages of wind speed 

 

0

10

20

30

40

50

60

70

80

90

A
v
er

ag
e 

P
re

ci
p

it
at

io
n

 (
m

m
)

Parametric Non-Parametric Historical

0

2

4

6

8

10

12

A
v
er

ag
e 

W
in

d
 S

p
ee

d
 (

k
m

/h
r)

Parametric Non-Parametric Historical



50 
 

Regarding the amount of generated precipitation (see Figure 2- 21), the non-parametric 

generator led to the same maximum average precipitation at the same period of time 

while the parametric generator produced a skewed maximum precipitation peak. Such 

discrepancy maybe related to the shape parameters (α) and the inverse scale parameter 

(β) used in the two-state gamma distribution function. In addition to comparing 

weather generators based on the amount of monthly precipitation, a comparison based 

on the length of wet spells (shown in Table 2- 10) was conducted on outputs from both 

generators. The comparison is based on three measures: (1) the average number of wet 

days, (2) the average number of wet intervals that lasted for more than two days, and 

(3) the average duration of wet intervals. 

Table 2- 10 Analysis of length of wet spells  

Mon

th 

Number of wet days 
Number of wet 

intervals 

Average duration of wet 

intervals 

P* 
NP

* 
H* P* NP* H* P* NP* H* 

Jan 12.4 13.9 12.6 2.9 3.4 3.0 2.7 3.3 3.4 

Feb 10.4 8.9 10.4 3 2.1 2.6 2.7 3.3 3.2 

Mar

ch 
7.7 8.3 9.8 1.1 2 2.6 2.6 2.9 3.0 

Apr 7.6 10.3 7.8 1.6 2.9 2.0 2.4 2.7 2.6 

May 11.2 10.7 10.4 3 2.9 2.6 2.2 2.7 2.8 

Jun 13.6 12.2 13.5 3.9 3.8 3.6 2.6 2.6 3.1 

Jul 14.6 15.5 15.4 3.6 4.6 3.9 2.8 2.9 3.1 

Aug 11.6 11.2 12.95 3.1 2.2 3.2 2.4 3.5 3.3 

Sep 12.1 13.1 12.3 3.1 3.4 3.2 2.6 3.1 3.3 

Oct 11.9 11.9 10.8 2.4 3 2.6 2.6 3.2 3.1 

Nov 12.2 12.5 12.4 2.9 3 3.05 2.5 3.3 3.3 

Dec 13.3 13 12.6 3.4 3.5 3.3 3.0 3.1 3.1 

 *(P: Parametric, NP: Non-Parametric, H: Historical) 
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Table 2- 10 demonstrates that both weather generators produced a very similar 

monthly average number of wet days. While the parametric generator outperforms the 

non-parametric, in the case of the average number of wet intervals, the non-parametric 

weather generator provided more accurate durations of wet intervals than did the 

parametric counterpart. Finally, in the case of wind speed, both weather generators 

(see Figure 2- 22) generated almost identical wind speed averages when compared to 

the historical records. 

In contrast to the output averages, when comparing the standard deviation of each 

weather variable from both generators, the non-parametric weather generator had a 

better performance (see Figure 2- 23 to Figure 2- 28). This is clearly noticeable in 

Figure 2- 25. In this figure, the parametric weather generator showed large differences 

when compared to the standard deviation of the historical records of maximum relative 

humidity. Meanwhile, the behaviour of the non-parametric weather generator came 

close to matching the historical records. For that reason, additional tests such as 𝑡 and 

𝐹 tests were conducted for each month to obtain better insight into the behaviour of 

the mean and variance of the generated weather series compared to the historical 

record. These tests were conducted to determine whether the generated weather series 

from both generators was significantly different from those in the historical record.  

The two tests were applied on four weather variables: maximum and minimum 

temperature, and maximum and minimum relative humidity. Table 2- 11 shows the 

test results.  
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Figure 2- 23 Standard deviation of maximum temperature 

 

 

 

Figure 2- 24 Standard deviation of minimum temperature 
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Figure 2- 25 Standard deviation of maximum relative humidity 

 

 

 

Figure 2- 26 Standard deviation of minimum relative humidity 
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Figure 2- 27 Standard deviation of precipitation 

 

 

 

Figure 2- 28 Standard deviation of wind speed 
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Table 2- 11 Number of months rejected by 𝑡 and 𝐹 tests for four weather variables 

Test 
MAXTEMP MINTEMP MAXRH MINRH 

P* NP* P* NP* P* NP* P* NP* 

𝑡-test (rejection) 4 4 4 5 2 2 2 4 

𝐹-test (rejection) 0 0 5 2 12 0 1 0 

*(P: Parametric, NP: Non-Parametric) 

Table 2- 1 shows that the non-parametric weather generator outperforms the 

parametric weather generator, which means that the non-parametric weather generator 

provides a data spread similar to those in the historical records. The parametric weather 

generator showed poor results in maximum relative humidity; the data spread 

generated is significantly different. Failure in generating a similar data spread can be 

interpreted as the parametric weather generator failing to provide wider possible 

relative humidity scenarios that may exist in reality. 

In addition to average and standard deviation-based analysis, a cross correlation test 

was applied to measure the similarity between the generated time series from both 

generators with the time series from the historical records. This test was performed by 

first randomly selecting a baseline year for the comparison from the historical records. 

Two independent years were generated from both generators and, finally, a cross 

correlation test was applied for each weather variable in the time series. The test was 

performed 10 times to show the cross correlation coefficients’ behaviour of the 

parametric and non-parametric weather generators against the historical year (see 

Figures 2-29 to 2-34).  Both generators have almost the same behaviour when 

compared to the historical baseline year, except in some runs. For instance, in 
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MAXTEMP, the parametric and non-parametric weather generators provided different 

cross correlation coefficients through the first three runs and were almost the same in 

the rest of the runs. Likewise, MAXRH showed that for the non-parametric weather 

generator, no correlation exists with the historical year in the eighth and ninth runs, 

but the parametric weather generator provided better cross correlation coefficients for 

the same runs. In general, both generators have performed well in the cross correlation 

test with the preference given to the parametric weather generator. 

   

Figure 2- 29 Distribution of 10 runs of cross correlation coefficient of maximum 

temperature 
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Figure 2- 30 Distribution of 10 runs of cross correlation coefficient of minimum 

temperature 

 

 

Figure 2- 31 Distribution of 10 runs of cross correlation coefficient of maximum 

relative humidity 
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Figure 2- 32 Distribution of 10 runs of cross correlation coefficient of minimum 

relative humidity 

 

 

Figure 2- 33 Distribution of 10 runs of cross correlation coefficient of precipitation 
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Figure 2- 34 Distribution of 10 runs of cross correlation coefficient of wind speed 
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coefficients caused no effect when the monthly averages of generated weather series 

were compared to the historical records, it is expected that differences would emerge 

when a certain simulation output were co-dependent on temperature and wind speed. 

This was investigated by developing a construction model that uses temperature and 

wind speed as input variables to predict construction performance. Results from Table 

2- 11 showed that there is a difference in the minimum temperature data spreads of 

both generators when compared to historical records. Therefore, another weather 

sensitive construction model that uses minimum temperature as an input variable was 

developed to assess the performance of both weather generators in modelling 

construction operations.  

2.4.3.1 Estimating temperature-wind speed effects in construction labor 

In the construction industry, projects are executed in an open work environment, which 

can directly affect productivity and efficiency. The performance of construction 

operations changes depending on the working season because changes in weather 

conditions affect construction manpower through work-related disorders that occur as 

a result of extreme weather conditions. In hot regions, high temperature, high relative 

humidity, heat, and ultraviolet radiation are examples of weather variables that affect 

construction labourers. These variables produce injuries such as heat stroke, sunburn, 

and heat exhaustion and their associated risk level varies from dehydration to fatality. 

In cold regions, injuries are often due to a combination of low temperature and wind 

speed. Frostbite is the most common injury in this working environment. Its injurious 

effect is enhanced on wet skin, as wet skin has a higher effective temperature for 

freezing than dry skin, as described by Kohen and Brown [17] in Table 2-12. In cold 
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weather regions, the combination of weather variables such as temperature and wind 

speed can be used to quantify the effect of weather changes on labour productivity. 

Occupational health and safety regulation guidelines are a reliable source that can be 

used in modelling weather-sensitive construction models. 

Table 2- 12 Minimum wind speeda required for freezing exposed skin [17] 

Temperature (Co) Wet skin (miles/hour) Dry skin (miles/hour) 

-1 15  - 

-7 7 30 

-12 4 15 

-18 3 10 

-23 2 7 

-29 1 5 

-34 - 3 

The Canadian Center for Occupational Health and Safety (CCOHS) has a cold 

exposure guideline for workers. These guidelines include a work warm-up schedule 

for outdoor activities, as shown in Table 2- 13. The schedule is adopted from the 

American Conference of Governmental Industrial Hygienists (ACGIH) [18] and 

recommends maximum work periods and break numbers for four-hour shifts, 

conditional on the temperature and wind speed values. CCOHS also identified the 

effect of the combination of relative humidity and temperature on construction 

working periods. CCOHS provided a recommendation for the number of breaks to be 

taken in accordance to the humidex reading.  

Table 2- 13 is transformed to Table 2- 14 to simplify the quantification of weather 

effects on labourers’ productivity. Table 2- 14 illustrates minutes lost per four-hour 

shifts due to temperature and wind speed and is used as a black box model. The model 

will receive inputs of weather series generated from the parametric and non-parametric 
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weather generators and will provide an output in the form of expected minutes lost in 

a four-hour shift cycle. 

The parametric weather generator generates a daily weather series, whereas its non-

parametric counterpart has the flexibility of generating daily and hourly weather series. 

To maintain test consistency between the two weather generators, only daily weather 

series were considered. However, two different input testing scenarios were conducted 

using different combinations of temperature and wind speed: 

Input scenario 1: Daily maximum and minimum temperatures combined with daily 

average wind speed, generated from both generators with no consideration of 

construction working period. In this scenario, weather variables represent the average 

of weather records over 24 hours. 

Input scenario 2: Daily maximum and minimum temperatures combined with daily 

average wind speed; the non-parametric weather generator in this case provided 

weather series for the specified construction working period (from 8:00 to 17:00). This 

testing scenario is applied to address the effect of considering weather variables from 

a specific time interval when estimating construction performance. 
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Table 2- 13 Work warm-up schedule for outdoor activities [18] 

T 
No Noticeable 

Wind 
Wind 8 km/h Wind 16 km/h Wind 24 km/h Wind 32 km/h 

Co 

Max. 

work 

period 

No. of 

breaks 

Max. 

work 

period 

No. of 

breaks 

Max. 

work 

period 

No. of 

breaks 

Max. 

work 

period 

No. of 

breaks 

Max. 

work 

period 

No. of 

breaks 

-26 to    -

28 
(Norm breaks) 1 (Norm breaks) 1 75 min. 2 55 min. 3 40 min. 4 

-29 to    -

31 
(Norm breaks) 1 75 min. 2 55 min. 3 40 min. 4 30 min. 5 

-32 to    -

34 
75 min. 2 55 min. 3 40 min. 4 30 min. 5 

Non-emergency 

work should cease 

-35 to    -

37 
55 min. 3 40 min. 4 30 min. 5 

Non-emergency 

work should cease 

-38 to    -

39 
40 min. 4 30 min. 5 

Non-emergency 

work should cease 

-40 to    -

42 
30 min. 5 

Non-emergency 

work should cease 
- 43  - 

Non-emergency 

work should 

cease 
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Table 2- 14 Minutes lost per four-hour shift 

Temperature C Wind Speed km/h 

From To 0 1 8 16 24 32 

-43 -65 240 240 240 240 240 240 

-40 -43 60 60 240 240 240 240 

-38 -39 40 40 60 240 240 240 

-35 -37 20 20 40 60 240 240 

-32 -34 15 15 20 40 60 240 

-29 -31 0 0 15 20 40 60 

-26 -28 0 0 0 15 20 40 

0 -25 0 0 0 0 0 0 
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The combination of maximum temperature and average wind speed in each scenario 

represents the minimum expected loss in minutes per shift. The combination of 

minimum temperature and average wind speed represents the maximum expected loss 

in minutes per shift. Figure 2- 35 to Figure 2- 38 illustrate the output results of the first 

testing scenario; Figure 2- 35 demonstrates that the non-parametric weather generator 

provided a better estimation in terms of the minimum expected loss in minutes per 

four-hour shift. However, the parametric weather generator outperforms the non-

parametric weather generator when it comes to estimating the maximum expected loss 

in minutes per four-hour shift, as shown in Figure 2- 36. Figure 2- 37 and Figure 2- 38 

illustrate the way in which the estimated values of maximum and minimum expected 

loss in minutes per four-hour shift differ from the historical average. For the minimum 

expected loss, the trend of the non-parametric weather generator was similar to that of 

the historical record when compared to the parametric weather generator. However, 

the parametric weather generator outperformed the non-parametric weather generator 

in maximum expected loss. 
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Figure 2- 35 Minutes lost per month due to maximum temperature and average wind 

speed (with no consideration of construction working period) 

 

 

 

Figure 2- 36 Minutes lost per month due to maximum temperature and average wind 

speed (with no consideration of construction working period) 
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Figure 2- 37 Deviation of minutes lost per month due to maximum temperature and 

average wind speed from historical average (with no consideration of construction 

working period) 

 

 

 

Figure 2- 38 Deviation of minutes lost per month due to minimum temperature and 

average wind speed from historical average (with no consideration of construction 

working period) 
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Figure 2- 39 to Figure 2- 42 illustrate the second testing scenario outputs. Here, the 

output results contradict those of the first testing scenario. The parametric weather 

generator performed better than the non-parametric weather generator in estimating 

the minimum expected loss; however, the non-parametric weather generator provided 

a better estimation of maximum expected loss. These results indicate that the 

parametric weather generator provides a better estimation of the maximum effect of 

temperature and wind speed on construction labour, if no specific construction period 

is assumed (this means that the average daily values of weather variables are used). 

However, in the case of estimating the maximum effect of temperature and wind speed 

in a specified construction period, the non-parametric weather generator provides a 

better estimation. 

 

 

Figure 2- 39 Minutes lost per month due to maximum temperature and average wind 

speed (with consideration of construction working period) 
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Figure 2- 40 Minutes lost per month due to minimum temperature and average wind 

speed (with consideration of construction working period) 

 

 

Figure 2- 41 Deviation from historical average of minutes lost per month due to 

maximum temperature and average wind speed (with consideration of construction 

working period) 
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Figure 2- 42 Deviation from historical average of minutes lost per month due to 

minimum temperature and average wind speed (with consideration of construction 

working period) 
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the loss of operational days in winter. Similar to the previous construction model, two 

testing scenarios were applied, as follows: 

Input scenario 1: Daily maximum and minimum generated from both generators with 

no consideration of construction working period. 

Input scenario 2: Daily maximum and minimum temperatures from both generators; 

the non-parametric weather generator in this case provided weather series for the 

specified construction working period (from 8:00 to 17:00). 

Figure 2- 43 to Figure 2- 46  and Figure 2- 47 to Figure 2- 50 illustrate the output 

results of both scenarios, respectively. In the first testing scenario, both generators 

provided almost the same estimation of loss in operational days. However, when the 

differences from historical averages were compared, the parametric weather generator 

provided a better trend than the non-parametric weather generator. In the case of the 

second testing scenario, the non-parametric weather generator outperformed the 

parametric weather generator in both the estimation of loss in operational days and the 

deviation from historical averages. Therefore, although both generators performed 

well on a daily basis, the non-parametric weather generator performed better when the 

construction period was specified. 
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Figure 2- 43 Loss in operational days due to maximum temperature (with no 

consideration of construction working period) 

 

 

Figure 2- 44 Loss in operational days due to minimum temperature (with no 

consideration of construction working period) 
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Figure 2- 45 Deviation from historical average of loss in operational days due to 

maximum temperature (with no consideration of construction working period) 

 

 

 

 

Figure 2- 46 Deviation from historical average of loss in operational days due to 

minimum temperature (with no consideration of construction working period) 
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Figure 2- 47 Loss in operational days due to maximum temperature (with 

consideration of construction working period) 

 

 

 

Figure 2- 48 Loss in operational days due to minimum temperature (with 

consideration of construction working period) 
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Figure 2- 49 Deviation from historical average of loss in operational days due to 

maximum temperature (with consideration of construction working period) 

 

 

 

Figure 2- 50 Deviation from historical average of loss in operational days due to 

minimum temperature (with consideration of construction working period) 
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2.5 Conclusion  

A simplified weather generator using a non-parametric approach, built using the 

bootstrap sampling technique, was proposed in this study. An experiment was 

conducted to evaluate the way in which parametric and non-parametric weather 

generators performed in comparison to each other. Another experiment was 

performed, this one to evaluate the generators’ imperfections when applied on 

weather-sensitive construction models. In the context of resembling a real weather 

series, it was found that the proposed approach has the same performance as the 

parametric weather generator and, moreover, it exhibits better performance than the 

parametric weather generator for some weather variables, such as maximum relative 

humidity and minimum temperature. When measuring the generators’ imperfections 

in terms of the weather-sensitive construction model, it was found that the parametric 

weather generator outperforms the non-parametric weather generator in estimating 

extreme weather effects in construction labour when compared to outputs generated 

using historical records. This result applied when there was no specific construction 

working period identified for the modelling construction operation. However, when a 

specified construction period was applied, the non-parametric weather generator 

provided a better estimation of extreme weather effects on construction labour. 

Likewise, in estimating the extreme weather effects of tower crane operation, the non-

parametric weather generator provided a better estimation than the parametric weather 

generator when a specified construction period was applied. It was found that both 

generators are reliable in generating synthetic weather series and in modelling 

construction operations from a daily perspective. However, the non-parametric 
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weather generator outperforms the parametric weather generator when a smaller time-

scale flexibility (e.g. hourly) is required in modelling a construction operation. 
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Chapter 3 

 

Application of the Non-Parametric Weather 

Generator in Modeling a Construction 

Operation 
 

 

 

3.1 Introduction  

Weather variables play different roles in estimating the performance of earthmoving 

operations. Earthmoving machinery is most affected. For instance, the rolling 

resistance factor is calculated based on the amount of tire penetration into the ground. 

Different soils have different tire interaction behaviour. In the winter, snow cover or 

snow depth affects such interactions and varies the rolling resistance from two 

perspectives: first, if the snow cover is not packed, the tire penetration rate  becomes 

higher, which results in a higher rolling resistance. Second, if the snow cover is packed, 

the rolling resistance is lower [44].  In the spring and summer, precipitation is the 

governing factor for rolling resistance. Precipitation increases the water content in the 
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soil, which in turn increases the tire penetration rate. The increase in rolling resistance 

decreases hauling truck speed, which affects the productivity of the earthmoving cycle 

[45]. Furthermore, the increase in rolling resistance has a negative impact on a truck’s 

fuel economy, which means that it has a direct relationship with fuel consumption [46].   

Visibility in meteorology is defined as “the greatest distance at which a black object 

of suitable dimensions can be seen and recognized against the horizon sky during 

daylight. It could also be seen and recognized during the night if the general 

illumination were raised to the normal daylight level” [47]. Visibility is an important 

factor used to estimate a truck’s hauling productivity since it controls the maximum 

speed that can be obtained in the hauling journey [48]. The high wind speed on a snowy 

or rainy day creates blowing snow that can be a hazard in transportation since it 

significantly reduces visibility. On a clear summer day, a truck can achieve maximum 

speed in its hauling journey while on a foggy or snowy winter day truck speed is 

affected and often limited by visibility on the road [49]. 

The low temperature in the winter season influences properties of soil, especially its 

strength. Wet soils are comprised of pores, water, and soil particles. When water in 

soil pores is subjected to a temperature below the freezing point, it results in changing 

the state of water from a liquid to solid state. This change gives the soil some ice 

characteristics like strength, increasing its strength by one or two orders of magnitude 

[50]. For example, a coarse-grained soil with a medium to high unit weight becomes 

very strong when water in the soil freezes. This change in soil strength has a direct 

effect on the excavation process [51]. In contrast, an increase in temperature initiates 

the thawing process which reduces soil strength [52].  
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The variation in temperature from one season to another has a direct effect on a truck’s 

operational cost, specifically breakdown repairs and maintenance costs. For example, 

a truck’s performance depends on tire life, and the most significant environmental 

factor that affects tire life is temperature [53]. Li, Liu and Frimpong [53] identified 

that dump truck tires are subjected to high stress and deformation when working under 

severe temperature conditions ranging from 40 to -40 oC. As a result, tire failure may 

occur in earthmoving operations [54]. Heavy rain and snow are also considered to be 

among the environmental factors affecting tires [55]. Temperature also has a negative 

effect on a wide range of equipment operations. For instance, low temperature has an 

adverse effect on engine performance; extreme low temperatures increase the number 

of engine failures and reduce fuel efficiency [56]. Furthermore, low temperatures 

significantly change the brittleness of metals, resulting in an increase in vehicle 

breakdowns and machine part failures [57].   

Weather variables effects, based on the above discussion, on earthmoving operations 

is contained within three processes: (1) excavation, (2) loading, and (3) hauling. In the 

context of a simulation of an earthmoving operation, it is important to integrate such 

effects to create a realistic simulation environment. In each simulation run, weather 

variables should be generated carefully so that time dependency between weather 

variables is preserved. This way each weather variable generated for a certain 

earthmoving operation (e.g., excavation) will be correlated to other weather variables 

generated for other operations (e.g., hauling). Furthermore, all earthmoving operations 

should be controlled by a simulation time step (e.g., hourly or daily), allowing the 

simulation model to preserve the operational dependency among all resources. Getting 
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all earthmoving operations and a weather generator working in harmony based on a 

specified time step is a complex task. To accomplish this task, a high-level architecture 

(HLA) standard is one of the solutions offered in the field of simulation research. This 

chapter illustrates the integration of weather effects in earthmoving operations through 

the use of a distributed simulation with HLA standards. The modeled earthmoving 

operation is related to oil sands’ mining operations and the non-parametric weather 

generation approach described in Chapter 2. This chapter also focuses on 

demonstrating the effect of temperature on trucks and on the time it takes to repair 

breakdowns in trucks and excavators. The effect of temperature on breakdown repair 

durations is analysed using different weather scenarios generated by the embedded 

weather generator in the simulation model. The results are reported accordingly. 

3.2 Overview of distributed simulation and HLA standards 

Distributed simulation or parallel/distributed simulation technology is defined as a 

technology that enables a program to be executed on a system composed of multiple 

computers [58]. Fujimoto [58] identified four principal benefits for applying 

distributed simulation: (1) reduced execution time, (2) geographical distribution of 

simulation or computer components, (3) integrating multiple simulators, and (4) fault 

tolerance. The first principal benefit, “reduced execution time,” was the actual main 

objective of proposing the distributed simulation. Thus a time effect technology to 

develop and execute large simulation programs was highly desired.  

In real world applications, the flexibility requirements of the distributed simulation 

extended beyond the geographical distribution of simulation components and the 



82 
 

integration of multiple simulators. An interaction between simulation components was 

of great interest. The US military initiated such a requirement because it wanted 

effective and economical ways to train personnel.  The military’s main objective was 

to develop a virtual environment capable of allowing interactions between 

geographically distributed hardware and personnel in a real-time framework [59]. This 

led to a proposal for a Distributed Interactive Simulation (DIS). DIS is “an 

infrastructure that enables heterogeneous simulators to interoperate in a time and space 

coherent environment” [60]. Despite the ability of DIS to enable interaction between 

different simulation components, it was associated with challenges related to 

uncontrolled latencies and lack of time management services [61]. Furthermore, 

building simulation components in different environments limit the reusability of the 

simulation system. As a result related to these challenges, an HLA standard was 

developed to improve the concept of standardization of simulation building and to 

improve data processing and acquisition through a time management infrastructure.   

The HLA standard is a general purpose framework that supports the simulation of a 

system composed of multiple simulation components working independently [62].  It 

was developed by the United States Department of National Defense with the main 

objectives to incorporate interoperability (the ability to integrate different simulation 

components created in different development environments), modularity (the 

standardization of the framework so it can be adopted in different applications), and 

reusability (the ability to use the simulation component in different scenarios or 

applications) into long-term simulation objectives [63].  It includes three core 
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components: federation and federates rules, the federate object model (FOM), and 

HLA interface specification.  

Federation and federates rules are a set of rules or conventions that must be followed 

to regulate interactions between different federates (a federate represents an 

independent simulation component) during the execution stage.  Each federate may 

contain objects of different attributes, interactions or both and all are standardized by 

the FOM. The FOM describes all sets of objects, attributes, and interactions which are 

shared across the federation (a federation contains multiple federates). The Simulation 

Object Model (SOM) identifies what objects, attributes, or interactions are required by 

each federate in the simulation. These two objects models FOM and SOM are 

documented using a standard form called the Object Model Template (OMT), which 

is shared by all federates [64]. Federates can either publish or subscribe objects or 

interactions from other federates. This process is controlled by the HLA interface 

specification that describes the runtime services.  These runtime services is provided 

by the Run Time Infrastructure (RTI) which is federates coordinator capable of 

synchronizing different federates time models and coordinate the exchange of events 

(objects and interaction) between them at a predefined point in time.  

3.3 Oil sands mining process in Alberta, Canada 

The oil sands regions, mainly located in the province of Alberta, Canada, are the fastest 

growing area in the world of developing petroleum resources [65]. Two main 

production processes are applied to oil extraction: (1) in-situ and (2) surface mining 

[66]. The in-situ technique uses a steam injection method to heat the oil, and after 
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which it can be pumped. Meanwhile, in surface mining, large shovels and trucks are 

used to extract oil sands from the surface. Open pit mining processes, as shown in 

Figure 3- 1, are usually performed when the oil sand is located near the surface, which 

is the case in Alberta; 20 % of oil sands reserves are located less than 75 meters 

underground [67].  The open-pit mining process used in the oil sand mining involves 

the following: 

1. Ore material collection trucks: in this step, the oil sand is loaded into hauling 

trucks via large shovels and then transported to crushers.   

2. Material handling (includes crushing conveying): in this step, the oil sand is 

stored as earth clumps and is moved to crushers on conveyors to produce small 

sizes of oil sand material.  

3. Slurry conditioning and transfer: in this step, hot water is added to the crushed 

oil sand to produce oil sand slurry, which is then transferred to the extraction 

process.  

4. Extracting: in this step, the bitumen is separated from the oil sand slurry by 

adding more hot water. The bitumen is then allowed to settle in the separation 

vessel.  

5. Tailings, froth treatment: in this step, the by-product of the oil sand separation 

process is transferred to the oil sand tailings ponds and the extracted bitumen 

froth is further diluted and refined.  

6. Upgrading: in this step, the extracted bitumen is transformed into a synthetic 

crude oil so it can be transferred to refineries to produce oil products.     



85 
 

The ore material collection step involves an earthmoving operation; it uses shovels and 

trucks as the main resources. These resources are exposed to the environment which 

means that changes in weather conditions may affect their productivity. Therefore, this 

step has been selected to be modeled and used as an illustration of the application of 

the non-parametric weather generator in an earthmoving operation. In order to better 

understand the earthmoving operation in oil sand mining and its resources, and to 

clearly define the simulation components of the operation, a discussion was conducted 

with experts in this field.  

 

Figure 3- 1 Oil sand open pit mining process [65] 

3.4 The development of the mining earthmoving operation model 

The earthmoving process cycle, as per the discussion with experts, involves loading 

ore material into the hauling trucks using shovels/loaders. Trucks move the ore 

material from the excavation pit to the dump pit at the extraction facility, unload the 
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ore material in the dump pit, and then return to the excavation pit. The experts agreed 

that the simulation model should contain three major components: excavators, trucks, 

and equipment breakdown and maintenance.  

The earthmoving operation is comprised of resources integrated to develop an 

earthmoving process cycle. Each resource has its own earthmoving operational cycle. 

For instance, hauling soil from an excavation pit to the dumping site and back again to 

excavation pit represents a full hauling cycle for a truck. On the other hand, 

excavators/shovels operate in two different locations, each with a different operational 

cycle. The first cycle is located at the mining pit where excavators excavate oil sand 

and load it into the trucks. The second cycle is located at oil sand earth clumps where 

excavators/shovels move the oil sand to crushers. These earthmoving operational 

cycles are operated continuously by different types of trucks and loaders to maintain 

high productivity and lower operational cost. The major factor influencing the 

equipment performance is the unanticipated equipment’s breakdown event. Therefore, 

the simulation model of the mining earthmoving operation should be allowed to test 

the operation under different resource scenarios. 

The modeled mining operation is located in a cold, harsh environment; therefore, the 

experts asked to integrate a weather effect into the model of the mining earthmoving 

operation. Since weather can change dramatically throughout the day and the mining 

operation runs nonstop  (i.e., for 24 hours), it was agreed that the simulation time step 

should represent a working hour and the weather generator should be developed in a 

way to provide hourly basis weather variables.  Moreover, it was decided that all 

mining earthmoving operational cycles should run and interact with each other on an 
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hourly basis. This was achieved by applying HLA standards to regulate the processing 

time.  It was concluded from the discussion with experts that (1) the simulation model 

should have six simulation components interacting with each other, and (2) each 

simulation components should consider the weather variable that affects its 

performance. These components with the simulation structure are shown in Figure 3- 

2.   

 

Figure 3- 2 Earthmoving simulation structure 

Each simulation component represents a federate in the mining earthmoving federation 

and is developed by a different team of researchers. The work description of each 

federate is as follows: 

1. Controller: responsible for initializing the simulation model, defining testing 

scenarios, and analysing the operation performance. 
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2. Mover: responsible for simulating the hauler behaviour in its cycle. 

3. Loader: responsible for simulating the loader behaviour such as loading and 

dumping. 

4. Equipment breakdown and maintenance: responsible for simulating the trend 

of breakdown and maintenance in the truck and loader cycles. 

5. Weather: responsible for generating dynamic and realistic weather variables. 

6. 3D visualizer: responsible for animating the earthmoving operation and 

visually identifying the location of the trucks and loaders. 

After all federates of the mining earthmoving federation are identified, the SOM for 

each federate is constructed so that the object class and its attribute, whether needed 

or provided by the federate, is clearly identified.  Also, an investigation was conducted 

to determine which weather variables are affecting each federate and how. Once all 

SOM are created, they are all combined to create the mining earthmoving FOM.   Table 

3- 1, below, shows a sample of the FOM containing weather variables as an interaction 

class called “CurrentWeather.” This interaction class is published by the weather 

federate to provide others with a block containing all weather variables required in the 

simulation process.  
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Table 3- 1 "CurrentWeather" interaction class and its attributes in the FOM 

(S=subscribe, P=publish, PS= publish and subscribe) 

Attribute Controller Mover 
Loade

r 

Breakdown & 

Maintenance 

Weathe

r 

Visualize

r 

Interaction Class 

Temperature 

S S S S P S 

WindSpeed 

Float 

Visibility 

Float 

Snowfall 

Float 

Precipitation 

Float 

3.5 Weather federate 

3.5.1 Historical weather database 

The bootstrapping approach to randomly generate weather variables is integrated into 

the weather federate. The weather federate is linked to an historical weather database 

containing the location of operation. It reflects weather parameters to other federates. 

The location of the oil sand mining operation is Fort McMurray, Alberta, and the 

historical weather database is extracted from the Environment Canada website. The 

weather variables listed in the database are those requested by other federates and listed 

in the FOM. The weather variables are as follows: 

- Temperature 

- Wind speed 

- Visibility 

- Precipitation  
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- Snow depth 

Figure 3- 1, below, shows the weather database breakdown structure and two tables 

created in the database to maintain hourly and daily weather variables in accordance 

with the need for the mining earthmoving simulation model. The daily weather forecast 

table classifies the temperature into three groups: maximum, minimum and average 

temperature of each day. Wind speed is classified into two groups: maximum and 

average. This classification of weather parameters is important to create different 

testing scenarios of weather conditions and to study their impact on the mining 

earthmoving operation. 

 

Figure 3- 3 Weather database breakdown structure 

3.5.2 The weather generation process 

The weather generation in this study extracts real historical weather variables from the 

database for the purpose of preserving correlations and dependencies among 
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meteorological variables. Hourly and daily forecast tables in the Fort McMurray 

weather database provide flexibility to generate different scenarios. In this stage of the 

research, the weather federate provides other federates with weather parameters in the 

following three scenarios: 

1. The first scenario (SC1) generates weather variables from the database based 

on the random selection of a year between 1961 and 2002. The hourly 

generated weather variables represent the daily average. This scenario is 

considered the conservative daily scenario.      

2. The second scenario (SC2) is also based on generating weather variables from 

randomly selected years. However, the generated hourly weather variables 

represent the minimum daily values in winter and maximum daily values in 

summer. This scenario is considered the extreme daily scenario.   

3. The third scenario (SC3) is based on generating weather variables from 

randomly selected years. The generated hourly weather variables in this 

scenario represent the actual values of weather variables which have been 

experienced at that particular hour.  This scenario is considered the actual 

hourly scenario. 

The weather generation process starts, as shown in Figure 3- 4, by first determining 

the location and the expected starting date of the operation. After the user enters the 

location and the date of operation, the weather generator randomly selects the year of 

operation from the database (see Figure 3- 5).  The generator is initialized based on 

year, month, day, and location. These values are used to indicate the weather records 

to be generated for other federates. All weather variables are provided on an hourly 
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basis and in accordance with the selected testing scenario, except for snow depth and 

precipitation, because the measured records of those variables are normally presented 

in the form of accumulated amounts per day. Snow depth and precipitation are 

generated at hour 0 AM of each simulated day. The model assumes that the operation 

works for 24 hours, and each simulation run represents one minute. Therefore the 

weather federate updates its weather interaction class values after the run time of every 

60 simulations and moves to the second day forecast when a full day of operation is 

completed.  

 

Figure 3- 4 Federation interface 
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Start

Determine location & start date

( month, day)

Randomly select year

Initialize weather generator based on 

(year, month, day)

Is time 

0 am?

Assume precipitation and snow depth 

equal zero

Get other parameters from Table 2 in 

the database

Yes
Get precipitation and snow depth 

from Table 1 in the database

Update weather parameters

Is earthmoving 

operation finished?

End

No

Yes

No

 

Figure 3- 5 Weather generation flow chart 
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3.6 Simulation run and testing scenario results 

3.6.1 Simulation run 

The simulation run of the operation is controlled and initiated by the controller 

federate. The controller federate is composed of two parts: (1) the interface and (2) the 

federate. The interface allows the user to enter the operation attributes such as project 

information (includes project location and starting date, seen in Figure 3- 4), road 

condition, truck types and their quantity, excavator types and their quantity, and the 

topological map of the site. This information is provided by the user and represents the 

attributes that are subscribed by the controller federate. These attributes are published 

by the controller to the other federates in the simulation model. The controller federate 

uses this information to start the simulation by populating the number of instances of 

each object class. For example, nine instances of object class “Truck” and three 

instances of object class “Excavator” are populated, each associated with their 

attributes such as the truck model and its capacity to simulate the mining operation. 

Following the population stage of the resources class objects, the road section that 

hosts the hauling and returning routes of trucks is initiated. The road section is 

composed of multiple segments, each of which has different attributes such as road 

segment materials and layouts. The road section length used to haul and return trucks 

is equal to 2.2 km. 

The mover federate subscribes road conditions in terms of layouts and materials, truck 

models, and breakdown and maintenance states from other federates. The mover 

federate publishes a truck’s location dynamically using road layouts and truck speed. 
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The loader federate subscribes both trucks and excavator to load trucks with soil. If all 

excavators are busy loading pre-arrived trucks, the mover federate will acquire the 

ownership of the newly arrived truck until it is filled with soil and released for hauling. 

Both the mover and the loader federates performances are controlled by the availability 

of trucks and excavators. These resources are associated with breakdown and 

maintenance events that control the percentage of utilization for each resource. These 

events are controlled by the breakdown and maintenance federates, which employ four 

crews for repair and maintenance. It uses information (shown in Table 3- 2) to create 

a breakdown and maintenance events in the mining earthmoving operation.  

Table 3- 2 Durations of expected breakdown and maintenance events for trucks and 

excavators 

Event Duration 

Truck breakdown interval Exponential (200) 

Truck maintenance interval Constant (400)  

Truck repair time Uniform (20,24)  

Truck maintenance time Triangular (18,21,24) 

Time increase in truck repair due to a 

specified temperature threshold value 

(𝑇) 

20% 

Excavator breakdown interval Exponential (250) 

Excavator maintenance interval Constant (350)  

Excavator repair time Uniform (20,24)  

Excavator maintenance time Triangular (18,21,25) 

Time increase in excavator repair due to 

a specified temperature threshold value 

(𝑇) 

20% 

 

Table 3- 2 shows that the breakdown repair time is controlled by the temperature 

experienced in the operation location. The repair time for both the trucks and 

excavators is expected to increase by 20% depending on a pre-specified temperature 
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threshold value(𝑇). This percentage is experts-driven for a temperature less than or 

equal to -30 Co. However, Nguyen et al. [68] highlighted that in the context of 

construction contracts, no single temperature threshold value exists because different 

construction projects have different working characteristics. Kohen and Brown [17], 

in the context of labour productivity, identified -29 Co as the temperature threshold 

value at which labors must stop work is at and -18 Co as the threshold value at which 

labour productivity starts deteriorating at. A sensitivity analysis which will apply a 

range of temperature threshold values (𝑇) from -18 Co to -30 Co will be used to study 

the effect of temperature on breakdown events.   

The breakdown and maintenance federate subscribes temperature so that a 

temperature-based analysis can be performed. As previously described, the 

temperature is published within the interaction class called “CurrentWeather” that is 

provided by weather federate (refer to Table 3- 1). The weather federate publishes the 

“CurrentWeather” interaction class based on three scenarios: (1) SC1 (the conservative 

daily scenario), (2) SC2 (the extreme daily scenario), and (3) SC3 (the actual hourly 

scenario. To analyze these scenarios combined with the temperature limit sensitivity 

analysis, a performance benchmark result for the trucks and excavators is generated 

based on the assumption that the working condition will not achieve any temperature 

threshold value. Figure 3- 6 and Figure 3- 7 show the performance benchmark results 

for both trucks and excavators running for a total duration of 8760 hours (a one-year 

working period). The average working duration of all trucks represents 83% and their 

breakdown and maintenance averages are 10% and 7% respectively. A similar 

percentage is found for excavators. Refer to Appendix C for a detailed results 
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description for each truck and excavator working duration, number of breakdowns and 

maintenance, and breakdown repair and maintenance durations. 

 

Figure 3- 6 Performance benchmark results for trucks 

 

 

Figure 3- 7 Performance benchmark results for excavators 
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3.6.2 Results of scenarios  

The mining earthmoving operation was tested under three different scenarios. The 

weather federate generated 10 randomly selected years, and an hourly based 

“CurrentWeather” interaction class was published to other federates. The effect of 

temperature on truck and excavator breakdown events was tested under different 

temperature limit values (𝑇) ranging from -18 Co to -30 Co. The analysis was 

individually performed for each truck and excavator participating in the simulation. 

However, the results are summarized to reflect the overall breakdown repair duration 

expected for a truck or an excavator. The result includes the minimum, average and 

maximum expected breakdown repair durations for a truck and excavator in the 

operation.  

Figure 3- 8 and Figure 3- 9 show the breakdown repair durations for a truck and an 

excavator respectively. Figure 3- 8 (a) shows the minimum breakdown repair duration 

expected for a truck. The results show that using the daily minimum temperature (SC2) 

generates on average a repair duration that is 1.2 % more than SC1, SC3, which is 

equivalent to 7.5 more hours. Comparing SC1 (average daily temperature) to SC3 

(actual hourly temperature), both scenarios provided the same breakdown repair 

durations when the temperature limit value (𝑇) was less than or equal to -21 Co and 

SC3 generated a slightly higher repair duration when (𝑇) was greater than -21 Co. 

Comparing the total averages of the minimum expected repair duration of each 

scenario with the truck breakdown benchmark result (616.5 hrs) led to the following: 
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(1) SC1 generated a 0.05% more repair duration, (2) SC2 generated a 1.32 % more 

repair duration, and (3) SC3 generated a 0.16% more repair duration.   
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Figure 3- 8 Truck breakdown repair durations under three testing scenarios (SC1, 

SC2, and SC3) and on different temperature limit values (𝑇); (a) the expected 

minimum repair durations, (b) the expected average repair durations, and (c) the 

expected maximum repair durations 
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Figure 3- 9 Excavator breakdown repair durations under three testing scenarios 

(SC1, SC2, and SC3) and on different temperature limit values (T); (a) the expected 

minimum repair durations, (b) the expected average repair durations, and (c) the 

expected maximum repair durations 
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Figure 3- 8 (b) shows the average breakdown repair durations for a truck in the mining 

earthmoving operation. SC2 generates a 1.5 % more repair duration than SC1 and SC3, 

which is equivalent to 13.5 more repair hours. Both SC1 and SC3 generated the same 

breakdown repair duration, equal to 892 hours when tested against different 

temperature limit values (𝑇). Comparing the total averages of the expected average 

breakdown repair duration with the truck breakdown benchmark result (876.7 hrs) led 

to the following: (1) SC1 generated a 1.7% more repair duration, (2) SC2 generates a 

1.6 % more repair duration, and (3) SC3 generates a 3.1 % more repair duration. In the 

context of calculating the maximum expected breakdown repair duration, shown in 

Figure 3- 8 (c), the results of SC1 and SC3 show different behavior: SC3 generates a 

slightly higher breakdown repair duration. The percentage of differences between SC2 

and both SC1 and SC2 is 1.3% and the comparison with the truck breakdown 

benchmark result (1108.7 hrs) results in (1) SC1 and SC3 generating  approximately 

3.5% more breakdown repair duration, and (2) SC2 generating 4.8% more breakdown 

repair duration. 

Figure 3- 9 (a), (b), and (c) show the expected minimum, average, and maximum 

excavator breakdown repair durations. Figure 3- 9 (a) and (b) show that scenarios SC1 

and SC3 have a similar behavior with respect to temperature limit values (𝑇). 

Meanwhile, they exert different behaviour when calculating the maximum breakdown 

repair duration; SC1 generates higher repair durations when the temperature limit 

value is less than or equal to -26 Co. On the other hand, as shown in in Figure 3-9 (a), 

(b), and (c), SC2 generates a 1.1% higher repair durations than SC1 and SC3.  
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The conclusion results in this section are shown in Table 3- 3. Based on calculating 

the expected breakdown repair duration with respect to different temperature limit 

values (𝑇) and based on different temperature scenarios (SC1, SC2, and SC3), the 

expected contribution of each resource breakdown repair duration in the overall mining 

earthmoving operation is: 

1. Of the total operation duration for each working truck, 7.04 % to 13.29 % of 

contributed to the breakdown repair duration, and 

2. Of the total operation duration for each working excavator, 8.54 % to 12.03 % 

contributed to the breakdown repair duration. 

Table 3- 3 Expected percentages of breakdown repair durations of each scenario in 

the mining earthmoving operation 

Scenario 

% of Breakdown Repair Duration 

Trucks Excavators 

Min Average Max Min Average Max 

SC1 7.04 10.18 13.12 8.54 9.71 11.90 

SC2 7.13 10.32 13.29 8.63 9.82 12.03 

SC3 7.05 10.17 13.13 8.54 9.71 11.88 

3.7 Conclusion 

A distributed simulation approach with HLA standards has been used to model the 

earthmoving operation of oil sand mining. The model integrated different simulation 

components including trucks, excavators, breakdown and maintenance, and weather 

simulation components.  The weather effect on truck and excavator breakdowns was 

addressed and modeled. Furthermore, the weather generator provided different 

weather testing scenarios to analyze the truck and excavator breakdown repair 
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durations. The weather-based breakdown analysis provided a range of the percentage 

of breakdown repair duration that trucks and excavators may experience in a one-year 

mining operation.  
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Chapter 4 

 
 

Random Generation of Industrial Pipelines’ 

Data Structure using a Markov Chain Model 

 

 

4.1 Introduction  

Pipelines and gas projects have increased rapidly throughout the world to meet energy 

requirements. In 2016, Pipelines and Gas Journal [69] reported that 33% of pipeline 

projects are in North America. Thus research in this field increased accordingly. 

Research in this field is classified in accordance with the components of industrial 

projects. For example, industrial projects may be composed of two major components: 

the construction of pipeline facilities and the construction of pipelines connecting two 

pipeline facilities located in two different locations. The complexity associated with 

these components differs in terms of the required resources, construction methods, 

materials supply chain, etc. To study the integration effects of all factors, different 
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modeling approaches have been employed.  There are four phases to building a 

simulation model: (1) product abstraction, (2) process abstraction, (3) modeling, and 

(4) experimentation [70]. The first three phases involve two major processes, namely 

systems’ knowledge acquisition and data collection. Data collection plays a critical 

role in simulation modeling, especially in cases where the numerical data required in 

building the simulation models may not be readily available [71]. Ten to 40% of total 

time in building simulation models is usually devoted to data collection, data 

preparation, and validation [72]. The collected data is used in input modeling of the 

simulated operation because it inherits the randomness associated with the system 

properties. It is valuable in modeling and in conducting experimental studies for the 

purpose of understanding the systems’ behavior under different circumstances.  

Input modeling for simulation purposes can be viewed as the practice of selecting a 

probability distribution that best represents randomness in input sources [73]. Input 

modeling is performed by fitting collected data to theoretical probability distributions 

using the assessment of goodness of fit as a metric for quality. The case where a single 

event is modeled is called a univariate model. The generated sample from the 

distribution is a single numerical value representing a single possible event of a 

specific process. When randomly generating events from a probability distribution 

function, the collection of these events represents the approximated randomness 

property of the modeled process. Generally speaking, the univariate model is used to 

randomly generate independent variables and has been widely applied in the 

simulation of pipeline projects. For example, each process involved in pipeline 

construction is represented by a probability distribution function; Tommelein [74] 
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assigned uniform and triangular distribution functions to welding and trenching 

processes respectively [75]. The probability distribution functions are also applied in 

simulation modeling of industrial fabrication processes. For example, in modeling pipe 

spool processes, beta and normal distribution functions were assigned to the 

fabrication and transportation processes respectively [74]. These examples, as 

mentioned previously, represent independent events. However, different 

events/variables in the simulation model of a complex problem may be dependent on 

each other. Randomly generating a correlated variable is imperative to construct a 

realistic simulation behavior. Moreover, failure to capture such dependencies may lead 

to inaccurate input models which eventually results in generating errors in the 

performance estimates [76] [77]. A multivariate distribution approach has been 

proposed to preserve dependencies between input variables. Multivariate distributions 

rely on joint distribution functions to preserve the correlation between randomly 

generated variables. Each variable is represented by a distribution function called 

marginal distribution. The correlation between the correlated variables is maintained 

using the covariance matrix [78]. Such an approach is widely implemented in 

construction, especially in modeling the total cost of construction projects. The total 

project cost is considered a vector of correlated variables, each representing the cost 

of a certain construction component or work package. A joint distribution function is 

used to randomly generate total project cost vectors [79] [80] [81].  

The above description of the random generation of inputs is confined to a numerical 

type of data. However, in construction engineering research, the complexity of data 

extends beyond a numerical type of data; it includes a combinatorial data type. The 
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complexity associated with such data types is that the randomly generated variables 

are not single numerical values or jointly correlated values. Rather, they represent a 

structure such as graphs or trees. Such cases are present in modeling the construction 

of industrial projects, specifically, pipe spools fabrication. The nature of industrial 

spool fabrication in construction is, to some extent, similar to industrial manufacturing. 

However, it is characterized as a low volume and high product mix production process 

[82]. As a result, the product routing and the time required for its fabrication may vary 

widely according to the product features as well as its complexity [83]. Consequently, 

randomly generating inputs using a probability distribution describing the fabrication 

time without considering the randomness and complexity associated with the product 

itself, may result in the improper modeling of fabrication processes [82]. Hence, 

randomly generating combinatorial data of a product along with its processing time is 

expected to improve the simulation model accuracy and provide additional flexibility 

for testing the efficiency of different models under different scenarios.  

In modeling a spool fabrication process, spool pipe is defined as a collection of 

sequenced components with unique attributes such as type, size, and material [11]. 

Pipe spools, on the other hand, are parts of a high-level product, a pipeline, in industrial 

construction projects [84]. This study looks at modeling pipelines to randomly 

generate products of a combinatorial type of data to model construction processes of 

industrial construction. A pipeline data structure can be represented as a tree structure 

composed of nodes that represent the pipeline component and edges that represent 

connectivity between pipeline components.  The random generation of trees has been 

widely covered in literature. Drmota [85] described different classes of random trees 
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including combinatorial, recursive, and search trees. A random generation of a set of 

combinatorial trees represents a subclass of a structurally defined class of finite trees 

such as binary trees. The generation of recursive trees is based on randomly generating 

the number of children (or branches) and then recursively generating the branches of 

the branches and so on. The major differences between these trees is that a recursive 

tree does not necessary follow a certain class of trees; it can take the shape of unary-

binary tree (a unary-binary tree is a tree whose inner nodes may have a single child or 

two children [86], this generally known as a k-array tree in general). Search trees are 

more devoted toward storing and searching data in computer science applications. 

When projecting definitions of these types of random trees into the random generation 

of industrial pipeline data structures, the most relevant class of random tree is the 

recursive tree. 

An industrial pipeline, as described previously, is composed of a collection of different 

types of components. Only a certain type of component has the ability to generate two 

branches such a tree connection component. Furthermore, the reproduction of each 

type of pipeline component may depend on the pre-generated component. For this 

reason, this chapter proposes applying a branching process in terms of a Markov chain 

generation model to randomly generate industrial pipeline data structure in the form of 

a recursive tree. This chapter is organized as follows: 

1. In Section 4.2, an overview of industrial pipeline data is presented. This 

includes pipeline data preparation and structuring. 
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2. In Section 4.3, a statistical analysis of pipeline data is presented. This is 

performed to gain insight and knowledge about pipeline components, their 

properties, and correlations. 

3. In Section 4.4, the construction of process of the Markov-chain pipelines 

generation model is presented.  

4. In Section 4.5, a comprehensive validation process is conducted.  The process 

starts by converting the topological structure of the pipelines into a feature 

vector capable of preserving the structural properties. After this, the three-stage 

validation process is applied.  

4.2 Overview of pipeline data 

A dataset from an existing industrial construction project located in Alberta, Canada 

is used in this study. Referring to Figure 4- 1, industrial construction projects are 

presented in terms of a building information model (BIM) that contains layers showing 

different project properties for different disciplines such as electrical, mechanical, and 

structural. The project design data flow starts by combining drawings of and 

information about different parts of the project from different engineering divisions 

into a single BIM model. Then, all of the information about project components is 

transferred to a database so that it can be used in both construction and research 

activities.   
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Figure 4- 1 Design data flow of pipeline facility project 

The industrial construction project database includes the following component 

properties: 

1. Unique component id number, 

2. Pipeline number to which the component belongs  

3. Component property that describes the type of component (e.g., Tube, Valve, 

Flange, etc.) 

4. Location (minimum (x,y,z), maximum (x,y,z)) of the component in the BIM 

model 

5. Components’ diameter  

6. Components’ length 

This information is valuable to study the topology of pipelines (e.g., components’ 

sequential patterns and their properties). However, when exploring the type of 

components that form a pipeline, it was found that there are many pipelines that have 



112 
 

types of components that are not primary components. In this study, pipelines’ primary 

components are defined as a sequence of components attached to one another (e.g., 

tube, tee, and elbow as shown in Figure 4- 2) for the purpose of directing the flow of 

fluids such as oil or liquidated gas. In piping systems, the collection of these 

components is called a pipeline section [84]. Due to the considerations of project 

design functionality, these pipeline sections have unique configurations when 

assembled. Therefore, secondary components (e.g. supports, shown in Figure 4- 2) are 

attached to pipelines to satisfy the design functionality. When pipelines were filtered 

based on primary components, the result was that the types of components were 

reduced to 13, and they are listed as follow; 

1. Tube: a pipeline element that hosts the material flow. 

2. Elbow: a pipeline element that changes the flow direction. 

3. Flange: a pipeline element that connects two pipeline sections without 

permanently joining them. 

4. Tee:  a pipeline element that connects a perpendicular branch. 

5. Valve: a pipeline element that regulates the material flow. 

6. Fblind/ blind flange: a disk-shaped pipeline component used to block 

off a pipeline. 

7. Ftube/ blind tube: a cylindrically shaped pipeline component used to 

block off a pipeline. 

8. Reducer: a pipeline element that changes the pipeline flow diameter. 

9. Closure: a pipeline element that seals the end of the pipe. 

10. Cap: a pipeline element that seals the end of the pipe. 
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11. Instrument: a pipeline element that measures a certain pipeline property 

such as pressure. 

12. Pcomponent: a general pipeline component. 

13. Coupling: a pipeline element that connects two threaded pipes of the 

same size. 

 

Figure 4- 2 Section of industrial pipeline 

 

Studying the properties of these components provides insight into industrial pipeline 

structure (i.e., components’ formation and their physical properties). However, it does 

not reflect the unique sequence of the pipeline components; two pipelines may contain 

the same number of each type of components, but they may differ regarding their 

sequence. Furthermore, studying component sequencing in pipeline structures is 

considered the base of the random generation study of pipeline data structures. 

Therefore, it is important to arrange and prepare a pipeline data table to support the 

analysis of both pipeline component properties and sequences. A recursive function is 



114 
 

employed to extract and generate a data table with components ordered according to 

their sequence in the pipeline structure.     

The recursive function uses two tables from the database to branch and sequence 

pipeline components. The first table contains information about pipeline component 

properties such as lengths and diameters and the second table provides information 

about component connectivity. Figure 4- 3 illustrates the branching process used in the 

recursive function. The recursive function starts by first randomly selecting a 

component with one connectivity from the first pipeline set of components 

(component/node 1 in Figure 4- 3). The next step is to append the first component in 

the first branch list. Then, using the connectivity table in the database, the second 

connectivity point (component/node 2 in Figure 4- 3) is determined and appended to 

the same branch list. In the case of a component branching the pipeline into two 

branches, such as component/node 2, one of the components will be appended in the 

first branch and the second will be appended in the second branch. Once all the 

components are processed, the branches are ordered in the pipeline data table based on 

the branch number. In the case of a branch having sub-branches, each branch extending 

from the first branch connection is treated as a block containing all branches ordered 

according to their position in the pipeline structure. This process is applied on 1052 

pipelines with a total number of components equal to 33324. A sample of the final 

pipeline data table used in this study is shown in Table 4- 1. 
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Figure 4- 3 Pipeline branching process 
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Table 4- 1 Pipeline data table 

Line No. Branch No. Seq. Component ID Type Dia. Length 

5 7 1 SB-XXXXX-01A03_33 Elbow 72 106 

5 7 2 SB- XXXXX -01A03_34 Tube 60 100 

5 7 3 SB- XXXXX -01A03_35 Flange 213 0 

5 7 4 SB- XXXXX -01A03_37 Valve 213 0 

5 7 5 SB- XXXXX -01A03_39 Fblind 20 213 

5 8 1 SB- XXXXX -01A03_48 Elbow 72 106 

5 8 2 SB- XXXXX -01A03_49 Tube 60 100 

5 8 3 SB- XXXXX -01A03_50 Flange 213 0 

5 8 4 SB- XXXXX -01A03_52 Valve 213 0 

5 8 5 SB- XXXXX -01A03_54 Fblind 20 213 

 

4.3 Statistical Data Analysis 

In this section, a basic statistical analysis is performed to provide a better 

understanding about pipeline data before structuring the pipeline generator model. 

Figure 4- 4 to Figure 4- 6 demonstrate the percentage of each component in the entire 

pipelines’ population, in the first pipeline branch (based on the branching process 

described in Section 5.2 and equivalent to “Branch 1” shown in Figure 4- 3), and the 

other branches extending from the first pipeline branch respectively (equivalent to 

“Branch 2” and “Branch 3” shown in Figure 4- 3). As shown in Figure 4- 4, the 

dominant components of the population are tube, elbow, flange, tee, and valve, which 

account for 85.9% of all components in the pipeline population. This percentage 

increases to 91.4% if the analysis is restricted to the first branch and goes down to 
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78.9% for other branches extending from the first one, see Figure 4- 5 and Figure 4- 

6.  

 

Figure 4- 4 Percentage of each component in the entire population 

 

Figure 4- 5 Percentage of each component in the first pipeline branch 
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Figure 4- 6 Percentage of each component in branches extending from the first 

branch 

The second in rank comes to components ftube and closure which account for 6.9% of 

the entire population. These two components are more condensed in the population 

representing branches extending from the first pipeline branch. This can be related to 

the main function of these components, which is sealing the pipeline flow. Component 

instrument shows the same trend as in ftube and closure, and component pcomponent 

demonstrates the opposite trend which shows that it is mostly condensed in the first 

pipeline branch population. Components coupling and cap, on the other hand, have the 

lowest contribution in the pipeline population, accounting for less than 0.8 %. This can 

be attributed to the design requirements which normally allow coupling to be installed 

in low-pressure pipes. Likewise, the cap is used to seal low-pressure pipes using a 

threaded connection. Unlike other pipeline components, the occurrence of component 
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reducer is almost consistent in Figure 4- 4, Figure 4- 5, and Figure 4- 6, meaning that 

its occurrence is highly controlled by its design objective, which is to change the 

pipeline flow diameter.  

Figure 4- 7 to Figure 4- 9 show the distribution of the number of components in the 

entire pipeline population, in the first pipeline branch and the other branches extending 

from the first pipeline branch, respectively.  The majority of the number of pipeline 

components is less than 50 components with a high proportion devoted toward to the 

first pipeline branch that account for 60% (see Table 4- 1) of the entire population. The 

branches extending from the first pipeline branch are skewed toward a number of 

components less than 10 and representing  40% (see Table 4- 2) of the entire 

population.  

 

Figure 4- 7 Distribution of the number of components in each pipeline 
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Figure 4- 8 Distribution of the number of components in the first pipeline branch 

 

 

Figure 4- 9 Distribution of the number of components in branches extending from 

the first pipeline branch 
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The results in Table 4- 2 show that the number of pipelines which have branches 

extending from the first pipeline branch is 760 pipelines. This result does not 

necessarily mean that the remaining pipelines have no component of type tee; however, 

when investigating the pipeline database, it was found that some of the pipelines have 

a tee connection for the purpose of connecting to different pipelines, which means that 

two pipelines with different properties are designed to flow in parallel and connect to 

a branch that extend from one of them. 

Table 4- 2 Descriptive statistical measures for the number of components 

Statistic 
Total no. of 

components 

No. of 

components in 

the first 

pipeline branch 

No. of 

components in  

branches 

extending from 

the first pipeline 

branch 

Sample Size/ Components 33324 19943 13423 

Mean 32 19 18 

Variance 1070 213.2 817.75 

Std. Deviation 32.711 14.601 28.596 

No. of occurrences in pipelines 1052 1052 760 

 

From the above analysis it is concluded that different branches located in the same 

pipeline may have different characteristics. This adds more complexity to the 

generation process since the degree of correlations and dependencies between pipeline 

components may differ according to the location  of components in the pipeline 

structure (i.e., whether it is located in the first pipeline branch or in other branches). 

This conclusion can be verified by calculating the symmetric correlation coefficients’ 

matrices on both types of branches. These matrices are illustrated in (4-1) and (4-2). 
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The first matrix illustrates the correlation coefficients of pipeline components in the 

first pipeline branch, and the second matrix illustrates the correlation coefficients of 

pipeline components in branches extending from the first branch. In the first matrix, 

all components show positive relationships except to components closure, cap, ftube, 

and fblind. However, positive relationships among all pipeline components are shown 

in the second matrix. Also, a higher degree of correlation coefficients between 

components is generated in the second matrix.   
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4.4 Markov chain pipeline generation model 

Referring to Figure 4- 3 in section 4.2, the pipeline data structure can be presented in 

terms of a tree structure containing nodes that represent the type of component (e.g., 

tube, elbow, flange, tee, etc.), and edges that represent the connectivity between two 

nodes. The branching of a pipeline tree structure is controlled by the component of 

type tee. The number of occurrences of component type tee and its location in pipelines 

differs from one pipeline to another, which results in a unique pipeline topological 

structure. The occurrence of type tee components also depends on other pipeline 

components such as a component of type tube. This case is applied to all pipeline 

components. Incorporating such dependencies (correlation between pipeline 

components and the connectivity relationships among them) in the pipeline generation 

model is important to create a realistic sequential pattern for pipeline components. 

Thus, a Markov chain model is proposed to generate a realistic random sequence of 

pipeline components.  

A Markov chain is described as a sequence of random variables or events constructed 

using Markov property that defines what happens next according to the current state 

of the system [87]. It describes a system that follows a linked chain of different states.  

Its mathematical statement is described as follows: 

         4-3  

The mathematical statement of the Markov chain model can be described as giving a 

set of random variables or states 𝑋𝑖. The Markov chain’s sequence of states is 

)|(),...,,|( 122111 nnnnnn xXxXPxXxXxXxXP  
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dependent on the present state 𝑋𝑛 at step  𝑛 and the selection of the next step 𝑛 + 1 is 

conditioned by the probability value of the current state 𝑃(𝑋𝑛 = 𝑥𝑛). 

To apply a Markov chain model, first the system and its states should be defined. The 

pipeline is considered as a system represented by a chain of 13 dependent states which 

are pcomponent, instrument, valve, tube, elbow, tee, coupling, cap, reducer, flange, 

ftube, fblind, and closure. The transition from one state to another in the pipeline 

system is conditioned by the probabilities of a collection of states which may follow 

the present state. These probabilities are called transition probabilities. They regulate 

the movement between pipeline states. These probabilities are combined in the form 

of a matrix called a transition matrix shown in (4-4). 

4-4
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The Markov chain transition matrix is a  matrix containing transition probabilities 

such as that represent the probability of state 𝑖 returning to itself and  

representing the probability of state 𝑖 moving to state 𝑗. Since the database of the 

pipelines previously described is prepared and organized to reflect the connectivity 

between different components, it is possible to generate the transition matrix of 

pipeline states. However, based on the statistical analysis performed in section 4.3, 

which showed that the degree of dependencies between pipeline components is 

controlled by their locations in the pipelines’ structure (whether in the first branch or 
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in branches extending from the first branch), the pipeline system is split into two sub-

systems, each with its own transition matrix. The transition matrix (4-5) below refers 

to the first pipeline branch and the transition matrix (4-6) refers to branches extending 

from the first pipeline branch. The order of the pipeline states shown in each row in 

the transition matrix is the same in the matrix columns. The values within each matrix 

are in the form of a percentage.  
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Most states in pipeline properties may remain the same since and the majority 

of states in different pipelines return to the original state in multiple steps except for 

state “Tube,” which is considered a free-floating component with no restriction on the 

periodicity. Therefore, to regulate the occurrence of pipeline states in the pipeline 

structure, a Markov chain property called state periodicity is integrated into the 

generation model.  A state is called periodic if it has the ability to be repeated in 

multiple steps larger than one. Moreover, since the number of pipeline components 

varies according to the type of pipeline branch, it is expected that state periods may 

show different behavior, which adds complexity to the generation process. Therefore, 

similar to the Markov chain transition matrices, periods of pipeline states are calculated 

both for states representing the first pipeline branch and states of branches extending 

from the first pipeline branch. These periods are fitted to theoretical probability 

distribution functions that best approximate their behaviors.  

Based on the definitions of types of pipeline components in section 5.2, periods of 

pipelines state can be reduced to seven instead of 13. Three factors contribute to this: 

first, components of the “Closure,” “Cap,” “Ftube,” and “Fblind” main functions 

block off the pipeline product flow. These components have a single connectivity 

which means that they are located last in the pipeline structure, i.e., they are the 

absorbing states. Second, the component “Coupling” has small probability values; at a 

certain state in the Markov transition matrix can move toward it. Finally, as mentioned 

previously, component “Tube” is assumed to be a free-floating pipeline component 

because it is the dominant component in the entire pipeline population. These factors 

help to reduce the number of state period distribution functions to seven and are 

0, iip
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illustrated with their associated pipeline state in Table 4- 3. These state period 

distribution functions are expected when working in conjunction with Markov chain 

transition matrices to generate pipeline structures that reflect realistic pipeline 

component sequences. 

Table 4- 3 Probability distribution functions for components’ state periods 

Pipeline state 

Probability distribution function 

Located in the first 

pipeline branch 

Located in branches 

extending from the first 

pipeline branch 

“Pcomponent’ Exponential (0.19245) Exponential (0.31376) 

‘Instrument” Gamma (2.086, 7.042) Gamma (2.4545, 9.1897) 

“Valve’ Lognormal (0.795,1.899) Gamma (1.437,5.584) 

‘Flange” Pareto (0.82625,1) Pareto (0.94902,1) 

“Elbow’ Normal (2.7367,3.1097) Laplace (0.51675,3.1097) 

‘Tee” Gamma (1.454, 5.307) Gamma (0.95639, 5.3605) 

“Reducer” Lognormal (0.809,2.073) Lognormal (0.8612,2.159) 

 

The pipeline generation flow chart using the Markov chain model is shown in Figure 

4- 10 and is split into two phases. The first phase (Phase1) generates the sequences of 

components in the first pipeline branch. The output from Phase 1 is then used to 

generate a state sequence that represents the second pipeline (Phase 2), which is a 

sequences of components in branches extending from the first pipeline branch.   
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Figure 4- 10 Flow chart of Markov chain pipeline generation model 
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It starts by randomly generating the number of components  expected in the first 

pipeline branch. It is sampled from a gamma distribution function (α = 1.7039, β = 

11.023) that is driven by the histogram plot of the number of components shown in 

Figure 4- 8. The model then initializes the number of branches  expected from the 

first sub-system to 0 and later changed according to the occurrence of state tee in the 

first pipeline branch. Thereafter, the starting state  of the pipeline component 

sequence is initialized. The initialization of the starting states is performed by first 

calculating the probability of states at which a pipeline may starts with. However, an 

assumption is made in the first and the second pipeline sub-systems which limits the 

starting states to 7 and 9 respectively. The assumption defines the starting state, shown 

in Table 4- 4 and Table 4- 5, as a state whose main objective is to host the flow of the 

material in the pipeline. In the case of a starting state selected as tee, a branch will be 

added into , and its state period  will be randomly sampled from its associated 

probability distribution function shown in Table 4-3.  The remaining states of the 

pipeline components are then generated using the Markov chain transition matrix. In 

cases in which a Markov chain transition matrix generates two similar states 

consecutively or apart in multiple steps, a check is conducted. The check is based on 

whether or not the state period condition is satisfied (i.e., whether the distance between 

two similar states is equal to their state period). If the condition is satisfied, another 

state period, , is sampled for the current state and the following state is generated 

using the Markov chain transition matrix shown in (5). On the other hand, if the 

condition is not satisfied, another state is generated for the current step, and the same 

process is repeated until a sequence of pipeline components is achieved that is 

n

y

iS

y iPS
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equivalent to the number of components generated by the first pipeline sub-system. 

Once the first pipeline subsystem (Phase 1) has completed generating the first branch 

and if the number of branches in y is greater than 0, then the pipeline’s second sub-

system (Phase 2) will start generating pipeline state sequences for each additional 

branch; otherwise, the model will end the pipeline generation process. The generation 

of pipeline branches in Pahse 2 is equivalent to that in Phase 1 with differences related 

to the used Markov chain transition matrix, state period probability distribution 

functions, the number and type of states in the initializing step, and the number of 

components in each branch that is sampled from a Lognormal distribution function (σ 

= .88575, µ = 1.2818). 

Table 4- 4 Starting states in the first pipeline branch (Phase 1) 

State Pcomponent Instrument Valve Flange Tube Elbow Reducer 

% 0.96 2.1 10.8 13 40.63 15.37 14.54 

 

Table 4- 5 Starting states in branches extending from the first pipeline branch (Phase 

2) 

State Instrument Valve Flange Tube Elbow Tee Reducer Coupling Ftube 

% 0.2 0.66 16.18 40.16 5.65 1.12 1.66 0.15 34.22 

 

4.5 Validation of Markov chain pipeline generation model 

In this section, the performance of the Markov chain pipeline generation model is 

measured against a population of real pipelines. It is conducted to examine how the 

integrated Markov chain transition matrix and state period distribution perform when 

generating a pipeline sequential pattern similar to sequential patterns in the actual 

population. The validation is performed on components which host the flow of material 
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in the pipeline: pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and 

coupling. Two pipeline properties are used in the validation process: (1) the number 

of each type of component in each pipeline, and (2) the component’s location in the 

pipeline structure. The validation process (Figure 4-11) starts by randomly generating 

pipelines using the Markov-chain pipeline generation model. The number of pipelines 

generated is equivalent to the original number of pipelines, which is 1052. Then each 

pipeline is converted to a feature vector capable of capturing pipeline properties. 

Finally, a three-stage validation process is performed starting with the evaluation of 

the number of each type of component and correlation analysis, clustering-based 

validation, and validation by measuring and comparing similarity distances between 

all feature vectors in the pipeline space.  
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Figure 4- 11 Validation process flow chart 
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4.5.1 Pipelines feature vectors 

The conversion of the pipeline into a feature vector in this section is performed using 

a methodology described by Liu et al. [88]. The methodology’s main objective was to 

represent deoxyribonucleic acid (DNA) sequences as a point in the DNA n-

dimensional space, which represents the number of nucleotides in a DNA sequence, 

their distance from the origin, and their distribution along the sequence. Similarly, all 

pipelines are converted to a feature vector representing a point in the pipeline n-

dimensional space. To achieve consistency in applying this methodology to both the 

original and generated data, the pipeline generation model was built to represent its 

outputs in the same way the original data is presented; after applying the pipeline 

branching process (see Figure 4- 3). Both original and generated pipelines will have 

the same linearly structured data representation. Therefore, three numerical attributes 

will be calculated for each pipeline component. 

The first numerical attribute is the total number of each type of component in the 

pipeline and is denoted as ; where = pcomponent, instrument, valve, flange, tube, 

elbow, tee, reducer, and coupling. It is used to define the pipeline formation 

components and also dictate the total number of components in the pipeline. Using 

Figure 4- 12 as an illustration, , , and  in pipelines A and B are equal to 

5, 2, and 2 respectively. Since nine types of pipeline components are considered in the 

validation, the other component types which did not occur in pipelines A and B will 

have a value of 0. Both pipelines have the same number of branches and components. 

However, the distribution of components is not the same. For example, pipeline A has 

in i

Tuben Elbown Teen
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component tee located in node 2 and 5. In pipeline B, they are located in node 2 and 

4. The same holds true for component tube: it is located in nodes 1, 3, 4, 7 and 9 in 

pipeline A, and in nodes 1, 3, 5, 7, and 9 in pipeline B. Therefore, a second numerical 

attribute is proposed to distinguish the sequences of pipeline components. The second 

attribute represents the total distance of each type of pipeline component from the 

starting point. It is denoted as  and is calculated as per equation (4-7). 

  4-7 

where;  

= pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling, and 

= the distance of each type of pipeline component from the starting point. 
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Figure 4- 12 Example of generation of pipeline features vector 
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It is assumed that the starting point for both pipelines is equal to 0 and the node 

numbers shown in Figure 4- 12  are the distances of each component from the starting 

point. Therefore, , , and for pipeline A are equal to 24 (the sum of the 

tubes’ node location in the pipeline A strucutre, 1+3+4+7+9), 14 (the sum of the 

elbows’ node location in the pipeline A strucutre, 6+8), and 7 (the sum of the elbows’ 

node location in the pipeline A strucutre, 2+5) respectively; and they are equal to 25, 

14, and 6 in pipeline B. The components’ total distance from the starting point  

provides a good presentation of the components’ location in the pipeline sequence, 

making it possible to identify the differences between the two pipelines (as in tube and 

tee) as well as the similarities between them (as in elbow) . However, there might be 

some cases where   alone is not sufficient to represent the location differences 

between components from different pipelines. As an example of such case can be 

shown by relocating components tee in pipeline A from node 2 to node 1. The modified 

pipeline A structure is named A* and is shown in Figure 4- 13. 

 

Figure 4- 13 Pipeline A* structure 
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This case changes the  of pipeline A to 6 instead of 7 which is equivalent to the  

of pipeline B. This result means that both pipelines have the same total distance of 

components tee from the starting point and, more specifically, it means that the 

components’ location is the same in both pipelines. However, in reality tee components 

in both pipelines are in different locations: they are located in nodes 1 and 5 in pipeline 

A, and in nodes 2 and 4 in pipeline B. Therefore, a third numerical attribute is proposed 

to work concurrently with the component total distance attribute  to further 

distinguish the location of each component in the pipeline sequence.  

The third numerical attribute is the distribution of each component in the pipeline 

sequence and is denoted as . It uses the variance of the distance of each component 

in the pipeline sequence to describe the distribution, and is defined as follows: 

  4-8 

   4-9 

where, 

 = pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling,  

 = the distance of each type of pipeline component from the starting point, 

 = the average total distance of each pipeline component, 
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 = the total distance of each component from the starting point, and 

 = the total number of each type of pipelines’ components. 

As an illustration of how  may create unique component location characteristics, 

Table 4- 6 shows all three numerical attributes for component tee in pipelines A, B, 

and A*. The tee component in all pipelines has a unique location. Furthermore, when 

comparing pipeline B and pipeline A*, adding attribute created a good 

differentiation base between pipeline component with the same  and  attributes. 

Table 4- 6 Attributes , ,  for pipelines A, B, A* 

Pipeline 
  

 

Pipeline A 2 7 2.25 

Pipeline B 2 6 1 

Pipeline A* 2 6 4 

 

As described above, each pipeline from the two sources, the original and the generated 

populations, is converted to a feature vector so it can be used to validate the Markov-

chain pipeline generation model. Since nine components have been selected in the 

validation process, the pipeline feature vector is going to have 27 dimensions and the 

order of each attribute in pipeline feature vector should be consistent in both the 

original and generated data. The selected order of pipeline components is: 

- 1st: Pcomponent  [  ,  , ] 

- 2nd: Instrument  [ ,  , ] 

- 3rd: Valve [ ,  , ] 

iT

in

iD

iD

in iT

Teen TeeT TeeD

Teen TeeT TeeD

Pcomponentn PcomponentT PcomponentD

Instrumentn InstrumentT InstrumentD

Valven ValveT ValveD
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- 4th: Flange [ ,  , ] 

- 5th: Tube [ , , ] 

- 6th: Elbow [  , , ] 

- 7th: Tee [ , , ] 

- 8th: Reducer [ , , ] 

- 9th: Coupling  [ , , ] 

and the final representation of each pipeline feature vector is: 

[ ,  , ,……………………., , , ] 

4.5.2 Number of components evaluation and correlation analysis 

In this section, the number of components  generated by the Markov-chain pipeline 

generation model is compared to that in the original pipeline population. Table 4- 7 

shows summary results of the number of each type of pipelines’ components. The 

Markov-chain pipeline generation model generated approximately the same total 

number of components with 2.5% higher what than the original pipeline populations. 

However, the breakdown of each component in the two populations differs in some 

ways.  Significant differences can be seen between the original and the generated 

pipelines at components pcomponent, instrument, and tee; meanwhile, the rest of the 

components showed small differences. This indicates that the assumptions regarding 

the number of components when constructing the Markov-chain model worked well 

for six out of nine components. Additionally, assessing the number of occurrences of 

each component in each pipeline in the two populations can provide good insight into 

Flangen
FlangeT FlangeD

Tuben TubeT TubeD

Elbown ElbowT ElbowD

Teen TeeT TeeD

ducernRe ducerTRe ducerDRe

Couplingn CouplingT CouplingD

Pcomponentn PcomponentT PcomponentD Couplingn CouplingT CouplingD

)(n



140 
 

how the original and generated pipeline populations are similar. For this work, since 

the distributions describing the pipeline components are not normally distributed (as 

indicated by the Anderson-Darling procedure, see Table D-1 in Appendix D), the two-

sample t-test cannot be applied. As a result, non-parametric tests in the form of 

Kruskal-Wallis, Mood-Median, and Mann-Whitney tests were applied to assess the 

ways in which the two populations are similar. Table 4- 8 shows p-values of all three 

tests when applied to each pipeline component. P-values of Kruskal-Wallis and Mood-

Median tests are greater than the significance level (α=0.05), which means that in terms 

of the number of each component, there are no significant differences between the 

original and the generated pipeline populations.  However, the Mann-Whitney test 

showed different results: components tube, elbow, reducer, and coupling did not differ 

significantly from the two populations. Meanwhile, the rest of the components showed 

the opposite result. These tests are one-dimensional and applied to each component 

independently from others. Furthermore, the combination of all components including 

their attributes, and the number of components and their location in the pipeline 

sequence actually represent the overall pipeline characteristics. For this reason, the 

other two validation methods proposed in this study will complement the results driven 

by this section. 
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Table 4- 7 Number of components in original and generated pipelines 

Component 
Original Generated 

 %  % 

Pcomponent 451 1.5 935 3.0 

Instrument 557 1.8 199 0.6 

Valve 2611 8.6 1947 6.3 

Flange 4101 13.6 3036 9.8 

Tube 12036 39.9 13888 44.9 

Elbow 6332 21.0 8699 28.1 

Tee 3268 10.8 1505 4.9 

Reducer 788 2.6 670 2.2 

Coupling 55 0.2 59 0.2 

Total No. of pipeline components 30199 30938 

 

 

Table 4- 8 P-values of Kruskal-Wallis, Mood-Median, and Mann-Whitney tests 

Component 
p-value 

Kruskal-Wallis Mood-Median Mann-Whitney 

Pcomponent 0.276 0.092 0 

Instrument 0.241 0.267 0 

Valve 0.185 0.123 0 

Flange 0.7 0.809 0 

Tube 0.314 0.835 0.2452 

Elbow 0.797 0.809 0.2358 

Tee 0.415 0.345 0 

Reducer 0.624 0.585 0.767 

Coupling 0.929 1 0.748 

 

 

n n
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In building the Markov chain pipeline generation model, it was assumed that the 

integration of both the Markov chain transition matrix and the state periods of each 

component can preserve the correlation between pipeline components.  Therefore, 

correlation coefficient matrices for pipeline components in both the original and 

generated data were calculated (see Appendix E), and to measure the similarity 

between both matrices, an eigenvalue-based similarity measure was employed. Figure 

4- 14 illustrates the comparison between eigenvalues calculated from the correlation 

matrices associated with the original and simulated data. Since in both cases, the 

eigenvalues are comparable except for the component coupling which exerted a 

noticeable difference, and since this component accounts only for 0.1-0.15 % in both 

populations, it is possible to conclude that the Markov-chain pipeline generation model 

was capable of maintaining the correlation between the components.  

 

Figure 4- 14 Eigenvalue distributions of component correlation matrices from 

original and generated pipeline population 
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4.5.3 Clustering-based model validation 

In this section, a clustering-based validation method is proposed to measure 

similarities between the original and generated pipeline spaces. A clustering technique 

was employed in this study because of its ability to find a true topology of certain data 

[89]. The main concept of this validation method was to assess the performance of a 

clustering model built using two different sets of data. A similar methodology was 

implemented by Sikonja [90] to compare the similarity of a generated data set against 

an original data set. Many clustering algorithms were proposed to carry the task of 

clustering analysis. A density-based clustering algorithm is selected in this study. It 

was selected because it does not require the pre-determination of the number of clusters 

to be generated; it has the ability to define clusters of higher density, and provides the 

optimum number of clusters accordingly (refer to [91] for more details on density 

based clustering).  Table 4- 9 shows a summary of the clustering of the original and 

generated pipeline feature vectors (refer to Table F- 1 and Table F- 2 in Appendix F 

for more details on the clustering results). It has two parts: the clustering model and 

the test results. The clustering model is built using 80% of the total population and the 

rest of the data is used to test the model.  The density-based clustering resulted in 

generating two clusters for each pipeline space: one that was high density cluster 

(cluster 0 from the original data source shown in Table 4- 9) and one that was low 

density cluster (cluster 1 from the original data source shown in Table 4- 9). In the 

original data clusters, the distribution of the number of instances in the high and low 

density clusters was 75.4% to 24.6% respectively. In the generated data clusters, the 

distribution of the number of attributes was 73.65 to 26.4% respectively; 1.8% 
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different from the original data.  The same trend was found in test results using the 

remaining 20% of total data, which means that the spread of pipeline feature vectors 

from different sources in the pipeline space was approximately the same. However, 

using these results alone is not sufficient to verify that the original and generated 

pipeline spaces share the same characteristics. There might be a case where two 

datasets share the same number of clusters, but the location of these clusters may differ 

significantly. Analyzing cluster centroids can provide a good comparison basis.  Figure 

4- 15 and Figure 4- 16 illustrate the centroids of the high and low density clusters 

generated from both the original and generated pipeline feature vectors. The centroids 

of clusters calculated from the original and generated pipeline feature vectors have a 

similar trend. The degree of similarity between the original and the generated centroids 

in both the high and low density clusters was equal to 64%. These results confirm that 

in terms of the number and location of components in the pipeline, the Markov-chain 

pipeline generation model is producing reasonable outputs.   

Table 4- 9 Results summary of clustering models 

Model Data source Total no. of attributes Clusters Attribute SSE 

Clustering model 

Original 

841 

0 793 

 1 48 

Generated 
0 67 

1 774 

Test results 

Original 

221 

0 179 
165.6 

1 32 

Generated 
0 39 

115.6 
1 172 
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Figure 4- 15 Attributes centroids in the high density cluster 

 

 

Figure 4- 16 Attributes centroids in the low density cluster 
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4.5.4 Model validation using distances between all feature vectors  

In this section, the distance between all feature vectors in both the original and 

generated pipeline data sets are calculated using the Euclidian distance. The distance 

between feature vectors indicates the degree of similarity between pipelines; if two 

pipelines are similar, the distance between their vectors should be small, and if not, the 

distance should be large. This approach is well used for data clustering and 

classification [92]; however, it is used herein to assess the similarity of distances 

between pipelines feature vectors calculated from the original and the generated 

pipeline populations. The Euclidian distance formulation is defined as: 

  4-10 

where, 

= the Euclidian distance between pipelines vectors,  

 = pcomponent, instrument, valve, flange, tube, elbow, tee, reducer, and coupling, 

and 

and satisfying .  

Since the total number of pipelines in each population is equal to 1052, by using the 

equation , it is expected to have 552826 

distance data points for each population. The distance data points’ distribution is 

shown in the histogram plots in Figure 4- 17. The data shown in both histograms are 
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highly skewed to the right, which requires a careful attention to the tests being used to 

assess the similarity between the two populations. According to Figure 4- 18, it turns 

out that both populations are not normally distributed as confirmed by the Anderson-

Darling normality test results for which the p-value < 0.05. As a result, parametric 

methods such as the “t” or “f” test, which rely on the normality of the data, cannot be 

applied. However, the distance between pipeline vectors represents the degree of 

similarity which lies between [0, ∞). Grouping these distances leads to the 

identification of the similarity of topological structures of both the original and the 

generated pipeline populations. Furthermore, the histogram plots shown in Figure 4- 

17 represent the similarity between topological structures of both populations. 

Thereafter, using histogram similarity measures in the form of histogram intersections 

can provide a good basis for assessing degrees of similarity.   

Another result which can be derived from Figure 4- 18 is that there is a gap separating 

the generated pipeline data from the points in the probability plots of the distance 

between pipeline vectors. Although both populations have approximately the same 

mean values, as shown in Figure 4- 18, this gap created significant differences in the 

standard deviations. This result justifies the clustering-based validation method 

in 4.5.3, which concluded that both populations were split into two clusters. As a result, 

the population of the distances between pipelines is split into two: the distances that 

represent the 95% of the whole population and the distances that represent the higher 

5% of the population. Each population is then analyzed individually. 
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Figure 4- 17 Histograms of distances between pipeline vectors for the original and 

the generated pipeline populations 
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Figure 4- 18 Probability plots of distances between pipelines vectors from the 

original and generated pipeline data 

 

Figure 4- 19 shows the distribution of the distances between pipelines vectors that 

underlies 95% of the total populations. The distribution of the distances calculated 

from the original pipeline population represents 899 pipelines (equivalent to 85.5 % of 

the total number of pipelines) and in the generated pipeline population, it represents 

936 pipelines (equivalent to 89% of the total number of pipelines).  Both distributions 

are highly skewed with no trace of normality. Figure 4- 20 shows the probability plot 

of the distances that underlie the 95% of the total population. Both data have 

approximately the same mean ( =658.4, =668.1), and they are slightly 

different in terms of the standard deviations ( =1176,  =985). These 

original generated

original generated
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results indicate that in terms of mean and standard deviations, 89% of the pipelines 

generated from the Markov chain pipeline generation model have characteristics 

similar to 85.5 % of pipelines in the original populations.  

 

Figure 4- 19 Histograms of distances between pipelines vectors that represent the 

95% in (a) the original and (b) the generated pipeline populations 
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Figure 4- 20 Probability plots of distances between pipelines vectors that represent 

the 95% in (a) the original and (b) the generated pipeline populations 

 

The other test to apply in this section is the histograms intersection. It is proposed by 

Swain and Ballard [93] and described as follows: given a pair of histograms  

(histogram of distances between generated pipelines) and (histogram of distances 

between original pipelines), with each having the same number of bins , the 

intersection between histograms is defined as: 

∑ min (𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1   4-11 

where, 

𝑥𝑖= bin 𝑖 in histogram 𝑥, 

𝑦𝑖= bin 𝑖 in histogram 𝑦. 
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Equation (4-11) is then normalized, as in (4-12), to calculate a fractional match value 

between the two histograms . The fractional match value 𝐻 lies between [0, 1] 

and the degree of similarity is interpreted as if is equal to 0, which means the 

histograms are not identical. If is equal to 1, the histograms are identical. 

𝐻(𝑥, 𝑦) =  
∑ min (𝑥𝑖,𝑦𝑖)𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

  4-12 

 

Figure 4- 21 illustrates the intersection between the histograms of the normalized 

distance of the original and generated pipeline populations. Visually, the two 

histograms are almost identical. This conclusion is supported by calculating the match 

value. Table 4- 10 shows a sample calculation of the match value. The match value  

is found to equal to 0.979 which means that the two histograms are almost identical. 

This result is based on the number of bins equal to seven, which is driven by Sturges’ 

formula ( ). However, the match value, based on Equation 4-13, is sensitive 

to the number of bins. The higher the number of bins used, the more accurate the 

measure is. Therefore, the calculation shown in Table 4- 10 is repeated 10 times with 

a 10-bin increment added in each run. The changes in  with respect to the bin 

number are shown in Figure 4- 22. The  value converges to 0.88 which represents 

the actual similarity measure between the two histograms. 
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Figure 4- 21 Histograms intersection between: (a) histograms of normalized 

distances between original pipeline vectors that represent the 95% of the population, 

and (b) histogram of normalized distances between generated pipeline vectors that 

represent the 95% of the population 

Table 4- 10 Calculation of histograms intersection: (a) histograms of normalized 

distances between original pipeline vectors that represent the 95% of the population, 

and (b) histogram of normalized distances between generated pipeline vectors that 

represent the 95% of the population 

Bin # 
Bin density 

H 
𝑥-Histogram (a) -Histogram (b) 

 

1 6.065 6.000 6.000  

2 0.572 0.696 0.572 0.979 

3 0.146 0.136 0.136  

4 0.078 0.089 0.078  

5 0.030 0.043 0.030  

6 0.088 0.032 0.032  

7 0.020 0.004 0.004  

∑ 7.000 7.000 6.852  

 

y ),min( ii yx
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Figure 4- 22 Changes in match value H with respect to the increase of histograms’ 

bin number in the distances that underlie the 95% of the total population  

 

Figure 4- 23 shows the distribution of distances between pipelines that represents the 

higher 5% of the total population. Distances calculated from the original pipeline 

population represent 156 pipelines. Distances calculated from the generated pipeline 

population represent 116 pipelines. A significant difference in terms of mean and 

standard deviation can be seen in Figure 4- 24, which means that these two populations 

are significantly different. Moreover, when a histogram intersection measure was 

applied, as shown in Figure 4- 25 and Table 4- 11, the match value  was equal to 

0.504. The match value is calculated based on a bin number equal to 14, driven by 

Sturges’ formula, but when increasing the number of bins, the  value converges 

towards 0.29. Figure 4- 26 shows 10 runs with an increment of 10 bins added in each 

run. The  values change dramatically. When extending the increase in the number 

of bins to 1000, the  value becomes steady at 0.21. This confirms that the distances 
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representing the higher 5% of the total original and generated populations share a small 

trace of similarity equivalent to 0.21 in the range of 0 to 1.   

 

Figure 4- 23 Histograms of distances between pipelines vectors that represent the 

higher 5% in (a) the original and (b) the generated pipeline populations 
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Figure 4- 24 Probability plots of distances between pipelines vectors that represent 

the higher 5% in (a) the original and (b) the generated pipeline populations 

 

Figure 4- 25 Histogram intersection between; (a) histograms of normalized distances 

between original pipeline vectors that represent the higher 5% of the population, and 

(b) histogram of normalized distances between generated pipeline vectors that 

represent the higher 5% of the population 
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Table 4- 11 Calculation of histograms’ intersection; (a) histograms of normalized 

distances between original pipeline vectors that represent the higher 5% of the 

population, and (b) histogram of normalized distances between generated pipeline 

vectors that represent the higher 5% of the population 

Bin # 
Bin density 

H 
𝑥-Histogram (a) -Histogram (b) 

 

1 3.315 8.511 3.315 

0.508 

 

2 4.608 2.639 2.639 

3 1.142 0.000 0.000 

4 0.048 0.000 0.000 

5 0.442 0.000 0.000 

6 0.836 0.000 0.000 

7 1.251 0.000 0.000 

8 1.123 0.000 0.000 

9 0.002 0.000 0.000 

10 0.010 0.000 0.000 

11 0.005 0.000 0.000 

12 0.017 0.005 0.005 

13 0.068 0.014 0.014 

14 1.134 2.831 1.134 

∑ 14.000 14.000 7.107  

 

y ),min( ii yx
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Figure 4- 26 Changes in match value H with respect to the increase of histograms’ 

bin number in the distances that underlie the higher 5% of the population 

 

4.6 Conclusion 

In this study, a Markov-chain model is proposed to randomly generate pipeline data 

structures. Model development is motivated by the need to generate random input that 

represents the diverse and complex nature of the product to support simulation of 

construction fabrication processes. The construction of the Markov-chain model was 

preceded by original pipeline data preparation and analysis and succeeded by intensive 

validation processes. The study also illustrated how to convert pipeline data structure 

to a feature vector that can preserve pipeline characteristics prior to applying validation 

processes. The performance of the Markov-chain pipeline generation model was 

measured against a real dataset. In terms of the number of the generated pipelines’ 

components, the model generated approximately the same collection of components 

as in the original pipelines. The model also maintained the correlation between the 
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generated pipeline components that existed in the original pipelines. The results show 

that the model is reasonably similar to the original pipelines. Using a clustering-based 

model validation as a similarity measure shows that the Markov-chain model generated 

a reasonable performance. In the context of model validation using the distance 

between all feature vectors, it was found that the majority of the generated pipelines 

(89% of the total population) shared characteristics similar to 85.5% of the original 

pipeline populations with a degree of similarity of 0.88 ( on a scale of 0 to 1 with 0 

meaning not identical, and 1 meaning identical).  Meanwhile, the rest of the generated 

pipelines (11% of the total population) were significantly different when compared to 

the original pipelines. This confirms that the Markov chain model used to randomly 

generate pipeline data structure is capable of generating the dominant characteristics 

of pipelines found in reality.  
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Chapter 5 

 

Application of industrial pipeline data 

generator for testing the efficiency pipe modules 

optimization algorithms    
 

  

 

 

5.1 Introduction  

Three approaches have been the main pillars in analyzing and evaluating the efficiency 

of solution algorithms: theoretical worst-case analysis, theoretical average-case 

analysis and experimental analysis [94]. Experimental analysis is the most widely used 

method of growing interest in the operational research community [95]. It is used to 

test and analyze the performance of algorithms by running them on sets of instance 

problems. These sets of problems are either extracted from a real-world system or 

randomly generated using a synthetic data generator, which in both cases results in 

generating valuable knowledge. However, the use of real-world instances is associated 
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with difficulties related to the size and the number of the available test instances. In 

addition, although it represents a problem’s real behavior, the high cost of the data 

collection and documentation limits testing scenarios that researchers may examine 

[96]. Synthetic data generators provide a solution to such difficulties, as well as 

flexibility in generating test instances of different properties such as the size and 

complexity of an instance problem. Such properties are of great importance in the 

experimental analysis of NP-hard problems in which the computational time increases 

dramatically with the size of the problem [95] [97].  

Data generators, in the context of experimental design and analysis, are highly 

recommended to be used [98]. Different data generators for different problems, in the 

field of operational research, have been well documented and referenced in literature 

for researchers to generate data sets for computational experiments. For example, 

Drexl et al. [99] introduced an activity network generator to generate instance 

problems for a resource-constrained project scheduling problem. Gau and Wascher 

[100] introduced a problem generator for a one-dimensional cutting stock problem, 

and Silva et al. [101] introduced a problem generator for a two-dimensional rectangular 

cutting and packing problem. These examples of instance problem generators are used 

in a defined class of problems. They provide flexibility in generating a large number 

of instance problems with different properties and define a standard data set to be used 

in evaluating the efficiency of newly developed algorithms [100]. Similarly, in this 

chapter, an industrial pipeline data generator constructed in the previous chapter is 

introduced as a pipeline instance problem generator. The pipeline instance problem 

generator is designed to generate test sets for testing solutions’ algorithms applied on 
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industrial project problems. However, it is first important to identify and define the 

problem at which the industrial pipelines’ data generator will be targeted. Therefore, 

this chapter is structured as follows:  

1. Section 5.2 presents an overview of industrial projects related to 

modularization, modules, and pipe spools. It includes the problem definition 

and mathematical formulation. The problem definition, which is related to the 

pipe-spooling process in industrial construction, was conducted in cooperation 

with a partner company which has significant experience in industrial 

construction. 

2. Section 5.3 presents background about the bin-packing problem. The selection 

of this class of problem is based on the mathematical formulation of the pipe-

spooling problem. This section includes an overview of the bin-packing 

problem and its heuristics, the projection of the pipe-spooling problem as a 

three-dimensional bin-packing problem, and the heuristic (branch-and-bound) 

that is proposed to approximate the pipe-spooling solution.  

3. Section 5.4 presents the generation of pipeline instance problems. It includes a 

description of the additional pipeline attributes (pipeline component lengths, 

diameter and running direction) required by the pipe-spooling problem and the 

integration of these attributes in the industrial pipeline generator. 

4. In Section 5.5, a computational experiment is conducted, and its results are 

reported as benchmark results for the proposed heuristic in approximating the 

pipe-spooling solution. 
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5. Section 5.6 presents the future use of the industrial pipeline data generator and 

Section 5.7 presents the conclusion of this chapter.    

5.2 Overview of modularization, modules, and pipe spools in industrial 

projects: The defined problem statement 

In industrial projects such as petrochemical plants, petroleum refineries, and oil and 

gas production facilities, piping systems are the major and most complex elements, 

accounting for ; 40% of the total time and budget [102]. These costs lead the project 

owners to increase their demands for safety, quality, productivity and performance of 

their projects [103]. Such demands have led to an increased interest in using time- and 

cost-efficient construction techniques. The modularization of construction elements 

has a positive impact on construction operations throughout the industrial project life 

cycle. Modularization has improved  productivity in the construction industry, 

resulting in (1) improved project schedules, (2) budget and cost reductions, (3) 

improved site safety, (4) waste reduction, (5) reduced weather impact on the 

fabrication process, (6) reduced field labour requirements, and (7) improved quality  

[104].  

Modularization is defined as “the preconstruction of a complete system away from the 

job site that is then transported to the site” [105]. The system may be too large to 

transport, so   is broken into smaller units called modules. These modules are defined 

as “a major section of a plant resulting from a series of remote assembly operations 

and may include portions of many systems; usually the largest transportable unit or 

component of a facility” [106]. The modularization technique is part of a construction 

methodology called “prework” that includes prefabrication, preassembly, 
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modularization, and off-site fabrication processes (PPMOF) [107]. The adoption of 

“prework” has increased in the construction industry; it was found that during the past 

15 years, the implementation of prefabrication has increased by 86% and the 

implementation of both prefabrication and preassembly increased by 90% [108]. 

Modularization as a part of the “prework” construction method has demonstrated great 

potential in terms of increasing efficiency in industrial construction. However, it is 

also associated with disadvantages, identified by Dawar et al.  [109],  such as (1) the 

increase in engineering and home office costs, (2) the increase in fabricator quality 

surveillance, expediting and logistical costs, (3) additional cost and scheduling for 

transportation and logistics, (4) additional cost and scheduling for preliminary studies 

in the early stages of the project, and (5) an increase in installation costs due to heavy 

modules. In general, these disadvantages can be divided into two major groups: (1) the 

expensive mode of transportation and excessive logistics planning required in the area 

of modular construction, (2) and the excessive requirements of engineering [110]. The 

first group, transportation and logistics, plays a critical role in modularization. Failure 

to properly plan the transportation and logistics of industrial projects may cause 

catastrophic costs and scheduling damages. For example, the Kearl oil sands project 

located in northern Alberta, Canada experienced cost and schedule overruns due to 

transportation and logistics problems [111]. Korean-made modules were shipped to 

Canada, but due to their large size and the transportation regulations, Kearl had to 

break 200 modules into smaller pieces for shipping and then reassemble them on site. 

This unanticipated problem increased the project cost by $2 billion. Constructing 

transportation and logistics strategies is imperative to increase the efficiency of 
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modularization in an industrial project, but building these strategies is a complex 

process. It involves route identification, constraints, transportation envelopes, and 

scheduling availability. Murtaza et al. [110] identified and defined areas of 

consideration in planning transportation and logistics strategies. These areas, their 

definition, and citations are shown in Table 5- 1. 

Table 5- 1 Areas of consideration in planning transportation and logistics strategies 

[110] 

No. Area Definition Reference 

1 
 

Total 

delivered cost 

management  

“Ability to analyze and predict the total 

supply chain costs from the source to 

the point of distribution. It includes the 

capability to roll up both international 

and domestic logistics costs by product 

and delivery route, plus the ability to 

accurately calculate all the applicable 

duty, tariffs and other customs-related 

costs while factoring in any preferential 

trade agreements. More advanced 

capabilities would include the ability to 

model and estimate inventory levels and 

total carrying costs” 

SupplyChainDigest 

[112] 

2 
 

Supplier 

portals and 

advance ship 

notice (ASN) 

capability  

“Web portals that provide some level of 

visibility, the ability to generate ASNs, 

and print barcode labels. Shippers post 

freight movement requests and/or detail 

ASN notices delivered”  

SupplyChainDigest 

[112] 

3 
 

Total product 

identification 

and regulatory 

compliance  

“Systemized approach to identify 

products and ensure conformance to 

regulatory and export rules”  

SupplyChainDigest 

[112] 

4 
 

Dynamic 

routing 

“System modeled rates/lanes give 

realistic view of cost/service advantages 

between shipping alternatives”  

SupplyChainDigest 

[112] 
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No. Area Definition Reference 

5 
 

Variability 

management  

“Ability to manage in-transit exceptions 

more effectively”  
SupplyChainDigest 

[112] 

6 
 

Integrated 

international 

and domestic 

workflow  

“Reduction in total logistics costs 

through a more holistic approach to 

process and carrier/mode coordination 

across international and domestic 

moves”  

SupplyChainDigest 

[112] 

7 
 

Integrated 

planning and 

execution 

platform  

“End-to-end, optimized global logistics 

control and cost minimization”  
SupplyChainDigest 

[112] 

8 
 

Global 

logistics 

process 

automation  

“Transitioning from manual intensive 

processes and adopting such things as 

internet-based transaction automation 

technology”  

AberdeenGroup [113] 

9 
 

End-to-end 

visibility  

“Increased visibility of logistics process 

steps creates control”  
AberdeenGroup [113] 

10 
 

Financial 

supply chain 

management  

“Financial supply chain management is 

about looking at how to optimize 

working capital of a company” 

Kristofik et al. [114] 

 

Reading through Table 5- 1 and from the industrial construction perspective, the areas 

of consideration which have a potential effect on modularization are total product 

identification and regulatory compliance, integrated international and domestic 

workflow, and the integrated planning and execution platform. Improving these areas 

increase confidence in selecting modular construction in an industrial project. This fact 

is supported by results obtained by O’Connor et al. [115], who determined 21 

influential critical success factors that led to an effective use of modularization. These 
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factors were generated from a survey conducted on more than 170 modular projects 

located in 13 countries with industry representatives made up of owners, contractors, 

design firms, and fabricators (a detailed description of each critical success factor is 

presented in Appendix G.). The most influential success factor was understanding the 

module envelope limitations, a factor that aligned with the finding in Table 5-1, which 

is the consideration of total product identification (standardizing the module design) 

and regulation compliance in modular construction. It is important to accurately define 

and identify the product/module in accordance with the transportation envelope limit. 

This makes it possible to recognize modularization’s cost savings in the front-end-

planning stage.  

Cost recognition is achieved the advanced planning for contractors’ resources; it 

includes testing construction methods and transportation strategies under different 

expected scenarios. Knowing that owners/contractors may use local and international 

fabricators or suppliers to achieve the most cost efficient modular construction 

strategies [116] results in an investigation of new research directions in the field of 

modularizing industrial projects. A research direction that integrates product 

optimization with the optimization of transportation process to support decision 

making in the front-end planning stage.  

5.2.1 Modules and pipe spools  

In industrial construction projects, a module is the main construction element/product. 

There are different types, identified by Dawar et al. [109] and shown in Table 5- 2. 

Most require prefabrication, preassembly, and transportation. Most of the modules in 
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industrial projects have common formation components which are structural steel 

frames that include racks of pipes, cables, and equipment [117]. More specifically, 

they are composed of construction materials and installed equipment. These 

components account for 50 to 60% of the total cost of the industrial project [118]. 

Construction materials are further classified as off-the-shelf (e.g., nuts, bolts, steel 

sheets, elbows, small pipes, and hand valves), long-lead bulks (items or material 

require a long time to design and fabricate) and engineered items (e.g., pipe spools) 

[119].  Of these categories, engineered items in the form of pipe spools are featured as 

high-cost unique items that require more front-end planning effort [120].  
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Table 5- 2 List of the common types of modules in the petrochemical industry [109] 

No. Module type Definition 

1 Pipe rack and 

pipe bridge 

modules 

Modules loaded with pipes, electrical trays, and 

attachments. These modules are usually fully fabricated 

and loaded at the shop and then installed in the field on 

pile and concrete foundations.  

2 Structural 

modules 

Modules without any equipment or pipes. 

3 Skidded 

packages 

A small vendor furnished modules 

4 Process 

structure 

modules 

Multilevel-process open-frame or enclosed structures 

including single or multiple equipment, piping, electrical 

and instrumentation. These modules may weigh 20 tons to 

4,000 tons or more. 

5 Dressed towers Vertical vessels that have been pre-assembled with all the 

insulation, ladders, platforms, lighting, and 

instrumentations. 

6 Pump modules Modules that include platform-supported pumps, weather 

shelters, piping, electrical and instrumentation. 

7 Pre-assembled 

units 

Units that are broken down into smaller components such 

as pre-assembled units due to volume and size constraints 

in shipping and transporting large complex structures. 

 

Pipe spools are unique in terms of their components such as tee connections and a tube 

and elbow [121]. They are also unique in shape, material, and finish [122]. Pipe-spool 

manufacturing starts with cutting the pipes to the required size, fitting and welding 

(pipe spool shape formation), testing (e.g., hydro testing), and transporting the product 

to the module yard for assembly [123]. This process represents the first stage in 

modular construction, shown in Figure 5- 1. The other processes include module 
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assembly (installing the manufactured pipe spools inside a module), and transporting 

and installing modules on the project site. It is obvious from Figure 5- 1 that the pipe 

spool is the controlling element in modular construction because although the module 

size may be standardized, the cost and time required to produce a module may vary 

significantly. This variation is driven by the fact that each module may be composed 

of multiple unique pipe spools (in shape, size, and materials) with each acquiring a 

different number of man-hours to be produced.  

 

Figure 5- 1 Module production processes in industrial project construction 

Also, transporting the pipe spool from the fabrication shop to the module yard creates 

a transition state in the production process, a transition from a controlled 

manufacturing environment to an uncontrolled environment. This transition more 

specifically affects the welding and testing processes. Contractors prefer to perform 

pipe-spool welding and testing in a controlled environment because the cost associated 

with these two processes is higher in an un-controlled environment (e.g., project site). 
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However, welding in a module yard or project site is unavoidable, which results in cost 

variations from one module to another. Furthermore, producing different sizesmakes 

it more expensive to transport the pipe stools to the module yard or project site. In the 

case of contractors employing different fabricators, the contractors prefer to optimize 

the size of the pipe spools to minimize additional cost due to transportation, off-site 

welding, and testing; thereafter, the total manufacturing cost of the module is also 

optimized. However, the question to be answered before proceeding with this 

discussion is “How pipe-spools are designed, and how is their configuration 

optimized?  

5.2.2 The generation of pipe-spool cut-sheets 

In industrial construction, the typical production process starts with the delivery of 

International Organization for Standardization (ISO) drawings, drafting, material 

delivery, followed by the rest of processes shown in Figure 5- 1 [124]. These ISO 

drawings are provided by the client and represent a piping system that includes the 

pipe section, dimensional properties, transition pieces, in-line instrumentation, and 

support. These drawings can either represent a pipeline or a pipeline partition. Upon 

receiving the drawings, the contractors break the drawings into smaller drawings called 

cut-sheets [125]. These cut-sheets break the pipeline partition illustrated in the ISO 

drawing into smaller elements called pipe spools. Since clients provide ISO drawings, 

contractors have little-to-no control over the pipelines partitioning process. However, 

they have full control over the optimization of the pipe-spooling process (optimizing 

the generation of pipe-spool cut-sheets). The generation of pipe spool cut-sheets is 

performed based on different rules and heuristics. The common rules are (1) limiting 
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the spool length to the transportation envelope [125], or (2) limiting the spool volume 

to the fabrication shop clearance limit so that roll  fitting and welding (i.e., main pipe 

rotating and fitter/welder position is fixed) are maximized and the position  fitting and 

welding (i.e., pipe position is fixed and fitter/welder moving around the main pipe to 

perform fitting and welding) are minimized [126]. Both rules are performed by 

fabrication shop personnel, and it is difficult for each rule to reach a degree of 

consistency while applied in the generation of pipe-spool cut-sheets. This is due to the 

human factor employed in the process; generally speaking, two fabrication shop 

personnel may generate different spool-pipe cut-sheets for the same pipeline ISO 

drawing. Moreover, none of the generated cut-sheets may represent the optimum 

configuration that serves the described objectives: (1) maximize the pipe-spool size to 

optimize the transportation cost and generate efficient transportation and logistics 

strategy, (2) maximize the welding and testing process in a controlled environment 

(fabrication shop), and (3) minimize welding and testing in an uncontrolled 

environment (project site). Therefore, it is important to identify the dominant rules 

used in the generation of the pipe-spools’ cut-sheet. The selection of such rules is 

dependent on the area of study, and since the decision support system in front-end 

planning in industrial construction is the area of consideration in this study, the 

selected rule to be investigated and modeled is “limiting the spool length to 

transportation envelope.” This rule identifies an optimization problem in the field of 

industrial construction which is the “pipe-spooling optimization problem.” It is defined 

in the following section. 
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5.2.3 The problem definition of pipe spooling  

The defined pipe-spooling problem is given a transportation envelope (𝐸𝑉) with a 

dimensional limit (𝐿, 𝑊, 𝐻) and a pipeline data structure. This raises the question, 

what is the optimum configuration of pipe spools that can be generated from the given 

pipeline data structure while considering the dimensional limitation of the 

transportation envelope? Figure 5- 2 shows the graphical representation of the 

proposed pipe-spooling optimization process and includes three major stages: (1) input 

(the determination of the instance problem), (2) optimization model (the identification 

of the optimization algorithm suitable to solve the pipe-spooling problem), and (3) the 

expected optimization output.  

 

Figure 5- 2 Pipe-spooling optimization process 

Starting from the last stage (output), the main contractor requirements from the pipe-

spooling optimization problem are: (1) to generate the minimum number of pipe spools 

for each pipeline(𝑃𝑆), (2) to maximize welding and testing requirements in the 
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fabrication shop (𝐹𝑊), and (3) to minimize welding and testing requirements on the 

project site (𝑆𝑊). These requirements are considered the optimization variables. The 

contractor also highlighted the importance of adding a decision weight factor 𝑐𝑘 (𝑘= 

PS, FW, SW) for each variable so that the effect of different cost-time trade-off 

scenarios can be studied and analysed. Part of these scenarios includes testing the 

optimum configuration of pipe spools under a different selection of transportation 

envelopes such as Alberta and overseas sizes, as shown in the optimization model stage 

in Figure 5- 2. This will make it possible to investigate the transportation and logistics 

strategies to be applied in case different fabrication companies are involved in the 

industrial project. These sizes are further classified to two categorizes: On-Module and 

Off-Module. The main difference between these two categories is that when the piping 

system in the industrial project is broken down to modules, some of pipeline 

spools/components may branch out of the module. These are called off-modules spools 

or components while spools or components contained within the module are called on-

module spools or components. Furthermore, off-modules spools or components are 

not transported to the module assembly yard; rather, they are transported directly to 

the project site.   

The first stage shown in Figure 5- 2 is the input modeling of the instance problem. 

Pipelines, as mentioned previously, are the problem instances and as per the contractor 

requirements these instances should include types of pipelines components (tube, 

valve, etc.), their connectivity information (the sequential pattern of the pipeline 

components), and their physical properties (such as length, diameter, running 

direction). These properties are important to quantify the required fabrication shop 
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weld (𝐹𝑊), and project site weld (𝑆𝑊) for each pipe-spool generated. For instance, 

there is no weld required in the case of two flanges connected, but welding is required 

in the case of two tubes that are supposed to be connected.  

5.2.4 Mathematical formulation 

As per the problem definition in 5.2.3 the mathematical formulation of the pipe-

spooling optimization objective function is defined as: 

𝑂𝑃𝑆𝑗 = 𝑀𝑖𝑛 [𝑆𝑖𝑗]   5-1 

Where, 

𝑂𝑃𝑆𝑗 = optimum configurations of pipe spools in pipeline 𝑗 (𝑗 = 1, … , 𝑛). 

𝑆𝑖𝑗 = solution weight value of each pipe spool configuration 𝑖 (𝑖 = 1, … , 𝑚) in 

pipeline 𝑗. 

The pipe-spooling optimization objective function provides the optimum configuration 

of pipe spools from the 𝑖 expected solutions 𝑆𝑖𝑗  of pipeline 𝑗 and the solution 

incorporates all optimization variables that are (1) the number of generated pipe spools 

(𝑁), (2) the fabrication shop weld (𝐹𝑊), and (3) the project site weld (𝑆𝑊). Thereby, 

the mathematical formulation of the solution weight value is defined as: 

𝑆𝑖𝑗 = (𝑐𝑃𝑆 × 𝑁) + (𝑐𝐹𝑊 × ∑ 𝐹𝑊𝑖) + (𝑐𝑆𝑊 × ∑ 𝑆𝑊𝑖)  5-2 

where,  

𝑐𝑃𝑆 = weight factor for the number of generated pipe spools (𝑃𝑆). 
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𝑐𝐹𝑊 = weight factor for the number of fabrication shop welds (𝐹𝑊). 

𝑐𝑆𝑊 = weight factor for the number of project site welds (𝑆𝑊). 

𝑁 = the number of generated pipe spools for solution 𝑖. 

∑ 𝐹𝑊𝑖 = the sum of the number of expected fabrication shop welds for solution 𝑖. 

∑ 𝑆𝑊𝑖 = the sum of the number of expected project site welds for solution 𝑖. 

The number of expected solutions for each pipeline is driven by the possible number 

of starting points. For example, Figure 5- 3 shows a graphical representation of 

pipeline ISO fitted to an on-module envelope. The pipe spooling can start from three 

possible starting components denoted as 𝑆𝑡11, 𝑆𝑡21, and 𝑆𝑡31.  

 

 

Figure 5- 3 Graphical representation of pipeline ISO and on-module envelope 
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Each starting component may have a different number of pipe spools because the 

sequential pattern of pipeline components differs from one starting component to 

another. Moreover, these components have unique properties such as the type of 

component and length. These properties, in addition to the unique sequential pattern 

of pipeline components, control the allowable size of the generated pipe spool. Also, 

the pipe-spooling process is subject to other constraints along with the modules’ 

dimensional limits, shown in Figure 5- 3. These constraints are explained as follows: 

1. If any component, except for components of type tube, extends beyond the 

envelope boundary 𝐸𝑉 (𝐿, 𝑊, 𝐻) by ≤ 25 cm, then the component can be 

considered an on-module spool/component.  For example, if “Èlbow-1” 

branch in the y direction, shown in Figure 5- 3, is extending out from the 

boundary (𝑊) by less than 25 cm, it is considered part of the on-module 

spool/component. If not, it is considered an off-module spool/component. 

2. If a pipeline component of type tube extends beyond the envelope boundary 

𝐸𝑉 (𝐿, 𝑊, 𝐻) by ≥ 25 cm, the component can be cut into two pieces. The 

component piece inside the module is considered an on-module component and 

the one outside is considered an off-module component. 

3. Any connectivity between components tube, tee, elbow, reducer, and flange 

requires either a fabrication shop weld or a project site weld. However, other 

connectivity with other components such as valve, instrument, or closure 

requires a bolt connection. This constraint limits the calculation of both 𝐹𝑊 

and 𝑆𝑊 to certain types of components. 
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 In this section, the pipe-spooling problem statement and its mathematical formulation 

of the optimization objective function have been defined. However, the pipeline data 

structure is a combinatorial structure, and it is important to identify the 

heuristic/approximation algorithm that can provide the optimum pipe-spooling 

solution. Therefore, the following section will identify the class/type of optimization 

problem and the heuristic/approximation algorithm which can be adopted in pipe-

spooling optimization modeling. 

5.3 The packing problem, bin-packing, and heuristics overview 

The problem definition of pipe-spooling presented in Section 5.2.3 is closely related 

to packing problems, specifically to container-loading problems. The container-

loading problem is defined as packing a set of rectangular-shaped items into a 

rectangular fixed-shape container [127]. Pisinger [127] defined different types of 

container-loading packing problems in accordance with their objective function. These 

packing problems are: 

- Strip packing: in this problem, the container has a fixed height and width, and 

infinite depth. The objective function in this problem is to pack all the items in 

a way that minimizes the container depth. 

- Knapsack loading: in this problem each packed item is associated with profit 

and the objective function is to choose the set of items to be packed in the 

container so that each container is loaded with maximum profit. 
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- Bin-packing: in this problem all containers have a fixed height, width, and 

depth. The objective function is to pack all the items into a minimum number 

of containers.   

- Multi-container loading: in this problem the shipping containers may have 

different dimensions and the objective function is to choose a set of containers 

that minimizes the shipping cost. 

Of these packing problems, the bin-packing container-loading problem is more 

relevant than the pipe-spooling optimization because the optimum pipe-spool 

configuration is constrained by a transportation envelope (a transportation envelope is 

equivalent to the container size described in the container loading problem). Also, the 

packed items in the pipe-spooling process are pipeline components. Although they are 

of an irregular shape, they can all be represented by rectangular- shaped components 

with different dimensions.   

5.3.1 The bin-packing problem overview 

Given 𝑛 items, each with a different weight 𝑤𝑖, and an infinite number of bins with 

capacity 𝑐, the bin-packing problem is defined as packing all items in a way that the 

number of bins used is minimized and their capacity usage is maximized [128]. Based 

on the bin-packing definition, the problem is dependent on two elements: packed items 

and bins used. These two elements control the dimensionality of the bin-packing 

problem, imposing different dimensionality features. The one-dimensional bin-

packing problem is the classical version that represents both the packed item and the 

bin size with an integer number. It was initially used to model a range of real-world 

problems such as packing trucks having a weight limit and assigning station breaks on 
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television [129]. The different application, specifically in the manufacturing industry, 

highlighted the need to model a higher-dimensional bin-packing problem. For, 

example the steel, glass, and wood industries imposed the need for an optimization 

model to cut these items to a specific area so that produced waste would be minimized 

[130]; thus, the two-dimensional bin-packing was one of the offered optimization 

modeling approaches [131]. Also, a three-dimensional bin-packing problem was 

presented to solve a complex problem such as container loadings in the field of 

transportation and logistics. However, all bin-packing problem, regardless of their 

dimensionality differences, are considered NP-hard problems [132] [133] ,which 

normally require heuristic methods to generate a solution in a reasonable time frame 

[134] [135].  

5.3.2 The bin-packing heuristics 

Heuristic (or approximation algorithms) is defined as “a procedure to reduce search in 

problem-solving activities, or a means to obtain acceptable solutions within a limited 

computing time” [136]. Four bin-packing heuristics were first presented and evaluated 

by Garey et al. [137] to generate good placement of bins: (1) first fit, (2) best fit, (3) 

first fit decreasing, and (4) best fit decreasing. The differences between the first and 

the last two heuristics are that the earlier heuristics start packing items in an increasing 

order (small items first), while the later ones start packing items in decreasing order 

(large items first). However, the common characteristics are that the previously 

processed bins can be considered to pack the currently processed item. Some 

applications prevent the consideration of any processed bin. Therefore, another bin-

packing heuristic called “next fit” was proposed. The packing process of the next fit 
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heuristic starts packing items in a sequential order, regardless of their weight or size, 

until the bin capacity is achieved. After that the bin is closed with no future 

consideration. These are the classical types of heuristics, applied on both on-line 

(packing the item with no knowledge about the successive items), and off-line 

(information about all items is available before packing) approximation algorithm 

classes, and applied on one- or higher-dimensional packing problems [138]. The 

described heuristics (or the approximation algorithms) consider packing one item at a 

time; in other words, the described heuristics represent a one-directional instances 

problem with no multidimensional connectivity relationships between the packed 

items. However, if modeling a pipe-spooling process as a three-dimensional bin-

packing problem, two questions should be first answered: 

1. How to consider the combinatorial structure of the pipeline problem instances 

for modeling packings? 

2. How to adopt the pipe-spooling process constraints described in Section 5.2.4 

in the bin-packing problem definition? 

5.3.3 Pipe spooling as a three-dimensional bin-packing problem  

Pipeline data structure, as mentioned in the previous chapter, is treated as a tree 

structure. It contains vertices/nodes that describe the pipeline component and edges 

that describe the connectivity relationships between pipeline components. 

Furthermore, at the design stage of pipeline systems, the pipeline system is assigned 

to either one or multiple modules (based on industrial practices) and each pipeline 

component assigned to a pipeline partition is tagged with a coordinate to identify its 

location in reality. In addition, the pipe-spooling process starts by first identifying the 
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possible starting point in the pipeline (refer to 𝑆𝑡11,𝑆𝑡21 and 𝑆𝑡31 in Figure 5- 3) and 

thereafter follows the running direction of the second component. Therefore, the 

pipeline instance problem can be treated as a directed graph 𝐺 = (𝑉, 𝐸); where  𝑉 is 

the graph vertices and  𝐸 is the graph edges. This type of data structure creates a 

challenge in constructing optimal solutions for packing problem; however, Fekete and 

Schepers [139] presented an approach to construct feasible packing using a graph-

theoretic characterization of the relative position of the packed items. The same 

approach is to be applied to reflect the pipe-spooling optimization problem into a three-

dimensional bin-packing problem.  

The approach starts by first defining the input data for the three-dimensional bin-

packing problem; the input is a set of components 𝑉 that form the pipeline partition 

(more specifically, components that form the pipeline ISO shown in Figure 5- 3) and 

a size vector 𝑤. The size vector 𝑤 represents the minimum and maximum point 

coordinates of the box that contains the component. The other input is the size of the 

container 𝑊 which is equivalent to the module sizes illustrated in Figure 5- 2 and to 𝐸𝑉 

envelope shown in Figure 5- 3. Fekete and Schepers [139] used a graph characteristic 

called an induced subgraph to construct a feasible solution. The induced graph 

represents the set of vertices associated with their edges that can be enclosed within 

the container. However, in the case of pipe spooling, using only an induced graph may 

not produce the feasible solution because spools generated from pipeline ISO may take 

the form of either an induced graph or a subgraph. The main difference between these 

two graphs is that the induced graph has a set of edges, 𝐸, that connect all vertices. In 

other words, any vertex can return to itself by passing through other vertices. This 
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condition does not necessary apply in the subgraph.  As an illustration example, Figure 

5- 4 shows both the induced graph and subgraph. It can be seen that vertex 1 in the 

induced graph can return to itself by passing through vertices 2, 3, and 4. However, it 

is not possible for the same vertex to return to itself in the subgraph because of the 

missing edge between vertices 3 and 4.  

 

 

Figure 5- 4 Graphical example of (a) induced graph, and (b) subgraph 

Therefore, we consider that the feasible solution is a set of pipe spools, 𝑃𝑆𝑖,, each 

presented in the form of an induced graph or subgraph and denoted as 𝑝𝑠𝑗 =

(𝐶𝑛𝑗, 𝐸[𝐶𝑛𝑗]), where 𝐶𝑛𝑗 is a set of components, 𝑛,  forming pipe spool 𝑗 ( 𝐶𝑛𝑗  ∈ 𝑉) 

and 𝐸[𝐶𝑛𝑗] is the edges connecting the pipe spool 𝑗 components. The pipe spool 𝑝𝑠𝑗 is 

called feasible only if  ∑ 𝑤(𝐶𝑛𝑗) ≤   𝑊𝐶𝑛𝑗∈ 𝑝𝑠𝑗
, and the arrangement of pipe-spool 

components in the three-dimensional packing should generally satisfy the following 

constraints [140]: 

1. Orthogonality: the pipe spool component should be parallel to the container 

face. 
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2. Closedness: no pipe spool component should exceed the container boundaries.  

3. Disjointness: no two pipe-spool components may overlap. 

4. Fixed orientations: no component should be rotated once the packing starts.     

The above description of the use of graph-theoretic characterization answers the 

question of how to consider the combinatorial structure of pipeline problem instances 

for modeling packings. However, the arrangement constraint “closedness” in three-

dimensional packing contradicts the first and the second pipe-spooling process 

constraints described in section 5.2.4. The first pipe-spooling process constraint is 

overcome by adding a marginal level of 25 cm to the container size 𝑊 while running 

a heuristic or approximation algorithm,. The second pipe-spooling constraint, where a 

pipe-spool component of type tube can be cut into two pieces to maximize the 

component’s inclusion in the container, can be maintained by employing the item 

fragmentation feature of the bin-packing problem. The bin-packing problem that 

applies item fragmentation is called the Bin-Packing Problem with Item Fragmentation 

(BPPIF). It allows the packed item (𝑎𝑖) to be fragmented to two pieces (𝑎𝑖1 + 𝑎𝑖2) to 

minimize the number of bins in the packing process [141]. Based on the above 

discussion, this section concludes with the following: (1) a graph-theoretic 

characterization is used to reflect the pipe-spooling problem as a bin-packing problem, 

and (2) the item fragmentation feature of the bin-packing problem is employed to adopt 

the pipe-spooling constraints.  

5.3.4 The branch-and-bound heuristic 

As explained in the previous section, the pipeline-instance problem is a combinatorial 

type of structure. The instance problem is treated as a directed graph 𝐺 = (𝑉, 𝐸) and 
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the bin-packing process starts from pre-determined vertices in graph 𝐺. The feasible 

pip- spool solution 𝑝𝑠𝑗 is either an induced or subgraph from 𝐺 that is constrained by 

a dimensional limit or size. Therefore, the obvious heuristic or approximation 

algorithm that can be applied in this case is the classical branch-and-bound heuristic. 

The branch-and-bound heuristic is “an intelligently structured search of the space of 

all feasible solutions. Most commonly, the space of all feasible solutions is repeatedly 

partitioned into smaller and smaller subsets” [142]. The branch-and-bound heuristic 

was first introduced by Land and Doig [143] and is most often used in constrained 

optimization problems [144]. The heuristic first identifies the number of possible 

solutions. Figure 5- 5 provides an example in the form of an illustration; the figure 

shows a tree representation of the pipeline data structure. The number of possible 

solutions is determined by the number of possible components that the packing process 

starts with. In this example, four possible solutions can be identified by starting with 

components 1, 3, 7, and 8.  

 

Figure 5- 5 Tree representation of pipeline- problem instance 
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As mentioned previously, the solution is defined as a set of pipe spools, 𝑃𝑆𝑖 . Each 

pipe spool  𝑝𝑠𝑗 is called feasible only if it satisfies the following condition: 

∑ 𝑤(𝐶𝑛𝑗) ≤   𝑊𝐶𝑛𝑗∈ 𝑝𝑠𝑗
 5-3 

where, 

𝑤(𝐶𝑛𝑗) = the size vector of component 𝐶𝑛 that belongs to pipe spool 𝑝𝑠𝑗. The size 

vector contains the location of the minimum (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) and maximum 

(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥)  points of the component. In short, it is a cuboidal envelope that 

contains the component.  

𝑊 = the size vector of the container/module envelope. It also contains the location of 

the minimum (0, 0, 0) and maximum (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥)  points of the container. 

Starting from Component 1, shown in Figure 5- 5, the branch-and-bound heuristic first 

tests the component to determine whether it satisfies condition (3) or not. If  𝑤1(𝐶1) 

≤  𝑊, then Component 𝐶1is packed in the container/module envelope and considered 

as the first component of pipe spool 𝑝𝑠1. The packing arrangement, on the other hand, 

follows the “bottom-left” procedure, such that the first component is to be located at 

the lower bound of the container. The branch-and-bound then moves to component 

(𝐶2) and applies the same test as in component (𝐶1). Assuming that the second 

component passes the test, it will be added to 𝑝𝑠1. Component (𝐶2) branches to 

components (𝐶3) and (𝐶4); therefore the branch-and-bound will test the condition 

under two scenarios. The first scenario, ranked first, is to pack both components if they 
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satisfy  𝑤3(𝐶3) + 𝑤4(𝐶4) ≤  𝑊. Otherwise, the second scenario is applied which packs 

the component that has the longest span (e.g. component 𝐶4). If it is assumed that the 

first scenario can be applied, then both components 3 and 4 are packed in the container 

and added to 𝑝𝑠1. The same packing procedure is applied until no possible component 

can be packed. For example, if component 𝑤5(𝐶5) ≥  𝑊, then the applicability of 

packing 𝐶5 is checked in accordance with the first and the second constraints in the 

pipe-spooling process described in Section 5.2.4. This step is performed to check 

whether 𝐶5 can be fragmented or not. If 𝐶5 cannot be fragmented, then the packing 

process is ended for the first pipe spool 𝑝𝑠1 and the second packing process starts from 

𝐶5 to generate the second pipe spool 𝑝𝑠2. Once the branch-and bound heuristic that 

started from 𝐶1 covers all components, the set of generated pipe spools is called 𝑃𝑆1.  

The generated set of pipe spools,  𝑃𝑆1, works as the foundation in calculating the 

solution weight value 𝑆𝑖𝑗 described in equation (5-2) in Section 5.2.4 Refer to Figure 

5- 6 for a graphical illustration on how the pipe spooling solution weight value 𝑆𝑖𝑗 is 

calculated. 
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Figure 5- 6 Calculation flow of the solution weight value Sij 

 

The generated set of pipe spools,  𝑃𝑆1, from the branch-and-bound heuristic search 

started from  𝐶1 resulted in providing two optimum pipe spools,  𝑝𝑠1 and 𝑝𝑠2, as 

shown in Figure 5- 6. The weight value of this solution, denoted as 𝑆11,  is calculated 

by first determining the three variables of equation (2); 𝑁1, ∑ 𝐹𝑊1 and ∑ 𝑆𝑊1. The 

number of pipe spools, 𝑁1, is equivalent to the number of pipe spools in set 𝑃𝑆1 , which 

is 2. However, the other variables, ∑ 𝐹𝑊1 and ∑ 𝑆𝑊1, are determined by relating to 

the generated induced graph or subgraph of both pipe spools 

(𝑝𝑠1=
(𝐶1→4, 𝐸[𝐶1→4]), 𝑝𝑠2=

(𝐶5→8, 𝐸[𝐶5→8])). Both graphs have the components’ 

properties and their connectivity relationship. Therefore, using this information makes 

it possible to determine the required fabrication shop (𝐹𝑊11, and 𝐹𝑊12) and project 

site weld (𝑆𝑊11, and 𝑆𝑊12), after which 𝑆11 can be calculated. 

𝑁1 

 𝑝𝑠1 (𝐶1→4, 𝐸[𝐶1→4]) 

𝐹𝑊11 

𝑆𝑊11 
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 𝑝𝑠2 (𝐶5→8, 𝐸[𝐶5→8]) 𝐹𝑊12 

𝑆𝑊12 

∑ 𝑆𝑊1 

 𝑃𝑆1 𝑆11 
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5.4 The generation of pipeline problem instances using the industrial pipelines’ 

data generator 

In the previous section, a pipe-spooling process was described and modeled as a three-

dimensional bin-packing problem. A branch-and-bound heuristic is proposed and 

described in detail to construct a feasible packing solution, and the remaining is to test 

the computational efficiency of the proposed heuristic using a pipeline problem 

instances test set. The pipeline problem instances can be extracted from either the real 

industrial project or can be generated using a data generator. The first option is 

normally challenging because of the high cost of data collection, cleaning, and 

preparation. Randomly generating pipeline problem instances from a data generator 

provides more flexibility in testing and improving the studied approximation 

algorithms. Therefore, the industrial pipelines’ data generator described in the previous 

chapter will be used to randomly generate a data test set of different pipeline problem 

instances.  

The validation processes applied on the generated pipeline data structure proved the 

ability of the pipeline data generator to provide characteristic behavior of pipeline 

components that was approximately similar to the behavior in reality. The generated 

pipelines are composed of a set of components, each defined by its type (pcomponent, 

instrument, valve, flange, tube, elbow, tee, reducer, coupling, closure, cap, ftube, and 

fblind) and its connectivity relationships with the other components. In addition to 

these properties, the packing process of the pipe spool components requires the size 

𝑤𝑖 ([𝑥
𝑚𝑖𝑛

, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛], [(𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥]) of each component. The size 𝑤𝑖 of each 

component represents the boundary box that contains the component.  In order to 
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allocate the minimum and maximum points of the component boundary box, three 

additional properties should be added to the pipeline components:(1) component’s 

length, (2) component’s diameter, and (3) component’s running direction. To 

accommodate these properties two additional layers of component properties will be 

added to the pipeline generator. The first layer will generate the length and diameter 

for each component, and the second layer will generate a running direction for each 

component. These two layers will make it possible to generate a data test set of pipeline 

problem instances that can be used to test the computational efficiency of the proposed 

heuristic. A detailed description of each layer is given in the following subsections.   

5.4.1 Layer I: The generation of component lengths and diameters 

In this layer, the same industrial pipeline data used in the previous chapter to construct 

the pipeline data generator is used to extract the length and diameter properties. 

5.4.1.1 The generation of component lengths 

Each pipeline may be formed from a different combination of pipeline components 

(refer to Table 5-3), and each component may exert different length properties. 

Therefore, each component length from the real pipeline data is fitted to a theoretical 

probability distribution function that best approximates its behavior. Table 5-3 shows 

the theoretical probability distribution functions for each pipeline component. Most of 

the components either have a different distributional behavior when compared with 

others, or they have a similar distributional behavior with different approximation 

parameters. Unlike other components, instrument, valve, flange, and closure, were 
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given a value of 0 because the real pipelines data showed that these components do not 

have any length properties. 

Table 5- 3 Probability distribution functions for components' lengths (mm) 

Components Type Probability distribution function 

Pcomponent Wald (726.79, 1072.6) 

Instrument 0 

Valve 0 

Flang 0 

Tube Wald (2323.2, 489.58) 

Elbow Laplace (339.860,0.00111) 

Tee Uniform (57,432) 

Reducer Gamma (3.4645, 51.749) 

Coupling Beta (0.02229, 0.42713) 

Closure 0 

Cap Lognormal (0.8399,4.4939) 

Ftube Uniform (75.394,76.985) 

Fblind Uniform (122, 777.19) 

The industrial pipeline data generator was updated so that each generated pipeline 

component would be tagged with its expected length. For the purpose of validating the 

overall pipeline length characteristics, 1000 pipelines were randomly generated using 

the industrial pipeline data generator and compared with 1000 pipelines from the real 

pipeline data set. The applied validation process does not evaluate each type of pipeline 



192 
 

component individually; rather, the set of all components’ lengths in the entire pipeline 

population is considered in the validation process. 

Table 5-4 shows the comparison between the generated and original components’ 

lengths using different statistical measures. Both data sets have a mean of component 

length approximately equal to one meter. The generated components’ lengths have a 

higher standard deviation compared to the real components’ lengths. In general, the 

generated components’ lengths provided higher values (first-quartile, median, third-

quartile, and maximum values) than those in the real data set. The generated median 

has a higher value when compared to the median of the original data (almost twice the 

size of the real median). The same applies to the third-quartile and maximum values 

since they are 20-25% higher than the normal values.  

The minimum length in both data sets is 0. It is not realistic for a component to have a 

length of 0. An investigation of this issue showed that the length of some components, 

such as closure and the flange, was given a value of 0 in the original pipeline data set. 

This case shows that the original pipeline data missed some of components’ properties. 

Therefore, it is assumed in the generation process of components’ lengths, that any 

component with a length value of 0 was substituted with a length value of 350 mm. 

This value was used to produce realistic industrial pipeline data.  
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Table 5- 4 Statistical measures’ results for the real and generated components' 

lengths 

Statistical measure Real components’ length Generated components’ length 

Mean (mm) 967.8 1125 

SE mean 19.6 20.4 

Standard deviation 3309.3 3454 

Minimum (mm) 0 0 

Q1 (mm) 0 134 

Median (mm) 158.5 339 

Q3 (mm) 508 612 

Maximum (mm) 86299.1 107396 

 

5.4.1.2 The generation of components’ diameters 

The design of pipeline systems is based on achieving functionality of the pipeline 

facilities. As previously described, the pipeline is a collection of different types of 

components, and when analyzing the 1000 real pipelines, it was found that components 

of type tube are dominant in the whole real dataset. Moreover, any component 

connected to component of type tube share the same diameter, except for “Reduced” 

where the reduction of flow diameter exists at this particular component. The industrial 

pipeline data generator should include a pipeline flow diameter so that a pipeline 

problem instance can be generated. It is assumed that all components will share the 

same flow diameter that is controlled by component tube, and the value of the flow 

diameter is to be sampled from a theoretical probability distribution function that best 

approximates the distributional behavior of the tube’s diameter. Since the reduction in 

flow diameter is controlled by the reducer, a theoretical probability distribution 
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function for the reducer’s diameter will also be determined. Table 5- 5 shows the 

probability distribution functions for both the tube and reducer. Both components have 

the same distributional behavior.    

Table 5- 5 Probability distribution functions for tube’s and reducer’s diameters 

Component Probability distribution function 

Tube Burr (0.7444, 1.9, 135.11) 

Reducer Burr (0.76059, 2.858, 124.3) 

 

The industrial pipelines’ data generator was updated to include the flow diameter in 

the pipeline data structure. When generating a pipeline component, the generator first 

samples a flow diameter value from the tube’s probability distribution function shown 

in Table 5- 5. The value is then assigned to all following components. In the case of 

generating a reducer, the flow diameter will be reduced or increased based on a value 

generated from the probability distribution function of component reducer. The 

validation process in this sub-section will be based on the same approach described in 

Section 5.4.1.1, “The generation of components’ lengths.”. The collection of generated 

flow diameters from 1000 generated pipelines will be compared to a collection of flow 

diameters from 1000 real pipelines. Different statistical measures applied in the 

comparison and their results are shown in Table 5- 6. 

 

 



195 
 

Table 5- 6 Statistical measures’ results for the real and generated components' 

diameters 

Statistical measure Real Tubes’ Diameter Generated Tubes’ Diameter 

Mean (mm) 193.56 170.87 

SE mean 7.65 7.68 

Standard deviation 198.2 198.85 

Minimum (mm) 1.39 2.84 

Q1 (mm) 72 63.28 

Median (mm) 114.45 114.84 

Q3 (mm) 220 192.61 

Maximum (mm) 1453.94 1793.32 

 

Table 5- 6 shows that both the real and generated pipeline datasets have similar 

statistics. However, it is worth mentioning that the average minimum flow diameter is 

found to be 2.115 mm (
1.39+2.84

2
), which is not an acceptable pipe diameter. For that 

reason, the generation of the flow diameter is conditioned to have a minimum value 

equivalent to the first-quartile value of 72 mm. 

5.4.2  Layer II: The generation of components’ running direction  

In Layer I, two components’ properties, length and diameter, were added in the 

generation process of the pipeline data structure. These two properties are used to 

define the minimum and maximum point locations of each component envelope. These 

points are located in a three-coordinates’ space. To identify the required coordinates, 

each generated component should have an expected running direction. The industrial 

pipeline data generator is updated so that each component is associated with its running 
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direction. The running direction of any pipeline component is driven by the running 

direction of the previous component. For example, if the first component is found to 

be a tube and is flowing from direction x, then the coming component will the follow 

the same direction except for components of types tee or elbow. These two components 

alter the component running direction to a different axis. Component elbow alters the 

running direction by moving it to a different single direction (refer to component 

number 4006 in Table 5- 7), and component tee branches the pipeline into either one 

or two different directions. Table 5- 7 shows a sample of a pipeline data set generated 

using the industrial pipelines’ data generator. Only a positive x, y, z running direction 

(RD) is considered in the pipeline generation process. Meanwhile, in the real pipelines’ 

data structure, components’ running directions may be altered to either a positive or 

negative directional axis. This case is not integrated into the current pipeline data 

generator. However it should be considered in future research. 
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Table 5- 7 Pipeline dataset generated using the updated industrial pipeline generator 

Pipeline Branch C#* Connected to Type D* L* RD* 

1 Main_Line 4001 4002 Instrument 314 0 x 

1 Main_Line 4002 4001 Flange 314 0 x 

1 Main_Line 4003 4002 Tube 314 2651 x 

1 Main_Line 4004 4003 Elbow 314 339 y 

1 Main_Line 4005 4004 Tube 314 572 y 

1 Main_Line 4006 4005 Elbow 314 339 z 

1 Main_Line 4007 4006 Tube 314 2614 z 

1 Main_Line 4008 4007 Elbow 314 339 x 

1 Main_Line 4009 4008 Tube 314 221 x 

1 Main_Line 4010 4009 Pcomponent 314 898 x 

1 Main_Line 4011 4010 Reducer 54 266 x 

1 Main_Line 4012 4011 Tube 54 121 x 

1 Main_Line 4013 4012 Elbow 54 339 y 

1 Main_Line 4014 4013 Tube 54 1519 y 

*(C#: Component number, D: Diameter (mm), L: Length(mm), RD: Running direction) 

 

5.5 Computational experiment-Testing the computational performance of the 

bin-packing algorithm 

The branch-and-bound heuristic was proposed to approximate the pipe-spooling 

solution in the three-dimensional bin-packing modeling of the pipe-spooling process. 

It was implemented in C# and tested on a DELL Xeon 3.5 GHz processor. The 

pipelines’ data test sets were randomly generated using the industrial pipelines’ data 

generator. One-thousand pipelines with a total number of components equal to 28602 
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were randomly generated to test the performance of the applied heuristic. The popular 

performance indicators used to evaluate the efficiency of algorithms are (1) CPU 

processing/run time, (2) operations’ count, (3) number of iterations, (4) storage 

requirements, (5) robustness, (6) accuracy, and (7) reliability [145].  These indicators 

are normally used in the context of comparing two different algorithms solving a 

certain problem. However, a processing-time indicator will be used in this 

computational experiment to report the differences in the performances of the proposed 

heuristic when applied on two different container sizes: Alberta and overseas sizes. 

The results are to be used as benchmarks when the defined pipe-spooling problem is 

solved using a different solution’s algorithm. The CPU run times to solve 1000 

pipelines in two different container configurations is shown in Figure 5- 7. A detailed 

result for each pipeline instance problem is given in Appendix H.  

 

Figure 5- 7 Pipe-spooling solution’s run time with respect to the number of pipeline 

instances problems 
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The solution run-time results are summarized in Table 5- 8. Table 5- 8 illustrates the 

average solution’s CPU run time that is expected to solve the instance problems. The 

average solution’s CPU run time is associated with different instance problem sizes. 

The problem instance size is measured in terms of the number of components in a 

pipeline. Also, the average solution’s CPU run time is associated with the average 

number of pipe spools generated.  

Table 5- 8 Pipeline solutions results 

No. of 

pipelines 

components 

Alberta Size Overseas Size 

Average 

No. of 

Spools 

Average solution’s 

CPU run time (ms) 

Average 

no. of 

spools 

Average solution’s 

CPU run time (ms) 

<=10 2 1186.13 2 1466.29 

11-20 2 2804.44 4 3575.53 

21-30 3 5008.36 6 6349.72 

31-40 4 7249.30 9 9247.07 

41-50 6 10527.44 11 13199.69 

51-60 6 13644.07 12 16035.77 

61-70 7 14139.92 14 16802.92 

71-80 9 17113.25 17 19520.13 

81-90 9 24240.39 19 28523.33 

91-100 9 23424.17 24 29984.17 

101-110 11 33520.00 23 38008.40 

111-120 14 41015.14 27 48196.00 

121-130 14 38085.20 28 44562.80 

131-140 19 59687.00 36 74076.00 

141-150 16 56819.33 36 66339.33 

>150 26 60093.00 46 69625.75 

 

5.6 Conclusion  

An application of an industrial pipeline data generator was presented in the context of 

experimental analysis of optimization of an algorithm’s efficiency. The pipe-spooling 
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optimization problem identification, definition, and mathematical model were 

described in detail. The instance problem attributes of the pipe-spooling problem were 

identified, and the industrial pipelines’ data generator was updated accordingly to 

integrate the additional attributes. A test set of 1000 randomly generated pipelines’ 

instance problems was generated using the pipeline data generator to test the efficiency 

of the proposed branch-and-bound heuristic in approximating the pipe-spooling 

solution. The solution approximation was tested in configurations of two different 

envelope sizes. The heuristic efficiency in terms of CPU run-time performance was 

reported as performance benchmark results.  
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Chapter 6 
 

Conclusion 

 

6.1 Conclusion  

In construction engineering and management research, modeling data is a vital process 

to capture the variation of the construction systems’ behavior. Construction-related 

data varies in terms of structure and dependencies between variables within and across 

each sample. This research was designed to investigate mathematical techniques that 

are capable of randomly generating data sets while preserving the relationships and the 

dependencies embedded within the generated data sets variables. It was also intended 

to develop data generators and illustrate the application of the developed generators in 

the field of construction research.  

Two different types of data with different degrees of complexity were selected in this 

research; the first is weather variables and the second is pipeline data structure. Two 

different modeling approaches were used to model these data types: a bootstrapping 
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technique was used to generate weather variables and a Markov chain model was used 

to randomly generate the industrial pipeline data structure.  

In Chapter 2, a non-parametric weather generation approach in the form of a 

bootstrapping technique was proposed to randomly generate weather variables and 

develop a weather data generator. The generator’s performance was evaluated against 

a parametric weather generator constructed in the field of modeling construction 

operations. It was found that the non-parametric approach performed in a way similar 

to that of the parametric approach. The parametric and non-parametric weather 

generators were applied in two different weather-sensitive construction models: the 

first estimated the temperature and wind speed effect on construction labors and the 

second estimated temperature effects on tower crane operation. Two testing scenarios 

were applied in both models: the first considered the expected weather variables every 

day and the second considered the weather variables expected within the eight working 

hours. The results showed that the non-parametric weather generator outperformed the 

parametric weather generator when a specified construction period (e.g., an eight-hour 

window in a day) was considered. The parametric weather generator provided a better 

result when no consideration of a working period was applied. 

In Chapter 3, the non-parametric weather generator was applied to model earthmoving 

operations in oil sand mining. The weather generator was used to provide different 

weather scenarios for testing the effect of temperature on truck and excavator 

breakdowns and repair durations. It was found that 7% to 13.3% of truck operational 

time contributed to breakdown repair duration, and 8.5% to 12% of excavator 

operational time contributed to the same event.  
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In Chapter 4, a Markov chain model was presented to generate industrial pipeline tree 

structures. The Markov chain model used a transition matrix to generate a sequence of 

pipeline components. The matrix used state periodicity (a Markov chain property) to 

regulate the reproduction of the pipeline components. In the validation section, the 

generated pipelines were converted to feature vectors and a three-stage validation 

process was applied. The process included (1) evaluation of the number of components 

and correlation analysis, (2) a clustering-based model validation, and (3) model 

validation using distances between feature vectors. The Markov chain model was able 

to generate a collection of pipeline components similar to those found in real pipelines. 

It was also found that the Markov chain model preserved the correlation between 

pipelines’ components. When comparing the topological structure of the generated 

pipelines to the original industrial pipelines using a density-based clustering and 

histogram intersection of the similarity distance between pipelines feature vectors, 

some discrepancies were found. The majority of generated pipelines (89%) shared 

characteristics with 85.5% of the original pipelines. No similarities were found 

between the remaining generated pipelines (11%) and the remaining 14.5% of the 

original pipelines.  

In Chapter 5, the application of the industrial pipelines’ data generator was 

demonstrated. Pipeline instance problems were generated to test the computational 

efficiency of an optimization solution for the pipe-spooling process. The pipe-spooling 

problem was intended to identify the optimum configurations of pipe spools that can 

be generated from a certain pipeline. The industrial pipelines’ data generator was 

updated to integrate the pipelines’ components’ properties required by the optimization 
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problem. The length, diameter and running direction of each component were added 

in the generation process of the industrial pipelines’ data structure.  Including such 

components’ properties provided a good foundation for generating a realistic pipelines 

instance problem. A dataset containing 1000 industrial pipelines was generated, 

structured, and used to test the efficiency of a branch-and-bound heuristic applied to 

approximate the pipe-spooling solution. The efficiency in terms of CPU run-time 

performance was reported as a benchmark performance result. 

6.2 Research contributions  

6.2.1 The academic research contributions: 

The main academic research contributions are: 

1. The study presented a simplified weather generation approach in the form of 

a bootstrapping technique to generate correlated weather variables.  

2. The study showed that a Markov chain model can adopt the heterogeneity 

associated with pipeline components’ properties and can generate industrial 

pipelines’ tree structures. 

3. The study presented a three-stage validation methodology to generate a set of 

weather variables and an industrial pipelines’ data structure. It also 

demonstrated the use of different statistical measures to validate the 

assumptions used in each model and the generated outputs from each model.   

4. The study presented the advantage of using a feature vector concept in 

converting an overall system into a manageable vector while at the same time 
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preserving the uniqueness associated with the component properties and their 

topological structures.   

6.2.2 The industrial research contributions: 

This research also presented indirect industrial contributions. These contributions are: 

1. The study presented three weather-sensitive construction models: the first 

estimates the temperature and wind speed effects on construction labour, the 

second estimates the temperature effect on tower cranes, and the third estimates 

the temperature effect on breakdown and repair durations. These models 

represent applications in simulation that utilize the developed weather 

generator and demonstrate its potential benefits to the industry. 

2. The study demonstrated the potential use of the industrial pipelines data 

generator for testing module optimization algorithm. It was used to generate a 

set of industrial pipelines instance problems with characteristics similar to 

those found in reality. The generator can also be very beneficial for modeling 

and simulation fabrication operations. It can generate a vast range of unique 

industrial pipelines to assess the performance of pipelines fabrication 

processes.  

6.3 Limitations and future research 

This limitations of and areas of improvement in this research are: 

1. In the non-parametric weather generator, the bootstrapping technique relies on 

the size of data available. Hence the size of the available data controls the 

variation in the generated samples. For example, if the performance of a 
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construction operation is studied with respect to changes in weather conditions 

in a certain month and the size of historical records is 40 years, then the 

bootstrapping technique will sample from 40 different months only. This raises 

an issue related to the limited range of values the non-parametric weather 

generator is generating for the weather variables. Furthermore, the 

bootstrapping technique generates a historical weather data with no forecasting 

abilities.  

2. In the application of the non-parametric weather generator in modelling 

construction operation, the weather generator was used to analyze the 

temperature effects on trucks’ and excavators’ breakdown and repair durations. 

The simulation model was built using industrial practitioners’ feedback to 

identify its inputs and outputs. The limitation in this part is related to the 

validation of the model’s output. A comparison with actual operation data was 

not conducted. Although this part was motivated to illustrate the application of 

the non-parametric weather generator in modelling construction operation, a 

future research can be performed to upgrade the simulation model and 

validated using actual data. 

3. The generation process of the industrial pipelines’ data assumes that the 

pipelines are branching in the positive directions of x, y, and z axes only; 

however, in reality, the branching process may also take place in negative 

directions. Therefore, the future update of the industrial pipelines’ data 

generator should be formulated by integrating all possible running directions 

which pipelines’ components may experience in reality.  This future update can 
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be performed by studying two major pipelines’ components: “Elbow” and 

“Tee.” These components are responsible for altering the pipelines’ running 

directions. Successfully integrating all possible running directions can provide 

more realistic physical properties of industrial pipelines.     

4. The industrial pipelines’ data generator was developed to provide researchers 

with a realistic industrial pipelines’ data structure. It uses the number of 

pipelines as an input and provides a detailed pipeline data structure including, 

as an output, components’ connectivity and components’ physical properties. 

The limitation to this part is that the industrial pipelines’ generator relies on a 

probability distribution function derived from original pipeline data to generate 

the expected number of components for the pipeline’s first branch. In the 

future, the industrial pipelines’ data generator can be expanded by adding 

flexibility to generate pipelines based on a certain number of components. This 

update will support the area of pipeline optimization problems. It will make it 

possible to test the computational efficiency of optimization algorithms under 

a different number of components’ scenarios. Furthermore, it will make it 

possible to create different data test sets of benchmark pipelines’ instance 

problems. Researchers can use these test sets to test new methods to solve the 

pipe-spooling optimization problem. 

5. The applied validation process in both the generation of weather and industrial 

pipelines data used the same data sets for both modelling and validation. This 

practice limits the verification whether both generators can provide a realistic 



208 
 

data. Therefore, it is recommended to use different data set for validation 

purposes. 

6. The application of the industrial pipelines’ data generator has been illustrated 

in the field of pipe-spooling in industrial projects. The pipe-spooling 

optimization problem was clearly defined, as were its instance problem data 

structure and attributes. Another application of the industrial pipelines’ data 

generator that can be pursued in the future is modules’ optimization in 

industrial projects. As described in Chapter 5, the industrial construction 

project is broken down into small entities of different sizes, called modules. 

Future investigations can answer the following questions related to these 

entities:  

 How are  industrial construction projects broken into modules? 

 Are the number of modules and their configurations optimized? 

 If modules are not optimized, is it possible to formulate and solve the 

modules’ optimization problem? 

 What is the instance problem to be used in the modules’ optimization 

problem? 

The industrial pipelines’ data generator can be used in this area of study to 

generate a set of pipeline case studies. These pipeline case studies can be used 

to conduct in-house experiments, analysis, and testing before applying any 

proposed solution to the modules’ optimization problem in large-scale real 

projects. Furthermore, the time and cost associated with data collection and 
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preparation can be minimized, which will allow more time for the modelling 

stage of industrial construction research. 
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Appendix A.  

 

1. Parametric weather generator- Python code 

 
import numpy 
import math 
import os, sys 
import pyodbc 
import random 
 
def Paraweather(day, month, length,filenumber): 
  
# (1) Connect to the database which contains all parameters needed for generating 
weather series 
  
 conect="DSN=DataParametric" 
  
 c1=pyodbc.connect(conect) 
  
 
# (2) Initialize first-day residuals, matrix A and matrix B 
 
IRS=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0
,1),random.normalvariate(0,1)] 
  
 A=numpy.matrix([[0.368,-0.014,0.077,-0.058],[0.221, 0.004, 0.004, 0.037],[0.085,-
0.005, 0.406, 0.246],[0.02,0.002,0.095,0.411]]) 
  
 B=numpy.matrix([[0.923,0,0,0],[0.393,0.894,0,0],[-0.016,-0.005,0.406,0],[-
0.252,0.135,0.304,0.784]]) 
 
 
# (3) Generate weather series using input "length" 
 
 file = open("ParametricWeatherSeries"+str(filenumber)+".txt", "w") 
  
file.write("Number"+","+"Day"+","+"Month"+","+"State"+","+"MAXTEMP"+","+"MINTE
P"+","+"MAXRH"+","+"MINRH"+","+"PRECIPITATION"+","+"WINDSPEED"+"\n") 
 
 for y in range (1,length+1): 
 
  x= day 
 
 
# (4) Define SQL queries that will be used to extract information from the database 
   
  SQL1= ''' SELECT MON,DY, P_w, P_w_w, P_w_d FROM wet_dry WHERE 
MON='''+str(month)+''';''' 
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  SQL2= ''' SELECT MON,DY , a, b FROM Precipitation WHERE 
MON='''+str(month)+''';''' 
   
  SQL4= ''' SELECT MON,DY,  a, b FROM WindSpeed WHERE 
MON='''+str(month)+''';''' 
   
 
# (5) The “if statement” below will make sure that each month will use different 
parameters as per the database 
  
  if month <=12: 
    
 
# (6) Generate average wind speed for each day in a month 
 
 
    for row in c1.execute(SQL4): 
 
        wdsp= random.gammavariate(row.a,row.b) 
 
# (7) Define the state of the day (wet/dry) and other weather variables  
 
 
    for row in c1.execute(SQL1): 
        
       if x <= row.DY: # moves from one month to another 
 
# The probability that a day in month m will be wet Pm(w) 
             
            P_w=row.P_w  
             
# The probability that a wet day in month m is preceded by a wet day Pm(w/w) 
             
            P_w_w=row.P_w_w 
 
# The probability that a wet day in month m is preceded by a dry day Pm(w/d) 
             
            P_w_d=row.P_w_d 
 
######## Define the dry state of the day######## 
             
            if (random.uniform(0,1)-P_w)>0:  
 
                State=0 
                 
                P_w= P_w_d 
                 
                preci=0 
                 
# generate the mean and standard deviation of the correlated weather variables 
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                SQL3= ''' SELECT MON,DY, State, TMAXM, TMAXSTD, TMINM, 
TMINSTD, RHMaxM, RHMaxSTD, RHMinM, RHMinSTD FROM MSTD WHERE 
MON='''+str(month)+'''AND DY='''+str(day)+''' AND State='''+str(State)+''';''' 
                                    
                for row in c1.execute(SQL3): 
 
 # calculate weather residuals 
 
 # (we call it ed)= (nx1) matrix of random components sampled from a standard 
normal distribution with a mean of 0 and a standard deviation of 1.  
 
                    
ed=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0,
1),random.normalvariate(0,1)] 
 
 
# xd= (nx1) matrix of residual elements for day d for parameters 1 to n 
 
                    xd=numpy.dot(A,IRS)+numpy.dot(B,ed) 
 
# Calculate values of all weather variables  
                    
                    TMAXV=(xd[0,0]*row.TMAXSTD)+row.TMAXM 
                     
                    TMINV=(xd[0,1]*row.TMINSTD)+row.TMINM 
                     
                    RHMAXV=(xd[0,2]*row.RHMaxSTD)+row.RHMaxM 
                     
                    RHMINV=(xd[0,3]*row.RHMinSTD)+row.RHMinM 
 
                     
######## defines the dry state of the day######## 
                    
            else: 
                 
                State=1 
                 
                P_w= P_w_w 
                 
                SQL3= ''' SELECT MON,DY, State, TMAXM, TMAXSTD, TMINM, 
TMINSTD, RHMaxM, RHMaxSTD, RHMinM, RHMinSTD FROM MSTD WHERE 
MON='''+str(month)+'''AND DY='''+str(day)+''' AND State='''+str(State)+''';''' 
 
                # generate precipitation 
                 
                for row in c1.execute(SQL2): 
 
                    preci= random.gammavariate(row.a,row.b) 
 
# generate the mean and standard deviation of the correlated weather variables 
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                for row in c1.execute(SQL3): 
 
                     
 # calculate weather residuals 
 
                # ?_d (we call it ed)= (nx1) matrix of random components sampled from a 
standard normal distribution with a mean of 0 and a standard deviation of 1. 
                 
                    
ed=[random.normalvariate(0,1),random.normalvariate(0,1),random.normalvariate(0,
1),random.normalvariate(0,1)] 
                     
# xd= (nx1) matrix of residual elements for day d for parameters 1 to n 
                     
                    xd=numpy.dot(A,IRS)+numpy.dot(B,ed) 
                     
                # Calculate values of all weather variables 
                 
                    TMAXV=(xd[0,0]*row.TMAXSTD)+row.TMAXM 
                     
                    TMINV=(xd[0,1]*row.TMINSTD)+row.TMINM 
                     
                    RHMAXV=(xd[0,2]*row.RHMaxSTD)+row.RHMaxM 
                     
                    RHMINV=(xd[0,3]*row.RHMinSTD)+row.RHMinM 
 
                                    
# Advance the calendar by one day 
             
            
file.write(""+str(y)+","+str(x)+","+str(month)+","+str(State)+","+str(TMAXV)+","+str(T
MINV)+","+str(RHMAXV)+","+str(RHMINV)+","+str(preci)+","+str(wdsp)+"\n") 
            day+=1 
            IRS=[xd[0,0],xd[0,1],xd[0,2],xd[0,3]] 
            print(y,x,month,State,TMAXV,TMINV,RHMAXV,RHMINV,preci,wdsp) 
 
# advance the calender by one month 
     
       else: 
                  
            day=1 
         
            month+=1 
  
# when full year is reached, initialize the generator to January          
  else: 
 
            month=1 
 
 file.close() 
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print ('Please enter the day, month, length of weather series required and the file 
registered number') 
userinput= [input(),input(),input(),input()] 
Paraweather(int(userinput[0]),int(userinput[1]),int(userinput[2]),userinput[3]) 

 

2. Non-Parametric weather generator- Python code 

import numpy 
import math 
import os, sys 
import pyodbc 
import random 
 
def NonParaweather(day,month,length,filenumber): 
 
  
# (1) Connect to the database which contains all parameters needed to generate 
weather series 
  
 conect="DSN=FortMcmurray" 
  
 c1=pyodbc.connect(conect) 
  
 year=int(random.uniform(1962,2002)) 
 
 
# (2) Save the generated data in an external text file 
 
 file = open("NonParaWeatherSeries"+str(filenumber)+".txt", "w") 
  
 
file.write("Number"+","+"Day"+","+"Month"+","+"Year"+","+"MAXTEMP"+","+"MINTE
P"+","+"MAXRH"+","+"MINRH"+","+"PRECIPITATION"+","+"WINDSPEED"+"\n") 
 
 
 for y in range (1,length+1): 
 
# first make sure to iterate the selection of the year within the database range 
  
  if year<=2002: 
 
# add the feature to move from one year to another whenever the end of the month 
of December is reached 
 
   if month<=12: 
 
    SQL1= ''' SELECT MON, DY FROM Days_in_Months WHERE 
MON='''+str(month)+''';''' 
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    for row in c1.execute(SQL1): 
 
     SQL2= ''' SELECT Year, Month, Day, MaxTemp, MinTemp, 
MaxRel_Hum,MinRel_Hum, AvgOfWind_Spd,Total_Precip_mm FROM daily 
WHERE Year='''+str(year)+'''AND Month='''+str(month)+''' AND Day='''+str(day)+''';''' 
 
# Add the feature to move from one month to another whenever the end of the 
month is reached 
      
     if day <= row.DY: 
 
            for row in c1.execute(SQL2): 
 
              print(y,row.Day,row.Month,row.Year,row.MaxTemp,row.MinTemp, 
row.MaxRel_Hum,row.MinRel_Hum,row.Total_Precip_mm,row.AvgOfWind_Spd) 
 
              # write all weather variables in the text file  
 
              
file.write(""+str(y)+","+str(day)+","+str(month)+","+str(year)+","+str(row.MaxTemp)+",
"+str(row.MinTemp)+","+str(row.MaxRel_Hum)+","+str(row.MinRel_Hum)+","+str(ro
w.Total_Precip_mm)+","+str(row.AvgOfWind_Spd)+"\n") 
 
              day+=1 
       
     else: 
            
             day=1 
              
             month+=1         
   else: 
            
          month=1 
          year+=1 
 
  else: 
 
       year=int(random.uniform(1962,2002)) 
      
print('Please inter the day, month, length of weather series required and the file 
registered number') 
userinput= [input(),input(),input(),input()] 

NonParaweather(int(userinput[0]),int(userinput[1]),int(userinput[2]),userinput[3]) 
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Appendix B.  

 

Table B- 1 Monthly averages of maximum temperature (MAXTEMP) 

Month 
MAXTEMP 

Parametric Non-Parametric Historical 

Jan -15.139 -15.270 -14.491 

Feb -7.383 -7.932 -8.180 

March -0.017 0.657 -0.785 

Apr 9.134 8.846 9.048 

May 16.529 16.244 16.016 

Jun 20.949 19.629 20.147 

Jul 23.480 21.336 21.932 

Aug 22.281 21.598 20.810 

Sep 16.418 13.792 14.595 

Oct 8.022 7.744 8.156 

Nov -4.836 -3.251 -4.174 

Dec -11.312 -11.115 -12.229 

 

 

Table B- 2 Monthly averages of minimum temperature (MINTEMP) 

Month 
MINTEMP 

Parametric Non-Parametric Historical 

Jan -24.649 -24.209 -23.918 

Feb -20.458 -18.797 -19.541 

March -14.301 -12.086 -13.905 

Apr -3.784 -3.622 -3.908 

May 2.681 3.128 3.129 

Jun 7.634 7.678 8.139 

Jul 10.276 10.316 10.549 

Aug 8.578 8.940 8.943 

Sep 3.256 2.622 3.408 

Oct -2.167 -3.269 -2.621 

Nov -14.103 -11.553 -12.680 

Dec -21.061 -19.167 -20.764 
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Table B- 3 Monthly averages of maximum relative humidity (MAXRH) 

Month 
MAXRH 

Parametric Non-Parametric Historical 

Jan 83.601 83.678 83.199 

Feb 83.514 83.889 82.999 

March 81.963 81.623 82.395 

Apr 81.542 82.527 81.259 

May 82.721 81.265 81.957 

Jun 87.694 85.967 87.322 

Jul 90.787 90.960 90.647 

Aug 92.701 90.374 92.374 

Sep 91.505 91.723 91.943 

Oct 89.508 88.548 89.178 

Nov 87.577 88.557 88.183 

Dec 83.948 84.416 84.949 

 

 

Table B- 4 Monthly averages of minimum relative humidity (MINRH) 

Month 
MINRH 

Parametric Non-Parametric Historical 

Jan 65.321 67.085 65.562 

Feb 59.637 61.350 58.809 

March 47.819 47.829 48.578 

Apr 38.598 40.510 37.834 

May 34.587 33.200 33.807 

Jun 39.863 38.977 39.925 

Jul 44.982 45.460 44.434 

Aug 46.956 42.487 46.344 

Sep 48.288 50.560 50.513 

Oct 56.144 54.619 54.798 

Nov 67.422 70.627 68.567 

Dec 66.826 69.158 68.498 
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Table B- 5 Monthly Averages of Precipitation (mm) 

Month 
Precipitation 

Parametric Non-Parametric Historical 

Jan 20.552 22.060 19.190 

Feb 18.442 11.840 15.331 

March 14.375 12.820 16.560 

Apr 24.247 30.600 21.414 

May 41.980 35.980 37.679 

Jun 78.921 52.240 70.900 

Jul 64.941 78.330 79.971 

Aug 57.318 52.180 68.352 

Sep 45.191 40.480 49.621 

Oct 40.844 36.480 28.748 

Nov 24.661 25.090 23.424 

Dec 22.682 19.170 20.388 

 

 

Table B- 6 Monthly averages of wind speed  

Month 
Wind speed 

Parametric Non-Parametric Historical 

Jan 8.666 7.628 8.397 

Feb 9.160 8.726 9.012 

March 9.820 10.154 9.840 

Apr 11.064 11.298 11.015 

May 10.844 10.996 10.979 

Jun 9.876 9.634 9.647 

Jul 8.583 8.595 8.978 

Aug 9.068 8.668 8.710 

Sep 9.391 9.134 9.524 

Oct 10.120 10.252 10.301 

Nov 8.694 8.216 8.866 

Dec 8.581 8.181 8.371 
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Table B- 7 Standard deviation of maximum temperature (MAXTEMP) 

Month 
MAXTEMP 

Parametric Non-Parametric Historical 

Jan 10.326 10.719 10.516 

Feb 10.310 9.537 10.055 

March 8.206 8.165 8.338 

Apr 7.305 7.123 6.907 

May 5.803 6.199 5.921 

Jun 4.871 5.167 5.117 

Jul 4.218 4.423 4.750 

Aug 5.107 6.009 5.549 

Sep 6.165 6.225 5.794 

Oct 6.935 6.586 6.667 

Nov 7.845 7.910 8.269 

Dec 9.686 9.179 9.867 

 

 

Table B- 8 Standard deviation of minimum temperature (MINTEMP) 

Month 
MINTEMP 

Parametric Non-Parametric Historical 

Jan 9.392 10.583 9.819 

Feb 9.979 9.882 9.816 

March 9.671 8.790 8.989 

Apr 5.667 6.267 6.351 

May 4.122 4.923 4.911 

Jun 3.584 3.724 3.625 

Jul 2.871 2.844 3.029 

Aug 3.810 3.896 3.783 

Sep 3.949 4.415 4.675 

Oct 5.032 5.695 5.588 

Nov 8.123 7.927 7.731 

Dec 8.256 8.862 9.351 
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Table B- 9 Standard deviation of maximum relative humidity (MAXRH) 

Month 
MAXRH 

Parametric Non-Parametric Historical 

Jan 5.493 8.506 9.037 

Feb 5.573 9.373 9.224 

March 5.703 9.258 9.661 

Apr 8.778 11.432 12.099 

May 8.957 12.965 13.321 

Jun 7.343 10.172 10.420 

Jul 4.971 7.056 7.685 

Aug 3.703 6.796 6.700 

Sep 5.312 7.051 7.725 

Oct 5.547 8.527 8.663 

Nov 4.605 7.116 7.437 

Dec 5.133 8.622 8.609 

 

 

Table B- 10 Standard deviation of minimum relative humidity (MINRH) 

Month 
MINRH 

Parametric Non-Parametric Historical 

Jan 10.827 9.294 9.863 

Feb 13.166 12.038 12.401 

March 13.256 14.937 13.978 

Apr 16.427 17.511 16.140 

May 15.773 14.613 15.441 

Jun 16.381 16.243 16.310 

Jul 14.774 14.052 14.323 

Aug 14.061 14.092 14.522 

Sep 17.735 17.925 17.183 

Oct 17.137 16.966 17.370 

Nov 12.059 12.433 12.239 

Dec 9.912 10.319 10.363 
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Table B- 11 Standard deviation of precipitation 

Month 
Precipitation 

Parametric Non-Parametric Historical 

Jan 5.781 9.482 9.698 

Feb 9.826 13.524 9.679 

March 8.195 7.689 8.986 

Apr 14.289 11.155 12.798 

May 24.999 27.474 23.538 

Jun 20.118 26.310 35.203 

Jul 25.420 29.374 33.208 

Aug 24.820 30.693 39.455 

Sep 16.753 32.923 30.901 

Oct 13.041 24.846 18.716 

Nov 10.549 11.652 11.780 

Dec 6.827 10.125 9.418 

 

 

Table B- 12 Standard deviation of wind speed 

Month 
Wind speed 

Parametric Non-Parametric Historical 

Jan 6.015 4.586 4.684 

Feb 4.627 4.585 4.459 

March 4.361 4.504 4.446 

Apr 4.380 4.328 4.167 

May 4.399 4.207 4.278 

Jun 4.029 4.194 3.930 

Jul 3.810 4.087 4.024 

Aug 4.109 4.074 4.002 

Sep 4.356 4.568 4.281 

Oct 4.930 4.903 4.599 

Nov 4.035 4.007 4.482 

Dec 5.536 4.901 4.807 
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Appendix C. 

 

Table C- 1 Performance benchmark results for trucks and excavators 

Resou

rce 

Type/

No. 

Total 

working 

Duratio

n 

Number 

of 

Breakd

own 

Total 

Breakdo

wn 

Duratio

n 

Numb

er of 

Maint

enanc

e 

Total 

Maintena

nce 

Duration 

% 

Availa

-ble 

Bre

akd

own 

Mai

nten

-

ance 

Truck1 7217.75 50 1108.70 21 433.55 82.39 
12.6

6 
4.95 

Truck2 7338.21 39 858.70 21 563.09 83.77 9.80 6.43 

Truck3 7508.23 35 765.40 21 486.37 85.71 8.74 5.55 

Truck4 7165.69 47 1033.60 21 560.71 81.80 
11.8

0 
6.40 

Truck5 7355.33 32 711.40 21 693.27 83.96 8.12 7.91 

Truck6 7464.24 28 616.50 21 679.26 85.21 7.04 7.75 

Truck7 7060.24 45 991.00 21 708.76 80.60 
11.3

1 
8.09 

Truck8 7235.85 40 874.56 21 649.59 82.60 9.98 7.42 

Truck9 7174.80 42 930.30 21 654.90 81.90 
10.6

2 
7.48 

Excava

tor1 
7396.68 35 757.66 23 605.66 84.44 8.64 6.91 

Excava

tor2 
7123.33 35 1013.40 23 623.27 81.32 

11.5

7 
7.11 

Excava

tor3 
7404.59 34 746.76 23 608.65 84.53 8.52 6.95 
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Table C- 2 First scenario (SC1) results with respect to different temperature limit (T) 

(T) 

SC1 Breakdown repair durations 

Trucks Excavators 

SC1-Min SC1-Average SC1-Max SC1-Min SC1-Average SC1-Max 

-18 620.66 901.41 1161.41 751.41 858.45 1053.31 

-19 616.50 900.09 1161.41 751.41 856.88 1048.80 

-20 616.50 898.82 1161.41 751.41 855.41 1048.80 

-21 616.50 896.43 1152.72 746.76 853.70 1048.80 

-22 616.50 893.61 1148.93 746.76 851.36 1048.80 

-23 616.50 892.93 1152.72 746.76 850.74 1044.23 

-24 616.50 891.36 1143.92 746.76 849.58 1040.05 

-25 616.50 890.20 1143.92 746.76 848.70 1035.86 

-26 616.50 888.47 1143.92 746.76 847.83 1035.86 

-27 616.50 887.11 1143.92 746.76 846.95 1035.86 

-28 616.50 886.09 1143.92 746.76 846.48 1035.86 

-29 616.50 884.32 1143.92 746.76 845.02 1035.86 

-30 616.50 882.73 1135.72 746.76 844.45 1035.86 

 

Table C- 3 Second scenario (SC2) results with respect to different temperature limit 

(T) 

(T) 

SC2 Breakdown repair durations 

Trucks Excavators 

SC2-Min SC2-Average SC2-Max SC2-Min SC2-Average SC2-Max 

-18 634.79 915.27 1183.66 764.50 868.84 1066.37 

-19 629.22 912.41 1170.48 760.25 866.65 1057.60 

-20 625.51 910.61 1170.18 760.25 865.46 1057.42 

-21 625.51 909.07 1170.18 760.25 863.43 1057.42 

-22 625.51 907.83 1170.18 760.25 862.43 1057.42 

-23 625.51 906.32 1165.75 760.25 861.70 1053.31 

-24 625.05 904.23 1161.41 760.25 860.68 1053.31 

-25 625.05 902.31 1161.41 755.63 858.88 1053.31 

-26 620.88 900.59 1161.41 751.01 857.57 1053.31 

-27 620.88 899.33 1157.21 751.01 856.10 1053.31 

-28 620.88 897.90 1157.21 751.01 854.92 1044.93 

-29 620.88 896.54 1152.72 751.01 853.75 1044.93 

-30 620.88 894.99 1152.72 746.76 852.88 1044.93 
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Table C- 4 Third scenario (SC3) results with respect to different temperature limit 

(T) 

(T) 

SC3 Breakdown repair durations 

Trucks Excavators 

SC3-Min SC3-Average SC3-Max SC3-Min SC3-Average SC3-Max 

-18 620.67 900.85 1165.69 755.66 858.23 1052.92 

-19 620.67 898.16 1157.14 751.08 855.59 1048.80 

-20 620.67 896.24 1157.14 751.08 854.30 1048.80 

-21 616.50 894.81 1157.14 746.76 853.32 1048.80 

-22 616.50 893.24 1157.14 746.76 853.01 1048.80 

-23 616.50 891.54 1148.29 746.76 850.75 1044.33 

-24 616.50 890.52 1148.29 746.76 849.13 1044.33 

-25 616.50 889.11 1148.29 746.76 848.56 1040.14 

-26 616.50 888.00 1148.29 746.76 847.84 1031.39 

-27 616.50 886.48 1143.58 746.76 846.66 1031.39 

-28 616.50 885.57 1143.58 746.76 845.95 1031.39 

-29 616.50 884.14 1138.79 746.76 845.06 1031.39 

-30 616.50 882.99 1134.11 746.76 844.63 1031.39 
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Appendix D. 

Table D- 1 𝑃-values of Anderson-Darling normality test on the number of 

components in the original and generated pipelines populations 

Component 
𝒑-value 

n  (original pipelines) n  (generated pipelines) 

Pcomponent <0.005 <0.005 

Instrument <0.005 <0.005 

Valve <0.005 <0.005 

Flange <0.005 <0.005 

Tube <0.005 <0.005 

Elbow <0.005 <0.005 

Tee <0.005 <0.005 

Reducer <0.005 <0.005 

Coupling <0.005 <0.005 
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Appendix E. 

1. Correlation coefficients matrix of pipelines components in the original data: 



































118.0008.009.0008.012.006.0

18.0142.043.045.033.047.041.02.0

042.0167.085.057.074.054.015.0

08.043.067.019.045.05.033.008.0

09.045.085.09.0152.062.046.011.0

033.057.045.052.0172.064.032.0

08.047.074.05.062.072.0164.026.0

12.041.054.033.046.064.064.0123.0

06.02.015.008.011.032.026.023.01

Re

Coupling

ducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent

 

2. Correlation coefficients matrix of pipelines components in the generated data: 



































127.031.031.031.03.034.028.022.0

27.016.06.064.054.055.039.052.0

31.06.0191.093.083.089.077.063.0

31.06.091.0198.087.089.076.067.0

31.064.093.098.0189.09.076.069.0

3.054.083.087.089.0186.072.068.0

34.055.089.089.09.086.0174.061.0

26.039.077.076.076.072.074.015.0

22.052.063.067.069.068.061.05.01

Re

Coupling

ducer

Tee

Elbow

Tube

Flange

Valve

Instrument

Pcomponent
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Appendix F. 

Table F- 1 Feature vectors centroids of pipeline components generated from the 

original data 

Original data Cluster # 

Attribute 
Full data 0 1 

841 793 48 

Pcomponent_n 0.4281 0.4086 0.75 

Pcomponent_T 7.8383 4.6494 60.5208 

Pcomponent_D 13.0392 2.1354 193.1806 

Instrument_n 0.5268 0.4023 2.5833 

Instrument_T 21.1225 9.5914 211.625 

Instrument_D 50.0707 8.9261 729.8142 

Valve_n 2.4792 1.9912 10.5417 

Valve_T 97.9382 44.6873 977.6875 

Valve_D 129.6558 53.8997 1381.2085 

Flange_n 3.8621 3.0895 16.625 

Flange_T 127.874 54.2018 1345 

Flange_D 119.0875 45.5125 1334.6078 

Tube_n 11.6183 9.4061 48.1667 

Tube_T 363.4732 183.4704 3337.2708 

Tube_D 132.9783 59.6594 1344.2678 

Elbow_n 6.132 5.0984 23.2083 

Elbow_T 184.5517 97.9269 1615.6667 

Elbow_D 125.4065 53.4814 1313.6688 

Tee_n 3.1344 2.425 14.8542 

Tee_T 93.2033 43.1337 920.3958 

Tee_D 114.3336 41.1956 1322.6335 

Reducer_n 0.7705 0.6419 2.8958 

Reducer_T 22.9964 9.9685 238.2292 

Reducer_D 30.8026 7.9494 408.356 

Coupling_n 0.0511 0.0467 0.125 

Coupling_T 1.2545 0.739 9.7708 

Coupling_D 0.0963 0.0794 0.375 
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Table F- 2 Feature vectors centroids of pipeline components generated from the 

generated data 

Generated data Cluster # 

Attribute 
Full data 0 1 

841 67 774 

Pcomponent_n 0.7491 2.5821 0.5904 

Pcomponent_T 13.2033 93.7761 6.2287 

Pcomponent_D 32.2485 328.8507 6.5736 

Instrument_n 0.1807 0.7313 0.1331 

Instrument_T 6.8288 53.3134 2.8049 

Instrument_D 20.0452 240.4627 0.9651 

Valve_n 1.6623 5.9403 1.292 

Valve_T 44.2973 329.597 19.6008 

Valve_D 88.5731 762.3881 30.2455 

Flange_n 2.8145 8.0896 2.3579 

Flange_T 59.2235 396.6269 30.0168 

Flange_D 103.7277 837.0448 40.2494 

Tube_n 10.9952 39.2388 8.5504 

Tube_T 290.5208 2048.403 138.3527 

Tube_D 95.5505 707.6418 42.5659 

Elbow_n 5.9501 21.2687 4.624 

Elbow_T 165.9263 1179.8209 78.1602 

Elbow_D 94.805 706.7463 41.8333 

Tee_n 1.2747 5.2687 0.9289 

Tee_T 33.1641 260.209 13.5103 

Tee_D 71.8478 681.7612 19.0517 

Reducer_n 0.6052 1.8955 0.4935 

Reducer_T 13.2663 78.8507 7.5891 

Reducer_D 35.6052 360.4328 7.4871 

Coupling_n 0.0464 0.1791 0.0349 

Coupling_T 1.2913 9.3582 0.593 

Coupling_D 0.8347 10.4776 0 
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Appendix G. 

Table G- 1 21 influential critical success factors that leads to an effective use of 

modularization [22] 

No. 
Critical Success 

Factor 
Definition 

Impact 

Rate 

1 
Module Envelope 

Limitations 

Preliminary transportation evaluation should result 

in understanding module envelope limitations. 
3.83 

2 
Alignment on 

Drivers 

Owner, consultants, and critical stakeholders 

should be aligned on important project drivers as 

early as possible in order to establish the 

foundation for a modular approach. 

3.79 

3 

Owner’s Planning 

Resources and 

Processes 

As a potentially viable option to conventional 

stick building, early modular feasibility analysis is 

supported by owner’s front-end planning and 

decision support systems, work processes, and 

team resources support 

3.58 

4 
Timely Design 

Freeze 

Owner and contractor are disciplined enough to 

effectively implement timely staged design 

freezes so that modularization can proceed as 

planned. 

3.58 

5 
Early Completion 

Recognition 

Modularization business cases should recognize 

and incorporate the economic benefits from early 

project completion that result from modularization 

and those resulting from minimal site presence 

and reduction of risk of schedule overrun. 

3.42 

6 
Preliminary Module 

Definition 

Front-end planners and designers need to know 

how to effectively define scope of modules in a 

timely fashion 

3.42 

7 

Owner- 

Furnished/Long 

Lead Equipment  

Specification 

Owner-furnished and long-lead equipment (OFE) 

specification and delivery lead time should 

support a modular approach. 

3.42 

8 
Cost Savings 

Recognition 

Modularization business case should incorporate 

all cost savings that can accrue from the modular 

approach. Project teams should avoid the knee-

jerk misperception that modularization always has 

a net cost increase. 

3.42 
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No. 
Critical Success 

Factor 
Definition 

Impact 

Rate 

9 
Contractor 

Leadership 

Front-end contractor(s) should be proactive—

supporting the modular approach on a timely basis 

and prompting owner support, when owner has yet 

to initiate. 

3.39 

10 
Contractor 

Experience 

Contractors (supporting all phases) have sufficient 

previous project experience with the modular 

approach. 

3.37 

11 
Module Fabricator 

Capability 

Available, well equipped module-fabricators have 

adequate craft, skilled in high-quality/tight-

tolerance modular fabrication. 

3.37 

12 
Investment in 

Studies 

In order to capture the full benefit, owner should 

be willing to invest in early studies into 

modularization opportunities. 

3.32 

13 

Heavy Lift/Site 

Transport 

Capabilities 

Necessary heavy lift/site transport equipment and 

associated planning/ execution skills are available 

and cost competitive. 

3.32 

14 Vendor Involvement 

Original Equipment Manufacturer (OEMs) and 

technology partners need to be integrated into the 

modularized solution process in order to maximize 

related beneficial opportunities. 

3.28 

15 

Operations and 

Maintenance 

(O&M) Provisions 

Module detailed designs should incorporate and 

maintain established O&M space/access needs. 
3.26 

16 
Transport 

Infrastructure 

Needed local transport infrastructure is available 

or can be upgraded/modified in a timely fashion 

while remaining cost competitive 

3.22 

17 
Owner Delay 

Avoidance 

Owner has sufficient resources and discipline to 

be able to avoid delays in commitments on 

commercial contracts, technical scope, and 

finance matters. 

3.16 

18 
Data for 

Optimization 

Owner and Pre-FEED/ FEED contractor(s) need 

to have management tools/data to determine the 

optimal extent of modularization, i.e., maximum 

net present value (NPV) (that considers early 

revenue streams) versus % modularization 

3.05 

19 
Continuity through 

Project Phases 

Disconnects should be avoided in any contractual 

transition between Assessment, Selection, Basic 

Design, or Detailed Design phases; their impacts 

can be amplified with modularization. 

3.0 
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No. 
Critical Success 

Factor 
Definition 

Impact 

Rate 

20 
Management of 

Execution Risks 

Project risk managers need to be prepared to deal 

with any risks shifted from the field to 

engineering/procurement functions. 

3.0 

21 
Transport Delay 

Avoidance 

Environmental factors such as hurricanes, frozen 

seas, or lack of permafrost, in conjunction with 

fabrication shop schedules, do not result in any 

significant project delay. 

3.0 
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Appendix H. 

Table H- 1 Pipe spooling solution and CPU run time for each pipeline instance 

problem 

Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

1 13 2 1186 2 1249 

2 10 1 516 2 640 

3 8 1 750 4 1181 

4 14 1 1544 3 1790 

5 4 1 767 1 827 

6 17 5 4188 7 5475 

7 7 1 1370 1 1548 

8 40 6 13796 10 16516 

9 43 7 14610 12 18354 

10 3 1 98 1 97 

11 61 5 6411 8 5984 

12 20 6 3057 11 3334 

13 14 2 979 2 1001 

14 8 1 402 1 349 

15 8 1 355 5 528 

16 8 1 425 2 478 

17 18 4 1831 6 1863 

18 28 3 3544 6 3523 

19 20 2 4938 5 5013 

20 30 3 1954 7 2110 

21 38 3 5603 8 6257 

22 12 1 719 2 952 

23 13 2 1743 2 1884 

24 49 10 8451 22 12808 

25 11 1 721 4 1111 

26 29 1 2581 4 3277 

27 17 1 1223 2 1505 

28 35 3 2851 8 3767 

29 6 1 561 5 1193 

30 52 7 7607 16 9779 

31 7 1 631 1 745 

32 9 1 907 3 1119 

33 31 10 2233 12 2726 

34 37 5 3863 9 4890 

35 8 1 754 1 852 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

36 18 2 2637 3 3056 

37 3 1 431 1 518 

38 38 6 9106 7 9963 

39 41 5 5561 14 7686 

40 23 3 3223 10 5072 

41 10 2 2096 2 2208 

42 25 2 4173 4 4736 

43 28 2 4617 5 5306 

44 22 2 4088 5 5101 

45 12 1 1569 3 2168 

46 25 1 4113 3 4936 

47 46 5 9024 9 10698 

48 87 15 33690 25 37887 

49 49 3 8491 7 10328 

50 12 1 1751 2 2337 

51 25 4 4425 7 5760 

52 43 6 12397 9 14316 

53 20 2 3716 3 4500 

54 28 2 5171 3 5973 

55 22 2 4284 6 5725 

56 31 3 6676 6 8226 

57 25 3 4066 3 4741 

58 81 9 30906 18 35114 

59 26 2 5806 3 6607 

60 51 6 10984 10 12983 

61 23 2 4198 4 5430 

62 28 2 5190 5 6747 

63 37 5 7679 19 13723 

64 29 2 5481 5 7110 

65 12 1 1973 3 2744 

66 3 1 750 2 1210 

67 10 1 2374 3 3168 

68 42 4 8878 10 11717 

69 32 3 6847 6 8409 

70 10 3 2516 3 2785 

71 42 4 10757 12 14813 

72 11 1 2420 4 3689 

73 17 3 4897 7 7398 

74 7 1 1519 1 1711 

75 39 7 10994 9 13217 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

76 21 2 4839 2 5274 

77 13 2 2891 4 3770 

78 18 1 3784 4 5500 

79 3 1 812 1 968 

80 13 1 2719 2 3738 

81 15 1 3317 4 5127 

82 8 2 2163 2 2442 

83 3 1 971 1 1060 

84 54 12 29671 14 29631 

85 18 1 4135 1 4783 

86 17 1 3591 2 4483 

87 83 11 36651 17 41757 

88 41 4 13542 12 18481 

89 67 6 21020 10 24255 

90 9 2 2963 2 3515 

91 7 1 1824 1 1948 

92 35 3 10178 10 14450 

93 60 11 23694 19 29182 

94 23 3 7749 4 9203 

95 2 1 829 1 964 

96 48 6 16184 14 22003 

97 34 6 11794 10 15066 

98 61 4 21120 16 29806 

99 8 1 2205 5 4688 

100 24 1 586 3 805 

101 17 1 507 2 567 

102 58 6 9483 12 9666 

103 11 2 544 2 526 

104 9 1 361 2 344 

105 60 4 8511 9 8662 

106 14 3 983 3 1024 

107 10 1 315 6 377 

108 10 1 229 4 418 

109 15 1 930 5 605 

110 88 14 13855 26 14988 

111 39 4 3425 10 3323 

112 17 2 1237 4 1446 

113 24 1 1843 5 2061 

114 40 2 3267 5 3376 

115 23 2 1952 4 1987 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

116 13 2 1130 5 1147 

117 61 7 8812 18 9479 

118 19 3 4500 5 4611 

119 14 1 536 1 391 

120 12 1 1506 4 1453 

121 55 4 4526 13 4906 

122 11 1 633 1 510 

123 15 2 1423 2 1315 

124 14 1 551 3 573 

125 9 1 329 1 325 

126 11 1 404 3 520 

127 66 6 2858 9 3067 

128 93 10 17104 23 21132 

129 18 2 1108 2 1433 

130 4 1 205 1 170 

131 17 4 670 8 920 

132 15 2 1527 2 1542 

133 7 1 731 5 921 

134 7 1 620 1 542 

135 18 1 1114 4 1203 

136 6 1 509 1 403 

137 4 1 197 1 200 

138 72 11 13872 21 14354 

139 25 3 2490 4 2806 

140 13 2 845 4 860 

141 29 3 1225 10 1495 

142 24 3 3677 5 3859 

143 48 6 11144 14 13981 

144 29 4 2492 11 3232 

145 21 1 1374 2 1443 

146 14 1 540 3 559 

147 25 2 2244 6 2498 

148 8 1 375 1 406 

149 118 10 28031 24 29046 

150 11 1 441 3 583 

151 188 26 49154 53 53786 

152 54 7 7452 10 7507 

153 15 1 715 1 507 

154 29 4 2790 10 2837 

155 22 1 1421 4 1607 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

156 18 2 1252 5 1347 

157 30 3 1428 5 1503 

158 63 8 12508 12 13117 

159 3 1 164 1 205 

160 32 5 4639 5 4601 

161 60 1 8477 1 8676 

162 12 1 1854 4 1990 

163 2 1 157 1 147 

164 9 1 422 4 614 

165 36 3 3423 7 3547 

166 10 1 661 1 627 

167 24 2 1672 6 1913 

168 35 3 13792 8 14203 

169 37 5 4543 7 4458 

170 8 1 362 1 398 

171 55 5 6238 9 6696 

172 13 2 932 3 858 

173 30 3 2902 8 2918 

174 124 12 30951 23 31884 

175 7 1 394 1 419 

176 64 5 7453 13 7927 

177 17 3 1739 6 1920 

178 32 3 3199 8 3529 

179 19 1 4305 3 4453 

180 24 3 1757 7 2182 

181 88 9 12506 13 13169 

182 7 1 377 1 336 

183 14 2 1507 2 1323 

184 9 2 720 2 716 

185 30 3 3639 5 3745 

186 8 1 461 1 469 

187 76 9 7637 16 8271 

188 41 5 5819 8 6209 

189 98 7 18177 23 20119 

190 14 1 2170 1 2244 

191 62 5 4864 15 5938 

192 5 1 307 1 311 

193 10 1 638 1 651 

194 14 1 1038 1 1121 

195 19 3 2058 8 2340 
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196 41 3 5077 8 5596 

197 11 2 1005 2 837 

198 58 6 9853 12 10616 

199 19 2 2070 3 2265 

200 18 1 1799 3 2092 

201 35 3 2967 4 2912 

202 74 10 20577 16 21629 

203 4 1 261 1 273 

204 33 4 4942 9 5630 

205 11 3 1090 3 1351 

206 61 8 9785 16 10905 

207 38 3 4910 4 5132 

208 9 1 550 1 547 

209 5 2 547 2 655 

210 40 4 3442 9 4082 

211 6 2 553 2 552 

212 26 3 1489 9 2221 

213 34 4 3686 7 4057 

214 5 1 421 1 470 

215 14 1 911 3 1087 

216 47 6 4113 13 5116 

217 18 1 1804 5 2247 

218 20 1 1189 2 1579 

219 3 1 296 1 264 

220 48 9 4989 19 5403 

221 45 14 3602 23 4240 

222 37 4 6257 5 6658 

223 18 2 1549 8 2178 

224 30 1 2597 5 3053 

225 46 4 4091 16 5398 

226 3 1 311 1 257 

227 7 1 466 1 440 

228 76 7 10031 13 10894 

229 24 3 2685 4 2989 

230 68 6 14979 9 15333 

231 42 4 4643 9 5501 

232 15 1 1573 2 1787 

233 4 1 373 1 331 

234 29 4 3391 5 3670 

235 26 1 1626 3 2045 
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236 5 1 434 1 380 

237 5 3 498 4 684 

238 27 3 4295 5 4562 

239 61 6 12373 9 12761 

240 11 1 676 3 882 

241 9 1 820 1 870 

242 20 2 2220 5 2463 

243 5 1 391 1 417 

244 17 2 1293 6 1703 

245 26 1 2345 4 2767 

246 48 5 3622 12 4396 

247 38 1 3990 3 4537 

248 35 4 5915 7 6269 

249 14 1 968 1 1088 

250 22 1 2988 3 3304 

251 16 1 1514 3 1813 

252 13 1 751 1 868 

253 195 22 48361 36 53962 

254 15 1 1271 4 1638 

255 25 1 2342 3 2739 

256 11 1 1029 4 1328 

257 124 9 30422 24 33729 

258 7 1 790 1 821 

259 14 1 1082 2 1251 

260 117 22 23829 28 24351 

261 53 7 8709 11 9538 

262 3 1 293 1 319 

263 19 2 1820 3 2035 

264 8 1 627 3 895 

265 30 2 3367 6 4065 

266 17 1 1192 3 1634 

267 16 3 1802 5 2085 

268 16 1 1192 4 1626 

269 13 1 1137 2 1232 

270 4 1 380 1 419 

271 15 1 2949 3 3449 

272 107 11 35810 26 38613 

273 6 1 464 1 494 

274 38 3 5495 9 6507 

275 96 11 14296 23 15908 
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276 38 6 4856 10 5895 

277 7 1 605 1 655 

278 8 1 672 2 841 

279 12 1 839 1 880 

280 84 8 8898 15 10222 

281 48 6 10358 12 11417 

282 44 4 6530 8 7170 

283 12 1 1244 3 1398 

284 19 3 2456 5 3028 

285 11 2 1103 2 1244 

286 7 1 588 1 603 

287 31 3 5292 8 6272 

288 50 8 6804 12 7595 

289 10 1 708 1 823 

290 17 3 1546 11 2817 

291 26 1 9310 3 10208 

292 46 3 7753 8 8589 

293 18 2 1521 6 2103 

294 37 6 6551 7 7371 

295 128 15 20721 33 26272 

296 16 3 1970 4 2236 

297 61 11 16663 13 17323 

298 83 6 19752 14 21273 

299 6 1 788 1 851 

300 34 5 5915 8 6862 

301 7 1 565 1 632 

302 50 4 6709 10 7838 

303 33 4 3842 6 4183 

304 19 3 2973 3 3076 

305 138 24 51578 41 65044 

306 30 5 7663 14 12693 

307 3 1 366 1 371 

308 7 1 642 1 624 

309 23 1 2948 3 3436 

310 7 1 667 1 611 

311 32 5 7378 8 7966 

312 38 5 6153 13 7672 

313 15 1 1276 3 1610 

314 5 1 737 2 744 

315 49 6 9881 7 10229 
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316 31 2 3594 6 4235 

317 2 1 320 1 344 

318 16 1 1240 2 1430 

319 23 3 2645 6 3364 

320 34 4 3767 9 4859 

321 13 1 1456 1 1275 

322 11 2 1374 2 1324 

323 23 2 2537 5 3011 

324 62 6 11355 11 12572 

325 10 1 849 1 923 

326 18 1 2311 3 2762 

327 24 3 3220 8 4360 

328 22 1 2490 3 2693 

329 7 1 727 1 733 

330 51 7 5477 15 6349 

331 29 7 7655 11 8562 

332 3 1 357 1 384 

333 35 6 7506 12 9072 

334 32 3 4454 5 5076 

335 35 2 3963 6 4659 

336 7 2 911 2 967 

337 4 1 432 1 488 

338 13 3 1561 5 1882 

339 53 6 10030 14 11700 

340 6 2 821 2 860 

341 56 7 14110 11 15530 

342 24 2 3332 3 3778 

343 35 4 5841 8 6656 

344 46 4 7692 11 8994 

345 28 4 4791 5 5339 

346 16 1 1507 2 1754 

347 19 1 1677 3 2119 

348 3 1 441 1 461 

349 26 6 7079 6 7341 

350 28 3 11518 4 11989 

351 26 1 3398 3 4269 

352 39 4 5365 9 6183 

353 3 1 368 1 402 

354 18 2 3018 4 3654 

355 81 9 22383 20 24636 
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356 42 4 6026 10 7725 

357 5 1 503 1 569 

358 31 4 4118 7 4719 

359 8 1 1032 1 1109 

360 14 1 1177 3 1868 

361 34 3 4212 6 5152 

362 40 3 5714 11 7552 

363 31 3 4539 5 5079 

364 30 4 5337 7 6075 

365 20 2 2975 4 3514 

366 24 3 3740 6 4012 

367 26 2 4528 5 5046 

368 37 3 3847 9 5191 

369 22 1 2613 3 3102 

370 26 1 3784 6 4754 

371 33 3 4686 6 5509 

372 42 4 6481 7 7291 

373 77 8 15318 20 18178 

374 34 3 4312 8 5714 

375 53 8 13878 8 14553 

376 32 2 5340 6 6566 

377 26 5 3600 8 4512 

378 10 1 1826 1 1899 

379 7 1 744 1 806 

380 19 1 2665 3 3241 

381 12 1 1562 1 1488 

382 35 3 3725 12 5642 

383 38 3 4885 4 5392 

384 31 3 5527 8 6860 

385 25 1 2968 3 3803 

386 18 1 4775 2 5158 

387 62 7 11377 12 12801 

388 12 1 1139 3 1618 

389 40 2 6146 5 6986 

390 4 1 483 1 557 

391 13 2 1623 2 1959 

392 33 4 4582 5 5244 

393 27 2 3489 4 4207 

394 34 1 4083 4 5251 

395 33 5 6430 10 7809 
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396 13 2 2054 2 2261 

397 20 4 3518 6 4041 

398 19 1 2485 8 4056 

399 31 4 5201 11 6680 

400 32 3 5115 6 6055 

401 11 2 1270 3 1635 

402 28 2 4803 5 5731 

403 19 3 3522 4 3965 

404 13 1 1732 3 2309 

405 24 2 2835 8 4193 

406 3 1 435 1 467 

407 31 11 4195 16 4628 

408 25 3 4613 3 4779 

409 43 4 6029 7 7105 

410 32 2 5607 7 6853 

411 24 2 3931 7 5060 

412 15 1 1687 1 1785 

413 34 3 5633 7 6721 

414 141 18 55143 40 64202 

415 7 1 804 2 1134 

416 86 9 17461 15 20338 

417 23 1 2309 5 3514 

418 4 1 672 1 590 

419 20 2 3320 3 3647 

420 10 1 1587 5 2467 

421 10 2 1599 2 1818 

422 12 1 2674 3 3168 

423 24 3 3176 7 4223 

424 20 2 2252 4 3030 

425 21 4 2846 4 3029 

426 30 2 3619 9 5345 

427 58 5 13652 9 14639 

428 20 1 2690 7 4065 

429 11 1 1263 2 1477 

430 4 1 545 1 611 

431 10 3 1496 2 1500 

432 15 1 1711 4 2496 

433 42 1 5573 9 7133 

434 17 3 2849 3 2773 

435 30 6 6079 12 8061 
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436 19 1 2060 3 2750 

437 35 3 4348 4 4860 

438 27 5 6130 8 7052 

439 71 8 19619 16 23106 

440 7 1 888 1 924 

441 37 5 8987 12 11033 

442 19 2 3659 5 4459 

443 61 11 13754 23 17649 

444 12 3 3089 3 3346 

445 21 2 3952 4 4569 

446 25 1 3390 2 4045 

447 18 2 2715 6 3676 

448 21 3 3832 8 5165 

449 33 6 5430 9 6673 

450 13 1 1407 3 2176 

451 10 1 1162 1 1385 

452 17 1 2387 3 2997 

453 11 1 1267 1 1757 

454 40 6 6485 15 9548 

455 29 2 4809 2 5247 

456 30 3 5173 8 6814 

457 9 1 1329 2 1595 

458 52 6 10712 12 12497 

459 17 1 2414 2 2910 

460 13 1 1918 2 2042 

461 20 1 2517 3 3015 

462 5 1 802 1 739 

463 33 6 6229 12 8642 

464 63 5 14902 8 16476 

465 14 2 2501 4 2698 

466 18 1 2152 4 3088 

467 61 6 14827 11 16838 

468 150 16 43128 38 52382 

469 46 2 9489 5 10982 

470 21 1 2879 2 3702 

471 39 5 7492 9 8736 

472 27 3 4753 4 5251 

473 31 2 5283 5 6242 

474 34 3 5994 8 7580 

475 36 3 6490 7 7603 
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476 13 2 2491 2 2548 

477 14 1 1853 3 2480 

478 5 1 911 1 921 

479 21 3 3767 3 4498 

480 13 2 2012 3 2579 

481 16 4 3350 4 3662 

482 29 4 6830 8 8239 

483 31 2 4762 7 6344 

484 2 1 69 1 69 

485 30 3 5466 10 7509 

486 27 3 4669 2 5148 

487 15 1 2121 3 2787 

488 51 7 8427 9 10131 

489 3 1 514 1 610 

490 9 1 1885 1 1936 

491 50 5 8097 12 10645 

492 69 8 13073 17 15907 

493 26 1 4928 3 5625 

494 39 3 7967 8 9365 

495 12 2 2265 2 2121 

496 18 4 3332 8 4870 

497 21 1 2592 6 4151 

498 30 5 7282 6 8125 

499 32 3 6444 6 7596 

500 26 5 6358 12 8963 

501 9 1 1470 1 1503 

502 43 4 9777 7 11165 

503 18 1 2668 2 3251 

504 22 2 4010 4 4711 

505 2 1 435 1 499 

506 23 3 4443 6 5558 

507 24 3 5263 3 5249 

508 39 1 5724 8 8664 

509 102 10 27771 24 33197 

510 24 2 3916 4 4744 

511 24 4 4712 12 7197 

512 29 2 5942 2 6290 

513 21 1 2739 3 3713 

514 30 2 6638 5 7712 

515 14 1 2083 3 2933 
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516 22 2 4658 3 5224 

517 14 1 1790 1 2166 

518 47 5 10861 15 15268 

519 17 4 4324 8 6403 

520 16 3 4977 7 6409 

521 12 3 3537 5 4433 

522 52 6 11134 6 12233 

523 27 11 2907 14 3052 

524 86 10 22790 25 31442 

525 13 1 1882 4 3194 

526 33 5 8852 11 11717 

527 21 1 3336 2 3988 

528 8 1 1281 1 1319 

529 34 5 8914 5 9834 

530 6 1 950 1 1030 

531 16 1 2213 2 2769 

532 10 1 2107 3 2712 

533 18 2 3644 2 4430 

534 17 1 2753 3 3557 

535 22 4 5636 4 6091 

536 18 2 2630 5 3870 

537 39 5 9501 11 12096 

538 27 3 4051 4 5189 

539 16 4 3600 6 4760 

540 38 5 7653 11 10114 

541 152 21 70005 35 79834 

542 7 1 1041 1 1163 

543 20 2 3584 2 3830 

544 79 7 22131 18 27366 

545 3 1 580 1 666 

546 32 3 7005 8 9000 

547 33 4 7589 4 8340 

548 57 5 13605 13 16974 

549 31 4 4487 10 6952 

550 10 1 1682 2 2144 

551 84 10 24329 18 28226 

552 8 1 1228 3 1895 

553 54 6 13255 11 15485 

554 9 1 1955 1 2106 

555 12 1 1693 1 1945 
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556 4 1 755 1 980 

557 28 6 5056 10 6887 

558 24 3 6031 5 6932 

559 28 2 5374 5 6976 

560 26 5 5072 8 6909 

561 19 4 4072 6 5250 

562 58 6 18230 9 20130 

563 27 3 4331 6 5924 

564 19 2 3397 6 5047 

565 59 7 17239 14 20713 

566 23 2 4694 3 5308 

567 32 4 8096 7 9911 

568 45 4 11997 7 14069 

569 65 8 15125 13 18050 

570 54 5 12091 7 14128 

571 5 1 844 1 982 

572 6 1 1057 2 1472 

573 51 4 12648 8 14458 

574 3 1 627 1 697 

575 4 1 945 1 1062 

576 9 11 770 14 821 

577 19 1 3249 5 4949 

578 13 3 3118 3 3359 

579 18 2 3860 3 4137 

580 30 4 6281 5 7198 

581 105 8 37945 19 43189 

582 4 1 740 1 865 

583 31 2 6257 7 8151 

584 15 2 3567 2 3673 

585 12 1 1744 4 2741 

586 23 3 5502 4 6197 

587 15 1 2472 3 3314 

588 27 4 5424 7 6962 

589 34 5 8863 8 10623 

590 30 3 5777 5 6812 

591 51 6 18086 17 21723 

592 37 2 7538 7 10269 

593 37 5 9640 6 11263 

594 21 5 4084 8 17894 

595 59 3 15685 10 18680 



268 
 

Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

596 14 1 2427 2 2877 

597 17 3 3937 5 4810 

598 29 1 5504 8 8348 

599 24 4 6618 8 8296 

600 16 2 3153 2 3476 

601 14 1 2908 1 2922 

602 22 1 4318 4 5814 

603 43 4 11010 8 12877 

604 8 3 2544 6 3809 

605 39 4 9386 13 13015 

606 9 1 1663 1 1855 

607 25 2 5626 7 8039 

608 14 2 2873 2 3349 

609 57 5 11039 9 13596 

610 15 1 2288 3 3353 

611 10 1 2048 1 2185 

612 18 2 3924 4 4871 

613 10 1 1792 6 4031 

614 9 1 1495 1 1701 

615 21 1 7447 2 8560 

616 5 1 961 1 1106 

617 14 1 2515 1 2930 

618 11 1 1766 1 2153 

619 34 2 6950 7 9368 

620 18 2 3632 6 5330 

621 14 2 2854 4 3840 

622 21 2 4002 2 4698 

623 9 2 1924 4 2974 

624 19 1 3500 3 4523 

625 18 2 3066 4 4080 

626 12 2 2815 2 3127 

627 9 1 2354 1 2591 

628 24 1 5471 2 6195 

629 18 3 4654 4 5408 

630 24 3 4489 8 6620 

631 40 7 11392 10 13345 

632 38 3 9190 7 11187 

633 37 3 7724 5 9632 

634 22 2 4209 6 6138 

635 21 2 4173 5 5582 
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636 53 2 10552 5 13207 

637 16 1 2631 3 3540 

638 26 3 6917 4 8206 

639 88 8 28711 19 34826 

640 56 5 16998 9 20050 

641 9 1 1580 1 1717 

642 31 6 7214 16 12845 

643 8 1 1454 1 1678 

644 25 1 4030 5 5888 

645 23 2 5043 4 6240 

646 9 2 2035 2 2411 

647 29 3 6517 4 7683 

648 23 3 4290 6 6168 

649 24 1 3770 5 5720 

650 58 6 13237 16 18130 

651 6 1 1111 1 1294 

652 51 4 12305 9 15572 

653 4 1 1081 1 1119 

654 50 6 10727 10 13297 

655 10 2 2189 2 2415 

656 10 1 1708 1 2036 

657 7 1 1340 4 2615 

658 6 3 1679 3 1873 

659 5 1 973 1 1112 

660 17 2 3603 5 4923 

661 19 2 4091 2 4326 

662 9 1 1586 2 2108 

663 20 3 3980 10 6823 

664 85 8 21790 14 25053 

665 89 6 25380 14 29882 

666 11 9 1798 15 2546 

667 19 2 3964 6 5951 

668 58 7 18513 17 23717 

669 7 1 1561 1 1711 

670 43 6 12335 10 14565 

671 19 2 4078 4 5123 

672 29 2 7092 3 8187 

673 34 5 8682 5 8933 

674 29 3 6770 6 8299 

675 86 10 31624 25 39147 



270 
 

Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

676 3 1 710 1 809 

677 11 1 2189 1 2424 

678 31 3 5953 7 7842 

679 16 3 4403 4 5114 

680 20 4 5135 10 8256 

681 266 34 72852 60 90921 

682 7 1 1410 2 1857 

683 32 4 6150 8 8493 

684 25 3 5926 6 7535 

685 16 1 2710 4 4151 

686 2 1 680 1 666 

687 18 2 3820 4 4885 

688 16 1 3031 4 4413 

689 68 5 16885 11 20615 

690 46 4 11846 9 14606 

691 63 10 18667 20 24980 

692 5 1 1194 1 1252 

693 15 2 3202 3 4018 

694 21 3 4851 8 7693 

695 9 1 2074 1 2304 

696 18 1 3200 1 3659 

697 20 3 4021 3 4525 

698 28 3 6872 7 8882 

699 36 6 10650 8 12624 

700 47 4 12159 8 14779 

701 9 1 1907 1 2118 

702 44 5 12331 6 14420 

703 5 1 1050 1 1211 

704 33 4 6944 13 11342 

705 32 4 7127 8 9576 

706 6 1 1315 1 1499 

707 15 2 3654 5 5334 

708 27 5 7297 9 9683 

709 24 2 5644 4 6833 

710 10 1 1959 1 2053 

711 52 4 12214 12 16401 

712 6 1 1249 1 1378 

713 20 2 5375 2 5777 

714 50 6 13566 12 16904 

715 10 1 1823 3 2724 
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716 16 3 4318 8 6810 

717 13 1 2273 3 3234 

718 15 1 4641 1 4985 

719 10 2 2445 2 2797 

720 21 2 4994 2 5513 

721 83 5 29191 17 34465 

722 25 4 6451 7 8227 

723 27 2 5558 5 7480 

724 31 2 6903 3 8435 

725 40 3 11059 6 13268 

726 8 1 1612 4 2978 

727 9 1 1764 1 2071 

728 19 3 4521 3 5140 

729 19 2 4269 2 4846 

730 15 1 4076 3 5288 

731 29 6 13008 11 16804 

732 45 3 8425 11 12614 

733 31 2 7362 8 10059 

734 8 1 1762 1 1774 

735 32 4 9394 8 11494 

736 23 2 6859 3 7494 

737 10 1 1881 2 2517 

738 33 5 9312 14 14244 

739 21 3 4612 3 5108 

740 18 3 4081 4 4885 

741 6 1 1294 4 2677 

742 6 1 1327 1 1484 

743 30 4 7752 5 9170 

744 8 1 1689 1 1943 

745 121 13 58441 28 69789 

746 23 3 4816 6 7051 

747 12 1 2157 3 3250 

748 6 1 1275 1 1486 

749 31 2 7441 6 9420 

750 9 1 1987 3 2793 

751 40 4 11137 12 15185 

752 18 3 6865 3 7352 

753 34 4 8093 15 13460 

754 25 1 4651 5 6915 

755 33 5 9493 8 11618 
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756 5 1 1147 1 1279 

757 33 1 9739 5 11910 

758 5 1 1193 5 2976 

759 36 3 9608 7 11907 

760 27 4 7869 8 10378 

761 22 4 5598 9 8192 

762 8 1 1647 1 1809 

763 30 5 7583 10 10401 

764 13 1 2545 4 4165 

765 20 1 4026 5 5549 

766 33 2 7857 7 10637 

767 21 2 5339 3 6022 

768 84 7 21504 18 29796 

769 4 1 966 1 1079 

770 116 12 33325 27 42730 

771 57 7 21131 13 25031 

772 32 3 7287 3 8105 

773 50 9 19514 13 23658 

774 20 3 4544 6 6094 

775 31 2 6750 6 9167 

776 20 4 5210 9 8110 

777 2 1 647 1 739 

778 48 3 12850 12 17940 

779 14 1 3192 2 3750 

780 22 3 4757 7 7537 

781 19 3 4819 4 5695 

782 14 1 3049 2 3791 

783 8 2 2363 2 2464 

784 18 2 4506 6 6829 

785 6 1 1321 1 1521 

786 10 2 2770 2 3052 

787 22 1 4191 3 5557 

788 34 1 7198 3 8765 

789 35 3 8898 7 11729 

790 9 1 2543 1 2717 

791 61 9 24517 19 30758 

792 12 1 2320 2 3098 

793 7 1 1610 1 1693 

794 26 4 6873 8 9360 

795 13 1 2489 1 2883 



273 
 

Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

796 36 3 10245 11 14666 

797 5 1 1171 4 2621 

798 23 3 6829 3 7662 

799 19 3 5550 6 7433 

800 27 2 6409 6 8244 

801 22 4 5990 10 9550 

802 18 3 4407 7 6594 

803 18 3 4227 8 6753 

804 42 5 13254 7 15134 

805 3 1 959 1 979 

806 15 1 3476 3 4545 

807 13 3 3598 6 5028 

808 5 1 1356 1 1447 

809 21 1 4821 2 5354 

810 22 3 6587 3 7150 

811 17 1 3506 3 4628 

812 61 5 14006 13 18934 

813 6 1 1340 1 1578 

814 22 1 4837 2 5770 

815 7 1 1927 3 2835 

816 12 1 2610 4 4367 

817 142 14 72187 28 82434 

818 11 1 2570 1 2678 

819 13 2 3581 7 6259 

820 20 5 6502 11 10253 

821 4 1 1051 1 1236 

822 21 1 5198 2 6450 

823 56 5 20867 9 24266 

824 9 2 2483 2 2899 

825 14 1 3590 1 3867 

826 27 1 5637 3 6601 

827 11 1 2368 3 3310 

828 50 4 14359 11 19320 

829 4 1 1088 1 1249 

830 3 1 901 1 1070 

831 38 5 11808 11 15144 

832 39 4 11324 6 13694 

833 23 5 7619 8 9665 

834 23 3 7552 5 9197 

835 24 4 7061 12 11526 



274 
 

Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

836 15 2 3859 5 5550 

837 17 1 3770 3 5267 

838 21 5 7068 5 8134 

839 7 1 1657 1 1805 

840 11 1 3326 1 3641 

841 58 7 19962 14 24449 

842 5 1 1270 1 1416 

843 14 2 3437 4 5273 

844 24 3 6527 3 7800 

845 96 6 33099 15 40255 

846 23 3 6896 4 8365 

847 14 1 2886 3 4304 

848 10 1 2166 1 2522 

849 21 3 5217 5 6808 

850 43 6 14271 11 18332 

851 6 1 1545 1 1774 

852 23 2 6330 5 8742 

853 13 1 3092 5 5571 

854 5 1 1314 1 1379 

855 34 4 9550 9 13439 

856 27 2 6649 4 8316 

857 14 1 3258 1 3678 

858 23 1 5389 3 6885 

859 16 3 5218 3 5846 

860 7 1 1725 3 2569 

861 5 1 1281 1 1518 

862 54 5 18615 8 21183 

863 56 6 21445 10 25508 

864 16 4 4457 4 5209 

865 21 5 6072 9 9160 

866 3 1 894 1 1032 

867 10 1 2311 3 3372 

868 19 2 4567 5 6267 

869 70 8 21483 17 27126 

870 18 1 4648 3 6135 

871 10 1 2218 1 2581 

872 42 4 14589 8 17792 

873 20 1 4908 3 6026 

874 29 7 5602 11 7501 

875 35 4 9985 6 12000 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

876 10 1 3089 3 4380 

877 17 1 4207 1 4567 

878 115 13 45484 30 56696 

879 13 2 3800 2 4331 

880 8 1 2022 3 2953 

881 93 9 27477 31 42522 

882 6 1 1496 1 1652 

883 17 1 3546 3 5174 

884 57 4 16105 13 22793 

885 21 1 5626 5 8029 

886 7 1 1734 2 2342 

887 26 1 6258 3 7900 

888 59 11 4077 13 5136 

889 13 1 2864 2 3885 

890 31 1 8058 4 10123 

891 67 10 24681 18 31472 

892 22 2 5909 4 7205 

893 47 6 16952 11 20737 

894 17 3 4794 4 5984 

895 13 1 2765 1 3409 

896 108 11 43664 23 52006 

897 20 1 5052 4 6701 

898 21 2 5561 2 5856 

899 25 5 7452 10 10871 

900 19 4 5731 4 5979 

901 36 6 13474 12 18072 

902 37 8 12720 19 21126 

903 6 1 1492 1 1784 

904 18 1 3918 2 5274 

905 28 2 7611 5 10128 

906 21 5 6990 11 11027 

907 13 2 3609 2 4161 

908 32 2 8216 10 13134 

909 54 5 21508 9 24848 

910 8 1 2003 2 2705 

911 9 1 2198 1 2508 

912 24 4 8152 6 9796 

913 24 1 5734 3 7494 

914 45 4 13237 11 17754 

915 29 3 9315 6 11485 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

916 22 2 5849 4 7154 

917 56 3 18307 13 23922 

918 16 1 4549 6 7311 

919 23 2 6864 8 10239 

920 10 1 2890 1 3187 

921 5 1 1574 4 3203 

922 15 1 3525 5 6202 

923 140 14 67796 31 83108 

924 9 1 2196 1 2531 

925 12 1 2718 1 3214 

926 14 1 3164 4 5110 

927 23 1 5085 3 6794 

928 18 2 5267 4 7020 

929 12 4 5146 4 5547 

930 46 8 18778 15 23540 

931 22 3 5670 5 7776 

932 18 2 5260 2 5868 

933 12 2 3147 3 4221 

934 7 1 2081 2 2887 

935 21 4 7967 5 9035 

936 5 1 1364 1 1613 

937 24 2 8272 8 11813 

938 28 3 8912 8 12524 

939 115 19 61397 26 67960 

940 9 1 3084 5 5835 

941 3 1 1106 1 1170 

942 81 8 34906 16 41199 

943 24 3 6285 2 6830 

944 16 2 6613 3 7456 

945 20 1 4990 2 6207 

946 19 1 4297 2 5490 

947 42 7 16505 13 21066 

948 10 2 3057 2 3451 

949 8 1 2115 3 3324 

950 117 13 58465 22 67269 

951 2 1 839 1 944 

952 6 4 3232 6 4933 

953 8 1 2024 1 2340 

954 41 6 14270 13 19790 

955 115 9 36575 27 49320 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

956 32 2 9116 7 12493 

957 4 1 1247 4 3052 

958 31 6 11331 15 17926 

959 18 4 5614 8 8525 

960 12 3 3615 3 4184 

961 16 4 5298 5 6697 

962 13 1 3037 3 4494 

963 124 17 49891 32 61140 

964 36 6 15600 10 18730 

965 19 1 4898 3 6446 

966 39 3 11065 10 16051 

967 5 1 1466 1 1631 

968 34 3 10998 8 14957 

969 26 2 7615 3 9099 

970 28 3 9264 6 11633 

971 42 4 13660 10 18573 

972 11 3 3987 5 6061 

973 27 2 7721 7 11221 

974 35 3 9880 9 14079 

975 37 3 11828 7 15445 

976 15 1 4070 5 6229 

977 15 2 5665 2 6070 

978 26 1 6067 3 8038 

979 100 10 30392 24 39969 

980 6 1 1807 1 2053 

981 9 1 2413 1 2851 

982 11 1 2734 1 3167 

983 23 1 6494 4 8996 

984 36 6 13392 12 18096 

985 71 9 27721 12 32363 

986 43 3 13904 8 17976 

987 39 3 11820 5 14162 

988 20 4 6804 9 11104 

989 4 1 1293 1 1489 

990 42 3 14495 8 18177 

991 14 3 4471 3 4899 

992 39 6 13237 15 20239 

993 12 3 3821 8 7626 

994 25 2 7508 4 9529 

995 35 8 12200 16 19422 
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Pipelin

e No. 

No. of 

Component

s 

Alberta Size Overseas Size 

No. of 

Spools 

Solution Time 

(ms) 

No. of 

Spools 

Solution Time 

(ms) 

996 48 5 14409 11 19328 

997 5 1 1531 1 1723 

998 21 1 5736 5 9131 

999 49 4 18621 12 25344 

1000 107 14 22410 20 23037 
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Appendix I. 

Industrial Pipeline Data Generator-Python Code 

import numpy as np 
import math 
import os, sys 
import pyodbc 
import random 
import sqlite3 
from collections import deque 
import csv 
from scipy import stats 
from scipy.stats import burr 
 
def PipelineGenerator(number_of_pipelines): 
 
    def starting_component_state_main_line(): 
 
      # Initialize the starting component in the main line(excluding start and finish 
components) 
      # This function is made to generate starting component, in case if the generator 
stop 
      initialize_starting_component=np.random.uniform(0,100) 
                                    
      if initialize_starting_component <= 7.1: 
 
              starting_component="REDUCER" 
              return starting_component 
 
      elif initialize_starting_component <= 18.9 : 
 
              starting_component="VALVE" 
              return starting_component 
  
      elif initialize_starting_component <= 31.5: 
 
              starting_component="TEE" 
              return starting_component 
 
      elif initialize_starting_component <= 47: 
 
              starting_component="FLANGE" 
              return starting_component 
 
      elif initialize_starting_component <= 70: 
 
              starting_component="ELBOW" 
              return starting_component 
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      else: 
        starting_component="TUBE" 
        return starting_component 
 
    def starting_component_state_branch(): 
 
      # Initialize the starting component in the branch(excluding start and finish 
components) 
      # This function is made to generate starting component, in case if the generator 
stop 
 
      initialize_starting_component=np.random.uniform(0,100) 
                                    
      if initialize_starting_component <= 0.96: 
 
              starting_component="PCOMPONENT" 
              return starting_component 
 
      elif initialize_starting_component <= 3.06 : 
 
              starting_component="REDUCER" 
              return starting_component 
 
      elif initialize_starting_component <= 5.66: 
 
              starting_component="INSTRUMENT" 
              return starting_component 
 
      elif initialize_starting_component <= 20.2: 
 
              starting_component="TEE" 
              return starting_component 
 
      elif initialize_starting_component <= 31.0: 
 
              starting_component="VALVE" 
              return starting_component 
 
      elif initialize_starting_component <= 44.0: 
 
              starting_component="FLANGE" 
              return starting_component 
 
      elif initialize_starting_component <= 59.37: 
 
              starting_component="ELBOW" 
              return starting_component 
 
      else: 
     
        starting_component="TUBE" 
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        return starting_component 
 
 
    ###############Components Diameter############################## 
    c,d= 2.8574,0.76059 
 
    mean, var, skew, kurt = burr.stats(c, d, moments='mvsk') 
 
    rv = burr(c, d) 
    ######################### 
 
    ######################## Main Line Generator ###################### 
 
    file = open("Pipelines_Data_Set.txt", "w") 
    
file.write("Line_Number"+","+"Type_of_Branch"+","+"Component_No"+","+"Previosu
ly_Connected_to"+","+"Component_Type"+","+"Diameter"+","+"Length"+","+"Runnin
g_Direction"+"\n") 
    
print("Line_Number",",","Type_of_Branch",",","Seq_in_branch",",","Previosuly_Conn
ected_to",",","Component_Type",",","Diameter",",","Length",",","Running_Direction") 
 
    #(1)  Generate the number of components in the main line 
 
    for line_no in range (1,int(number_of_pipelines)+1): 
  
      # Initialize components first step value: 
 
      cap_step=1 
      instrument_step=1 
      tube_step=1 
      valve_step=1 
      fblind_step=1 
      ftube_step=1 
      flange_step=1 
      clousre_step=1 
      pcomponent_step=1 
      tee_step=1 
      reducer_step=1 
      coupling_step=1 
      elbow_step=1 
 
      component_number=1 
 
      running_direction= "x" 
 
      running_direction_list=deque() 
 
      components_diameter = burr.rvs(c, d, loc=0, scale=124.3, size=1) 
 
      no_of_main_line_components=int(math.ceil(np.random.gamma(2, 10.5))) 
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      if no_of_main_line_components <3: 
     
        no_of_main_line_components=3 
      
    #(2)  Initialize the starting component of the main line  
 
      initialize_starting_component=np.random.uniform(0,100) 
 
      if initialize_starting_component <= 0.1: 
 
              starting_component="TEE" 
           
      elif initialize_starting_component <= 0.4: 
 
              starting_component="FTUBE" 
                                   
      elif initialize_starting_component <= 1.6: 
 
              starting_component="ELBOW" 
 
      elif initialize_starting_component <= 3.9: 
 
              starting_component="INSTRUMENT" 
 
      elif initialize_starting_component <= 6.3: 
 
              starting_component="CAP" 
 
      elif initialize_starting_component <= 13.0: 
 
              starting_component="TUBE" 
 
      elif initialize_starting_component <= 20.9: 
 
              starting_component="VALVE" 
 
      elif initialize_starting_component <= 30.2: 
 
              starting_component="FBLIND" 
 
      elif initialize_starting_component <= 48.5: 
 
              starting_component="PCOMPONENT" 
 
      elif initialize_starting_component <= 71.8: 
 
              starting_component="FLANGE" 
 
      else: 
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              starting_component="CLOSURE" 
                
    # Use Markov-chain transition matrix and state distribution to generate the rest of 
components 
 
    # Create probability transition matrix 
 
      
main_line_transition_matrix=np.matrix([[7.17,1.69,0,7.2,1.27,0,3.81,1.28,61.18,11.3
9,1.28,0,3.8],[5.45,0.45,0,7.73,0,0,4.1,0,65.91,12.27,0,0,4.09],[0,3.67,0,0,1.83,0,0,1.
84,33.94,54.13,1.85,2.75,0],[32.01,1.92,0.44,15.29,1.7,0.27,14.61,1.69,0.75,14.53,1
.76,0.24,14.78],[32.43,0.19,0.5,16.33,0.11,0.27,16.22,0.1,0.9,16.23,0.12,0.25,16.38]
,[0.78,0,12.34,49.87,0.51,5.67,1.54,0,8.23,14.65,0,5.66,0.77],[5.28,0.01,29.68,8.7,0,
14.86,2.67,0.13,17.45,3.13,0,14.84,3.25],[3.02,0.34,0,0.69,0.68,0,0.67,0,53.02,22.8
2,0,0,18.79],[19.91,0.45,0,17.3,0,0,16.29,0,0,16.31,0,0,30.77],[23.92,0.38,5.35,12.8
4,0.44,4.93,11.11,0.17,4.15,18.98,0.16,4.18,13.42],[14.26,13,0.1,6.8,5.42,1,6.68,2.7
1,29.32,7.98,3.51,1.1,8.33],[0,0,0,43.62,0,0,0,0,0,56.38,0,0,0],[25.76,0.13,5.6,12.61,
0,2.7,11.13,0.27,13.49,13.96,0,2.8,11.67]]) 
 
    # Create column legends of probability transition matrix 
 
      
matrix_legend=np.array([["TUBE","FTUBE","ELBOW","TEE","FBLIND","INSTRUME
NT","CAP","COUPLING","FLANGE","VALVE","CLOSURE","PCOMPONENT","RED
UCER"]]) 
 
      main_line=[] 
 
      branch=[] 
 
      Tee=deque() 
 
      tee_diameter=deque() 
 
      branch_count=0 
 
    # Start generating components sequence 
 
      for i in range (1,1200): 
 
        if (len(main_line)+1) <= (no_of_main_line_components):  
 
            initialize_sequence=np.random.uniform(0,100) 
 
    ############################ Component CAP ##################### 
 
            if starting_component == "CAP": 
                 # Define the next CAP state step 
                  # No state distribution was found for Component State Cap, which 
means it is found once in any pipeline 
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                  next_component=main_line_transition_matrix[0,:]  
 
                  # Sort from smallest to largest 
               
                  next_component0=np.sort(next_component) 
 
                  # Transpose the row 
 
                  next_component1=next_component0.T 
               
                  x=[] 
 
                  if i == 1: 
 
                    
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CAP",",",
components_diameter,",",int(np.random.lognormal(0.83986,4.4939)),",",running_dire
ction) 
 
                    
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CAP"+","+str(components_diameter)+","+str(int(np.random.lognormal(0
.83986,4.4939)))+","+str(running_direction)+"\n") 
 
                    main_line.append("CAP") 
 
                    component_number+=1 
 
                    # Find the location of the next component in legends matrix 
 
                    if initialize_sequence > np.max(next_component1): 
 
                        location= np.max(next_component1) 
 
                    else: 
 
                        for i in next_component1: 
 
                          if initialize_sequence < i: 
 
                            x.append(i) 
                         
                            location=(x[0]) 
                         
                    x.clear() 
 
                    a=np.array(next_component) 
 
                    y=np.where(a==location) 
                 
                    starting_component=matrix_legend[y] 
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                  elif len(main_line) == (no_of_main_line_components): 
 
                    
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CAP",",",
components_diameter,",",int(np.random.lognormal(0.83986,4.4939)),",",running_dire
ction) 
 
                    
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CAP"+","+str(components_diameter)+","+str(int(np.random.lognormal(0
.83986,4.4939)))+","+str(running_direction)+"\n") 
 
                    main_line.append("CAP") 
 
                    component_number+=1 
 
                    # Find the location of the next component in legends matrix 
 
                    if initialize_sequence > np.max(next_component1): 
 
                        location= np.max(next_component1) 
 
                    else: 
 
                        for i in next_component1: 
 
                          if initialize_sequence < i: 
 
                            x.append(i) 
                         
                            location=(x[0]) 
                         
                    x.clear() 
 
                    a=np.array(next_component) 
 
                    y=np.where(a==location) 
                 
                    starting_component=matrix_legend[y] 
 
                  else: 
 
                    cap_step+=1 
 
                    starting_component= starting_component_state_main_line() 
 
    ############################ Component Instrument ################ 
 
            elif starting_component == "INSTRUMENT": 
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              next_component=main_line_transition_matrix[1,:] 
           
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T  
 
              x=[] 
 
              if instrument_step <=(len(main_line)+1): 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","INSTRU
MENT",components_diameter,",",350,",",running_direction)  
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"INSTRUMENT"+","+str(components_diameter)+","+str(350)+","+str(run
ning_direction)+"\n")  
 
                  main_line.append("INSTRUMENT") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
               
                  starting_component=matrix_legend[y] 
 
                  # Define the next INSTRUMENT state step 
 
                  instrument_next_step=len(main_line)+ int(np.random.gamma(2.0857, 
7.042)) 
 
                  instrument_step= instrument_next_step 
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              else: 
 
                starting_component=starting_component_state_main_line() 
             
    ############################ Component Fblind ####################             
           
            elif starting_component == "FBLIND": 
 
              next_component=main_line_transition_matrix[2,:] 
           
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T  
 
              x=[] 
 
              # Limit the location of Cap to either the first of the last in the sequence 
 
              if i == 1: 
             
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FBLIND",
components_diameter,",",int(np.random.uniform(122,777.19)),",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FBLIND"+","+str(components_diameter)+","+str(int(np.random.uniform(
122,777.19)))+","+str(running_direction)+"\n")#revise 
 
                  main_line.append("FBLIND") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
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                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
               
              elif len(main_line)== no_of_main_line_components: 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FBLIND",
components_diameter,",",int(np.random.uniform(122,777.19)),",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FBLIND"+","+str(components_diameter)+","+str(int(np.random.uniform(
122,777.19)))+","+str(running_direction)+"\n") 
 
                  main_line.append("FBLIND") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
              else: 
 
                  fblind_step+=1 
 
                  starting_component=starting_component_state_main_line() 
 
    ############################ Component Tee ##################### 
 
            elif starting_component == "TEE": 
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              next_component=main_line_transition_matrix[3,:]  
 
              next_component0=np.sort(next_component) 
 
              next_component1=next_component0.T  
 
              x=[] 
 
              if running_direction=="x": 
 
                coming_from_x=["y","z"] 
 
                
running_direction_list.append([component_number,random.choice(coming_from_x)]
) 
 
              elif running_direction=="y": 
 
                  coming_from_y=["x","z"] 
 
                  
running_direction_list.append([component_number,random.choice(coming_from_y)]
) 
 
              else: 
 
                coming_from_z=["x","y"] 
 
                
running_direction_list.append([component_number,random.choice(coming_from_z)]
) 
 
 
              if tee_step <=(len(main_line)+1): 
 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","TEE",",",
components_diameter,",",int(np.random.uniform(57,432)),",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"TEE"+","+str(components_diameter)+","+str(int(np.random.uniform(57,
432)))+","+str(running_direction)+"\n") 
 
                  tee_diameter.appendleft([component_number,components_diameter]) 
 
                  main_line.append("TEE") 
 
                  Tee.append(component_number) 



290 
 

 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  # Define the next TEE state step 
 
                  tee_next_step=len(main_line)+ int(np.random.gamma(1.4539, 
5.3071))## revise the distribution 
 
                  tee_step= tee_next_step 
 
              else: 
 
                starting_component=starting_component_state_main_line() 
             
    ############################ Component Elbow ##################### 
         
            # we assume elbow as free floating element, therefore no state distribution is 
required 
 
            elif starting_component == "ELBOW": 
 
              next_component=main_line_transition_matrix[4,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T 
 
              x=[] 
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              if elbow_step<=(len(main_line)+1): 
 
 
                  if running_direction=="x": 
 
                      coming_from_x=["y","z"] 
 
                      running_direction= random.choice(coming_from_x) 
 
                  elif running_direction=="y": 
 
                      coming_from_y=["x","z"] 
 
                      running_direction= random.choice(coming_from_y) 
 
                  else: 
 
                      coming_from_z=["x","y"] 
 
                      running_direction= random.choice(coming_from_z) 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","ELBOW"
,",", 
components_diameter,",",int(np.random.laplace(339.86,0.00111)),",",running_directi
on) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"ELBOW"+","+ 
str(components_diameter)+","+str(int(np.random.laplace(339.86,0.00111)))+","+str(r
unning_direction)+"\n") 
 
                  main_line.append("ELBOW") 
              
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
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                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  elbow_next_step=len(main_line)+ 
int(np.random.laplace(0.51675,3.1097)) 
 
                  elbow_step= elbow_next_step 
 
              else: 
 
                starting_component=starting_component_state_main_line() 
 
    ############################ Component Ftube #################### 
 
            elif starting_component == "FTUBE": 
 
              next_component=main_line_transition_matrix[5,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T  
 
              x=[] 
 
              
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FTUBE",
",",components_diameter,",",int(np.random.uniform(75.394,76.985)),",",running_dire
ction) 
 
              
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"FTUBE"+","+str(components_diameter)+","+str(int(np.random.uniform(7
5.394,76.985)))+","+str(running_direction)+"\n") 
 
              main_line.append("FTUBE") 
 
              component_number+=1 
 
              if initialize_sequence > np.max(next_component1): 
 
                  location= np.max(next_component1) 
 
              else: 
 
                  for i in next_component1: 
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                    if initialize_sequence < i: 
 
                      x.append(i) 
 
                      location=(x[0]) 
                   
              x.clear() 
 
              a=np.array(next_component) 
 
              y=np.where(a==location) 
 
              starting_component=matrix_legend[y]          
 
    ############################ Component Tube ##################### 
           
            # Component tube is assumed as a free floating element, therefore no state 
distribution is required 
 
            elif starting_component == "TUBE": 
 
              next_component=main_line_transition_matrix[6,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T 
 
              x=[] 
 
              if tube_step <=(len(main_line)+1): 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","TUBE",",
",components_diameter,",",int(np.random.wald(2323.2,489.58)),",",running_direction
) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"TUBE"+","+str(components_diameter)+","+str(int(np.random.wald(2323
.2,489.58)))+","+str(running_direction)+"\n") 
 
                  main_line.append("TUBE") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
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                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  tube_next_step=len(main_line)+ 1 
 
                  tube_step= tube_next_step 
 
              else: 
 
                starting_component=starting_component_state_main_line() 
             
    ############################ Component Pcomponent ################ 
 
            elif starting_component == "PCOMPONENT": 
 
              next_component=main_line_transition_matrix[7,:] 
 
              next_component0=np.sort(next_component) 
 
              next_component1=next_component0.T  
 
              x=[] 
 
              if pcomponent_step <=(len(main_line)+1): 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","PCOMP
ONENT",",",components_diameter,",",int(np.random.wald(726.79,1072.6)),",",runnin
g_direction)#int(np.random.exponential(0.0017))) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"PCOMPONENT"+","+str(components_diameter)+","+str(int(np.random.
wald(726.79,1072.6)))+","+str(running_direction)+"\n") 
 
                  main_line.append("PCOMPONENT") 
 
                  component_number+=1 
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                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  # Define the next PCOMPONENT state step 
 
                  pcomponent_next_step=len(main_line)+ 
int(np.random.exponential(0.19245)) 
 
                  pcomponent_step= pcomponent_next_step 
 
              else: 
 
                starting_component=starting_component_state_main_line() 
 
    ############################ Component Coupling ################## 
 
            elif starting_component == "COUPLING": 
 
              next_component=main_line_transition_matrix[8,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T 
 
              x=[] 
 
              
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","COUPLI
NG",",",components_diameter,",",int(np.random.beta(0.02229,0.42713)),",",running_
direction) 
 



296 
 

              
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"COUPLING"+","+str(components_diameter)+","+str(int(np.random.beta(
0.02229,0.42713)))+","+str(running_direction)+"\n")           
 
              main_line.append("COUPLING") 
 
              component_number+=1 
 
              if initialize_sequence > np.max(next_component1): 
 
                  location= np.max(next_component1) 
 
              else: 
 
                  for i in next_component1: 
 
                    if initialize_sequence < i: 
 
                      x.append(i) 
 
                      location=(x[0]) 
                   
              x.clear() 
 
              a=np.array(next_component) 
 
              y=np.where(a==location) 
 
              starting_component=matrix_legend[y] 
           
    ############################ Component Flange ################### 
           
            elif starting_component == "FLANGE": 
 
              next_component=main_line_transition_matrix[9,:] 
 
              next_component0=np.sort(next_component) 
 
              next_component1=next_component0.T  
 
              x=[] 
 
              if flange_step <=(len(main_line)+1): 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","FLANGE
",components_diameter,",",350,",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
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_line)))+","+"FLANGE"+","+str(components_diameter)+","+str(350)+","+str(running_
direction)+"\n") 
 
                  main_line.append("FLANGE") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  # Define the next FLANGE state step 
 
                  flange_next_step=len(main_line)+ int(np.random.pareto(0.82625,1)) 
 
                  flange_step= flange_next_step 
           
              else: 
 
                starting_component=starting_component_state_main_line() 
 
    ############################ Component Valve ################### 
             
            elif starting_component == "VALVE": 
 
              next_component=main_line_transition_matrix[10,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T 
 
              x=[] 
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              if valve_step <=(len(main_line)+1): 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","VALVE",
",",components_diameter,",",350,",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"VALVE"+","+str(components_diameter)+","+str(350)+","+str(running_dir
ection)+"\n") 
 
                  main_line.append("VALVE") 
 
                  component_number+=1 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
                  valve_next_step=len(main_line)+ 
int(np.random.lognormal(0.7945,1.8998)) 
 
                  valve_step= valve_next_step 
 
              else: 
 
                starting_component=starting_component_state_main_line() 
             
    ############################ Component Closure ################## 
             
            elif starting_component == "CLOSURE": 
 
              next_component=main_line_transition_matrix[11,:]  
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              next_component0=np.sort(next_component) 
 
              next_component1=next_component0.T  
 
              x=[] 
 
              if i == 1:  
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CLOSUR
E",",",components_diameter,",",350,",",running_direction) 
 
                  
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CLOSURE"+","+str(components_diameter)+","+str(350)+","+str(running
_direction)+"\n") 
 
                  main_line.append("CLOSURE") 
 
                  component_number+=1 
 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
 
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
              elif len(main_line) == no_of_main_line_components: 
 
                  
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","CLOSUR
E",",",components_diameter,",",350,",",running_direction) 
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file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"CLOSURE"+","+str(components_diameter)+","+str(350)+","+str(running
_direction)+"\n") 
 
                  main_line.append("CLOSURE") 
 
                  component_number+=1 
 
 
                  if initialize_sequence > np.max(next_component1): 
 
                      location= np.max(next_component1) 
 
                  else: 
 
                      for i in next_component1: 
 
                        if initialize_sequence < i: 
 
                          x.append(i) 
         
                          location=(x[0]) 
                       
                  x.clear() 
 
                  a=np.array(next_component) 
 
                  y=np.where(a==location) 
 
                  starting_component=matrix_legend[y] 
 
 
              else: 
 
                  clousre_step+=1 
 
                  starting_component=starting_component_state_main_line() 
 
    ############################ Component Reducer #################   
 
            elif starting_component == "REDUCER": 
 
              next_component=main_line_transition_matrix[12,:]  
 
              next_component0=np.sort(next_component)  
 
              next_component1=next_component0.T  
 
              x=[] 
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              reducer_diameter=int(burr.rvs(c, d, loc=0, scale=124.3, size=1)) 
 
              components_diameter= reducer_diameter 
 
 
              if reducer_step <=(len(main_line)+1): 
 
                
print(line_no,",","Main_Line",",",component_number,",",(len(main_line)),",","REDUC
ER",",",components_diameter,",",int(np.random.gamma(3.4645,51.749)),",",running_
direction) 
 
                
file.write(str(line_no)+","+"Main_Line"+","+str(component_number)+","+str((len(main
_line)))+","+"REDUCER"+","+str(components_diameter)+","+str(int(np.random.gam
ma(3.4645,51.749)))+","+str(running_direction)+"\n") 
 
                main_line.append("REDUCER") 
 
                component_number+=1 
 
                if initialize_sequence > np.max(next_component1): 
 
                    location= np.max(next_component1) 
 
                else: 
 
                    for i in next_component1: 
 
                      if initialize_sequence < i: 
 
                        x.append(i) 
 
                        location=(x[0]) 
                     
                x.clear() 
 
                a=np.array(next_component) 
 
                y=np.where(a==location) 
 
                starting_component=matrix_legend[y] 
 
                # Define the next REDUCER state step 
 
                reducer_next_step=len(main_line)+ 
int(np.random.lognormal(0.80974,2.0731)) 
 
                reducer_step= reducer_next_step 
 
              else: 
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                starting_component=starting_component_state_main_line() 
             
            else: 
 
              initialize_sequence=np.random.uniform(0,100) 
 
        else: 
 
          break 
 
    ################################ Branches Generator ################ 
 
      try: 
 
     
       while len(Tee)>0: 
 
 
          for i in range (len(Tee)): 
 
              branch_count+=1 
 
              cap_step=1 
              instrument_step=1 
              tube_step=1 
              valve_step=1 
              fblind_step=1 
              ftube_step=1 
              flange_step=1 
              clousre_step=1 
              pcomponent_step=1 
              tee_step=1 
              reducer_step=1 
              coupling_step=1 
              elbow_step=1 
 
              no_of_branch_components=int(math.ceil(np.random.lognormal(0.88575, 
1.2818))) 
 
              if no_of_branch_components <1: 
 
                no_of_branch_components=1 
 
            # Initialize the starting component for each branch 
 
              initialize_starting_component=np.random.uniform(0,100) 
 
            # The following statement constrains the type of component to be processed 
in case of the number of components=1 
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              if no_of_branch_components <= 1:  
 
                if initialize_starting_component <=0.59: 
 
                  starting_component="CAP" 
 
                elif initialize_starting_component <=1.2: 
 
                  starting_component="FTUBE" 
 
                elif initialize_starting_component <=2.9: 
 
                  starting_component="REDUCER" 
 
                elif initialize_starting_component <=5.4: 
 
                  starting_component="TUBE" 
 
                elif initialize_starting_component <=15.9: 
 
                  starting_component="INSTRUMENT" 
 
                elif initialize_starting_component <=29.2: 
 
                  starting_component="FLANGE" 
 
                else: 
 
                  starting_component="CLOSURE" 
 
              else: 
 
                    if initialize_starting_component <= 0.2: 
 
                            starting_component="COUPLING" 
                                                  
                    elif initialize_starting_component <= 0.35: 
 
                            starting_component="INSTRUMENT" 
 
                    elif initialize_starting_component <= 1.01: 
 
                            starting_component="VALVE" 
 
                    elif initialize_starting_component <= 2.13: 
 
                            starting_component="TEE" 
 
                    elif initialize_starting_component <= 3.79: 
 
                            starting_component="REDUCER" 
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                    elif initialize_starting_component <= 9.44: 
 
                            starting_component="ELBOW" 
 
                    elif initialize_starting_component <= 25.62: 
 
                            starting_component="FLANGE" 
 
                    elif initialize_starting_component <= 59.84: 
 
                            starting_component="FTUBE" 
 
                    else: 
                   
                            starting_component="TUBE" 
                         
                   
            # Use Markov-chain transition matrix and state distribution to generate the 
rest of components 
 
            # Create probability transition matrix (modified to branches) 
 
              
main_line_transition_matrix=np.matrix([[0,37.5,0,0,18.81,0,0,25,0,0,18.8,0,0],[4.8,0,
0,9.5,0,0,2.4,0,77.4,2.41,0,1.2,2.411],[0,38.5,0,0,19.2,0,0,19.21,3.8,0,19.21,0,0],[30.
7,1.9,0.4,15.8,0.94,0.21,15.6,0.93,1.1,15.4,1.,0.2,15.7],[31.9,0.6,0.5,16.0,0.31,0.2,1
5.9,0.3,1.7,15.91,0.311,0.301,16.1],[0.2,0,6,0.41,0,3.2,6.8,0,3.5,76.2,0.4,3.1,0.1],[5.
9,0.0,27.4,10.4,0,13.8,3,0,18.3,3.3,0,13.7,4.0],[6.3,0,0,3.2,3.21,1.6,3.211,0,58.7,20.
6,0,0,3.211],[20.3,13.6,0,10.2,6.8,3.4,10.21,6.81,0,10.211,6.811,0,11.9],[17.1,2.8,3.
8,9.4,3.4,6.7,8.6,1.4,5.4,26.3,1.41,4,9.8],[3.4,5.9,0.2,1.7,17.9,8.5,1.71,3.0,15.4,2,35.
8,2.4,2.1],[0,33.3,0,0,16.7,0,0,16.71,0,16.711,16.7111,0,0],[22.7,0,3.3,12.3,0,1.7,11.
3,0.8,15.2,17.3,0,2.8,12.7]]) 
 
            # Create column legends of probability transition matrix 
 
              
matrix_legend=np.array([["TUBE","FTUBE","ELBOW","TEE","FBLIND","INSTRUME
NT","CAP","COUPLING","FLANGE","VALVE","CLOSURE","PCOMPONENT","RED
UCER"]]) 
 
            # Start generating components sequence 
 
              for i in range (1,2000): 
 
 
                if i ==1: 
 
                  previously_connected=Tee.popleft() 
 
                else: 
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                  previously_connected= component_number-1 
 
 
                for row in tee_diameter: 
 
                  if row[0]== previously_connected: 
 
                    components_diameter=row[1] 
 
                for row in running_direction_list: 
 
                    if row[0]==previously_connected: 
 
                      running_direction=row[1] 
             
 
                if (len(branch)) <= (no_of_branch_components-1): 
             
 
                    initialize_sequence=np.random.uniform(0,100) 
 
 
            ############################ Component CAP ################# 
 
                    if starting_component == "CAP": 
 
               
                        # define the next CAP state step 
 
                        # No state distribution was found for Component State Cap, which 
means it is found once in any pipeline 
                     
                          next_component=main_line_transition_matrix[0,:] # 
 
                        # Sort the above array from smallest to largest 
                       
                          next_component0=np.sort(next_component) 
 
                        # Transpose the array 
 
                          next_component1=next_component0.T 
                       
                          x=[] 
 
                          # Limit the location of Cap to either the first of the last in the 
sequence 
 
                          if i == 1:  
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print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CAP",",",components_diameter,",",350,",",running_direction) 
 
                            
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CAP"+","+str(components_diameter)+","+str(350)
+","+str(running_direction)+"\n") 
 
                            branch.append("CAP") 
 
                            component_number+=1 
 
                            # Find the location of the next component in the sorted array 
 
                            if initialize_sequence > np.max(next_component1): 
 
                                location= np.max(next_component1) 
 
                            else: 
 
                                for i in next_component1: 
 
                                  if initialize_sequence < i: 
 
                                    x.append(i) 
                                 
                                    location=(x[0]) 
                                 
                            x.clear() 
 
                            a=np.array(next_component) 
 
                            y=np.where(a==location) 
                         
                            starting_component=matrix_legend[y] 
 
 
                          elif len(branch) == (no_of_branch_components): 
 
                            
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CAP",",",components_diameter,",",350,",",running_direction) 
 
                            
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CAP"+","+str(components_diameter)+","+str(350)
+","+str(running_direction)+"\n") 
 
                            branch.append("CAP") 
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                            component_number+=1 
 
                            # Find the location of the next component in legends matrix 
 
                            if initialize_sequence > np.max(next_component1): 
 
                                location= np.max(next_component1) 
 
                             
                            else: 
 
                                for i in next_component1: 
 
                                  if initialize_sequence < i: 
 
                                    x.append(i) 
                                 
                                    location=(x[0]) 
                                 
                            x.clear() 
 
                            a=np.array(next_component) 
 
                            y=np.where(a==location) 
                         
                            starting_component=matrix_legend[y] 
 
                          else: 
 
                            cap_step+=1 
 
                            starting_component= starting_component_state_branch() 
 
            ############################ Component Instrument ############ 
 
                    elif starting_component == "INSTRUMENT":         
 
                      next_component=main_line_transition_matrix[1,:]  
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if instrument_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","INSTRUMENT",",",components_diameter,",",350,",",running_direction) 
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file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"INSTRUMENT"+","+str(components_diameter)+",
"+str(350)+","+str(running_direction)+"\n") 
 
                          branch.append("INSTRUMENT") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1)                
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                          # Define the next INSTRUMENT state step 
 
                          instrument_next_step=len(branch)+ int(np.random.uniform(-2.381, 
47.492)) 
 
                          instrument_step= instrument_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Fblind ################ 
                             
                    elif starting_component == "FBLIND": 
 
                      next_component=main_line_transition_matrix[2,:]  
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
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                      x=[] 
 
                      # Limit the location of Cap to either the first of the last in the sequence 
 
                      if i == 1: 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FBLIND",",",components_diameter,",",int(np.random.uniform(19,50)),",
",running_direction) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FBLIND"+","+str(components_diameter)+","+str(in
t(np.random.uniform(19,50)))+","+str(running_direction)+"\n") 
 
                          branch.append("FBLIND") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
                       
                      elif len(branch)== no_of_branch_components: 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FBLIND",",",components_diameter,",",int(np.random.uniform(19,50)),",
",running_direction) 
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file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FBLIND"+","+str(components_diameter)+","+str(in
t(np.random.uniform(19,50)))+","+str(running_direction)+"\n") 
 
                          branch.append("FBLIND") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                      else: 
 
                          fblind_step+=1 
 
                          starting_component=starting_component_state_branch() 
 
            ############################ Component Tee ################# 
 
                    elif starting_component == "TEE": 
 
                      next_component=main_line_transition_matrix[3,:]  
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if running_direction=="x": 
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                        coming_from_x=["y","z"] 
 
                        
running_direction_list.append([component_number,random.choice(coming_from_x)]
) 
 
                      elif running_direction=="y": 
 
                          coming_from_y=["x","z"] 
 
                          
running_direction_list.append([component_number,random.choice(coming_from_y)]
) 
 
                      else: 
 
                        coming_from_z=["x","y"] 
 
                        
running_direction_list.append([component_number,random.choice(coming_from_z)]
) 
 
                      if tee_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","TEE",",",components_diameter,",",int(np.random.uniform(57,432)),",",r
unning_direction)#,int(np.random.gamma(1.3782,145.74))) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"TEE"+","+str(components_diameter)+","+str(int(n
p.random.uniform(57,432)))+","+str(running_direction)+"\n")# 
 
                          branch.append("TEE") 
 
                          
tee_diameter.appendleft([component_number,components_diameter]) 
 
                          if len(Tee)==0: 
 
                            Tee.append(component_number) 
 
                          else: 
 
                            Tee.appendleft(component_number) 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
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                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                          # Define the next TEE state step 
 
                          tee_next_step=len(branch)+ int(np.random.gamma(0.95639, 
5.3605)) 
 
                          tee_step= tee_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Elbow ################ 
 
                    elif starting_component == "ELBOW": 
 
                      next_component=main_line_transition_matrix[4,:] 
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if elbow_step<=(len(branch)+1): 
 
 
                          if running_direction=="x": 
 
                              coming_from_x=["y","z"] 
 
                              running_direction= random.choice(coming_from_x) 
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                          elif running_direction=="y": 
 
                              coming_from_y=["x","z"] 
 
                              running_direction= random.choice(coming_from_y) 
 
                          else: 
 
                              coming_from_z=["x","y"] 
 
                              running_direction= random.choice(coming_from_z) 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","ELBOW",",",components_diameter,",",int(np.random.laplace(339.86,0.
00111)),",",running_direction)#int(np.random.gamma(1.0652,257.04))) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"ELBOW"+","+str(components_diameter)+","+str(in
t(np.random.laplace(339.86,0.00111)))+","+str(running_direction)+"\n") 
                       
                          branch.append("ELBOW") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
                       
                          starting_component=matrix_legend[y] 
 
                          elbow_next_step=len(branch)+ 
int(np.random.laplace(0.51675,3.1097)) 
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                          elbow_step= elbow_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Ftube #################           
 
                    elif starting_component == "FTUBE": 
 
                      next_component=main_line_transition_matrix[5,:]  
 
                      next_component0=np.sort(next_component) 
 
                      next_component1=next_component0.T 
 
                      x=[] 
 
                      
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FTUBE",",",components_diameter,",",int(np.random.uniform(56,99.82))
,",",running_direction) 
 
                      
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FTUBE"+","+str(components_diameter)+","+str(int
(np.random.uniform(56,99.82)))+","+str(running_direction)+"\n") 
 
                      branch.append("FTUBE") 
 
                      component_number+=1 
 
                      if initialize_sequence > np.max(next_component1): 
 
                          location= np.max(next_component1) 
 
                      else: 
 
                          for i in next_component1: 
 
                            if initialize_sequence < i: 
 
                              x.append(i) 
 
                              location=(x[0]) 
                           
                      x.clear() 
 
                      a=np.array(next_component) 
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                      y=np.where(a==location) 
                   
                      starting_component=matrix_legend[y]          
 
            ############################ Component Tube #################  
 
                    # Component tube is assumed as a free floating element, therefore no 
state distribution is required 
 
                    elif starting_component == "TUBE": 
 
                      next_component=main_line_transition_matrix[6,:] 
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if tube_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","TUBE",",",components_diameter,",",int(np.random.wald(2323.2,489.58
)),",",running_direction)#int(math.ceil(np.random.gamma(0.21074,11024))+50))# 
revise no 50  
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"TUBE"+","+str(components_diameter)+","+str(int(
np.random.wald(2323.2,489.58)))+","+str(running_direction)+"\n") 
 
                          branch.append("TUBE") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
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                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
                       
                          starting_component=matrix_legend[y] 
 
                          tube_next_step=len(branch)+ 1 
 
                          tube_step= tube_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Pcomponent ############ 
 
                    elif starting_component == "PCOMPONENT": 
 
                      next_component=main_line_transition_matrix[7,:] 
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if pcomponent_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","PCOMPONENT",",",components_diameter,",",int(np.random.wald(726.
79,1072.6)),",",running_direction)#int(math.ceil(np.random.lognormal(0.86246,6.266
))+50)) #revise 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"PCOMPONENT"+","+str(components_diameter)+
","+str(int(np.random.wald(726.79,1072.6)))+","+str(running_direction)+"\n") 
 
                          branch.append("PCOMPONENT") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
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                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                          # Define the next PCOMPONENT state step 
 
                          pcomponent_next_step=len(branch)+ 
int(np.random.exponential(0.31376)) 
 
                          pcomponent_step= pcomponent_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Coupling ############## 
 
                    elif starting_component == "COUPLING": 
 
                      next_component=main_line_transition_matrix[8,:]  
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T 
 
                      x=[] 
 
                      
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","COUPLING",",",components_diameter,",",int(np.random.beta(0.02229,
0.42713)),",",running_direction) 
 
                      
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"COUPLING"+","+str(components_diameter)+","+s
tr(int(np.random.beta(0.02229,0.42713)))+","+str(running_direction)+"\n") 
 
                      branch.append("COUPLING") 
 
                      component_number+=1 
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                      if initialize_sequence > np.max(next_component1): 
 
                          location= np.max(next_component1) 
 
                      else: 
 
                          for i in next_component1: 
 
                            if initialize_sequence < i: 
 
                              x.append(i) 
 
                              location=(x[0]) 
                           
                      x.clear() 
 
                      a=np.array(next_component) 
 
                      y=np.where(a==location) 
 
                      starting_component=matrix_legend[y] 
                   
            ############################ Component Flange ############### 
 
                    elif starting_component == "FLANGE": 
 
                      next_component=main_line_transition_matrix[9,:] 
 
                      next_component0=np.sort(next_component) 
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if flange_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","FLANGE",",",components_diameter,",",350,",",running_direction) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"FLANGE"+","+str(components_diameter)+","+str(
350)+","+str(running_direction)+"\n") 
 
                          branch.append("FLANGE") 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
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                              component_number+=1 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                          # Define the next FLANGE state step 
 
                          flange_next_step=len(branch)+ int(np.random.pareto(0.94902,1)) 
 
                          flange_step= flange_next_step 
                   
                      else: 
 
                        starting_component=starting_component_state_branch() 
 
            ############################ Component Valve ################ 
 
                    elif starting_component == "VALVE": 
 
                      next_component=main_line_transition_matrix[10,:] 
 
                      next_component0=np.sort(next_component) 
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if valve_step <=(len(branch)+1): 
 
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","VALVE",",",components_diameter,",",350,",",running_direction) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
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,"+str(previously_connected)+","+"VALVE"+","+str(components_diameter)+","+str(35
0)+","+str(running_direction)+"\n") 
 
                          branch.append("VALVE") 
 
                          component_number+=1 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                          valve_next_step=len(branch)+ int(np.random.gamma(1.437,5.584)) 
 
                          valve_step= valve_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
                     
            ############################ Component Closure ############### 
                       
                    elif starting_component == "CLOSURE": 
 
                      next_component=main_line_transition_matrix[11,:]  
 
                      next_component0=np.sort(next_component)  
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
                      if i == 1:  
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print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CLOSURE",",",components_diameter,",",350,",",running_direction) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CLOSURE"+","+str(components_diameter)+","+st
r(350)+","+str(running_direction)+"\n") 
 
                          branch.append("CLOSURE") 
 
                          component_number+=1 
 
 
                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
                               
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
                      elif len(branch) == no_of_branch_components: 
 
                     
                          
print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","CLOSURE",",",components_diameter,",",350,",",running_direction) 
 
                          
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"CLOSURE"+","+str(components_diameter)+","+st
r(350)+","+str(running_direction)+"\n") 
 
                          branch.append("CLOSURE") 
 
                          component_number+=1 
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                          if initialize_sequence > np.max(next_component1): 
 
                              location= np.max(next_component1) 
 
                          else: 
 
                              for i in next_component1: 
 
                                if initialize_sequence < i: 
 
                                  x.append(i) 
 
                                  location=(x[0]) 
                               
                          x.clear() 
 
                          a=np.array(next_component) 
 
                          y=np.where(a==location) 
 
                          starting_component=matrix_legend[y] 
 
 
                      else: 
 
                          clousre_step+=1 
 
                          starting_component=starting_component_state_branch() 
 
            ############################ Component Closure ################      
 
                    elif starting_component == "REDUCER": 
 
                      next_component=main_line_transition_matrix[12,:]  
 
                      next_component0=np.sort(next_component) 
 
                      next_component1=next_component0.T  
 
                      x=[] 
 
 
                      reducer_diameter=int(burr.rvs(c, d, loc=0, scale=124.3, size=1)) 
 
                      components_diameter= reducer_diameter 
 
                      if reducer_step <=(len(branch)+1): 
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print(line_no,",","Branch"+str(branch_count),",",component_number,",",previously_c
onnected,",","REDUCER",",",components_diameter,",",int(np.random.gamma(3.464
5,51.749)),",",running_direction) 
 
                        
file.write(str(line_no)+","+"Branch"+str(branch_count)+","+str(component_number)+"
,"+str(previously_connected)+","+"REDUCER"+","+str(components_diameter)+","+st
r(int(np.random.gamma(3.4645,51.749)))+","+str(running_direction)+"\n") 
 
                        branch.append("REDUCER") 
 
                        component_number+=1 
 
                     
                        if initialize_sequence > np.max(next_component1): 
 
                            location= np.max(next_component1) 
 
                        else: 
 
                            for i in next_component1: 
 
                              if initialize_sequence < i: 
 
                                x.append(i) 
 
                                location=(x[0]) 
                             
                        x.clear() 
 
                        a=np.array(next_component) 
 
                        y=np.where(a==location) 
 
                        starting_component=matrix_legend[y] 
 
                        reducer_next_step=len(branch)+ 
int(np.random.lognormal(0.86124,2.1598)) 
 
                        reducer_step= reducer_next_step 
 
                      else: 
 
                        starting_component=starting_component_state_branch() 
                   
         
                    else: 
 
                      initialize_sequence=np.random.uniform(0,100) 
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                else: 
 
                  break 
 
              cap_step=1 
              instrument_step=1 
              tube_step=1 
              valve_step=1 
              fblind_step=1 
              ftube_step=1 
              flange_step=1 
              clousre_step=1 
              pcomponent_step=1 
              tee_step=1 
              reducer_step=1 
              coupling_step=1 
              elbow_step=1 
 
 
              branch.clear() 
          
      except IndexError: 
 
        break 
 
print('Please inter the number of industrial pipelines!') 
userinput= [input()] 
PipelineGenerator(int(userinput[0])) 

 

 


