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Abstract11

Planning forest management relies on predicting insect outbreaks such as mountain pine12

beetle, particularly in the intermediate-term future, e.g., 5-y. Machine-learning algorithms13

are potential solutions to this challenging problem due to their many successes across a14

variety of prediction tasks. However, there are many subtle challenges in applying them:15

identifying the best learning models and the best subset of available covariates (including16

time lags) and properly evaluating the models to avoid misleading performance-measures.17

We systematically address these issues in predicting the chance of a mountain pine beetle18

outbreak in the Cypress Hills area and seek models with the best performance at predicting19

future 1-, 3-, 5- and 7-y infestations. We train nine machine-learning models, including two20

generalized boosted regression trees (GBM) that predict future 1- and 3-y infestations with21

92% and 88% AUC, and two novel mixed models that predict future 5- and 7-y infestations22

with 86% and 84% AUC, respectively. We also consider forming the train and test datasets23

by splitting the original dataset randomly rather than using the appropriate year-based24

approach and show that this may obtain models that score high on the test dataset but25

low in practice, resulting in inaccurate performance evaluations. For example, a k-nearest26

neighbor model with the actual performance of 68% AUC, scores the misleadingly high 78%27

on a test dataset obtained from a random split, but the more accurate 66% on a year-based28

split. We then investigate how the prediction accuracy varies with respect to the provided29

history length of the covariates and find that neural network and naive Bayes, predict more30

accurately as history-length increases, particularly for future 1- and 3-y predictions, and31

roughly the same holds with GBM. Our approach is applicable to other invasive species.32

The resulting predictors can be used in planning forest and pest management and planning33

sampling locations in field studies.34

Keywords: insect spread, future infestations, temporal prediction, predictive ecology, machine35

learning, mountain pine beetle36
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Introduction37

Forest insect outbreaks can cause huge damage to the environment and economy (Dale et al.,38

2001; Venier & Holmes, 2010; Walton, 2013). Forest management is, thus, crucial, and includes39

both prevention and direct control. In Canada, forest management agreement plans are made40

for five years (Government of Alberta, 2019), and they need an additional year or two for prepar-41

ation. Therefore, predicting seven years in the future is a reasonable time horizon for planning42

prevention measures. Making short-term predictions, e.g., future 1-y (for a 1-y life-cycle insect),43

via statistical models, such as generalized linear models (GLM) (Smolik et al., 2010; Oliver et al.,44

2008), is usually straightforward, given the temporal autocorrelation present in ecological systems45

(Otis & White, 1999; Boyce et al., 2010). Making long-term predictions, e.g., future 30-y, is, on46

the other hand, sometimes feasible via the asymptotic analysis of ecological dynamical systems47

as they are often attracted to an expected outcome (Schaffer & Kot, 1985; Hastings et al., 1993;48

Ferrari et al., 2014; Ramazi et al., 2016). However, to the best of our knowledge, except for a few49

works (e.g., de la Fuente et al., 2018), methods for making accurate intermediate-term predic-50

tions remain mainly untouched, which yields a challenge to ecological modelers. The time scale51

is too long for the ecological transients to be linked to environmental variability via statistical52

analyses, yet it is too short for dynamical systems to approach their attractor.53

Researchers have, hence, looked to other approaches, especially those in machine learning54

due to their many successes in a variety of areas. Examples of models include decision trees55

(Hestir et al., 2008; Broennimann & Guisan, 2008), support vector machines (SVM) (Atkinson56

et al., 2013), k-nearest neighbors (KNN), Bayesian networks (Bressan et al., 2009), and neural57

networks (NN) (Worner et al., 2014). However, there are several challenges faced upon predicting58

future infestations that are rarely addressed in the literature.59

First, and foremost, is the identification of proper model evaluation. The typical approach60

in machine learning is to randomly partition the dataset into a training subset, for parameter61

estimation, and a disjoint testing, for performance evaluation. It turns out that this, however,62
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can easily result in sub-optimal predictors, with misleadingly estimates of accuracy. However,63

this issue can be solved by choosing an alternative partition of data into training and testing64

components that better reflects the structure of the task at hand. We now consider a detailed65

example where we illustrate the issues at hand. Suppose that we would like to predict the66

presence of infestation at a particular area at year 2024. The available data, is limited to be up67

to at most the present year, say 2019. So the task is to learn a model that can use data up until68

year T , to predict infestation at year T + 5. Correspondingly, the model evaluation must reflect69

the performance on this particular task – i.e., predicting 5 years in the future. Namely, if the70

available data for learning the model is from years 2010 to 2019, then the training dataset must71

include years 2010 to say T = 2014 and the test must include only T + 5 = 2019. Thus, there72

should be a 5-y gap between the training and testing datasets. If, instead, we were to randomly73

split the dataset, and both train and test contain observations from the same year, then the74

evaluation would represent how well the model predicts current infestations rather than those in75

future, that is usually a more complex task.76

The second challenge is feature (covariate) selection. Given a fixed training set, the addition77

of more features does not necessarily result in a more accurate predictor. However, by exhaustive78

searches through possible covariate combinations, such as the exhaustive enumeration of subset79

(Sokal & Rohlf, 1995) or the step AIC (Venables & Ripley, 2002a) we increase the chance of80

overfitting parameters to the training dataset, and thus, of failing to make accurate predictions81

on the test dataset.82

The third challenge is the history-length to include for the covariates. Prediction accuracy83

may improve by using past information (history) regarding the features, e.g., precipitation several84

years before the year of interest (Preisler et al., 2012). However, is it best to add as much history85

as possible? The drawback is that dding longer history for each feature also increases exponen-86

tially the total number of feature combinations to choose from in model selection, potentially87

making model selection unwieldy.88
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We address these three issues with the case study of a mountain pine beetle (MPB) outbreak89

in the Cypress Hills area in Canada. We have recently investigated the impact of, and relations90

between, some potential covariates of the MPB infestation using Bayesian networks (Ramazi91

et al., under review). Predicting future MPB infestation, however, requires different tools and92

analysis, which is what we investigate here. In particular, our objectives are to93

1. accurately predict infestation locations at short and intermediate time scales (1, 3, 5, and94

7 years in the future) using the machine-learning models generalized boosted classification95

tree (GBM), GLM, SVM, Bayesian networks including Naive Bayes (NB) and those ob-96

tained by structure learning, KNN, NN, and a mixed model in the form of a GLM of the97

aforementioned models,98

2. systematically choose from the available covariates,99

3. examine whether providing more history regarding covariates actually improves future pre-100

dictions,101

4. examine whether the “actual performance” of a model is better estimated by a test dataset102

obtained from an appropriate year-based split of the original dataset rather than a test103

dataset obtained from a random split of the original dataset.104

We distinguish our work from studies predicting the geographical extent of species invasions105

(Broennimann & Guisan, 2008) in large scales, as we focus on a small area, with finer ranges of106

covariates as in (Aukema et al., 2008; Preisler et al., 2012; Sambaraju et al., 2012).107

Mountain pine beetle biology108

The mountain pine beetle is an eruptive bark beetle that infests pine forests in western North109

America. Beetles usually attack susceptible pines within a few hundred meters of their emergence110

site (Carroll & Safranyik, 2004). However, in rare occasions, they have been reported to engage111

in a long-distance dispersal behaviour by getting caught in the wind above the tree canopy112

and dispersing passively hundreds or thousands of kilometers (Safranyik & Carroll, 2006; Chen113
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& Jackson, 2017). Trees use a defense mechanism consisting of toxic resin exuding from the114

galleries dug by the beetles (Raffa & Berryman, 1983; Erbilgin et al., 2017). Therefore, a water-115

deficit during the tree growing season decrease its defenses abilities against mountain pine beetle116

(Lusebrink et al., 2016). Summer and winter temperatures affect larvae development and survival117

in the tree as well as adult emergence and dispersal (Safranyik & Carroll, 2006). The orientation118

of the slope – i.e., the aspect – would have a similar effect by creating different micro-climates,119

thereby affecting beetle development and survival. Lastly, by controlling infestations, managers120

modify dispersal and survival rates. Thus, the proximity of managed infestations will likely121

modify the probability of infestation at a certain location.122

Materials and Methods123

Raw data124

We use mountain pine beetle infestation data from the Cypress Hills interprovincial park collected125

by the Saskatchewan Forest Service between 2006 and 2018 in association with topography,126

weather, and vegetation variables (Table 1). The variables and data collection and processing127

are described in details in (Kunegel-Lion et al., 2020a) and the dataset is available from Dryad128

at https://doi.org/10.5061/dryad.70rxwdbt9 (Kunegel-Lion et al., 2020b).129

Analysis overview130

We approach the problem by taking the following steps (Fig. 1). First, we define the target131

variable and choose the covariates based on the biology of the problem. Next, we perform a132

year-based partitioning of the dataset to obtain the training and validation datasets. Then we133

rank the covariates using the mRMR method on the training dataset. We construct feature sets134

based on the ranked covariates and their historical values and refine the datasets accordingly.135

Next, we train several learners, including the generalized linear model, on the training dataset and136

perform year-based cross-validation to find the feature set that performs best during the cross-137
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Table 1 – Description of the covariates.

Symbol Description Unit

Ng
Northerness defined as the cos of the angle of the average compass
direction that the slopes at pixel g face

Eg
Easterness defined as the sin of the angle of the average compass
direction that the slopes at pixel g face

Bg
Distance from the centre of pixel g to the border of the whole area of
interest that was initially infested (the dotted red line in Fig. 1 in SI)

km

Dg,t
Degree days (sum of daily temperatures above 5.5◦C) from fall of year
t− 1 to summer of year t

Tmin
g,t Lowest minimum daily temperature in winter of year t ◦C

Tmax
g,t Highest maximum daily temperature in July and August of year t ◦C
Wg,t Average daily wind speed in July and August of year t km/h

Rg,t Average daily relative humidity in spring of year t %

Cg,t

Cold tolerance defined as an index in [0, 1] representing the ability of
the larvae to survive the cold season of year t, as defined in (Régnière
& Bentz, 2007)

IManaged
g,t

Managed last year infestation defined to be 1 if pixel g includes at least
one tree that was infested and managed (controlled) at year t− 1, and
0 otherwise (Fig. 2 in SI)

IMissed
g,t

Missed last year infestation defined to be 1 if pixel g includes at least
one tree that was infested and missed (unmanaged and not controlled)
at year t− 1, and 0 otherwise

IMissed
Ng ,t

Missed neighbors’ last year infestation represents the mountain pine
beetles’ ability to disperse at short distances within a stand, defined as
IMissed
Ng ,t

=
∑3

i=1
1
2i

∑
g′∈N i

g
IMissed
g′,t IMissed

Ng ,t
∈ [0, 6] where N i

g are those
pixels that are essentially at a distance of i× 100m from g (Fig. 3 in
SI); for those pixels on or close to the boundary of the park, N i

g

includes only neighbors within the park

IManaged
Ng ,t

Managed neighbors’ last year infestation defined similarly to IMissed
Ng ,t

,

with the difference that IMissed
g′,t is replaced by IManaged

g′,t

Ot
Phase of the mountain pine beetle outbreak at year t− 1, defined to be
1 (increase), 2 (peak), or 3 (decline)

validation. Finally, we re-train the learners with their best feature sets on the whole training138

dataset and compare their performances on the test dataset to obtain the best learner. In what139

follows, we explain these steps in detail.140

Target variable, covariates, and features141

We divide the Cypress Hills park area (Fig. 1 in SI) into a total of N = 238, 121 squares, each142

of size 100m × 100m, referred to as pixels, and label them by integers 1, 2, . . .. Let Ig,t ∈ {0, 1}143
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Data partitioning
year-based folds

Training/test sets

Covariates ranking
mRMR on training set

Covariates ranking

Training and validation
year-based cross-validation

Best feature set

Test
learning on full training set,

evaluation on test set

Learners’ AUC scores

AUC comparison
of the learners

“Best” learner

Covariates pre-selection
based on biology

Covariates

Features construction
adding temporal lag to 

covariates

Feature set

Dataset construction

Refined training/test sets

Learners pre-selection
GLM, GBM, ...

Learners

Figure 1 – Flowchart representing the method steps. Each square represents a step. Text
in italic is the output of the step and used in the following steps.

denote the presence of infestation at a pixel g at fall of year t, which is defined to be 1 if there is144

an infested tree and 0 otherwise. Given a pixel g and year t, the target variable is the presence145

of infestation at pixel g, r years in the future, i.e., Ig,t+r, for r = 1, 3, 5 and 7. We consider the146

7



following covariate set, consisting of 14 covariates defined in Table 1:147

Xg,t =
{
Ng, Eg, Bg, Dg,t, T

min
g,t , T

max
g,t , Wg,t, Rg,t, Cg,t, Ot,148

IMissed
Ng ,t , IManaged

Ng ,t
, IMissed

g,t , IManaged
g,t

}
. (1)149

150

All covariates except for minimum temperature and outbreak phase are taken from (Ramazi151

et al., under review). Each covariate is associated with a pixel g and/or a time t. All covariates152

in Xg,t are measured during fall of year t − 1 to summer of year t, except for IMissed
g,t , which is153

determined only after the survey in fall of year t. We, therefore, refer to the covariates in Xg,t154

as those measured at year t.155

We are interested in predicting infestations r years into the future based on h years of data.156

Thus, the prediction for Ig,t+r, uses the covariates measured at years t, t − 1, . . . , t − h + 1,157

i.e., Xg,t, Xg,t−1, . . . ,Xg,t−h+1, for h ∈ {1, . . . , 5}. That is, using data of a specific pixel, say158

pixel 17, from 2010 to 2012, predict whether that pixel will be infested at 2015 – i.e., given159

X17,2010,X17,2011,X17,2012, predict I17,2015 (so g = 17, t = 2012, r = 3, and h = 3). We define160

the set of features as Fhg,t := Xg,t ∪ Xg,t−1 ∪ . . . ∪ Xg,t−h+1. Note that we are distinguishing161

‘covariates’ from ‘features’: covariates are only those in Xg,t, but both the covariates and their162

historical values are referred to as features. ‘The best’ predictive model may only use a subset of163

these features, as discussed in the following sections. The variable h determines the total number164

of years used for prediction, which we refer to as the history-length and have limited it to be no165

more than 5 years. Clearly, historical values of the non-temporal covariates – i.e., Ng, Eg and166

Bg (Table 1)– are the same as their current values.167

Partitioning the data into train and test168

Having the goal of estimating infestations in future years, we set the testing dataset Dtest to be169

the data with the target variable from the last two available years – i.e., (t+ r) ∈ {2017, 2018}170
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– and let the training dataset Dtrain to be the data with the target variable from the remaining171

years – i.e., (t+ r) ∈ {2005 + h+ r, . . . , 2015, 2016}; n.b., they are yearly disjoint. The datasets172

are clearly different for each history-length h (Fig. 2). Correspondingly, given each history-length173

h and future-prediction-length r, we will have the train and test datasets Dr,htrain and Dr,htest. In174

both the training and testing datasets, the covariates for each instance at year t are measured175

up to h − 1 years before, i.e., t − h + 1, t − h + 2, . . . , t, and the target variable is measured at176

year t + r. Hence, the training dataset is formed by the union of ‘blocks of instances’ at years177

t = 2006 + h− 1, . . . , 2016− r, and the testing dataset is formed by those at years t = 2017− r178

and 2018− r.179

  

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

  

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

  

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

  

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 2 – Dataset partition for r = 5 years in the future. The boxes indicate which years
the covariates are measured (t − h + 1, . . . , t), and the arrows point to the year at which we
predict infestation (t + r). So the length of each box represents h and the length from the box
to the arrow represents r. Green solid lines represent the training dataset whereas blue dashed
lines represent the testing dataset. From top to bottom: 1-y, 2-y, 4-y, and 5-y history-length.
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Feature selection180

To find that set of features resulting in the highest prediction accuracy over the underlying181

distribution, one may exhaustively search through all possible combinations of the features in182

the training dataset. Namely, to predict Ig,t+r, we can choose from the 14 × h features in Fht :183

14 covariates in Xg,t, each with a history-length of h years. For h = 5, this results in a total of184

214×5 = 1e21 combinations of features, which is not only infeasible to search through, but also185

quite likely to result in overfitting the training dataset.186

We limit our search over the features as follows. First, given the target variable Ig,t+r, we rank187

the covariates in Xg,t based on all pixels g and all years t in Dr,htrain, using the minimum redundancy188

maximum relevance (mRMR) method (Ding & Peng, 2005), which prioritizes covariates that have189

a strong correlation to the target variable (maximum relevance), but are mutually far from each190

other (minimum redundancy). We use the package mRMRe in R (De Jay et al., 2012). This results191

in an ordering X1
t � X2

t � . . . � X14
t of the covariates, where Xi

t ’s are the elements of Xg,t in192

(1) (the notation g is omitted from Xi
t for simplicity), and A � B implies that A is ranked over193

B in the mRMR ranking (see Eq. 1 in SI for an example). The ranking can be different for each194

future-number-of-years r.195

Second, we consider the following 14 covariate sets:196

{X1
t }︸ ︷︷ ︸

X 1
g,t

, {X1
t , X

2
t }︸ ︷︷ ︸

X 2
g,t

, {X1
t , X

2
t , X

3
t }︸ ︷︷ ︸

X 3
g,t

, . . . , {X1
t , X

2
t , . . . , X

14
t }︸ ︷︷ ︸

X 14
g,t=Xg,t

.197

Third, for each of the above 14 combinations, we provide up to 5 years of history-length.198

Therefore, given a number-of-covariates c ∈ {1, . . . , 14} and history-length h ∈ {1, . . . , 5}, we199

obtain a feature set Fr,h,cg,t := X cg,t ∪ . . .∪X cg,t−h+1, containing a total of c× h features (Table 2).200

Overall, for each feature r years, we will be training our predictive models on a total of 14×5 = 70201

combinations of features. Note this is significantly smaller than the complete set of 214×5 possible202

subsets.203

10



Table 2 – The covariate set Fr,h,cg,t for history-length h and number-of-features c.

f 1-y history 2-y history . . . 5-y history
1 {X1

t } {X1
t , X

1
t−1} . . . {X1

t , . . . , X
1
t−4}

2 {X1
t , X

2
t } {X1

t , X
2
t , X

1
t−1, X

2
t−1} . . . {X1

t , X
2
t , . . . , X

1
t−4, X

2
t−4}

...
...

...
. . .

...
14 {X1

t , . . . , X
14
t } {X1

t , . . . , X
14
t , . . . , X

1
t−1, . . . , X

14
t−1} . . . {X1

t , . . . , X
14
t , . . . , X

1
t−4, . . . , X

14
t−4}

Fourth, we construct a dataset specific to each of the feature sets as follows. The dataset204

corresponding to feature-set Fr,h,cg,t , denoted by Dr,h,c, consists of c × h columns – one for each205

feature – plus one column for the target variable Ig,t+r, over all pixels g = 1, . . . , N , and all years206

t = 2006 + h − 1, 2006 + h, 2006 + h + 1, . . . , 2018 − r, resulting in a total of N × (14 − r − h)207

rows (Fig. 2). The train and test datasets Dr,h,ctrain and Dr,h,ctest are obtained correspondingly from208

Dr,htrain and Dr,htest.209

Learning algorithms210

We use the following learners to obtain the predictive models (Table 3): SVM, GLM, GBM,211

NB, Chow-Liu (CL) algorithm for finding a Bayesian network, incremental association Markov212

blanket (IAMB) algorithm for finding a Bayesian network, KNN, NN, and a mixed model (MM)213

in the form of a logistic regression of the infestation probabilities provided by each of the 8214

previous models.215

Train and evaluation216

For the training phase, we use cross-validation on the train dataset. The data corresponding217

to each year is considered as a fold, and each time the predictive model is trained on all but218

one fold, and then evaluated on that held-out fold (Fig. 3). We evaluate each learner L based219

on the average area under receiver operating characteristic curve (AUC) (Metz, 1978; Bradley,220

1997) of the models that L learned over the folds. Then for each future-prediction-length r and221

learner L, we find the number-of-covariates c and history-length h that produced the highest222

cross-validated AUC on the training dataset – call them c∗ and h∗. Next, based on the learner223
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Table 3 – Description of the algorithms.

Name Description R Package information

Support vector
machine (SVM)

Constructs a hyper-plane in the covariate space to classify the
target variable (Cortes & Vapnik, 1995). A linear SVM classifies
the presence of MPB as P (Ig,t+r) = 1 if θ ·X + θ0 ≥ 0 and
P (Ig,t+r) = 0 if θ ·X + θ0 < 0, where X = [Xi], Xi ∈ Ff,ht , is the
covariate vector for the specific number of features f and history
length h, and θ ∈ Rf×h and θ0 ∈ R are parameters. A probability
outcome in [0, 1] can be obtained rather than the binary 0 or 1,
based on the distance of θ ·X to zero.

parallelSVM function,
with the probability
option, from the
package parallelSVM
(Rosiers, 2015)

Generalized
linear model

(GLM)

Generalizes the linear model for response variables with a
non-normal error distribution. Sine the response variable is
binary, we use a binomial error distribution, which makes the
GLM a logistic regression. The probability of MPB presence
P (Ig,t+r) is then modeled by exp (θ·X+θ0)

1+exp (θ·X+θ0)
.

glm function of the
package stats (R Core
Team, 2018)

Generalized
boosted

(classification)
model (GBM)

Reduces a loss function between the observed and predicted
target values using Friedman’s Gradient Boosting Machine
(Ridgeway, 2015) on a certain number of classification trees.

gbm function of the
package gbm (Ridgeway,
2015) using 10,000 trees

Naive Bayes
network (NB)

Formed by one target node (Ig,t+r), linked to all covariates
(Koller & Friedman, 2009) (Fig. 3-b in SI). We use discrete
variables for this and the following two Bayesian networks. We
discretize the values of each non-binary covariate into five equal
levels.

package bnlearn
(Scutari, 2010)

Chow-Liu (CL)

A Bayesian network in the form of an undirected spanning tree of
the variables that minimizes the Kullback-Leibler (KL) distance
(over all tree structures) from the actual distribution (Chow &
Liu, 1968) (Fig. 3-a in SI). Note that target node Ig,t can be
anywhere in this tree structure.

package bnlearn
(Scutari, 2010)

Incremental
association

Markov blanket
(IAMB)

A Bayesian network obtained by detecting Markov blankets with
an attempt to avoid false positives, i.e., fault infestation
predictions (Tsamardinos et al., 2003).

package bnlearn
(Scutari, 2010)

k-nearest
neighbors (KNN)

A non-parametric method that classifies the target variable of an
instance in the test/validation dataset based on the classes
(values) of the target variables of k other (training set) instances
that share the most similar features – referred to as the neighbors
(Altman, 1992). Similarity is often measured by the simple
l2-norm ‖ · ‖2. A probabilistic classification can be achieved based
on the portion of neighbors who agree on the same class.

knn function with
k = 15 from the
package class
(Venables & Ripley,
2002b)

(Artificial) neural
network (NN)

A network of the so-called neurons that change and then output
the inputs the receive based on their activation function (Haykin,
1994). We train a neural network with one hidden layer with the
number of nodes equal to half of the total number of used
covariates, and the sigmoid activation function.

nn.train function of
the package deepnet
(Rong, 2014)

Mixed model
(MM)

We construct a mixed model of all the previous ones in the form
of a GLM of their outputs: P (Ig,t+r) =

exp (
∑8

i=1 θ
iP i(Ig,t+r)+θ0)

1+exp (
∑8

i=1 θ
iP i(Ig,t+r)+θ0)

,

where P 1, . . . , P 8 are the probabilities produced by models
1, . . . , 8 above, and θi8i=0s are the parameters to be learned.

L, we learn a model on the whole training dataset Dc
∗,h∗,r
train and test it on the test dataset Dc

∗,h∗,r
test224

to obtain the AUC score sL.225
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 3 – Dataset partition for cross-validation. The boxes indicate which years the
covariates are measured, and the arrows point to the year at which we predict infestation. Green
solid lines represent the training set, whereas blue dashed lines represent the test set. Red
hatched boxes represent which year in the training set was held out for cross-validation. The
top, middle and bottom represent the three different folds used in the cross-validation process.

Estimating the ‘actual performance’226

The test dataset is to represent that unavailable dataset that our final model will be applied to in227

practice. Hence, the performance of the learner over the test dataset – i.e., sL – may roughly be228

thought of its actual performance. To estimate this performance, we compare the following three229

AUC scores of the learner on the training dataset Dc∗,h∗,r: (i) srandomL : obtained by randomly230

partitioning the train dataset into another train (70%) and test (30%), training the learner L on231

the train and testing it on the test; (ii) saverage−foldL : the cross-validated AUC explained above;232

(iii) slast−foldL : the AUC on the fold corresponding to the final year in the training dataset.233

Results234

The mRMR method orders the covariates as in Table 4 (the phase covariate Ot is excluded for235

r = 7 as it is set to 3 in all data instances).236

On the train dataset, and for r = 1 and 3, most learners achieve their highest cross-validated237
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Table 4 – mRMR ranking results with respect to the target variable Ig,t+r. The
numbers and cell shades represent the ordering of the covariates according to the
mRMR method: 1 (black) is the covariate with the highest rank and 14 (lighter
gray) is the covariate with the lowest rank.

Length of future prediction
Covariates 1 year 3 year 5 year 7 year
Northerness Ng 4 3 4 6
Easterness Eg 7 5 6 7
Distance to the border Bg 13 13 1 1
Degree days Dg,t 2 4 12 5
Lowest minimum temperature Tmin

g,t 12 12 11 10
Highest maximum temperature Tmax

g,t 14 14 14 12
Wind speed Wg,t 3 2 13 11
Relative humidity Rg,t 8 7 7 13
Cold tolerance Cg,t 6 8 9 9
Managed last year infestation IManaged

g,t 9 9 3 4
Missed last year infestation IMissed

g,t 5 6 5 3
Missed neighbors’ last year infestation IMissed

Ng ,t
11 11 8 8

Managed neighbors’ last year infestation IManaged
Ng ,t

1 1 10 2
Phase of the mountain pine beetle outbreak Ot 10 10 2 -

AUC when they use most of the covariates, e.g., c∗ = 12 (Table 5 – see also Fig. 5 to 8 in SI238

for the cross-validated AUC of each learned model over all number-of-covariates c and history-239

lengths h). This optimal number of features decreases as the prediction-length r increases. For240

r = 1, 3, 5, the cross-validated AUC of NN increase with history length, and nearly the same241

holds with GBM and NB for r = 1, 3. However, the trend is often the opposite with GLM242

and roughly KNN. For r = 7, the AUC of almost all models, except for NB, decreases with243

history-length.244

On the test dataset, a GBM with 12 covariates and 5 years of history outperforms others in245

predicting future 1- and 3-y infestations with AUC scores of 0.92 and 0.88 (Table 5). An MM246

with 5 covariates and 2 years of history and another with 4 covariates and 1 year of history,247

best predict future 5-y (0.86 AUC) and 7-y (0.84 AUC) infestations. Overall, and all prediction248

lengths (r) considered, GBM is ranked first on the test dataset (Table 1 in SI), and MM and NB249

are the next best predictors.250
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Table 5 – Performance of the learners.

length of
future
prediction
(r)

Learners with
saverage−foldL ≥ 0.8

Learner with the
highest AUC on
the test dataset

(sL)

c∗ h∗
AUC on the
test dataset

(sL)

1 year GBM, NN, MM GBM 12 5 0.92
3 years GBM, NB, NN, MM GBM 14 5 0.88
5 years GBM, KNN, MM MM 5 2 0.86
7 years KNN, MM MM 4 1 0.84

The AUC score of each learner on the test dataset together with its three estimations251

are shown in Fig. 4. For almost any future prediction-length r, the score sL of the top-252

two learners on the test dataset is best estimated by slast−foldL . Moreover, the absolute AUC253

estimation error of each estimator and over all learners – i.e.,
∑
L |ŝL − sL|, where ŝL ∈254

{srandomL , slast−foldL , saverage−foldL } – is always lowest for the last-fold, except for r = 3, where255

the random-fold has the lowest error (Fig. 5).256

Using the data prior to and including 2013, most learners predict the south-west border257

and some areas in the center of the two portions of the park as infested at year 2018 (Fig. 6).258

The actual infestation map at year 2018 confirms these infestations (Fig. 7-a). For management259

purposes, the probabilistic infestation maps can be turned into binary infestation maps using260

a cut-off threshold. The highest-scoring learner at predicting future 5-y infestations, i.e., MM,261

predicts more pixels than observed as infested when Youden’s optimal cut-off threshold is used262

(Youden, 1950) (Fig. 7-b). This threshold maximizes the summation of sensitivity and specificity263

(Metz, 1978). If we put more weight on specificity, say 10 times more than sensitivity, then the264

number of pixels that are predicted infected will be closer to that of the observed (Fig. 7-c).265

Discussion266

The spectacular results of machine learning in many areas (Olden et al., 2008; Makridakis et al.,267

2018) makes it a tempting choice for predicting future infestations. Achieving accurate results,268

however, require thoughtful use and implementation of the even standard models (Olden et al.,269
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(c) Future 5-y predictions
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(d) Future 7-y predictions

Figure 4 – The actual AUC score on predicting infestations at years 2017 and 2018,
and its estimations based on different train-test partitioning. White, light gray, dark
gray and black are the AUC scores on the test dataset (“actual,” sL), cross-validated AUC on the
train dataset (“average fold,” saverage−foldL ), AUC on the last year of the train dataset (“last fold,”
slast−foldL ), and AUC on the test dataset obtained from a random partitioning of the training
dataset into another train and test (“random split,” srandomL ). The learners are those listed in
Table 3 and are ordered from right to left on the x-axis based on their scores on the test dataset
– i.e., sL (the white bars). (a)–(d) are future 1, 3, 5, and 7-y predictions. The estimated AUC
based on the last-fold partitioning best matches the actual AUC for the top-two learners (except
for GBM at future 3-y predictions).

2008) as this often requires identifying the most effective base learner, as well as the features to use270

(here, which covariates, over what specific history length). Also, one needs to properly evaluate271
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Figure 5 – Absolute estimation error of the AUC score on years 2017 and 2018,
accumulated over the learners. Light gray, dark gray and black are

∑
L |s

average−fold
L − sL|,∑

L |s
last−fold
L − sL|, and

∑
L |srandomL − sL|. (a)–(d) are for future 1, 3, 5, and 7-y predictions.

Overall, last-fold partitioning best estimates the actual AUC score over all learners.

the models to avoid misleading performance evaluations (Mouton et al., 2010), as unfortunately272

often practiced. We have addressed these problems for a controlled mountain pine beetle outbreak273

in the Cypress Hills area, and trained two GBMs predicting future 1- and 3-y infestations with274

92% and 88% AUC, and two novel mixed models predicting future 5- and 7-y infestations with275

86% and 84% AUC, respectively.276

The trained models seem to greatly outperform the existing models in the literature. For277

example, the GBM scores 88% AUC on predicting future 3-y infestations, whereas the logistic278

regression model in (Aukema et al., 2008) scores 30.5% on accuracy with zero false negatives.279

One common approach to predicting future infestations, say 50-y, using temporal environ-280

mental covariates such as climate variables is to first predict future calues of those covariates,281

then use those values to predict future infestations (Broennimann & Guisan, 2008). Two separate282

models are used for these two phases. For example, to predict infestations at year 2050 based283

on temperature and humidity at year 2000, first, a model A is used to predict temperature and284

humidity at year 2050 and then a model B is used to predict infestations at 2050 based on the285

predicted temperature and humidity at 2050. However, more accurate results may be achieved286

by predicting future infestations directly based on the current values of the temporal covariates287

by a single model C. The reason is that infestations at year 2050 may not depend on the exact288

values of temperature and humidity at 2050, but a specific function of them and perhaps other289
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(a) SVM (b) GLM

(c) GBM (d) NB

(e) CL (f) IAMB

(g) KNN (h) NN

extremely low

low

high

(i) MM

Figure 6 – Comparison of infestation maps of year 2018 predicted by each of the
learners using data prior to year 2013 (future 5-y prediction). Each learner assigns
an infestation probability to every pixel which is represented on a log scale from extremely low
(blue) to high (red).

variables, which may be better estimated directly from temperature and humidity at year 2000.290

This particularly holds if model C is complex enough to implicitly perform what models A and291
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not infested

infested

(a) Observed infestations

not infested

infested

(b) Predicted infestations with cut-off threshold = 0.011

not infested

infested

(c) Predicted infestations with cut-off threshold = 0.130

Figure 7 – (a) Observed infestations, (b) predicted infestations using a cut-off
threshold of 0.011, and (c) predicted infestations using a cut-off threshold of 0.130,
for the year 2018 (future 5-y infestations). The infestation probabilities are calculated
using the learner with the highest AUC (i.e., MM) on predicting future 5-y infestations on the
test dataset (Fig. 6-i). Then the binary predictions in (b) are generated using the optimal cut-
off threshold derived from Youden’s index, which maximizes the summation of sensitivity and
specificity. The binary predictions in (c) are generated similarly to (b) but when specificity is
weighted 10 times more than sensitivity. As the cut-off threshold increases, fewer pixels are
predicted as infested.

B can do consecutively.292
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mRMR ranking293

Although unfamiliar to many ecologists (but see Hejazi & Cai, 2009; Li et al., 2018), the mRMR294

ranking method has potential to reduce model complexity by identifying the most relevant set of295

features in a dataset. Managed neighbors’ last year infestation IManaged
Ng ,t

is ranked first by mRMR296

for predicting future 1- and 3-y infestations. This means that managed last-year infestations297

at the neighboring pixels has the greatest correlation with the presence of short-term future298

infestation. This is in line with studies reporting strong spatial and temporal dependencies299

in small scales (Aukema et al., 2008; Preisler et al., 2012). Even though the infestations at300

the neighboring pixels are managed, they are still the most informative covariate for future301

infestations, perhaps because they are the best indicator of suitable MPB habitats. However, for302

intermediate-term predictions – i.e., 5 and 7 years – distance to infested border Bg is a more-303

informative covariate, because future 5-y infestation patterns will not be similar to how they304

were last year and mainly influenced by the source of the infestation.305

For future 1-y infestations, the second ranked covariate, degree days Dg,t, has the greatest306

correlation with the target Ig,t+1 after removing its correlation with IManaged
Ng ,t

. However, it cannot307

be inferred that models trained with these two covariates outperform those trained with any other308

two covariates, because not every model suffers from correlated covariates, but may even benefit;309

namely, correlation does not imply dependence but could be simply some residual information.310

Similarly, wind speed Wg,t is the second most-informative covariate in predicting future 3-y311

infestations but is covered by other covariates or insufficiently correlated with the target variable312

for future 5- and 7-y infestations. Note that the mRMR ranking differs from rankings based on313

the maximum likelihood estimate of the covariates or standard errors of the covariates as they314

do not incorporate the minimum redundancy Sambaraju et al. (2012). This may explain the315

inconsistency with Aukema et al. (2008) that does not find degree days a significant predictor.316

Ranked poorly in all prediction-lengths, temperature covariates Tmin
g,t and Tmax

g,t almost do317

not increase our knowledge about future infestations, beyond what the other covariates provide.318
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However, this does not imply that they are least correlated with the target variable Ig,t+r but319

that their information is better covered by the covariates that appear early in the ranking.320

Interestingly, the simplest covariate, outbreak phase Ot, is the most informative in predicting321

future 5-y infestations, after Bg. That is, the current phase of the outbreak has the highest322

correlation with the presence of infestation over all pixels, after removing its correlation with Bg.323

However, almost none of the models immediately benefit from this covariate after it is added to324

Bg during the training phase. In a similar fashion, (Kunegel-Lion & Lewis, 2020) found that the325

predicting future 1-y infestations does depend on the outbreak phase.326

Number of optimal covariates327

The number of features resulting in the highest cross-validated AUC on the training dataset328

generally decreases as the prediction-length increases. For r = 1 and 3, the best predictors use329

almost all of the available covariates and history-length, confirming the success of the all-inclusive330

model in (Aukema et al., 2008). However, for r = 7, the top predictors use only one year of331

history length, and the best predictor, MM, uses four covariates. Interestingly, this means that if332

we know the distance of a given pixel to the infested border and last year infestation status of the333

pixel and its neighbors, then we can predict whether the pixel will be infested in the future seven334

years, with 0.84 AUC. None of the climate covariates, nor the geographic covariates northerness335

and easterness are required. Studies on other species (de la Fuente et al., 2018) also found that336

information on previous infestations without using environmental covariates is sufficient to make337

accurate predictions. Our results, however, do not contrast studies claiming a strong relationship338

between climate covariates and concurrent or near-future infestations (Preisler et al., 2012).339

We also observe that some learners, such as GBM, generally tend to use more covariates.340

One may, therefore, try to provide as many covariates and history-length as possible when using341

such learners, especially for short-term future predictions as in (Aukema et al., 2008).342
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History-length selection343

Unlike studies that decide a priori on the amount of lag for the covariates (Aukema et al., 2008),344

we investigate the lag time that results in the highest performance of the learners using the data.345

The prediction accuracy of NN, GBM, and NB increases as we increase the history-length of their346

covariates for future 1-, 3-, and roughly 5-y infestations. We refer to models with this property347

as history-friendly since increasing the history length does not lead them to overfit, and hence,348

one may freely do so with the hope of achieving a more accurate model. Interestingly, these three349

models are highly nonlinear, and the linear model SVM, and even generalized linear model GLM,350

do not exhibit this characteristic for this specific task. Hence, some degree of non-linearity is351

required for being history-friendly, at least on our dataset. Likewise, MM is not history friendly,352

perhaps partly because it is a GLM-combination of the other models. On the other hand, the353

failure of KNN in exploiting history implies that providing history leads to instances that are354

similar to the instance in question but have a different infestation value, where similarity is with355

respect to geometric distance in the feature space.356

Model comparison357

Overall, the simple boosted decision tree outperforms all other learners, including the complex358

NN, in short-term predictions, and performs fairly well for long-term predictions.359

The second-best learner is the most complicated, MM, which outperforms others in predict-360

ing intermediate-term infestations. We do expect MM to excel at the training phase, but not361

necessarily at the test, due to the possibility of overfitting the training dataset. This is particu-362

larly true for predicting future 3-y infestations, as MM is the best predictor at train but ranked363

6th during the test.364

The third-best predictor is NB, which has a unique advantage over all other models that it365

can still predict infestation when the values of one or more of the covariates are missing. Thus,366

if missing values is a concern, perhaps the best model is NB.367
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KNN performs well only in predicting future 5- and 7-years. Hence, by directly comparing368

the instance in question with those that had similar features in the past years, we can accurately369

predict intermediate-term infestations. The same does not hold for 1-y predictions, implying the370

existence of pixels with similar features, yet different infestation statuses.371

The one-layer neural network is the second-best predictor in predicting future 1- and 3-y372

infestations. Therefore, both the simple GBM and complicated NN are capable of accurately373

predicting short-term future infestations. However, due to its simplicity, one may subjectively374

find GBM more reliable than the neural network, and hence, pick it as the best predictor. The375

incapability of NN in predicting the intermediate-term future may imply the need for a more376

sophisticated NN structure.377

The poor performance of SVM and GLM is an indicator of the dataset not being linearly378

separable, and also a sign of caution for applying the commonly used GLM for prediction pur-379

poses.380

Given the success of NB, the failure of the searching-algorithm IAMB implies that ‘the right’381

Markov blankets are not easy to find. Similarly, the failure of CL implies that tree structures382

with the minimum KL difference are not promising predictors for our dataset.383

Model evaluation384

How do we decide which learner to use for predicting a real-world process in the future? We385

never know the actual performance of a trained model in predicting the future, unless we wait386

for the future to arrive! We can only estimate the actual performance. This is typically done by387

randomly partitioning the available dataset into training and test datasets, training the model388

on the training dataset, and taking its score on the test dataset as an estimation of its actual389

performance (Broennimann & Guisan, 2008). One essential contribution of this paper is to390

show that this random split may lead to models that perform well in simulations, but poorly in391

practice, or vice-versa. For example, compared to its actual performance on the held-out test392
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dataset, KNN performs 10% higher at AUC under the evaluation provided by a random split.393

The same holds for any other partitioning, where the train and test include instances at the same394

year (de la Fuente et al., 2018).395

A random split is plausible, provided that the instances are independent and identically396

distributed (iid). However, the data in a temporal process is not iid, as data at time t + 1397

depends on data at time t; namely, future instances depend on current ones. This conclusion398

agrees with (Bahn & McGill, 2013), which found that the predictive accuracy decreases with399

increases in the independence between training and test sets. For the same reason, performing400

cross-validation may not well represent the actual performance either.401

To obtain a proper estimation, we need to mimic how the model will be used in practice.402

Namely, in a real-world scenario, the data from the future is not available, and hence, the model403

can never be trained on it. So instances from later years must not be included in the training404

dataset and should form the validation. We call this a year-based or, in general, a temporal405

split of the dataset. Although this type of partitioning has been appropriately implemented406

in some studies (Aukema et al., 2008; Meentemeyer et al., 2011), it has not been addressed in407

detail in the literature as most data in machine learning are iid, and hence, do not encounter408

these challenges. In our MPB case study, the evaluations obtained from a year-based split best409

estimate the performance of the top models. Nevertheless, the random split does not always410

result in a worse estimation.411

Future work412

Further studies are required to find conditions under which learners predict more accurately on a413

randomly-obtained test dataset than a year-based one. It is also of great interest to examine the414

newly introduced mixed model for prediction lengths longer than seven years. One may try to415

further explore this model by constructing a neural-network mixture of the other models instead416

of the GLM mixture.417
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