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Abstract

Goal-directed interaction of articulated bodies (such as humans, high animal species, and
robots) with the cnvironment has long been a problem area for control engincers, mechanical
engineers, biomechanical scientists, and behavioral psychologists. Nowadays it is a major problem
arca in the ficlds of robotics and graphical animation, where rescarchers seck to aimic purposeful
movements and motion. |

However, none of these fields yet offers any satisfactory solution to the problem of understand-
ing, synthesizing, and leaming coordinated movements. There are partial solutions in psychological
studies, graphical animation systems, and robotics simulations. It seems that lack of a well-defined
methodological framework for analysis of movements has been a major impediment to both experi-
mental simulations and theoretical studies.

This thesis proposes a model for understanding, synthesizing, and learning coordinated move-
ments within a cohesive framework which combines the mathematical rigor of approaches taken in
robotics, biomechanics, and artificial intelligence literature with the behavioral relevance of psycho-
logical approaches. The model is demonstrated in a locomotion control system for a four-legged arti-
culated robot.

One of the primary objectives of this research is to examine the effectiveness of merging the
concepts of computer numerical control (mathematical rigor of approaches taken in robotics, and
biomechanics) with the concepts of motor leaming (knowledge-based pmcessing as studied in
artificial intelligence and behavioral psychology). The expected result is that both methodologies can
act together to provide an autonomous motion control system that is capable of synthesizing and
leaming coordinated locomotive movements and improving its performance as a result of practice and

experience.
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The proposed locomotion control system curr Wly navigates a four-legged anticulated robot
through a simulated environment containing obstacles, holes, inclines, rough terrain, ctc. The cqua-
tions of motion of the robot are solved by a recursive method, implemented on an IRIS-2400 graphics
workstation. The robot must show some prudence in choosing the most appropriate locomotive skill
at any point during its navigation: to slow down while turning a comer, to prefer the paths it has trav-

eled or: before, to reduce its total encrgy consumption in executing a mission, ctc.

The emphasis in this research is two-fold: 1)acquiring high agility through a learning process,
as might be required to quickly move from one point to another on a struciure under construction, or
needing repairs in an emergency; 2)enabling the robot to solve, ' on-board’ and in real-time, complex

problems of manipulator dynamics required for locomotion control.
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TABLE OF SYMBOLS

XY Z1)

Incrtial Frame: A frame fixed in the nonrotating earth.

(XYZ)

Body fixed coordinate frame: A frame that has its origin fixed at the
center of gravity of the robot body.

XY Z)

The components of the position vector of the center of gravity of the
robot body relative to the inertial frame.

Xy ¥y Zy)

The components of the translational velocity of the center of gravity of
the robot body relative to the body fixed frame.

(¢.8.¥)

Body Orientation Bryant angles (also known as Cardan angles). These
angles are defined such that when the body angles ¢,0,y are all simul-
tancously reduced to zero, the (X,Y,Z) axes are parallel o the
(X;.Y1.Z;) axcs of the inertial frame. The rotation from (X;,Y; Z;) sys-
tem to the (X,Y.Z) is accomplished by first rotating an angle y about
the Z-axis, then an angle © about the rotated Y-axis, and finally an
angle ¢ about the rotated X-axis.

@)

Body rotation rates expressed in the body coordinates.

(@, 0y ,0,)

Body angular velocity expressed in the body coordinate frame.

(x A vyh 'Zk )i

Leg i hip ocal fixed coordinate frame. Its origin is at the hip of leg i.
The Zy; -axis is parallel to the body Z-axis and directed downward. The
Y, -axis is perpendicular to the plane of the leg segments, and the Xj;-
axis is uniguely determined by maintaining a right hand coordinate sys-
tem,

XY Z')

Leg i hip local non-fixed coordinate frame. This frame has its origin at
the hip of leg i and rotates with the npper limb segment of the leg. The
X’;-axis is directed along the upper limb segment. The Y';-axis is per-
pendicular to the plane of the leg segments, and the 27;-axis is uniguely
determined by’ maintaining a right hand coordinate system.

XYz,

Leg i knee Iccal non-fixed coordinate frame. This {rame has its origin at
the knee i leg | and rotates with the lower limb segment of the ieg. The
Z";-axis is dirccted along the lower limb segment into the supporting
surface. The Y*;-axis is parallel to the Y- and Y';-axes, and the X*;-
axis is uniquely determined by maintaining a right hand coordinate sys-
tem,

T

3 x 3 transformation matrix between the body fixed coordinate frame
(X,Y,Z) and the inertial frame (X;.Y;,Z;).

(Wi 04i .0k )

Leg i joint angles. y; is the azimuth angle. It is the rotation angle
around the Z;-axis (i.e. it is the angle between the leg plane and the
body longitudinal axis, X). 6,; is the hip elevation angie. It is the rota-
tion angle around the Y’;-axis (i.e. it is the angle between the body
plane, XY, and the upper limb segment). 6, is the knee elevation
angle. It is the rotation angle around the Y"-axis (i.e. it is the angle
between the lower limb and a perpendicular to the upper limb).

(Wi Oni Bu)

Leg i joint angle rates.
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ke

Longitudinal Stride Length. This is the longitudinal distance by which
the robot body is translated in onc complete locomotion cycle.

A, Lateral Stride Length. This is the lateral distance by which the robot is
translated in onc complete locomotion cycle.

Ay Angular Displacement. This is the amount by which the robot body is
rotated in one complete locomotion cycle.

T Gait Period. This is the time rcquired for one complete locomotion
cycle of a gait.

B Duty factor for leg i. This is the relative amount of time spent on the
ground by leg i during one locomotion cycle (fraction of the locomo-
tion cycle).

o Relative phase for leg i. This is the amount of time by which leg i lags
behind that of leg 1, expressed as a fraction of the time required to com-
plete onc locomotion cycle,

Xe Ye Zg): The components of the pasition vector of the foot of leg i, expressed in
the incrtial frame.

Tox 3 x 3 transformation matrix from the body fixed coordinate frame
(X,Y,Z) to the hip local coordinate frame (X*,Y' 2');.

(a; b; ;) The coordinates of the hip socket for leg i as expressed in the body
fixed frame (X,Y.Z2).

I The length of the upper limb segment.

Iy The length of the lower limb segment.

(Xy.Ya,24)

Components of the desired translational velocity of the center of gravity
of the robot body.

L; An indicator of foot i position status, such that L;=1 means that foot i is
on the ground, L; =0 means that foot i is off the ground.
Zg The predicted value of Zg for a given (Xiz,Yig). This is the regression

surface value of Z on variables X;z and Yz (least square regression is
used).

(do-dlvd21d3vd4»ds)

Least Square regression paramclters.

N

A unit vector normal to the desired body orientation, and expressed in
the inertial coordinate frame.

ft+ is the reaction force from the ground to the tip of leg k expressed in the
inertial coordinate frame. Its components are (f & &' f5*")T. There
are four 3 x 1 such vectors.

gbtt is the reaction torque from the ground io the tip of leg k expressed in
the inertial coordinate frame. Its components are (gt g8*.ga") .
There arc four 3 x 1 such vectors.

wk is the rcaction force and torque from the ground to the tip of leg k. It

consists of two components, the force and torque (f#*'andg{*'). There
arc four 6 x 1 such vectors.
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F° is the net force acting on the robot body, expressed in the inertial frame.
Its components are (F2F,)F.2)7. There is one 3 x 1 such vector.

G° is the net torque acting on the robot body, expressed in the inertial
frame. Its components are (G.),G,".G,%)". There is one 3 x 1 such vec-
tor.

w? is the net force and torque acting on the body by the legs. It consists of
the two components 7 and G°. There is one 6 x 1 such vector.

Fi is the net force acting on link i of leg k. There are eight 3 x 1 such vec-
tors.

Gi is the net torque acting on link i of leg k. There are eight 3 x 1 such
veetors.,

m, is the mass of link r.

ag is the acceleration of gravity, expressed in the inertial frame.

E is an external force, expressed in the inertial frame and acts on link r at
point P£ from the origin of the proximal hinge of link r frame.

PE is the vector from the proximal hinge of link r to the point of applica-
tion of the external force fg to link r.

8k is an external torque expressed in the inertial frame and acts on link r.

a’ is the lincar acceleration of the proximal hinge of link r, expressed in
the parent link coordinate frame.

rr is the lincar accelcration of the center of mass of link r.

' is the angular velocity of link r.

o is the time derivative of @” (The derivative does not result in the com-
ponents of the angular acceleration vector, since the derivative is
applicd 1o the components of the angular velocity represented in a mov-
ing frame.)

c’ is the vector from the proximal hinge to the center of mass of link r.

fr is the force which link r exerts on its parent at the proximal hinge.

g’ is the torque which link r exerts on its parent at the proximal hinge.

I is the vector from the proximal hinge of link r to the proximal hinge of
child s of link .

R’ is the transformation matrix that converts vector representations in the
frame of link r 10 representations in the frame of the parent link.

R/ is the transformation matrix that convers vector representations in the
frame of link r to representations in the inertial frame.

Jr is the 3 x 3 moment of inertia matrix of link r about its proximal hinge.

S, is the set of all links having link r as parent.

K" M’ 3 x 3 Armstrong recursive cocfficient matrices (associated with link r).
They are slowly varying variablcs used in the solution of the direct
dynamics problem.

d  fr 3 x 1 Armstrong recursive coclficient vectors (associated with link r).
They arc used in the solution of the direct dynamics problem.

v* is the lincar velocity of the center of mass of link s with respect to the

basc coordinate {r* is its accclcration).
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v is the lincar velocity of the frame of link s with respect to the base coor-
dinate (@’ is its accelcration).

NT is the applicd torque from various sources on link r expressed in its
local frame.

F’ is the net force acting on link r, expressed in its local frame.

2 is joint r axis of rotation and is located between link r and link s.

as is the angle between link s and its parent (link r) measured about the
axis z, in the right sense. It is also known as "Joint coordinate™ of link
s.

qs is the rate of rotation change between link rand s (i.c. the velocity of
link s with respect to link 1).

ds is the acceleration of link s with respect to its parent (link r).

8 is the driving torque vector (n x 1) for n DOFs system,

H(q) is the variable inertial matrix expressed in the inertial frame.

e(q.q) is the centrifugal and Coriolis forces. It is an n X n matrix that is depen-
dent on joint positions and internal velocities.

G(q) is the gravitational force vector. '

C(q) is 6 x n Jacobian matrix, specifying the torques (forces) created at each
joint duc to external forces and moments cxerted on link n (the tip).
C(q)" indicates the transpose.

w is 6 x 1 vector of external moments and forces excrted on link n (the
tip). The first threc components are g**! and the last three components
arcf"'”.

A is a 6 x 6 cocflicient matrix for the kth leg and is function of the present
position and oricntation of the leg.

B; is a 6 x 1 cocfficient vector for the kth leg and accounts for the inertial
and gravitational acceleration forces of the members of the leg.

m is the number of legs that are in contact with the ground.

a® is the initial lincar acceleration of the robot body expressed in the iner-
tial frame.

(V=0-/yy0/220) arc the principal moments of inertia of the body, expressed in a coordi-
nate system aligned with the principal axcs of the body.

Tit is the ith joint actuator torque in leg k.

Ci is a 3 % 6 cocflicient matrix for the kth leg and is function of the present
leg position and oricntation.

D, is a 3 x 1 coefficient vector for the kth leg. It accounts for the inertial
and gravitational acceleration forces of the members of the leg.

fy is the normal component of the reaction force of the kth leg onto the
ground.

; is a diagonal 3 x 3 matrix of the rate of change of leg i’s angles

(Wi 181 ,81i)-
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E is a weighting coeflicient.

Ji(k) is the discrete state of joint i. k=1,2,...,/ means that joint i can take /
difTferent discrete configurations.

§ Sitvation Space.

A Action Space.

SE st the situation space of the human expert and Robot skill description.

AZ AT the action space of the human expert and Robot skill description.

FEFE Sct of features defining the situation spaces S©, ¥

FEFL Sct of featurcs defining the action spaces A=, A% .
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CHAPTER 1

INTRODUCTION

1.1. GENERAL BACKGROUND

Skill acquisition is one form of leaming. Cognitive psychologists have pointed out that long after
people are taught how to do a motion task, such as dance, play music, or do sport activitics, their
performance on that task continues to improve through practice [Nor80). It appears that, although people
can easily understand verbal instructions on how to perform a task, much work cmains to be done to turn
that verbal knowledge into efficient mental or muscular operations. Researchers in artificial intclligence and
cognitive psychology have sought to understand the kiads of knowledge that are needed to perform
skillfully. The processes by which people acquire this knowledge through practice are littie understood
[CoF81]. For example, how do highly skilled performers in dance, music, or sport make their actions
appear to be so simple and easy with incredible smoothness, style, and grace? How is it that these
performers can achieve such mastery accomplishments, while beginners in a similar task, are clumsy, inept,
and highly unskilled?

A great deal about such phenomena can be revealed by an important aspect of motor control, the
study of how movements are learned. Thus, in addition to the study of how movements are produced (or
controlled) by the motor control system (as is done in control and mechanical engincering rescarch), one
should also study how movements are produced differently as a result of practice and expericnce.

Understanding how motor skills are learned is the major concern of a field of study in psychology called

motor leaming,

Psychologists believe that motor skill development in children takes place over months, paralleled

with their trials to control their limbs properly. During such development, errors are corrected iteratively in
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the next instances of the movements. Through the ability to remember previous experiences of solving a
specific or analogous problem, the child’s motor system has the ability to learn and improve its
performance. Subsequently, such mastered movements are called upon as motor skills. Leamning the
- grasping of objects provides a good example of such a skill acquisition process. The whole hand has over
two dozen degrees of freedom, yet the grasping motion, which involves many small muscles, is performed
rapidly and without any apparent conscious intervention by adults. it takes an effort of will by achildto do
the same grasping. This has led to the conclusion that child motor control systems are inherently goal-
directed learners which acquire motor skills as they solve problems involving the coordination and control
of their complex articulated bodies. In other words, both motor control and motor learning are parallel

activities in child motor control systems [SZH79] .

For years, researchers of articulated bodies have dealt with motor control and motor learning issues
separately. Motor control researchers are involved in setting up models for motion control (e.g. Open-loop,
Closed-loop, Mass-spring, and Impulse-time) and solving mathematical equations for specifying motion
using kinematics and dynamics. Such groups of researchers include animators in computer graphics,

robotics researchers in control and mechanical engineering, and biomechanists in biomechanical sciences.

Motor learning researchers claim that humans do not solve mathematical equations in their motor
systems when they assume control over their limbs during movements. Such researchers are using
strategies of planning and learning instead of solving the mathematical equations of motion. They claim
that humans and high animal species are able to gain control and maintain it by using both stored
experience and feedback. Such groups of researchers include researchers of motor skills in behavioral

psychology and biological scientists.

It is one cornerstone of the present work not to separate the study of motor control from the study of
motor learning, as this artificial separation inhibits the understanding of both. This thesis proposes a
locomotion control system for an autonomous four-legged articulated robot that draws a clear interfacing
line between motor control and motor learning, similar to the one in child motor control systems [SZH79].

In the proposed system, the control of motor skills is parallel to the development of an intelligent body of
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locomotion knowledge gained through practice and experience (the development of motor capabilitics).
This involves merging techniques from the important field of machine leamning in artificial intelligence with
efficient motion dynamics computations. On one hand, a knowledge-based motor control component would
deal with symbolic data, but it is not called upon to perform efficient dynamics numerical computations. On
the other hand, a dynamics-basgd motor control component will face the need to deal with large volumes of
numerical computations but will lack symbolic reasoning mechanisms. Such a merge will combine decision

making, judgement and reasoning with efficient numerical calculations.

Initially the articulated robot uses its dynamics-based component 1o control its movements.
Simultaneously the development of motor skills in the form of production rules takes place through the
calibration of the knowledge-based component by the numerical-based component. Then the knowledge-
based component gradually goes through a natural "growing" process from being apprentice 10 the
numerical component to being assistant and finally to being partner to it (i.e, it can take over the control of
the robot actions without relying on the numerical component). This take-over of control will take place
gradually and incrementally. Consequently, the robot would be able to control and coordinate its motion
using the knowledge-based component instead of solving the mathematical equations of motion. Such a

gradually growing synthetic "nervous system" seems to be essential for future highly adaptable articulated

robots.

The work in this thesis is concemed with the modeling of a four-legged robot and with the
development and implementation of algorithms for both its numerical and knowledge-bascd control

components. The contributions of this thesis may be broken down into three general areas of the control

problem:

(1)  Effective control of the four-legged robot implies the reed for algorithms which permit the synthesis
of gaits suitable for realization of the desired robot trajectory, taking into account the constraints
imposed by terrain conditions. Such algorithms have been developed and implemenied for automatic
leg positioning and automatic body height, pitch, and roll regulation over undulating terrain. These

algorithms are called the joint coordination control algorithms and involve several kincmatic control
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problems.

(2) Robot locomotion involves more than just solving the joint coordination control problem
kinematically, it also involves the control of forces and torques at the joints (the dynamics of
motion). Failure to incorporate the dynamics of the robot motion may result in the unrealistic
appearance of movements and/or the "binding effect” of its legs (one leg dragging another). To
incorporate dynamics, the robot links are modeled as masses connected by joints and acting under the
influence of external and internal forces and torques such as gravity, bendings, and flexings. The
relationship between these forces and torques and the robot’s motion is expressed as the "dynamic
equations of motion". By using these equations one need not specify movements at gach degree of
freedom or worry about interdependence of body links because a force or torque on one link will
affect other links to which it is attached. Consequently, one can control the robot movements by
controlling such forces and torques. The development of algorithms for the numerical dynamics-
based control component involved setting and solving a closed chain inverse dynamics problem, a

linear programming problem, and a direct dynamics problem.

(3) Because of the complexity of the dynamics equations, the numerical dynamics-based control
component has two problems. First, dynamic analysis of motion is computationally expensive and
can not provide real-time robot motion control. Second, the dynamics equations are solved by using
numerical methods, and when many degrees of freedom are involved numerical instability problems
can arise. The knowledge-based control component solved these problems by developing production
rules that regulated the robot’s locomotion behavior. These rules go through modifications and
cnhancements as a result of practice and experience (through what we call "dynamic regression").
This idea of developing motor skills in the form of rules is drawn from machine learning research in
artificial intelligence. The knowledge-based control component starts with general inference rules

and learning techniques and gradually acquires complex skills through interaction with a human

teacher.! The human supervises the knowledge-based component when it takes charge of the control

. 'We view our first version of this hybrid numerical/Knowledge-based control system as human-machine mix where anificial
intelligence and tele-operated robotics are integrated into 2 highly reliable system. This is in order to minimize the technological risks
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function (the teacher decides when). The role of the human is to perceive and redefine continually
what needs to be done on the basis of what the knowledge-based component has Icarned, to take

advantage of opportunities, to solve unforeseen problems and to save a mission (occasionally).

In summary, the objective of this thesis, then, is to design and implement a  hybrid
numerical/knowledge-based locomotion control system for a four-legged articulated robot that is capable of
synthesizing and leaming coordinated movements and improving its performance as a result of practice and
experience. The produced prototype would allow us te examine the effectivencss of merging methodologics
of computer numerical control (mathematical rigor of approaches taken in robotics, and biomechanics) with
methodologies of motor learning (knowledge-based processing as studied in arntificial inic!ligence and
behavioral psychology). The expected result is that both methodologies can act together to provide an
autonomous? locomotion control system that can improve its performance, perhaps through whot might be

called "motion understanding".

As possible areas of application for the proposed robot, it is envisioned that in the ensuing years, such
articulated robots will perform tasks such as data collection in the forbidding regions of distant plancts,
mobile exploration on the ocean floor, duties in the arctic, fire fighting and explosive ordinance disposal.
They might also be useful in constructing and maintaining structures in space such as solar arrays for space
stations, large multibeam antennas, and space factories where the robot’s legs could function as ams for
object manipulation [MoA88a] [MoA88b].> These tasks will be open to the proposed robot becavse of its
unique terrain adaptability, Jjudgement and decision making. The emphasis in all these applications is two-
fold: 1) acquiring high agility through a learning process, as might be required to quickly move from one
point to another on a structure under construction, or needing repairs in an emergency; 2) enabling the robot

to solve, "on-board" and in real-time, complex problems of manipulator dynamics and locomotion control,

of having, for example, s completely sutonomous robot, that is Jeaming by doing, on a space station. Meanwhile, a more autonomous
control system in which the teacher has been replaced by experimentations is described in Section 6.5 (this is also related to the issue of
supervised and non-supervised leaming).

ISee previous footnote,
*On a space structure one can’t have the robot bumbling around while it learns by doing how to meve. In [MoAB88b} a ground
simulated robot executes missions a few on-board camera images ahead of the space realistic robot. Accordingly, the simulated robot is

used as an experimental planner by the realistic robot, to detect what would have happened if the realistic robot actually executed a
mission using its knowledge-based controller, )
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It is important to distinguish here between animation and the kind of animated simulations that the
experimental work of this dissertation describes. What we are dealing with here is what is called "task levei
simulation”. This is a term that is shared with the robotics world, where the problem is to control robotic
agents by specifying a set of events and some constraints on the behavior of the agent, and letting that agent
fill in the details as necessary. So, we are not interested in constraining simulated agents to do what we
want them to do. Rather, we want 1o let them interact with the environment and adapt their goal-directed

motion accordingly.

1.2. ORGANIZATION

Chapter 1 of this thesis introduces the proposed locomotion control system with the various control
problems encountered. Chapter 2 is a review of some of the work in computer graphics, robotics, motor
psychology, and biomechanics, whose themes share common grcund with the research in this thesis. Also
the aims of these projects and their achievements are compared to those of the proposed locomotion control
system. Chapter 3 presents an overview of the concepts and ideas of the experimental system. The system
architecture is described, then the kinematics of motion and its algorithms are developed. The dynamics-
based control component (simply called the numerical controller) is described in Chapter 4, followed by a
description of the knowledge-based control component (simply called the leaming controller) in Chapter 5.
Chapter 6 gives some details for the implemented system. The results of the system’s performance
cvaluation and extensions for further work are also included. Finally, a list of references and an appendix

appear at the end of the thesis.



CHAPTER 2

RELATIONSHIP TO OTHER WORK

2.1. INTRODUCTION

The locomotion of articulated bodies has been the area of interest of at least four groups of

researchers:

n

@

&)

)

Animators in computer graphics: Computer aniirators have simulated locomotive movements of
articulated figures through the rapid display of successive images. Each image represents a
sequential moment in time of the movement. When these images are displayed fast enough, the
human eye interprets them as continuous motion. The main objective of computer animators is to

produce realistic movements on the screen for the purpose of communicating ideas and thoughts,

Legged motion technologists in control and mechanical engineering: A specific area in robotic
research which deals with "legged technology" is motivated by the need for vehicles that can travel in
difficult terrain. Legs promise improved vehicular mobility where the ground is soft, steep, or
slippery (such as in the Arctic regions and in jungles). Other reasons for building legged machines

are for defense and outer space applications.

Motor skill researchers in behavioral psychology: The motivation of this group is to understand how
animals, humans, and insects use their legs for locomotion. These psychologists are trying 1o
understand how motor skills are stored in memory, how they are retrieved, and how they are

produced differently as a result of practice and experience.

Biomechanists in biomechanical research: Using mechanical principles, these rescarchers study
animal bodies in motion and at rest. Their goal is a model which, given nervous signals, would
provide muscular forces and, given muscular and other internal and external forces, would provide

the positions, velocities, and accelerations of each limb.
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In this chapter, some of the work done by each of these groups, with special emphasis on locomotion
projects as a particular type of articulated body movements, will be reviewed. The review is meant to
clarify how researchers studying the locomotion of articulated bodies have dealt with motor control and

motor learning as scparate issues (see chapter 1),

2.2. APPROACHES TO ANIMATING ARTICULATED BODY LOCOMOTION

In computer graphics there has been interest in the problem of animating articulated bodies since at
least the late 1970°s ([BuW?76], [BaB78], [CCP80], [Doo82], [GiM8S], [WiB85], [ArGSS), [IsC87)).
Since then, the dominant approach to describing articulated body animation has been kinematics (based on
positions and angles varying over time). More recently, however, researchers have been shifting to
dynamics (objects with mass moving under the influence of forces and torques) to improve the power of

their animation tools.

Currently, dynamic analysis has been used in the animation of articulated bodies in very few research
projects. The mechanical ants from the New York Institute of Technology by Dick Lundin included some
dynamic analysis {Lun86]. The walking creature modeled in the PODA animation system by Girard and
Macicjewski at Ohio State University [GiM8S] included simple dynamics of the trunk. Jane Patricia
Wilhelms [WiB85], at the University of California, and Armstrong and Green [ArG85] at the University of
Alberta have also independently modeled articulated bodies using more complete versions of dynamic
analysis. Recently, Paul Isaacs and Michael Cohen [IsC87] at Comell University implemented DYNAMO
(DYNAmic MOtion system), a system for the dynamic simulation of linked figures. Jane Wilhelms and
David Forsey of Waterloo [WiF88] have implemented MANIKIN for interactive manipulation of
articulated figures using dynamics. Also Armin Bruderlin and Thomas Calvert of Simon Fraser [BrCg89]

have implemented KLAW, a goal-directed system for the dynamic animation of Bipedal locomotion.

However, these dynamic-based systems have dealt only with experimental movements in which the
articulated figures are passive elements in the environment. For example, in [WiB85] simple motion like

letting a hand fall under the influence of gravity, raising the arm using controlling forces and torques, and a
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few floor exercises for a 24-degree-of-freedom (dof) human figure, such as raising the knee up to the chest,
etc. were tried. Similarly, in [ArG8S), animating a finger to tap on a table and a tweive link human figure in
a diving motion (its motion was under the influence of external downward and forward forces on the head
and arms) were tried. Also, in [IsC87] five experimental movements were ronducted: a scries of hanging

chains, a tree blown by wind, a whip, a personon a swing, and an arm catching and throwing a ball.

The common ground among these experimental movements is the testing of the influence of the
joints” forces and torques on the mechanism’s motion. However, none of these systems have dealt with any
real coordinated task to perform a rhythmic action such as locomotion (except for Bruderlin's work).
Locomotion is the act of moving from place to place. It is obvious that the application of a force to a
stationary rigid body produces motion by overcoming inertia and by overcoming such restraining forces as
friction and viscosity of the environment. Without the application of a force or forces, no voluntary
movement, in this case locomotion, can take place. In articulated bodies, however, the applied forces cause
relative motion between links of the body, which then produces reaction forces and torques from the
ground. To achieve stable locomotion in legged figures, there must be a component of the reaction forces
that supports the body against the pull of gravity. The inertia of the body resists movement and requircs a
force proportional to the mass to produce a change in the velocity of each particle. The horizontal
component of the ground reaction is the force that produces the articulated body acceleration change during

locomotion (see Figure 2.1).

In order to clarify the terminology here, one should define the difference between open/closed
kinematic chain systems, and direct/inverse dynamic problems. In open chain kinematic systems, one end
of the linkage structure chain in fixed and the rest of the chain is free to move. In closed chain, more than
one endpoint is fixed in the linkage structure. The problem of determining the motion of a linkage system
from a set of applied forces and torques is called the "direct dynamics problem", whereas the problem of

determining the forces and torques required to produce a prescribed motion is called the "inverse dynamics

problem”,
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Animation of legged figure locomotion using dynamics is a very difficult problem. One of its
principal difficulties is the lack of an entirely satisfactory solution to the limb coordination control problem,
In such problems, the force and torque assignment equations relating joint forces and torques to the desired
motion trajectory result in fewer equations than unknown torque and force variables. Because of the
underspecified nature of the problem, an infinite number of solutions are possible, and some method must
be used to choose among these [SeA75]. Consequently, none of the existin~ anisiation systems has dealt

with articulated body locomotion dynamically.

Historically, however, the difficulty of legged figure locomotion was alleviated by animating the
movements kinematically. In kinematic locomotive animation ([BaB78], [Her78}, [CCP80], [Doo82],
(Fe182], [GiM82], (KoB82], [KBBS2], [Z¢I82], [Stu84], [StB85], [GiM8S], [Kro86]) the motion of the
links of the articulated body are planned out directly by the animator, and the computer animation system

plays no part in ensuring that the action is reasonable.

Girard and Maciejewski in their PODA animation system [GiM85] utilized a kinematic model of a

four-legged creature which allowed animators to control the complex relationships between the motion of
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the body and the coordination of its legs. Legs were moved along prespecified trajectories placed exactly at
desired footholds and held in place as the body passed over them. A pseudo-inverse Jacobian matrix which
describes how small changes in local joint positions are caused by small changes in the tip segment’s world
space position and orientation was used in computing the joint angles from the positions of the ends of the
legs (this is called the inverse kinematic problem). This has helped to relieve the tedious job of specifying

each degree of freedom separately.

Girard and Maciejewski included simple dynamics of the trunk but did not incorporate the dynamics
of the motion of the legs. The problem that might result from ignoring the leg force control is that it is
possible that the legs will tend to "fight" each other, while their net action is the desired body trajectory. For
example, unless the leg forces are controlled, the legs on each side of the body can develop equal and
opposing lateral forces such that the body, in equilibrium, will remain in equilibrium with an unnecessary
expenditure of energy. Also, when one of these legs is lifted from the ground, undesirable vibration of the
body may occur. This might be called the "opposing actuator" problem. Moreover, ignoring the force

control issue might also result in one leg dragging another across the supporting surface ("binding effect").

While Girard and Maciejewski used linear approximation to update the inverse Jacobian matrices,
Korein and Badler [KoB82] proposed a much faster method called "reach hierarchy” to solve the inverse
kinematic problem. The method applies the rule "move each joint the smallest amount between keyframes
that will allow the end effector to reach the goal”, by assigning angle values to the joints outwardly from the
inner links to the end effector. The method is faster than calculating the inverse Jacobian; however, it does
not account for human or animal constraints of coordinated movement or habits, and so may be difficult to

apply to realistic locomotive tasks.

Another locemotive kinematic model was proposed by Zeltzer [Zel82). The model was based on the
anatomy of the human body and characteristics of its locomotion. Motion was achieved by a hicrarchy of
motor programs. The low level motor programs controlled the joint angles for a fixed set of joints. These
motor programs were controlled by middle level motor programs. The middle level motor programs would

start and stop the low level programs based on the current state of the model (joint angles, center of mass,
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support, etc.). Both the low leve!l and middle level motor programs were modeled as finite automata. At

tic top level of the hierarchy complete skill programs used finite automata to activate sequences of the

middle level motor programs,

Norman Badler's group at the University of Pennsylvania [BMW87] have developed a system for
positioning articulated bodies using kinematic constraints. This refers to the ability to restrain part of the
body relative to worldspace allowing the animator to position the figure without, for example, worrying if
the feet will penetrate the floor. The animator is allowed to designate multiple constraints and rate their
importance, a useful feature when they cannot all be resolved. Problems with kinematic constraints involve

choosing a desirable solution from among many possible body positions.

Don Herbison-Evans of Sydney University in Australia has developed a movement simulation
program called NUDES (Numerical Utility Displaying Ellipsoid Solids) [Her78] [Her80]. He used a dance
notation called Benesh (a notation particularly appropriate for description of the stylized movement of
classical ballet). Human-like figures were represented as "poly-ellipsoids”, the limbs being interpenetrating

cllipsoids, in order to provide real-time displays of dance.

Savage and Officer of the University of Waterloo have developed CHOREO, another interactive
computer program for display of dance [SaO78]. Interactive graphics editors were available for input of the
dance using either of two dance notations: CHOREO uses Massine notation and CHOREO-L uses
Labanotation. The interesting thing about CHOREO is that its dance notation editor uses some

sophisticated features of the "vi" and "emacs"” text editors to create a convenient environment.

Another system that uses Labanotation in the kinematic specifications of dancer animation is the
dance system developed at Simon Fraser University [CCP82]. An interactive graphics editor allows a set of
Labanotation symbols to produce the scores. The body was defined in terms of limbs, joints, and
connectivity. The program included several possible types of input, a hierarchical control model, and

choice of output.

Another popular method of specifying locomotion kinematically is to take live data from, for

example, a walker or a runner and to use the data to drive a graphics display. This is called "rotoscoping"
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and uses two-dimensional data from a motion picture film or three-dimensional data from goniometers or
video scanning equipment (e.g, [GiM82]). Perfectly life-like motion can be obtaincd this way, but at the

cost of poor flexibility after the data is collected.

Another technique for describing the motion kinematically uses some form of keyframing (c.g,
(Stu84]). Here the animator interactively positions the model on the screen by modifying 3D transformation
matrices located at the joints. These arc used to control the positions of the body below the joints. The
BBOP system at NYIT [Stu84] uses a three axis joy stick to position a human figure by changing the joints’
transformation matrices. A human-like figure was made to walk up or down the stairs by building one
frame to show the figure’s foot in the air and another to show the foot on the stair. Then the program uses

cubic interpolation to fill in all the frames in between.

According to this last technique, a keyframe is necessary wherever any link of the body has a key
action. This leads to a large number of keyframes. A better keyframe technique, called event-driven
keyframe animation [Gom84], was introduced by Julian Gomez et al. at Ohio State University. The Ohio
group introduced the TWIXT animation system that thinks of each link in the body as pursuing its own
course of action. Therefore, the animator creates tracks of action and places links on them. He/she specifies
what the link is doing at various points in time along those tracks. TWIXT, for example, defincs several
tracks: a position track, rotation track, velocity track, and attachment track. For intermediate times, the
system mathematically interpolates those track parameters to construct in-between frames. To build a
frame, the system evaluates the activity on every track of every link. Once the display parameters for a link
(position, rotation, velocity, etc.) have been determined, its transformation matrix is built. Thus the frame

can be considered as the union of activity in all tracks.

Gomez’s approach is sometimes called "layering", whereby the animator is allowed to specify
different motions independently and have the system take care of putting together these layers of motion.
Analogies can be drawn from cartoon animation where a frame is built up of a number of cels lying on top

of each other. In layering, however, the layers are not pieces of picture, but pieces of motion.
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In fact, manipulating articulated bodies using keyframing is a laborious task because of the many
degrees of freedom, the interaction between segments, and the difficulty of finding and/or constraining local

joint positions.

Although all of these previous systems animate the locomotion of articulated bodies, they do not take
into account the mass and inertia of the body in motion (the dynamics of motion). Thus, animations which
are produced often have an unrealistic appearance. The links do not seem to have weight or mass, and thus
speeds of movements are inaccurately represented. Furthermore, most of these systems can react to the
cnvironment only in restricted ways. For example, in most of the previous systems the articulated figures
could walk over uneven terrain but could not respond to someone pushing them and could not even
conserve the simplest environmental constraints (such as "foot should not go through the ground", "leg
joints cannot go beyond their natural limits", etc.). Another problem is that kinematic control is typically
quite low-level; users deal with each degree of freedom independently despite the fact that, even
kinematically, they are interdependent. Therefore the amount of information the user must provide to
produce a specific motion is enormous. The study of biological literature is required in order to acquire
such information., Finally, restricting the choice of positions and velocities to those actually achievable by a

real articulated body is very difficult to accomplish kinematically.

For all of these reasons, Sturman [Stu87) claims that all the kinematically based articulated figures
animation systems (including his) should be classified for entertainment because they are not concerned
with realistic simulations. Their goal is communication: if a motion sequence is communicated by ignoring
rcalistic simulation, then animators have no hesitation in using it. Not so for the scientific and engineering
community. Realism is important, purposefulness and expressivity less so. In scientific simulation, the

purpose is to describe what happens, whatever happens [Stu87).

Dynamics takes into account mass and inertia as well as the various forces acting on the body.
Animation, therefore, comes out realistically at the expense of much (slow) computation per frame. Links
move correctly and appear to have weight and substance. In dynamics-based locomotion, only the ground

reaction forces and torques on the feet need to be computed for the movements to be automatically
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produced according to the laws of physics and mechanics. This allows the dynan:ics-based animation
systems to predict the effects of such important influences as gravity, collisions, and applicd external forces.
Consequently dynamics-animations are "natural” in that they mimic how objects move in the real world,
and constrain motion to be realistic (for the reality being modeled). Kinematic motion specifications have

no way of incorporating such effects.

However, dynamics-based locomotion methods do have their own problems too. One is the amount
of computer time required to compute the motion per frame. Another is that the dynamic equations are
solved by using numerical methods, and when many degrees of freedom are involved numerical instability
problems can arise. Moreover, in such systems the control of the figures’ motion is shifted from the
animator to the underlying physics of the environment. If one were ¢ “eturn control o the animators, they
would be left with a whole new problem of determining the torques and forces requircd' to produce a

particular motion sequence. These problems are addressed in Chapter 4.

23. CONTROL AND MECHANICAL ENGINEERING RESEARCH ON WALKING

MACHINES

The motivation for building walking machines comes primarily from the need for vehicles that can
travel in difficult terrain. Legs also promise improved vehicular mobility where the ground is soft, stecp, or
slippery (such as in Arctic regions and jungles). The United States army showed interest in utilizing a
hopping tank that fires while it hops. It is not an easy target and has great mobility in difficult terrain battle
fields [Rai86]. NASA also showed interest in an insectlike robot that can construct large structures in space
such as solar space stations, large multibeam antennas such as reflectors and lenses, and space factorics
[NAS78]. According to NASA, legged robots are expected to have an important role in the construction,
inspection, and maintenance of these structures in view of the alternative astronomical cost of supporting
men as construction workers in space [NAS78] [Hee73]. Another motivation for building walking
machines is to understand better how animals, humans, and insects use their legs; of particular value is the

opportunity to formulate and test precise locomotion theories (see section 2.4) that can guide biological
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research [KaS70].
Currently, more than twenty legged systems have been built in the United States and Japan. Table 2.1

shows some of the milestones in legged systems technology since early 1960's [Rai86].

Early research in building walking machines originated at General Electric {I.iM68]. Motion control
of the GE walking machine proved to be very difficult, as the operator had to contro! simultaneously all
four legs with his four limbs (master/slave control). This showed that even when the main motion of the
machine was man-controlled, the intelligence of interacting limbs in this redundant system was definitely
required for normal operation. The operator was aided by force reflecting servomechanisms which provided
him with an indication of the interaction of the machine with the supporting terrain. Whenever the operator
caused a machine leg to push on an obstacle, force feedback let the operator feel the obstacle as though it
were his or her arm or leg doing the pushing. Despite its dependence on a well-trained human for control,
this walking machine was a landmark in legged technology. This machine first walked in 1968 and later

exhibited a significant ability to climb obstacles and to traverse difficult terrain.

An aliernative to human control of legged machines became feasible in the 1970’s: the use of
computer for locomotion control. Robert McGhee's group at Ohio State University was the first to use this
approach successfully in 1977 [Mc083]. They built an insectlike hexapod that could walk with a number of
standard gaits, turn, crab, and negotiate simple obstacles. The computer’s primary task was to solve
kinematic equations in order to coordinate the eighteen electric motors driving the legs. This coordination
ensured that the machine’s center of mass stayed over the polygon of support provided by the feet while
allowing the legs to cycle through a gait. The machine traveled quite slowly, covering several meters per
minute. Force and visual sensing provided a measure of terrain accommodation in later developments
[McG80) [OTM84]. The hexapod provided McGhee with an excellent opportunity to pursue his earlier
theoretical findings on the combinations and selection of gait [McK72]. The group at Ohio is currently

building a much larger hexapod, about 3 tons, that is intended to operate on rough terrain with a high
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Mosher68 mc under control
of human driver- 4 legs-

hydraulic actuators- 1968,

McGhee77 A Computer Coordinated Hexapod

Walking Machine- 6 legs-

electronic actuators- 1974,

Gurfinkel77 Hybrid Computer (digital/ analog)

controls a Hexapod- 6 legs-

electronic actuators- 1977.

McMahon&Greene77 | Human runners set new speed

records on tuned track at Harvard. Its

compliance was adjusted to match the

mechanics of the human leg.

Hirose80 Quadruped machine climbs stairs

and over obstacles using simple

sensors. The leg mechanism

simplifies control - 4 legs-

hydraulic actuators.

KatoR0 Hydraulic biped walks with

quasi-dynamic gait.

Matsuoka80 Machine that balanced in the plane

while hopping on one leg.

Miura81 Walking biped balances actively in

three dimensional space- 2 legs-

electronic actuators,

Raibert82 One-legged hopping machine balancing

in 3D. Quadruped runs with two-legged

gaits and can change gait while running.

Sutherland83 Hexapod carries human rider-
Computer, hydraulics, and humarn share
computing task.

Odetics83 Self-contained hexapod- "lives” and

moves in the back of a pickup truck.

Table 2.1 Characteristics and Capabilities of Existing Legged Machines

degree of autonomy [WVP84].

Gurfinkel and his co-workers in the USSR built a machine with characteristics and performance quite
similar to McGhee’s at about the same time [GGS81). It used a hybrid computer for control, with hcavy use

of analog computations for low level functions.

Okhotsimski, Platonov et al. [OkP73] [OGA74] , also in the USSR, have investigated the movement

of 2 walking machine over uneven terrain. The control computer of a six-legged vehicle was supplicd with
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a set of "standpoints” (foot placement points) that would support the vehicle in locomotion. The task of the
computer was to control the timing of the liftings and placements (tracking schedule) from these

standpoints while maximizing the stability reserve (margin) of the moving vehicle.

To develop the algorithm for synthesizing the tracking schedule with a given movement of the body,
two models were used. One included a two-degree of freedom leg and the other, a three-degree of freedom
leg. Several algorithms were investigated for synthesizing the tracking schedule. One algorithm assumed
that the vehicle had to move by the tripod gait. A calculation of the optimum transfer time from one tripod
of supporting legs to the other tripod of supporting legs was made. Another algorithm was based on the
relative timing between the transfer waves for the right and left row of legs. The final algorithms developed
were used during the movement of the machine over surfaces with complex relief. In further work,
Okhotsimski [OGA74] enhanced the algorithms to control the walking machine in climbing over obstacles.
Algorithms for generation of standpoints were included along with consideration of the necessary terrain
measurement system. Planning algorithms were designed which were able to generate standpoint sequences
for a route comprising an arbitrary curve on a surface with small-scale roughness. Also, algorithms were

designed for generating special irregular standpoint sequences in the case of overcoming obstacles.

All the previous machines have used kinematic control techniques without regard for the forces
which produce the motion. The dynamics of legged locomotion has been incorporated into legged vehicle
projects only recently. In the following subsections, two such state-of-the-art projects will be investigated
in some detail. The first is an American project at Carnegie-Mellon University, and the second is a
Japanese biped project at the University of Tokyo. The objective here is to demonstrate the fact that despite
the goal of improved vehicular mobility in difficult terrain, and the incorporation of the dynamics of
motion, legged vehicles have not yet proved themselves by moving out of the laboratory and into the field.

These state-of-the-art machines still enjoy the smooth, flat ground of the laboratories.
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2.3.1. THE HOPPING MACHINE AT CARNEGIE-MELLON UNIVERSITY

It was to study running in its simplest form that Marc Raibert and the group at CMU built a running
machine that had just one leg ([Rai81], (Rai84), [RBM84], [Rai85]). It ran by hopping like a kangaroo,
using a series of leaps. With one leg this machine drew attention to active balance and dynamics while

postponing the difficult problems of coordinating the behavior of many legs.

The machine had two main parts, a body and a leg. The body provided the main structure that carricd
the actuators and instrumentation needed for the machine’s operation. The leg could telescope to change
length and was springy along the telescoping axis. Sensors measured the pitch angle of the body, the angle
of the hip, the length of the leg, the tension in the leg spring, and contact with the ground. The first machine
was constrained to operate in a plane, so it could move only up and down and fore and aft and rotate in the
plane [Rai81]. For this machine, running and hopping are the same. Its motion control system considered
separately the hopping motion, forward travel, and orientation ("posture") of the body. A brief description
of each part of the control system is given below. The details of the individual control algorithms arc not as

important as the framework provided by the decomposition.
(a) The hopping motion:

This part of the control system excited the cyclic hopping motion that underlay running while
regulating how high the machine hopped. The hopping motion was an oscillation govemed by the mass of
the body, the springiness of the leg, and gravity. During support, the body bounced on the springy leg, and
during flight, the system traveled a ballistic trajectory. The control system delivered a vertical thrust with
the leg during each support period to sustain the oscillation and to regulate its amplitude. Some of the

energy needed for each hop was recovered by the leg spring from the previous hop.

(b) The forward motion:

This part of the control system regulated the forward running speed and acceleration. This was done
by moving the leg to an appropriate forward position with respect to the body during the flight portion of
each cycle. The position of the foot with respect to the body when landing had a strong influence on the

behavior during the support period that followed. Depending on where the control system placed the foot,
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the body continued to travel with the same forward speed, accelerated, or slowed down. To calculate a
suitable forward position for the foot, the control system took account of the actual forward speed, the
desired speed, and a simple model of the legged system's dynamics. It considered four different cases:
when the machine is hopping in place, accelerating to run, running at a constant speed, and slowing to a
stationary hop.

(c) The posture control:

The third part of the control system stabilized the pitch angle of the body to keep the body upright.
Torques exerted between the body and leg about the hip accelerated the body about its pitch axis, provided
that there was good traction between the foot and the ground. During the support period there was traction
because the leg supported the load of the body. A linear servo operated on the hip actuator during each

support period to restore the body to an upright posture.

The utility of this three-part control system was first constrained to machines that operated in a plane,
but it was later generalized for controlling a three-dimensional, one-legged machine, a planar two-legged

machine, and a quadruped [RaS83) [RBM84] [Rai85].

The generalization to three-dimensional machines was easy. The mechanisms needed to control the
remaining extraplanar degrees of freedom were cast in a form that fitted into the original three-part
framework. For instance, the algorithm for placing the foot to control forward speed became a vector
calculation. One component of foot placement determined forward speed in the plane of motion, whereas
the other component caused the plane to rotate about a vertical axis, permitting the conirol system to steer.
A similar extension applied to body posture. The result was a three-dimensional three-part control system

that was derived from the planar case with very little conceptual complication [RaS83].

For the biped generalization, that runs like 2 human with alternating periods of support and flight, the
one-leg control algorithms were applied directly. Because the legs were used in alternation, only one leg
was active at a time: only one leg was placed on the ground at a time, only one leg was thrust on the ground

at a time, and only one leg exerted a torque on the body at a time [RBM84].
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When there were several legs (in the case of quadruped), Raibert could not make the same biped
generalization. However, he coordinated legs that shared support simultaneously, making them behave like
a single equivalent leg. Several multi-legged gaits were mapped into virtual biped gaits. For example, the

trotting quadruped was mapped into a virtual biped running with a one-foot gait [Rai8$).

In summary, Raibert reduced the trotting quadruped to a biped, and reduced the biped to a one-legged
machine. For the one-legged machine he decomposed the controller into the three primitive parts: hopping,

forward speed, and posture.

2.3.2. THE JAPANESE BIPED LOCOMOTIVE ROBOT

The research group at the University of Tokyo have been working on the biped locomotion project
"Biper” since 1979 [MiS84] [MSMB85). The group of the CMU hopping machine made the motion
controller simpler by confining the motion to a plane. The Japanese designers of the Biper have realized
this fact and decomposed the motion of their biped into two components in the sagittal and frontal plancs.
Attention has been paid to these two planes, since it is in these planes that the problems of balance occur.
Moreover, the assumption that the motions in these planes are independent made the control system

dynamically simpler.

The Biper project has produced several bipeds that have different leg configurations. All the Bipers
are statically unstable, but can perform a dynamically stable walk with suitable control. Biper-1 and
Biper-2 walk only sideways. Biper-3 is a stilt-type robot whose foot contacts occur at a point and which can
walk sideways, backwards, and forwards. Biper-4's legs have the same degrees of frecdom as human legs.
In all cases, basically the same control method is applied. The control system is based on the idea that
motion during the single-leg support phase can be approximated by the motion of an inverted pendulum.
Accordingly, the control system deals with the dynamics of walking as a series of inverted pendulum

motions with appropriate conditions of connection.

The inverted pendulum has been used to model the sagitial and the frontal plane dynamics when the

biped is standing on one leg. It assumed that the foot does not slip and is large enough to sustain the
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required torque without the Biper overturning. Let m be the mass of the pendulum, /.. its inertia about the
ground pivot, / its length, and g be the acceleration of gravity. Then the equation of motion in terms of the
(as yet unspecified) actuator torque M ( that is needed to rotate the pendulum) and the angle 8 (that the
pendulum makes with the horizontal axis) is derived using the one-dimensional (angular) application of
Newton's Law:
f, =M - mgl cosf

This simple equation is the basis of the dynamic model of the Biper. Only in the Biper's multi-link
structure is each link treated as a free body, with forces and moments applied at each joint. At each joint

there is one actuator torque; the remaining forces and torques are due to reaction.

For example, Biper-3 is actuated with four torque motors located at the hip. Motors 1 and 2 cause the
legs to move about the roll axis, and motors 3 and 4 move the legs about the pitch axis. Biper-3 walks when
motor 1 generates an appropriate torque so that the left foot is detached from the ground for a while. Then,
by applying torque from motor 3, stepping can be realized (the leg starts to swing). Applying the invérted

pendulum equation to the free links would give the system’s equations of motion.

The Biper controller used these equations of motion to calculate the amounts of torque which need to
be applied by the motors in order to follow the legs’ planned trajectories. The controller used a feedback

cycle to compare the actual trajectories with the planned trajectories.

The work on the Biper project is still active at the University of Tokyo. Biper-5 is an improvement
over Biper-4: it has all its apparatus, such as the computer, mounted on it and several contact sensors

attached to its feet [MSMSS).

Recently, McGeer [McG88) has implemented a "two-dimensional” biped. The biped has three legs;
the outer legs are connected by a crossbar, and alternated like crutches with a broad-footed center leg. The
feet were semicircular and had roughened rubber soles. During each step small motors lifted the swinging
feet clear of the ground. McGeer’s biped could be viewed as a generalization of the Bipers with a pair of

coupled pendulums,
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Currently, work on walking machines is continuing at General Electric, Stanford, and JPL. Projects
are also underway at the Tokyo Institute of Technology and at lhc- University of Tokyo. Researchers at
Ohio State, Ressenlaer Polytechnic Institate (RPI), and CMU are also now working on new legged
locomotion machines. In a recent development, Odetics, 8 small California-based firm, announced a six-
legged robot at a press conference in March 1983. According to the press release, this robot, called a
“functionoid”, can lift several times its own weight and is stable when standing on only three of its legs. Its
legs can be used as arms, and the machine can walk over obstacles. Odetics scientists ciaim to have solved
the mathematics of walking. It is not clear from the press release to what extent the Odctics work is a

scientific breakthrough, but further investigation is clearly warranted [And8S).

In general, one can safely conclude that despite the goal of improved vehicular mobility in difficult
terrain and the incorporation of the dynamics of motion, legged vehicles have not yet proved themsclves by
moving out of the laboratory and into the field. Although several researchers are actively working toward
this goal, progress in the area of walking machine was predicted to be slow in the next few years [Mor83].
Perhaps this is because of the need to deal with navigational issues in control and the problems of stability

of locomotion.

The four-legged articulated robot proposed in this research is intended to navigate a vagucly
described environment containing obstacles, inclines, and rough terrain. Moreover, it can adapt its motion

on the fly to accommodate any unpredicted obstacles in the environment.

2.4. MOTOR LEARNING-THE BEHAVIORAL VIEW

It is clear from the previous two sections that both computer animators’ views and mechanical and
control engineers’ views of motion control have relied on solving the equations of motion (either the
kinematic or the dyzamic) and have virtually ignored the motor learning issue. Evidence shows that only

solving the equations of motion can not explain phenomena such as "skilled performances":

(1) Highly skilled performers in dance, music, or sports make their movements appear 10 be so simple

and easy, manifesting incredible smoothness, style, and grace; while beginners in a similar task, are
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clumsy, inept, and highly unskilled. If both motor control systems are solving the same equations of

motion, how can one explain the difference in performance?

(2)  The grasping motion of the hand is done rapidly and without any apparent conscious intervention by
adults, whereas it takes an effort of will by a child to do the same grasping. If both motor control
systems are solving the same equations of motion, how can one explain the difference in

performance?

It is important to indicate here the similarity between the human motor control system and the robotic
motion control systems. This similarity has been demonstrated through the many simulation systems that
were built to study human and animal motor control and were regularly used to model motion control
systems for robots as well [CCP82]. This should be apparent since both are articulated structures that are

capable of independent motion due to internal forces.

Investigating these phenomena is a major concern of a field of study in psychology called motor
lcarning. Motor learning has been defined in a variety of ways by various researchers in the field. Three
distinct characteristics which serve to define motor learning were first given in [ScW72]. First, motor
learning is a process of acquiring the capability for producing skilled actions. That is, motor leamning is the
sct of underlying events, occurrences, or changes that happen when people practice, allowing them to
become skilled at some task. Second, motor leaming is a direct result of practice or experience. Third,
motor learning cannot (at our current level of knowledge) be measured directly, as the processes leading to
changes in behavior are internal and are usually not available for direct examination. Rather, one must
infer that leaming (the process) occurred on the basis of the changes in behavior that can be observed. A
synthesis of these thrae aspects produces the following definition of motor learning: "Motor learning is a set

of processes associated with practice or experience leading to changes in skilled behavior" [SZH79].

In fact, psychology literature on motor learning presents a rather disjointed collection of facts largely
devoid of unifying themes. Furthermore, the area of motor learning seems to have a "supermarket” quality:
a litle massed/distributed practice here, feedback there, stacks of reaction time, n.:ntal rehearsal,

speed/accuracy, short-term memory, and other distinct topics of intesest piled about in disarray.
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Perhaps the most appropriate way to tackle the motor learning issue is to study motor learning
theories. A motor learning theory is a set of theoretical assumptions which attempt to explain such things
as how motor skills are acquired, the role of practice, performance variations, learning limits, and the types

of cues which cause learning to take place.

In the following subsections, two of the most important modern motor leaming theories arc looked

at.
ADAMS’ THEORY

A theory dealing exclusively with motor learning, presented by Adams, generated enormous interest
during the 1970s [Ada71] [Ada76]. In the following discussion some of the major theoretical propositions

of the theory are presented.

Adams believed that all movements are made by comparing the ongoing feedback from the links
during the motion to a reference of correctness that is learned during practice. He termed this reference of

correctness the "perceptual trace".

For positioning movements, in which the individual must learn to locate his limb at a proper position
in space, the perceptual trace represents the feedback quantities of the correct position. Therefore,
minimizing the difference between the feedback received and that of the reference of correctness (the
perceptual trace) means that the link is brought to the correct position by closed-loop feedback processes.
In some of his writings [Ada71] [Ada76), Adams implies that the perceptual trace represents the path of the
action toward the target as well as the target endpoint, with feedback being used to guide the movement

along this proper trajectory.

Given the critical role of the perceptual trace in performance, how is the reference of correctness
learned with practice? Adams’ idea is quite simple: when the individual makes a positioning movement,
feedback stimuli are produced thai represent the particular locations of the limb in space. It is believed that
these stimuli do in some way "leave a trace” in the central nervous system (hence the name perceptual
trace). With repeated responses and with knowledge of the result (the information about the success of the

movement trials), the individual comes closer and closer to the target on repeated trials; and on each of the
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trials another trace is laid down so that eventually a kind of "collection" of traces develops.

Because of the knowledge of resuits, the learner is responding close to the target after only a few
trials, for each trial provides feedback stimuli that tend to represent the correct movement. In turn, the
collection of traces (perceptual trace) comes to represent the feedback quantities of the correct movement.
On subscquent trials, the learner moves to that position in space for which the difference between the
ongoing fecdback produced and the weighted average of the collected perceptual trace is minimal. The
difference between the weighted average perceptual trace and the feedback represents an error in the
movement. The individual secks to produce an action that results in minimal error on each trial. Since the

perceptual trace is stronger with each trial, the errors in performance decrease with practice [Ada71).

In such a view, knowledge of the result does not produce learning directly. Rather, it creates the
appropriate situation (i.e. being on mrget) so that the actual leamning mechanisms (i.e. the feedback

producing an increment in "strength” for the perceptual trace) can operate.

Some of the limitations of Adams’ theory are: (1) It focuses almost entirely on slow, linear-
positioning type of movements, which are not sufficiently representative of the many other kinds of skills
such as locomotion. (2) It has a limitation in recognizing the role of open-loop processes in movement
control (see Schmidt theory next). (3) Polit anu Bizzi [PoB78] found that some organisms deprived of all
sensory feedback from the limbs can respond skillfully, and they can even learn new actions. If the only
mechanism for controlling skilled actions was the use of feedback in relation to a perceptual trace, then
these individuals should not have been able to produce the actions they did. (4) Evidence against Adams’
theory was also provided in the psychology literature by what is called "variability in practice” (a teaching
technique in which the goal response to be made is systematically varied from trial to trial). Because the
perceptual trace is the feedback representation of the correct action, making movements different from the
correct action (in variable practice) will not result in the development of an increment of perceptual trace
strength. Thus, Adams’ theory predicts that variability-in-practice sequences, in which the learner
experiences a number of targets around a central criterion target, should be less effective in learning the

criterion target than practice on the target itself. The evidence showed, however, that variability in practice
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is even superior to practicing the transfer target itself [ShZ81].

SCHMIDT'S THEORY

Largely because of the dissatisfaction with Adams’ theory, Schmidt [SZH79] formulated a theory
that can be considered as a rival to Adams’. Schmidt’s primary concern with Adams’ position was the lack
of emphasis on open-loop control processes. Yet, the Schmidt theory has borrowed heavily from the ideas

of Adams in hopes of keeping the most effective parts and eliminating defective ones.

The basic premise is that with practice, individuals develop rules similar to production systems rules,
about their own motor behavior. This relates to the ideas of a generalized motor program (each particular
movement has a parameterized motor program) to which a set of parameters must be applied in order to
perform an action. Schmidt’s theory proposes that rules are leared during practice. These rules are a
relationship between all the past environmental outcomes that the individual produced and the values of the

parameters that were used to drive the generalized motor programs to produce those outcomes.

In other words, the rules represent the relationship between what the individual "told the motor
system to do" and what the motor system actually accomplished. These rules, maintained in memory, are
called the "recall schemas”, and can be used to select a new set of parameters for the next movement
situation that involves the same motor program. Knowing the rule and Qhat environmental outcome is to be

produced, the individual can select the parameters for the program that will produce the desired motion.

Schmidt’s theory does not specify where the motor programs originate. The theory had to assume
that programs are developed in some way and that they can be carried out by executing them with the
proper parameters. The theory also says nothing about how the rules about parameters and scnsory
consequences are developed. Another important point is that, according to the theory, it is not clear how an

individual makes the initial responses before any generalized program can exist.

Compared to Adams’ theory, Schmidt’s theory has the advantages that it accounts for more types of
movements; also it seems to account for error detection capabilities more cffectively, and it scems to
explain the production of novel responses in an open-skills situation. However, the complexity of the

problem of motor learning is such that many issues have not yet been investigated nor understood [ShZ81].



2.4 MOTOR LEARNING-THE BEHAVIORAL VIEW 28

The hybrid locomotion control system proposed in this research utilizes Schmidt’s ideas of
developing production rules during motion practice. Moreover, it incorporates a set of well-defined
techniques that show how these rules are developed (or firmed up), how the system functions before their

existence, and how movements are produced differently as a result of practice and experience.

2.5. MOTION DYNAMICS IN BIOMECHANICS

Biomechanics is the study, using mechanical principles, of animal bodies in motion and rest. Thus,
the science of biomechanics lies at a juncture between anato_my. physiology, physics, and engineering; and
consequently it combines the study of motor control and motor learning [Akk79]. Most of the work in
biomechanics has been done on human bodies, but the fundamental principles are similar for other higher
animal species and locomotive robots. A desirable goal of biomechanics and, for that matter, of movement
simulation systems for computers, is a model which, given nervous signals, would provide muscular forces
and, given muscular and other internal and external forces, would provide the positions, velocities, and
accelerations of each limb. The complexity of the problem is such that this has not yet been achieved for

the body as a whole, though many of the issues involved are fairly well understood [WiL85].

An early landmark use of computers for biomechanical analysis was the study by Chaffin {Cha69].
Chaffin developed a simple seven-segment model of the human body and used a computer program to
determine the muscular torques and reaction forces which account for the static configuration of joints in
the sagittal plane. Given masses, locations of centers of gravity, moments of inertia, and the positions of
joints and segments, the program returned net muscular forces required at each joint to maintain stability as
well as reaction forces at each joint. Chaffin used the same program to model in more detail the shear and
compressive forces on the spinal vertebrae in varying positions. In comparing results of his model to
experimentally-determined maximum voluntary forces exertable at joints, Chaffin found that the model

returned predictions of muscle forces within an acceptable range.

In 1970 Kane and Scher published a description of the dynamics of the human body in free space

(KaS70]. By 1976, Huston and Passarella developed a set of dynamics equations for a body with 34
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degrees of freedom [HPH76). Another very complete mathematical model of the human body is that of
Hatze [Hat77]). Also R.B. Stein [Ste82] [STM83] [SMTS8S] studied nervous system control in limb

movements during locomotion in cats.

A sophisticated computer analysis system which included some use of simple computer graphics
images was developed by William and Seireg in 1970 [WiS78). This system could analyze the entirc body,
or smaller segments such as the jaw, and included a facility for displaying the bodics on an interactive
graphics display. Dynamic analysis for this model was quasi-static, i.c. nonlinear, velocity-dependent forces
such as the Coriolis force were not included. This simplification is acceptable as long as the bodies being

studied are not moving very rapidly.

In concluding this chapter we should mention that the idea of replacing part of the heavy dynamics
computations of articulated bodies has been around for some time. For example, Albus [A1b7S] [Alb79]
[AIb81] proposed a unique control scheme called the Cerebellar Model Articulation Controller that was
based on models of human memory and neuromuscular control. This control scheme was based on a
mathematical module that, in a table look-up fashion, produced a vector output in response to a discrete
state vector input (the Cerebellar Model Arithmetic Computer, CMAC). In the controller, the state vector
input was composed of position and velocity feedback from the robot joints, as well as additional state
variables that provided a command input to the system. The output vector was the drive torques to the robot
actuators. Assuming that the values in the table were adjusted correctly (through training techniques), the
robot would automatically follow the correct trajectory if put in the correct initial state and given the correct
command state. (The correct input state would result in a set of actuator drives that would cause the arm to
move, generating a new input state that would result in new actuator drives, and so on.) While the system
was capable of generating such "leamned responses” once the memory was trained, training techniques that

would make the control approach suitable for use were impractical [Rai77].

Hock [Hoc66] proposed a method by which the control computer could "learn” to control a "pony-
sized" walking vehicle on difficult terrain. The vehicle was made to walk on level ground, using

preprogrammed leg motions, while values of each of several quantities were recorded as "idcal” values.
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Later, when the vehicle walked over irregular ground, the instantaneous value of each quantity was
compared to its ideal value. The result of each comparison was encoded as +1, -1, 0, accordingly as the
mcasured value was larger than, smaller than, or about the same as the ideal value. The pattern of +1s, 0s,
and -1's so obtained was interpreted by a pattem-recognition program in the control computer. Hock
proposed that perturbations of the actions recorded during preprogrammed-gait training period would

constitute an adequate repertoire of control actions.



CHAPTER 3

SYSTEM ARCHITECTURE AND THE KINEMATICS OF MOTION

3.1. INTRODUCTION

It is the work of this chapter to lay the foundation for the design of the hybrid numerical/knowledge-
based locomotion control system for the four-legged articulated robot. Toward this end, the overall
architecture of the proposed system is described in the first section of this chapter. The four-legged
articulated robot has been modeled and described in section two. Section three investigates the kinematics
of the robot motion. This involves the development of the joint coordination control algorithms. Such
algorithms include automatic leg positioning and automatic body height, pitch, and roll regulation over

undulating terrain.

3.2. THE ARCHITECTURE OF THE PROPOSED SYSTEM

Despite the growing number of useful knowledge-based systems that are based on purely heuristic
symbolic knowledge, several recent knowledge-based systems are coupled with various modes of
numerical computing such as numerical analysis, statistics, and simulations. This coupling has taken
several forms, including anaiysis of numerical data, reduction of large sets of numerical results into
symbolic information, and guidance of complex numerical computing processes [ABC86], [CoK86],

[GIK86], [LoT86], [TEC86] and [Unm86).

For example, Unmeel [Unm86] suggests that knowledge-based systems can be uscful in
computational aerodynamics and fluid dynamics, and he describes a hypothetical knowledge-based system
called AERODYNAMICIST. As computational aerodynamics is applied to increasingly complex and
time-consuming problems requiring many calculations, knowledge-based systems have been found to have

the potential to assist computational aero-dynamicists in their analysis and design tasks. Unmeel identifies

31
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two related aspects of computational aerodynamics: reasoning and calculating. Reasoning is based on
factual and heuristic symbolic knowledge of both computational procedures and aerodynamics and can be
carried out by symbolic processing and inferential procedures. Calculation is guided by reasoning and based
on numerical algorithms. These two modes of computation are interwined and it is impossible to do one
without the other. Symbolic processing can be applied to many elements of computational aerodynamics
such as algebraic formula manipulation, analysis of experimental data, management of databases, selection

of problem solving methods, analysis of computational results, and facilitating man-machine interfaces.

One of the currentiy accepted methods of aerodynamic design is the numerical optimization approach
to produce designs that achieve user-specified objectives. The designer specifies an initial aerodynamic
body in terms of design: variables, objectives, constraints, and conditions. An optimization method is used
to optimize a selected design objective while satisfying the postulated constraints. A knowledge-based
system can be used to guide the process of optimization. Its knowledge would utilize databases of previous

designs and experience related to speeding up the interactive optimization process.

Existing coupled symbolic and numeric computing systems can be classified into two classes. The
first, and most common approach, is coupled systems that treat the numerical routines essentially as "black
boxes". These systems are referred to as shallow coupled systems. As an example of such class is a shallow
coupling system that is utilized by a Carnegie-Mellon expert system to solve non-linear algebraic equations
in {TEC86]. This system manages the application of three different numerical programs during the solution
process. The expert system component determines which program to apply, depending upon how each
affects convergence of the state variables, This system was reportedly able to solve sets of equations that
none of its constituent numerical programs could solve individually, Other shallow coupled systems can be

found in [CaO86] [Cha86] [NGS86].

A second coupling approach is to develop systems utilizing extensive knowledge of all participating
processes (such as functions, inputs and outputs, usage constraints and limitations, and the like). This
knowledge is integrated with other information and used directly by the knowledge-based system

component during problem solving. An example of a deep coupled system is the Engagement Analyst’s
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Apprentice (EAA) developed by North American Rockwell [ABC86), and it is intended to assist the user in
constructing a simulation from simulation modules and to evaluate the results. EAA employs exiensive

knowledge of each simulation module in order to achieve its objective.

Often, however, coupling is not required, but either the symbolic or numerical processes are
enhanced by it. For example, intelligent interfaces may not be necessary, but often they greatly improve the
utility of numerical programs. Symbolic computing can sometimes be enhanced by the acquisition of
procedural knowledge in the form of numerical algorithms (algorithms capable of replacing

computationally intensive search routines) and by the improved precision of numerical processes.

This thesis proposes a shallow coupled system for the locomotion control of a four-legged articulated
robot. The system architecture is depicted in figure 3.1. The system consists of two controllers, a numerical
controller (NC) and a learning controller (LC). Initially, the LC does not share in the control of the robot
locomotion. Rather, it develops its experience by observing the NC solution sequences that solve
locomotion problems currently beyond the LC’s own planning abilities. General motor skills arc
automatically assimilated in the form of production rules in the LC via a knowledge-based analysis of how
the observed solution sequences achieved their goals. These production rules contain knowledge about

what forms of torque and force profiles are needed by the robot to achieve sustained stable locomotion.
Sustained stable locomotion means:!
(1)  maintaining the robot orientation, having contro! over its velocity, and avoiding obstacles,

(2)  choosing the most appropriate locomotive skill at any point during navigation (e.g, walk, trot, climb,

etc.),
(3)  dealing intelligently with the environment (see later),

(4)  maintaining the robot’s static and dynamic stability,

'The most important of these requirements are (1), (3), (4) and (8).
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Figure 3.1 The Architecture of the Proposed System
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combining different locomotion skills (e.g, turning while running),
achieving smooth transitions between different locomotive skills,
preferring the paths traveled on before,

reducing total energy consumption in executing missions.

The four-legged articulated robot "lives” in an environment that contains obstacles such as blocks,

holes, inclines, and rough terrain. The robot has a simulated onboard camera (since we are not building a

real system) fixed on top of it. This camera regularly feeds to a navigation system the local obstacles that

the robot faces. The initial traversals of the robot are based on a local navigation strategy that relies on the
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on-board camera information. At any stage in the navigation the terrain is characterized by a partially built
world map. This world map is updated from time-to-time by integrating information from the on-board
camera. The robot employs a global navigation strategy that uses the learned world map in the regions it is
available, and resorts to local navigation in the regions the lcamed map is not available. This navigation

strategy is similar in many ways to the strategies proposed by Meystel in [Mea86a] [Mea86b] [Mca87b]

[Mea87a].

Since the robot cannot anticipate where small road obstacles are, it has to edit its motion on the fly in
order to avoid or overcome the "perceived” obstacles. The necessity to edit the motion on the fiy has been
investigated before in [WiB78). Winkless defined intelligent robot motion as ".. the ability to do
appropriate motion under unpredictable conditions". Thus, a preprogrammed robot motion, highly
accurate, precisely measured and well understood cannot be considered an intelligent one, since the robot
would have no ability to cope with unpredictable situations and to choose between alternatives. Such
preprogrammed motion has been tried in the experimental system. The evaluation of the produced motion

can be found in chapter 6,

Actually the problem of controlling the motion of autonomous articulated robots is multifaceted. In
the general case, the robot must navigate in terrain which is unknown and beset with obstacles. This
requires perceiving the local situation, planning, obtaining at least suboptimal solutions to some
combinatorial problems, and solving equations of motion with sufficient precision to predict and control the
behavior of a dynamic system. In this research, our main interest is in the problem of controlling motion,
assuming that the terrain is perfectly perceived and known in the robot’s vicinity, and that a general plan

has already been formed. The solutions sought are those which have potential of execution in real ime.

The LC contains a learning apprentice system (LAS) that acquires knowledge of the desired control
of the robot’s limbs with the help of a human teacher, who prescribes a mission and corrects torque profiles
to achieve the desired motion control. The LAS incrementally "compiles” the training experience into a sct

of rules to be used by the LC (according to Schmidt’s theory- see section 2.4). This incremental acquisition

*See the details of the navigation system in Section 6.2,



3.2 THE ARCHITECTURE OF THE PROPOSED SYSTEM 36

of locomotive knowledge makes the LC gradually go through a natural growing process from an apprentice
to the NC, to an assistant and finally to a parter to the NC. This control upgrading takes place gradually

and incrementally.

First the leamed LC’s rules are added as a symbolic interface to manage the NC’s computations
(symbolic front end). But no matter how smart the symbolic interface is, the NC is limited by the
open/closed kinematic chains dynamics computation speed which can’t be performed in real time (see
Chapter 4). What is needed to be looked at, therefore, was how to replace parts of these heavy computations
with more efficient symbolic computations. This was achieved by upgrading the LC capabilities to an
intelligent locomotive solver which solves locomotion problems on its own when it is possible. As will be
explained in Chapter §, the LC will gradually transform from a high level symbolic interface to an
intelligent locomotive solver that will in some (eventually in the majority) of the cases be able 1o solve
locomotive problems on its own without the help of its numerical partner, the NC. Consequently, the robot
will be able to control and coordinate its motion using the LC instead of solving the dynamics equations of

motion.

The advantage here will be the saving of the dynamics computation time needed by the NC and the
rcal time motion control of the robot. Morcover, the LC will be able to do purposeful activities under
unpredictable conditions in the environment (e.Z. obstacles). These purposeful activities are formed in
redundant situations, i.e., in situations which cannot be exhaustively overviewed and properly programmed.
To deal with the unpredictability of the environment, the LC develops fine-tuning and terrain adaptation
rules that manipulate the torque profile and tailor the motion to the actual details of the terrain during actual
motion execution. These rules are also learned by the LAS (a part of the LC). This approach can be viewed
as "fine-tuning of the dynamic behavior of the motion" or simpiy what can be called "dynamic regression",
where rules are used as post processes that modify the robot motion on the fly during the actual motion

execution,

The idea of editing torque and force profiles comes mainly from the work of John Hollerbach who

used a mass-spring model to simulate handwriting in his dissertation [Hol78]. Hollerbach noticed that one
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of the features of springs is that they oscillate when set in motion. He conceptualized the muscles that make
‘up the finger movements as four springs (left- right- up- down) with the finger links concentrated as a mass
in the middle. If this mass is thrown in a diagonal direction and then released, it will oscillate in a circle. All
that is required to keep the mass oscillating is an occasional pulse of force delivered at the proper time in
the sequence. If we imagined that a paper is translated leftward under this oscillating spring system, the
resulting trajectory pérhaps will be a series of loops. Hollerbach's thesis is that if the pattern of the force
application to the spring system is changed very slightly, a set of loops that forms the handwritten letters

Ilell Mot ot

. u','n", etc. can be formed.

Asaytryan also has a similar idea of editing force and torque profiles [SZH79] that are acling on a
mass-spring model of a human figure. Asaytryan was trying to prove that complex mass-spring structures
could, in certain gross ways, behave like muscles. His model responded in an intuitively acceptable manner
to changes in joint torque and force histories. The simulated human figure was capable of rcasonable
reproduction of the actual movements, with some small differences manifested as the computations

proceeded.

Platt and Badler [PIB81] also developed a dynamic spring-based model for facial expressions
simulations. Patterns of force and torque profiles were used to generate different facial expressions. The

model was successful in implementing many different realistically looking facial expressions.

Simulation of a kicking motion of a rugby player punting a f>otball in which torque histories were
manipulated was reported in [MJW8S]. The movement was modified as follows. In order to extend the
reach of the leg of the kicker, the magnitude of the knee extensor torque history was increased by 40% (i.c.
multiplied by a scaling factor that is not necessary linear). Given the form of the produced simulated image
sequence, it was recognized that modifications to other joint torques were necessary. Increasing the ankle
torque history by 18%, coupled with the previous changes to the knee torque produced the desired
movement sequence. Good agreement was achieved between the displayed angular displacements for the

original and simulated movements.
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In our system a convenient method for madifying the joint angles and torque profiles uses curve
control functions. The use of curve control functions allows the teacher to specify and edit complex
motions and to produce smooth motion patterns. The user interface of the system provides an interactive
graphical editor which allows the teacher to edit the curves. In order to edit a joint's movement, the teacher
selects the joint (using the mouse). The curves (both torques and angles) for all degrees of freedom at this

joint will be displayed for editing. Using point modifications, the curves can be modified.

In the following sections brief descriptions of the modules in figure 3.1 are presented.

3.2.1. THE NUMERICAL CONTROLLER (NC)

The NC deals with the dynamics of the robot motion. Given both the body's desired trajectory and
the leg joint commands (the outputs of the JCC) of the robot, the NC uses two recursive formulas to solve
the inverse dynamics problems for both the open and closed kinematic chains. The NC implements a
“pipelined” computation model on a network of processors for fast execution of the heavy dynamics
calculations. In calculating the forces and torques needed, the NC deals with the legs that are in contact
with the ground using a linear programming formalism developed in chapter 4. The legs that are not in
contact with the ground form open kinematic chains and, therefore, are dealt with using open chain inverse

dynamics equations,

The robot uses several types of gaits and leg cycles. These gaits are characterized by patterns of
movements that are repeated over and over, step after step. Certainly, there are variations between steps due
to the nature of the terrain (i.e., roughness and slopes). Due to these varying patterns of gaits and leg
cycles, a number of rather complicated sequences of closed and open chains are formed many times in the
course of the robot navigation. This imposes the requirement to have a general numerical locomotion
control system that takes care of the formation and breaking of the chains during the motion. The
computational requirements of this locomotion control system fall into the "supercomputer” class, and

cannot be executed in real time on our system (an IRIS 2400 system- see chapter 6).
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The details of the robot motion dynamics are described in chapter 4.

3.2.2. THE LEARNING CONTROLLER (LC)

The LC maintains three (initially empty) sets of production rules of the form "situation implies
action” (S = A). These rules regulate the robot’s locomotion behavior. They go through modifications and
enhancements by the LAS as a result of practice and experience. A rule that still has an incompletely

learned S and/or A is called a "rule shell". The three sets of rules are:

Skill Usage Rules: These rules identify the contexts under which the various learned skills should be used
(called the conditions-of-success) and how to drive the NC to implement them. An example of a rule shell
in this set is Walk(A,B): If the robot’s four legs are in some orizntation (X,Y,Z,W) within a particular leg
cycle (i) (for the definition of orientation and leg cycle see section 3.4), and the goal broadcast is (A—B )
such that the road from A to B is flat and the distance between these two points is less than or equal to 5
units of distance, and both points are located along a NS (North-South) street; then start to drive the NC
with the ¢, leg cycles for all legs such that the legs start from the closest positions to the initial leg scttings
X, Y',Z",W’) in lc,. This is in order to facilitate the smooth transitions between different types of gaits.
The linear body speed is within the range [a,b], and the stopping conditions are of the destination point B

(within some tolerance).3

Prototypical Torque Profile Rules: These rules use torque profiles that are calculated by the NC and are
previous experiences to draw upon. A rule shell for a walk skill in this rule set would be similar to the
previous rule example replacing the right hand side with the torque profile calculated by the NC. Building
these rules is nothing but priming the LC with the torque profiles produced by the NC (previous
experience), but in compact form (since these rules will have been firmed up by gencralizations and
discrimination aigorithms of the LAS - see chapter 5). The torque profiles are used to directly drive the

direct dynamics equations in the animation subsystem (see section 3.2.4).

*The actual forms of these rule types are described later.
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Motion Enhancement Rules: These rules describe the short-term monitoring that is needed to allow the
robot to edit the torque profiles on the fly during the actual motion execution. They identify the various
types of obstacles that have been perceived before and prescribe various ways of editing the torque profiles

in order to overcome or avoid these obstacles.

As shown in figure 3.1, the LC consists of two components: a Knowledge-Based Controller (KBC)
and a Learning Apprentice System (LAS). The details of the LAS structure are described next section. The
KBC has a structure different from conventional expert systems (such as R1/XCON). In our context the
KBC has to integrate sensory data, robot capabilities, and task constraints in order to generate acceptable
locomotion movements. The KBC has to be able to do all that and operate at speeds comparable 1o the
real-time constraint of the locomotion task. For example R1/XCON (the VAX configuration expert system)
has no real-time constraints, it ran at approximately S rules/sec on a main frame DEC-10 [MMS85]. For
our KBC we would like to execute a rule on the order of every millisecond, 200 times faster, on a
microcomputer on-board the robot. In order to achieve that, our KBC have to rely on techniques to compile
the rules, to have a limited function inference engine, to divide the rules into smaller and smaller sequential
pieces, and to use conventional languages to describe the rules in order to have the capability to rapidly

process both symbols and numbers.

Russell Anderson’s ping pong robot has a controller similar to KBC that he calls "Real-time Expert
Controller” [And88]. Anderson built his controller, that is rule-based and executes loosely specified
strategies in real-time, in order to show that reasonably intelligent behavior could be emulated by the ping

pong robot.

Conventional robot systems operate slowly and methodologically, often playing back a pretaught
sequence of positions and oricntations. Anderson tried to exploit human-like heuristics to cope with a
dynamic environment quickly enough. Given an incoming ball trajectory, the robot controller picked an
initial suitable return shot that satisfied the constraints of the robot and the rules of ping pong. Because the
robot system had to act before it actually sensed, the controller continually adapted this initial suitable

return as additional, more accurate sensor data arrived. This is what Anderson called "temporal updating”,
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The controller was able to adapt that ball return plan because it did not commit itself right from the
beginning 10 a detailed return shot. There were many ways to retumn the ball. Andcrsoh called this
“redundant DOFs problem" and invested on the controller the ziuLhority to alter them. In other words,
Anderson’s controller was successful in capturing expert knowledge about how to generate feasible
solutions rapidly.

Similar to Anderson’s controller, our KBC is implemented in conventional "C" language. Iis
inference engine is very simple because the data operated on are known and fixed in quantity. This has
eliminated the need for pattern matching between rules and variables, and consequently allowed for

generating feasible solutions rapidly.

3.2.3. THE LEARNING APPRENTICE SYSTEM (LAS)

This module is responsible for the process of incorporating domain knowledge into the KBC’s
knowledge base by extracting it from a domain expert ( a teacher) and encoding it into production rules

(this is what we call "skill transfer"- see later).

Learning Apprentice Systems (LASs) are defined as knowledge-based consultant systems that
directly confront the knowledge acquisition bottleneck by leaming from interactions with an information-
rich external environment [MMS85]. The idea of building a LAS for motor control is drawn from the
important field of machine leaming in artificial intelligence. Machine learning research has long sought to
construct complete, autonomous leaming systems that start with general inference rules and learning
techniques and gradually acquire complex skills and knowledge through continuous interaction with an
information-rich external environment. Leaming Apprentice Systems are currently being developed in the

domain of VLSI design [MMS85], well-log interpretation [WSK86], and medical diagnosis [WCB86).

In our context the LAS acquires knowledge of the desired control of the robot’s limbs with the help
of a human teacher, who prescribes a mission and corrects torque profiles to achieve the desired motion

control. The LAS incrementally "compiles” the training experience into a set of rules of the three types

described above.
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At any stage in the robot navigation, the robot would rely on its LC to take charge in controlling its
locomotion. If a sustained stable locomotion has been achieved by the robot, the teacher will not intervene.
On the other hand, if some type of motion bug (i.e. something that will lead to disturbing the sustained
stable locomotion of the robot) is detected by the teacher, he or she will intervene to update the motion of
the simulated robot (the torque profiles). In this case, the LAS will take advantage of this teacher
intcrvention and use rule-learning algorithms to modify the current sets of the LC rules. The LC rules are
modified because they contain faults, which can be of two types: (1) motion faults: a rule contains an action
that calculates incorrect motion; (2) control faults: the rules have undesirable control behavior (e.g. some

ruies fire when they are not supposed 10).

The LAS’s main leaming algorithm is:

Until all the rules are stabilized (no more changes for a specific number of training missions):
(a) Identify a fault with a rule from a rule set.

(b) Modify the selected rule to attempt to remove the fault.

This mechanism will provide real-time control over the robot motion without disrupting the dynamic
integrity of the resulting motion, since the edited torque profile still has to drive the direct dynamics module

in order to produce the motion (see the animation subsystem next).

The details of the LAS algorithms will be described in Chapter 5.

3.2.4. THE ANIMATION SUBSYSTEM (ANS)

The animation subsystem is the front end of the experimental system. It is responsible for displaying
the simulated robot and interacting with the user. This module communicates with either the NC or the LC
by sending and receiving packets over an interprocess communication facility. The animation subsystem
invokes either the NC or the LC when the user wants to assign a task to the robot. The appropriate
controller will take over the task execution and will send a set of packets to the animation subsystem. These

packets represent the next animation frame’s forces and torques on the robot limbs. There is one packet in
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this set for each limb of the robot. The animation subsystem implements the direct dynamics recursive
algorithm of Armstrong that was originally developed for the space Shuitle Remote Manipulator Systcm
(CANADARM) [Arm79] later developed in the graphics context [AGL86], and then generalized to the

multiprocessor case [AMOS87].

The details of Amstrong’s direct dynamics equations will be described in chapter 4 and the animation

subsystem will be described in chapter 6.

3.2.5. THE JOINT COORDINATION CONTROL (JCC)

This module deals with the kinematics of the robot motion. It contains algorithms which permit the
synthésis of gaits suitable for realization of the desired robot trajectory, taking into account the constraints
imposed by terrain conditions. In this module, algorithms are implemented for automatic leg positioning
and automatic body height, pitch, and roll regulation over undulating terrain. These algorithms involve the

study of the kinematics of the robot motion and are developed in section 3.4 of this chapter.

3.3. THE ARTICULATED ROBOT KINEMATIC MODEL

The articulated four-legged robot is modeled in Figure 3.2. A crude estimate of the number of
degrees of freedom (DOF) which are needed for free locomotion of this robot was obtained by observing
that during locomotion it must ideally be possible to control the six DOF of the body (three translational
and three rotational) when it is supported by each of the two alternating sets of legs( at Ieast two legs should
be in contact with the ground at any time to achieve static stability- assuming that two legs along with the
force of inertia can approximate static stability conditions). So one might expect about twelve DOF to be a
minimum for the four-legged robot. If twelve DOF are taken as a rough estimate, they can be distributed
among the robot’s four legs of three DOF each. The robot of figure 3.2 has three DOF for each of its four

legs: two at the hip (one for elevation and another for lateral movements) and one DOF on the knce.
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Figure 3.2 The Kinematic Model of the Four-Legged Articulated Robot
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The following convention has been assumed for the coordinate axes, The X; coordinate axis is

directed towards the desired initial direction of travel, the Z, coordinate axis is in the direction of

gravitational acceleration (positive downward), and the ¥; axis is in the direction of the vector cross

product of Z; and X;. The (X;,Y;,Z;) frame defines the inertial frame that is fixed in the nonrotating earth,

The body is modeled as a single rigid rectangular box with the legs adjoined to the body at or close to the

outside edges of the side surface. A right-handed body fixed coordinate frame (X.Y Z) is established with

its origin fixed at the center of gravity of the body. The total state of the articulated robot is described by

five state vectors;
(1)  The body state vector.

(2)  The four legs’ state vectors.
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The body state vector is a twelve-element vector that describes:

(@)  The position of the center of gravity of the body relative to the inertial frame (X;,Y;.Z,). This is

shown in figure 3.2 as (X, .Y, .Z, ).
(b)  The components of the translational velocity of the center of gravity ()? b ,};,, ,i,, .

(c)  The body orientation Bryant angles (also known as Cardan angles) (¢,0,y). These angles are defined
such that they are all simultaneously reduced to zero, when the (X;.Y;.Z;) axes are parallel 10 the
(X,Y.Z) body axes, respectively. The rotation from the earth fixed inertia frame (X1.Y1.2) 10 the
fixed body frame (X,Y,Z) is accomplished by first rotating an angle y about the Z-axis (azimuth),
then an angle 8 about the rotated Y-axis (elevation), and finally an angle ¢ about the rotated X-axis

(roll).4

The transformation matrix between the body fixed coordinate frame (X,Y,Z) and the earth fixed

frame (X;,Y; ,Z;) is given by:

cosBcosy sinycos8 —sin©
T = |(cos wsinesimb—sin\gcosda) (cosycosp+sinysinBsing)  cosBsind 3-1
(sinysind+cosysinBcosd)  (sin ysinBcosp—cosysing)  cospcosd

Bryant (Cardan) angles are particularly useful in cases where a body is moving in such a way that
body fixed coordinate frame deviates only little from the inertial coordinate. For sufficiently small angles
the linear approximation sin o=ct, cos o<1 (0=0,8,y) yields:

1 y -6
Tp=1~y 1 ¢
0 4 1

Consequently, we can write the approximated transformation matrix on the form:

Tp =E - (9.0y)
Where E is the identity matrix, and the 'tilde’ operator converts the vector (9,8,y)” into a matrix form:

“The sequence of rotations chosen is significant, for each sequence uniquely defines a different body orientation. There are six
permutations of the three axes about which rotation will occur. Therefore there are six kinds of Cardan angle systems. Cardan angles of
the first kind, in which rotations occur about X-, Y-, and Z-axis respectively are referred 1o as a body-three: 1-2-3 system where the
three rotations axes are fixed within the body, and the order of rotation is X, Y, and Z {TuP87 }. The Cardan angle system chosen here
is of the body-three: 3-2-1 rotation.
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-0 ¢ 0
It makes no difference whether (¢,8,)7 are interpreted in the inertial frame or in the body fixed frame, This

0O -y 0
8. = [w 0 —¢}

can be shown as follows. If (¢,8,y)7 designates the body orientation in (X,Y,Z) then the body orientation in

the inertial frame is the linear approximation:

T 0.8) = (€ - (6.89)7) 0.0.y)7
Because of the identity (,0,y)7 (6,8,y)7=0, this is identical with ($,0,y)T. The result of these

considerations is that within linear approximations small rotation angles can be added like vectors.
(d)  The body angular velocity (a0, @, ¥ expressed in body coordinate (X,Y.Z).

The relation between the body angular velocity (o, 0y, @, ) and the rotation rates («fa.é,\il) is given by:

©y | = {~cosBsiny cosy O |6 32
o, cosBcosy  siny O] |y

Again for sufficiently small angles, the linear approximation sina=0, cosa=1 yields:

o, [ sin@ 0 1] 0

o| [0 o 17 [¢ 7
@ =0 1 0| (8] =18
©, lOO\y ¢

Each leg consists of two rigid links with a one-degree of freedom knee. Two other degrees of
freedom at the hip make a total of three kinematic degrees of freedom for each leg. In order to describe the

state of the robot legs, three additional coordinate frames for each of the legs are defined:

(@) The coordinate frame (Xj,Ys,Z );, has its origin at the hip of leg i. The Z,;-axis is parallel to the
body Z-axis and directed downward. The Y;-axis is perpendicular to the plane of the leg segments,

and the X, -axis is uniquely determined by maintaining a right hand coordinate system.

(b)  The coordinate frame (X*,Y*,2’);, has its origin at the hip of leg i and rotates with the upper limb
segment of the leg. The X;-axis is directed along the upper limb segment. The Y;-axis is
perpendicular to the plane of the upper and lower limb segments. Finally, the Z;" is uniquely

determined by maintaining a right hand coordinate system.
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(c)  The coordinate frame (X",Y",Z");, h=: its origin at the knee of leg i and rotates with the lower limb
segment of the leg. The Z;-axis is directed along the lower limb segment into the supporting surface.
The ¥;-axis is parallel to the Yy and ¥; axes, and the X; is uniquely determined by maintaining a

right hand coordinate system.

One may note that when all leg angles are reduced to zero, the (X.Y, ,Z, ), (X',Y".2");, (X".Y".Z");

coordinate frames are all parallel to the body coordinate frame (X,Y.Z).
Each leg state vector is a six-element vector that describes:

(@) Theleg joint angles (y;,8x; 8 ). Where v; is legi’s azimuth angle. It is the rotation angle around the
Zy;-axis (i.e. it is the angle between the leg plane and the body longitudinal axis, X). 6,; is the hip
elevation angle. It is the rotation angle around the ¥; -axis (i.e. it is the angle between the body planc,
XY, and the upper limb segment). 8 is the knee elevation angle. It is the rotation angle around the

Y"-axis (i.e. it is the angle between the lower limb and a perpendicular to the upper limb).
(b) The leg joint angle rates (\; By .éu)-

Both the body and leg frames are shown in figure 3.2,

3.4. JOINT COORDINATION CONTROL (JCC) ALGORITHMS

In this section the kinematics of the robot motion is described. Kinematic control of the robot
involves control of the motion without regard for the forces which produce this motion. The algorithms
that synthesize the body and leg trajectories of the robot have been devcloped. These include algorithms for
automatic leg positioning and automatic body height, pitch, and roll regulation over undulating terrain.
These algorithms were inspired by the work in [PaF73], [FrV69], and [OrM73]. The kinematic algorithms
accept commands from a human animator, and with a knowledge of the present state of the body of the
robot relative to the supporting surface, it synthesizes joint commands that direct the robot over the desired

trajectory (desired angles, angle rates).
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The animator develops a strategy for carrying out a sequence of operations to accomplish specific
objectives (e.g. Walk from A to B). Then, he/she begins to provide commands to the kinematic algorithms.

These commands are broken into three basic categories:

(@  Speed control commands: Here the heading of the robot remains constant while the desired trajectory

for the center of gravity of the robot body is provided by the animator.

(b)  Heading control commands: The heading of the robot turns with rates commanded by the animator

who controls the forward, backward, or sideways velocities.

(¢)  Gait Cycles: The animator specifies the type of gait to be performed by the robot. Currently the
implemented prototype has fourteen different locomotive skills. These are: Walk, Climb, Rack,
Turn-left, Tumn-right, Tum-in-place, Trot, Pace, Gallop, Stop, Run, Pronk, Walk-backward, and

Walk-sideways.

Many of the characteristic variations in pattern of limb movements can be visualized by two men
walking behind each other. If they keep in step, the combined pattern of their leg movements is that
of racking; if they are completely out of step, the pattern is that of a trotting; if they could be partially
out of step, they would illustrate walking; if they are jumping and at the same time keeping in step,
they would illustrate pronking. In all patterns of movement the frequency of movement is the same
for all limbs and, except in a gallop, each limb is always one-half of a complete cycle out of phase
with its fellow limb on the other side of the body. The distinctive feature of a gallop is partial
synchronization of the two fore and two hind limbs. Two fairly clear types of gallop exist: transverse
and rotatory, and in neither case is synchronization of the two fore or two hind limbs complete. The
sequence of the leg movements are shown in Figure 3.3, If in a transverse gallop the left fore leg
leaves or strikes the ground before the right fore, the two hind limbs also move in that order: in a
rotatory gallop the reverse is the case, if the left fore leg moves before the right fore leg, the right

hind moves before the left hind limb.

Figure 3.3 shows some of these locomotive skills. The rectangles in the figure indicate the times the

foot is not in contact with the ground. Notice the possible transitions from one gait to another. For
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example, the transition from walking to trotting can be continuous (i.c. smooth transition): an increasc in

walking speed would make a front leg begin to step before the opposite back leg touches the ground. The

more one increases the speed, the more the walking switches to trotting.

6]

)]

3

@

In setting up kinematic models for gaits, certain definitions are useful [McG68). These are:

Stide Length A,: is the longitudinal distance by which the body is translated in onc complete

locomotion cycle.

Lateral Length A, : is the lateral distance by which the body is translated in one complete locomotion

cycle.

Angular Displacement A, is the amount by which the body is rotated in one complete locomotion

cycle.

Period 7: is the time required for one complete locomotion cycle of the gait.

1; 23
— 5 4
C—/

1 1 |
2 2 /=
33—
— 3 —

4 4

Walking ' Pacing
1 (—]
) — 1
3 | e | 2 ! ——
4 l=—= 3‘; ——

Trotting Transverse Gallop

Figure 3.3 Some of the Robot’s Basic Locomotive Skills
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(5) Duty Factor §;: is the relative amount of time spent on the ground by each leg during one locomotion
cycle.
(6)  Relative Phase ¢;: is the amount of time by which leg i (i=2,3,4), lags behind that of leg 1 expresscd

as a fraction of the time required to complete one locomotion cycle.

For straight-line locomotion, the period is equal to the stride length divided by translational rate.

3
x Xb
For the turn control and the side motion control;
)
L (1),
7, = -x"—
y Y,

In order for the animator to specify a configuration of a leg, two methods of description are known,
namely joint space (Figure 3.4) and Cartesian space (Figure 3.5). From the point of view of the kinematic
control system and the formulation of dynamics (see next chapter), the most convenient description of a leg
configuration is as a vector of joint variables. However, animators will experience considerable difficulty
relating joint vectors to positions and orientations in Cartesian space, that are more naturally described in
orthogonal, cylindrical, or spherical coordinate frames. The joint vector and Cartesian space descriptions of

a configuration are reconciled through the kinematic equations of the leg.

Generally, the transformation from joint vector to Cartesian space is simple and efficient to compute.
However, the inverse is often intractable except by numerical methods; and even where it is solvable,

several distinct joint vectors typically give rise to the same Cartesian space description of a configuration.

To achieve a leg gait, a leg is driven in a cyclical trajectory. The motion of the foot viewed from the
side in body coordinates is shown in Figure 3.5. The trajectory consists of two phases: a transfer phase in
which the foot is off the ground with zero reaction forces between the foot and the ground , and a support

phase when the foot is in contact with the ground and exerts some nonzero force on the supporting surface.,
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Figure 3.4 A Configuration of a Leg in the Joint Space

Each movement from i to i+1 in Figure 3.5 represents the position of the leg with respect 1o the

body’s coordinate system. For translating each Cartesian leg position of Figure 3.5 into a set of leg joints

of Figure 34 the inverse kinematics is evaluated analytically (this is how we resolved the redundant

solution problem). The details of the inverse kinematics formulas are described in the next section.

It is assumed that each foot could be placed on the ground at a sequence of pre-computed positions

determined prior to the start of the motion. These positions are evenly spaced along the desired direction of

travel and separated by one stride length for any given foot. Neighborhood places are considered as

pot-ntial footholds in case of the existence of obstacles along the direction of travel. This is possible since

the length of each leg measured from its hip joint to its foot is allowed to vary through knee {lexure. Also

the automatic body regulation algorithm (see section 3.4.2) provides a wider sclection of allowable
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Figure 3.5 The Robot Foot viewed from (Cartesian Space) the body Coordinate frame

footholds and is used to maintain maximal stability.

3.4.1. AUTOMATIC LEG POSITIONING ALGORITHM

In the inverse kinematics calculations the leg angles and their rates should be calculated from a
knowledge of the state of the body and the position of the foot. Let the position of the foot of leg i be given
by the vectors (X'.Y'.Z)%, (X,Y.Z )i, (Xe.Ye,Zc); expressed in the hip, body, and inertia frames

respectively. The relationship between these representation are:

X; Xie—Xp
Y| =T |Ye-Y, 3-3
Z; Zig-2Z),

Where Tj, is the inertia-to-body transformation matrix (transformation matrix that converts vector

representations in the inertial frame to the representations in the body frame) given by equation (3-1), And
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X, i Xi -a;
Yi |=Tw |Yi-b; ' 34
Zi Z.' =C;

Where T}, is the body-to-hip transformation matrix. T}, can be obtained from [3-1] by setting ¢=0, 9 =
0,;, and y = ;. This gives:
cosOycosy;  siny;cosBy  —sin Oy
Tyy = —-siny; cosy; 0 3-5
cosy;sinBy;  siny;sinG,;  €0sBy
(a; ,b; c;)T are the coordinates of the hip socket for l2g i as expressed in the body fixed frame (X,Y,Z) (sce

figure 3.2).

Let 1, be the length of the upper limb segment and /, the length of the lower limb segment, then from

figure 3.2, it can be noted that:
Xi | |liHosingy
Y; | = 0 3-6
z’ 1c080
Combining 3-4 and 3-6,
X; -a; lﬁ-leineu
Y,' —b,' =T,,7,L 0 3_7
Zi—c; [ 2038y
(I 1€0804; +/ 2sin(9,.,~ +0 ))COS\V,'
= | (11c08Bx; +25in(By; +0y; ))siny; 3-8
-l 1sin9,.,~ +1 2COS(9[,,' +0 )

Writting 3-8 in scalar form and dividing 3-8-b by 3-8-a gives:

Yi-bi an
=tan™! Yicb 39
vi= Xi-a; '-
Now adding the squares of 3-8-b and 3-8-c after multiplying the latter with siny; gives:
(Yi=bi)(Zi—c; Ysin?y; = | Esin®y;+12 05?8 sindy; +1F sin0y; siny; +21,1,sin6y siny; 3-10

or
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Y; —bi 2 2
Wibi) | Zmciy-12-13

sinz\y,-

= sin”!
0, =sin CTI

Performing similar manipulation to 3-8-a and 3-8-c gives:

Xi-a;)?
| costy;

Oy =sin

+HZ;—c;) 212 -1

204,
Now consider equation 3-8-c

(Zi—ci)=—1,5inB; +15c08(0; +0; )

=—{5inBy; +2c080,; COsOy —! 25inO,; siny

—12c080y; cOsBy; +(1 1+128in0y; )sinBy; +(Z; —c;) = 0
LetX =sinB,; then cosBy = VI-X2
Substituting in 3-13 gives:
-FVI-X%4EX+G =0
FY(1-X?%) = EXX2EGX +G?

(E%FHX*4+2EGX +H(G%-FY) =0

Solving? for X:

- -EG+FNE=G*+F?

E%F?

X

In other words:

6 = sint | “EG+FNEZ=G >
. E%+F?

Where

E =1,+l,5in0

F =l,cos0y

3-12

3-13

3-14

*There are two signs for the roots of this equation which represent the two cases of leg up and down, The expression under the

square root is always positive. A mathematical proof could be given for that.
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G= Z,'—C,'

55

Equations 3-9 through 3-14 give the leg angles (y;.64.8x) as functions of the foot position

expressed in body coordinates. The joint angle rates may be obtained by differentiating equations 3-9

through 3-14:

From 3-9

Xi—a;)siny; = (¥;-b;)cosy;
Taking the derivatives of both sides:
(Xi=a;)(cos W Wi +(Xi~a; Y(siny,)X; = —(¥;=b; )(sin V+(Y;=b; Ycos ;)Y
- [(Xi —a;)cosy; +(Y;—b; )siny; ]\il.- = (X;—a;)siny; X; ~(¥;—b; Yeosy; Y;

Substituting cosy; from 3-9:

Xi—a; ) H{(Yi-5,) | . . .
[( a(}z-f(b) ; ]Wi=‘(xz‘—a.-)X,-+(x,._a‘.)y‘.

_ —(Yi-b;)
© (Xi=a,)+(Yi-b;)?

Vi [(Xi—ai X;~(Xi=a;)Y; ]

From 3-11

Yi-b;)?
sin2w,~

20,1,8in6;; = HZ;i—c;y-12 13

Taking the derivatives of both sides:

2siny; (¥i~b; )Y, ~(¥i—b; Y2(sin 2y W;
siny;

2! llzcoseu éb' = [ }4‘2(2, =C; )Z,

Therefore:

1 2sinty; (V=0 )Yi~(Yi~b: ) (sin 29 Wi+ 2(Zi =) siny,
k= 2111,c080 Sind\l’i

Similarly from 3-12

; 1 [20052\4/; (X;~a; )X, +(X;=a; Y2(sin 29, Wi +2(Z; ~c: ) Z cosy; J
ki

- 21115050 0054Wi

3-15

3-16

3-17
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Finally from 3-14

(E*+F?%)sinby; = —EG+F VE*~G +F?

Taking the derivatives of both sides:
(E%F¥)c0s8),6); =

[—EG -EG+FNE*-G%F z+§(E’—Gz+F25"'(ZEE -2GG +2FF )~sin6y; (2EE +2FF ) ]

: 1
Opi = —5—g——— i
M (E%Fcos8,; 3-18

[—EG -EG+FVE*=G %+ F’+§(E -G F2*2EE ~2GG +2FF )-sin®,; (2EE +2FF)

Where
E= 15080y, 65
F= —I,8inBy éb-
G =3
Equations 3-15 through 3-18 give the joint angle rates as a function of the foot velocity with respect to the
hip.

These equations complete the solution of the inverse kinematic problem.

3.4.2. AUTOMATIC BODY HEIGHT, PITCH, AND ROLL REGULATION

In the kinematic control of the robot motion, it is necessary to specify both the trajectory over which

the robot is to travel and the trajectory of the individual legs.

The variables in the body state vector that are associated with the body translation velocity in the
forward/backward and side directions and the body azimuth rotational rate are directly updated by the
animator speed control commands. Here the heading of the robot remains constant while the desired
trajectory for the center of gravity of the body is provided by the animator. The body translational velocity
components (X,, . };,, , Z'b) and the body azimuth rotation rate are updated such that: if there is a difference

in the current velocity or orientation and the value given by the animator, then the robot accelerates or
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decelerates to remove the difference. The exact mathematical relationships are:

Xp = K 1(Xp~Xy)
Yy = Ko(¥s~Yy)
Zy =K(Zy-2Zy) 3-19
Vs = Ko(Wp—Wa)
Where!fd ,Yd Zd »Wy4 are the animator’s desired velocities and rotation angles, and K; are constants.

The body height above the supporting surface and the body pitch and roll angles are determined by
fitting an approximate plane to the points of support by a least squares method. The body, then, is
commanded to be parallel to this estimated plane of the feet and at a constant perpendicular height above it,
To calculate the approximating plane of the supporting feet, the coordinates of the feet arc computed from

the automatic leg positioning routine. For each of the four legs, a four-clement vector is defined:

(X"E ,Y,'E ,Z,E .L,) fori = 12,34 3-20
Where (Xig.Yig,Zig) is the position of foot i expressed in earth fixed coordinates (sce figure 3.5). L; is an
indicator of foot position such that L;=1 means that foot i is on the ground, L;=0 means that foot i is off the

ground.

The least squares regression method that is used here is based on a multiple regressivn with two

independent variables as a sequence of straight-line regressions [DrS66].

Z,'E =09+ (llx,'g + (Xzyig
The problem now is to find estimates for the s (the regression parameters). First we regress Zg on
Xz . This straight line regression is represented as:

Zg =dgrd X 3-21
Where:
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4 — —
LLiXg-X)(Zg-2)

i=l

dy=l -
YL (Xe-X)?

i=1

= & LiXie
X_Ex -
- 4 LZ
Z= £
i= B
and
4
n=3%L;
i=1

Then we regress Yz on X;z. This straight line regression is represented as:

Y =dy+d X 3-22

Where
Go=Y-d:X

4 — —
2LiXg-X)(Yig-Y)

i=1

2,
w
1]

ﬁL.— Xz-X)?

i=1
and
—- 4 LY,
r=3y—=

i=1

n

Finally, (Ziz - Zig ) is regressed against (Yiz - Y ) by the following straight line fitting:

(Zis:iw) =dy(Ye-Yig) +ds 3-23
Where$

24:14 [(st —Ye)»-(Ye-Yi) ] [(Z:E ~Zig)~(Zie~Zi) ]

i=l

d4=

4 —_—2
XL (et -Te o)
i=l

“Since we are uiing two sets of residuals whose sums are zero, thus the line must pass through the origin. (So if we did put d's
term in, we shall find 4 s=0 in any case).
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— & L(Ye-Ys
Ye-Yg = E_(_LE___‘P_)_

i=1 n

—_— 4 L(Zg-Z;
Zg-Zg = E_(_‘ET_‘E_).

i=]

By substituting for Zz and Yz in 3-23, we get the estimated plane equation:

(Zie—(@o+d 1 Xig)) = do(Yie—(a2+63Xig))

or

Zig = do+(@1-dbs)Xip+daYig-dods 3-24
The next step is to express the unit vector normal to this plane, N.in two ways and equaic the components.
A unit vector normal to the desired body orientation will also be normal to the estimated surface and thus

have a body Z component only. That is, N, may be expressed in the earth fixed coordinate system as:

0 sinysing+cosysinBcosd
N =7} 0| = |sinysinfcosp-cosysiné 3-25
1 cospcose

Another representation for this same unit vector that is normal to the plane of the feet can be obtained from

3-24 (by taking the partial derivatives w.r.t. X;z,Yg, Z; and dividing by the length of the vector):

—(dy—d+d5)
VIHd | ~d4d ) +d§
- P
W= a4 = o 3-26
\/1+(d1—d4a‘§z+a‘47 R
1
VIHd~dsd3)+d5

Equating equations 3-25 and 3-26 gives:

cospcosd = R
sinysinBcos¢—-cosysing = Q  (multiply both sides by cosy)

sinysing+cosysinBcoso¢ = P (multiply both sides by siny)

Subtracting the last two equations:

sing = P siny-Q cosy

Therefore:
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o = sin™'(P siny-Q cosy) 3-27

From the second N scalar equation:

0 =sin™! M 3.28
sinycosd

From the first N scalar equation:

0 =sin™!

P —sinysing ] 329

cosSyCosd
Note that these values for § and ¢ should be the steady state values for the body to be parallel to the
supporting plane. For a given value of the body azimuth angle, v, the roll and pitch of the feet plane,

¢ and 8, which determine the desired orientation of the body are given by the equations 3-27 to 3-29.

By driving the kinematics algorithms described in the last two sections, the robot will follow the

desired trajectory and maintain its sustained stable focomotion kinematically.

Both the automatic leg positioning and automatic body regulation algorithms make the robot highly
maneuverable for extremely rough terrain situations. However, each leg has a limited reach, due to the leg’s
kinematic limits. The position of any abnormally extending leg is monitored to insure it is never extended
beyond the kinematic limits. With the automatic body regulation algorithm, if this extending leg reaches the
kinematic limits, then the robot body is automatically commanded to move in such a dircction as to
accommodate the desired motion of that individual leg. This accommodation increases the ability of the
robot to reach a desired foothold. Of course, the position of all of the support legs must be monitored during
this accommodation movement to insure that the body movement does not extend a support leg beyond its
kinematic limits. Also, the robot stability must be monitored to insure that the body is not shifted to a
position where the robot is unstable. This concept of automatic body regulation is analogous to the situation
where a human may lean his body in such a manner as to help him reach his hand or foot to a desired

position.

The kinematic algorithms of the JCC have been implemented in the experimental system. The

evaluation of the motion produced is given in chapter 6.



CHAPTER 4

THE NUMERICAL CONTROLLER (NC)

4.1. INTRODUCTION

Not only do legged articulated bodies contain closed kinematic chains (chains closed through the
ground), but a number of rather complicated sequences of them may be formed and broken many times in
the course of locomotion. In such systems, in addition to the intralimb coordination problem, there is an
interlimb coordination problem. That is, cooperative action among the limbs is essential. One of the most
difficult problems in coordinating the limbs in such systems is the necessity to actively control the
assignment of forces and torques within the mechanism. Failure to do so may result in an unrealistic
appearance of the movement and/or a "binding effect” of the legs (one leg dragging another). Given desired
trajectories for the body and legs (the outputs from the JCC), the numerical controller (NC) of the proposcd
locomotion control system solves dynamically the problem of efficiently driving the four-legged robot
under the closed kinematic chains conditions to produce the desired motion. In the absence of crror, if

torques and forces are generated continuously throughout the motion of the robot, then the robot can follow

the desired reference trajectory.!

This chapter investigates the dynamics of the robot’s motion and develops the algorithms of the NC.
These algorithms involve setting and solving a closed chain inverse dynamic problem, a lincar
programming problem, and a direct dynamics problem. In section 4.2.1 the articulated robot model of
section 3.3 has been extended to incorporate various dynamic variables, then in section 4.2.2 the inversion

of Armstrong’s direct dynamics equations for open kinem: . chains [Arm79] is performed and the need for

'The proposed system is an open-loop control model in which movements an: executed without regard o the effects that they
may have on the environment. In a closed-loop model, all movements are made by cotsiparing an ongoing f2e<..ack from :he links dur-
ing motion to a reference of correctness (the desired motion). The kind of errors that might be responsible for not achieving the desired
motion could be errors due to numerical inaccuracy, problems with the motion planning, or impcss.wie motiont ( these are mations
which are kinematically possible but not dynam:.ally possible given only the control at the joints).

61
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extending the inverted equations to the case of closed kinematic chains in order to provide a means for
modeling locomotion tasks is explained. Section 4.3 provides a mathematical approach to the problem of
force and torque assignment in the four-legged robot. The approach is based on the Newton-Euler
formalism for open kinematic chain mechanisms derived in section 4.2 and requires the setting and solution
of a linear programming problem. In section 4.4 the structure of the numerical controller (NC) that
caiculates the forces and torques needed for a given body and leg trajectories is described. The NC deals
with the legs that are in contact with the ground by solving the linear programming prc;blem formed in
section 4.3. The legs that are not in contact with the ground form open kinematic chains and therefore are
dealt with using the open chain inverse dynamics formalism derived in section 4.2.2. Section 4.5 analyzes
the high degree of parallelism inherent in the NC computations and presents a mathematically exact

formulation for a near real-time solution of the locomotion control of the four-legged articulated robot.

4.2. THE DYNAMICS OF THE ROBOT MOTION

One of the main problems of modeling articulated bodies using dynamic analysis is controlling and
coordinating the motion (see section 2.2). The users of these systems are supposed to provide control
functions to specify forces and torques acting on individual degrees of freedom. The force/torque control is
not familiar to users, who therefore have no idea about the torques and forces required to produce the

motion they want.

A soluticn to this problem introduced in [Wil86) suggested that the user describe the motion at the
joints as kinematic motion changes (joint rotations vs. time and joint translations vs. time- similar to the
outputs of the JCC described in the previous Chapter) and have the program calculate appropriate forces

and torques to accomplish the motion. Simple equations were used for these calculations:

For sliding joints:

Ax=x4-x,

Where x4 is the desired position at the next time sample (or next animation frame), and X, is the present

position.
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Ax
Av = E -V
Where At is the time between samples (or equivalently animation frames), and vp is the present velocity.

Av is the amount the velocity must be altered to achieve the desired position at the next time sample.

Av
f=mg
f is the estimated force that must be applied to achieve this. m is the mass of the segment(s) distal o this

degree of freedom.

For revolute joints the same formulas were used, but the velocities are angular:
N =’%:@'

N is the estimated torque, I is the inertia of the link, and Ao is the amount the angular velocity must
be altered to achieve the desired rotation at the next time sample. A similar solution was proposed by
Armstrong, Green, and Lake [AGL86] where the user had to specify the new angle between the link and its
parent (84) and the program computes the sequence of torques (one for each time step of the dynamic

calculation- again the time step is proportional to animation frame) to produce a smooth motion. The

equations that were used to estimate these torques were:

T(80,84) = a(eP®-¥_1) ifg,>0,

=-a(eP®-%_1)  otherwise

89+ 6,
mid point angle =6,, = 0 5 d

with each iteration after the mid-point, the maximum-step torque is reduced using the following cquation:?

6. -6 32
T= Tmlx(e_c':é)

where 8, is the current angle, 0, is the initial angle, a, B are constants, 7, is the maximum-step torque,

and 6,, is the mid-point angle.

*This is a bang-bang control.
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The problem with the previous solutions is that the estimated forces and torques are not produced
from dynamically-based coupled calculations, so the resulting motion might not satisfy the requirements for
realism. Estimating the forces and torques is actually quite a complicated process because of the high
degree of nonlinearity inherent in articulated bodies. It is not acceptable to estimate the values of forces
and torques needed to manipulate individual joints without taking into account the extensive coupling of
forces and torques from adjacent links. These effects can not be neglected especially when dealing with
rhythmic motions like locomotion (but neglecting them had no serious effect on the "force-effect” types of

movements mentioned in section 2.2).

For example, the torques applied must compensate for the inertia of the links, gravitational force, the
Coriolis and centrifugal forces, and viscous friction at the joints. All these terms vary in a highly nonlinear
fashion depending on the configuration at a given point in time. Moreover, locomotive motion needs
special care, since it imposes a new inter-limb coordination problem in addition to the intra-limb
coordination problem. The legs form and break many chains during their cycles, and one should be

extremely careful during the locomotion control computations about treating each case as it arises.

In order to avoid all these problems, the proposed NC suggests the use of articulated dynamics
analysis 1o czlculate the joint forces and torques that would produce the desired motion (that is, to solve the
inverse dynamics problem). In this way, the animation system is forced to create a motion that is produced
by dynamically-based limitations on forces and torques, and the resulting motion will satisfy these obvious

requirements for realism.,

4.2.1. THE ARTICULATED ROBOT DYNAMICS MODEL

Bzfore deriving the inverse dynamic equations that calculate the joint forces and torques that would
produce the desired motion, the articulated robot model of section 3.3 has to be extended to incorporate
dynamics variables (Figure 4.1). The robot links are numbered such that the body is numbered 0, while the
individual links of each leg are assigned two numbers, i and k, where i is the number of the link within a leg

and k is the number of the leg containing that link, Several force and torque vectors are also introduced in
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the model:

A+

2+ is the reaction force from the ground to the tip of leg k (force applied from a hypothetical link
n+1 to link n) expressed in the inertial frame. Its components are [f5" F&" FA*1T. These arc four

(k=1,2,3,4) 3 x 1 vectors (note n=2 for all legs).

gr*! is the reaction torque from the ground to the tip of leg k (torque applied from a hypothetical link

a+l

n+1 to link n) expressed in the incrtial frame. Its components are [gA+ 8y

g8, These are four

(k=1929394) 3 x1 Veclors.s

Link O
Net force and torque acting on the
body’s center of mass we=[F° G°)
nk 1,1
Legl
Leg3 /
Hip Length=
y D % //l/l link 2,1
Leg Length=Ip \ 4 >

A
N
o /T—- Leg2

/I_ﬂx, \
Y, Ground reaction forces and

Z;

Torqueonlegk.(  called w*)
Inertial Coordinate
Figure 4.1 The Dynamics Model of the Four-Legged Articulated Robot

’As the kinematic limits of the robot joints are represented as restorative torques at the joints (sez Section 6.3), it is part of study-
ing the robot in static equilibrium to examine the supports in order to deduce what types of force they apply 10 the robot. These forces
are called constraint forces because they constrain (restrict) the motion of the robot. The characteristics of these constraint forces can be
established by considering the manner in which the robot is supported. In determining how to depict the constraint forces we need only



4.2.1 THE ARTICULATED ROBOT DYNAMICS MODEL 66

w* is the reaction force and torque from the ground to the tip of leg k. It consists of two

components, the force and the torque (f#*! and gf*!). These are four 6 x 1 vectors.

F is the net force acting on the body (with components given in the inertial coordinate system). Its

components are [F2 FY FA7. This is one 3 x 1 vector.

G is the net torque acting on the body (with components given in the inertial coordinate system). Its

components are [G,? G,” G,"|". This isone 3 x 1 vector.

w? is the net force and torque acting on the hody by the legs. It consists of the two components F°

and G°, Thisisone 6 x 1 vector.
F{ is the net force acting on link i of leg k. These are eight (k=1,2,3,4 and i=1,2) 3 X 1 vectors.
Gj is the net torque acting on Yink i of leg k. These are eight (k=1,2,3,4 and i=1,2) 3 x 1 vectors.

Anticulated bodies with tree structures (open kinematic chain systems) are less frequent in practice
than systems with closed chains (such as our articulated robot). However, any system with closed chains
can be transformed into a system with a tree structure (called its reduced system) by cutting suitably
sclected hinges [Wit77]. Thus in order to obtain the equations of motion for our four-legged robot, all that
is necessary is to add internal forces and kinematic constraints, for the cut hinges, to the equations of

motion for its reduced system,

Figure 4.2 shows how the robot’s reduced sy-tem can be represented as a tree linkage structure (open
kinematic chain system). Following the assumption in [Arm79] and for ease of analysis, the joints of this
structure are assumed to allow three rotational degrees of freedom (instead of 2 DOF hips and 1 DOF knecs
of section 3.3 model). This corresponds to a ball and socket joint. The reason for this assumption is that it

is more difficult to formulate the equations of motion in the presence of constraints which reduce the

two facts. First, because a force represents & pushing or pulling effect, a point in a foot is prevented from moving in a specific direction
by the action of a reaction force in the opposite direction. Second, because a couple represents a twisting effect, a leg is prevented from
rotating about a specific axis by the action of a reaction ‘ouple whuse torque is parallel to the axis of rotaiion, wwisting opposite the
sense in which rotation would occur. Because the ground is assumed rigid and we don’t want the robot to collapse or its legs to slip on
the ground, it follows that there caxi be no rotation about any of the coordinate axes. This means that there must be a reaction couple
whose components [g,'_',ﬂ,gk';ﬂ,g";*llr for leg k represent the constraints necessary to prevent leg k's rotations. We usually show
the components of general reaction forces and couples in order to be certain that we remember to account for each unknown com-
ponent.
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number of rotational degrees of freedom.

A typical linkage of the robot’s linkage structure is shown in Figure 4.3. The Figure shows the
quantities associated with a typical link r (any one of the nine links in Figure 4.2). Let the following
quantities be associated with the typical link r. Here vectors, unless otherwise noted, are represented in a
frame atached to link r located at the proximal joint of link r and moving with link r (this is similar 1o the
(X",Y'2"); and (X",Y"2"); coordinates of Figure 3.1); see Figure 4.3. m, is the mass of link r; a;is the
acceleration of gravity (in the inertial frame X, ¥;, Z;); f£ is an external force (inertial frame) acting on
link r at the point pg (the vector from the proximal hinge of link r to the point of application of the external
force f£ to link r ); g£ is an external torque (inertial frame) acting on link r; @” is the lincar acceleration of
the proximal (parent) hinge of link r; r” is the linear acceleration of the center of mass of link r; @’ is the
angular velocity of link r; ¢ is the vector from the proximal hinge to the center of mass of link r; f and e’
are the force and torque which link r exerts on its parent at the proximal hinge; I* is the vector from the

proximal hinge of link r to the proximal hinge of child s of link r.

The following quantities are transformation matrices that are also associated wh link r. R converts

vector representations in the frame of link r to the representations in the frame of the parent link (this has

Body| link 0
i i Hip 2 Hip 1
ﬁh 1,4 . M%B link 1,2 link 1,1
Foot 4 Foot 3 Foot 2 Foot 1
link 2,4 link 2,3 link 2,2 link 2,1

Figure 4.2 The Robot Reduced Open-Chain Linkage Structure
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Figure 4.3 A Typical Linkage of the Robot’s Linkage Structure

the form of TJ, matrix of equation 3-5); Rf converts to representations in the inertial frame (this has the

form of T/, in equation 3-1); J7 is the 3x3 moment of inertia matrix of link r about its proximal hinge; §, is

the set of all links having link r as parent (there is always one link in our case).

4.2.2, DERIVING THE INVERSE DYNAMICS EQUATIONS

In 1979 Armstrong described an O(n) recursive method for solving the direct dynamics problem in
open chain kinematic mechanisms [Arm79). His method has been used in the simulation of the Space
Shuule Remote Manipulator System (CANADARM) [AGLS6], and in the animation of the "force-effect”
type dynamics movements mentioned in section 2.2 [ArG85]. In this section, these equations are inverted in

order to use them in estimating the force and torque profiles needed to produce different types of

locomotive motions in the four-legged robot.
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The following are Armstrong’s direct dynamics equations:

The first equation expresses the fact that the rate of change of angular momentum of link r is cqual o

the applied torques from various sources:

J o =—0.)'X(J'(D’)— gr + ZR.yg: +R,’Tg£

1E8.

+PEXRITFE + m,c"™xRTag - myc™xr” + S I xR f* 41
JES.

The term J"@" represent the rate of change of angular momentum of link r (note
%(J "O")=J"T @ +0"X(J/7@")). The term —"x(J" @") is a torque coming from the rotation of the frame r

with angular velocity ©” which causes the angular momentum, J” @', to appear to rotate. This torque term
would not appear if the equations had been formulated in the inertial frame. In the inertial frame, however,
the inertia matrix J” would not be constant, making that frame less appropriate for formulating the

equations for purposes of computer simulation.

The torque —g” is the negative of the torque which, by definition, link r exerts on its parent at its
proximal hinge. It is the parent’s reaction which is "equal and oppositc”. To be added in next are the lorque
terms coming from the son links, which must be converted from their representations in the sons’ frames,
and the extemnal torque, which must be converted from its representation in the inertial frame. It doesn't
matter where the torques are applied, since the links are considered rigid. The force of gravity, m,ag,
converted from the inertial frame, causes a torque at the proximal hinge of link r when applicd at its center

of mass; and similarly for the external force f acting at P.

The term —m,c”xr" comes from the fact that the frame r in which this equation is formulated is
accelerating with respect to the inertial frame, giving the effect of the force —m, r” applicd at the center of
mass of the link. In the next term, the forces f* coming from all the sons of link r are first transformed from
the coordinates of the son link, where they are represented, to the frame of r by applying R*. Then the cross
product of I* with the force gives the torque at the proximal hinge of link r due to the force from the son

link,
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The next equation gives the force f” acting on the parent of link r at the proximal hinge of link r:

fT=RIT(fE+meac)+ TR f* — m o' x(@ Xc™) + myc' X0 —mya” 42
SES.

The first term shows the contribution from the extemal force and gravity acting on the link. The second
term represent the forces from the son links as they are converted to frame r and communicated to the
parent at the hinge. The term —m, " %(0"Xc ") represent the centrifugal force from the rotation of the frame
of link r. The term m,c"x@" comes from the fact that the frame r is rotating at an acceleration angular
velocity, which causes the center of mass to accelerate with respect to the inertial frame. Finally, the term

—-m,a” comes from the fact that the frame r is accelerating.

The next equation relates the acceleration at the proximal hinge of a son link s of link r to the linear
and angular acceleration at the proximal hinge of r:

R*a® =" x(@" xI*)+a” - I*x®" 4.3
The next equations hypothesize a linear relationship between the linear acceleration @’ of a link and the

amount of angular acceleration it undergoes and between a” and the reactive force on the parent:
o =K"a” +d" 4-4
fr=M"a" +f'" 4.5
If one imagined giving a configuration of links, distal to a certain hinge, a push at the hinge, this
would cause a certain acceleration @”, which consequently would cause a certain angular acceleration @,
and a certain reactive force f” on the parent. The relation among these quantities are assumed to be linear
as in 4-4 and 4-5. Armstrong assumed this linearity for all the sons of link r, and developed a
computational method for solving the equations of motion by calculating the “recursive” coefficients of the

linear relations, K" ,d" ,M”,and f ”.
The solution of the equations gives the following recursive coefficients:

K="’ +’EI?RJM:R:T[:)—I(EI'sR.!MsR:T -m¢") 46

SES,

d" ="+ SR M RTPY o' ') - g" + TR g* 4.7
&5, SES,
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+RITgE + m c"xR"ag + PEXRITFE + TR (F* + M*RT (" x(e" xI° ))))
JE5.

M” =-mJ +m.¢"K" + TR M*RT(I -*K")

S E8.

4-8
fr=-m o X XY+ RIT(FE +myag)+m,c"xd" 49
+ E (R.rf'.v + R:M:RJT(mrx(mrxls) _ ["Xd’))
SEs.

The tilde operator of a 3-vector v, with components v1,v,v3 produces a 3 X 3 matrix V such that for any 3-

vector w, the vector vxw is equal to the product of V and the column-vector w,

0 —vy V2
v=V-= Vi 0 -Vi
-V2 V1 0

In the solution K" and M" are 3 x 3 matrices, whereas d” and f " are 3 x 1 vectors.

In summary, Armstrong’s equations of motion for each link are formulated in terms of a moving
frame attached to the proximal hinge of the link, and consist of equations giving the effect of torques (4-1),
equations giving the effect of forces (4-2), equations relating the accelerations at parent and son nodes (4-
3), and equations relating linear and angular accelerations and the produced reactive force (4-4 and 4-5). In
order to solve these equations to get the motion (i.e. accelerations, velocities, positions, and orientations of
the links through time) given the torques at the hinges and the extemal forces and torques: at each time
step, the external forces f£, the external torques g£, and the hinge torques g” are set according to the
control parameters to produce the desired motion. Then one solves for K", d”, M", and f”, starting at the
leaves of the tree of links (Figure 4.2) and proceeding towards the root (the robot body). This is called the
“inbound" phase of the computations. Then, using the fact that the root link (link number 0 - the body) is
not subject to forces and torques from its parent (since it has no parent), one can solve the cquations 1o get
the linear and angular accelerations of all links starting from the root of the linkage tree towards the Icaves.

This is called the "outbound" phase of the computations.

Intuitively, this solution method can be understood as follows. Suppose some agent accelerates a
certain point on a rigid body r by an amount a”. Then there will be a certain change of the angular velocity

vector (represented in the frame of link r) given by the derivative @, At the same time, there will be a force
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S (represented in frame r) acting upon the agent. The agent s, in this case, the parent link of link r. In the
absence of any child links, the equations of motion will suffice to determine ®” and f” as a function of a”.
The function will be lincar as expressed in equations 4-4 and 4-5 through the coefficients K", d", M”, and
£ (cquations 4-6 through 4-9). If there are child links, then link r will act as an agent to accelerate them.
Assuming that the coefficients of 4-4 and 4-5 for the child are known, and without knowing any of the
accclerations, the coefficients for link r can be computed [ArG85]. In this manner the coefficients for all
links can be computed in an inbound pass towards the root link. Then, using the fact that the root is not
subject to forces and torques from any parent link in the tree, one can solve the equations to get the linear

and angular accelerations of all links in an ourbound pass toward the leaves.

The recursive structure of this direct dynamic calculation applied to the reduced system of the four-
legged articulated robot of figure 4.2 is shown as inbound-outbound directed trees in Figure 4.4 (both the
inbound and the outbound computations are separated). In the inbound tree, a node must receive data from
all its descendants (children) before it can perform its computation and send the results to its parent. The
compumtion of the recursive coefficients K* ,d” ,M", and f’" is done in this inbound tree. Then the

outbound tree propagates the linear and angular acceleration of the links and performs their integration.

In the figure, tree nodes represent total processing associated with each link, and recursion is

implemented by connecting each node’s output to the next node’s input.

The linear computation time coefficient is determined by the longest time required to propagate any
single variable across the nodes. In determining this time, only K™ ,M” ,d” , ", a” are 1o be considered,
since other variables are not propagated up or down the recursion chain. The computation structure of

Figure 4.4 is used in the animation subsystem (ANS) as will be described in Chapter 6.

Meanwhile, Armstrong’s direct dynamics equations are inverted in the following paragraphs.
JTa = —(3.)’)((.]'(,0') _ gr + ER:g.f +erTg£
SES

+P"sRTfET +m e xRy T ag ~ mpcTxrT + TR0
SES,
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Figure 4.4 The Inbound-Outbound Directed Trees for the Direct Dynamics Calculations

Put it in the form
JTo"+ 0 x(J"w)=N"
which is the Euler’s equation that relates the angular velocity and acceleration to the total torque N” acting

on link r with inertia J”, where

Nr =__gr + ERJgJ + EI:XR:f: +R/’Tg£'

. JES, JEr.
r Ter [V 4 r T
+PEXRI fE+m,[—c xXr' +c XR[ ag)

Therefore,

gr = ZR:g: ~NT + 'Zl.er.ny +R1'Tg£- +cTXFT

SEs. SES,
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which is the amount of torque that link r exerts on its parent at the proximal joint.

Fr=-mr’ +R]'T(fE’ +m,ag)
assuming that Pg =c¢".

Then from the force equation 4-2;

FT=RT(fE+mag)+ TR 5 —ma x(@'xc”)+mc"xX0" —m,a”
L {4

which can be put in the form
f’ =F’ + ER.!fl
S8,
which is the force that link r exerts on its parent at the proximal joint, where
Fr=—m, @ %(W Xc") +m,c™%X0 —m,a” +R[T(fE +m,ag)
Now we want to move the cocrdinates from the joints to the links’ centers of mass. This is done by
using a known transformation procedure [LWP76). Let O' be situated at the center of mass and O be

situated at the hinge as in Figure 4.5 and assume:

(%4 Y5 12s)

Link r

Figure 4.5 Moving the Coordinates from the Joints to the Links’ Centers of Masses
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V' is the linear velocity of the center of mass of link s with respect to the base coordinate (rfisits
acceleration).

V? is the linear velocity of the frame of link s with respect 10 the base coordinate (a* is its

acceleration),

From the Figure,

V-, 8' c*

= +w'xct +V*
ot

*

where gl represents the time derivative with respect to the moving framer.

.2: L d

c cxo s ds
372 + @' %a® + 20 x 7

r

+ o' (' %c*) +a’
L ]

ds - . ,
where the term 20’ XT represents the Coriolis acceleration and ' x(* xc*) represents the centrif, ugal

. .3 *2.s
acceleration. Putting 9 a‘: =0 ,and aa—g- = 0 since the coordinate of frame s is fixed on link r, we get
t

V=% + v*
rf =o'’ + ' X(0*%c*) +a*

Comparing this to the second F” equation, we ge:

Fr=-mr" +R,/T(fg" +m,ac)
which is the first F” equation.

Now in the direct dynamics, one relates the links’ linear accelerations as follows: as the root (basc)
moves with acceleration @, it acts as an agent to accelerate its children (s) by giving them acceleration
(a’)- according to equation 4-3;

Rfa’ =@ x(o xI*) +a” - I*x"
But as the goal in the inverse dynamics computations is to relate the linear acceleration of cach link (s) 10
the linear acceleration of the base (r), one can relate the distal links’ linear accelerations to the base by the

relation:

Forall*se S,

“Note that the following equation is not derivable from the previous one.
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RTa" =—a* + @"xI* + &' x(0' xI°)
Finally, the equations for the angular velocities and accelerations are hypothesized as:

For all seS,

o =RT(w + 2,qs)

O =RT(& +2,§, + 0 x2,4,)

where z, is joint r axis of rotation between link 7 and link 5. ¢, is the angle between link s and its parent
(link r) measured about axis z, in the right sense (g, is also known as "joint coordinate” of link s). ¢, is
the rate of rotation change between link r and s (the velocity of link s with respect to link r), §, is the

acceleration of link s with respect to its parent (link ).
This completes the set of inverse equations.

These equations could also be arranged in an "inbound- outbound” computation organization similar

to the direct dynamics case. The inverse dynamics out-bound recursion is:

o =RT(@" +2,¢,) 4-10
&' =RT(Q" +2,4, + WXz, 4,) 4-11
a*=-RTa" + &' xI* + " x(&'XI*) 4-12
r’ =@ xX(W'xc*)+ @' xc* +a° 4.13
F'=—m.r" +R/T(fg" +m,ag) 4-14
N™=Jr @+ x(@") 415
The in-bound recursion is:
fr=F"+ ZRJf‘ 4_16
€S, )
g = TR g —N"+ TIXRf* + R, T gg” +c"xF" 417
€8 SES.

s _. |2 g’

U= Z f* 4-18

In summary,® the inverse dynamics equations are formulated by relating the accelerations (linear and

SThe {* in the previous equation is either the joint coordinate torgue or force (depending on the type of the hinge).
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angular) of each link to the acceleration of the base by abstracting away the intervening joint accelerations.

This is done in equations 4-10 through 4-13,

Then one relates the distal forces and torques g” f” acting on each link 1o the distal forces and
torques acting on the tip(s) g**!, £**! by abstracting away the intervening joint forces and torques. This is
done in equations 4-16 and 4-17. To solve these equations, one must solve to get the torques, g7, given the
motirn (i.e. accelerations, velocities, positions, and orientations of the links through time- dsv sy 45 ). Al
cach time step, the state of the motion and the desired links accelerations are set according 1o the control
paraieters, then one solves an outbound recursion from the base to the tips. This recursion (cquations 4-10
through 4-15) may be regarded as mapping a vector of §* =[w®, ®°,r",a"] presenting the base
§%=[w®, @°, 7° a°) through the S links (equivalently, seen from the s-th link), together with the s-th input
4s+94s,gs » into a vector §” = [0, @”, 7", a’ ] representing the base seen through the r-th input. Then one
solves an inbound recursion from the tips to the base. This recursion (equations 4-16 and 4-17) solves for

the forces and torques g7, " acting on each link.

The recursive structure of these open chain inverse dynamics calculations when applied w0 the
reduced system of our four-legged articulated robot of Figure 4.2 is shown in the inbound-outbound
directed trees in Figure 4.6 (both the inbound and the outbound calculations are separated). Acceleration is
propagated outbound (outwards from base to tips), incorporating at each stage the next joint acceleration.

Inter-link forces and torques are thereafter propagated inbound (inwards from the tips to the base).

Tree nodes in the figure represent the total processing associated with each link in the inbound and

the outbound recursion, and directed arcs represent data dependencies.

Recursion is implemented by connecting each node’s output to the next node’s input. White on
either the inbound or the outbound recursion, the linear computation time coefficient is determined by the
longest time required to propagate any single variable across the nodes. In determining this time, only o,

@", 7", f" a"and g" need be considered, as the other variables are not propagated up or down the recursion

chain.
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Figure 4.6 The Outbound-Inbound Directed Trees for the Inverse Dynamics Calculations

The produced set of inverse dynamics equations is similar to the equations of Luh, Walker and Paui
(LWP76] which are basically a recursive form of the Newton-Euler equations of motion. The closcd form
dynamics equations may be written as:

g=H(g)§ +e(q.4)q +G(g)+C@)w
which represent a set of n nonlinear differential equations that describe the motion of an 1 DOFs system in
the inertial frame coordinates. Here ¢ =[q,95.... gs)" is the Joint coordinate angles between the links, and
4.4 are corresponding velocities and accelerations. g £R* is the driving torque vector for the n DOFs.
H(q) is the variable inertia matrix in the inertia frame. e(q,4) is n x n matrix specifying centrifugal and

Coriolis effects. C(g) is 6 X n Jacobian matrix specifying the torques (forces) created at each joint due to
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external forces and moments exerted on link n (the tip), C (¢)7 indicates the transpose. w is 6 X 1 vector of
external moments and forces exerted on link n (the tip). The first three components are g*** and the last
threc components are £ **!. G(q) e R* is the gravitational forca vector. This closed form was shown by
Hooker and Margulies [HoM65]to need O(n*) computational time (see for cxample the Gibbs-Appel

method) compared to O(n) for the recursive form,

Now, m order to provide a means for modeling locomotion for the robot of Figure 4.1, an cxtension
of these inverse dynamics equations to include closed kinematic chains for the legs that are in contact with
the ground is needed. Consider the ése when more than one leg of the four-legged robot is in contact with
the ground. This is necessary in order to satisfy the conditions of static stability during locomotion, These
legs are creating closed kinematic chains and consequently introduce, in addition to the intralimb
coordination, a new interlimb coordination control problem. The robot must apply forces and 1orques,
which will cause relative motion between the links of the body that consequently will produce reaction
forces and torques from the ground (w;, for k=1,2,3.4 in Figure 4.1). The values of these ground rcaction
forces and torques that are needed to produce a desired body’s trajectory are to be computed. But, as we
will see in the next section, the force and torque assignment equations relating ground reaction forces and
torques to the desired body and leg motion trajectories result in fewer equations than unknown variables.
This underspecified nature of the problem has been solved by formulating the problem in terms of lincar

programming,

4.3. FORCE AND TORQUE ASSIGNMENT IN THE FOUR-LEGGED ROBOT

In order to obtain the equations of motion for our robot (a closed kinematic chain system), we first
cut the hinges for the legs that are in contact with the ground in such a way that a system with a tree
struciure (like the one in Figure 4.2) is produced (this is called the reduced system). This reduced system is
divided by the body into four dynamically independent subsystems, each of which is coupled with the body
by a single hinge. First this reduced system is solved; then constraints which have been climinated in the

process of generating the reduced system are reintroduced. In this way the original system with closed
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kinematic chains will be recovered [Wit77].% Each subsystem (k) in Figure 4.2, which is now (after cutting

the hinges)a simple open kinematic chain containing 3 links, is governed by the Newton/Euler inverse

dynamics equations of motion derived in the previous section, that have the following closed form format:
T =Hi(q)q +ex(q.4)§ +Gi(q) + Ce(q) wa

where Hy(q) is the inertia matrix, e,(q.¢) is the Centrifugal and Coriolis matrix, Gy(g) is the gravity

matrix, Ci(q) is the inverse Jacobian matrix (this is transposed), T, is the vector of all joint torques for the

kth subsystem, and w; is the vector of external forces and torques.

This equation can be rewritten in the form:

Tr =C§ wy + D, 4-19

Therefore the equation of the reduced system is:

C; 0 0 0] [w,] [P] [n
0C20 0 (ws| [D2 |m
0 0 C3 0/ |ws|* D3| |1s 4-20

0 00 Csl| |wy D, Ts
Equation 4-20 was possible since the reduced system is divided by the body into four dynamically

independent subsystems. The main purpose of dividing the reduced system into these dynamically
independent subsystem is to be able to consider the formation and breaking of the kinematic chains curing
the locomotion. This division would allow us to deal with each leg's state (swinging or supporting)
individually.

Wittenburg [Wit87) describes two different methods to deal with systems with closed kinematic
chains. In the first method, in each closed kinematic chain one joint is removed. This produces tree-
structure system for which the equation:

847 (H§-B)=0
can be formulated. The elements of 84 are no longer independent when we re-introduce the constraints in
the removed joints. To explain that, in the system of Figure 4.1 constraint forces as well as spring forces

may have been removed in producing the reduced system of Figure 4.2. As a result of the re-introduction of

fCutting hinges increases the total number of DOFs of the system. See later explanation.
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kinematic constraints, the variations of the generalized coordinates of the reduced system are no longer
independent. Constraints that account for eventually internal forces and torques in the cut hinges, as well as

that are determined by the external forces and torques should be included.

In his second method to deal with closed kinematic chain systems, Wittenburg produced a tree-
structure system by increasing the number of links. In every closed chain one link is replaced by two
identical "half links" which are allowed to move without mutual constraints. Each half link has half the
mass density and the same physical dimensions as the original link. Each joint of the criginal link is located

on only one half link. All other constraints among the half links are removed.

The robot’s body moves as a result of the supporting legs’ forces. Therefore, one can claim that for

any particular kinematic state for the robot, the relationship between the body’s net forces and the legs’

ground reaction forces and torques may be written as (see Figure 4.1):7

wo = F:(Am +By) 4-21
wo results from the net action of the legs on the body. The term (A, w,+B;) represent the forces and
torques applied to the body (link 0) by leg k. It has two components. The first is due to the joint torques
and forces exerted by the leg on the ground, and the second is due to inertia and gravitational acceleration,
Here A, is a 6 X 6 matrix and is a function of the present position and orientation of the kth leg. B, is a 6 x

1 matrix and accounts for the inertial and gravitational acceleration forces of the members of the kth leg.

The quantity m is the number of legs that are in contact with the ground.
Since the required body trajectory is given (the outputs of the JCC algorithms of Chapter 3), the net
forces acting on the body may be determined from the knowledg~ of the motion through Newton’s law:
Fe= %(MM) =mo(a’- g¥)

Fxo = mO(axo_ ng)

F=ma’ - gf) 4-22

"The reason for the By temsin equation 4-21 is to have a similar form as that of equation 4-19.
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Fxo = mo(dx° . g:E)
where my is the mass of the body, g is the vector gravitational acceleration, and a® is the acceleration of

the body with respect io the inertial frame. Similarly, the net moments on the body may be determined from

Euler’s equation:

G°= %(Jco"):.ld)% 0% %

Gxo = Juofhf + (JnO = Jyyo)(l);’(l),o
Gy = Jyy oy + (o = Tz 0)0 202 4-23

Gzo =Ju0d)xo + (JyyO‘JnO)mBmyo

where Jy 0, Jyyo, and Jy;0 are the principal moments of inertia of the body, @° is it angular acceleration, and
? is its angular velocity with all components expressed in a coordinate system aligned with the principal

axes of the body (remember we are using Bryant angles to describe the body’s orientation- sce equations

3-2 and Figure 3.2).

If the parameters of equation 4-21, were known (Ag,By), onc could compute the reaction forces and
torques that the legs exert on the ground (w;). The inverse dynamic recursive algorithm for the open chain
mechanism derived in the previous section may be used to determine the parameters of equation 4-21 A,

and B, . The steps to do that are:

(1)  The elements of w; are first set equal to [00 000 0 17, thereby indicating that the chain is open at
one end and that no reaction forces or torques are being applied at its tip. This is done in order to
calculate the amount that the inertial and gravitational acceleration forces from leg k contribute to the
known motion of the body. The solution to this open chain inverse dynamics problem results in a
determination of f,! and g;!, the net forces and torques applied by leg k to the body at the joint

between the two. These may be transferred to the center of gravity of the body to give

For=f¢ 424

Goyx = g —rixfi
where r,} is a position vector from the joint to the center of gravity of the body (the components of

this vector are (a;.b;,c;)” as described in the kinematic model of the robot and the automatic leg
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positioning algorithm of Chapter 3). Foy and G, are the net forces and torques acting on the body

due to leg k. Since w, = [00 0000 J7, from equation 4-21 and 4-24, then B, ma: be determined as

By =[F§s Ftu Fbs G5 G3x G817

(2)  The first column of A, may be determined by setting wy=[1000 0 0]7 and solving for the kth leg,
which results in a determination of f,' and g/', the net forces and moments applied by the leg to the
body at the joint between the two. These may be transferred to the center of gravity of the body as
before. Once new values for F g, and G & are obtained, the first column of 4, ', then, is just

Af =[Fx Fs Fbg G5x Gby G417 = [Bi]

(3)  The second column of A, follows by assigning [01 000017 to w;, and the procedure is continued
until all six columns have been determined. All legs are considered simultaneously as suggested by
the independence shown in equation 4-20, resulting in all of the values for each of matrices Ag and

B, for the legs that are in contact with the ground.

It should be noted that all the open chain inverse dynamics problems are solved for the particular

kinematic motion of the system under which equation 4-21 was originally formed,

Now, in equation 4-21, w is known from equations 4-22 and 4-23 and A; and B, are known from
steps 1-3. Thus, equation 4-21 represents 6 scalar equalities in 24 terminal links ground reaction forces and
torques unknown. Actually, the case is not exactly so, since during locomotion two or three legs of the
robot are forming a closed kinematic chain, and these are the ones that must be considered for calculating
the ground reaction variables. Trying to estimate the values of these unknowns given the 6 equations
shows the underspecified nature of lhe problem. Many solutions are possible; therefore, some method

should be introduced to choose among these solutions.

This problem was raised in [OkP73], [OGA74) [PaF73] and [OrM73]. The principles that were

suggested as a solution were based on imposing a new set of constraints such as:

(@)  The maximal value of the normal reaction forces in the supporting points (the legs that are in contact

with the ground) should be kept at a minimum all the time.
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(b) The maximal angle between the direction of the reaction force and the axis of the friction cone

(which is used as an envelope for the leg positions) should be kept at a minimum.

These constraints were realized by solving two problems of linear programming. The first constraing
provided some evenness in the support force distribution, while the second one provided an increase in the

friction margin.

In the following, the problem is formalized in a form of one linear program to compute the joints’
torques and forces to optimize the combination of power exertion on the ground and load balancing. The set
of constraint equations and the objective function of the linear programming problem arc derived in steps

(a) to (c).

(@) Since the joint torques and forces will be used in the objective function (see later) to compute the
power exertion, one should constrain them. The joints’ torques are reiated to the terminal reaction
forces and torques through equation 4-19:

T=Cw, + D, N 4.25
for k=1,2,3,4 where

T = [Tix Top Taul”
T; x i the ith joint actuator torque in the kth leg, while 7, is the vector of all joint actuator torques for
the kth leg. C; is a matrix of dimension 3 x 6, and D, is a vector of dimension 3 x 1. Again, the
inverse dynamic procedure for the open chain mechanism may be used to determine C, and D, as
before. Actually, the parameters of equation 4-25 can be calculated during the calculations of the

parameters of equation 4-21, as will be described in the computation model in the next section.

The set of constraint equations on the joints’ torques are the physical limitations on the joint actuator

torques:

Cywi + Dy S 1 (max)
for k=1,2,3,4 where

Te(max) = [t1x(max) Toi(max) Tsu(max)]”
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(b)  Next, one can constrain the reaction forces on the tip of each leg by imposing a maximum normal
component on the leg's tip reaction force onto the supporting surface so as to balanc.: the load among
the supporting legs, as was done in [McO76). This may be used to prevent penetration of the leg into
soft ground.

V< k=1234
where £,V is the normal component of the reaction force of the kth leg onto the ground, and it may
be calculated as
fE=10 0 1IN, [Fp¥ fp+ty gpuaT
for k=1,2,3,4 where N, is the orientation matrix of the local surface that the supporting legs form
with the ground (remember the computations of this plane in Section 34.2). ¥, is the maximum

normal component of the terminal reaction forces of the legs onto the ground.

(c)  Concerning the objective function, one optimization criterion which has been used extensively in the
literature is that of energy minimization [McO76), [Vuk73]. The suggested objective function

minimizes the maximum normal terminal reaction forces and the legs exerted power.

m
o= FEH 0 T + (1-8)f,N]
k=1
where Hy are 1 X 3 matricesandequalto[111). @, 'isa diagonal matrix of the angular velocities of

the three angles for leg k. & is a weighting coefficient.

This completes the formulation of the linear programming problem.

It is important to note that this linear programming p-oblem will be solved only for the legs that are
in contact with the ground (i.e., we never have 24 variables at the same time except when the robnt is

standing still). The forces and torques for a non-contacting leg may be determined directly using the open

chain inverse dynamics calculations, and they need not be included in the linear programming analysis (see

next section).®

*It is assumed that the swinging legs impact negligible torques and forces to the robot body. This is in conformity with the more
liberal approach that have been taken in [IsC87] and [GIM8S5], where legs were operated in two different "modes”, a kinematic mode
and & dynamic mode. Under their amangement, any leg pushing on the ground was operated in dynamic mode, whereas the legs in
swing phase were openated in kinematic mode.
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At each time step, we set up the linear progr.mming problem and usc a lincar programming
algorithm to solve the problem and calculate the resulting joint torques for the legs in the support phase. As
will be described in Chapter 6, Chamnes’ M method for solving the lincar program (a variation of the

simplex method) [DrS66] is used in the experimentation system.

4.4. THE NC STRUCTURE

As described in Chapter 3, the outputs of the JCC are fed as inputs to the NC. Due to the varying
patterns of gaits and leg cycles, a number of rather complicated sequences of closed and open chains are
formed many times in the course of the robot navigation. This imposes the requirement to have a general
enough motion control system that takes care of the formation and breaking of the chains during the

motion.

Figure 4.7 shows the proposed® numerical controller (NC) process organization that calculates the
forces and torques needed for given body and leg trajectories. Each time step, the NC deals with the legs
that are in contact with the ground by using the linear programming formulation derived in the previous
section (Box A and D). The legs that are not in contact with the ground are forming open kinematic chains
and therefore are solved using the open chain inverse dynamics equations derived in the section 4.2.2 (Box
B). The figure also shows the direct dynamics module (Box C) that is used to produce the motion as a
résult of the driving forces and torques in the animation system which are based on Armstrong’s direct
dynamic equations presented in section 4.2.2. Note that the direct dynamic module is not a part of the NC-
see figure 3.1- it is a part of the animation subsystem (ANS) and its implementation details are described in

Chapter 6.

In the next section a distributed computation model that reduces the computation time nceded by the

NC will be proposed. The proposed computation model has a very important feature, that of a high

*In Figure 4.7, X4,Y4,74 4 are the desired velocities and roution angle. sec Section 3:4.2 for the control of the robot
motion.
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Figure 4.7 The Numerical Controller Processes Organization

throughput computation rate.
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4.5. A PIPELINED COMPUTATION MODEL FOR THE NC

For real-time simulation of the previous motion control system, the calculation rate should be at least
10 10 15 times the link structure resonant frequency (when integrating the cquations of motion, we need
small time step for stability of the solution). This frequency is a function of the mechanical parameters and
the masses of the links. This rate of calculation is difficult to achieve due to the large number of vector and
matrix operations associated with the dynamic motion control system, and the formation and solution of a

linear programming problem each time step.

However, two main approaches have been proposed in the lite;atum to reduce dynamics computation
time:

(1)  Simplify the dynamics model calculations: (a) Armstrong [AMO87) presented a slowband-fastband
division for the computations. Slowband computations are not done in every computation cycle (thcy
compute slowly varying variables). (b) Raibert [Rai77] suggested precalculating some of the
dynamics terms in advance and using a look-up table. (c) Bejczy, among others [BeP81}, chose to
reduce the computation load by neglecting some terms which are less significant compared with
others (e.g. the Centrifugal, Coriolis, and coupling terms). (d) Binder [BiH86] achieved more
concurrency in computations by substituting "predicted” values for the actual values of variablcs

involved in the recursive equations to increase the pipelining in his model.

(2) Improve the computation structure: (a) Armstrong suggested a tree-like processes structure for the
parallel execution of his direct dynamics equations [AGL86). (b) Binder proposed a two-way ring
distributed computation architecture that utilizes "predictions” to achicve concurrency in processing
his inverse dynamics calculations [BiH86). (c) Lathrop [Lat85] proposed a special purpose VLSI
robot chip capable of handling general vector arithmetic. The parallel processing was achicved by
pipelining complete sets of joint torques at successive time intervals. (d) Lee proposed another

similar VLSI implementation in [LeC86].
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Figure 4.8 Enhancement to the Computation Organization

In the proposed computation model for the NC, a tree processes organization was chosen to be used
since it is directly compatible with the inbound-outbound inverse and direct dynamics computations
dcscribedv in section 4.2.2, Figure 4.7 shows that there is one process for each tree node in either the direct
or the inverse computations. The recursive structure of the open chain inverse dynamics calculations of
Figure 4.6 is shown in parts A and B in Figure 4.7, whereas the recursive structure of the direct dynamic

calculations of Figure 4.4 is shown 1n part C of Figure 4.7.
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The calculations of the coefficient matrices of equations 4-21 and 4-25 are done in box A in Figure
4.7. The legs that are in contact with the ground are dealt with by forming and solving the lincar
programming probiem (box D). At the same time, the legs that are not in contact with the ground are
forming open kinematic chains and therefore are solved using the open kincmatic»chain recursive procedure

of Figure 4.7 (box B).

Notice that in box A, propagation and calculations are only donc for the legs that are in contact with
the ground (the legs that are in the stance phase). Whereas in box B, propagation and calculations arc only

done for the legs that are not in contact with the ground (the legs that are in the swing phasc).

Figure 4.8 shows more enhancement to the computation organization of Figure 4.7. The two boxes A
and B are merged into one box (A+B). The reason is that the first step in calculating the coefficients of
equations 4-21 and 4-25 was actually solving an open kinematic chain for the legs that arc in contact with
the ground. This is exactly the case for the legs which are in the swing phase. They have no reaction forces
or torques applied to their tips. So one can view the situation as: during the inbound-outbound calculations
for the case of w;=0 for all legs, some of the legs are in the swing phase. Some are in the stance phase.
Two vectors are calculated for each leg in the stance phase B, and D, , whereas the joint torques of the legs

in the swing phase are calculated in this step.

The reason for the loop in the A+B box in Figure 4.8 is the pipclining of the w,, of (10000 0]7

through {00000 1)7 for calculating the other coefficient matrices A and C, for legs k that are in stance

phase.

According to Figure 4.8, all but one level within each computational tree in the NC is active at a
time. All other processes in other levels wait for the values of the recursive variables before they can begin

computations. Hence, only one tree level at a time is engaged in useful computation.

In order to increase performance, it is necessary that two or more NC level and/or tree level processes

be active simultaneously. There are two ways to achieve this:
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Figure 4.9 Furthcr Enhancement to the Computation Organization

(1)  One or more tree levels within cach computation tree can receive the values of the recursion variables
prior to the time they arc provided by their adjacent processes. This could be achieved by
"predictors” that provide “acceptable” values of the recursion variables (or some of them) in advance

of the time they would normally be provided in the direct application of the pipelining. This is
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similar to the slowband variables (subsct of the recursion variables) of Amastrong [ArG85] and the
"predictors” of Binder [BiH86). The difference between Armstrong’s approach and Binder's
apprcuch is that tie variables of the slowband were selected to be variables that are known to be
slowly varying, so that even if they were not updated each time cycle, the accuracy of the
computations was preserved; whereas in the case of Binder [BiH86), predicting the set of all
recursive variables introduced some crrors in the dynamics computations. Using all or partial
predictions, instead of waiting for tree level r-1 to propagate the complete set of recursive
computations necessary to start its computations, tree level v can start calculations based on predicted
values. One way to estimate predicted values is based on calculated terms in previous sample
intervals of a similar locomotive skill. Another is to estimate them based on the previous tree fevels
in the tree (i.e., the pipelining may not only feed the next level of the tree, but it might go two or

three levels ahead).

() As indicated in [AMOS7] the synchronization overhead, rather than the communication overhead, is
the principle causc of any lack in performance in the parallel implementation of the dynamics
equations. To reduce synchronization overhead complete sets of desired positions, rates,
accelerations and the body’s desired motion may be nipelined through the levels of the NC and/or the

levels of each individual computation tree in a dataflow manncr.

In Figure 4.9 the loop rf Figure 4.8 is unfolded to allow parallel dctermination of the coefficicnt
matrices. Also, Figure 4.9 shows how the successive sets of desired joints’ position rates, accelerations, and
body’s trajectories may be pipelined through the levels of the NC to perform in a "near-rcal” time
locomotion computation. The only problem with that is, since the integration step (in the direct dynamics
calculations- Box C) updates the oricntation matriczs R;” and R, all torque vectors produced at successive
time slots which have entered the pipeline use different orientation matrices in the calculations of their
coefficients. But another argument might be that, as the new updated orientation matrices becomes

available and are used, they might lead to better approximation.
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Figure 4.10 Computation Organization for the Inverse Dynamics

Another compurational saving might be gained if one restricts the body’s trajectory to straight lines.

Under such condition, the cocfficicnt matrices A, B, Cx, and D, can be considered fixed and could be

calculated only once for cach particular locomotion skill.

Finally, Figure 4.10 shows how cach full tree, at the top of Figure 4.9, is assigned to a processor

group in order to allow more cfficicnt pipelining of the successive torque profiles. Also the direct dynamics
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tree (Box C) could be assigned to another processor iroup shown in Figure 4.11. This is similar to
Lathrop’s suggestion [Lat85] to have only one processor group for all the links and to implement recursion
by connecting the output back to the input through a buffer. The only restriction here is that the
computation of one set of joint torques must be completed before the next can begin, Otherwise, with one
processor group for eacﬁ joint (link) it is possible io pipeline successive scts of joints torques as described

before.

Note that the NC computation are not required to be highly accurate since all that is needed from the
NC is a reasonable first approximation to the desired motion. We have deliberately chosen not to include
the friction of the ground, the viscosity at the joints, and also used several approximations in computing the
dynamic variables in both the inverse and direct dynamics computations. Also added to the inaccuracy of
the NC, the slow and fast decompositions of the calculations, the varying of the integration step size, the
assumption that the swinginyg legs don’t have impact on the body motion, and finally the assumption of

ball-and-socket joints at all the robot hinges.

It is important to distinguish here, again, between animation and the kind of animated simulations
that the experimental work of this dissertation describes. What we are dealing with here is what is called
"task level simulation”, where the problem is to control the robot by specifying a set of events and some
constraints on its behavior, and letting the robot fill in the motion details as necessary, So, we are not
interested in constraining the simulated robot to do what we want it to do. Rather, we want to let it interact
with the environment and adapt its goal-directed motion accordingly. This is the rcason for not using any

simpler dynamic model in the NC.,



95

— [modfumko
0

' i Hip 2 Ti
lllir; 1.4 HXI\HB ' link 1,2 link 1,1
Foot 4 Foot 3 Foot 2 Foot 1
link 2,4 link 2,3 link 2,2 link 2,1
i i Hip 2 Hip 1
i ?,4 i3 link 1.2 Tink 1,1
Foot 4 Foot 3 Foot 2 Foot 1
J link 2,4 link 2,3 link 2,2 link 2,1
4

i;ﬁli?li?[vl;/'
dr

K’ ro. Mr ’_.f’ _.ar q rr R g,
A’
g"
r
re

Figure 4.11 Computation Organization for the Direct Dynamics Calculations




CHAPTER §

THE LEARNING CONTROLLER (LC)

5.1. INTRODUCTION

It should be apparent from the previous chapters that the mathematical principles govemning the
locomotion of the four-legged articulated robot are both complex and computationally time consuming. It is
even more difficult to establish some intuitive link between the parameters of the computations and the
resulting motion [IsC87]. For example, it is clear that if the robot found itsclf suddenly about to hit a small
obstacle, it might have to lift its legs and place them on top of the obstacle and adjust its body’s orientation
to maintain its balance. It is very difficult to analyze such motion through dynamics (i.e. as a series of
forces and torques on the joints of the robot) during.actual motion exccution. It is at this level, however,
that the robot would have to maintain its sustained stable locomotion. What necds to be looked at,
. therefore, is how to replace parts of these heavy non-intuitive non-real time computations with more
efficient intuitive real time symbolic computations. In other words, the objective is to develop a skill-based
Al controller that is to perform in the same way as the NC with easier and faster abilities to execute its
skills , i.e. would be able to integrate sensory data, robot capabilities, and task constraints and operalc at

speeds comparable to the real-time locomotion task (this is what we mean by "acquiring high agility").

This chapter describes a learning controller (LC) that gradually develops such an intelligent body of
locomotive knowledge through practice and experience (i.e. develops motor capabilities). The LC starts
with general inference rules and learning techniques and gradually acquires complex skills through
interaction with a human teacher. The human supervises the LC when it takes charge of the control of the
robot actions. Towards this end, this chapter first analyzes the issues involved in establishing a new model
for motion skill acquisition. The model proposed is composed of two major functional blocks: skill transfer

from the human expert to the robot and skill discovery by the robot itself, Skill iransfer involves the

96
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selection of a set of features as basic vocabularies of the robot’s internal language, to provide the means for
describing the situations and actions of the robot. It deals with how the robot interprets and operationalizes
the skill descriptions provided by the human expert. Skill discovery is the process of the robot’s self-
formulation of rules connecting situations to actions, based on the experience accumulated. This concerns
how the robot can generate its own skills by refining and exploring those skills which have not been
presented by the expert teacher. Then the proposed model is applied to the acquisition of locomotion skills

by the LC. Finally, the algorithms of the LC are developed.

The organization of this chapter is as follows: Section 5.2 describes some of the skill acquisition
models that can be based on existing Al paradigms. In Section 5.3 the new model for motion skill
acquisition is described. In Section 5.4, the details of skill transfer and of skill discovery are exploited by
applying the model of section 5.3 to the acquisition of locomotion skills for the four-legged articulated

robot. Also the LC algorithms arc developed in this section. Finally, Section 5.5 reflects on the ideas

presented in this chapter.

§.2. SKILL ACQUISITION MODELS THAT ARE BASED ON EXISTING AI PARADIGMS

The term "skill", as defined in behavioral psychology, refers to sensory driven functional motions
controlled at the execution level by automatic actions acquired by learning and training {SZH79]. Skill
acquisition can be modeled based on some of the existing Al paradigms. One such model may be based on
the pattern-directed inference paradigm which gencrates outputs based on input patterns obtained from the
external and internal sensory data [WaH78]. This is often employed in cognitive science to model the
human acquisition of a skill [RuN82]. The mapping between input patterns and output actions can be
structured hierarchically or distributively with the multilevel abstraction of inputs and outputs as done in
goal-directed hicrarchical or schema-based problem solving [Alb79] [Arb85]. Furthermore, the inference
tules (those rclating situations, i.e. input patterns, to actions) can be modified or generated based on the

explorations of experience, as is done in genetic algorithms for evolutionary rule learning [HoR78).
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A sccond modcl may be bascd on the mathematical and linguistic representation of an adaptation
mechanism as is done in "sclf-organizing” control' [Fu70)] [PrM79] , and lcaming stochastic or fuzzy
automata [NaT74] [NWM77]. For cxample, the concept of "baby-robot,"” devised to investigate the process
of carly cognitive development in robots, emphasized self-lcarning with minimal initial knowledge as the
structure of the baby robot. This was applied to robot path-finding cognitive development [Mey8S).
Another example is the sclf-learning stochastic automaton applicd to the task of high precision inscnion
using a force/torque sensor that emphasized gradual optimization of quantization levels of input and output

variables [SBS82].

A third model may be based on the interactive and automatic refincment and expansion of the
knowledge base of an expert system. Many expert systems represent their expertise as large collections of
rules that necd to be acquired, organized, and extended. Such systems allow k2 interactive updating of the

knowledge base and a tcrm for them has been coined by Waterman as: "adapuve production systems”

[Wat75].

For instance, rule-based locomotion control has been applied with considerable success in
rehabilitation enginecring {Tom81]. Due to its repctitive nature, locomotion is considered to be an ideal
application for control by skill bascd Al systems. As a matter of fact, gait analysis studics provided all that
is needed is to encode locomotion in the form of production rules. For example, it is easy to establish that,
in biped walking on level ground, the following scnsors are exposed to discrete (0-1)- changes: heel
contact, middle foot contact, toc contact, ctc. A binary variable can be also associated with the presence or
absence of flexion and extension terminal angles of leg joints. To cach of these sensory patterns
corresponds a configuration of discrete joint states (hip, knce, ankle). Consequently, formal representation
of events taking place in biped locomotion on level ground can be expressed in rules of the following form:

B(x1,x2, e s X)) = (N1 (k) Jolk), .. , I (K)) 5-1
where B is a boolean function, x; arc binary scnsory inputs, J; (k) is the discrete joint state of joint i;

k=1.2,.../ (i.e. joint i can take [ dilfcrent discrete configurations). The rule base control relying on S-1 has

"This is a term that is used in modem control theory.
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been given the name "robot control by artificial reflexes” [ToB86). This system was later extended to other
biped gait modes (stair climbing, walking on ramp, adaptive stcp length, ctc.) including rules reflecting
human behavior in the case of abnormal motion [Tom81]. It should be apparent, however, that this system
has been designed to capture the "kinematics” of biped locomotion skills (i.e. it deals only with joint angles

with respect to time). Similar work that has dealt with joint angles und their rates can be found in [LGIS6).

Due to the very naturc of skill bascd Al systems (mainly refaying on symbolic manipulations), the
capturing of knowledge expressed in terms of skills’ dynamics has not been tackled before. A methodology

of skill acquisition that is bascd on torque and force profiles is sti!l lacking.

5.3. ADYNAMICS-BASED MODEL FOR MOTION SKILL PROGRAMMING

Here we proposc a theorctical model for dynamics-based skill programming. The model is composed
of two major functional blocks: skill transfer from the human expert to the robot and skill discovery by the
robot itself. Skill transfer involves the sclection of a sct of features as a basic vocabulary of the robot's
internal language to provide the description of the situations and actions of the robot. It deals with how the
robot interprets and operationalizes the skill descriptions provided by the human expert. Skill discovery is
the process of the robot sclf-formulation of rules connecting situations to actions, based on the robot
experience accumulated. This concens how the robot can generate its own skills by refining and exploring

those skills unable to be presented by the expert skill descriptions.

What we want to do is understand how biological creatures organize their own routine, instinctive
behaviors. In computer graphics, people generally draw on disciplines of optics and physics to understand
the interaction of light with matcrials (this is an important arca in computer graphics called "ray tracing").
For behavior modceling, we are drawing on the work of behavioral psychologists like R. Schmidt and J.
Adams who spent long time thinking about how bchavior is organized, how motor skills are stored in
memory, how they are retricved, and how they are produced differently as a result of practice and
experience, although not quite in terms that lend themsclves directly to implementing algorithms. The

point is that we want to build hicrarchical suites of motor skills, and interconnect them in such a way, that
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the simulated robot can do certain kinds of problem-solving on its own.

The proposed model can be formulated by representing a situation and an action in the situation
space (S) and the action space (A), respectively; where the situation and the action spaces are structured by
their set of primitive features (axes). A situation or an action can be completely specificd by assigning

values to the individual features defining the situation or the action space.

Following the approaches taken by previous motor learning models [Fu70] [AIb79], we restrict the
types of primitive movements to a limited sct and discretize the situation and action space axes into a few

intervals along each feature.

We also define a complete training set to be any set that contains at least one point from cach of the
defined rcgions (formed by the intersections of the intervals). This is in order to successfully identify the
values of control torques and forces that are needed for any particular environmental conditions (test cases).
These training set cases will be solved by the numerical controller, and then the lcarning controller will
utilize extrapolation techniques to generalize them to any test case. The objective here is to perform the
underlying activity (primitive movement) under different environmental conditions without solving cach

case dynamically.

Dynamically speaking such sensitivity analysis is sound. For example, consider the effect of
changing the time duration of a movement on the values of joint torques and forces. Such effect has been
investigated before [Hol841. If the motion (0(¢),82(t)......08, (1))7 has been fashioned to be done in a time
interval t7, then if this same motion is to be performed in a time duration ¢, , then the new motion 8() will
be such that 6(t)= 6(r), where r=r(t) is a monotonically increasing function of time with r(0)=0 and
1ty )=t, . The function r(t) can be considcred a time warp which moves the linkage structure along the same
path with a different time dependence. r(t) must increase monotonically because time can not reverse itself,

and r(0)=0 because the movement must start at the same point.

To see the relation between the two torques, consider:

dé@) de(r)
dt dr

dr
dt
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Similarly

(=0 (r )F (1)240° (r)F (1)
Where "dot” means the derivative is with respect. to time, and "dash” is the derivative with respect to r.
From the dynamics of motion:

T(1)=7 (B0 ))B(+8()C (B(e))B(t )+ (B(1))

Separating the acceleration and velocity dependent torques:

1 (=01 (1Y102(t)... Tan (1))

©(1)=7, (1 )+g (8())

This is the torque required for the old motion, now for the new motion:

1.(0=7 (G008 1+6(1)C 60)6(r)
Substituting from the first and second cquations,
(D)=L B(r))B* (r 18° (r)C (B(r))B* (r)IF*+J (B(r )8 (r )F

o (0)=F " (1 47T (80 ))0" (r)
This is a potentially significant reformulation of dynamics, indicating how the underlying dynamics change

when the duration time changes. The new torque

2 (D=1 (Y ax(t) Tan ()T

is related to the old torque

1. (1)=(z, l(’ )ta 2(‘ e Tanll ))T
by the scaling factor 7% plus a term proportional to the generalized momentum J (8(r))6° (r).

With respect to other situation and action space features, Marshall {Marshall85] presented a mode! in
which he varied the initial characteristics (position and velocity) of one segment and examined the changes
produced in the movement between the original simulation and the simulation with altered segment
parameters. He used this to examine the effects of increasing or decreasing stride length (in human

locomotion) on the initial values for the recovery leg and consequently on the required torque histories.

Meno [MMS81] also studicd the effects of changing the size, mass or mass distribution. He used

simulation experiments to cvaluate normal and pathological human gaits. The effect of adding an athletic or
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protective device to a segment, or changes in the segmental inertia including amputation were also
evaluated. Marshall [MJW85] suggested that by comparing the torques required to produce the new
movement with those from the original motion, rescarchers may find information useful in planning

training regimes or skill development.

All this suggests that a very large classes of locomotion cah be implemented by predetermining
approximations that can be made quite precise as the robot experience increases. The LC can structure
these classes of locomotion into sets of potential responses to anticipated conditions. Accordingly, the LC
will deal with the motion control problem as search in the action space for the control patterns that are

necessary for achieving particular kind of locomotion under the current environment’s conditions.

Let F§ and F£ represent the two feature sets defining the situation space, S%, and the action space,
AE respectively, of the human expert skill descriptions. Similarly, let F§ and F{ represent the *.<0 feature

sets defining the situation space, S® , and the action space, A*® , of the robot. Then:

(1) A skill can be represented as

SE— AF 5-2

represents the expert internal skill i. It could be represented as

FE - FE; 5-3

Whereas

SR AR 5-4

represents the robot’s internal skill i. It could be represented as
FR > F§; 5-5
In other words, the expert and robot skills are represented by a set of production rules, called the
"expert rules” and the "robot rules” respectively. The situation and action parts of these rules are
described in terms of a set of features selected by the human/robat to define their situation and action
spaces respectively.
(2) Skill transfer can be represented as the mapping of both the situation and action spaces between the

human expert and the robot.
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SE=> sk 5-6
represent a situation mapping (notice => means mapping whereas — implies a rule). This is
represented as the mapping
Ffi=>FJ;
This situation mapping is obtained by dimension expansion (or shrinking) and/or resolution
enhancement of both FE; and F2; to make suitable correspondence between the two spaces: S£ and
SE.
Similarly,
Af=> AF 5-7
represents an action mapping. This could be represented as the mapping
F{;=>F%;
This action mapping is obtained by dimension expansion (or shrinking) andfor resolution
enhancement of both F¥ ; and FR; to make suitatle correspondence? between the two spaces: AF and
AL, In other words, skill transfer basically transfers the expert rules described in terms of the expert

language, into those rules described in terms of the robot internal language.

(3)  Skill discovery can be represented as the mapping (from one state of the rule system to another state)
SF-aR => (SF>AR) 5-8

The rules generated at a learning cycle (see section 5.4) may be: (1) error-contaminated; (2)
incomplete; i.e. not applicable to cvery situation; and (3) inconsistent; i.e. having conflicts with other
learned rules. Thus, one should distinguish a rule shell from a rule: a rule shell is a rule that has
incompletely learr.ed SR and/or AX. A rule shell may either "survive" to become a robot rule, through
skill discovery mapping, or "die out". In 5-8 SF—AZ is a rule shell. S§**—Af ‘may be considered a

rule (see examples later).

This process is to be done by the system designer. It could, however, be automated to some extent as we have described in Sec-
tion 5.4.2.1.
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Actually the proposed skill acquisition model borrows many ideas from both Adams and Schmidt's
theories described in scction 2.4. The idea of skill transfer is derivable from Adams's concept of
"perceptual traces”. The "perceptual traces” described by Adams are represented in the proposed model as
the basic vocabulary of the robot’s internal language. The basic premise that has been borrowed from
Schmidt is the devclopment of production system rules about the robot motor behavior. This relates to
Schmidt’s idea of generalized motor programs (each particular movement has a parameterized motor
program) for which a set of parameters must be applied to the motor program in order to perform it. Skill

discovery models Schmidt's idea of rule refinement and enhancement through practice.

54. DYNAMICS-BASED SKILL ACQUISITION IN THE LC

The Learning Controller (LC) (see Figure 5.1) is a system that has a more constrained view?® of
learning, similar to the onc adopted by expert systems: lcaming is the acquisition of explicit knowledge.
The LC emphasizes this view by making the acquired knowledge explicit, so that it can be casily organized,
veriied, and modified. The LC extracts new rules from examples provided by the animator (a human
expert) and learns torque profiles for particular skills using skill ransfer. Furthermore, the LC allows the
animator to interactively update its knowledge base by tuning the dynamic behavior of the torque profile
rules through incorporating skill discovery. The LC consists of two components: a knowledge-based
controller (KBC) and a learning apprentice system (LAS). The KBC consists of an inference engine, a
knowledge base, and a working memory. The infcrence engine controls the operation of the LC by
selecting the rules to use, accessing and executing those rules, and dctermining when a goal has been
satisfied. The rules are implemented in "C" so that the KBC would have the capability to rapidly process
both numeric and symbolic data. The inference engine is very simple because the data operated on are

known and fixed in quantity. This has climinated the need for patiern matching between rules and variables.

Similar to other "rule time expert systems”,* the KBC relies on techniques to compile the rules, to divide

*Than other machine leaming systems.

‘Referto Russell Anderson's ping pong robot in Section 3.2.2.
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the rules into smaller and smaller scquential pieces. This has allowed the KBC to integrate sensory data,

robot capabilities, and task constraints to generate acceptabiz locomotion movements in real-time.

The knowledge basc consists of three (initially empty) sets of production rules that regulate the
locomotion behavior of the robot. The working memory contains the description of the current robot status
(both its body and Icgs), the environment details (e.g. obstacle descriptions), and the goals provided by the
human animator. Skill transfer is performed by the KBC components, whereas the skill discovery is
performed by a knowledge-based consultant module called the "learning apprentice system” or shortly the

"LAS" which is attached to the KBC (see Figure 5.1).

KBC .
Knowlege Base || The Animation
Rules 11, IIT WMt*1  Subsystem (ANS)
Skill ]
Discovery
' ,
Inference Engine
Inference Control
& \ |
The Leaming App- User Interface NC
rentice Sys.(LAS) Rules I
\ et —
The Joint Coordinati- Skill Transfer
on Control (JCC)
User

Figure 5.1 The Components of the Learning Controller
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The task tackled by the LC is to provide three functions:

Initially, it functions as a high-level symbolic interface to the NC (symbolic front end for choosing

among and managing the exccution of the NC parameters- sce uscr interface rules I in Figure 5.1).

Later, it functions as an intelligent locomotive solver which solves problems on its own when it is
possible. The LC will gradually transform from a high-level symbolic interface to an intclligent
locomotive solver that will in some (eventually the majority) of the cases be able to solve locomotive

problems on its own, without the help of its numerical partner, the NC (see rules II in Figure §.1).

Finally, it functions as an intelligent skillful controller that is able to perform purposeful activities
under unpredictable conditions in the environment (environment obstacles- see rules 11l in Figure

S.1.

In other words, the LC will gradually go through a natural growth process from an apprentice to an

assistant to a partner and, finally, to a skillful controller.

M

@

The LC applies the skill acquisition model of section 5.3 with the following postulates:

Decomposition: The LC synthesizes locomotive skills in two phases. The first phase, taking place in
the legs’ approach to the ground, is called the "strategic” phase. At this phase the LC determines the
set of "milestones” of motion (the first approximation for the motion). The details of the motion
between the milestones are not computed at this phase. The actual details of the environment (2.g.
obstacles descriptions) are determined during the actual motion exccution. Only then, the actual

motion will be computed during the second phase which is called the "tactical” phase.

Reduction to geometric primitives: Decomposition of locomotion tasks into preliminary and
implementation phases means that the preparation for sustained stable locomotion is done without
taking into account the details of the environment, The leg adjustments are done according to the
obstacle contours. In order to make this statement operational, a reasonable assumption is to replace
the actual obstacle contour by the circumscribed regular geometric body for the sake of reshaping and

adjusting the legs’ motions. This is what we call the reduction to geometric primitives. Implications
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of the reduction postulzte to geometric primitives are very important. In this way the robot can handle
an infinitc number of obstacle shapes contained within a primitive geometric form using just one
form of preliminary skill shaping. The number of needed variations of these preliminary skill shapes
is thus reduced to the number of geometric prirhitives (paralleiepiped, cylinder, pyramid, sphere, etc.)
which is quite small.

Another similar mechanismi, used in the preparation for sustained stable locomotion, is related to the
sclection of preliminary locomotive skills. According to the assigned robot mission, conditions of the road,
distance to destination, ctc., the preliminary locomotive skill is chosen. On the basis of accumulated
experience, it is possible to decide a priori a suitable preliminary locomotive skill. This simplifies greatly

the burden of the final tactical control phase.

5.4.1. SKILL TRANSFER

At any instant during the experimental system operation (see Chapter 6), the human animator uses
the animation front end subsystem to describe the locomotive skills to be used by the robot. The human
animator would provide the required input for the JCC and the NC modules (speed control, heading control,
gait control, etc.). As the animator controls the motion of the robot, simultaneously the development of
motor skills in the form of production rules takes place through the skill transfer process. Remember this is
similar to the case in child motor control systems where motor control and motor learning are‘ parallel
activities- see Chapter 1. This involves building the knowledge base of t*~ i<, which consists of three
(ini@y empty) sets of production rules of the form 5-4. In these rules, the LC learns both a generalized
left-hand side (see section 5.4.2.1) and a generalized right-hand side (see section 5.4.2.2) . The left-hand
sides are generalized by using either concept-learning techniques or by tumihg constants into variables
[Ric83], while the right-hand sides are developed by concatenating subplans or by editing motion torque
profiles. A rule that still has an incompletely learned S® and/or AF is called a rule shell (a more precise
. definition will be givcn'later). These rule shells may either survive to become a robot rule, through skill

discovery mapping, or die out. Examples of rule shells from the three rule sets of the knowledge base
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follow.
Type I rule shells:

These are skill usage type rules. They identify the contexts under which the various skills leamed by the

robot should be used and how to drive the NC to implement them. An example of a Walk(A,B) rule shell is:

IF LEG 1[lc;(X)] & LEG [ic;(Y))
& LEG[lci(Z)) & LEG {{ic;(W)]
& NAVIGATION GOAL =A -8B
& ROAD(A B)=FLAT
& DISTANCE(A B)SS
& INITIAL-LOC(A)=NS STREET
& FINAL-LOC (B)=NS STREET
THEN
ACTIVATE NC [le\(X') , Ie\(Y') , e (27) , ley(W?))
UNTIL Xg =X~-coordinate of the final loc(B)
&Yg =Y—coordinate of the final loc (B)
WITH linear speed =[a b}
DELETE FROM WM.
old LEG; locs
ADD TO WM:
INITIAL-LOC (B) = NS-STREET
&LEG [lc{(final pos))
&LEG {lc (final pos))
&LEG 4 [lc1(final pos))
&LEG 4 [ic (final pos)]
This example represents a rule shell for the usage of a locomotive skill: walking. It provides the

conditions under which this skill should be sclected to implement sustained stable robot locomotion from A
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to B. In the action part, it shows how to derive the NC to implement the skill. These rule shells are leamed
by observing the examples provided by the animator using the JCC and the NC (see Chapter 6). Skill
transfer takes place as the mapping of both the situation and action spaces from the human animator’s
specifications of fhc JCC and NC control commands, the characteristics of the environment, and the robot's
state (in other words the contents of the WM at the time of using the skill) to the left and right hand sides of
the rules respectively. The features of the situation parts of the rules are collected from the contents of the
WM to form the rules’ 7. Similarly, the rules® A® features are extracted from the animator’s actions to

maintain the robot’s sustained stable locomotion.

Intuitively, this rule says: If the robot’s four legs arc in some orientation (X,Y,Z,W) within a
particular leg cycle (i) (see Figure 3.5) ,and the goal broadcast by the animator is ( A—B ) such that the
road from A to B is flat and the distance between these two points is less than or equal to § units of
distance, and both points arc located on NS (North- South)streets; then start to drive the NC with the Ic, leg
cycles for all legs such that the legs start from the closest walk cycle to the initial legs' settings
(X*,Y',2"\W") in Ic, (note that cach locomotive skill has its own leg cycle- figure 3.5). This is to facilitate
the smooth transitions between different types of gaits. The linear body speed is within the range {a,b], and
the stopping conditions are of the destination point B (within some tolerance). The additions and deletions

from the working memory (WM) are for the purpose of the LC’s consultation mode (see later).

Type II rule shells:

These are similar to type I rule shells, but they use torque profiles instead of leg cycles in the right hand
sides of the rules. They are called "prototypical torque profile” rules. They are formed from type I rules by
replacing the right hand sides with the torque profiles calculated by the NC when the S2 parts of the type
rules are stabilized (see rule stabilization definition in section 5.4.2). A rule shell for a walk skill in the type

Il rule set would be as follows:

IF LEG[lc; (X)) & LEG,[lc;(Y)]

& LEG;[lc;(Z)] & LEG 4llc;(W)]
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& NAVIGATION GOAL =A —-B
& ROAD (A B)=FLAT
& DISTANCE(AB)S S’
& INITIAL-LOC (A)=NS STREET
& FINAL-LOC (B) =NS STREET
THEN
DRIVE THE DIRECT DYNAMICS MODULE WITH WALK (X' .Y' Z' \W')
UNTIL Xg = X—-coordinate of the final loc(B)
& Yg =Y-coordinate of the final loc(B)
DELETE FROM WM:
old LEG; locs
ADD TO WM:
INITIAL-LOC (B) = NS-STREET
& LEG,[lci(final pos)]
& LEG,{lc\(final pos)]
& LEG,[lcy(final pos))
& LEG 4llc(final pos))]

The action part of this rule is learned by a skill transfer process. That is, the torque profile computed
by the NC is used directly (WALK(X",Y’,Z’,W’)’ in the example- the format of this profile is described in
section 5.4.2.2) with no need for any processing to understand or interpret these torque profiles because
they are memorized to be used later in similar situations. Type II rules are learned to provide the function of
the intelligent locomotion solver which solves problems on its own without the help of the NC. Building
these rules is nothing but priming the LC with the torque profiles produced by the NC (previous experience-
AE transfer to AR in 5-7), but in compact form since these rule shells have been firmed up by

generalizations and discrimination throughout their type I lifetime (see Section 5.4.2). The left hand sides’

*The orientations (X',Y'.Z',W") are the closest leg orientations to the current (X,Y,Z,W) leg orientations (due to current task
segment conditions) in the WALK torque profile table.
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torque profiles are used to directly drive the direct dynamics module (see chapter 6).

Type Il rule shells:

These are the motion-cnhancement and fine-tuning rules that are to be used in the tactical phase during
motion exccution. They identify the kinds of local terrain operators that must be applied to the legs’ driving

torque profiles in order to adapt them to the roughness of the terrain. An example of this type of rule is:

IF LOCAL MAP =BUMP ahead of leg; inWM
& BUMP CHARACTERISTICS ARE (STEEPNESS , FRICTION , SIZE , ETC.)
THEN
APPLY OPERATOR BUMP (STEEPNESS , FRICTION , SIZE ,ETC.)

TO leg; 's TORQUE PROFILE

Generally speaking, stepping over obstacles requires some kind of sensor ranging system [EsA84],
and sophisticated control algorithms to provide the capability to step over many different types of obstacles
when moving at different speeds [SoW87]. Two approaches are implemented to deal with small obs*acles.
The first, as shown in Figure 5.2, uses the terrain scanner information (see Section 6.2) to detect small
obstacles. If any obstacle is detected within a leg forward stroke, then the leg will be continuously moved
upward until the path is frec from the obstacle (point B). Then the leg is moved forward to point C, a
position which has the same x component (forward) as the end position of the current leg cycle. Finally, it
is moved downward to the position, point D. If the obstacle is too wide then the leg will land on top of the
obstacle. These forward and upward/downward motions’ torque profiles are stored in the fine tuning rules

during the teacher’s editing the leg cycle to avoid obstacles.

The second approach integrates a ground tracking and obstacle clearance modes as shown in Figure
5.3. In the beginning, with no obstacle in the leg transfer path, infdrmation from the terrain scanner is used
to track the ground (constant distance between foot and ground is maintained). The tracking will continue
until an obstacle is detected within a certain range by a leg forward stroke. In this case the leg switches to

the first approach to step past or on top of the obstacle. Then the leg will switch back to keep track of the
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Figure 5.2 Obstacle Clearance Strategy for Stepping over Obstacles
ground.

Each leg updates its own torque profile independently. Since there is only one on-board camera on-
top of the robot, hind legs use extrapolation technique to predict the location and where in their cycles they
will meet the obstacles. Hind legs use the same approaches as the front ones to navigate. This was possible
since the swinging legs are not contributing any torques to the motion of the robot body. Accordingly, only
the trajectory of a swinging leg had to be adapted to the shape of the navigated terrain. The effect on the
robot body’s orientation appears after a swinging leg lands. In this case the automatic body regulation
algorithm is activated to maintain the robot balance. The automatic body regulation algorithm is always

activated when either the NC or the LC is in control of the robot locomotion. It is actually implemented
within the direct dynamic code (see Sections 3.4.2 and 6.3).°

In order to analyze the performance of the fine tuning rules, the leg positions (in Cartesian
coordinates) and the data from the terrain scanner were stored for off-line analysis. The data stored was

used for generating the terrain map (off-line). This experiment is described in section 6.5.

Refer to the navigation algorithm 10 see how it decides which obstacles to overcome (step on top) and which to circumnavigate
(section 6.2).
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One set of these fine-tuning rules is associated with each of the robot’s four legs. They are
responsible for the short-term monitoring of the situation during motion execution and synthesizing of the
actual motion trajectory according to the obstacles that should be overcome by the legs. The right-hand
sides of these rules arc formed from observing the animator editing the leg’s torque profiles or joint angles
to overcome the obstacles on the road and to enhance the produced motion (see chapter 6). The difference
between the original torque profile (before editing) and the edited torque profile is stored as an additive
quantity in the operator BUMP in the given example. When a similar obstacle is faced by any of the legs
while executing any leg cycle ( any locomotive skill), this terrain adaptation torque profile will modify the
current torque profile additively. These rules are learned to provide the function of the skiilful locomotive
controller, which solves locomotive problems under unpredictable environmental conditions. Figure 5.4

show the conceptual structure of the LC and where these three sets of rule shells are locaied.

The torque profile of the NC produces only an approximate version’ of the desired motion (this is the
strategic phase of the skill synthesizing). The LC learns motion adaptation during type 11I rule leamning (the

tactical phase).

In fact, type II and III rules form a hierarchy (preliminary followed by implementation phase) in
which type II rules first select the skill to be executed and pass the torque profiles as the first approximation
of the motion to the legs. Then, type III rules of each leg will edit their torque profiles on the fly during the
actual execution of the motion in order to enhance the produced motion. The traversability of the terrain
and the set of small obstacles "faced"” by the legs will be determined only during the actual motion (in WM-
see Figure 5.1). Obstacle information representing sensory information, is supposed to be provided by

sensory devices such as a robot’s on-board camera.
Motion on rough terrains is lcarned by allowing the animator to manipulate the motion produced by

the NC (the torque profiles). If the animator sees that the produced motion is incorrect (will disturb any of

the sustained stable locomotion requircments- see Chapter 6), he or she has to modify, recompile, and re-

7See the end of Chapter 4.
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Figure 5.3 Ground Tracking Strategy

execute the edited torque profiles. This mechanism will provide control over the motion without disrupting
the dynamic integrity of the resulting motion since the edited torque profile still has to drive the direct
dynamics module in order to produce the motion. This mechanism represents a solution to the problem of
controlling and coordinating the motion using torque profiles (developing dynamics-based skills). The
torque control will be no longer unfamiliar to animators [AGL86]. The LC will build locomotive rulcs
about the torques required to produce different kinds of locomotive skills, even under various difficult

terrain and environmental conditions.

This is, to some extent, similar to work done at NYIT, where the animators have an interface that
allows them to manipulate the animation database (at the frame level) produced by the BBOP keyframe
animation system [Lun87] (this system was described in scction 2.2). The BBOP provides the first
approximation of the motion, and the animator uses a keyframe cditor to correct it. The animation database
is reused by the BBOP at any time for motion review and interactive modification. In other words, the

editing techniques arc usced as post-processes to the BBOP animation system.
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Figure 5.4 The Conceptual Structure of the Learning Controller

For example, Lundin used the BBOP system first to animate a vehicular model that was moved over
a path, but the wheel motion was not performed. He then used a simulation program to read the BBOP
database, perform the wheel motion, and write the modified transformation parameters back to the database.
The effect of the simulation on the animation could then be viewed using the BBOP again. Further
modifications were made by either changing the input parameters to the simulation algorithm or by

changing the motion database with BBOP.?

With the skill transfer strategy described in this section, the LC will have the flexibility to achieve
high performance and smooth locomotive motion through "tuning the dynamic behavior” of the robot. The
objective here is the capability of specifying motions which combine the realism of dynamics simulation in

real-time without removing control from the animator.

¥ Again here we would like to emphasize on the kind of animated simulations that the experimental work of this dissertation
describes. What we are dealing with here is what is called "task level simulation”, where the problem is to control the simulated robot
by specifying a set of events and some constraints on its behavior, and letting it fill in the details as necessary.
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$.4.2. SKILL DISCOVERY

Skill discovery describes how the LC can generate its own skills by refining and exploring those
skills which have not been presented by the human animator in operational form. Skill discovery is done
by the leaming apprentice system (LAS) module. Leaming Apprentice Systems (LASs) are knowledge-
based consuliant systems that directly confront the knowledge acquisition bottleneck by leaming from
interactions with an information-rich external environment (such as the human animator). Several previous
LAS systems have been built in the ﬁeld of machine learning in artificial intelligence. LASs represent
autonomous learning systems that start with general inference rules and learning techniques and gradually
acquire complex skills and knowledge through continuous interaction with a human expert. Leaming
Apprentice Systems are currently being developed in the domain of VLSI design [MMS8S), well-log

interpretation [WSK86], and medical diagnosis [WCB86).

All the rules that are learned by skill transfer in the previous section have a situation part (left hand
side) that consists of formulae of conjunctive predicates (the feature set FX along with their values), with
truth values assigned to them. Skill discovery is achieved through rule-modification. The rules are
modified because they contain faults, which can be of two types: (1) motion faults: a rule contains an action
that calculates incorrect motion (incorrect right hand side); (2) control faults: the rules have undesirable

control behavior when run in the consultation mode (incorrect left hand sides).
The main learning algorithm for the LAS is:

ALGORITHM A

Until all the rules are stabilized (see the definition of rule stabilization later);

(a) Identify a rule with a fault from the rule set.

(b) Modify the selected rule to remove the fault.

Following Smith et al. [SMC77], the module responsible for identifying faults is called the "critic".

The module responsible for modifying the rules is called the "modifier”.
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The "critic” identifics faults by running the existing rule shells (incompletely-learned rules) on the
current navigation task (see algorithm C later that describes the operation of the LC in consultation mode)
and then analyzing the resulting rule trace. The analysis must identify where the rules behaved correctly,
called positive training instances, and where they behaved incorrectly, called negative training (fault)
instances. The positive instances arc used to generalize the rules and the negative instances to correct them.
Negative fault instances can be of two types:

(@)  Errors of commission: A rule is fired incorrectly, because it was insufficiently constrained.

(b)  Errors of omission: A rule did not fire, either because it was incorrectly constrained, or the required
rule simply does not exist,

The "modifier” requires three pieces of information on each instance:

(@) The type of instance: positive, negative-commission, negative-omission;

(b) Therule;

(c)  The context, consisting of the variable bindings when the rule was fired.

A very common critic technique is the use of an "ideal trace",i.e., an account of what rules should
have fired and in what sequence. The LAS takes the ideal trace as input from the animator when the
animator uses the JCC and the NC to produce the details of the motion for a mission. The ideal trace is
compared with the actual trace of the rules (the rule trace) to locate the first point at which the traces differ.
This allows the faulty rules to be identified. In other words, the "critic” algorithm is:

ALGORITHM B

(@) Produce the rule trace by running the rule shells on the current navigation task (see algorithm C
later).

()  Compare the produced rule trace with the ideal trace and find the first place at which they differ.

(c)  The rules that fired before this point fired correctly, so the associated contexts are positive training

instances for those rules (see algorithm D).
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(d) The LC rule which fired at the differing point caused an error of commission, so the associated

context is a negative training instance for this rule (see algorithm E).

Once a fault has been located, the faulty rule can be modificd. The modification module uses three

rule modification techniques: rule ordering, left hand side leamning, and right hand side learning.

(1)  Ordering the rules, e.g. specifying that S*—RUN should always be fired in preference to ST —~WALK
if both are in the current conflict set during an LC’s consultation mode. This technique is only

appropriate for control faults and was used by Brazdil and Waterman [Bra78) [Wat70].

() Updating a rule’s situation (left hand sides leaming) to take account of new instances, e.g.
transforming

SESRUN  => SFSRUN 5-9

where S#* is derived from SF by the left hand sides learning techniques (described in the next

section). This is defined as the forming of a symbolic description of the target conditions from

examples and non-cxarﬁplcs and then using it for prediction -like those used by Winston [Win75].

(3) Modifying a rule’s action (right hand sides learning) to correct the motion produced by the torque

and force profiies used.

SEAR = SRoAR 5-10

where A ” is derived from Af by right hand sides learning (see section 5.4.2.2).

5.4.2.1. LEFT HAND SIDE LEARNING

In order to understand the rule modification technique of 5-9, one has to lecarn about three concepts:

the Situation Space, Generalization, and Discrimination.

(i) The Situation Space

The situation space tries to capture the notion of a partially-specified left hand side in which some
situations are known to lie outside the target conditions, some inside, and some, in a grey area, are yet to be

decided. The LAS works to reduce this grey area. Each rule’s S¥ part is represented by a data structure
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called its situation space.

A situation space consists of a forest of feature-value trees (see Figure 5.5). Each tree corresponds to
a conditional clause in the S of a rule. Each node of a tree is labelled with 2 feature-value, feature-values
in the same tree being applied to the same arguments. The label of the root node is the feature value TRUE.
These feature-values represent the robot’s internal language vocabulary that are acquired by the LC during
the skill transfer process. The labels of the sons -7 a node are mutually exclusive and exhaustive. The
situation space of figure 5.5 shows some of the feature-value trees that might appear at the rules’ left hand
sides. Other feature-value trees concern the features of the sustained stable locomotion of the robot (these
features were mentioned in section 3.2) such as: stability tree, combining locomotion tree, speed trees,

obstacle avoidance tree, etc.

This situation space allows a partially-specified rule situation (let hYand side) to be represented.
During the course of rule learning, this partially formed situation is gradually firmed up until it is either
stabilized or completely specified (see definitions next paragraph). The partial representation is achieved by
placing two markers in each tree, an upper mark and a lower mark, as in Figure 5.3. The partially-specii_ied ‘
rule is represented by the rule action (e.g., RUN) and the situation space together with its marks. This is
what we call a rule shell,

The following definitions concern the manipulation of the trees in the situation space:

(a) A feature-value is said to be above a mark if it is outside the subtree dominated by that mark.

Similarly, a feature-value is below a mark if it is in the subtree dominated by that mark. A feature-

value is between the upper and lower marks if it is above the lower mark and below the upper mark.

()  Any feature-value above the upper mark is outside the target left hand side. Any feature-value in the
tree below the lower mark is inside the target left hand side. Any feature-value between the upper and

lower marks is in a grey area, about which the LAS is not sure.

(¢) A conditional clause is "firmed up"” when the upper and lower marks coincide. The rule shell are

firmed up into a rule when each of its conditional clauses are firmed up. Learning works by moving
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Figure 5.5 The Situation Space Consists of a Forest of Feature-value Trees

the upper marks down and/or the lower marks up, until they coincide.

(d A rule shell is stabilized when the upper and lower marks in all tree forests freeze for a reasonable

period of time during the learning process.
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Since the rule shell partially specifies the rule, there is some ambiguity about what rule to use when

forming rule traces (this is necded in step (a) of algorithm B above). Following Mitchell [Mit83], one can
take two extreme vicws:
(1) the most general view: that the left hand side is specified by the conjunction of feature-values

labelling its upper marks, which leads the rule to make errors of commission; and

(2) the most specific view: that the left hand side is specified by the conjunction of feature-values

labelling its lower marks, which leads the rule to make errors of omissions.
Our technique for dealing with this predicament is to use the following algorithm:

Algorithm C (The LC consultation mode algorithm)

(@)  All the corresponding trees in the forests of the various rule shells are merged into one forest keeping
various marks of the different ruie shells.

(b) Each working memory datum of the current context (coming from the working memory WM) is set
into its designated tree in order to identify the new conflict set. The new conflict set consists of
clements of the current conflict set where the working memory datum is located below their upper

marks in the designated forest tree (i.c either within the current left hand side or in the grey area).

(c)  Repeat (b) until all the working memory data that represent the current context are exhavsted.

(d) The final conflict set is ordered according to the rule-ordering strategy (the priority ordering) , and the
first rule on the list is applied.
This matching and rule selection algorithm is the inference engine of the KBC (see Figure 5.1). It is

expected to work well in the process of forming rule traces for the following reasons:

(1)  Only few rules in each rule type exist. In the experimental system of chapter 6, only 14 of them and
their action parts implement the following locomotion skills: Climb, Descend, Walk, Turn-left,
Tumn-right, Walk-backward, Trot, Pace, Gallop, Stop, Run, Pronk, Walk-side-ways and Turn-in-

place.
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(2) Also few forest trees in the situation spaces : Leg, loc., Legz loc., Legs loc., Legq loc., Road termain,

Initial loc., Final loc., Distance, Navigation goal, also speed range trees.

This means that the conflict set can be at most of size 14, and the number of forest trees in any

situation space can be at most 12.

The partial representation of a rule provided by a rule shell is similar to the version space

representation used by Mitchell et al. in the Candidate Elimination Algorithm [MUNS1].

The raising of the lower marks of the Situation space forest trees is done when the critic provides a
positive training instance of a rule. This is called generalization of the rule shell. Moving the upper marks
from the root, down a tree, is done when the critic provides a negative training instance of the rule. This is

called discrimination of the rule shell.

The learning process compares the current context of the environment (coming from the WM) with
all previous contexts. This is possible because all previous contexts, both positive and negative instances,
are summarized by the current positions of the upper and the lower marﬁers in the feature trees. The
learning process need only compare the current context with the current position of these marks. If the
critic has provided the modifier with a positive training instance, then we will have a positive context and
will apply the generalization algorithm (see algorithm D below). If the critic has provided the modifier with
a commission error, then we have a negative error, and the modifier will apply the discrimination algorithm

(see algorithm E below).

The situation space is initialized during the skill transfer process. For each tree in the situation space,
exactly one of its tip feature-values will be specified by (i.e, be true in) the context of this instance. The

lower mark is placed on this tip. The upper mark is placed on the root of the tree.

(ii) The Generalization Algorithm:

The generalization algorithm receives the context of a correct application of a rule and the situation
space of the rule. The output consists of new lower marks for some of the trees. Each tree is considered in

turn and the following steps are executed:;
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ALGORITHM D (The LAS generalization algorithm)

(a) For cach of the feature-values labelling a tip node, determine its truth value in the context.

(b) Exactly one of these feature-values will be specified by the context. Label this node "the current
node”.

(c) Find the least upper bound of the current node and the current lower mark and make this the new

lower mark.?

(iii) The Discrimination Algorithm:

The discrimination algorithm receives the negative context of an incorrect application of a rule and
the situation space of the rule. The output consists of a new upper mark for exactly one of the trees. Note
the lack of duality between the generalization and the discrimination algorithm. Since we are dealing with
a conjunctive rule, all its conditions must be true for the rule to fire. Thus, r.naking one condition false for an
instance is enough to prevent the rule firing ("which one?" is a credit assignment problem), Each tree is
considered in turn and the following steps are executed;

ALGORITHM E (The LAS discrimination algorithm)

(@) For each of the feature-values labelling a tip node, determine its truth value in the negative context.

(b) Exactly one of these feature-values will be true in the negative context, label its node, the current
node. Note that the current node must lie below the upper mark., otherwise the rule could not have
fired.

(c) If the current node lies below the lower mark, then mark the tree as a white tree.

(d) Otherwise, the current node must lie between the upper and lower mark. Mark the tree as a grey tree.

At least one of the trees must be grey, otherwise the rule shell application would be correct. If just

one tree is grey, then we have a ncar miss. If more than one tree is grey, then we have a far miss.

*Despite changes to the lower marks, the rule shells used in the planning phase do not change form, because they are determined
by the upper marks. However, gencralization does have an effect on the rule-leaming process, because the lifting of the lower marks
can limit the choices available to discrimination.
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Only one of the grey trees can have its upper mark lowered. We call this grey tree the discriminant.
Far misscs (a kind of credit assignment problem) introduces a8 choice, and therefore gives this
discrimination algorithm a non-deterministic nature. In the case of far misses, an arbitrary grey tree

in chosen,

(e}  Once the discriminant has been picked, its upper mark is lowered, just enough to exclude the curreni
node. This is done by setting the new upper mark to be the unique mark below the least upper bound
of the current node and the lower mark that is still above the upper mark. (Also here, note lack of

duality with generalization,i.c. we don’t use the greatest lower bound of the upper and current mark).

Actually tree attributes and values are similar to generalization trees in concept leaming systems
[MMSB8S]. They are provided by the system designer. This process could be automated to some extend.

For example, an inconsistency can be caused by an inadequate situation space. For instance, suppose the

correct form of a "Gallop” rule is:'°

Leg 1-loc (X) .and. Leg2-loc(Y) .ard. Leg3-loc(Z) .and. Leg 4—loc(W) .and......and.

[uphill(=a) .or. downhill (=b)] — Gallop (X’ ,Y' .2’ W").

Since the road-terrain tree is ternary, positive instances for Gallop on an uphill and Gallop on a downhill
will cause Generalization to move lower bound to the root node. This particular Gallop rule shell will then
be:

Leg 1-loc{X) .and. Leg2-loc(Y) .and. Leg3-loc(Z) .and. Leg4-loc (W)....—Gallop (X' .Y’ Z' W),
Now a negative instance for Gallop on "Flat" surface will be below the lower bound and hence cause an
inconsistency. The solution in this case is to manipulate the road-terrain tree into the form shown in Figure

5.6.

In summary, the characteristics of the learning technique of the LAS in dealing with the situation

parts (left hand sides learning) of the rule shells are as follows;

1°The =a and =b varisbles her> means any bindings.
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Figure 5.6 Manipulating a Feature Tree to solve an inadequancy in the Situation Space

(1) It combines generalization and discrimination in a clean manner. They are near dual, but discrimination
is nondeterministic, whereas generalization is not.

(2) The firming up of a rule shell in the learning procedure provide guarantees that the learning process has
terminated. No such guarantees are provided by generalization or discrimination used alone.

(3) The stabilization of a rule shell in the lcarning procedure guarantees that right hand sides’ torque
profiles will take place (see next section).

(4) Rule ordering is independent of the modification technique used for the left hand sides.

(5) Discrimination on far misses introduces choice and search into the modification process.

Finally, concerning the creation of new rules, one obvious technique that could be used is to treat the
rules’ absence as an error of omission and use the standard techniques to correct this error. The idea is to
modify rules that have no conditions from the situation space, only a conclusion. Such rules may be called

empty rules. An empty rule, together with its situation space, constitutes an empty shell.
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§.4.2.2. RIGHT HAND SIDE LEARNING

In the LC, when the situation part of type I rules stabilizes (stability can be sensed when the markers
stop moving around the trees of the situation spaces), the LAS substitutes the right hand sides of these rules
with the torque profiles calculated by the NC. Motion computations by the NC require time-consuming
calculations, and so it is desired that the motion experienced in the past be executed without complicated

processing (easier and faster abilities of skills reproductions).

The torque profiles of the various degrees of freedom of the legs depend on two factors: the desired
joints trajectories and the desired body’s trajectory. Type II rules combine these two and remember the
torque profile calculated by the NC that produced the motion. The torque profile is a 13 column look-up
table indexed by the four legs tips’ locations. Figure 6.9 show a torque profile for a compleie walking cycle.
For each leg, three joint torque profiles are stored in these look-up tables (each leg has three DOF)- see
Table 6.2. Only one cycle for each skill is stored in a look-up table. This will be repeated as many times as
required (see Chapter 6).

In this context, it is important to recognize that each leg’s torque profile is considered in the context
of the other legs’ torque profiles. Because of the inter-dynamic coupling between the links of the body, a
torque profile for one leg alone does not say much about the motion of the robot’s body. This is the main
reason why the granularity of the torque profile lookup table cannot be brought down to a link or even a leg

level.

The teacher detects motion bugs during the motion execution on the screen when the LC takes over
the control of the robot locomotion (consulation mode- see Chapter 6). There are two types of bugs: illegal
operation, and failed steps. An illegal operation is one that is considered impossible in the environment. For
instance, it is illegal to walk through an obstacle or for the leg to go under the ground. A failed step is one
that does not achieve its goal for the designated time span. The LC verifies that at all times the goals
intended by the animator have actually been met. These two methods of detecting motion bugs state that a
navigation plan must be executed legally, achieve all intended goals and subgoals, and also be correct. The

animation halts whenever one of these problems is identified by the animator (see Chapter 6). A trace of the
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driving torque profiles or joint angles is presented to the animator upon request to allow him to fix it and
correct the motion.

The micro-details of the roads are presented from the "micro map” frames described in Chapter 6 to
WM at the appropriate time instances to show the robot what it is "facing” at any given instant of time. The
legs, in tum, will edit their torque profiles on the fly to avoid or overcome the "seen” obstacles. It is
important to realize that the robot has no control over what the environment will throw its way before
actual motion execution. "Micro map” information represents sensory information that is supposed to be

provided by sensory devices such as cameras.

The approach used in solving the problem of the legs’ perception of the environment is simplified by
using a set of standard geometric shapes to describe it. We .f;void modeling sensory input more realistically
in order to concentrate on the control problem. This is what we called the reduction to geometric primitives
in section 5.3. Perception is then reduced to recognizing these situations and determining the values of the
characteristic parameters. According to the recognized obstacle and the LC’s experience in handling
previous similar obstacles, it modifies the prototypical torque profile that performs the appropriate
locomotive skill. New operators for torque modifications are created if the user has intervened and
modified the torque profile himself. A corresponding rule for this newly recognized obstacle is created as a
type-1II rule. The rule will relate the conditions under which the motion editing has occurred and the
modifications that have been made by the animator. The difference, between the original torque profile
(before editing) and the edited torque profile, is stored as the action part of the rule.

The difference torque profile is a four column table that contains a column for each DOF of a leg (see
Chapter 6). The first column is an index to the leg’s cycle. These values will be added to their

corresponding torque profile values for this particular leg.

In summary, the torque profile modifications must be carefully monitored in order to take into
account unexpected changes in the environment. Therefore, the LC will have two functions: (1) a real-time

response to stimuli from the local legs’ navigators reporting a particular obstacle, and (2) a decision-making
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capability to select which torque modification operator to execute.

5.5. DISCUSSION

The goal of this Chapter was to explore methods by which the human-synthesized robot locomotion
skills may be captured by the robot’s LC in order for them to be reproduced easier and faster. The LC is
meant to have a long-term learning experience unlike conventional learning artificial intelligence programs
that are tumed off after running a few minutes and acquiring their desired concept. As such, learning is

meant to be gradual, incremental, and subject to periodic refinement.

One of the benefits of the idea of skill acquisition is that, it may tum out that by analyzing the role of
automatic mechanisms in the execution of functional motions by AI methods, one can get a better insight
into the operation of neural networks and the evolution of learning processes. Research towards such an

objective has been undertaken in [MoA88a].

It should be also kept in mind that skill-based Al systems are not limited just to the skill acquisition
problem. Very interesting and instructive learning problems can be conceived in this area of rescarch as
well. For example, assuming that rule based forward walking control is available, one can formulate the
seemingly simple leaming problem: what constraints and rule modifications must be introduced in order to
generate the knowledge base for walking backward (similar problem could be formulated for stair climbing
and descending). Other problems that might produce more insight into the evolution of the control system
are investigated scparately in other work [MoA88b] [MoA88c]. In [MoA88b], a methodology to measure
the progress in the learning process is proposed. As indicated previously in Chapter 2, that learning, at our
current level of knowledge, cannot be measured directly, as the processes leading to changes in behavior
are internal and usually not available for direct examination. Rather, one must infer that learning (the
process) occurred on the basis of the changes in behavior that can be observed. The work in [MoA88b)
answers the questions; how can one know if the robot control system has evolved into a control system that

is in some sense intelligent and how can one measure the LC progress? (see Section 6.5).
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In [M0AB8Sc] a unifying expert anAimator model for animating a group of articulated robots (such as
the one in this research) in a three-dimensional environment, has been proposed. In a sense, the multi-robot
simulation is a natural extension to the single robot simulation.'! However, the multiple robot extension
brought up two research issues that do not appear in the single robot problem:

(1) The method used for planning the motion for the single robot is based on the assumption of a static
environment (see section 6.2), and so it cannot be used in the multiple robots case because each of the

robots is in a dynamic environment consisting of other moving robots;

(2) The technique used to animate a single robot’s motion is based on calculations of the dynamic
equations of motion. Producing the motion dynamically for the multiple robot case would need

greater processing capability than is currently available.

In order to overcome these two problems and to produce "convincing” animations (as opposed to
simulations) for the group of robots without pressing the user to become overly involved in the mechanisms
of producing the motion , an expert animator agent for each robot has been proposed. These agents have a
computational understanding of motion and its semantics in a way that each individual articulated robot
would handle its motion autonomously. Each agent integrates knowledge engineering approaches, namely
object-oriented programming and rule-oriented programming [Rob81] [Ste85], with computer animation
approaches. The object-oriented approach plays a key role in the modeling of the robots’ inter-
relationships, whereas the intelligent functions of each expert animator agent are transparently programmed
in rule-oriented programming style. In producing animations for the various robots, each robot is
considered to be an object in the environment and handles its motion and inieractions with other robots, as
well as with the animator, autonomously.

These problems are challenging ones especially at this early stage of the development of skill based
Al systems. Hopefully, the study of leaming problems at the skill level will produce more insight into the

evolution of learning processes. More comprehensive skill acquisition methodology will require extensive

""One can examine here the possibility of transplant leaming from one robot to another and also the possibility of group leaming
in the dynamic environment.
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multidisciplinary cooperation in which experts in biomechanics, neurophysiology, motor functions,

biology, evolutionary psychology, etc., must be involved.



CHAPTER 6

EXPERIMENTAL RESULTS AND FUTURE DIRECTIONS

6.1. INTRODUCTION

In the previous three chapters the elements of the design of the hybrid numerical/knowledge based
locomotion control system for the four-legged articulated robot have been developed. These include: (1)
the development of the Joint Coordination Control algorithms (JCC) for the synthesis of body and leg
trajectories under animator control, (2) the development of the Numerical Controller algorithms (NC) for
the generation of torque profiles for joints of the robot that are needed to produce the desired motion, and
(3) the development of the Learning Controller algorithms (LC) for capturing the human-synthesized robot
locomotion skills so they can be reproduced easier and faster, and to deal with the unpredictability of the
environment,

To explore the feasibility of the proposed system a prototypical simulation has been developed. The
purpose of the simulation experiments is that we want to see if the LC can, indeed, traverse the kinds of
terrains it was intended for. We would like to place it in a simulated environment and finds out if it works.
The simulation has facilities to display the motion of the four-legged robot using four different locomotion
control techniques: (1) Programmed-in, (2) Kinematic (using the JCC), (3) Dynamic (using the NC), and
(4) High-level skills (using the LC). In this chapter the details of the prototypical simulation are described.
Then the results of the various motions’ performance evaluation are analyzed. Finally, conclusions and
extensions for further work are presented.

The organization of this chapter is as follows. In section 6.2, the experimental system organization is
described. Then section 6.3 describes the implementation development phases. The system operation is
described in section 6.4. System evaluation and conclusions are described in section 6.5. Finally, the

research contributions and future work and exiensions are presented in section 6.6 and 6.7 respectively.

131
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6.2. SYSTEM ORGANIZATION

The hybrid locomotion control system has been simulated on an IRIS-2400 graphics workstation.
The simulation was written in C. Listings and descriptions of the routines may be found in a separate

technical report [Moh88].

The modules that make up the simulation are shown in Figure 6.1. At the core of the simulation is the
robot model, a data structure describing the robot at a particular instant of time. Display routincs use the

robot model to formulate a display description for the IRIS workstation. Modifications to the robot model

Environment Modell

KBC Terrain Scanner
Knowledge Base |_ | Y
Rules II, I Display Routines
Skill *
Discovery Robot Model
Inference Engine '
Graphics Modification
Inference Control Routines
/ \
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The Learning App- User Interface NC Programmgd
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The Joint Coordinati-
on Control JCC)
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Figure 6.1 The Experimental System Modules
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are automatically accompanied by a repositioning of the display figure. User-interface routines allow the
user to peruse the present environment , to invoke the various motion control routines, as well as to use the
graphics commands such as projection view, camera position, moving or fixed camera, zooming in/out,
multi-views, etc.

Programmed-in motion routines send sequences of precisely programmed modifications directly to
the modification routines. Thesc routines implement walking on a flat surface, for example, as continuous
increments of the joint angles at the appropriate walking swing and stance phases. The translation motion of
the robot body is implemented to make the motion look natural. Each locomotive skill is implemented in a
separate routine. These routines are not based on any motion equations, they just graphically position the
robot joints at the appropriate times to animate the motion.

The kinematic routines implement the JCC algorithms of chapter 3: automatic leg positioning and
automatic body height, pitch, and roll regulation. These routines send a sequence of joint positions to the
medification routines which then update the robot configuration, The animator provides the leg cycles of
the four legs, the locomotion phases of the motion, and the desired robot body trajectory. The JCC solves

for the joint angles.

The dynamics routines implement the NC single processor algorithms of Chapter 4 (the distributed
implementation is discussed in section 6.7). These routines can be driven either by the kinematic JCC
routines or the LC’s skill routines. These routines send torque profiles to the modification routines. As in
the kinematic motion control, the animator provides the leg cycles of the four legs , the locomotion phases

of their motion, and the desired body trajectory. The NC solves for the torque profiles that are needed to

produce the desired motion trajectory.

The high-level skills routincs implement the LC and its skill acquisition algorithms of chapter 5.
These routines can either drive the NC routines or the modification routines directly. In the case of driving
the NC routines, they send leg cycles of the four robot legs and the desired body trajectory to the NC. In
this case the NC solves for the required torque profiles that are needed to produce such motion and sends

them to the modification routines. In the case of driving the modification routines directly, the LC sends
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torque profiles to the modification routines which uses them to updaie the robot motion.

The modification routines can receive either torque profiles or position and velocity profiles, In the
first case, the modification routines use the direct dynamics algorithm of chapter 4 (based on Armstrong's
equations) and solves for the robot motion. In the second case, the positions and velocitics profiles are uscd
directly to produce the robot motion.

The animator can interactively define the robot environment. Several types of environments arc

available for the animator. For example, Figure 6.2' shows an environment that consists of a flat surface
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Figure 6.2 A Flat Surface Environment Beset with Obstacles
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'In the figure V & H are the vertical and horizontal distances. The ellipses at the left side of the figure represent the trsjectories
of the robot feet viewed from the side (Cantesian space) expressed in the body coordinate frame (see Figure 3.5). The diagonal lines
just show that the ter. ain is without holes (see figure 6.3).
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beset with obstacles. The environment contains road blocks of two types: large obstacles that the robot can
not step over and has to avoid and small obstacles that the robot can step on top of. Figure 6.3? shows a
different type of environment that consists of flat surface besct with holes as obstacles. In this environment
the robot is to avoid stepping over any of the holes. Finally, Figure 6.4 shows a terrain that is modeled as a
continuous surface using cubic surfaces (Cardinal Spline, and Bezier). The surfaces could be adjusted by
changing the values of the control points. By adjusting these points, the terrain could be made flat, or

sloping in different regions.
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Figure 6.3 A Flat Surface Environment Beset with Holes

3V & Hare as in Figure 6.2.
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The experimental system provides three types of navigation strategies: pre-programmed, animator
controlled, and robot controlled. In the case of programmed-in motion control, the navigation strategy is
pre-programmed in the motion control program (e.g., walk to point A, then tum-left, then trot to point C,
etc.) and it is fixed. In the case of both kinematic and dynamic control of the motion, the animator controls

the navigation of the robot using the speed, heading, and gait control commands described in chapter 3.

Finally, in the case of high-level skill motion control, the navigation strategy uses an A® scarch
algorithm. Tliis navigation system is a single initial state and a single goal state system. That is, it makes
no difference whether a navigation mission is solved in the forward or backward direction. The approach
that has been taken here is a bidirectional search algorithm similar to the one in [Ric83). A symbolic
description of the algorithm can be found in the appendix. The navigation system incrementally builds a
terrain map by integrating the information about the paths traversed so far. The robot has a simulated on-
board camera fixed on top of it. This camera regularly feeds to the navigation system the local obstacles
that the robot faces. The initial traversals of the robot are bascd on a local navigation strategy that uses the
on-board camera information. At any stage in the navigation, the terrain is characterized by a partially built
world map. This world map is updated from time-to-time by incorporating information from the on-board
camera. The robot employs a global navigation strategy that uses the learned world map in the regions it is

available, and resorts to local navigation in the regions the learned map is not available.

The navigation system incrementally builds a terrain map by integrating the information about the
paths traversed so far. The terrain map is actually a graph (V,E) where V is the sct of vertices that represent
the obstacles’ edges in the environment, E is the sct of edges such that (v;,v;) € E iff there is an
unobstructed path (i.e. with no large obstacles) between vertices v; and v;. Initially the map is empty. The
robot uses its on-board camera to measure the distance to any obstacle edge (vi) in any specified direction,
The robot’s strategy is to navigate arbitrarily close to the obstacle’s edges (alongside the edges). It only
leaves the side of an edge if a new direction is suggested to it. In this case it traverses along this suggested
direction till it reaches a point on the edge of another obstacle and then navigates alongside its edges, etc.

To go from an initial point (S) to a destination point (D), the robot moves along the § =D direction till it
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gets to the ncarest obstacle at a point (say x) at onc of its sides. The robot decides then either to
circumnavigate or overcome this obstacle using a local planning strategy. The technique is then recursively

applied to reach D from the intermediate point. When the robot reaches the point x, it then has one of two

choices:

(DI the faced obstacle is a small obstacle then the robot will try to overcome it by stepping on top of it,

adjusting its body oricntation, and maintaining its balance without changing its heading direction.

(2If the obstacle faced is a large one or a big hole, then the robot will select one vertex on the edge of this

obstacle on which the point x is located, and go towards it in order to circumnavigate the obstacle’s corner.

\ o

Figure 6.4 A Continuous Surface Built using Parametric Cubic Surfaces
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Whenever the robot reaches a new vertex v;, this vertex (an obstacle comer) is added to the current
map. From this vertex, the robot uses its on-board camera in the direction of all the existing vertices of the
current map. The edge (v;, v) is added to the current map for cach vertex v, in the current map that is
visible from v;. This navigation strategy always yield a path if one exists (a proof could be found in
[MoA88a]). Thi; strategy is used to allow the robot to navigate an unexplored terrain. Note that the
navigation paths are not necessarily globaliy optimal. However, the extra work carried out in the form of
learning the map is inevitable because of the lack of information about these obstacles. In the regions
where the navigation map is available, the optimal path can be found by computing the shortest path from

the source point to the destination point on the map using an A* search algorithm (sce the appendix).

What we have, then, is not only a navigation system which operates in a dynamic microworld, but
also a navigation system which can in some sense learn from its past behavior. This gives the robot the
high agility that might be required to quickly move from one point to another on a structure under
construction or needing repairs in an emergency. The strategy to test the navigation system has been to
invent a particular microworld, pre-store scveral routes through the map, then iteratively produce plans,

execute them and preview the updated map (see Section 6.5).

A module called the "terrain scanner” (sce Figure 6.1) is used to provide terrain preview data which
are used by the automatic leg positioning and body regulation algorithms to predict foothold locations and
to determine average slope and elevation of the terrain for use in adjusting body attitude and altitude.

Furthermore, this module maintains the following information:
(1) the location of each supporting foot;
(2) the polygon whose vertices consist of the vertical projection of the supporting feet;

(3) the predicted polygon of (2) that would result if a foot being in a swing phase were immediately

lowered;

(4) the vertical projection of the center of gravity;
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the reachable area of each foot;
any critical feet (A critical foot is defined as a foot which, if lifted, would cause the body to be
statically unstable);

the pitch and roll attitude of the robot body.

6.3. SYSTEM IMPLEMENTATION DEVELOPMENT

0))

The development of the simulation went through various stages:

The display routines were first tested using a programmed-in motion control. Various programmed-
in locomotion skills on flat surface were tried (see figure 6.2 and 6.3). The robot navigation strategy
was programmed-in, that is, that robot walked from position 0 (x1,y1,21) to position O3 (x3,y2,22)
then turned left, then trotted to position O3 (x3,y3,23), and so on. The produced motion was far from
realistic, although smooth transitions between locomotive skills were achieved. Under this mode of
motion control, it was easy to maintain the robot orientation and balance (artificially of course).
Control over the robot’s velocity and ability to avoid obstacles was also simple to achieve. On the
other hand, under this mode of motion control, the robot had no ability to deal intelligently with the
environment. Putting some obstacles in the way of the robot without modifying the motion programs,
the robot went through the obstacles as if they were not there. In all current experiments the animator
was able to change the graphical projection view, set the viewing camera, zoom-in and out, make the
camera move on top of the traveling robot, and have several windows that displayed the traveling
robot from different points of views. Projection transformation define the mapping from the eye
coordinate system to the screen. The viewing transformation place the viewer and the eye coordinate
system in the world space. A viewport, which specify a screen area to display the projected image, is
associated with each projection transformation. The IRIS workstation has a window manager system

(called "mex"). With it, one can create several independent graphics displays, or windows on the

screen.
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(2) The JCC algorithms were then tested. In Figures similar to 6.2 & 6.3 (with the top area of the screen
indicating that the robot is "kinematically controlled”), the robot traveled under the animator control
over a flat surface. The animator input the robot leg cycles, their locomotion phases, and the desired
body trajectory. The JCC algorithms computed the robot joint angles and their rates. Table 6.1°

shows a typical result, of the JCC algorithms, for a portion of a walking cycle. The stride length was

set at 3 metres while the robot was moving % metres/sec in a straight line. The size of the robot is

5.0 % 2.0 x 0.5 metres- which is 2a x 2b x 2c (where a,b,c are the Coordinates of the hip socket in the
body fixed coordinates). /,=2.0 metres, /,=3.0 metres. Under this mode of motion control, it was
more difficult to maintain the robot’s smooth transitions between different locomotive skills. The
animator had control over the robot orientation, velocity, and the locomotive skill that is used at any
time during the terrain navigation. Although the motion produced looked more realistic than the
programmed-in motion control case, the robot had no way to intelligently respond to any

environment changes.

As an example of a relatively difficult JCC control problem, in one simulated environment the robot
was made to navigate a stairway. The stairs rose at a 45 degree angle to the horizontal, so that the
robot could not climb them without tilting its body. This experiment tested the automatic pitch
regulation of the JCC. The robot legs were extended and the position of any abnormally extending
leg was monitored to insure it is never extended beyond the kinematic limits. With the automatic
body regulation algorithm, if this extending leg reaches the kinematic limits, then the robot body
automatically reacts to move in such a direction as t0 accommodate the desired motion of that
individual leg. Of course, the positions of all of the support legs were monitored during this
accommodation movement to insure that the body movement does not extend a support leg beyond

its kinematic limits. Also, the robot stability was monitored to insure that the body is not shifted to a

3In the table entries; (x pos., y pos., z pos) are the components of the position vector of the center of gravity of the robot body
relative to the inential frame. [legi },8, [legi],0, [legi] are leg i joint angles. {legi ] is the azimuth angle. It is the roution
angle around the Zy; -axis. 0, [legi] is the hip elevation angle. It is the rotation angle around the Y'; -axis. 8, [legi] is the knee
elevation angle. It is the rotation angle arcund the Y"-axis. The four lines under the joint angle columns represent the values for the
four legs 1 through 4 respectively.
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position where the robot is unstable,

(3) The NC algorithms were then tested. These experiments also involved the JCC and the direct
dynamic routincs. The robot moved, under the operator’s control, over a flat surface using the NC
algorithms. Similar to (2) the animator input the robot leg cycles, their locomotion phases and the

desired body trajectory. The NC algorithms computed the robot joint torques required to produce this

desired motion. Table 6.2* shows a typical result of the NC algorithms for a portion of a trotting

1

3 metres/sec in a straight line.

cycle. The stride length was set at 3 metres while the robot is moving
Figures 6.5 and 6.6 give graphs for the 12 joint torques for the complete walking and trotting cycles

(both are using the same speed %melres Isec).

In implementing the solution of the dynamics equations of motion two types of checks were built in
the NC code. First the difference between the recursive and the closed form equations of the direct
dynamics calculations were monitored (the computed values of T, J”@", and f” should agree). The

Table 6.1 A Typical Result of the JCC Calculations for a Walking Skill

X POs. y pos. Z pos. 0. (legi] 0, [legi] llegil
-35.000000 0.000000 -2.500000 4.763295 0.382518 -0.334318
1.578295 0.382518 -0.334318

4.763295 0.382518 -0.334318

1.558295 0.382518 -0.334318

-34.984886 0.000000 -2.500000  4.697274 0.382499 -0.334338
1.585907 0.382499 -0.334338
4.697274 0.382499 -0.334338
1.585907 0.382499 -0.334338

-34.969662 0.000000 -2.500000  4.689609 0.382476 -0.345732
1.593572 0.382476 -0.334318
4.689609 0.382476 -0.334318
1.593572 0.382476 -0.334318

‘In the uble entries (I7q,,17q,,I7q,) is the net torque acting on the robot body, expressed in the inertial frame.
Tx [legi 1,tollegil Ty [legi] are the joint actuator torques in leg i. The four lines under the joint torque columns represent the
values for the four legs 1, 4, 2, and 3 repectively.
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second check is the "closure” (i.e. the produced trajectory should agree with the desired kinematic

trajectory).
The way we supported the robot (made it stand up in its natural configuration without collapsing) is

by attaching ground reaction forces to each of its four feet.’ The amount of these forces were one
fourth of the robot weight and directed upwards in the -Z; direction. To represent the kinematic
limits of the joints, restorative torques at the joints (see Figure 6.7) were excried at all times. This
has decreased the tendency of the limbs to oscillate and keeps the robot from collapsing. These
restorative torques maintained the joint angles at their natural oricntations. The computation time for
the NC varied with the present state of the robot. Much of the NC’s computation time was involved
in solving the linear programming problem with a computation time typically varying between 0.5
and 1.5 seconds per complete dynamics cycle (not locomotion cycle). Usually 15 to 30 iterations
within the linear programming routine itself were needed to find the optimal solution. Most of these

iterations involved finding a feasible solution (eliminating the artificial variables) for the joint

torques.
Table 6.2 A Typical Result of the NC Calculations for a Trotting Skill
Trg, Trq, Trg, Tolleg i] T lleg i) Tylleg i}

0.000000 0.033646 0.000005 80.869167 6.271701 8.713732
87.869370 4.271897 -8.713579

91098686 17.861366 0.064282

91.098495 17.861319 -0.064332

-0.000002 0.037382 0.000005 82.699998 5.029613 9.655461
82.698509 5.029601 -9.655068

90.629852 17.862061 0.063670

90.631615 17.862549 -0.061985

<0.000004 0.041225 0.000005 100.000000 3.771859 10.612420
71.657433 10.251559 -15.761279

71.667000 17.855803 0.000000

100.000007 11.368942 -4.924666

$These reaction forces are not applied when the robot stans 1o move.
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Under this mode of motion control, the motion produced looked more realistic than the previous two
techniques, but still the robot had no ability to deal intelligently with any changes in its environment.

A number of points may be noted from analyzing the curves of figures 6.5 and 6.6.

The figures summarize the flexor/extensor patterns during the stance and swing phases of the walking

and trotting strides. The patterns are approximated from data that display the curve values every i sec. The

curves are computed during a constant speed on flat ground of -sl—meues/sec. B=0.5 in the case of trotting

and 0.8 in the case of walking. Stride length was 3.0 metres in both cases. The knee angles fluctuated
around the 90°. The hip azimuth angle fluctuated around the 0°, and the hip elevation angle fluctuated
around the 10°. For walking, a phase difference of approximately one-quarter of a cycle between
successively moving legs was maintained. That means that each leg is always about one-half of a complete
cycle out of phase with its fellow leg on the other side of the body. Each leg swings about one fourth of the
walking cycle, and remains on the ground the rest of the cycle. The swing and stance phases are shown on
the curves. During swinging the hip elevation torque alternates between flexion and extension, and mainly
remains in flexion during the stance phase 1o keep the foot on the ground. The mechanism for swinging is
as follows: (1) the T changes from flexion to extension to make the legs’ feet leave the ground; (2) during
this time the T, extends the knee and the 1, changes from flexion to extension to drive the hip forward. The
mechanism for the stance phase is as follows: (1) the Tg remains in flexion all the time to force the feet on
the ground; (2) 7, and 1, alternate between flexion and extension to facilitate pushing the robot body. In
the walking curves the sequence of leg lifting is 3-2-4-1 in that order. Torque is in Newton.metres and time
is in seconds. The curves were computed in the middle of the robot motion (not starting from rest
conditions).

The characteristic feature of a trot is a progressive reduction in the phase difference between a fore
leg and the contralateral hind leg and a corresponding increase between a fore leg and the ipsilateral hind
leg. In a fully synchronized trot a fore leg and the contralateral hind leg are completely in phase, and the
body is supported on the two diagonal pairs of limbs alternately. In other words, during trotting there is

always one-half cycle difference in phase between any leg and its contralateral fellow. Each leg is on the
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ground for —;— of a complete cycle. Phase differences between diagonal legs (2,3) and (1,4) is nil. Phase

difference between ipsilateral legs is -;— cycle. In the trot figure, legs 1, 4 torque profiles are almost

identical images of each other. So are the torque profiles for legs 2, 3. The hip elevation torque reverses
(between flexion and extension) only during the swing phases, and remains flexion during most of the
stance phases. The mechanism for swinging is as follows: (1)the T changes from flexion to extension to
force the foot to leave the ground; (2)during this time, the T, extends the knee and the Ty changes from
extension to flexion to drive the hip forward. The mechanism for the stance is as follows: (1) the 1, always
remains flexion to force the foot not to leave the ground; (2)v, and T, alternate between extension and

flexion to allow for pushing the body.

(4) Finally, the LC algorithms were tested. Figure 6.8 shows the robot traveling under the LC control.
Under this mode of motion control, the robot was able 10 navigate the environment intelligently in
real-time and to produce quality motion similar to the ones produced in (3). All the sustained stable
locomotion requirements of the robot’s motion were achieved (see next section). In the experiments
of (3) the robot was not controlled in real time, since the total loop computation time for the NC
algorithms was approximately 1.5 seconds. This was two orders of magnitude slower than real time

control. Since the direct dynamics module of the modification routines was able to process the

motion torque profiles in real time, the LC controlled the robot’s motion in real time.®

The teacher uses the lower screen area of figure 6.87 for editing the joint torque profiles to avoid
obstacles. For example, in order to extend the reach of the robot leg in order to avoid a hole, the
magnitude of the knee extensor torque profile was increased in some parts of the cycle. The joint

torques are illustrated in figures 6.5 and 6.6. Given the form of the produced motion it was

Apparently there is no constraint that the leaming process itself be performed in real-time.
"The V and H ellipses in the figure are the same as in figures 6.2 and 6.3.
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Figure 6.5 Graphs for the 12 joint torques for a complete walking cycle

recognized that modifications to the hip torque were necessary. Modifying® the hip torque profile

*This modification is done by trial and error adjustment.
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coupled with the previous changes to the knee torque produced the required extended motion. As
mentioned before, the idea of editing the torque profiles directly comes from the work of Hollerbach
[Hol78], Asaytryan [SZH79), Platt and Badler [P!B81], and Marshall [MJW8S).® As it is found
difficult to edit the torque profiles directly to correct the motion, a more convenient method of
modifying the leg cycles and the joint angles is implemented in the system. The user interface
provides an interactive graphical editor which allows the teacher to edit control curves. In order to
edit a joint movement, the teacher selects the robot’s joint (using the mouse); the curves (angles vs
time and torques vs time) for all the degrees of freedom at this joint are displayed for editing. Using

point modifications, the curves can be modified.

6.4. SYSTEM OPERATION

The experimental system presented the animator with four screens. In one the programmed-in
motion control is in charge of the control of the actions of the robot. In the second the JCC is in control of
the actions of the robot. In the third the NC is in charge of the control of the actions of the robot. And
finally, the LC is in charge of the control of the actions of the robot. The screen of figure 6.8 is the most
general. It consists of five areas: the area showing the agent in control of the robot actions, the command
area, the locomotive skills area, the small obstacle area, and the terrain area. The command area is used to
define a mission for the robot; the animator can abort the robot’s motion at any time by moving the cursor
to the command area where he or she can order the robot to go faster or slower, change the displayed vicws,

request the display of more than one view (several windows), or zoom infout, etc.

The human teacher has control of the motion control algorithms' alternations of control over the
robot’s actions in order to produce sustained stable locomotion all the time and in any environment.

Sustained stable locomotion requirements were identified in section 3.2, and they include:

%See Section 3.2,
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Figure 6.6 Graphs for the 12 joint torques for a complete trotting cycle
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maintaining the robot orientation, having control over its velocity, and avoiding obstacles,

choosing the most appropriate locomotive skill at any point during the robot’s navigation (e.g, walk,

trot, climb, etc.),

dealing intelligently with the environment,

maintaining the robot's static and dynamic stability,

ability to combine different locomotion skills (e.g, wrning while running),
achieving smooth transitions between different locomotive skills,
preferring the paths the robot has traveled on before,

reducing total energy consumplion in executing the robot’s missions.

When the LC is in charge of the robot actions, it uses the three types of rules that are created by the

learning apprentice system (LAS). The current active rules that are producing the current robot motion are
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Figure 6.8 The Learning Controller Controlling the Robot Motion

displayed in both the locomotive skills and small obstacles areas of the screen. These areas are always

reflecting the current active rules (see Figure 6.8).
The system of Figure 6.8 has three modes of operation:

(1)  Dynamics guiding mode: In this mode the teacher "composes” new movements interactively using
the JCC and NC. Through trial and error (use "Guide Mode" then "Playback” from the command
area), he or she must first determine that the motion is satisfying the sustained stable locomotion

requirements before deciding to let the LC leam it.

(2) Apprentice mode: Here the user plays back the motion to be leamed by the LC. The learning

apprentice system observes the actions and creates/modifies production rules in the appropriate rule
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set. In other words, the system in this mode acquires rules and builds/updates its knowledge base.

(3) Planning mode: Here the LC produces plans for navigating the environment in order to reach a given
destination. The inference engine uses the three rule sets to execute such plans and tailor a motion

for the currently perceived obstacles.

It is important to note that there is no single procedure to be followed by the human teacher
(animator) to get the robot to navigate its environment and produce locomotion according to the motion
requircments all the time. The idea of human-machine mix (LAS’s idea of "information rich external
environment”) that is present in the proposed system was possible because of the partitioning of any
mission task that is performed by the robot into a number of intermediate decisions, between which the
human teacher can alter the LC decisions. The learning apprentice system has to take advantage of this

teacher’s feedback to improve the LC’s knowledge base and therefore performance in subsequent missions.

The teacher will detect "motion bugs" for the simulated robot in two forms: illegal operations, and
failed steps. An illegal operation is one that is considered impossible in the current environment. For
instance, it is illegal to walk through an obstacle or for the leg to go underground. A failed step is onc that
does not achieve its goal for the designated time interval. The teacher verifics that at all times the goals
intended by the planner have actually been met. These methods of detecting “"motion bugs" provide a
performance standard for the robot, which states that a plan must execute legally, achieve all intended goals
and subgoals, and also be purposefully correct. The teacher will halt the motion of the simulated robot
whenever one of these problems is identified by moving the cursor to the appropriate screen area (when the
cursor is in any area other than the terrain area, the robot motion is interrupted). Notice that the source of
trouble will be shown on the appropriate screen area which is continuously changing to reflect what is
going on underneath the animation subsystem. A trace of requested torque profiles and joint angles will be
available to the teacher upon request to allow the torques 10 be fixed interactively, When the teacher
intervenes, he or she moves the cursor to either edit one of the local terrain motion enhancement rules or to
define (or modify) a prototypical torque profile rule for a particular locomotive skill rule. The rules that are

fired at this point by the LC fired incorrectly, so the associated contexts are negative training instances for
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them. Furthermore, the newly defined or modified rules take these same contexts as positive training
instances. Negative training instances are used for rule discrimination (see algorithm C in the previous

chapter), whereas positive training instances are used for rule generalization (see algorithm B in the

previous chapter).

6.S. SYSTEM EVALUATION AND CONCLUSIONS

In this section we first evaluate three specific capabilities of the control system; namely its obstacle
handling capability, its capability of lecarning the environment map and using it, and finally its capability to
generalize and discriminate. Then a methodology for evaluating the overall system is described, followed

by a methodology for measuring the learning progress in the system.

In order to analyze the capability of the robot to deal with obstacles, the feet positions (in Cartesian
coordinates) and the data from the terrain scanner module were stored for an off-line analysis. Tests were
performed for several different combinations of simulated terrain. The data stored from the test was used
for generating the terrain map (off-line). Based on the foot position and actual foot height, the level of the
surface in Cartesian coordinatcs was computed. By connecting a series of surface points, a 2D terrain map
was generated on the graphics screen. Figures 6.9 and 6.10 show the trajectory of the front left foot while
the leg adapted to the termains of Figures 6.2, 6.4 during straight line walking and climbing strides. The
terrain curve was generated off-line based on the information from the terrain scanner module. The other

curves show the trajectory of the feet,

In Section 6.2 a navigation system that learns from its past behavior was described. A methodology
to test its ability to learn has been to invent a particular microworld, pre-store several routes through the
map, then iteratively produce plans, execute them and preview the updated map. Figure 6.11 shows how
the iterative execution of navigation plans updates the robot’s map. In the figure, initially the terrain is
unexplored and the map is empty. A sequence of four paths is undertaken in succession by the robot. The

figure illustrate the various paths traversed and the corresponding maps (the terrain is shown on the left side
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Figure 6.9 Obstacle Avoidance- Off-line Analysis

of the figure whereas the map is shown on the right side). Initially, during the motion from 1 to 2 the robot
learnt four edges. In the next traversal, seven more edges of the terrain are learnt, and so on. Consequently,
the terrain is guaranteed to become completely leamnt, when the complete map of the entire obstacle terrain

is built. After this stage the robot traverses along the optimal paths,

In order to test the LC’s capability to generalize and discriminate, an explanation based subsystem
that interacts with the teacher to display the status of various rule shells is implemented. At any time the
user can request the system to display the current status of any rule shell, its situation and action spaces

with both lower and upper mark locations. The example provided in Section 5.4.2.1 was generated using

this facility.
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Figure 6.10 Stepping ontop of Obstacles- Off-line Analysis

In order to evaluate the overall system capabilities, a methodology for doing that is described in the
next few paragraphs. As of now, the LC has proved that it can, indeed, traverse the kinds of terrains it was
intended for. The important questions that we had to answer were: "How can one judge if we have
succeeded or not?", "How can one know if the robot control system has evolved into a control system that

is intelligent?” In other words, how can one measure our progress?

In 1950, Alan Turing [Tur63] proposed what is known as the "Turing test" to answer a similar
question in the context of machine intelligence. In this section we propose a similar test to answer the
previous questions. To perform the test, an interrogator is to assign tasks to two versions of the locomotion
control system. The first version is exactly similar to what has been described in this dissertation. The other

version does not have the learning controller (LC) component. The interrogator does not know which of
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them is which. The interrogator knows them only as A and B, and aims to determine which of them is
(NC+LC) and which is NC. If the interrogator succeeds to distinguish them on the basis of agility in
dealing with the dynamics of the environment (either in producing sensible motion or in navigation), then
one can conclude that the (NC+LC) has succeeded to acquire such agility through leaming. If the
interrogator succeeds to distinguish them on the basis of natural movements appearance, then one can
conclude that the (NC+LC) has succeeded to enable the robot to solve in real-time complex problem of
interaction with the environment. If the interrogator succeeds to distinguish them on the basis of response
times for reasoning and decision making, then one can conclude that the internal motion representation of
the LC is better manifestation of motion knowledge'® with respect to processing time and performance
requirements.

Actually the methodology to perform these tests is presently immature since we have not figured out
a way to keep the teacher’s intervention in the (NC+LC) version hidden from the interrogator. Meanwhile,
since the Turing test has yet to be passed by Al systems in any of the human intelligence aspects after close
to thirty years of research, one must not underestimate the important epistemological and methodological

goals that we have to satisfy in order to build a satisfactory knowledge-based locomotion control system.

Another test is suggested in [MoA88b] to measure learning progress in autonomous robots in general
as opposed to teleoperated robots. To conduct the proposed test two versions of the locomotion control
system are proposed: a learning apprentice version (LAV) and an autonomous intelligent version (AIV).

The leaming apprentice version is similar to the system described in this dissertation. Its knowledge-based

YAlthough knowledge representation and processing are "hot” topics in Al research, very few atempts have been made to help
understand motion, which means to build up a model of "motion knowledge™. To make this point about the need for motion
knowledge clear, one should compare it 1o music which is a complex phenomenan similar 1o motion from many viewpoints. The situa-
tion is quite different for music. Music notations were successfully able to discriminate which aspects of music to represent explicitly
and which to represent implicitly. The notation was able to capture the essential structure of music (what in Al terms could be called
“music knowldge™). It is easy 1o notice the abstractness and functionality of the notation. For example, the instruments are not shown in
the notation, nor the way in which a performer plays a specific instrument, and the individual style of perfformance. This adequacy of
the music notation symbolism to express the essential structure of music is clearly demonstrated by its ability 10 survive this computer
era. Music notation were easily expressed in computer terms and were directly used to drive computer music synthesizers. For dance
and movements, on the contrary, the picture is quite different. Dance and movement notation (such as Labanotation, effon-shape, eic.)
did not find the same success as music notation, and computer techniques directly applied to them do not seem 1o pass the basic test,
which is: the ability to generate from the representation a fluent, natural and convincing motion performance.



6.5 SYSTEM EVALUATION AND CONCLUSIONS 155

k

Figure 6.11 Iteratively executing navigation planes and previewing the updated map

system directly confronts the problem of knowledge acquisition by learning from interactions with an

information-rich external cnvironment (a tcacher).

On the other hand, the autonomous intelligent version (AIV) replaces the LAV's teacher by

cxperimentations. It starts with an initial set of rules (its knowledge-base) which suppont the search for a
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solution to any navigation task. These initial rules are correct in that they propose only legal movements,'!
but they lack conditions for distinguishing good movements from bad ones. As a result, AIV makes many
poor movements on its first pass (to exccute an assigned navigation mission), and is forced to back up
whenever it reaches a dead end. However, AIV does eventually solve the assigned navigation task in a
trial-and-error way. At this point, it attempts a second pass, but this time it has the initial solution to guide
its search. When one of its rules is incorrectly applied, AIV knows its mistake immediately. It tries to find
a difference between the two situations and modify its rule sct. AIV continues to learn in this fashion,
constructing more conservative rules when errors are made, stengthening rules when they are releamed and
generalizing rules when they are successfully applied under new conditions, until it traverses the entire

solution path with no mistakes.

As such the AIV belongs to a class of learning systems that are called “non-supervised leaming
systems" [And83]. Accordingly, AIV should be responsible for deciding who should take control of the
actions of the robot (the NC or the LC) at any time iastant (it automates the NC-LC alternation of control).
It should also be responsible for generating and experimenting with different leg cycles and measuring the
motion quality based on an evaluation function (see later for the measure of desirability). One possible
suggestion is that the AIV can use methods described in {MoA88b], to construct torque patterns from

combinations of old ones.

Actually both LAV and AlV start with the same set of rules (the knowledge base). The difference
between them is that LAV relies on a learning methodology called "explanation-based learning” {Mit83)
[DeM86] [Seg87] that requires interactions with an external teacher. For that reason, we characterize it as a
pseudo-teleoperated learner system. On the other hand the AIV relies on a "procedural leaming approach”

[Nev78] [Anz78] that is based on learning by making mistakes.

We propose a learning progress measure test for measuring the leaming progress in autonomous
robots. The test is to answer the following question: "Does the autonomous leaming mechanism work as

well as the teleoperated leaming mechanism?" To perform the test, an interrogator is to assign tasks to

Movements that satisfy the sustained stable locomotion requirements.
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cither LAV or AlV, but does not know which of them is which. The interrogator knows them only as A
and B, and aims to determine which of them is LAV and which is AIV. The goal of AlV is to fool the
interrogator into belicving it to be the LAV. If the AIV succeeds at this, then one can conclude that we have
succeeded in implementing intelligence in the AIV. Of course both the experimentations of the AIV and

the teacher’s intervention in LAV are hidden from the interrogator.

The interrogator judges the two intelligent locomotion control versions by measuring the desirability
of the robot’s actions (i.e. perforiming more adequately a list of motion requirements). The interrogator uses
the following list of requirements: (1) produce sustained stable locomotion, i.e. maintain the robot's
orientation, have control over its velocity, and avoid obstacles, (2) choose the most appropriate locomotive
skill at any point during navigation (¢.g. walk, trot, climb, etc.), (3) deal intelligently with the environment,
(4) maimain the robot's static and dynamic stability, (5) possess ability to combine different locomotion
skills (e.g. tuming while running), (6) execute smooth transitions between different locomotive skills, (7)
prefer the paths the robot has traveled on before, (8) reduce total energy consumption in executing the
robot’s missions.

A mcasure for the "desirability of a situation” is formed as a heuristic weighted function of these

performance measures:

Rtm 8

D(tatasm)= X 2 aiif;
i=a j=1
where f; is a performance measure (one of the eight mentioned above) and a;; is a weighting coefficient.
The summation over m control steps tends to enhance the evaluation accuracy. D (f,—ty.m) iS the

desirability of a situation from time step ¢, 10 time Step f, .., . This takes a value between 0 and 1.

Interestingly, our concepts of LAV and AIV find evidential support in behavioral psychology
research: motor skills development in children takes place over months parallel with their ability to control
their limbs properly. During such development, errors are adjusted iteratively in the next instances of the
movements either by the child itself (an AIV resemblance) or by the help of its parents (an LAV
resemblance). Through the ability to remember a previous experience of solving a specific or analogous

problem, the child’s motor system has the ability to learn and improve its performance. As such, we expect
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to have both similarities and differences in the performance of the LAV and AIV. We do not yet, however,

know whether the similarities are going to be gencralizable, or artificially produced.

In conclusion, the simulated system experiments showed how the robot acquires locomotion rules for
the control of its dynamic system through cognition: leaming the connection between perception and action
from experience. Since the robot was able to realize new desired motions by using the knowledge of
motion acquired by learning, one can conclude that this model of locomotion control makes the robot
become more capable of dealing with its environment. Actually it might be safe to conclude that the
proposed model proceeds along lines in accordance with the modus operandi of the neuromusculoskeletal
system [SZH79], viz; the central nervous system generates @ motor programme bascd upon senscry inputs
and motor "memories”, and motor outputs are directed to the muscles. The muscles then provide the joint
torques which in tumn provide the segmental angular velocities and displacements. In response to changes in
the control and feedback patterns, the joint torque-time functions are altered and scgment movements
proceed accordingly. The proposed model incorporates neuromuscular control, in that it provide the LC
with the opportunity to experiment with joint torque modifications to produce different movement
outcomes in much the same way as the central nervous system adapts to changing environmental and task

demands.

At present, problems involving producing oscillations and inappropriate speeds sometimes occur.
This is due to the numerical instabilities that arise as a result of using the Euler numerical integration
method in the direct dynamic module. It is expected that stabilization may be achicved through the use of

more sophisticated numerical integration techniques (e.g. Runge-Kutta method [WiF88]).

When high speed gaits were attempted, instability resulted and the simulated system "crashed”.
Preliminary indications are that stabilization of high speed locomotion may require some type of control
over the sampling rate. The sampling intervals used by iie NC varied between .01 and .001 seconds.
Sampling rates were chosen to be the maximum for realistic motion because, obviously, the less often one
need sample, the faster the NC will run, When sampling was done too rarely, the NC sometimes found

itself urn:%iz to solve the dynamic equations.
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Another problem with infrequent sampling is that the links of the robot moved into noticeably
unrealistic positions (c.g. legs below the floor) between sampling intervals. It is found that the frequency of
sampling needed for realistic motion increases with the rapidity of the motion. The time step used in the
dynamic computation is too fine for the graphics display. Currently, a frame is displayed every 0.05
scconds of simulation time. This rate is sufficient for normal animation frame rate (25-30 frames per
second). In some cascs, the legs were slipping. The reasons for that are due to the simplification
assumptions that are used in the NC, which include: the assumption of ball-and-socket joints, the neglecting

of the swinging legs cffect on the body motion, and not including the friction nor the air viscosity in the

model.

6.6. RESEARCH CONTRIBUTIONS

The feasibility of the proposed hybrid locomotion control system has been demonstrated by the
results presented in this chapter. While considerable work remains to be done, it is felt that the current
simulation experiments allowed the opportunity of examining the effectiveness of merging the
methodologies of computer numerical control with the methodologies of motor learning. The result,
demonstrated in this chapter, showed that both methodologies can act together to provide an autonomous
locomotion control system that can improve its performance through practice and experience,

Several of the specific contributions that have been made to articulated body locomotion will be
discussed in the next few paragraphs.

On the macroscopic level, a vital link has been completed between "motor control" and "motor
learning". This was a necessary link that brought together man and robot at equal levels and allowed them

1o successfully communicate.
Several other contributions were achicved:

(1) The organization of the proposed hybrid controller. The partitioning of the problem of locomotion

control into functional modules: programmed-in, Kinematic, Dynamic, and skill acquisition.



6.6 RESEARCH CONTRIBUTIONS 160

(2) The system represents a prototypical example of a knowledge-based system that is coupled with

numerical computing. The coupling is of the shallow type.

(3)  The kinematic motion control algorithms of chapter 3, that involved setting the kinematic model of
the robot and developing the algorithms for automatic leg positioning as well as automatic body
height, pitch, and roll regulation over undulating terrain, represent a novel kinematic treatment of the

locomotion control problem.

(4) The NC organization. The partitioning of the dynamic analysis to deal separaicly with the legs that
are in swing phase and the ones in stance phase. This has allowed the easicr handling of the rather
complicated sequence of the closed kinematic chains that are formed and broken many times in the

course of the robot navigation.
(5) The use of linear programming to generate the torque profiles for the joints.
(6) The inversion of Armstrong’s equations and extending them to the case of closed kinematic chains,

(7)  The parallel pipelining NC computation model for near real-time solution of the locomotion control
of the four-legged robot. Although this was not implemented in the simulation system, it is expected

that its implementation would follow the same methodology presented in [AMO87].

(8) The LC organization and the new model for dynamics-based motion skill acquisition.

6.7. FUTURE WORK AND EXTENSIONS

A number of research problems have become increasingly clear as the phases of this research have
been completed. For example, the skill based Al systems suggested in section 5.5 might produce more
insights into the evolution of the control and learning phases. Figure 6.12 shows one of these systems that
represents multiple robots animation research [MoA88c] and measuring leamning progress rescarch

[MoA88b]. Other possible extensions are:

(1) Implementing the distributed pipeline version of the NC that is described in chapter 4. The

distributed direct dynamics paper by Armstrong, Marsland, Olafsson and Schacffer might provide the
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basis for such an extensicn,

(2) Enhancing the LC learning capabilities by allowing the LAS to add completely new trees into the
forests of the feature trees of the LC. This extension is related to the work in machine learning

entitled "constructive induction" [WCB86].
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(3)  Designing a Balance Maintenance Subsystem (BMS) that would work like Hock's system [Hoc66),

@

for maintaining the robot balance under undulating terrain conditions.

Designing an Explanation Based Subsystem (EBS) that is to be attached to the LC and be able 1o
interact with the animator to explain the locomotion behavior of the robot. A similar explanation-

based learning paradigm could be found in [DeM86].
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Bidirectional Search Algorithm for Macro/Strategic Navigation
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In this appendix we present a road map production systcm that uses a bidirectional scarch algorithm.

It enables the robot to navigate and exccute high-level commands such as "go from location x to location
y". The search algorithm yields the shortest path solution. In the cvent of unexpected occurrences such as
obstruction of the shortest path by a new obstacle, the algorithm would enable the robot to quickly search
for the shortest alternative path from its current position to its destination. The system can readily adapt to a
dynamically changing map.
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)}
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The following are the terms used in the algorithm:

OPENT!] is the set, initially set to the initial location of the robot s, of locations currently 0 be
processed or expanded using production rules in the forward direction gencrating subsequent robot
locations. These locations are guaranteed to be reachable from s by the existence of sequences of
production rules.

CLOSEDT! is the set, initially set to empty, of ancestors of the elements of OPENTI.

OPENT?2 is the set, initially set to the initial location of the robot s, of successors of OPENT1 which
are not in CLOSEDT], i.e, ancestors of OPENT. This is required to prevent the generation of loops.
OPENT?2 becomes OPENT1 (OPENT!1 = OPENT?) in the next level of processing.

CLOSEDT?2 is the set, initially set to empty, of processed clements of OPENTI. This sct would
become ancestors or members of CLOSEDT] (CLOSEDT1 = CLOSEDT! + CLOSEDT2) in the
next level of processing.

OPENBI s the set, initially set to goal location g, of goal locations currently to be processed or
expanded using the production ru'es in the backward dircction (in the navigation problem forward
and backward production rules are the same) generating subsequent goal locations or subgoals. The
subgoals are guaranteed to reach g by the existence of sequences of production rules.

CLOSEDB1 is the set, initially sct to empty, of successors of the clements of OPENB1

OPENB2 is the set, initially set to goal location g, of ancestors of OPENB!1 which arc not in
CLOSEDBI, i.e, successors of OPENBI1. This is required to prevent the generation of loops.
OPENB?2 becomes OPENB1 (OPENB1 = OPENB2 ) in the next level of processing.

CLOSEDB2? is the set, initially set to empty, of processed elements of OPENBI. This sct would
become successors or members of CLOSEDB1 (CLOSEDB1 = CLOSEDBI1 + CLOSEDB?2) in the
next level of processing.

Type(x) is a function that generate the road type of x, that is cither EW (East-West) or NS (North -
South) type.

ChangeType(g) is a procedure that change the type of g by selecting the junctions of g closest to the
initial location s.
The Algorithm
Begin
if Type(s) <> Type(g) then ChangzType(g);
OPENT1 :=s;
OPENT2 :=s;
CLOSEDT! :=empty;
CLOSEDT2 := empty;
OPENBI = g;
OPENB2 :=g;
CLOSEDBI := empty;
CLOSEDB2 := empty;
start := .-TRUE,; :
While OPENT1 <> empty and OPENB1 <> empty do
begin

While not start do



begin

start := .FALSE,;

While OPEN1 © empty do

begin
Initialize OPENT2 and CLOSEDT? t0 empty;
Sclect a node n on OPENT], remove it from OPENT]I;
Put it on CLOSEDT2 (next set of ancestors);
Expand node n, applying production rules,
generating the set N of its successors that
are not ancestors (elements of N) to point back to n;
Put N into OPENT2 (next level of state nodes);
Tag each element of N to point back to n. That is
if x is in N, then x(n) denote that x was generated
by n, or n is the ancestor of x.

end;

While OPENB1 <> empty do

begin
Initialize OPENNB2 and CLOSEDB2 to empty;
Sclect a node m on OPENBI, remove it from OPENB1;
Put it on CLOSEDB?2 (next set of successors);
Expand node m, applying production rules,
generating the set M of its ancestors that
are not successors (elemei.t of CLOSEDB1) of m;
Put M into OPENB2 (ncxt fevel of goal nodes);
Tag each element of M tc point back to m. That is
if y is in M, then y(m) denote that y was generated
by m, or m is a successor of y.

end;

CLOSEDTI1 := CLOSEDT1 + CLOSEDT2;
CLOSEDBI := CLOSED#1 + CLOSEDB2;

end;

While OPENT2 * OPENB2 <> empty do

begin
For each element of OPENT2 * OPENB2 that is connected:
Trace the path o s and g;
Retain the ininimum distance path;
Delete all connected elements of OPENT2 * OPENB2 from OPENT2, and OPENB2;

end;

OPENT! := OPENT2;

OPENBI := OPENB2;

end;
end;
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