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SEASONAL INFLUENCES ON POPULATION SPREAD AND
PERSISTENCE IN STREAMS: CRITICAL DOMAIN SIZE*
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Abstract. The critical domain size problem determines the size of the region of habitat needed
to ensure population persistence. In this paper we address the critical domain size problem for
seasonally fluctuating stream environments and determine how large a reach of suitable stream
habitat is needed to ensure population persistence of a stream-dwelling species. Two key factors, not
typically found in critical domain size problems, are fundamental in determining whether population
can persist. These are the unidirectional nature of stream flow and seasonal fluctuations in the
stream environment. We characterize the fluctuating environments in terms of seasonal correlations
among the flow, transfer rates, diffusion, and settling rates, and we investigate the effect of such
correlations on the critical domain size problem. We show how results for the seasonally fluctuating
stream can formally be connected to those for autonomous integro-differential equations, through
the appropriate weighted averaging methods.
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1. Introduction. How a species invades or persists in a stream or river with
a unidirectional flow is an important problem in stream ecology (see e.g., [13, 17]).
While reaction-diffusion-advection equations are classic equations to describe the pop-
ulation dynamics in streams (see, e.g., [11, 18, 20]), integro-differential and difference
equations have been attracting interest recently because they can better address the
long distance dispersal via a dispersal kernel; see e.g., [7, 8, 10, 13, 14, 21] and ref-
erences therein. As water discharges greatly vary between seasons, the flow velocity
in a stream or river varies accordingly. The population dynamics also fluctuate with
seasonal changes of temperature and other habitat conditions. As a result, any realis-
tic investigation of persistence or invasions of a stream species must take into account
the seasonal variations of stream dynamics and population dynamics.

Realistically, all natural streams or rivers are bounded and cannot be infinitely
long. As a result, introduction and spread of a species into a stream does not neces-
sarily mean that the species can persist indefinitely if there is loss over the boundaries
of the stream. Thus it is meaningful to study whether the species can persist in a
stream with finite length or in a bounded area in a seasonally varying environment. In
this work, we study the seasonal influences on population’s persistence in a bounded
stream. Our model is a periodic integro-differential equation, which takes the pop-
ulation’s long distance dispersal into the dispersal kernel, and puts the seasonality
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influences into the time-periodic functions for growth, immigration or emigration,
and dispersal. This is written as
ou(t, )
(1.1) ———= =ug(t,u(t,x)) — a(t)u(t,z) +a(t) | ki, z,y)ult,y)dy, t >0,z € Q,
ot —_——— — Q

growth emigration

immigration

where = [0, L] C R represents a stream with length L in one dimensional space,
u(t, x) is the spatial density of a population at the point € Q at time t > 0, g(t,u)
is the per capita growth rate at time ¢ that governs birth and death, a(t) is the
time-dependent transfer rate at which an individual leaves its current location and
moves into the flowing stream, and k(¢, z, y) is the periodic time-dependent dispersal
kernel that describes the proportion of individuals that moves from point y to point x.
Equation (1.1) is the time-periodic version of (3.1) in [13]. As described in [13], this
dispersal kernel can be derived from first principles from a submodel that includes
the river flow rate, diffusion, and settling rate. Moreover, we assume that g, a, and
k are w-periodic in ¢ for some w > 0. In the context of seasonal variation, w can
be considered as the length of one year. Finally, we assume hostile surroundings, so
u(t,z) = 0 outside the domain 0 < z < L.

The focus of this work is the critical domain size problem for (1.1). The critical
domain size is a fundamental ecological quantity that describes the minimal size of the
habitat needed for a species to persist. In particular, for a stream population model,
it provides the minimal length of the stream such that a species can persist in the
stream. If the stream length is less than the critical domain size, then the individuals
will finally leave the stream and be washed out into the hostile surroundings; if the
stream length is larger than the critical domain size, then the individuals can grow,
reproduce, and disperse in the stream without being washed out.

The first studies of the critical domain size were in [6, 19] for reaction-diffusion
models in one or more dimensional spaces. The analysis has been extended to mul-
tispecies reaction-diffusion equations [1, 2, 3, 15] and to integro-difference equations
[8, 9, 10, 21] as well as stream environments [13, 18, 20]. The critical domain size
for an autonomous integro-differential equivalent of (1.1) was obtained in [13]. For
a specific dispersal kernel, the critical domain size was explicitly expressed, and the
dependence of the critical domain size on the flow velocity was investigated.

In this paper, we will find the critical domain size for (1.1), which also leads to
conditions for a stream species to persist. To generate the biological insight, we will
approximate the critical domain size in a two-season environment, which represents
a habitat having two main seasons, e.g., summer and winter, and hence resulting in
two main forms or states of population dispersal and transfer. Through numerical
examples, we obtain interesting results about the influences of coeffects (in the sense
of normalized covariances) of the flow velocity, the transfer rate, the diffusion rate,
and the settling rate on the critical domain size. We will show that the critical
domain size of (1.1) is actually related to that of an associated autonomous model
with appropriately time-averaged growth and dispersal.

The paper is organized as follows. In section 2, the critical domain size of (1.1) is
obtained. In section 3, the approximation for the critical domain size in a two-season
environment is established. The effects of the normalized covariances between the flow
velocity and the transfer rate, the diffusion rate and the settling rate, on the critical
domain size, are also obtained. The last section contains a comparison of the critical
domain size for the periodic models and that for associated weighted time-averaged
models.
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2. Critical domain size. In this section, we study the critical domain size for
(1.1); that is, the minimal length of the stream for the population to persist, by virtue
of the stability of the zero solution to (1.1).

The assumptions regarding population growth and transfer are as follows.

(H1) (i) The transfer rate a(t) > 0 and a(t) is continuous in ¢ > 0.

(ii) g € C(R3,R) and dg(t,u)/0u < 0 for all (t,u) € R%; that is, the
per capita growth rate g(¢,u) decreases with respect to the population
density. This indicates that ug(t,u) < g(¢,0)u for all ¢ > 0 and v >
0; that is, the reproductive rate of the population is bounded above
by its linearization at zero. Moreover, there exists 4 > 0 such that
g(t,a) < 0 for all ¢ > 0, which implies that the population growth is
density dependent and is negative if the density is over 4, and hence,
the population will not explode.

(iii) There exists L > 0 such that |ui[g(t,u1) — a(t)] — ualg(t, uz) — a(t)]| <
Lluy — ug] for all t > 0,u1,uz € W with

W =0, 4],

which implies that the local dynamics u[g(¢,u) — a(¢)] is uniformly Lip-
schitz continuous in v € W for all ¢ > 0, and hence, at any time ¢ > 0,
the change rate of the local population with respect to the density is
uniformly bounded provided the population density is below .

The assumptions regarding dispersal are as follows.

(H2) (i) k(t,x,y) > 0 for all ¢ > 0, z,y € R, which means that the pro-
portion of individuals that moves from one point to another point is
nonnegative. All dispersing individuals move to some location so that
fR k(t,z,y)dz = 1. Lastly, there exists a constant K > 0 such that
SUp,er Jg k(t,x,y)dy < Ki; that is, redistribution of individuals via
the dispersal kernel results in bounded density (see discussion below).

(ii) For any t > 0, « € [0,L], k(t,z,y) is positive almost everywhere at
y € [0, L]; that is, at any location z in the stream, individuals move in
from almost all the other locations in the stream.

(iii) k(¢,=,y) is continuous in t > 0 at any (x,y) € [0, L]%; that is, the disper-
sal between any two points changes continuously with respect to time.
Also k(t,x,y) is continuous in = € [0, L] uniformly for y € [0, L] for all
t > 0; that is, individuals moving out from any location y continuously
distribute in the stream.

(iv) The dispersal kernel is independent of the stream length L—it is taken
as the truncation (on [0, L]) of the dispersal kernel k(¢, z,y) derived on
the infinite domain [21]. This indicates that dispersing individuals do
not perceive domain boundaries or, at least, do not alter their movement
behavior there.

To understand (H2)(i) further we define the redistribution function (see, e.g., section 5
in [10]) as

L
K(t,x) ::/ k(t,z,y)dy, t>0, xz€][0,L]
0

(H2)(i) and (iv) imply that

0<K(t,z) < K4 VYt>0, z¢€]0,L].
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Biologically, this indicates that if a uniform initial distribution with v = 1 is in-
troduced into a habitat interval [0, L], then the redistribution of these individuals
is uniformly bounded by 0 and Ky in the habitat, where the redistribution at any
point z is calculated by fOL k(t, z,y)u(y)dy for the initial distribution u. When the
dispersal kernel is a difference kernel so that k(t,z,y) = k(t,z — y), K4y = 1 because
Jek(t,z —y)dy = [ k(t,z —y)de = 1.

2.1. Stability of v = 0 in (1.1). By assumptions (H1) and (H2), we can
follow a similar process as we did for [4, (1.6)] to establish the well-posedness and
comparison theorem for (1.1) on C([0, L], W), where

C(]0, L], W) := {u : u is continuous on [0, L] and 0 < u(z) < & for all z € [0, L]},

with W defined in (H1)(iii). Note that v = 0 is an equilibrium solution to (1.1). We
will study the stability of the zero solution to (1.1).
The linearized system of (1.1) at uw =0 is

u(t, x L
(2.1) 4 gt’ ) :g(t,O)u(t,x)—a(t)u(t,x)-l—a(t)/o k(t, z,y)u(t,y)dy.

Let u(t,z) = ¢(t)y(z). Substituting u(t, x) into (2.1), we have

L
(2.2) ¢ ()(x) = (9(t70)—a(t))30(t)¢(33)+/0 a(t)k(t, z, y)p(t)Y(y)dy.

Equation (2.2) implies that

! L
ey 20 w0 - o) v = [ atke s van
Integrating (2.3) with respect to t from 0 to w yields
(2.4)

{ / i *; ((Lf)) a- [ “g(t,0) - a(t))dt] vie) = | ) < / ) a(t)k(t,x,y)dt) V).

Define

(2.5) K(z,y) :=

Then (H2) implies

0</1nydy— dt// k(t,z,y)dtdy < K4,

and we see that IC can be considered as a dispersal kernel that satisfies the autonomous
version of assumption (H2). Specifically, we call K(z,y) the weighted time-averaged
dispersal kernel of k(t, z,y). Dividing both sides of (2.4) by fo t)dt, we obtain

2 — [ (g(t.0) —a(®)dt]
(2.6 a () . vie) = [ K)oy
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It follows from the periodicity of ¢(¢,0), a(t) and k(t,x,y) that if we integrate (2.3)
about t from ¢y to tg + w for any ¢y > 0, we still obtain

[ gliotw) _ e a(t))dt} L
o) Jo -
2.7) = () s () = /0 K (z, y) () dy

To further investigate this equation, we define an operator I on C([0, L], W):

(2.8) / K(z,y)¥(y)dy Vxel[0,L] Yy e C([0,L],W).

To analyze the spectra properties of I we first show that it is a compact operator.

LEMMA 2.1. If (H1) and (H2) hold, then I is compact.

The proof of Lemma 2.1 is in Appendix A. It follows from (H2) that for any
x € 1[0, L], K(z,y) is positive at y almost everywhere in [0, L], and hence, I is strongly
positive on C([0, L], W) in the sense that I[¢](z) > 0 for all x € [0,L] and ¢ €
C([0, L], W) with 0 < ¢(x) < @ for x € [0, L] and ¢ # 0. The Krein—Rutman theorem
implies that I has a unique simple positive principal eigenvalue with a corresponding
strictly positive eigenfunction. Define

A := the principal eigenvalue of I.
Since the norm of I is bounded by K (see the proof of Lemma 2.1), we have
0< A< K,.

Moreover, [13, Theorem 3.1] implies that A is a strictly increasing function of L
provided that the dispersal kernel K(x,y) does not depend on L. However, we do
not know how A depends on the transfer rate a(t) and growth rate g(t,u). Let ¢ be
the eigenfunction of I with (x) > 0 for all = € [0, L] associated with A. Then (2.1)
admits a solution

(2.9) a(t,z) = ¢(t)d(x)

with (0, z) = @(0)¢(z), where G(t) is determined by (2.2) with ¢ = v and $(0) > 0.

By the dynamics of the linearized equation (2.1) and the comparison theorem,
we can obtain the following results for the stability of the zero solution to (1.1). The
proof is included in Appendix B.

THEOREM 2.2. Assume that (H1) and (H2) hold. Let \ be the principal eigenvalue
of I (defined in (2.8)). The follmuing results hold for (1.1).

i) If [ g(s,0)ds < [} a(s)ds, then
(a) u=20is unstable when

fo (5,0)ds

Jo'a

A>1-—

(b) uw =0 is locally stable when
fo (s,0) ds

Jo'a

(ii) If [y 9(s,0)ds > [ a ds then u = 0 is unstable.
(iii) If [ g(s,0)ds = fo s)ds, then u = 0 is linearly unstable; i.e., u = 0 is
unstable for (2.1).

A<l —
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2.2. Critical domain size for (1.1). By the stability of u = 0 to (1.1), we can
analyze the persistence of the population for (1.1). Theorem 2.2 (ii) and (iii) imply
that the population persists in the stream no matter what its length is, provided
fow s,0)ds > fo s)ds; that is, the average growth rate at low density exceeds the

average transfer rate
1 [ 1 (¢
—/ g(s,0)ds > —/ a(s,0)ds.
wJo w Jo

Theorem 2.2 (i) indicates that if [;”g(s,0)ds < [’ a(s)ds, then the principal eigen-
value A of the operator I determines populatlon persmtence or extinction. When
A>1-— W that is, the mean per capita growth rate exceeding the mean per

capita dispersal loss

l/owg(s,o)ds> (1—A)l/owa(s)ds,

w w
the population is persistent in the stream, otherwise when A\ < 1 — f}wqissgzgs, the

population may not persist in the stream and, in particular, a small initial distribution
cannot result in persistence of the population. Then

fo sOds

Jo'a

becomes a threshold condition for population persistence when f: g(s,0)ds < f: a(s)ds
although we cannot obtain a theoretical result for population persistence exactly un-
der this condition.

Note that 0 < A < Ki. If ["g(s,0)ds < (1 — Ky) [ a(s)ds, then/\<

1 — Jogte0ds (N L > 0 and (2.10) has no solution. If (1 K+ fo s)ds <

jO a(s)ds
Iy 9(s,0)ds < [ a(s)ds, then 1 — f}w > O)ds is between 0 and K, and (2.10) might
be solvable. Since the dispersal kernel 1n thls paper is assumed to be independent
of the stream length, it follows from [13, Theorem 3.1] that A is a strictly increasing
function of the stream length L. Consider 0 as the principal eigenvalue of I with

= 0. Then X increases from 0 as L increases from 0. Thus, if the equation (2.10)

admits no solution, then A < 1 — M for all L > 0. If (2.10) is solvable, then

(2.10) AL)=1-

Joa
it has a unique solution Lg with )\(LO) =1- %, ML) > 11— % for
L>Lp,and AN(L) <1-— M for L < Lg. This Ly can be defined as the critical

domain size. e
We conclude all above results in the following theorem, which is the main result
in this section.
THEOREM 2.3. Assume that (H1) and (H2) hold. The following results are valid
for the population model (1. 1)
) If fow (s,0)ds > fo s)ds, then the population persists in the stream regard-
less of the stream length
(ii) If 1-K4) [y a(s)ds < [ g(s,0)ds < [, a(s)ds, then the critical domain size
may be determmed by the threshold equatzon (2.10)7 where \ is the principal
eigenvalue of the spatial operator I defined in (2.8).
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(a) If (2.10) has a unique solution Lg, then Lg is defined as the critical
domain size and the population persists in the stream provided that the
stream length is larger than the critical domain size.

(b) If (2.10) has no solution, then in any stream with a finite length, the
population may not persist and, in particular, a small initial distribution
cannot result in persistence of the population.

(i) If [y 9(s,0)ds < (1 — K1) [, a(s)ds, the population may not persist in a
bounded stream and the population with a small initial distribution cannot
persist in a bounded stream.

Remark 2.1. In the cases (ii)(b) and (iii) in Theorem 2.3, we say that the critical
domain size does not exist. Thus, we conclude that when [”g(s,0)ds < [, a(s)ds,
if (2.10) admits a solution, then it is the critical domain size; otherwise, the critical
domain size does not exist.

Remark 2.2. If the dispersal kernel is independent of time ¢, then (1.1) becomes
(2.11)

Ou(t, x)

ot

L
= ug(t,u(t,z)) — a(t)u(t,z) + a(t)/0 E(x,y)u(t,y)dy, t >0, z € [0, L].

The weighted averaged dispersal kernel K(xz,y) (see (2.5)) is exactly k(x,y), and the
operator I defined in (2.8) is

L
(2.12) IM@%=Ak®wW@@ v e [0,L)

Clearly, the above results for the critical domain size are still true for (2.11).
Ezample 2.1. Consider a simple case where the dispersal kernel k(t,z,y) is

independent of time ¢ and depends only on the distance between two locations x

and y. We write k as k(xr —y) and assume a special form for the function k(z), x € R:

_ JAexp(biz), 2z <0,
(2.13) k(x) = {Aexp(bgfv), x>0,

with
v v2 B8
h2=s55 Vi T b
and
A b1bo ’
by — by

where D is the diffusion constant, v is the water flow velocity, and [ is the settling rate
of aquatic insects whose larvae settle on the channel bottom and matured individuals
jump into water, in a stream environment (see [13, Section 4.1] for the derivation of
this kernel). The relation between the principal eigenvalue A of the operator I (see
(2.12)) and the stream length L was stated in [13, (4.6)] as

-1
4 arctan %—1
(2.14) L) = (Ve Y

(b1 — b2) %—1
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F1a. 2.1. The critical domain size for (2.11) with the dispersal kernel k defined in (2.13), where
the diffusion rate D = 1, the flow speed v = 1, and the settling rate 8 = 1. Left: The relationship
between the critical domain size and the total transfer rate in a period fé” a(s)ds. The solid line
represents fow g(s,0)ds = 1.5; the dashed line represents fow g(s,0)ds = 1. Right: The relationship
between the critical domain size and the total reproduction in a period fé” g(s,0)ds. The solid line
represents [ a(s)ds = 2; the dashed line represents [ a(s)ds = 1.

By Theorem 2.3, if " g(s,0)ds > [;”a(s)ds, then the species will be persistent re-
gardless of the stream length L; if [;” g(s,0)ds < [;" a(s)ds, then the critical domain
size for the species to persist in the stream, if it exists, is

s )

where the function L is defined in (2.14).

The relationship between the critical domain size L for the autonomous case of
(2.11) and D, v, and S has been studied in [13]. From (2.15), we see that the critical
domain size does not depend on the value of g or a at any specific time, but on the
sums of g(¢,0) and a(t) over a period [0,w]. Figure 2.1 shows that when the dispersal
kernel is fixed, the critical domain size is an increasing function of [i” a(s)ds for a
given value of ;" g(s,0)ds (see the left graph of Figure 2.1). As a(t) is the transfer
rate at which the population transfers from the stationary state to the mobile state,
this indicates that the more population disperses, the greater the size of the stream
needed for the population to persist in the stream. It is also shown in the right graph
of Figure 2.1 that the critical domain size is a decreasing function of fow g(s,0)ds for
a given value of f: a(s)ds, which implies that the more reproduction the population
has, the shorter the stream is required to be for the persistence of the population.
These two results clearly coincide with our intuitive understanding.

3. Critical domain size in a two-season environment. In this section, we
give approximation for the critical domain size for a population in a two-season en-
vironment and study the combined influences of the flow velocity and the transfer
rate, the diffusion coefficient, and the settling rate on the critical domain size. By a
two-season environment, we mean a habitat that has two significant seasons in a year,
say, summer and winter. Assume that a year length is scaled as w with summer length
wo and winter length w — wp (0 < wy < w). We will show how the critical domain
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size can be approximately determined by a weighted combination of the population
dynamics and dispersal features in summer and winter.

3.1. Approximation for critical domain size. We would like to consider the
critical domain size of a stream in a two-season environment with dispersal kernel
k1(z,y) and transfer rate a; in summer and dispersal kernel ko (x,y) and transfer rate
az in winter. An abrupt change between seasons will violate the assumptions (H1) (i)
and (ii) and (H2) (iii) that a and k are continuous functions of time ¢. Hence, we need
to construct the discontinuous dispersal kernel and transfer rate carefully as limits of
sequences of continuous kernels and transfer rates, respectively, where the continuity
is with respect to the time.

First we give a result about the convergence of the principal eigenvalues of
a sequence of operators. Let ki(x,y) and ka(z,y) be two dispersal kernels and
{EM)(t,2,9)nen be a sequence of dispersal kernels that are periodic in ¢ with pe-
riod w and defined in [0,w] as

k1 (z,y), 0<t<wo— 2, zy€cR,
kg")(t,a:,y), wp — % <t<uwy x,y €R,
ka(z,y), wo<t<w-—21 zy€eR,
kgn)(t,x,y), w—%§t<w, z,y € R,

(3.1) K () =

where the kf”) (t,x,y)s are functions such that for each n € N, k(") (¢, z, y) satisfies all
conditions in (H2). Similarly, let {a(™(#)},en be a sequence of transfer rates, which
are periodic in ¢ and defined in [0,w] as

aj 0,§t<w0—%,

(n) 1

ay; '(t), wo— - <t <wp,
(3.2) aMt)y=4{" (), wo—5 =< 0

az, w0§t<w_ﬁa

agn)(t), w-—Li<t<w,
where a{™ () and al™ () are functions of time ¢ such that a(™ (¢) is continuous in ¢ for
each n € N. For each k("™ (t,z,y), define the weighted time-averaged dispersal kernel

1

Koz, y) = W

/ a(")(s)k(")(s, x,y)ds
0

and the associated spatial operator

L
(33) L) = / Ko, y)0y)dy Vo € 0,L], e C(0, L], W).

By (2.10), the critical domain size L,, for (1.1) with dispersal kernel k(™ (t,z,y),
transfer rate a(™ (t), and growth rate g(¢,u), can be determined by

fow g(s,0)ds

(3.4) Aa(Ln) =1— R

Moreover, define the two-season spatial operator

aren Jy B (@ y)e(u)dy | aa(w —wo) J kol y)y)dy
a1wo + az(w — wp) a1wo + az(w — wp)

(3.5) LYl(z) =

)
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for ¢ € C([0,L],W), « € [0,L]. We have the following result whose proof is in
Appendix C.

LEMMA 3.1. The principal eigenvalue of I, converges to the principal eigenvalue
of Iy as n tends to infinity.

Now we consider a stream species in a two-season environment. Suppose that
the dispersal kernel k(t,z,%) for (1.1) takes the form of k(™ (t,z,y) defined in (3.1),
and that the transfer rate a(t) takes the form of a(™(t), defined in (3.2). It follows
from Lemma 3.1 that, in application, for simplicity, we may use the principal eigen-
value of Iy (defined in (3.5)) to approximate the principal eigenvalue of I (defined
n (2.8)), since the operator I here takes the form of I,,, defined in (3.4). Note that
f: a™(s)ds = ajwo + ag(w — wp) as n — oco. By Theorem 2.3, we can obtain the
following result about the approximation of the critical domain size in a two-season
environment.

THEOREM 3.2. In a two-season environment, where the summer and winter
population dispersal kernels are ki(x,y) and ka(x,y) and summer and winter transfer
rates are a1 and ag, respectively, the critical domain size for (1.1) can be approxzimated
by solving

I g(s,0)ds
3.6 M(L)=1-— 0
(3.6) o(L) a1wo + az(w — wp)

(see (2.10)), where Ao is the principal eigenvalue of Iy defined in (3.5) and depends
on the stream length L.

We now choose specific dispersal kernels to show how to find the principal eigen-
value A\ for Iy. Further assume that the summer dispersal kernel ki(z,y) and the
winter dispersal kernels k2(z,y) depend only on the distance between z and y and
write them as k1 (x) and ka(x). For all parameters in the rest of this section, we use
subscript ¢ = 1 to represent summer and ¢ = 2 to represent winter. For ¢ = 1,2, define

A;ex b( x <0,
i () = p( N z), <
Aiexp(b;”z), >0,

with

. bi %
@ Yy B ond A, = %
2D, 4D2 tp, ™ T
where D; is the diffusion coefficient, v; is the water flow velocity, and 3; is the set-
tling rate of the species in a stream environment. Moreover, let Ay be the principal
eigenvalue of Iy with positive eigenfunction ¢ € C([0, L], W) with 0 < ¢(z) < @ for
all z € [0, L]. Then

Lo[](z) = Aot (z)

can be written as

(3.7) Pl/ ky(z — (y)dy + Pg/ ko(z — y)¥(y)dy = dow(z) Vz €0, L],
where
B a1wo _ az(w — wp)
a1wo + az(w — wp)’ 2 ajwo + as(w — wp)’
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with P, + P, = 1. Note that for ¢ = 1,2, k; is a Green’s function for a related
differential operator

D; "
(3-8) Ek (@) -3

where 0(z) is the Dirac delta function. Let H; and Hs be two operators on a dispersal
kernel k defined as

k’( ) —ki(z) = —d6(z) Vx el0,L],

D;
Hi[k] = ﬁk”—ﬁ—k’ kooi=1,2.

Applying H; on both sides of (3.7), we obtain

Py /OL <ﬂl K — ﬁlk k1> (z — y)¥(y)dy

+P2/OL(—1k =~ k) (e = wut)dn = o (50 - S - 0) @)

It follows from (3.8) that

L
Pb(a) 4P, / (T’“ -2y~ kz) (e—y)o()dy = Ao <§—w Py ¢) (a).

Apply H> to both sides of the above equation and use (3.8) again. After calculations,
we obtain

MDD ) = 2 (P2EED ) g

B2 Bap1
P D, Py D, Do Vo D, ,
(3.9) +< s + 5 — o <E_ﬁ2ﬁ1 +E)>¢ (z)
U1 Pivg Povy , B B
(AO <ﬁ2 * E) "B >¢ (2) + (Ao = Dib(x) = 0.

Basic differentiations of (3.7) with respect to z give four boundary conditions for (3.9):
(3.10)

A0t (0) = [P A1 (B2 — b)) + Py Ao (08 — b57) — bV b{M1b(0)
+ o (" +65)y(0),
Mt (L) = [PrA1 (07 = b1V) + PyAg(bs” — bY) — Aobs bV (L)
+ Ao (b5? + b5 ) (L),
Mot (0) = [PLAL((0)2 = (07)2) + PoAo((65))2 — (b57))](0)
— Mob§7 b0 (057 + b5 (0) + Ao[(0{)? + b5V BEY + (b57)2)w (0)
+[PrA (B — b)) + PaAG (b5 — )]y (0),
Aoy (L) = [PLAr(67)% = (07)?) + PaAo((057)2 — (b§))]w(L)
— AobSb (057 + b )(L) + Ao[(617)% + 6570 + (B5)2Jw' (L)
+[PrA (0 = b)) + P AG (b5 — b))y (L).
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By solving (3.9)—(3.10), we expect to obtain A\g as a function of L, and then
estimate the critical domain size by solving (3.6). However, this might not be easy
since (3.9) is a fourth order differential equation and the boundary conditions (3.10)
are complex. As we are interested only in the threshold of the domain size, we can set
Mo =1— [ g(s,0)ds/ [;” a(s)ds (see (3.6)) and solve (3.9)=(3.10). Then we should
be able to obtain L as an expression of ["a(s)ds, [, g(s,0)ds, D;’s, v;’s, and B;’s, if
(3.6) has a solution. This L is the approximation of the critical domain size for (1.1)
with dispersal kernel k(¢, x, y) having the form of k(™) (¢, z,y) defined in (3.1) and the
transfer rate a(t) having the form of a(™ (t) defined in (3.2).

Ezxample 3.0. Let the scaled length of a year w = 2, the scaled length of summer
wo = 1, the transfer rate a(t) = a; = ag = 1, the diffusion rate D1 = Dy = 1, the
settling rate 81 = B2 = 1, summer flow speed v; = 3, winter flow speed v, = 1, and
the growth function g(¢t,u) = r(1 — u/K) — p with the intrinsic growth rate r = 1.2,
the death rate ¢ = 0.5, and carrying capacity K > 0. Then

¥ g(s,0)d
)\Ozl_wzog

Iy a(s)ds
and (3.9) becomes
(3.11) 0.3 (x) — 1.2¢" (z) + 1.3¢" (x) — 0.8¢' () — 0.7¢(x) = 0.

By solving the characteristic equation corresponding to (3.11) numerically, we can
write the general solution to (3.11) as

w(x) — C162.9230600321 + C26.43370336171
+ 075532166492 (10 ¢0g(1.12695759z) + ¢4 sin(1.12695759z)).

Substituting ¢ (z) to the boundary conditions (3.10), we find that L = 3.08269. This
is the critical domain size that we are looking for.

3.2. Influences of parameters on critical domain size. By virtue of The-
orem 3.2, we can study the combined influences of the flow velocity v(t) and the
transfer rate a(t), the diffusion coefficient D(t) and the settling rate 5(t) on the crit-
ical domain size of the stream for a species to persist in a two-season environment.
The same as in the last subsection, let subscript ¢ = 1 represent summer and ¢ = 2
represent winter for v, a, D, and 5.

First, we consider the combined influence of the flow velocity v;’s and the transfer
rate a;’s on the critical domain size, while fixing the other parameters. To summarize
the cross effects we define the covariance between the normalized transfer rate and
normalized flow velocity, which we call the normalized covariance between the transfer
rate and flow velocity in the rest of the paper, as

(3.12) xmv:wmv(g,%)::aéz Ow@us)—cu@ms)—zgd&

where a and v are the annual averages of a(t) and v(t) defined as

1 -
(3.13) a= _/ a(s)ds = 20t az(w WO),
w Jo w
and
1 -
(3.14) 5= _/ o(s)ds = Lot va(w = wo)
w Jo w

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/13/12 to 142.244.35.24. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

POPULATION SPREAD AND PERSISTENCE IN STREAMS 1253

50

451

40t

351

30f

251

201

Critical domain size

av 0 05
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FiGg. 3.1. The relationship between the critical domain size and the normalized covariance Xa,v
between the transfer rate a and flow velocity v, where g(u) = 1.2(1 —u/K) — 0.5, B1 = B2 = 1,
Di=Dy=1,w=2wy=1,v1=3,va=1,a=2, and xJ , = —0.107375.

and cov(a,v) is the covariance between a and v defined as

w
cov(a,v) = l/ (a(s) — a)(v(s) — v)ds.
wJo
The exact relationship between the critical domain size and the normalized covariance
Xa,v cannot be described as we need to solve boundary problem (3.9)—(3.10). However,
we may calculate the critical domain size for some specific values of x4, and determine
the quantitative relationship between them.

Ezample 3.1. Assume the growth function g(u) = r(1 — u/K) — p with the
intrinsic growth rate r = 1.2, death rate p = 0.5 and carrying capacity K > 0, the
scaled length of a year w = 2, the summer length of a year wy = 1, the diffusion
rate D; = Do = 1, and the settling rate 51 = B2 = 1. The carrying capacity K
does not influence the critical domain size. We fix the summer and winter water
velocities v1 = 3 and vy = 1, and the annual mean value of the transfer rate a = 2.
The relationship between the critical domain size and the normalized covariance xq, .
is given in Figure 3.1. It is very clear that when the normalized covariance xq,.
increases, the critical domain size becomes larger and larger till it approaches infinity
as Xa,» tends to Xg,v = —0.107375. As the critical domain size is the smallest domain
size for the population to persist in the stream, this indicates that the larger the
normalized covariance between a and v, the harder it is for the population to persist
in the stream.

Similarly, we can define the normalized covariance between the diffusion rate
and flow velocity as xp,, = cov(%, 2), and the normalized covariance between the
settling rate and flow velocity as xg,, = cov(%, 2) as we did in (3.12), and then study
how xp, or xgs,, influences the critical domain size while the other parameters are
fixed.

Ezample 3.2. Let g(u) =0.75(1 —u/K)— 05,51 =02 =1, a1 = a2 =1, w = 2,
wo=1,v =3, vs =1, and D = 2. The relationship between the critical domain size
and the normalized covariance x p , between the diffusion rate D and flow velocity v
is shown in Figure 3.2. When xp,, increases, the critical domain size increases and
tends to infinity as x p,, tends to x%)v = —0.152525. The quantitative result is similar

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/13/12 to 142.244.35.24. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1254 YU JIN AND MARK A. LEWIS
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F1G. 3.2. The relationship between the critical domain size and the normalized covariance X p o
between the diffusion rate D and the flow velocity v, where g(u) =0.75(1—u/K)—0.5, f1 = B2 =1,
a1=ax=1,w=2, wy=1,v1=3,va=1, D=2, andXD —0.152525.

80
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Critical domain size
S (4]
o o

w
=]
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0 —
-0.5 Xgy O 2 0.5

Normalized ggvariance (Bv) (XD ) gy

Fig. 3.3. The relation between the critical domain size and the normalized covariance xg. .
between the settling rate B and flow velocity ¢, where g(u) = 0.75(1 —u/K) — 0.5, D1 = D2 = 1,
a1 =a2=1,w=2 wy=1,v =3, =1, B=25, xﬂv:—0.0631, andx%v=0.35282.

to that found between the transfer rate and flow velocity in Example 3.1: The larger
the normalized covariance xp,, the harder it is for the population to persist.

Ezample 3.3. Let g(u) =0.75(1 —u/K)—0.5,D1 =Ds=1,a1 =as =1, w =2,
wo =1,v1 =3, va =1, and B = 2.5. The relationship between the critical domain
size and the normalized covariance xg ., between the settling rate 3 and flow velocity
v is shown in Figure 3.3. The graph is very different from those in Examples 3.1 and
3.2. The critical domain size is positive for Xé v < X < x% , and tends to infinity
as xg,» tends to X = —0.0631 or XB = 0.35282. Therefore, to help the population
persist in the stream the normalized covariance xg,, has to be kept at intermediate
values lying in the interval (XB,U, XB,’U)'

4. Discussion. In this paper, we study the seasonal influences on population
persistence for stream species and attempt to suggest solutions for the important drift
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paradoz problem in stream ecology. We assume that both the population dynamics
and individual movements (i.e., the dispersal kernel) are periodic with respect to time
t with the same period w, which can be taken as the scaled dimensionless length of
a year. Noting that all natural streams or rivers are actually bounded, we study the
periodic integro-differential equation (1.1) in a bounded spatial domain Q = [0, L],
where L is the length of the stream. As the critical domain size is an important
ecological feature, which indicates the minimal length of a stream for the population
to persist, and actually from another perspective provides a solution to the drift
paradox problem in a bounded stream, we obtain the critical domain size for (1.1)
when the population dynamics and dispersal satisfy certain conditions (H1) and (H2)
(see section 2). To better understand the effects of time varying environment on
the critical domain size we considered an environment with two main seasons, say,
summer and winter. This allowed us to analytically approximate the critical domain
size and to assess the effects of the normalized covariances of the flow velocity, transfer
rate, diffusion rate, and the settling rate on the critical domain size. This analysis
was supplemented with numerical examples (section 3).

While the actual flow velocity in a specific stream can be estimated from the
historical data, generally it is large in summer and small in winter, just as given in
the examples in section 3. Simulations there suggest that to help the population
persist in the stream easily, strategies may be made to decrease as much as possible
the normalized covariance xq,v, decrease the normalized covariance xp ., or keep the
normalized covariance x,, in a moderate level between (xj ,,, X3 ,,), While the annual
averages a, D, or 3 are kept as some constants and the other parameters are fixed in
different situations.

Furthermore, we can analyze the critical domain sizes of (1.1) in relation to a so-
called weighted dispersal kernel. Let (z,y) be the weighted time-averaged dispersal
kernel defined in (2.5). By the derivation of the the threshold equation (2.10), the
critical domain size of (1.1) is the same as that of

(4.1)

L
8u(8tt, ) =ug(t, u(t,x)) — a(t)u(t,z) + a(t)/o K(z,y)u(t,y)dy, t >0, z € [0, L].

Define an autonomous model associated with (1.1) with time-averaged growth fow ug
(s,u)ds/w and dispersal [ a(s)ds/w:
(4.2)

ou(t,z) Iy ug(s, u)ds B Iy als)ds

@ a\s)as L
ot - w w u(t’ x) + fo# »/O lC(x, y)u(t, y)dy,

for all t > 0, = € [0, L]. Recall that in [13], the critical domain size of

L
(4.3) ut(t, ) = f(u(t,x)) — pu(t, z) + u/ k(z,y)u(t,y)dy, t >0, z € [0, L]
0
is given as

ML) =1— £(0)/,

where X is the principal eigenvalue of the integral operator

L
I9)(z) = / Kz, 9)(y)dy.
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Then by simple comparison, we see that the critical domain size of (1.1) is the same
as that of (4.2). Therefore, to study the critical domain size of the periodic model
(1.1) with periodic dispersal kernel k(t, x,y), it suffices to study that of the periodic
model with the weighted time-averaged dispersal kernel K(z,y) (4.1) or that of its
associated autonomous model (4.2) with the time-averaged kernel K(z, y).

We then conclude that when studying the critical domain size for a periodic
integro-differential equation, a periodic dispersal kernel k(t, z,y) has the same effect
as its associated appropriately weighted time-averaged dispersal kernel (z,y), and
that the study of the critical domain size for a periodic integro-differential equation
can be reduced to the study of the critical domain size for an associated autonomous
integro-differential equation. However, it is important to notice that this simplification
is true only for the estimation of the critical domain size and that the dynamics of
these models are very different.

Appendix A. Proof of Lemma 2.1. For any ¢ € C([0,L],W), we have
0 < [|[¥|| = max,epo,r)¥(x) < @ and

L L
Mol = max [ Koty < max [ Ky max 6(0) < K- ol

z€[0,L]

This indicates that I is uniformly bounded by K.
Moreover, for any ¢ € C([0, L], W) and z1, 22 € [0, L], we have

[](21) — I[Y)(z2)| =

L L
/ K (w1, ) (y)dy — / K (2, )i (y)dy
0 0
L

/ (K1, ) — K2, 9)b(v)dy

0
L
< 121[62,}2] Y(x) - ‘/0 (K(z1,y) — K(z2,))dy
L
=1 jﬁ (K(z1,y) — K(z2,y))dy| .

By the assumptions for k(¢,z,y), K(x,y) is continuous in z € [0, L] uniformly for
y € [0, L]. Therefore, I is equicontinuous.
Then the Arzela—Ascoli theorem implies that I is compact.

Appendix B. Proof of Theorem 2.2. (i). Assume [’ g(s,0)ds < [ a(s)ds.
(a) Suppose that the principal eigenvalue A of I satisfies

fow g(s,0)ds
Jy a(s)ds
CLAM 1. For any ug € C([0,L],W) with uy # 0, the solution to (1.1) with

w(0,-) = uo(:) satisfies u(t,x) >0 for all (t,z) € (0,+00) x [0, L].
Let ug € C([0, L], W) with ug # 0. Note that

(B.1) A>1—

L
ug(t,u(t,z)) — a(t)u + a(t)/o k(t, z,y)u(t,y)dy > ug(t,u(t,z)) — a(t)u
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for any w(t,-) > 0. Since the solution @(t, x) to

ou(t,
) — g, at, ) — al)n
ot
with @(0,-) = wuo(-) is nonnegative for all ¢ > 0, it follows from the comparison

theorem, the solution wu(t, z) to (1.1) with u(0,-) = uo(-) satisfies u(t, z) > a(t,z) >0
for all (¢t,z) € (0,+00) x [0, L]. We need to further show strict positivity of u. Let «
be sufficiently large such that au + ug(t,u) — a(t)u > 0 for all ¢ > 0 and u € [0, 4].
Rewrite (1.1) as

(B.2)
ou(t, x)
ot

L
= —au(t,x) + au(t, z) + u(g(t,u(t,x)) — a(t)) + a(t)/0 k(t, z,y)u(t,y)dy.

Given the initial condition wug, (B.2) is equivalent to the integral equation

u(t,r) = e~ *ug(x)

¢ L
—I—/O e~ (t=9) <au(s,x) +u(g(s,u(s,z)) —a(s)) + a(s)/o k(s,z,y)u(s, y)dy) ds.

By the nonnegativity of ug and au + ug(t,u) — a(t)u, we further have

u(t, x)

| o= (o120 + (s, ) — ) + ate) [ ks, uts, )y ) s

t
zml/ e*“(“s)/k(s,w,y)U(s,y)dde,
0 R

where my = minsepg ., a(t) > 0. Since ug # 0 and the solution u(t, x) is continuous in
t and z, for any ¢t > 0, there is an open interval B, C [0, L] such that u(t, z) > 0 for all
x € B;. Note that k(t,z,y) is positive almost everywhere at y € [0, L] for any ¢t > 0
and x € [0, L]. We then have u(t,z) > 0 for all ¢t > 0 and x € [0, L]. This completes
the proof for the claim.

Now we prove the main result. For ¢ > 0, define an operator

L
Ew
(B.3) L[Y)(z) = —————(x) +/ K(z,y)(y)dy Va €0, L]
fo a(s)ds 0
for all ¢p € C([0, L], W). Then I. — I as e — 0, where I is defined in (2.8), and I. = I
when £ = 0. Since the principal eigenvalue X of I satisfies (B.1), there exists a small
€1 such that the principal eigenvalue A. of I. satisfies

I g(s,0)ds
(B.4) Ae >1— OWQW

for all € € (0,e1). We fix an € € (0,e1). Since lim,_,o+ % = ¢(t,0) uniformly for
t € [0,w], there exists § > 0 such that ug(t,u) > (g(¢,0) — €)u for all ¢t € [0,w] and
0<u<d.

CramM 2. limy_,oosup|lu(t,-)|| > & for all solution u(t,z) to (1.1) with initial
function ug € C([0, L], W) with ug # 0.
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We prove this claim by contradiction. Suppose that there exists ug € C([0, L], W)
with ug £ 0 such that the solution u(t,z) to (1.1) with initial value uy satisfies
limy o0 sup ||u(t, -)|| < 0. Then there exists to > 0 such that u(t,z) < § for all
t > ty. By Claim 1, we obtain that u(t,x) satisfies
(B.5)
Ou(t, )

ot

L
> (g(t,0) —a(t) — e)u(t,x) + a(t)/o k(t,x,y)u(t,y)dy Yt >to, x €[0,L].

Let uc(t, ) = pe(t)1pe () be a solution to

(B.6)

Ou(t, x)
ot

L
= (g(t,0) — a(t) — e)u(t,x) + a(t)/o E(t,x,y)u(t,y)dy Yt >to, x €[0,L].

Similarly as we do in section 2, we can obtain
(B.7)
{1 @s(t+w) fo 5,0 a(s))ds} b(2) cw .
) = ———(x
Iy a(s)ds } Iy a(s)ds "

for all t > 0. Let 1. be the positive eigenfunction of I. in C([0, L], W) with respect to
Ae and write

L
+Ammww@m

) [ w;(t?;w) fO 5,0 a(s))ds]
o Iy a(s)ds ’
which can be used to determine @.. Then i.(t, ) = @ (t)Ye(x) is a special solution to
(B.6). Let 6 = t+w) fort > 0. It follows from (B. 4) that 0 > 0. Since u(to,z) > 0

for all x € [0, L], there exists a multiple of 1. such that $.(0).(x) < u(to, x) for all
x € [0,L]. Then by (B.5) and the comparison theorem,

ult, @) > Ge(t, @) = Ge(t)e(z) VE2to, z€0,L].
In particular, it follows from the definition of 8 that
u(to+nw, z) > e (to+nw, ©) = G (to+nw)he (@) = e @ (to) e (x) YVt > to, & € [0, L],

and hence, u(to+nw,z) = 00 asn — oo for all x € [0, L], since > 0, a contradiction.
Therefore, lim;_, oo supmaxgepo,rj{u(t, )} > 6 for all solutions u(t,x) to (1.1) with
initial function ug € C([0, L], W) with ug # 0.

It follows from Claim 2 that the zero solution to (1.1) is unstable.

(b). Now we consider

fo g(s,0)ds
a(s)ds

Let a(t, ) = ¢(t)¢(x) be the solution to (2.1) defined in (2.9). By (2.7), the principal
eigenvalue A of the operator I defined in (2.8) satisfies

- fow(g(sa 0) — a(S))ds}
Jo als)ds

(B.8) A= {
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By (B.8) we have In ‘7’5;;;") < 0 for all t > 0, which implies that

P(t) > Pt +w) > @t +2w) > -+ - Vit >0,

and hence, @(t, z) = @(t)(x) satisfies
(B.9) a(t,z) > a(t +w,z) > ot + 2w,2) > -+ VE>0, z€]0,L].
For any ¢ > 0, there exists a multiple of 1/3, which we again write as 1&, such that

|3(0)]| = maxge(o, ] @(0)ih(z) < e. Moreover, by the continuity of solutions with
respect to initial values, we can restrict @[NJ such that

1QF[P(0)4]l| = [la(t,z)|| = max a(t,z) = max P(t)(z) <e  VEe[0,w].

Then (B.9) implies that
la@t, )l <e Vvt =0.

Let ma = mingco 1) Y(x). Tt follows that 0 < @(0)my < e and that for any initial
function ug € C([0, L]) with [|uo|| < @¢(0)ms, the solution u(t,z) to (2.1) through wg
satisfies

u(t,z) = Q¢ [uo)(z) < QF[P(0)P)(x) = a(t,x) <e VE>0, ze€[0,L]

Let u(t, z) be the solution to (1.1) with the initial function ug as above. Since g(t,u) <
g(t,0) for t > 0 and u € [0, @], by the comparison theorem, @(t, z) satisfies

a(t,z) = Q¢luol(z) < QFlug)(x) = u(t,z) <e Vt>0, z€l0,L],

where @, is the solution map of (1.1). Therefore, we proved that for any € > 0, there
exists § = ¢(0)ma, such that for any initial function ug € C([0, L], W) with ||uo|| < 6,
the solution @(t, z) to (1.1) through ug satisfies 0 < @(t,z) < e for all t > 0, z € [0, L].
This implies that the zero solution to (1.1) is stable. The proof is completed.

(ii) Assume that [’ g(s,0)ds > [ a(s)ds.

There exists €1 > 0 such that fow(g(s, 0) —a(s) —e)ds > 0 for all € € (0,e1). Fix
an € € (0,e1). Since lim,_,o+ “g(i’“) = ¢(t,0) uniformly for ¢ € [0,w], there exists
d > 0 such that ug(t,u) > g(t,0) — e)u for all t € [0,w] and 0 < u < §. Note that

ou(t, )
(B.10) ot

L
— (9(t,0) — a(t) — 2)a(t, z) + at) / K(t, 2, y)a(t, y)dy
> (g(t,0) —a(t) —e)u(t,z), t >0, z € [0, L]

and the solution to

(B.11) 81]2;’ ?) = (g(¢,0) — a(t) — e)u(t,z), t >0, z € [0, L]

can be expressed as

(B.12) a(t, z) = u(0, z)elo @0 —als)=)ds 'yt >0 2 € [0, L],

where 4(0,-) € C([0,L]) is the initial function for (B.11). By the periodicity of
(9(t,0) — a(t)) and the assumption [’ (g(s,0) — a(s) — €)ds > 0, we have

(B.13) a(t,z) <a(t+w,z) <u(t+2w,z)<--- VE>0, z€l0,L].
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Then similarly as we did in the proof of (i)(a), we can show that lim;_, sup ||u(t, )|| >
d for all solution wu(t, z) to (1.1) with initial function ug € C([0, L], W) with ug # 0.
This implies that the zero solution to (1.1) is unstable.

(iii) Assume that [" g(s,0)ds = [} a(s)ds

Note that (2.1) admits a solution

(B.14) u(t,x) = p(t)y(x)

with @(0, ) = $(0)¢(x), where ¢ with ¢(z) > 0 for all z € [0, L] is the eigenfunction
of I corresponding to the principal eigenvalue A of I, and ¢(t ) is determined by (2.2)
with ¢ = ¢ and ¢(0) > 0. It follows from [i° g(s,0)ds = [;" a(s)ds and (2.7) that

In UL+ w) L - ~
(B.15) o0 K@iy @)
Iy als)ds ¥(z) b(z)

which implies that

Gt +w) = Mo s z1) > 0.

Let 0 = e*Jo @(9)ds  We have § > 1 by the positivity of A and fo . Then
o) < Pt +w) < Pt + 2w) < - -+ vt >0,
and hence,
a(t, x) = t)(z) < at +w,z) < Gt +2w,z) <--- V>0, zel0,L],

which indicates that the zero solution to (2.1) is not stable, i.e., the zero solution to
(1.1) is linearly unstable. This completes the proof of Theorem 2.2.

Appendix C. Proof of Lemma 3.1. For any ¢ € C([0, L], W), = € [0, L],
1 L w
W) = o |, ) OO sy
a(™(s)ds

(n) (n) .
a(”) ds/ / IR u)ds - s, vt

S S— Ol kM) ( dyd
= a(n)(s)dS/ / (s, 2, y)dyds - [
S K+||¢||7

which implies that

L]l = sup [[[n[¢]|| = sup max I,[y)(z) < K.
lll/=1 |l||=12€[0,L]

Similarly, we can obtain ||o|| < K.
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Moreover, we can show ||I, — Iy|| — 0 as n — oo. In fact, for any ¢ € C([0, L], W)
and z € [0, L],

[ a " (8)ds - [Tl (@) — D) (@)

[ a s nli@) — [ at)ds Tl
0 0

L wo L
—|a (o= 1) [ s+ [ a0 [T

1
wo—

+ a2 <w—%—wo>/ ka(x y)w(y)dy—l—/:

o™ L
— fo ( <CLle/ kl 33 y dy+a2(w WO)/O kQ(xvy)¢(y)dy>

aiwo + az(w — wo)
“a™(s)d
Jo at™ (s)ds w)

L
o (s) /0 K (s, 2, )0 (y)dyds

1
n

L

a1wo + az(w — wo)

1 f: a™ (s)ds
/ ka(x,y)y dy( <w—ﬁ—w0>—a1w0+a2(w_w0)a2(w—wo)
w0 b “ b
—|—/ aln)(s)/ kln (s,x,y)w(y)dyds—i—/ a2")(s)/ kzn (s, z,y)¥(y)dyds
wo—% 0 w—% 0

—0

n

(. 9) 9 (y)dy ( <w0 _ _> _

as n — oo. It then follows from the boundedness of a(™(t) and 1(x) and the assump-
tion (H2) that

IHn[¢] = Lo[¢]]] = e [In[¢](x) = o[¢](x)] = 0 asn — oo

for any |[4]] = max,cjo,1) {#¥(x)} < i Then

IIIn—Io||=HSt‘1‘p Hn[9)] = Lo[4]]| = 0 as n — oo
plI<1

Let \; be the principal eigenvalue of I;, for i = 0,1,2,.... Set n(Ip) = Ao. Then
by the perturbation theory for linear operators in [5, Theorem 2.23, sections 4.3.4
and 4.3.5], there exists {n(l,)}nen, where n(I,,) is an eigenvalue of I, such that
n(l,) = n(lo) = Xo as n — 0o. On the other hand, it follows from the uniform
boundedness of {||I,,||}nen that the principal eigenvalues \,’s of I,’s are uniformly
bounded by 1. Then, {\,},en admits a convergent subsequence {\,, }ren, which
satisfies \,, — A as k — oo for some A > 0. If X is a resolvent value of Iy, then by
[5, Theorem 2.25], A is a resolvent value of I,,, for sufficiently large k € N. Since the
resolvent set of an operator is an open set, there exists an open neighborhood U (X) of
A such that any value in U()) is a resolvent of I,,, for large k € N. This contradicts the
fact that eigenvalues \,,, converge to A. Therefore, A is an eigenvalue of Iy. Moreover,
since [n(I1)| < A, for all k € N, we have \g < \, which indicates that Ay = X as )¢ is
the principal eigenvalue of Iy. This also implies that any convergent subsequence of
{An}nen converges to A\g. Therefore, { A, }nen itself converges to Ag (i.e., A, = Ag) as
n — oo. That is, the principal eigenvalues of the integral operators {I,, }en converge
to the principal eigenvalue of Ij.
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