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ABSTRACT'

. "The thedretical formulation of the Fokﬁer—Planck-ﬁangevin (FPL)

~

model for the rotational dynamics of asymmetric top molecules and

applicetions of . the FPL model and the J-diffusion limit of the
[N
‘extended diffusion (EDJ) model to the asymmetric top molecules,
. e
fluorobenzene-dsnand.chlorine dioxide, and the symmetric top

molecule, 1,3, S-trifluorobenzene-d3 (TFB), are presented. Numéricat//
calculations of the FPL reorientational correlation functions, “‘ 7/
correlation times; and spin—rotational functions show that these
properties are sensitive to frictional anisotropy which is a distinct

feature of the FPL model. The comparison of the FPL reorientational

: v . A
correlation times and spin-rotational functions for the case of an

-~

isotropic friction tensor with‘the‘cbrresponding-ébJ correlation

"

times and functions shows that the predictions ‘of theé*two models‘are:.

significantly different only in the region where free rotation and

precessional effects become important. )

.

The rotational motion of’ fluorobenzene-d5 is found to be better
described in terms of the FPL model, including the effects of ‘
frictional,anisotropy,'than in;terms of the’ng model/from'a

?conparison of the'relationships between thevreorientational‘,
L S

correlation times and the angular momentum correlation times

t

predicted by the two models with the experimental results obtained

from nuclear relaxation measurements. The ESR linewidths of chlorine
) i
dioxide in various solvents are found to be in agreement with ‘the ;
/s-._» SRS "{
predictions of the FPL model in strongly interacting solvents, but P
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the agreement is poor in very weakly interacting solvents.

S . ‘ ‘ T ‘ ' i
E T ’ S ‘ Ce

In the applicgtion.of,the FPL and EDJ models to the r?tat;onal

motion of TFB inxvariqus‘BOIVente,‘it is found‘thaﬁ the obéerved

variations of the reorientational correlatin times with the angula:

momentum correlation times in most solutions are well explained in

4

terms of the FPL modei by taking into account the effect of RN
frictional aniaotiépy. bﬁt not in terms of the EDJ;hodel. Tﬁé

" N

viscosfty and temperature dependence 6f~thg reorientational '

‘corrélaq10n,ti@§§ are analyzed in terms of a modified Debye equatic

'and the variation of thé‘ahisqtfopic interaction parameter, x, with

A , . I <

o ) , A
solvent is discussed in terms of molecular size and dipole moment o
| | . ) SO
~- . solvent molecfles. . o Sy
' ‘ : } r’ ' . .
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CHAPTER I

I. INTRODUCTION

e
s N\

The study of molecular réorientation in liquids has been the
aubjéct of many theoretical and experimental works. In a description
of the rotational motion in liquids, one is concesned with the
orientation of a coofdinate system fixed in the‘molecule with respect
to a laboratory coordin;te syétem, and with the magnitude and
direction of thevrotational afgular momentum of the molecule. The
~time dependence of the orientation of the molecule is characterized
by the reorientational c&irelat}on éime 19, and the timé dependgnce

A .
of the rotational angular momentum of the molecule is characterized

v

by the angular'momen£um correlation time Ty A knowledge\gi/these
correlation times for a given molecule can provide useful information
about the nature of mélecular rotation in liquids. One usually
compares the theoretical relationship between the reorientational
correlation time and the angular momentum correlation time predicted
by a model for mglecular rotation in liquid; with the experimental
relationship between them. A number of theoretical models for the
rotational motion of molecules in liquids have been proposed. The
simplest and most commoﬂly used model was developeq b& Debye [1] for

"the analysis of the reorientational correlation'timeq'arising in

dielectric.ielaxationm The Debye model was developed on the basis

M

-

"



‘that the molecule of interest behaved like a large spherical particle
1mmérsed in a continuous viscous mediuﬁ and followed a rotational
ran walk involving steps of small angular displacement. This

assumes /that Ty is very short‘compared to 1g9- However, it was found

[ —— f

that T3 and Tg were of the ?ame order of magnitude in some cases [2-

A . ' { .
4] so that any interpretation of experimental observations in such
»

questionable. When. 1y and t; are

cases, using the Debye model, was

\
of the same order of magnitude, the molecules reorient through large

angles during the rotational diffusive steps and the rotational

N f

motion is similar‘to‘that in qiiute gases where the molecules rotate
freely during the: time intervaia between collisions. The concept of
these "inertial" effects in the rotational diffusive steps was ;1de1y
discussed [5-9], but was not incorporated into a théory in an exact
‘fashion until 1966 %ﬁen'Gordon [10] propdsed an ex;ension, for linear
molecules,vof the Debyé model, in which he re@oved the restriction on
the éize of the rbtational steps. Other wo;kers have extended this
extended rot;tionai diffusion (ED) model to spherical [11-15],
symmetric [13,14], and aéymmetric [15,16] fop molgcﬁles, and to the
perpendiculér bands of linear molecules [17). In this ED‘hodel; it
isvassqmed that the molecules rétate freely during the rotational

‘

diffusive steps and each step is terminated by a random 1ﬁpulsive
torque which reflects the Brownian motion ofvthe molecules. This
-impulsive torque or "collision" randomizes the apgular momentum of

the molecule. Two limiting cases have been prop09§d: ‘the J-

diffusion (EDJ).and M-d@ffuéion (EDM) 1iﬁits. In the caée df J=

Al



‘diffusioq, both the orieﬂEation and magnitude of the anéular momentum
vector are fando@ized at each "collision”, while in the case of M-
diffusion only the otie#tatioA is randomfzeé.' It has been aho;n (18]
that' the EDJ model reduces to the Debye model in the small angle orx
rotational d;ﬁfusion limit. In th1s limit, Tg i8 inversely
prbportional to,rJ)(18;19]- On the other hand, in the dilute gasv
IUmit, both EDJ and EDM modéls give reélxlts similar to that of the
perturbed.free rotor model‘[4] in which fe is proportional to 13*

The predicgions of the ED mode ﬂavevbeen compared with expérimentll
observationé for various types of molecules [18]. Many applicatione

have compared the theoretical relationship between 19 and 1y with the

experimentally observed variation of 1g with 13- In most cases, the

EDJ modél has been found to be in good agreement with th:

1

experimental observations [20-26].

The fundamental approximation in the EU model is the assumption

'spénténeous’"gollisions", and it 1is expected that this
hssumption will begin to L;eak down in liquids of véry high

densities. In 1969, Fixman and Rider [13]) proposed another model,

the Fokker-Planck-Langevin (FPL) model, for molecular rotation 1n ]
liquids. This model is based on a rotational Fokker-Planck equgtion
for the condit;ondi‘probgbility'density of the orientaiibn and
angular wvelocity §f a ﬁolecule‘and a rotational Laﬁge?in equation fof~
ﬁhe,éngular Gelocity.‘ A derivation o} the rotational Fokkc:-Planck

: equation is presented below. (See ref. 27 for more d:;;}}. )  Let

P(u. Q, t; gb,foo) represent the cdnditidﬁhl,ptobabil y-density that .




a molecule has angular velocity between w and w f;ﬂ‘hndborientation
. . ‘ ‘ ;

between Q and Q + 3dQ at time t, given that 1t‘haq angular velocity

between 4, and «, + du; and orientAtion ketween %o and 90 + dQ, at

time zero. If the rotational motion is assumed éo be -Markof £

process, . . ‘ L ./

Plw, 0, t+it] oy, ) = [d(bw) fd(aQ)
(1-1)

’

x Plw, Q Ot; w-bw, Q-22) Plarbw, Q-02, t; o) Q)

!
1

The last factor in Eq. (I-1) can be expressed as

\

Plo—bw, Q-02, t1 wy, Q,) = exp(-18+J) exp(-Aw+V,)
x Plw Q t1 w, Q) | ‘ (1-2) .

where J is thé infinitesiﬁal rotation qperator referred to thé

molecular coordinate system, and AQ is a rotation through angle 9

- .

about the direcx:ion of 0. It is- assumesl that for small At, Plw, Q,
[t A QO '

At) arAu» Q-AQ) is zero unless 0 = w At so’ that Eq (1-1) becomes

| pm, Q, t+At: uo, Q ) = Ia(Au) f(u, Aty w-bw)

——

’ P(uPAQ' Q=-AQ, t: Ny Q) - E - ‘ - ‘ (I;Qf'

a



where f(m.fbtr o-Aw) is the'probdbility densit{ of a change in
angular velocity from w~Am to [N in time At. Applicdtion,g! the'
operator exp(im‘J At) to Eq (1-3), expansion of tho loft-hand eide
‘ r

of the resulting equation as a power eeries inﬁ@t McLaorinnexpanaion

for exp(-Aw°V ) and exp(iu-J At), and neglect of the higher order

i)

terms give ' S -
. | ' W
" ‘ . . . . ) . u‘ll“.‘.. ‘
‘ ' > o
(at + 1w« 3 Plw 2, t; s Q)AL = ~ L 5—— [<Aw >p] o
C a=x,y,z .
' ’
1 d 3 e,
t3 L 5—- o, [CAwg Awg>P] e - (1-4)
=§B A B ‘ N y c
- o ' \ *»

where <Aw > and. <AwaAm§> are ensemble averages with weighting
function f(m: At; w-Aw) and P represents P(u, Q. t; “b' Q) -
In, order to evaluate - the ensemble averageh, the rotational

Lengevin equation is used to describe the.evolution,of the anguler

‘velogity:
Oy =1, wg “Y"YT;1 Wy + Aglt) - B S (1-5)

a

fwhere‘rd s'(IB - I')/Id, Ia' IB' I are’ the principal moments of
finerta. 1'1 is the friction coefficient of retarding torque, ‘and

(t) is associated with rapidly fluctuating Brownian torques.

Integrating Eg (I-S) over a short time interval At, one obtains

o

*» " " B . N .I v

= (rameY ta wa)At + I£+A A, (t')dt" . ‘ﬁ” N ,-':(xfg),

o



e

Ueiné Eq: (I-6) and unigue properties Of 'ensemble averageeﬂof Ryt
} ‘ . , e
. the ensemble averages inqu. (I-4) can be evaluated, and one obtains
B
\

‘ 2
0 : . , 3 ) _
P I ($ wg Ig - 55(Bg) .~ ag =3 } P . (1-7)
a=x,y,2 o « ow
D \ | A
where f.
. _‘1 . N . . , '. . ' .
E(l = ¢a wa °‘ranBUY“ . R | (I"B)
. o -1 ‘ ‘ ,' . , i
ag = (kpT/Iy) 7, - | ‘ . . (1-9)

EQw (I-7) is a rotatiogal Fokker-Planck equation which is the basis

" of the%PPL model. 'In the FPL model the rotationaL motion of a

]

: molecule ie approximated by that of an appropriately shaped solid
object immereed in a continuous viecous fluid. . The angular velocity
-y .

of the molecule ie assumed to be modulated by elowly varying

: viscosity dependent retarding torquee, and by rapidly fluctuating

ivBrownian torques which reflect ‘the molecular nature of the liquia.

. There ;s a marked difference in the baeic physical picturee in
ths ED and FPL models. ‘In the ED model, only the rapidly fluctuating
Brounian torquee are considered, and they are aeeumed to manifest
themselves as. inetantaneous collisione which produce large random

changes in the angular velocity.' In~the PPL model. on the other

hand, a. 1arge number of fluctuations in the Brownian torquee are

Loobed
ER

PRSI
Iy e



‘required to change the angular velocity significantly, while the

retarding torques act continuouely caueing the angular velocity to

-

reduce to its ensemble average. value of zero. ‘ ‘ ‘ L
: ‘ !
1

‘Fixman and Rider [(13] have derived exact expreseiona for th

)

[
|-

reorientational correlation functione and spectral densities for

linear and spherical top molecules.‘ The'correlation unctions were
: ‘ e

expressed as infinite series whose terms were simple’ exponential

“functions of time, and the series were found to converge rapidly .80

\ & ! ‘
that accurate numerical values were obtained with a small number of

\

terms‘in the‘truncated seriés. Hubbard [27 28] has also considered

\

“the FPL model and has attempted to obtain’ the general’ solution for
'the conditional probability density from the Fokker-Plancklequation,
but his perturbation.approach hae a limited range ofvvalidity. ‘He‘
obtained'approximate expressions for.the reorientational correlation

o,

'rtime associated with nuclear dipqle-dipole interactions and nuclear
. _ @

_.quadrupolar interactions, and the correlation time for the spin--~

. rotational interactions for spherical‘tOp molecules.' Evane [29 30] s

”l"has also . derived approximate expressions for the FPL reorientational

Ki ot

\correlation functions and correlation times for sphexical and

;fsygmetric top molecules by a cumulant expaneion technique.r The

results of these approximate methods were valid only for strong

intermolecular interactions.‘ The FPL mddel has also been discussed

-

by Powles and Rickayzen [31] but they were concerned cnly with the
reorientational correlation times which arise in dielectric :
relaﬁation and intramolecular dipolar magnetic relaxation ofklinear
ana epherical moleculesllﬂ*‘ T P

’L‘-."
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General expressione for the reorientational correlation

\
LAY

functions, correlation times, memory functions, and spectral

| densities for linear, spherical {32], and symmetric top [33]“‘w‘

molecules and the correlation times.for epin-rotation interactions in
spherical [32] and symmetric top [38] molecules have been derived : .
uSing‘the eigenfunction expansion technique employed by Fixman and

”Rider [13]. For symmetric top molecules, a new feature is present in 3

E N

‘ the FPL'model. anisotropy in the motional modulation of the angular

r

velocity[tomponents, which is referred to as frictional anisotropy o

:[33].‘. 6pumerical calculation of the reorientational correlation

' functione, correlation times, spectral densities'and the correlation

times for spin-rotation interactions showed that these propertiee

were significantly affected by frictional anisotropy (33].

t

Several workers [34-371 have examined the applicability of the

)

FPL model for linear and spherical top molecules by comparing with

the experimental results of Raman studies of . CF4 t34] and SF5 [35]:
\ &0
'infrared studies of Nzo [36] and co [38], and nuclear magnetic o e

a N
* .

'relaxation studies of cc14 [39] It was found that the FPL model

Tt

-,described the rotational motibn of these linear and spherical

' molecules reasonably well.’ In addition, the FPL hodel ‘has been
lcohpared with the EDJ model and it was found that both models, -
f;although they are based on very different physical pictures of thef‘l'"
;"rotational dynamics, appeared to give simllar characterizations ofhf‘

.Jthe rotational motion of molecules in liquids [35—37]., o le




N on xhe symmetric top molecule TFB in 0.15 mole fraction solutions in

. . b.,” ‘.
In this work, we extend the ‘FPL model to asymmetric top

‘molecules and examine the applicability of the EDJ and FPL models tor
'asymmetric ‘and : symmetric top molecules byabomparing the predictions f
of the’ models with experimental results from magnetic relaxation“ *ﬁf
‘.'studies of - CGDSF [23], C102 [40}, and 1 3 5- trifluorobenzene~d3 N
(EB). e e RN o

‘rIn Chapter 'II, the‘exact series,expansipn*for'tﬁe angular' Co
velocity—orientation conditional probability density‘is obiained from“u '

‘the rotational Fokker-Planck equation for asymmetric top molecules.

;From this general expansion, expressions for fhe reorientational o

’cor&elation functions, correlation times, spectral. densities and the -
correlation times for spin—rotation interactions are derived. . The

B : —

. effects‘of frictional anisotropy on these properties are investigated
by numerical calculations. Furthermore, the FPL model is compared
with the EDJ model for asymmetric tqp molecules.

. In Chapter III, the applicability of the FPL and EDJ models for'[j
“-asymmetric ‘top molecules is tested by comparing correlation times
‘.-gobtained from magnetic relaxation data for asymmetric tqp molecules.
VGDSF (23] and C102 [40] with the predictions of the two modsls.giyln‘ﬁif!}f

In Chapter IV, 2D ‘and’ 19? spin-lattice relaxation measurements |
e
\various solvents over the temperature range 270 - 400 K are
‘reported-, The applicability of the FPL and EDJ models in describing

f:,'the rotational motion of symmetric tqp molecules in liquids is tested

. bY comparing the correlation times obtained in the nuclear relaxation Ajig{ff




 study with the correlation times predicted by the two models. The

aniaotropic 1nteraction patameters x [40, 44] for TFB in each solvent 3

are obtained from the viscotfty-temperature dependence of the

reorientational co:telation times, and the veriation of x with | Dy

solvent is discussed.'

10
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CHAPTER II
THE FOK.KER PLANCK-LANGEVIN MODEL FOR ROTATIONAL BROWNIAN

- -

MOTION.  IV. ASYMMETR_IC TOP MOLECULES

. ~

ke

The rotational motion of molecules in liquids can be

e A

‘ chdracterized by two important parameters: the reorientational

,coirelﬂtion time &e, and;ﬁgé Angular momentum correlatién time Tg-
Tﬁ; igldtionbhip;bgt‘e;: ip;se two correlation times can be.used to
gest'théjappkdcaSility ot tggoregiéql models for mblecylar rotation
in 11Quld;.' Athmber'of tﬁgorebical\models hav?‘beeﬁ proédsed. The

simplgﬁt ana mbef‘cqﬁwonl}tdged'model is the Debye small angle
alffuéion modell11] which ‘is based on  the asggmpﬁion'that the
rotational motion of a molecule éonsista 6f é‘progression of
uncs:related r\\tational diffusive steps of short duration. In other
words,‘ p?dutation of each rotational diffusive step ia shb t

3 .
compared to the time required for a molecule to make a

[

lete

¢

xlf
:evoluﬁ!on 8o that, 1n a single Aiffusive step, the molecular

orientation would ghange only 1nf1nitesima11yf This assumption also

v K . 'l' e e .

implies that the correlation time Ty for the angular momentum of a
- molecule is short comparea to the reorientational correlation time.

.%ge 'In this m°del, the conditional probability that a molecule has

orientation Q(t) at time t, given that 1t had orientation Q(o) at

(-

1& version of this chapter has been ‘dtcepted for publication. D.H.

‘Lee . and R.E, D._HcClung, 1986. chemical Physics. -
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time zero, obeys a rotatjional diffusion equation.
[ : . )

In 1966, @orééﬁ (2] extended the Deﬁfe model by removing the
. L;estriction 09 ;hé duration of the rotational diffusive steps for
1inear molecu}es: Otﬁer workers ﬁave extended Gordon's model to
épherical (3,4,5), symmetfic (4,6), and asymmetrigutop [7,8]
(molecules, and to the p;£;endicular.bands of linear molecules . {9].
In this Exten;ed Diffusion (ED) model, the molecules are assumed té
rotate freely during the rotational diffusion steps and each step is
terminated by a raﬂdomlimpulsive torque which ;eflects the Brownian
motion of tﬁe molecules. This impulsive torque or "collision"
-randomizes the angular momentum of the mole;ule. fwo limiting cases’
have been proposed: the Jdiffusion (EDJ) and M-diffusion (EDM)
limits. In the case of J—diffusion; both the orientation a;d
mag"itude of £he angular m;mentum Qector are randomized at each
"collision”, while in the casg of H—diffueion onIX.the orientation is
. randomized. The Qurations of‘the rotationgl diffusive steps are

—_

random and follow a Poisson distribution. Many experimental

]

investigations [10-19] have suggested that the rqtatiopal motion in
liquids is well described by the E;J ;;Qelf
In 1969, Fixman a;d R{def (4] proposed the Fogker;Planck-
;.gngevin (FPL) inodel"for the m.olecular' rotation in liquids. Thié
, ﬁodel is‘baged §n a rotational Fokker-Planck equation for the.' .
conditional probability déﬁsity of the molecular orientation and
anguiar Qelocity. The FPL model is aifrictionﬁi model ;n which the

-

molecule‘is-taken to be an appropriately shaped solid bbject~1mmersed

»



D

in atinuoua viscous fluid. The angular velocity of the molecule
is assumed to follow a totdtional Langevin equation so that the

angular velocity is modulated by slowly varying viscosity dependent
, retarding torques, which causé the angular velocity to reduce to its

ensemble average valueﬁ of zero, and by rapidly fluctu'ating‘ Brownian
torques which reflect the molecular nature of the visooue medium..
Hence the molecules,in the FPL molel experience intermolecula;
torques at all times and each fluctuation in the Brownian torque‘
produces only a elight change in the angular velocity. A lerge
number of fluctuations in the Brownian torque are requixed for

- significant change in the angular velocity. “Fixman and Rider (4]

have derived exact exﬁiessions for some of the reorientational

correlation functions and spectral densities for linear and spherical

.

top molecules. The correlation functions were expreesedv as infinite
series whose terms were simple exponential functions of time., and the
series were found to converge rapidly ‘so thet accurate numerical
values were obtained with only a small number of terms in the
truncated series. Hubbard ([20,21] has also considered the FPL model
\Aand has attempted to obtain the general solution Vﬂfo‘r the conditional
probability density fron the Fokker-Planck equation, but hisl
perturbation approach has a limited range of validity. ﬁe obtainedn‘
approximate expressions for the reorientational correlation time
u.aasociated with nuclear dipole-dipole interactions.and nuclear

quadrupolar interactions, and the correlation time for the spin-

rotational interactions for spherical top molecule;A\Evans [22,23]

S B : #
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17.

has also derived approximate expressions for the FPL»reorientational
correlation functions and correlation ﬁimes for spherical and
N . “ a . f

symmetric top molecules by a ;cumulant’ expansion tééﬁnique. The .

results of these approximaée methods were' deemed valid only for

Al A

strong intermolecular 1nt?rac£16ne. Powles and Rickayzen [24] have
extended the approach of Fixman and Ridér and have derived continued
fraction expresei?ns for the reorienta£iona1 correlation times which
‘arise in diei;ctric relaxation and 1ntramole§ular dipolar magnetic
rglaxation of linear and Spherical molecules.

In ref. {25), general serigs expanéions for the anéqlér
velocity-orientation condftioﬁal probability denéities for linearvand
spheric;1 tép molecules were derived qéing the‘eigenfdpttion
expansion fechnique employed by Fixman and Ride; [4].‘ fhe
_reorientation'correiation fu;ctions, memory functions, correlation‘

tfmeé,'and spectral densitieg for linear and spherical molecules_and

the correldtion times for anisotrqpic spin-rotational fntéractions in »
. CA
. ?

' “ spherical molecules derived from the FPL model were compared [26]
with the corresponding results from the ED model {27).

Some experimental 1n£rated and Raman data have been compared
w
‘with the . theor?\ical results from the: two models [26,28 29]). Raman

H e : N

studiea of CF4 [28] and SF6 {29] ahowed that the reorientational S ,_}
motions of  these spherical molecules are better deacribed by the FPL ‘ .; i
model rather than the EDJ model over a wide ranqe of dena.tty. "l'he

infrared studies [26] of uﬂo in Ny and CO in N, showed that bdth

models were consist;ent ‘with the qxperimental correlat.ion functions at .

-




' low temperatures (high densities), but neithervthe EDJ . nor the FPL

~ was consistent with the CO/N2 and NZO/NZ data at low densities. In

N20/02 solution, both models gave satisfactory fits{of the
experimental data.‘ Hubbard [30] has compared‘the‘correlation times
obtained from the FPL model for spherical molecules with: the
experimental correlation times obtained from nuclear relaxation
studies of CCId and ClO3F. He found that the FPL model agreed‘less
wall with the experimental data for C103F than aia the EDJ model, but
the experimental data for CCl, were consistent with both models .

within experimental uncertainties. .Fromvthese results, one may

. tentatively conclude that the FPL model and the EDJ model, although

they are based on very different physical pictures of the rotational

”dynamics, appear to give surprisingly similar characterizations of

the rotationdl motion of molecules in liquids. -
. . . S . )

Recently the FPL model was ektended to symmetric top moleculee

{31) and the'general enpressions‘for,thevreorientationel correlation
‘functions, correlation times, s;ectral densities; angular-velocityb
correlation functions, and the correlation times for spin-rotetional
interactions were derived. A new feature Bresent in‘the FPL model '
for. symmetric top molecules is the possibility for the introduction
of anisotropy in the motional modulation of the angular velocity '
h'components.' The numerical results of the reorientational correlation
'functions, correlation times, spectral densities and the correlation
times for apinirotation interactions showed that these propertiee
1iwere influenced significantly by the anisotropy in the motional

= nodulation ot the angular velocity components [31].;



In the present paper the exact series expansion for the angular

»

velocity-orientetion conditional probability density is obtained for

asymmetric top molecules, general expressions for the reorientational

correlationl functions, correlation times, spectral} densities and the

correlation times for spin-‘rotatien interactiene are derive‘d,‘ and the

‘q’\.nnerical. results of some of these‘.'proper‘ties. are compared with the

»

corresponding.reeults of the EDJ model [8], and the effect ef .

,frictionél .anisotropy on these pt&pertiea ere inyestigated.

2. 'Iﬁeel_:x .
A. Ibtational Pokker-Planck Equation and its éeneral Solution
The conditional probability density P(m,Q t|u°,Q ) that a .

molecule will have angular velocity between W, and @ + &o and

orientation between Q and Q + @ at time t, giv'en thetit had angular

'velocity be_tweent)o and w, + &, and orientation bettween Q, and Qé +

Q at time zero, is governed by ‘the rotational l?okker-l’lanck

-

‘eqnation Co o o | .‘i | o o | v
8P _ P Cy . AR C T (11I-T)

at'_'. . Ao N

'

" where lthe"Liouvill'e opevrator- %' for an aaymmetric top meleimle is

" .' g’ive‘n by 3 1]
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‘ ' P
Here wa ia the conponent of the engular velocity along the principal

molecular axis a, J is the a component of the infinitesimal rotation

'\

operator referred‘touthe molecule fixed principal eoordinate‘system}

e -1 o N ’ , . ‘
Ea Ta (da“ - I"a‘(i)aﬁ‘)ﬁ ) , o ' | .~ ‘ , (11_3)
?fag' g = W)W Ag n “ o o T
and hy
am e, o o
a B e 0 T , S - (11-5)

’

where (a,ﬁ,y) represents a cyclic permutation of (x,y,z), Iy is the

R '
' moment of inertia along the principal axis a, 10‘1 is the coefficient
in the viscous retarding torque term in the rotational Langevin

'equation for wa, kB is the Boltzmann constant and T is the absolute

‘tempereturg. The introduction of reduced angular velobity‘variables

,

120

IR /7 S S . Co
S 0T S ar-e)
'und'reduced time'veriables""° . ;f,‘i"r R

o e ‘.‘. T . " . ' ' - “ " ° . ’ - ' : 't
tT'f.§‘kﬁT/;z)'/' B -
‘ : (11I-7)
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| '."wherel' {‘Y

”;P(m, o tlu .2 ) =

e.f
leads to the foliowlng‘form'fqr the.;'opeiatoi: BN
‘ 2
1
z = ) {(1) .
a=y.z dw. 2 % 3w
Ca ‘ «
, : 172 * . e o ! :
+ Y .
i_ (Iz/Ia)‘ Yo % :
. ® & K ' C l o ‘
+ Ruww —F—} S o (11-8)
x B 2w ‘ ‘ . .
where
L ‘ 1/2 EEN v . \"
R = (I, ~1I)/(1 1) v : .' . -
@ 7 gt /I ST ek
K 2

We shall henceforth omit the *'s on the angular velocity and time

.variables, and imply the use of reduced units for these vefiablee

“thrdughou£;

A
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The general solution of the rotational Fokker-Planck equation is

‘given by. [25] | . . i‘i !

v, [m @1y, i"b’ 2,1 Wlwg, 86)8x+(t) (11-10)

[

I
AN

(o, Qi} are a complete set of basis functions which are -

Mo

orthonormal under the weighting function W(m, Q), and

M.(t:) )Z‘ un.. u)\,m, exp(-A)\ t) o R (11-11)

5 with A and n being the eigenvalugﬁ and eigenvectora of »the matrix |

.5”

EV RN
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. .

representation of the Liouville operator % in the ¥ basis. " The 'basis

\

' functions {Y)\} are chosen to give a. relatively. simple representation

P

' .of Z.
| . For th'e»asymmetric 'top problehx,- welchoose to represent the 'Q?

dependent part of ¥ [w, Q] in terms oﬁ the symmetrized solutions to ‘

‘ the Schrodinger equation for the symmetric rotor. : | |

. ‘ . ) '.‘«I ‘,
. | 543)

U ‘ M, 0 R) o L for“o=s,‘ K=0
- 2341, V2 | - ‘
Syxug 0] = (::;1) " {Dp (J) R) + D(J) [Q])//Z for o=s, XK=1,2,....,J

{‘"D,(d‘j’)('[m. - Sw) [Q])//z : f.or‘c-?a, K=1,”2,.”...,.‘.‘I“‘
(I1I-12)

' where" D(J) [Q] is the Wigner rotation matrix [32] for spherical

tensors of rank J.. 'me functions Smm] are eigenfunctions of .12

« .

E with eigenvalue J(J+1) and of the z-component of the infinitesimal

"rotational operator in the laboratoxy coordinate system with '

‘

eigenvalue M. Bowever, they are not eigenfunctions of J . the z

J;component of the infinitesimal rotation operator in the molecular

v\’ N, o

frame and they have the fonowing behavior under the molecular o

‘|,,

» conponents of the infinitesimal rotation operatorv . L

P -
T o

e .

/J(J+1)-x(x+1) [+ (/2 -msK (,ls.J K1, H,a Ly

" s.mw
S ¥ - /a(an)-x(x-n '[1+(/2-1)6K 16 61(, ,6,,,1s3 x-1 ,, 5 (11*13)

'\..

‘e
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"

| i‘,“""("”)"‘“‘") s ("2 ”51( 150 a 51(,150.91 SJ‘,K‘-:l.M.on“'V

(1I-14)

' Jz Sdmo ='K S‘Jmoh‘ . Lo o S ’ ‘ " - ‘ (11'15)

N

. [ o ! [N , v
L ' [ . . \

Here c* is the inverse parity of o (i e. o" = a. for c =8 and vice—
versa) 'ihe symmetrized rotor functions are chosen here, rather than |

"

spherical couponents of the tensore describing molecular orientation,

L

N to &acil’itate the u'se;of the Cartesian components The Cartesian
. conponents are preferred in the asymmetric top problem becauee all
three molecular directions e dynamically unique, and there is no

advantage to using spherical'conponents. B " o o %

'Ihe m—dependent part of Y [n, Q)] will be represented in terms of .
. " .

the basis functions Fl["’ )F [m ]F [w ] where :

Falw] = T(ar)(2m) /2712 eplw¥2ime ol -~ L (11-19) -

1

' and He [w] are the Hermite polynomia.lss1 [331. 'I'he function F [w] ,is,"
: a2 < . P
an eigenfunction of -[ 0 5 +ow 9— + 1) with eigenvalue q. , ‘
Cdw 3w . ! ‘
'Ihe conplete basis, in which 2 is to. be represented, is

R, Q) = (“zhsJWmFXI“’ ]F [leP [‘"z]' el - =

.
1

©"He, @iffer ‘from the usual H, ‘Hermite polynomials (33]. -

e
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where the,Xndex A represents the set of 1ndices (J,K, M,o,x,p,n), and - - qg
the.fuctor (1)2’" has been introduced in order that the matrix
"lrepresentation of z will be real. The functions‘xx are orthonormal -
under the weighting function - : B .
i 4
\ ’ ,‘ ) AR Lo -‘ oo
W(U,‘ﬂ)ut exp[(w 2 4.uy2 )/2] o ‘ (11-18)
,‘In the ?K basis, the Liouville operator z has the matrix
representation:. ‘
;JH e ,
x't‘l'p'n'; K32pn .
. . . ‘n
- éx'.xéo'.oQ!';xép‘}pbn‘.h[‘/‘i" P/3y * /%) .
+ Cc".cép'..péh;;n('lelx’1/2(l-"-”?‘"-‘"')'/2/2““”“’1/261'.1'1“‘/-26:', -1} .
"‘(["‘js;”bx;dlbx'.x‘1" - ((7‘1i5x.160)l'6x,160.a’bxf.l—1} "
. kg Jeobit e nt12/2 )‘/2((a(aon-xx')”’/ﬂ((pﬂ)’/ oo p'.;}"l?v“/vsz:'p_ll)“'
R {“'f(/i’i’tx,olbx'.xoa’ 1"‘/?"’°x,160ﬂ.‘§x,16¢,gi‘6x',x-1l
. i [2 . ' ' o ! ‘ . . i
’.‘6K'.K¢0'.O'6l'.lép‘,p kline1) wcn,'n“ kb 6n.'n:ﬁ}, | N ‘ R
1'\ N - ‘ v . , l
- 6,‘;”‘60.'0[ {ll(pﬂ)(nﬂ)] ‘. x_,cp .pﬂbn e . |
L S l(h‘l)pn] 1' !ﬂbp oP-16n' n-i} ‘
SO e e w, {'((lﬂ)P(n“)l ,. J,,,6,, ,p,,bn ",, AR
- e : T . '.‘ ) : S . .‘:. . ’ ‘1(P")n) ‘0 "161’ p#‘lén'.n-!} , /
s e e o SIRRATR - S

1 .
+ Rz “(101)(901)111 /2 10 10161? :Polbn-,n-l

L “. S R ‘ . - - - L - . B 0 ‘.I '._‘. > ’ ,.‘.‘.:
- s " . -‘ ‘_.v o ‘» o ‘ . - ' "- " llp("")l 6*' x-‘ép ,p-!bn'.nﬂ )] M , B ] '

L e ,l‘.. 35gTﬂu'f‘.‘?' o f,f; ‘,‘ (11 19)
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~ B.: ReorientAtionallcorrelhtionifunetione And‘éorrelation‘tinee.

v

The' reorientational correlation functions which are of interest

" in the description of infrared and Raman band shapes, for dielectric

I e ) ]

‘relaxation, and for nuclear relaxation via”intramolecular dipole-‘

|
L , €

diﬁole and nuclear quagrupole interactions are Lo
<, ‘i(t) - <'D(j’ m(t)lo(j’ [9(0)1>/<lo‘j’ @wnl?>. .
e . ‘ . ' L (11—20)

T -

‘ where D(j)[Q] is the Wigner rotation matrix which describee the

Co

&2(0) and Q(t) are the Euler angles which relate the laboratory and

transformation of the conponents of a spherical tensor of rank j,

when a rotational transformation through Euler angles Q is applied-
‘ L ’

molecular coordinate systems at times 0 and t, respectively. Theﬁ{fﬁdtﬁz L

brackets d%note an equilibrium ensemble average.

‘In FPL model, this correlation function can be Jritten as

- "‘

‘Gkk.(t) = (zj+1)janjcnfdn fcn P(u .Q )P(w.Q tlm .n ) D(j Q] D”’ @ 1.

(II-21)

where - = b o SR T A P

- [

%o ‘o L0
is the probability density for the molecule having angular velocity L
between °’o and uo + ch and orientation between Q and Q + & at
AT T AT -;,"‘ C e L SRR N
time zero.; ‘TQJ .ww'ff,' Mf VU e ‘1'*1]‘ R T

P
[ 4

Rl 9) ’.‘!7(_’2’1‘:’-)” AL exp[ @, 2 ru Pro, /2 e

LI
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’ ‘n},ﬁ*‘ ‘ * ‘ .
For asymmetric top molecules, .Eq. (II-21) becomes ' -

JM‘ _._‘. ,_4,....;:,,,..._._._.4, BT ', R

25 + 1‘
1/2

o . t b
(16r:) JMK,a,x,pn Ko&pn;Ko&pn R

& ) -
' K',o'.L',p',n’ S

kk* (21‘,

7@ 800 o"’mlfcn sJK.m.tn ] v”’ T2,1
x . T <1 [wxlfdo (w 1 au ¥ [wzlfdnx Fpelo, 1 7 :
o o . .

Yo P

e

x fav, F -[w ]fd.o Fn.[w ] e : T ' o (11—»_23). '

|

[
. o e S .
o’ o % BRTE N .

< | o i E ‘ ' ! b
‘ p ] : 1 I

. . ) . : 8 .

. : . Lo v Lo

Jo B = far w20V @] epw®2) (rr-2e) 1

B T
(21'!) 6q,0 ' . . I::

. an'dl. ‘

Icn m o"’lm

on 2 ,.’1/-2 PR

= ;f:j‘ﬂ’» J.j M,m X, |k|{5k s, s*‘z’

'me‘:integr‘d',ls( in Eg. (II-23) can be evaluated using the xelationships
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Bgn(k) =

V‘ . N
II

-‘-1
L 2

\/2

|
v

‘+1

0

&

3-5)(6

(k X" ) ¢f

s k>0

. k<0

The correlation functions are given by

kloOUO;Ik la'ooo

A\
i

)

+5

k, oékl 0] [1 + 6}( 06](' 0]

v,
riz-2

V2’

)ok'olalgln(k' )

Ds

;
. e
A
Z‘ ; j .
: C
Gkk (®) = JRA
\l‘ ! X U[qr
I ' l i . .
h ‘,“wheie,the functions Cb
i . \ . ' ’
i ' oA b
v", . ‘n
v » ! -
E?lf S:S(k k ) o [_'f 4_“-‘
|"’ ‘. )
' \u‘+ (1 - /2)8
1 "Vl“’ i
. 1 § y... . ‘|“
o o 4 .
sore (kK)o
. %.a k') FJZ
-“yP'C"t:kuk;‘ =
o a,'s-(‘ ! ) v
ot ‘
r, ' .

k",0

(k)sgn(k ),

®

."_‘\"““.

_f.-‘

/r

18gn (K)

I & k 0

’

’

’

(v

o0 (k) are‘def;ned bx‘

)

.,‘

(11-26)

\

U N

-y

o (11-29) T

Cw

»

(11-27)
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L y !
Y g ‘
¥ n

~
CEL (K, k')/(Ajm oriw)

- )j" Re{u ?k'o'OOO;leXpn xoxpn |x*]o"000%

o',0W
Kclpn

A .
’ .
whege AJ™.and U™ are the eigenvalues and eigenvectors of the matrix
. ‘ A .
zI™ in Eq. (I1-19).

Reorientational corfelation times in the FPL model for

asymmetric top molecules are given by

/‘.\, ; ' ) ""'
. , o \
Jkk* o3 ' T
9 . ;kigioz | /
o jm =1 o S
- .3 z : . -
' g.0 .
_— g K
C. $pin-rotation relaxation times N
_The rate of spin relaxation due to motional modnlaiion of spin '
3‘\ i B . .
8

‘rotational interactions involves correlation times for correlation_

‘31
=Y
3

functione Mhich involve both orientational and angular momentum
#‘P . N N

variables [29] In general, the spin rotational. interaction’ is

represented by

Hgp = JeC*8 ', ‘ . (11=31)

--where J is the f tional angular momentum of the moleculé C is the
g %-s’

) spin-rotation 1nte action tensor, and 8 Lg the dimensionless spin
angular momntum Operator. 'me conponents of 'J are relé’ted to the

> . »

angular velocity componenta “’a and the principal moments of inertia

’.

-
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I, + C is assumed to be diagonal in the principal molecular
/s
coordinate system. Then HSR can be written as

L1/2 /2 1/2 : _
: k cs -
Hgg = (L k™) "“w C 8 + (X kgT) w, C 8 * (I kT "% C 8 (11-32)

where Wyr Wy and w, are the reduced afigular velocity components.
Since 8 is quantized in the laboratory coordinate system, it is
useful to express 8 in terms of spherical tensor components

S = (—sﬂf s_-1)/»’2, .

S =1(S . +S_ N2 | Co ‘ © (11-33)

3

and transform the spherical tensor components from the molecular

. ' e ' : oe .
frame to the laboratory frame using the following relation.

(M oy -

A§= E\Sm Doy @1 1 : . (11-34)

Then ) . ‘ . o .

' B

IS Vo) e LT ‘ (11-35)
m i . . - . . : “

Hsre™

K]
v',where Sp is the m-th spherical tensor coﬁpo’hent of the spin angular
momentum operator in the laboratory. éoordinate system, and the

‘lattice fﬁnctiqns Vp(t) are given by - °



v (t) = c (1 13 T) / (—D( )[Q] +b( ) [Q])//Z

+ic (I'kB’I‘)Vzw oM@ + " pHw2
- y'y B AR a1
1/2 (1) , '
+ C (IszT) sz ,0 N » (II-36)

;'(’;‘I' -

The Vm(t) are time-dependent because they contain 'i:he'dynamic . 3

variables Q, Wyr Wy and w, Recognizing the relationship between the

Wigner functions and the synﬁietfized basis functions SxkMg [R) in. Eqg.

(II—'12), onen‘may,rewri;g Vm(t) in the fox.'m

- f

o a2 myay 172 2t 1 172 _*
Vm~(t). (8n {(B'r/n {-c LTS e Bl +1c 1 07s 1ﬂ1ms[mwy.
/2 ‘ :
€1, 10msm]“’ } : _ (11-37)

.=

. The spin relaxation rate due to motional modulation of spin-
o AR , N

rott\tionél_ interactions is'given by [34)

L

17 8 | | B

5 3 . |
The correlation funCtion (V (t)v (0)> can be evaluated by a |

Lit

procedure analogous to that used in the evaluation of G)j(k,( t)

‘abow. Che obtairf L ',\

DI I SR |
"‘"-f""z‘fo W (EIV, (0)>At o . o _ (I1-38)
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'V (£IV;(0)> &

L
T =

T
s

.
y

-

!

x 'r/3){c 10)

x 1&100;1&100

2 1

(t)"iCI@

1M

(v)

1801Q318010

“222%05001; 05001 %) (11-39)
|
\ . :
\ 172, 11 DRE
cxc\y‘(I 1) 1242100515010/t " ®15010; 12100 )
\ V2. 11
CyE 1,10 8‘1513010;03001( ) Hx>os;om 13010(”]
: 1/2 1
Czcx(I\Ix) HI’145100;03()01“”) °05001;1a100(t)]} :
The spin-rotational relakation rate may be written as
\ |
\
‘ 1/2
Ca '«S,Ia It %aar? Faar ¢ (11-40)

1 -

where the functions Faa

352 a,a’

are given by

F
oYY

zZ

= (z
‘XX

(2

n‘ (z

11)

11)

11)

-1

1a100;1a100

-1 .

13010 18010

-1

08001:08001

=X, Y2 \

\

i

\

\

/ .

/" L

rn,

-~

. are\symmeﬁric in the indices @ and a', and

(11-41)

3



BT 1 -1 AP | I I 1/2
Fay ™ T2 Dian00,18010 % N1go1051a100/ (20T, 7 0T
' 1 -1 ‘ 11 -1 1/2
Fyz (2 Y15010;0s001 *- (2 03001;130101/[2(T T
M- 1M1 -1 . NN V3 -

Fax ™ "1 aa100508001 * 2 Jogoo1;1a100)/ 1207, 7y )

D. Angular velocity correlation functions

The angular velocity correlation funétions are also evaluated ;n \

a manner-similar to that used for the evaluation of the
f”" ' ) [y

reorientational correlation functions One.obtains

. . ¥ M )
@x(t)wx(on = 1/2 IM o ()
‘ (2r) (16n ) Kalpnx g'L'p'n' Kolpn:K‘ '2 p ‘n'
‘ xfcns (Q]Icn sJK,m.IQ»l

| . JKMo

x [ao 0 F W ]fdu fus ]]an [w]

| y' oy .
x fdn wx Fpol ]]dn Foo oy Jjwz F,lw, )
o "o Yo BT Y57 3 R ,
‘ , ‘ o ‘ 9 .
. 00 K * , Lo “' )
“In t;he'e&ql;igtiori of ‘in'tevgtals, the relations
| Spops = VimHVZ . S T PR ¢ & 7 1 I

.® PN .ow
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N co R ' X :
-angular momentum can be ¢btaingd from appropriate Z matrices.

Folwlexp(w?/2) (2ny1/4 =1,
Frlwlexp@?/2)(20) V4 =,

A ;
'were used. Similarly, IM

o S 00 : c ‘ . o
Wy(tly(0)> = Pggp10;0s010(t) v

.00 X
Wz (kg (00> = Pog5001,0s001() -
. : Vo : L

o .
3. . Numerical Calculations

A. FPL -odel“

(11444);

.

 (1I-45)

(I1-46)

(11-47)

Numerical values of the reorientational correlation functions,

correla;ipn.timés and spectral densities and the correlation

, geﬁeril; the Z maﬁiibes‘are‘o£ in£in£té,orde: because the indices 2,

'p.andn take‘on;allsnoﬁnegitive integral values. . hbwevei;.

tiﬁés‘ané épeqtréi densities can be oﬁtained'with";iuhqatédfz'

‘functions and correlation times for spin-rotational inteéractions and

N In )

b

. sufficiently accurate values of cotreldtion,fnhctidps;“borrelaﬁiqn,‘

33

métrices‘bétaupe‘of tapid{COpvefgé;ce,\‘The‘rows”ahd'chﬁmnsﬁof‘the~z; 5  '7

2

LA

matrix até'qrraﬁgedjin’ordgrgof‘1né:easiqgly_d;qtgntfboﬁﬁeétxoh“ﬁd -

éﬁe‘f1.1ﬁjeiéméht."Héfeﬂﬁhejf1,1ﬁ eléhénﬁ;is‘theffirsﬁvbiemgnt.whdsé . o



column and row represent the set of indices which correspond to a
specific correlation time.‘ The computation of the correlation time
is carried out’ by Gaussian elimination and the results obtained when
elements with successively distan;‘connectiOns to.the ”1 1"‘e1ement
are included are used to judge the precision ot.the computations.
This procedure is essentially a perturbation scheme where the results
of succeesiuely higher order calculations are conpared. The
computation is terminated when'successiVe values of‘thelcorrelationl
time differ‘by‘less‘than“09001§k and the truncated‘z matrix of
corresbonding’order‘is‘usedbfor\the‘cOmputation of the | o
'reorientational correlation functions and spectral densities.
1Examination of ‘the’ connectivities of the elements in the ZIM matrix
constructed beginning with the set of indices {koOOO} for j = 1, 2, k
-'o,‘ j shovs that the indices {x8000) and {kaOOO} belong to

different sub—blocks of the sz matrix, and that.the correlation‘

-

‘functions ¢28000:kd000(t) .and the associated spectral densities and

"correlation times vanish identically. Furthermore the indices

34

"{k:ﬂ G 000} and {k;ﬂ o ooo} belong to sub-blocks of zJ‘“ which qo not

contain {koooo} so that the only non-vanishing correlation functions

are °1aooo;'1aooo“" (g -7 8,a), and °osogn0sooo‘t’ for 3= " adid.;

e o EE
o~ o ;2m s
- °zaooo:zaooo‘t’ o ""' °1oooo:1oooo"‘”° "'f‘"‘ 05000:03000

and QZSOOOtOQQOO(t) for j - 2. ,:1,_.‘ R ol-,.- ‘ )

Although the spherical tensor correlation functions Gﬂ k(t) andf]’

@fspectral densities Ig kun) are directly related to observable o

(c). S



spectral band shapes of linear, spherical and symmetric top

molecules, they are not entirely appropriate for asymmetric top

’
i

'molecules, where Cartesian variables are preferred. The correlation

. jm 'x\. . ‘ .

functions QkoOOO koooo(t) and their Fourier transforms .
m- L - Jm . ' ' ' , " . ' i
Ki5000 1k0000 ) ,ﬂ okoooo koooo(c) cos (wt) at o L (11-48)

‘are directlv related to the infrared ;nd Raman handshapesﬁof
' A

asymmetriC‘top molecules. The correspondence between the index pairs

S

{x,o}. and the Cartesian tensor components is given in- Table II—1.

' L Im

The reorientational correlation functions okoOOO;koOOO

‘j 1 and 2, were computed for various relative magnitudes of T Ty
and 1 for a typical asymmetric top molecule, HDO [35] (I, = a. .38 x
10'40 g ch‘Iy o 3.08 x 10740 g cm?; iz“= 1.19 x 10° -40 9 cm2 with x,

;y, and z axes defined such that I >”Iy_> I1,) and the results are-'

3

‘shown in Fig. II-1. : ‘ -" A : h:iﬁ ‘-“\"

(t) for

35

‘ Spherical tensor correlation times are useful in the description.'

‘ of nuclear magnetic relaxation via motional modulation of

hintramolecular dipole-dipole and electric quadrupole interactions, 8O,

1fwe have calculated values of the non-vanishing tgkk for a typical

N v

'r';'asymmetric top molecule, C.DeF [35] (1, = 5.43 x 107 38 g cm S
| 605

[3 57 x. 1o 38 g W??”I;
o -

- 5with Tyt for the case ‘x" ‘y" 12, in Fig. 11-2. The variation of

9 with 1 for the cases 1z.§li*c= ,Y (reorientation of‘

= 1 86 x 10"38 g cm2) and show their vagiation‘
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Table 11-1. ‘ Correspondence between the index pair {k,o} and

Cartesian dzpole and polarizabxlity tensot components

. , . . . o Lo o

- Infrared. Bands j =1 . L ‘ , : ‘
‘r* v ‘ o K ‘ ‘ ““ i o : .

Vo

{k,0) ' . Dipolé moment element
- | k ’\
{0'8} "y ' o L L ‘ L o H.;‘“ ' ., Hy

{1,a} S L By

. Raman Bands § = 2

' Polarizability element

ty

“(lko,o}': E

s

‘n{O'S}J | o e L My + oy, - anz
(1(§) .  , . o ,f o ,I_ g i : .QYZ :

oz R e . %xx T Oyy

o {3(a)“ n :_ﬂ  ‘.v1 . S ,  :‘“}.j . ;f | v'axy .

[
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Pi‘g.:“.II-I.‘_ rPL reér‘i'entu_tiénal correiation fu‘x.\lc‘tiops'tor 'llymmet;ric‘ 3‘\ N
. top molecule with moments of inertia I, = 4.38 x 15730 ¢

.

L oem?, . L B o
1, =3.08 x 1079 gca?, 1, = 119 x 1070 gem?,

z ™ 0“,01-'

" Dox -0, o 1 =005, o«
0 -v‘t -”0.1,‘ g l-‘o.o‘s, g T, = 0.1;
“A-‘-rx“ -‘,‘0.1, . Ty 0.05, - 1: - 0‘.5: : “.‘

R 0.,% o <o, 1, = 0.05;

N . o ?‘"‘l: = '(').‘1,’ L g = 6.1;  ‘ | T, = 0:(?)5‘;:

-z, = ',0‘.‘1, ;' : Tty = 0.5, | ‘t = 0.05;

Y -a, = 0.01, o3 =001, g, = 0.05;

LMy = 0.1, Ty 0.1, - €, ='0.05;
I"... - ‘\tx-o's' “ : ‘1y ‘-' 0. ’. ‘[Iz -IOOOSO



W4

¢

" v ) . 0 “ ‘4
u..uvvp?ss\ﬂﬂﬁﬁ\ﬂﬁﬁtﬁz PR
‘ ‘ °'°°0660 -

e .
. e °°°°°

. ‘ ;* ) ’ . f ‘eeoj
,-Tqyyq\\“ztt}\\ﬁ‘\“‘ Yy

»? -

-

T rTrYY

ey B
" 0s000. 05000 | H,

t:f:ct:eec!ooqat

OCCQODOOOBODOOOB ‘
) . LI

[ a n . ’
A \ a -
v ﬂ‘444‘ .
l!¥<;::t?" AN AL LS

Ce A , ,
—— °€‘Q_°°:a )

C

1oa™y .
, 1a000. 12000
0%

Y

Iy
WAL

B
B oL . f‘."- .
' . Vo a,
| ,l | IR YA

| /15000; 15000

1

t:;;: TTTETE $Eotoete
N OO AL

?9905¢°

, : °°.\?e'j,. o
‘1;5-yv5gxtﬁ;;;;;;;-.,.,e..., :

ik LE NN -
".' : feemag
e : R
1 ST o Peg, 5
I ) . e J°
U SR T R
e R I, ) * . .
_r‘. S -
C R

38
o ' o Y .
¢ .

. .

. ‘ ‘ ‘b;oeodon;aé

lr.p;iqgrttfieges. :
. f.“ coocofooonoa,..O.
. “ ‘- . ) “ \ ]
- ; o . )

v

rrrrr

'™y - u
, 1s000; 1s000 = *= Y
e 2 . a4

a L R ' vy .
: . x L , : J .
B Lo ' ' .
' . \ .
. I . -
4 o

M\c\“.\xo’w“.‘o.4-44\-.‘; Cbady
. vcc‘e

et | |
'0s000, 0s000 .
o T SN

""""’t"ﬁ“ﬁ%ﬁ%‘;i% eee

a,. : S ;
"‘A.‘ ' '

r

R v
. . . a )
ooooo"‘o.‘.&." )
am ‘ A,

Lo ‘_ﬁ
“9"3¥§§$1i1;1
. : : ‘°°6° s
AR : L °,¢'e"

... B
, Y . .
e "'"!--. : .




 “|

Fig.
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Comparison of reorientational aelf-correlation lnd crosé(-

‘.'correlatlon ‘times computed with the sw nodel and with '

the FPL mdel for Tx = 1

y‘.' 1, for asymetri-c‘top“vith

momepts of‘ ;ne:tia I, =5 43 x 10 -38 g“vcmz‘, 1y = }-S?rx‘
;10738 gvcﬁz; Iz“ 1;B§:Xv10-}8 gucmZ.‘ ;
A x = 189 (pooy 100+ <390 (ppr),
Y -2 qepyy o, Pgo- 3" (reLy,
¥ - 1222 (gpgy 2 - <322 (reL);
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1‘9 : 0 . . ' \
220 = -1 N
Ty ~ {/SkBT(tx/;x - 1y/Iy)} e

.
) »
[y

where Tye T T, are in seconds not in reduced units as in other

y'

equations.

The variations of the spin-rotation functlons, Fxx'|Fyy' .

-
i

. and F_., which are defined in Egq. (11‘41), for various

"Fo e Fyz ‘

xy

relative magnitudes of T.., Ty and t, are shown in Fig. II-4.

~

Rational approximations for these functions were also determined

algebraically hsihg‘Cramer's rule angd, to lowest‘o}der corrections,
‘the results are

r

D 22 2. 2. 2. 2 .
Foa =1 kB'rrm{rB«.-m(xﬁ 1) 'frdxa‘(\xﬁxp+1y1¥)‘

' + +1, + I, -I1)°+1 (1 +1)]}"
" Tatgly T *Tp t g T 1T L (T + 1 0]
a0 |
/{leyxz(-cx MR LR Tlr, * 78)} e (1I-50) |
| ' ' L | S
: o / \22_»2~22_‘ : | "
FaB k 'r(x Ia‘l‘ T {I [".:u B (t, + 1:&)1:_{ T8y (t ‘+ ‘tﬁ + Ty ’)]

B © - a " i

&
&



L EDJ ¢ =
Fiq5 {1-4-. Spinérotation functions Fﬁﬁ and F&B for anymmet;ic top‘

-

molecules
' N L E L £ ' Q. pED3
A ..o - Faa for Tx - 'ty - Tz' D- Faa
\\ "Be Faszo“ - -tx -TY -Tz ’
i o -~ Tx = 2':y -_2rz '

‘+ -Tx-s'l'y-hz [

X-2r -h‘-ct .

[Moments of inertia as in Fig. II-2].
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. S S ey =
)[Iaru(rﬁ~+ TY)‘* Iarpité fﬂtY)]}“

Vo,

ATl 4
Y a

B

/{‘levaIz(‘tx,'F T f:z)‘(:‘z + ‘rx).‘} e ' |

- N ,
P e

where fa, B, y) is a cyclic permutation of {(x, Y, 2).. 1In Eq

(II 50), Tyr T T, are in seconds, not in reduced units as in other

Yy’

equations; ' ‘h A

B. EDJ model o o
-General expressions for the reorientational correlation times
and for the spin-rotational relaxation rate for asymmetric top

.o

molecules in the EDJ model have been derived by Bull [8] f The R

reorientational correlation times are given by i T

-kkl . ) S 1 ..1 ". . . : | “
e - -LaTy,, s
‘where
A "f dt<{D(J)[Q] D j)mn(t-il} ‘-'.'>T"exp‘('-t‘/“r S "ui-s';z) K
A NS VARG M ST b ‘

»

'."fQ represents the set of Euler angles describing the trandformation “
h‘f'from the molecular coordinate system at the beginning of each Y. fin PRSENRT

Arotationai diffusive step to the "J" frame in which the z-axis lies

~along the direction of the molecular angular momentum vector, Aﬂ(t)

. ’
3

3:describe8 the reorientation of the molecule in time t during a Binglc ;“

e
-
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! ' . - ‘ '
rotational diffusive Btep and <> indicates an ensemble average over
*lwthe magnitude and. direction of the angular momentum vector: which are
randomized at each collision - 1J is the angular momentum . . . ...
correlation time and corresponds to the average time between ’
collieiona"
"The spin-rotational relaxation rate for asymmetric top ‘ .
o N
molecules, in the limit ‘of extreme narrowing, is given by [8] ;
. . . \ : i
21 o : T k ‘ ' .
RIS e M L ¢ 3) My
o T ‘ 2 L,Nk,m' k,m T k c ‘ . (11-53)
1 - 3K ‘ v ' . Lo ‘ ' '
. whkre the nonfvanieniﬂggcoeffioienis CéL)'are given by
' o cT ' ,‘: e i t
'_a‘ h '.
(2) - ‘ ‘.“ - B "" . v.'f ) .. . & ':
I C -IC 21 . L Ce
ci, = - ,y,y,’-"t- 2
(2) | N
- 2(1 c .. (1, Ex + I c )/211_sz____ .. (1I-54) .

c° ' SITGe * 1,8, ¢ /03T,

N

;ﬁr x' Cy, C are the principal values of the sptn-rotation interaction A:EG,N

o tensor, Eév'“) is defined ag"ﬁ\f‘.7l_i“g#‘“ffjm‘ _T"Aj S }J]_nf ;;*ng S
_ kym S e T T e s

k '1‘) 1! dteitp(t/‘ta)z , (i1_55)ﬁ._‘
L ;‘.' -.‘.:. : “:‘,‘ . :"H ¢"a‘1 L N ,
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e

o
i

(L) (L) : .
W k(t) = J{C(‘l‘lL;aOa) Da,x WA (6D ] UL /1 42 /1 )/2
- " . P&‘
e (1) (1) . o
(11L;k0k) D [AQ(t)] D [AQ(t)] (1 -1 /I ) ‘ . :
oL, ker, k) u‘”\m(r_)] D“, [AQ(t)l (1, /x - 1,/1 )/2} S
r . ) . ‘ ,," “
T I :" (11—56)

Here: J is the magnitude of the molecular angular momentum, AQ(t)
represents the set of Euler angles which relate the molecular

coordinate system at time t with the "J" frame, and C(11sz1 ktl) are'

R
Clebsch-Gordan coefficients [32] In order to facilitate conparieon

. with the FPL model it is useful to write the spin-rotational
¢ . v . . .
relaxation rate as.

2k TT e : ‘ . . . R o
I ): ‘ : . V1/2_EDJ . . o S
T 2 a,a =x, y,z Qacc' (IaIa‘) da’ L ' (IIT§7)

) PRI

)
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g
| o . RN
DI ., .4 . 2,2 22,0 2 2,2 72 2,0 2.0,0.._ . A2
Fﬁz . x},g‘r2¢2, /3 F2,0"3F0,0 73 Fo,o‘+ 3 Fo.p’(lkllz’,ﬂnﬁw{
EDI 12,22 2,2 2,2 . 2 2,0 1 .22
Fo =W m (= F'“ 4+ S F%° 4+ 2 F PR SO T
Fyy 3 2,2 = 2,0 S2-27 572,07 % 0,0,
/2 2,0 1 §0:0) ‘ I C s o
+ < R ‘ o . . . E
*P3 o0 * 3 Folod /%, ) P S
EDJ _ -4 2,2 2 .2,0 2 .2,2 Y2 2,0 2 0,0 /2
Fye g“(lgrpz,o,*ys F2,0 "3 %00 3 Fo,0 *3 Fo,0 MI /T
EDJ _ 22,2 _¥Z.2,0 .1 0,0 . . .o 0 e
F 3 ?0,0 : 3‘r0i0'+ 3 Fo;o‘ T g(? o (IIVSB)

i These spin rotation functions, FED?gcorrespond to'the'Fba,'in3Eq.:.

(11-41) for the FPL model.l.]_vg' o

The couputation of the reorientational correlation times and the .

g "

‘ Bpin rotation functions for fluorobenzene over a wide range of 13 was gAz T

LN

performed by evaluating the necessary ensemble averages in Eqs.

' ”"V:‘(II-SZ) and (II—SS) by means of Gaussian quadrature.% The variation )

a"'<

of the reorientational correlation times with TJ is shown together

ifwith the corresponding results for the FPL model in Fig. II-2.. The

spin rotation functions FED. in'Eq.u(II-SB) are plotted against 1J in

)
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4. Discussion‘7
", In Fig. 11—1, representative FPL reorientational correlation

functions are shown for various relative magnitudes of Tx, Ty and
‘rv\ . : .
' C f

1. The reorientational correlation functions are. essentially

z

' ( .
. '

';exponential in character when Tx, <, and T, are all less‘than'o,i.

Y.

For j 1, the correlation function 008000)08000( ). is‘essentially4

independent of the variation inut This means that this correlation
function, which describes the time correlation of the z-component of

the molecular dipole moment, is not affected significantly by the

motional modulation of the z—component of the angular momentum This.

Yy

is conpatible with the fact that the reorientation of the unit vector :

‘ along the z-axis depends only on the rotational motion about the X ‘"" ;' o
and y-axes of the molecule.‘ Similarly, the correlation functions ) \
' } ,/
Q1a000 1a0oo(t) and<@18000;15000(t) which describe the reorientation . ‘q,l/{n

f of the x= and y- coﬂponents of the dipole moment respectively, are

' but other correlation functions vary significantly with all

e

independent of the variations in Tx and Ty respectively. For j = 2,‘

Qasooo 0sooo(t) is‘essentially independent of the variation in 1

b

" |

correlation times Ty ?Y and-t °25000 25000(t) and °§?oooxzaooo(t);‘”””'”"

A

show similar, but not identical, dependences on the correlation times,ijﬂ

- rat

f'tx, x and-t The similarity between these two-functions is not

Yy

unexpected since the correlation times corresponding to the two

i u._ P
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) . . Do - ) . - . LN ' v
' . . AN . . , '
t L . " . . . ! .
- . . X . . " . .
E . I \.—_\ ' ) | ‘
. o > , L . . S oo ' . , :
' ' e [ v s Lo '

Lt . . " . . . : )

' W O . . B I . LK)

222

\correlation times te ! When t 1} and T -are greater‘than 0‘1‘the;

correlation functions show initial Gaussian time-dependence with o ‘ ‘ ﬂ

‘ - C T )
‘,exponential tails.‘ However in the case of °23000;28000(t) and

L where Ajkk depends on. the moments. of inertia and upon the ratios

o relationr"i ;‘Q,‘ A "" A ‘fQ f R vxf,

‘9 R . ‘B_.x L ] . ' . . +4= . » :
.o L . o, oo L o . ‘ . -"" “\'

‘for T 61.1, Ty é .05 T, = .5, the initial non—

.

°2aooo;2aooo‘t)

exponential cﬂhracter ia different from others and may be due to poor "
\ . S . . .
accuracy in the evaluation of these correlation functions because

they required the largest dimension z matrix allowed in our program
v
" The relations in Eq (II-49) between the FPL reorientational

correlation'times 1jkk and the frictional coefficients ta1'('a = x, o

y, z) can be written in the general form

‘Ejkk : '*Ajkk / (k_ Tt ) L ST ‘ . 11-59).

y ' . q,
v

‘k' .. R i
| ' pm—

y/t and T /tx, and has,the same dimensipns ‘as the moments of

' inettia..‘EQy (II—59) can be viewed as: a generalization of the ‘h v ‘,L;"H\

i .
N
Y

P e e T T (11-60) . "

b

which Hubbard [34] derived for spherical top molecules using a~f"

rotational diffusion model to describe the reorientational motion Liiffn




(II—60), I is the moment of inertia of the spherical molecule.‘ rbf,

¢

symmetric top molecules, the EDJ model gives the relationehip [27]

o = L/UgT BT kTl areen |

_The relatione'in Eq}(IIASQ) for the FPL self-correlation times reduce
* to this result'when I Iy and T =‘1y =1, 2‘?J‘, . RN |
‘ ‘ ‘ ‘ ' ! N ! i

: It is interesting that the cross—correlation times (tgkk for - . |

k#k ) follow Hubbard relations Just as the’ Belf-correlation

BN ) e .
‘-‘times rj k .do. Since the coefficients Aj ki f r k f k'.contain : j'

‘ differences between moments of inertia and/or friction coefficienta
for different a;es,"thexcroes-correlation times are expected‘to,be
.VSOmewhat‘smaller?than the‘self-correlation times.’ -
o : ' "jkk"
The reorientational correlation times, 193 ” computed with the LT

;‘FPL model are compared with the corresponding results for the EDJ
‘model in Fig.‘II-2.- In thia case,lthe FPL calculations were done l
'fk ‘iwith 0 'f.?ytgﬁ%;f: which means that thelmotional modulation of the TJ;y‘flﬁ\ii
' :,angular velocity conponents is taken to be isotropic as the EDJ modelf‘;‘e E
e i i

"assumesaviln Pig. II 2A, the self-correlation times for the FPL modell,wi

“.are fouﬁdﬁto be inversely proportional to Tx at short Ty (Tx < 0 1),-it;fﬂf

il
s

i; ff‘;which is consistent with Eq'-(II-49) This behavior is identical

vafwith that for the EDJ model in this regionta

In fact, the two models 3§l3fa'~f:t

ffgive identical values of 19 in the small angle diffuaionﬁlimit where

Lo

"ia'ﬂubbard relationship is expected to be_valid. This implies that,;wglf‘




i

general trend is compatible with the comparison between the FPL and

: region, the calculation of 'tjkk for the FPL model requires the

-‘\one cannot define a time 1 satisfying the condition of TT << T << Ty d ren ”ufg
l required for the validity of the rotational Langevin equation [37]
“_ which is an integral part of the FPL model. Here TT represents the

correlation time which characterizes the time dependence of the o

':rcannot he fulfilled.;f'”

o

although the basic physical pictures of the two models are very

Mt

differenth the macroacopic reeults are the same in this limit. As‘t

o

increases beyond 0. 1, deviations from the Hubbard relationship occur

- and the reorientational correlation times for ‘the FPL. model are‘

'

slightly shorter than the corresponding EDJ correlation times.‘:This :

BDJ models for linear and spherical top molecules (26] ' At much,

longer ix (1 > 1), the values of re in the FPLtmodel are. much

.smaller than the corresponding Tg. values in the EDJ model. In this.’ "f‘ “k
0 | A

largest dimension z matrix allowed in our program, 80 that the ‘

accuracy for é ; 4 may be- poorer than for smaller tk In addition,

the-validity of the FPL model is questionable in this region because

K

rapidly fluctuating intermolecular torques. In the region Tk > 1, TT

|.-

R R

is conparable to Tx since fluctuations in the angular momentum and in‘ i

oo b

the intermolecular to fue experienced by the molecule are governed by;, j*”:;

the rate of bimolecular collisions 80’ that the required conditiOn




. ‘ . ' . . o . [
K ." o ‘M." ' | ' ' - . y

timee by one to two. orders of magnitude.i At ehort 1x‘(1x < 0.1), the e
T L : .‘.‘s

‘h«croee-correlation times are inversely proportional to tx-ae the‘self—

correlation times are. Even t922‘2 ' which ie zero,to loweat order

as given in Eq (II 49), showe an inverse Tx dependence at. short, ‘

“o 22-2 | ‘ L

"Tx‘1 As expected, Te is smaller than the other croee-correlation_
. b ‘l‘.. E " " | ' . s .o ' [ N
- ;'times;by more\than:an order,of-magnitude. While thé FPLland‘EDJ B -

' models give almost identical valu%a_f&r\the‘recrientational crdea-‘ S

correlation‘times at short T oo they differ significantly at long

o
[ : .
(] !

S This feature is eimilar to that observed ffr the. selfej ‘ ‘d* ‘ *

x
' cor! ‘ . 220. o
muvcorrelation times. In both models, 16 becomee‘negative‘ae‘

'
. -—

\ f* ihcreases heyond 1.0, and( 1622 ? goea through a minimam in the
R e, «‘ 1.~r‘-'

f're§idn 0.1 <.t < 1 and then increases with T inrthe;dilute‘gae

v o Co
' . '

' . . ,"H, 1‘

.‘hlihit;u . 3 S - 'h o f, K fv‘h"da- o ‘ ~Ih ; ﬁ‘%
‘ One of the features of the FPL, model which distinguishes it from_

A
»

the EDJ modelvis that the FPL model allows the introduction &k

anisotropy in the motional moduletion of the angular velocity
.\‘ : o i
e components as well as the anisotropy in the moments of inertia. The”f[ f

v
\“

anisotrde\in the motional modnlation of the angular velocity

"L}fl components is reflected in the relative magnitudeq of the paratmeters

T

x,.ty, andat of the FPL model., In Fig¢ II-3, the second rank‘

[ .‘, -’ "

tensor reorientational self-correlation times,\~; tfor

,..Haga AT ST

fluorobenzene-ds,.a plénar asymmetric molecule, are ehown for a

\

t ":‘_.

[P

vtriety of combinations'¢‘ 1#. Ty and Tz In thié molecule. the z- y

c—F bond and the x-axis is taken to




Ty or tY'Bince rotations about the z-axis do not reorient the
B : . [ - . .

't

effect is dominant.in determining the relative‘magnitmdes of fx, Ty

and t,, one would expect Ty to be longer than Ty or"tz since rotation

Qf the benzene‘ring about the x-axis should disturb.neighboring

\

molecules less than rotations about the y- and z-axes would.

Rowever, if the intermolecular interactioMs due to the large electric

dipole moment along the C-F bond axis is more important than

molecular Shapé effects, then t, might be significantly longerlthan

A °

electric dipole. "n]eref()re' we hﬂve c

red-two different cases:

£ .

t, > ng- Ty and 1x > ty\- tz First, for~the»case Tz > Tx = Tys the

variation of the reorientational self-correlation times with Tx isa

£V ]

shown in FigT—TI=3K'for'différent yaluesvof the ratio,‘tz/%xﬁ The

.

-

vréorientational correlation times are found tohdecrease for a' given

T

Tx as the\iatio, T,/ Txe increases as preaicted by EQ. (I1-49). The

variation of the k £ O self-correlation times wfth this ratio 'is much

~

more significant than the corresponding variation in the k = 0

correlation time. As a matter'of.fact, the variation of th&; k=0 .

-

‘ correlation times with this ratio is almost negligible.‘ This implies\

ythat the reorienﬁation of the k = 0 conponent of a spherical tensor

-
-
“n

~'is not significantly affected by mOtional;modulation of the z~-

<. - . -

couponent of the angularxr velocity, whish is characterized by t,

7, S

“ihis A8 coupatible wi&h the result for symmetric top.molecules

* e—

;{3i} ~ For symmatric tgp molecules, only variationsxln rl_- ‘x = Ty o

"

'_vhich chlracterize modulation of the anqular velocity component

";perpondibular to ehe symmetry a*&s, affect the k = 0~correlation )

. : .o E A -
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. . ' l
. .
“
.

N o
. i) ,

time. Secondly, for the case 1 > 1

T y ™ Tz+ the variation of the

reorientational self-correlation times with t, 18 shown in Fig. II-3B
for different values’ofhthe ratio, txﬁty. It is shown that the

N . 2
reorientational correlation times increase for a givéﬁ"tx as the

‘

ratio, Tx/ty,»increases as predicted by.Eq. (I¥b49)ﬁ In this case

also, the variation of the k £ 0 self-correlation~times with this

ratio is larger than that of the k = 0 correlation time. ‘In this

case, howeuer, the k = 0 correlation time varies quite strongl with
. " . ﬂ .
'the:ratio, T /1 ¥ Bince the k‘= 0 tensor’ conponent is signific tly

modulated by rotational motion about the y-axis, which is

characterized by Tye " A ” .

.

The variation of the reorientational cross-correlation times‘for
a

¥

‘fluorobenzene-ds with the relative magnitudes of Txe Ty and 1; has ¢
’, .

also been studieg, and follows the predictions of Eg. (II-49) for
short t's. The variation of the cross-correlation‘times with T¥ for
1§\L,ins similar in‘form to that ghown in Fig.  1I-2B for the case 1;

= ?y = Ty but shows significant variations witluty/%x and tz/%

v

The spin—rotational relaxation rate’ in the FPL model is
expressed in terms of the spin-rotation functions Fxx' Fyy' Fzz' ny .

-Fy and Fox [see Eq (II-40)]. These functions are coupared with the

cotresponding functidns for the EDJ model [Eq (II-SB)] in Figqg. II-'
w

4a. E‘rom this conparison, "ohe ' C&n see that. in general, the spin—

! ;

‘7rotation.£unctions é%r both models exhibit similar dependence on 1

‘ (o]r: T J). When Ty is less ‘than 1, the I"PL spin—rotation, functions
~ ) : -
yy' and F, have slightly higher-yalues than the corresponaing

-

Fxx'

\‘
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G

EDJ functions. .Ae Tx 1nc;easee beyond 1, ?he EDJ spin-rotation
funeeions become higher ehan the corres nding FPL functions. ‘Fxx;

¥’ and F,, respresent theﬂratios of‘t e autocorrelationltimes for
the functions “’xs;"lmu?\]' Wy 11ms[p]' and w s10ms Q] to the
respective timea’fx, Ty and.t,. [(See Eq. (II-37) - (II-41)]. When
Txr Tye and tz are short, the time dependence of the angular velociey.
components w, (a - x, y; %) contributes much more'td the’decay of the

I
"l

autocorrelation functions than the time dependence of the

reorientational part; S1kmo , does. 1In other words,,;he
reorientational motion is very,slow coﬁpared to’ the fluceuations in
the anqular velocity so that the autocorrelation functions Fh jare
predominantly governed by the time dependence of :the engule;
velocity.- In faqt} tﬁe correlation eimevfor the anqular velocity
componant Wy ie equal to T (d = X, ¥, 2) in the limit of short‘
1's. Hence the autocorrelntion times for the products wxs11ma[Q]'
S"m[Q] and w, WND] are essentially identical to 1: . Ty and Tge
respectively and the spin rotation functions Fixe F vy’ and F,, are
equal to.1.  This is in agreement with the result obtained by
rational approximtion for the spin-rotation functions in’ Eq. (II-

50). In this limit, the spin rotation relaxation rate, Eq.‘ (11-40),

can be reduced to - . o S e
. . L ) . . ) . *—-—-—-‘ :

, 2T | ) | |

1 B 2 2 .2 T . :

- - 3)‘2 (I C Tx 4+ chy ‘ty R o - (11-62)




The variation of the spin-rotation functions Fq ap (a B =x, y
’ 4 ’

' z) for the FPL model withvtx for various ratioslrx/fy and Tz/%x

shown in Fig. II-4B. The functions are shown to be sensitive to the

N

“ratios rx/%y and Tz/tx even at phort Ty

In generaly_the spin-rotetional relaxation rate [Eq. (II-40))

will be dominated by'the terms »Cz F , c?F ’ C2 F_, but the
N x xx' Ty yy' "z zz

cross—correlation terms C C F (d = x, vy, 2, B ¥ a) may become

af ap

significant when the times T4 become long. ) . | s : ]

) 5. Oonclusionsr

' The general expressions for the reorientational correlation
, n . -
functions, correlation times, and spectral densities for asymmetric

top molecules in liquids have~been presented using the series

Eipgnsion for the angular velocity-orientation conditional
A

probability density obtained from' the rotationel Fokker-Planck

equation [25]. In addition, the expression for the spin relaxation

)

rate due to the spin—rotation interaction has been derived.

Numerical calculations indicate that these properties are influenced

-

iby the anisotropy in the motional modulation of the angular velocity

components. For instance, in the case of reorientational aelf-'

jkk |
0

with~this frictional anisotropy, but the dependence of the k = 0'”

' correlation times t ; the k # 0 correlation timea vary strongly

correlation times on the frictional anisotropy is weak-, ‘on tha other ‘

hand, all spin—rotation functions Fy ap (a,B - x, y, z) have .




aignificant dependence on the frictional anisotropy.‘ The conpariaon o

of the FPL reorientational cortelation times and spin-rotation
"functions for the case Tx =Ty = 1‘iw1th the corresponding ED&
"correlution times aﬁd functions leads to the conclusion that the two
models give almost indistinguishable descriptions of rotational

motion of molecules in liquids in the rotational diffusion limit

although the basic physital pictutes for the FPL and EDJ modqls are.

. \

very different, but the predictions of the two models differ outside

this limit.
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CHAPTER III
P

- THE FOKKER-PLANCK-LANGEVIN MODEL FOR ROTATIONAL BROWNIAN MO‘I‘ION. V. ‘

COMPARISON WITH MAGNETIC RELAXATION DA'I‘A FOR ASYMMETRIC "‘TOP. MOLECULES

A\

b
ta

1. intfoduction'.
Molecular rotation in liquids has been studied by a numher of
experimental techniques - nuclear and electron apin relaxation, |
I";‘infrared and Ramanlbandshapes; light scattering, and neutron‘.
scatterinc; The interpretation of the experimental measurements is -
"usually made in the context of one or more models or conceptual |
- ﬁf pictures of molecular dynamics in fluids. The extended diffusion
:“‘,‘-.(ED) [1-8] and £he E‘okker—Planck-Lamv;evinl (FPL) [6 9-151 mo‘dels have -
~iﬂoften been employed in the interpretation of experimental | | .
Imeasurements.p Recently, the mathematical frameworks for the J-
,k f“diffusion limit of the ED model (EDJ) [16] and for the FPL model [171

/fcr asymmetric‘top molecules have been developed, and detailed :1§jfﬁ

f‘lffcomparisonefwith experimental data on asymmetric top molecules are [u‘]i




obtained from the nuclear relaxation data with the predictions of the
.“ o ,;‘. ! ,
ED model for spherical top molecules, and found that the rotational

. motion of CGDSP 'was described reasonably well by the EDJ, hut not by

the sm (M-diffusion limit of ED) model.* - o N

Electron spin relaxation measurements On chlorine dioxide (Cloz)
have been reported by Mcclung and Kivelson [19] . The ESR 1inewidths

‘are determined by the motional modulation of spin-rotational

interactions, and were analyzed using an approximate solution to the

p Langevin equation for the angular velocities. It was reported that,'

particularly in non-polar solvents, the precessional motion of the -

rotational angular momentum of the ClOz molecule contributed

signif%cantly to the observed linewidths. The FPL model for-"g“f

asymmetric top molecules is a conplete extension of the approximate

‘a'

‘ rotational Langevin equation approach used in*the C102 work [19], and . -

v
(-

.'allcws a non-approximate analysis of . the linewidths."

molecules. 'Ihis FPL model is a frict_. ona _',,'model for more*cula"

'f In this paper, we examine the suitability of the EDJ and FPL
models in the characterization of the rotational motions of the‘f-*

asymmetric top molecules CGDSF and c102

T Y e ! C . Lo ¢ ! T VO e
Tt . | ‘,,,.A ,"vl L . S “‘_ L L o v N . . ‘e DR




“‘and the angular velocity of" the molecule and a rotational langevin

:‘;equation for the/gngular velocity [9 20].A In thie mpdel,‘the angular

u”invelocity of the rotating molecule is modulated by slowly varying |
“viacoaity dependent retarding torques and by rapidly fluctuating {

Brownian torques which reflect the molecular nature of the liquid.

In the FPL model, thelreorientational correlation‘times Tp jkk' s
‘;ghich are used tn the description of infrared and Raman bandshapes,i"
dielectric relaxation, and magnetic relaration via intramolecular
'ydipole-dipole and nuclear quadrupole interactiona; are given by [17]

S SR K k?) (3 . (Giie -
79‘ f,o.oz-s,a ofc f,“ |k|0000;|k'|c'000 FEN (flf 1) —

. e .- ,“ “g» .‘,I T "',., ‘ ". v . ) ”v ‘ . ‘
- where the functions C; ..(k,k") are defined by. . S - /

: R ) Co oy ot ; e .
C . . , S R .
e, L \ >, . .
. . * v » N . . . ' f .
' - . oy -
|
A
,

L ammal
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co(k ‘*')‘ -1 bt‘;n(k)ssn(k") | ,‘
a,a’ '’ 2 wUEO T .
S sgn(k) = "0, k=0, B R
‘1" . ““ ' _ “ o " . } ", e T
R L A C6IIX=3) -

‘Here zim is the‘natrik representation of the Louiuille.operator of

the rotetional Fokker—Planck e&uation in the appropriate basis [17],

" and the subscript indices IkIGOOO and Ik |o'000 represent the row and
column of the inVerse Of”the z matrix.‘

-In the FﬁL model, the, spin relaxation rate due to motional

'modulation of spin—rotational interactions is given by [17]

7 = (2k 'r/3x ) I c.c (IaIa -caza.) « ‘Fad,,_.un‘-vo)

]SR '2SR . SN 'ala =lelz ,
{,-i“ \Lwhere Cy are the principal values of the spin-rotation coupling ;?,1'7’4{“”
tensor, I are the moments of inertia, and 1 are the parameters of‘“

.‘ ol

the FPL model which are the inverses of the friction coefficients af

s
[P

'?ﬁ»the retarding torques in the rotational Langevin equation. The »]jt;,ﬂ:h

f,fof the angular momentum in the limit of short t t ’The functions P
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mo‘le,cules, j.n f,he‘»'«EDJ‘ model, are &;:Lv:en by [16] S R ; '

.‘,g
o
. e,
o
o
-
'D(J) are the Wigner rotation matrices 1'21]'
’ 4 \“,, e . ‘, - fgj'-f"“‘, ;\ \ -';;
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18R 2SR L,N,k,p P P .
[y . ) o N

N whété C(L)' are related to the px‘incip;al va"lués Ca of the spin-

e T e T ,
ri‘% };Qﬁd’tion coupling tensor by * '
M -

-« g " v b ’ N
R A :

- C -IC 21 PR s
‘ ::2 ) (I v y)/( ..z/) .
n PR e . ‘ @ * ’
(2, .- l_ “ " o ry B ! (‘ ’ - ’
o ‘Co. 2(1,C) (IxCx_‘} Iyg%)/le/(/GIz) /rn S \ (111-9)
- Co T ' ¢ \
céO)-—[xc + 1.0 FC]/(/:’I) ., ’ ®
‘No other components ar® involved in Bpin-ratational relaxation. The
(BN 4o o -\ : =
Fk'l'); are spin-rotation correlation factors defined as [16‘] - !
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endpthe C(11L; 4 3 i+j)'ure Clebsch-Gordan\coefficients (22}, J 18
“the magnitude of the molecular angular m&mentum, and AQ(t) represents

the set of Euler hngles wnich relate the molecular coordinate system

5 &
at,time t with the "J" frame. . C
[ ) . R LY ' (. , .
) “~ & . ] . 4 - &}‘ ‘ J o % o '
ST S - ‘
» 3. Results and Discussion |
. N ~ '

[%:%
Al Flnorohenzene-ds
)

In order to examine the validity of the FPL and EDJ models in

" * . B .
the interprétagion of experimental observations, we compare the
i o . - . )

> _.“theoretical rGlationship between~theiangu1ar momentum correletion .

L N A

time and the reorientational co?relation time predicted by each model

e

N with the expefimental resplts obtained from magnetic relaxation time
6.
‘ ‘.

;o measurements. The spin lattice relaxa;ion'tines of the 2p and 19
. o ‘

‘ ‘ ' . ®
nuclei in CgDgF have been reported by Assink and Jonas (18] for a
a‘\‘ ' L & o ' . . ‘ ! ot

- N . ’\ " ) ’ .
wide range ‘of tenberature and pressure. - They . , . .

® s iﬂterprdted the experimental data in terms of the ED modbl derived
. 4 .

A
for spherical top mélecules and approximnted the non-spherfciﬁy of

. é ' v
X 1-the CgDgF molecule by taking the average,-l;xofkﬁhe principal’momen;a‘
L of‘ineftia. The angular momentum correlation times, Tge were “' .
‘”;".determined from the spin-rotational contributions, 1/T1SR' to the 9

R ) S N , . .
reIaxaton using the relationship ' . - oo :
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which 1s valid in the,limlt of rotational diffusion. vUsing this

-approximate approach,. Assink and Jonas [18) found that the rotational

motion of CeDsF was reaeonably’coneietent with thefFDJ model, but not
with the EﬁM‘model as judged by comparison of the observedl
relationehip between the reorlentatlonal correlation times and the
angular momentum correlation times with the relationships predicted
by the two modela.' In this work, we wish to reanalyze the C605F

magnetic relaxation data using the EDJ and FPL models. for asymmetric
top molecules. ) : : ;
. ’ ’ A . .
The spin relaxation rate of 2p is exclugively determined by the

motional modulation of the nuclear quadrupolar 1nteractlons. The 2D
epin-lattice relaxation time is related to an effective

teorientational correlation time, g (2)(eff) by
(_ .

. 2 ) 2 .o | ’ * ’ . CoL . .
1 3 e 12 (2), Y , N I
T "3 (732) (L+30 Vg lLeEE) . (III-13)

s o . . .
-

. where (e qQ/M) is 2n times the, quadrupole coupllng constant and. n is"’

-

the asymmetry parameter.‘ The deuterium quadru le coupling conﬂtant ~

for CGDSF has not heen measuredr so 1t is assumed to be 180 xnz,'

.

which is the value obtained for perdeuterobenzene [23] and for 1,3,5- l?

5
‘ tri-flubrobenzene-da [24]-' The aaymmetry parameters [23 24] for

i

theae molecules wereqfound to be negligibly small, 8o we have taken N ;'

S

”;to he zero for cspsp. Stnce cspsr contains five deuterium nuolei.; Y

<

the ettective reotientational oorrelation time ie the average of the i .
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4
2
5 .

(2) A (2) C

Ty teff) = ] 1. (), (111-14)
i=1 - .

where the reorientational correlation time, 19(2)(01), for the i-th .
deuterium is given by , -

{2) ) k' (2)* o (2), | -
AP (Di) X.k' %o Do’ [¢1.91.0] Dk.owi.ei.olf ) (I1I-15)
In‘ﬁq. (IIi-15), [¢i,éi,0] represents the set of Euler angles which
interrelates the "qua‘drupobl‘a‘r" frame in which the electric field ‘ ' .
gradient tensor is Qdiagonalized'anc’l the molecular cbotdinate system .
in which the inertia tensor is diagonal". . The electric field gradient
tensor :Ls assuméd to be éiago‘nalized 1n the frame where the C-Di bond
lies along the z-axis. The third Qf- the Euder angles is;zf,ero bec,guse“ .
, . CY . . -, . o L o '
of the assumed axial symmetry of the electric field gradient. ' In Eq.
(III-15), the Wigner rotation matrices are {21} s :

' .o ! . ' ‘ :.\ - ‘;-‘ .

(2) ' 342 e e T )
:t1 °[¢.6 0] +(—) ‘gine cosd.exp(¥i4) ', © (11I-16) .-

(2) /2 . '

1_2 ow.e 0] 8, ) sin % expGZio)




" 74

‘ o ; oy
The experimental values of 19‘2)(eff) were obtained from the ¥,
: Y4 o
data [16] using Eq. (ITI-13). The anguiar momentum'cofrelation time,

Tge which serves as the only variable parameter of the EDJ model, was

obtained from T1F at each temperature [18] In general, the

relaxation of 19? is determined by several relaxation mechanisms:
intermolecular dipole-dipole interactions, intramolecular dipole-

dipole interactione. chemical shift. anisotroPy, and spin-rotation

N

interactions. Since -the angular momentum correlation times are

directly related to the spin-rotation 1nteractions it is necessary to -

'—‘?11

‘make corrections for other cbntributions to 19 relaxation in order

\ .
.

‘to determine the angular momentum correlation times. After making .

f“ corrections as described in (18], the experimental angular momentum B -

-‘\

correlation times for the EDJ model were. obtained from Eq (III-B)

\ In this work. we have used the same principal values of the sPin-—‘
rotation coupling tensor as’ Assink and Jonas [18] (c = i.z a 104 ?‘

! _‘tﬁ d' Cy - 1 .7 'x. 104 1ﬁ C = 0 5 x- 104 1) which are expected to be _
?ff};3 f~'fl-rq&iab1e since they ‘have been determined by mblecular beam
? .‘*'\ . t: '\ ) - ]

~v;;méhsurements [25].; The relationship between 1902)(eff) and rJ kS

é;llwobtained from the experimental data and the relationships predicted

- ry ‘z One can obtain values of 1 (assuming

..
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. ' N .
i . . ) L

agree qualitatively with the experimental results in that the

observed decrease in re(z)(eff) with increasing Ty (or 1 ) is

paralleled in both modelss Both models give similar predictions in:

o

the range of TJ(T ) spanned by the experimental data, but both models "

predict values of Tg (2)(eff) which are 10 20& smaller than the values"

N

T obtained from the nuclear relaxation data.~ Since‘the*EDJ model and

N

~the FPL model with\r ”=w1y'¥ rz assume isotroPic modulation of the
angular velocity components, it is useful to. investigate the effects

of frictional anisotropy which can be introduced into the FPL model.

C velocity conponents is reflected in*the relativé magnitudes of the f\‘.
p : o ‘ > : o
parameters Tx' ry and ty of the FPL'model. ‘We cqmpared the ‘
‘ e

relationship between 19(2)(eff) and T obtained from the experimental f”

data with the co;responding relationship predicted by the FPL model

The anisotropy in the motional modulation of the angular ,

for different relative magnitudes of Tx‘ Ty and Tz The theoretical
{.relationship betweehste(Z)(eff) and 1 is obtained from Eqs. (III-1),

4 I ‘j"‘. (III—14) and (III—15) for a given relative magnitude of Tx' TY and‘
"‘H"l.ozu ; I,
RN In CGDSF' the z-axis is chosen to lie along the C-Ffbond and the"
' A_ : )“' L ; = “ ) {"w',‘\ \ :' e
b’ axis is " taken to be perpendiculaf*to the molecular,plahe-f‘Iff%
aﬁCg,$ ST AP DR e Sl




Ty

"_bond axis are more iuportant than molecular shape effects, then T, - }]“,‘

AR}

" might be significantly 1onger than Ty of ‘y’ 'Based‘on these ‘ ';fh' R i

‘_imolecular shape and electric dipole moment considerations, we have 'f’ .

‘considered two different cases. rz >Itx = ry and Ty 3‘ry.=‘ré-
1 k o toa

First, for the case 1 > Tx - ry, we compared the theoretical

'relationships between re(z)(eff) and tx with the corresponding

. aexperimental results for eeveral ratios, z/‘x' in the range 1 <

z/r 5. From these comparisons, we found that the agreement

v ¢

hbetween theory and experiment was poorer for 1 > r Y than-forf

LN i : ' .
. ‘ , : .

' vthe case Tx fer}-'tz" For the Second case Tx >vry = tz, we varied

'1the ratio rx/tz in the range 1 < rx/rz <5 and found that the

RENST . " K Coy
L]

'~agreement between experiment ahd theory was much better than for the

‘. !

"case 1 = ry - rz We obtained a good fit for tx/rz = 3 5 as shown

\‘ﬂin Fig. III-Z. This result implies that the rotational motion of

1 .
5“!‘ . ! L .‘ BENERE

¢C605F is significantly affected by the anisotropy in the motional
L |

k;fmodulation of the angular velocity components and that the relative‘~'

N [

.4,
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‘Fig. III-2.. Ooxtparison ‘of corrslahion times from FPL model with 1

'3.5 'y- = 3 5 'r (sohd curve). and from the nuclear
0 ‘ R
T relaxation times in C605F‘ hquid ( .) L ’
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t ! i but the observed linewidtha are not proportionel to T/n (T being the Lo
U -“‘ra.‘._‘ o v . ,\‘
b abs.plute teuperature. n the solvent viscosi‘ty) as’ simple theory

; 'Vgﬂcts [20]‘1 order to. explein this nonlinear relationahip, an,

proroximate theory, which included mdti al modulation of the T S ' *
v’ ot . . o . .

NI NEN < « S A N

‘ rotational angular momentum, precesslonal motion of the angular T

a n‘ . av.. : Lo

I ‘ .momentum, and reorientatlonal modulation of the spin—rotatlonal

interactions,' was developed [19) ) In this theory. the Bpin- L -e“‘

[
‘..

rotat{g l contribution to the transverse relaxation rate was given

[

‘

o
I<
/f
4

R . ' ' I L o '
‘ LA . . . . K
. } . , . \

: (2k 'r/:m ) {‘ c 21 w5 B l‘s""r'(r /Ty )l
I 2$R Cor e asxYez L ' R
R DN o SRR 6 5 SE § )

L . . . . X . .
L . . o " i P . Lo . '

Dot

-~ 1.

3 where 1 &’ is the correlation time for the a-component of the angular

.‘\_ . e A Lo

A ‘f“'l‘\“'momentmn, and (a, _ﬁ 3 y) is an even pernutation of (xx, y, )-

[ ’

“:'-:r,-i‘}kBT(TJB/IB + -:JY/IY) term ih Fq (III-17) represents the

LNy . [N R ot LR [

R T :H“reorientational effects on the spin-rotational :l.ntera!u:t.i.c'msql P‘rqg"q"y o
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aolute'moleculep and copresponds.to the parameter t

L

WA .
. A
u-».v

data in taxma of,the F?L model,»and to asce tain the correctnesé of ““:« .

\

the ﬁnisokrbpic solqte-solvent inﬁeractionsy‘ The“first tetm i

used'b& Mcciﬁng and kivelscn [19]

ﬂhe FPL modq ,is’an exact extension;of the approximate theoty o h

' ‘
- ‘ i ,,‘.‘ T . AT A n
f ot

. "yl‘ V"I“ t
L \ oo v . "»" ot

4 : |‘_‘u '8“” -\""- o TR ,'*‘ ’.
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In oréer to eva;uate the clo2 Lo

‘H art
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e ...4_ N ST,

gt

18, and the valueé of © gi0éh(in“[19} and n given ;n S

w,.

work we use

[ ,-“.‘

'a 4n {he previous work [19] .
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, ‘l Y ' .
experimental linewidths. Furthermore, the FPL linewidths“vary almost
linearly with T/, while the‘T/h—éependence of the observed
1linewidths shows significant non-linearity. 1In order to get better
fitd to the experimentalidatq, we h;ve increased the valuesyof K and\
the results are shown in'Fig.AXII—3. In the cases of Cloé in acetone
and chloroform;‘the observed linewidths vary approximately linearly
with T/n and the agreement between the FPL model and the ‘experimental
data is réasonably gobd, but, in the case of Clo;yin CCl,. _the T/n-
deégndence of the calculated and experimental linewidths is yé;y
diffefent. One mst conclude that thé‘FPL model does néé account for
'éﬁ;“observed T/n~6ependence of the ESR linewidths ;f Cl0, when the
anigotroéic 1ntermole;u1ar interactions are very weak. The apparent

success of the approximate theory of McClung and Kivelson (19] can be

attributed to two factors: (1) the use of Eqg. fIII-17) for 1/'1‘ZSR

which ignores contributions from the cross—cor;élation terms R
involving Cny, CYCz and C,C_ which are present in Eq. (II1I-4); and
(2) the approximate relationship in Eq. (III-18) which, although only
a first order approximation, was employed far beyond the limits of

its applicability.

~

The values of the r;duced time parameter Tx. - tx(]ncB'I‘/Iz)V2

obtained from the FPL fit of the C10,/CC1, linewidth data lie between

1 and 4. The validity of the FPL model in the region T > 1is
quéationable becausé one cannot define a' time © satisfying the

condition Tp <<t << 1, which i8 required for the validity of the

—_—

rotational Langevin equation, a basic component of the FPL model.
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Here T is the correlation time wﬁlcﬁ characterizes the time

dependence of the rapidly fluctua?fng intermolecular torques. In the

-

' region where the rotational motlo} is nearly free (rx' > 1) and

fluctuations in angular momentum and intermolecular torque are-
. ” ' .

«

dominated by the rate of bimolecular collisions, Tq and 1, are of

comparable magnitude so the required conditlon is not fulfilled. The

.appllcablllty of the FPL model to the analysls of the Cloz 11new1dtha ” '
g

in non- lnteractlng solvents is therefore uncertnln.
J

It should be noted that thé use of Eq. (III-19) attributes all
RN

1 v

of the anisotropy in the friction coefficients, Ta—1, to anisotropy

of the inertia tensor, since 14 assumes that x 1is isotropic. 1In

general,'one might expect x to /be anisotropic, and 6né mlghﬁ attempt
to fit the experimental data wlth the FPL model allowing the friction

coefficients to vary freely. ch fits, which employ 3 variable

parameters, were not attempted.
We have also compared the FPL model with the EDJ model for the

description of the rotational motion of Cl0,. The values of Ty for

the FPL model with Ty =%, = T, were determined from the  experimental

Yy
ESR linewidths using Eq. (I1I-4). The correspondiﬁg values of 1, for

the EDJ model have been obtained using Eq. (II11-8)- The results ‘are

shoﬁn in Fig. III-4. 'Both models éhow very similar trends. 1In the

non-polar solvents CCl4 and n-pentane, however, Ty is longer than Tt

for a given T/A. In the felatively strongly 1ntetact1ng solvents-
a—

"acetone and chloroform, 1 and T3 vary reasonably linearly vith T/,

while, in the weakly interacting solvents CCl, and n-pentane, the

—~———



Fig. III-4.

obtained with the EDJ model“(tJ) and .the FPL model (’t\K

Comparigen of 15 (@) and v, ( [J) for €10, in n-

pentane (1), CCl, (2), CHCl, (3) and acetone (4) ©
)

| e

‘vith T =Ty =T,

Y

’
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. ' . . N

jrelationships between 1, (or t15) and T/n are not linear. .

iy

.
)
:

4. Conclusion . T : , : s

'The rotational motion of the asymmetric top molecules CGDSF and

>

Cl0, has been investigated in terms of the FPB%and EDa models for

.

: asymmetric top molecules. It was found that ‘the rotational motion of

,neat C6DSF liquid ie better described in terms of the FPL model by

‘nincorporating the anisotropy in motional modulation of the angular

A

velocity components than in terms of the EDJ model’ although the

agreement bet;§§n“the EDJ model and experiment is qualitatively
-4

correct. The rotational motion of CgDEF is renderead anisotropic'

becaus¢ of molecular shape effects, whi'e electric dipole

-

interactions .are less ilmportant. 1In the case of Cl0,, the'ESR

A}

linewidths predicted by the FPL model aﬁs in agreement with the

¢
observed finewidths in. strongly interacting solvents, but .the ¢

0

‘ .
¥

agreement is- poor in very wegkly interacting solvents. ' In addition,

&

,the angular momentum correlation times for c1oz obtained with the EDJ

. model and with 'the FPL. model with frictional isotropy are very

B
N Y

' ’similar. Lo \, - R | - R . | . b

-
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A CHAPTER 1\71\‘
. : . .

NUCLEAR R}:Lmdvnou' AND MOLECUL_{\R MOTION OF. 1,3,5-TR1FLUOROB'EN21;N1§-‘:3.
, . . ‘ C " . | [N -. N i .

\

o . ; " IN LIQUID SOLUTIONS -
1. Introdudtégn‘ ‘ ‘ ; . ‘ ,

|

. " ! N ' . '\'. . i ' | :
Molecular rotation in‘liqdids‘has been'studied for many
molecular systeué in various waYs [1—28].f‘Nuclear [1-7] and electron

{8~ 13) spin relaxation, infrared and Ramah bandshapes [14-20], light

scattering {21-27], and neutron Bcattering [28) techniques have been“

1 \

usedifor the study,of molecular'rotation. Two important correlation

times, re‘and TJ, can’ be used to haracterize the rotational

a motion. 16 ig the reorientationaf\correlatfbn time which

¢ 1

characterizes the time dependence of the orientation of a molecule,

o

’ o

~and 7J.is the angular momentum correlation‘time‘which Characterizes
the time dependence of the rotational,dnéular'momentum'of the
R ¢ oy oo D .

molecule. A knowledge of these correlation times for a given -

. : 2 I S . : .
molecule can provide useful information about the nature of'moleculer

%
‘rotation in liquids. A number of theoretical models for molecular

¢

i.rotation in liquids have been proposed. Thejsimplest and,moet

/

commonly used model was developed by . Debye [29] ‘to describe

«

dielectric relaxatiOn.‘ The Debye model was developed on the basis‘

[
R
~

-

1A version of this chapter hea been submitted for publication.,”D.HQ,
Lee and R. E ‘De Mcc1ung, 1986. ;Chemical Physics. APy N ,

ED

UL o o
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.
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' ‘observations in such cases, using~the Debye model,’wes

.

that the molecule of interest behaved 1ike a large spherical particle
. Y

. immersed in/alcontinuous, viscous.medium and followed a rotational

random walk involving steps:of‘small‘angulsr displscement. This

assumes that the'correletionntime rJ for the gngular momentum is very

s

short compared to thegreorientational correlation time Tg- Howeverf

N . .

it was. found that 1 ; and 19 were of _the same order of magnitude in

some cases [30-32]»so that any interpretation of experimental

-

'
'

t )
'questionable. When T and 14 are of the same order of magnitude, the
« 0 J ‘

’. .

«
molecules reorient through large angles during the rotational

-

diffusive»steps and the rotational motion is similar to‘that in

“

.dilute gases where‘the'molecules rotate freeiy during the time

P

intervalsibetween collisions. The concept of these "inertiel"
effects in the rotational diffusive steps‘was’widely discussed [33-
37}, but was not incorporated into’a theory in an exact, fashion until
1966 when Gordon [38] suggested an extension, for 1inear molecules;

of ‘the Debye model which removed the restriction on the size of ‘the.

‘ rotational steps- KOther workers have extended Gordgn 8 model to

. r t

spherical [39-41], symmetric [41-42], end asymmetric top * [43-44]

molecules, and to the. perpendicular ‘bands of linear molecules [45]

‘.

In this extended diffusion model (ED model), ‘the molecules are

93

assumed to rotate freely during the rotational diffusive steps and : o '

av »

‘ each step is terminated by a. random impulsive torque which reflects:‘

,—""‘«

‘ the Brownian motion -of . the molecules.’ This=impulsive torque or,

“collision“ rendomires the angulsr momentum of the molecule. .Two‘;f

T



»

.been

ro . S N
\ . // )
limiting cases have been propoe;?: the J—diffnsfon (EDJ)‘and M- /,'
diffusion (EDM) ‘1limits. In the/ case ‘of J—dfffusion, bothqthe ‘ .

orientation and- magnitude of the angular momentum.vector are o

3

‘randomized at each “collisipn",”while in the case of M-diffosion only

the orientation is randomized. It has been shown [46] that the EDJ

model reduces to the De ye model in the small angle or rotational

diffusion limit (rJ /« 1), where ¢J' 18 the angular momentum

ey

cérrelation time expéessed in units of . (kBT/I )1/ ... where kB is the f%

Boltanan opnstant T is the absolute temperature, and I, is the

A

' moment of inertia of the molecule about the x principal axia. inu

IS '
. -

thiéﬁhimit, T is inversely proportionaltto T3 .[46,47]) . On the other

hand, in th '/dilute gas limit (TJ' >>' 1) both EDJ and EDM models give

-
i

results similar to that of the perturhedhfree‘:otor model [32] in

N

"whichc;P isjpropo:tional‘to 1Jg Theipredictions of the'ED_model have
omp

ared with experimental observatione for various typea of

mol cules [46] Many applications ‘have compared the theoretical ,

:é ationship ‘between re and 1J with the experimentally observed

/ariation of 19 with 1J In most cases, the EDJ model has been foundv‘
to be in-good agreement with the experimental observations [1 7).

For instancet Bull has interpreted the'19F and 2D relaxation times
for 1, 3‘5-trif1uorobenzene-d3 (TFB) in 1iquid aolutions in"}‘ |
hexachlorobutadiene [6] and in the—pure liquid [7] in terms bt the ED

~ L At

model for symmetric top molecules. He found that the reoxientational

motion of Tﬂé was. well described hy ﬁhe EDJ model rather than hy the .

EDM mode11 S ‘H‘":.m" R 4.[”\ " - .m-;'f"“?,‘

4 B rd

.
¥
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\

B T Y,
Another model for the rotational motion of molecules in liquids

the - Fbkker-Planck-Langevin (FPL) model, has been considered by

.

.several workers [41 48—53] This model is based on the view that .the v

'rotational motion of a molecule in a liquid can be approximated by

-

that of appropriately shaped solid object immersed in a continuous‘
viscous fluig. The angular velocity of the molecule is modulated by

slowly varying viscosity-dependent retarding torques and by rapidly
a

‘fluctuating Brownﬁpn torques which reflect the molecular‘nature of
the liquid. There is a marked difference in the nature of

intermolecular torques in the ED and the FPL models. In‘the ED‘

!

f‘model, only the rapidly fluctuating Brownian torques are considered

'
N

'd to maniﬁest.themselves as random collisions‘

and they are ass

which'produce larhgarandom changes. in the Angular velocity. ‘In the

i

.FPL model, on the otber hand, a large number of fluctuations in the“

‘Brownian torques are equired to change the: angular velocity
L

significantly, while the retarding torques act continuously causing
the angulan velocity to move towards its ensemble average value of -
zero., In other words, the molecules in the ED model experience | I

intermittent and very strong torques but the molecules in the FPL

~

C

bvmodel experience retarding torques at all times in addition to the

lintermittent Brownian torques.‘;'l;f:\ ‘f‘ . ‘<{fq‘ . y‘ e : v

Applications of the FPL model are not abundant, but it has been fgf
:shown from cohparison of theory with the experimental results from ﬂi

-'._ufmmn studies of cp4 [54] and srs (55], infrare&studies of uzo [56]

5Jand CO [57], and nuclear magnetic relaxation studies of CC14 [58] and

v N ‘e v E : L ' . . EEN g L

. e N O . . . T ¢



molecules in 1

- I

Fél model has been conp red with ‘the EDJ model and it has been ahown

that both the FPL model hnd the EDJ model, Although they- are based on.

B}

very different physlcal pictures of the rotational dynamics, ‘appear

relaxation rates of the symmetric top moleculei1,3,5-

. ;
to give remarkably similar characterizatLOns of the rotational motion

”

‘of molecules. in 11quids{(55,56,59g69]-‘ For %ymmetric and aeymmetric
" top molecules, a new feature'lsfpresent in,thefFPL model: anisotropyv

ln the motional modulation of the angular velocity components, whichf

”
. )

‘ /
‘is referred toeAas the frictional anisotropy. . N
. ! ' \

P
\

\ .
In this paper, we report measurements of the 2D and \ F nuclear

[

.trifluorobenzeneedj (TfB),in 0.15 mol,fraction eolutione J4nia number

' o Gt . ! ; ' L . . L s T BT AN R SR . -
Nt ' . ' : R [ § Lt o S, - I !
' o it L t o . . . Ve o [ Y
' . . e R -, o 5 N ' T T N " . N Yk ,
. oo N N ) ! ' . (. * . v [XTAEE . 5
X R “ ) o it : .. . . L .
o e o

.

of . polar and non-polar solvents .over the temperature range 270-

400K. The relationship between ‘the correlation times te and tJ

obtained fggm the nuclear laxation data is compared uith the

AN e

theoretical relationships‘hredlcted by the EDJ and FPL models. The -
L Y] ) . .
effect of frictional anisot&opy on the anisotropic molecular e
e i~

rwentation is also 1nvestigated. LT T s

»

<.It is common to relate’ the regrientabional correlation time of a

\

. 7 ; N ‘ v /

solute molecule to the macrdBcoPic viscosity of the solution. Using .

e <@ ' .

the Debye model, Bloembergen, Purcell and Pound [61] obtained the

“ "Debye” equation"l<] ,“f' dufg 7j*'; f‘» .o “u.im' e ' ’3?1'7

o

£3 re'sonably well [54—56,459 60). 1In addltion,' thé

%



. Ty = (anr'n)/(kgT) (v-1)

where r 18 the hydrodynamic radius of the rotationg molecule, and‘n
18 the coefficient of shear viscosity of the liquid. Although this
Debye‘equationlhaa been used successfully'in soﬁe cases [61-64), it
has been foundvihat the reorientational corrxelation times predicted
by the Debye\equatioh are larger th;; those observed experimentally \
[65-71). Sevéral workers [7§~74] have generalized the Debye theory
to ellipsoidal molecules taking into account the effect of
anisotropic rotational motion, but this generalization A4 not resﬁlt
ig good agreemént between theory and e#periment.' In order io 1mprov;‘

agreement between theory and experiment, a parameter x has been

introduced into the Debye equation by McClung and Kivelson k8] 80

that

Tg = (dngznk)/(3kBT) - ’ e (IV-2)

.

A moleqular 1n§efprgtat1;9 6; x in terms. of the relative magnitudes
of 1ﬁtermolecu1ar‘torques‘;Ad.;ncqrholecuiafiforces ﬁas been given
[75). “In theslimit of rotagional diffusion,.it has BEen aésumed‘[47]
vtthat 19 CAﬂ be related te the correlation time tJ for the a-‘

,

component of the angﬁlar momentum by

e : S (1v-3)

97



where ;u is the moment of inertia about the a principal axis. Hence,

from Eqs. (IV-2) and (Iv-3 r’¥J is also related to x and n by
a

3
TJa an/(Bann) -\ _

(IV-4)
In general, Kk 1s a tensor [75) which can be diagonalized in a
molecular coordinate ;ystem. However, it has been assumed that x is
isotropic and can be treated as a scalar. In this senae(‘n is
similar to the rotational microviscosity factor which was introduced
empirically by wxrtz‘and Gierer [66]). Wirtz and Gierer took into
account the finite size of the éolveht,%olecules tofﬁhe‘éescripcion
of the rotatidfhal motion of a spherical solute molecule recognizing
that the surfounding solvent molecules did not'form a continuoug and
homogeneous medium as assumed in the hydrodynamic theory. Their
rotational microviscosity factor, which is denoted by K+ can be
expressed as [9,66) [
. -1 S .
Ky = (6(rg/r) + (1 + x /r)73 (1Iv-5)
. ;
f 4 .
where r_ is the radius of the solvent molecule and r is the radius of
the solute molecule. When r >> rs;.Kw approaches pnity so that th;

Glerer-Wirtz theory reduces to the Debye hydrodynamic result (Eq.

(IV-1)]. when r << ry, x,, approaches zero.
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Kivelson et al (75] have ehowﬂf%hat x is proportional to the
ratio ‘of the mean square intermolecular torque on the solute molecule
. \ |
to the mean sguare intermolecular force on the solute molecule. The

il .
“intermolecular force depends on the total intermolecular potential,

while the intermolécﬁiag torque arises exclusively from the
anisotr;pic part>of ;;; intgrmolecular pOtenEial. Hence k represents
the degree of anisotropy'of the iﬂiefmolecular botential.
Physically, k is ; measure of coupling between the rotational'and \
Itrdpslational motion. dsually K is less than 1. ﬁhen‘g = 1, Eq.
(I1v-2) ieducee to the Debye equation [Eg. (IV-1)] which is a
hydrodynamic result derived for the rotational motion of a. spherical
particle in a conti;uous viscous .1iquid with the "stick” boundary -
condition, which assumes that the surrounding molecules stick to the
surface of tﬁ; rétating molecule so that the tangential Qelocities of
the rotating'molecﬁle and the surrounding molgcqleg are equal at éhe
’
surface of the rot§€IBg molecule. If, on the othéi hand, it is
. aasuméd that a “élip“ boundary condition (the éangential velocity of
solvent molec§ies is zero ét the'EG;?;EE_Sf the sphere) applies, the
hydrodynamic result is Eq. (IV—2) w1th Kk = 0. Wwhen the size of the
rotating molecule ksolute) is very large compared to that of the .
surrounding molecules (eolvént) or wgen there are strong
————— . ' ¥
1ntermol§cu1ar interactionsﬁbetween so}ute and solvent, the "stick"
boundary condition ;s expected to be,apptdptiaté; It is expected
that t£e boundary condition for most liquids and liquid solutions

L3 -
will lie somewhere between "stick"™ and "slip”, and x will therefore

lie between 0 and 1. °
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.Hu and Zwanzig [76]) hqve conaideréd the hydrodyngmic model with
the "slip"” boundafy condition where the tangential velocity of the .
surroundihg molecule is zero at the surface of a rotating molecule.
They have calculated‘the rotational friction coefficients for oblate
and prélate spheroids Qith the "slip” ﬁoundary condigion qﬂd have
reportéd values of the ratio,‘f, of the rotational friction
coefficient with the ;élip" boundéry.cbnditio; to the corxesponding
coefficient with the ;stick" boundary condition. This ratio, f,
depends only on the geometric faqtor, dS/dL; where dg and 4&; arebthe
' semiaxis, lengths along the qhort and long axes of‘tﬂe spheroid.
,Siﬁce most molecular systems lie in the region between the
“slip" and "stick" bounda;y conditions, an empirical stickiness
factor, S, defined as ;

-

S=(x - £)/(1 ~ £) (1v-6)

"has been introduced (10,11). Here x is the anisotropic interaction

parameter and f is the factor introduced by Hu and Zwanzig [761.

According to Hoel and Kivelson [10), the lower limit of S is zero in

the purely‘hydrodyhamic case, but, since real molecular liquids do
not form continuous and homogeneéué mediar the 1ower.11mit'of 8 could
golbelow zero ahd“Qecome\- |

~£/(1 - £) which corresponds to x = 0. In the latter situation the:
moiecularylsystem is said to be under t_:he."subs' ip" boundgry

condition. Generallirspéaking, x is a measurefof total anisotropic
A .

,

,-,(>'
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, “ :
interactions which‘produce rotational relaxation, £ is a measure of,

the molecular geometric congribution to the aniéotropic interactions
~ .

and S 1s a measure of all non-geometric anisotropic interactions.

Pecora et al {21-25]) have studied the viscosity dependence of
|

.the reorientational correlation times of nmallimolecules in a variety
of organic solvents at constant temperaﬁupe. They“empioyed Rayleigh
light-scnttering techniqués to determine the reorientationai

correlation times and found that the "s1lip"” boundary condition rather

than the’“stick" boundary condition gave a better description of the

rotational motion of small molecules in the absence of strong solute-

solvent interactions. A They also found that, at constant temperature,
.the reorientational correlation time was a linear function of

viscogity with non-zero intercept, To:
T = (4nr3nx)/(3kéT) + 1 . \ ' (IV-7)

The values of To obtained were similar to the free rotor correlation

times, ‘FR' given by Bartoli and Litovitz 1 : A
. [¢]

Tpp = 28(41/360) (I/k,T) V2 T |
R B°T Lt ‘ o (1v-8)
o

i

where I is thefmoment of'inertia.‘ Fury and Jonas [78] have found
that the zero—viscosity reorientation t:l\.me T was significant for a
_number of neat liquiad monosubstituted benzenes and symmetric top . .

moleculea, but Tg was not predicted well by Eq. (IV,—B). m———

)
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- has been applied successfully iﬁ some systems [8,9,?9481], but in

A

i s
Kivelson et al (8,9] haye assumed that the hydrodynamic radius,
« 0 : ‘

x, in 'Eq. (IV-2) can be determined from the transl&Fional diffusion

 coefficient, D, via.the Stokes-Einstein relation = .. r

oo
~ @ o 1

D = kBT/(Gﬂfn) - | - ’ ‘ (IV-9)
. . ' . r

- . ‘
.
5C I

. ‘ 'u “‘ i l ’ ‘
This hydrodynamic result is derived for the ttranslational motion of a

spherical particle of radius r immersed in a‘continuous fluid of !

\

viscosity n, and assumes the "stick” boundary. condition. ‘Eq. (IV-9)

1

. . : b )
other tases, especially liquids composed of small melecules, the
b )

‘experimental values of the translational diffusion coefficient have

been found to be much larger than the theoreﬁical values predicted by
" .

-~

the Stokes-Einstein equation: [82-85]. Thus,'it:has been suggested -

that it is necessary to modify the,Stokeg—Einstein‘equation by
'iﬁtrqducing some’ empirtcal correction factor for'thg translationai

frictional coefficient taking account. of variations between the

P

‘"stick"jand "slip” ﬁounéary cohditions, and\qf the discontinuous

nature ofﬁthe molecular liquid when applied to amill molecules (85).
In,this paper we analyze the reorientational correlation times
and'the'translaiiohal diffusion-coefficients‘of TFB in various

, s§1vents in terms of Egs. (IV-7)‘§nd (1v-9), discuss ghé Varidtion of

k. and § with solvent, ard examine the applicability of Eq. (IV-9) ln

v

these systems.

L
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2. Aggperlmgntal

"

'TFB (98 atom % D) was obtained from MSD Isotopes Company and was
" dried by storing over:mOlecular sleves (Fisher Scientific Co. Type'
1 ' * : .

3A). ' Deuterated and non-deuterated eolvents used. in this work
——— ’ o

(sources of detuerated solvents are given): methylene c¢hloride

(Stohler Ieotope Co.), toluene (Aldrich Chemical Co.),
tetrachloroethylene (Eaetmanfxodak Co.), chloroform (Norell Co.l,
dimethylfornamide (DMF) (Aldrich Chemical Co.), and acetonitrile
(eldricﬁ Chenieal»Co.), hexameth lphosphoramide (HMPA) (Msﬂ\lsotopes
Co. ), and‘methanol (General Intermediate of Canada) were dried over L
‘ molecular sievegy(TyPe 3A). 0.15 mole fraction solutions of TFB .in -
ideuterated (19F measurements) and non-deuteratéd (ZD measuremente)
solvents, were prepared and eamples‘for NMR relexation measuremente.“
were placed into‘a 9 mm diameter eamplettube with the 2 mm diameter'ﬂ
capillary section (Wilmad Glass Co.), degassed using three freeze- 5

' pump-thaw cyclea, and sealed under vacuum.

Nuclear spin-lattice relaxation times, T1, were measured using a

fBruker SXP 4- 100 pulsed NMR spectrometer interfaced to a Nicolet 1180

e

'-computer and a Nicolet 293a pulse programmer.; The operating
frequencies were 13.7 Mﬂz for deuterium and 84.2 MHz for fluorineh
‘The teuperature of the eample solution was controlled by means. of a *

l'Bruker B-ST tenperature control unit which controlled the sample '

ﬂtemperature to tO SK. A Doric Trendicator 400 digital thermometer

"



with & copper—conatantan'thermocouple was used‘to ~measure the eample
‘teﬁperature. The sample was allowed to equilibrate at each

temperature for 15 20 minutes after 1nsert1ng it 1nto the ﬁrobe.
!

Relaxation times were. measured using the 186°-1—90° pulse
Bequence with a delay time of ~5 T, petween successlve‘pulse N

‘ sequences. ' The estimated errors. in T, measureqynts‘were,SQ for

deoterium and 8% for fluorine.

»

The translational diffusion coefficiehts‘ofkTFBrin the solutions

were measured using the statiodery field gradient Bpin-echo technlque

(86-88). The stationary magnetic field gradient weeygenerated by
passing current through a pair of copper coils mounted on the

aluminom side platés of the NMR probe. The‘magnetic field gradient

was calibrated using a sample of . hexafluorobenzene whose
translational diffusion coefficients are known {89]. The estimated:

error in the translational diffusion coefflcient'meEBurementsewas 6\;
| . N L

4
s

”“”Viscosities.of‘sample‘solutions were measured with a Cannon-

N
)

Fenske viscometer in a thermostatic bath. The temperature was <

L3 t

controlled to tO.2°C by an electrical heating controller (Model 226,

’ LFE Corporation). A copper constantan thermocouple placed 1nside the;
o= s

-~

bath was uaed‘to‘monitor the-temperatqre.- The estimated error in the

’ viécoélty measurements was about'zyf
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3. Results

‘Th 2D and 19F spin lattice relaxation tlmes T1D and T1F of TFB

' '
<

in various solvents (0 15 mol fraction solutions) were measured over

the tenperature range 270 ‘to 400K with the upper limit being near the'

A

' 'boiling point of the solvent. The results arertabulatedlin'Table IV-

1. Viscositiesvof the‘solutions and the translational,diffusion'
coefficients of TFB in various solvents are‘also given in Table IV-1.

Ty

The spin‘relaxation rate of deuterium is almost entirely

verned ‘by the nuclear quadrupolar relaxation mechanism, and

_'meﬂsurement of Typ provides an excellent means for determining the -

reorientational correlation time te provided that the nuclear

quadrupole coupling constant and the asymmetry of the electric field

N\ .
‘

., gradient are known. The quadrupole coupling constant (180 Kﬂz) of

‘deuterium in TFB and the asymmetry parameter (0.05) have been

determined in a- NMR study of a liquid crystal phase [90]. We have

determined 19 from T1D using the relationship [91]

B L O T ¢ S UM

i

l -~

where e qQ/ﬁ represents Zn times the quadrupole coupling constant and

Ky !

n is the asymmetry parameter. The 19 results are also included in

P

o 'I‘able 1v-1. e

The relaxation of fluorine in TFB solutions in deuterated - ‘;.é_

. b 1 S

;;;‘solvents can be conaidered to arise mainly from the spin-rotation ;"lf'

PR
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i

interactions because the intraf and.intermolecular dipolar

" 1 r

interaCtione should(be.relatiuely weak lhe observed variation of

' the fluorine relaxation rate ‘with temperature given in Table IvV-1

shows the typical characteristics of relaxation dominated by spin—'
o

rotation interactions. increase in the‘relaxation rate with

increasing temperature [47]; Howeger, in the‘case of

)

-hexamethylphosphoramide (HMPA) Bolutione, the relaxation rate of ~—

'I

fluorine goes through a minimum between 333 and 353K. ‘This ipplies
S A, ' o .

' that dipole—dipole relaxation mechanism,. which hasfa temperature

LA

» '

dependence opooeitefto‘that of thehspin-rotation“interaCtione;
contributes significantly to the relaxation of fluorine in HMPA. In
general, the relaxation rate of fluorine has contributions from
several relaxatioh nechaniems and can be urittenﬂash‘p |

i
. v B} )

/Tp = (1/Tqplgg + (1/T1F)}S‘Bter + (1/T,F)1“tr" + (V/Typdpcs  (2¥-11)

1

_where (1/T1F)SR represents the contribution due to motional

‘ modulation of the spin-rotation interactione, (1/T1F)ACS the

contribution from rotational modulation of anisotropiq chemLcal shift

interactions, and (1/T1F)intra and (1/'1'1 )inter represent the

contributions from motional modulation of intra- and intermolecular

A
1 .

. dipolar interactions. RO o "“fgr” .:-‘ "';~‘

The intramolecular dipole-dipole contribution to the fluorine |

’. relaxation rate is given by [91]

_Jh .

ey
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jintra _ 3 42 2 - 8 2 22 2 \
(1/'1‘1F DD | [E‘YF 5(7370 * 3 Y Yp ) | i—gfilre . (Iv-12)
. . o e

r K ' .

where YF and YD are’ the magnetogyric ratios for 19F and 20; rFF i

the distance bet;een the’ fluorine .atoms in TFB (.466 nm), er is the

distance between a fluorine atom and an adjacent deuterium atom in

J TFB (0 l59 nm), and Te is the reorientational correlation time.

(1/'1‘1 )intra can be estimated accurately from the known molecular | N
dimensione‘of TFB and from the reorientational correlation times |

determined from 2D relﬂkation time meaaurements.‘ (The contribution

“to (1/T1F)1ntra due to interactions between 19 and 2p para;toveaCh

other is neglecfed)l

1

" The intermolecular dipole—dipole contribution to the fluorine

relaxation rate is given by [92]

)
4

o, inter_ ' B
'( 1/T1F')DD = 32. Y 'y?)\ ND/(BHL‘D b) + y?hZNF/(‘lenDr) R e (I‘V—13)\
Iuhere'h“ie'Planck's constant.,ﬁb*and NF‘are the number densitiee'of

2D and 19? in the solution, D ie the sum of the translational ‘ ",‘ fh {

diffusion coefficient D of TFB and the translational diffusion iﬂn-

coefficient of the solvent, r is the effective radius of TFB (0 282

nm). and b is the aum of r and the solvent radius.‘ The first term inh"'

Eq (Iv-13) arises from interactions between 19? on’ TFB and 2D on';»

.

.
. ; S Do D X I : Coemt e C ‘ VoL Ly
o . \ .» J - » LT cn . '




solvent molecules, and is much larger than the second term vhich V-1

\

due to dipolar interactions between 19? nuclei on different TFB

ﬁﬁg\ molecules.' In this woxk the effective radii were taken to be

v

v Table IV-1) of TFB.. In the initial estimates of (1/T

" by {911'f4f'

‘ values o

V.

(3V/4n)1/3, where V is the van der Waals molecular volume [85]" The

intermolecular dipolar contributions to the fluorine relaxation rates

4

i : P

were estimated using the translational diffusion coefficients (See '

inter

approximated as twice the translational diffusion coefficient of TFB,

' and, for all solutions except those in HMPA and DMF at the lower

temperatures, the estimated intermolecular dipolar contributions were

smaller than the experimental errors in 1/T1F Translational

[ o

b diffusion coefficients for HMPA [93] and DMF [94) from the’ literature

were 'used to obtain improved estimates of (1/'1‘".)%)nter for TFB in
these solvents. . L ) o "}- B ‘

The contribution due to motional modulation of anisotropic

| .

chemical shift interactions to the fludrine relaxation'rate is‘given

-

-

-8
A

v

where Ho is the magnitude of the applied magnetic field,‘éz is the

Lhemical shift anisotropy and n is the asymmetry parameter in the

x' YY

. . . ! R N RN
,.’..’ ‘ “ . S

o of the chemical shift tensor by B AT

/T2 )acs = ,(3/1,0)(72%')62.»(1’ f"’u/.,”“e. S A ¢ A R LY

¢

_v’ anisotropic chemical shift.,:az. and n are related to the principal\x S

.

D was "



IR , o 1M1

- ~lo 4o )3 S -
z' . czz '@xx * oyy ?zz)/ ‘ (Iv-15)
» :
Voo ‘
< and "
n
U C AR S ‘)/5 . o ° ' (1V-16)

The values of (1/T1F)pcé were estimated using the principal values
[95] Iyx = 223 pgm, 'Y = 304 ppm, 0,, = 365 ppm and Tg determined

from %p relaxation time qpasurements.
A . '\ :
. The spin*rotational contributron to the 19? relaxation rate ig.
‘ , . \

elated to the angular momentum correlation' time 13, in the limit of

' '

( .\ ’ ) .
:otational dlffuaion, by (42, 96’] '
(1/T >'v = (2k T/3n2)[c2‘i ’4 (c2 + c2)1 JE o |

“4F gi <t ' z /A x " Ty L J (Iv-17)
>

1/4!

' R
whgre Cy Cy, and C, are the principal values of wxn—rotation

- 1nd@raction tgﬁsor, which have values [7] ~7.35 x 165( -1. 48.x 104

.
*

and 72.45 x 193 s~ .respectively, and I// and {l‘arehthe principal

moments of inertia along the molecular symmetry axis and the axis

-perpendicular to the symmetry axis, with values [7) 9.76 x 107 -38 and
. 4.88 x 10 -38 g g cmz. respectively.v The angular momentum correlation

time T is related to the correlation times T/ and T.L for the

couponents of. bhe angular velocity along the molecular symmetry axis

.

and the axis perpondicnlar to the symmetry axis by

t e + '
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[

[

J

R 220 2 2, 2
T [Cz I//T// 4+ (Cx + Cy) xl?l}/lcz I// + (Cx + CY)Il] ‘. (IY“18)

The relative magnitudes of r// and Tl_reflect the‘unisotropy in the
modulation of the angular velocity cowPoneﬂts which is introduced
into the FPL model ([53]. These two correlation times Ty and Tlﬁare
closely related to the viscous drag coefficients of the retardipg
torgques ap?earing in the rotatioﬁal Langevin equation. 1In th; ED
model where only the anisotropy in the momentsiof inertia is taken
into account, the twé correlation times Ty and Tlﬁare assumed to be
equal. |

The values of ;J given in Tabie IvV-1 wereydeterqined from
(1/T1F)SR whiéh was obéained by subtracting the estimatéd values of
(1/T1F)é3tra, (1/T1F)égter, and (1/£1F)ACS from the measured values
of 1/Tqp- It can be seen from Table IV-1 tHat the spin-rotational
contribut{?n, (1/?1F)SR' dominates the fluorine relaxation rate,
1/T 4p+ in most cases.. Howevéf{ in the case of HMPA solution,
(1/T1F)SR is considerably smaller than j/T,F especially at iowet:‘
temperatures. In thig case, the relative contfibution from the spin-
rotation 1nterrctionb increases slowly from 38% at 300K to»82$ at .-
374&- On the éther haqd, the coétributions from the modulation qf
anisottop£¢ chemical shifts and intra- and intermolecular dipé}ar

interactioﬁs are of comparable'magnitude at all temperatures.

It is apparent from Table IV-1 that the-vdlues_ot t 3 are ‘much

<ot
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¢
t

smaller than the values of Tg which means that the conditions for the
rotational diffusion limit.are realized in this work:.: Hence the use
"of Eq- (IV-17) for the determination of T3 is justified. The

uncertainties in Ty are significantly greater than the errors in tg

. because ufthe uncerFainties incurred in eBtimating"1/T1F)éBter and

(V/T4p)acs. ' \

‘ [

4. Discussion

A. Relationship between Tg and 1 4

.

It is appropriate to compare the relationship between Tg and 14
obtained for TFB solutions with that predicted by theoretical models

N

for moleculér rotation in liguids. The reduced correlation times

. | , _ ,
Tg -‘rg(kBT/Ix)1/2 ‘ ) (IV=19)
and

Y
15" = 1 kgt/1) /2 - - (IV-20)

are usedlto facilitatg'easy'cpmpgpiéon between theory And
experiment. In ?ié. Iv-1, the egéerimentalivariation of 16' with TJ.
is shown aloﬁg with the ;hedretical curves fﬁr the EDJ and FPL
models, Tbe couparison, Bull'é‘data‘[Gl in hexachlorobutadiene are

"~ also ahdﬂn in Fig. IV-1. 1In the FPL model, the aniso;:dpy in the

motional modulation of the angdlar velocity components is taken into

\ . ‘



\
Fig. "Iv-1. Reorientational and angular momentum correlation times

for 1,5,5'ﬁr1fluorobenzenehd3 in 0.15 mol fraction

solutions conmpared with FPL (éurve‘ a - T///T.L =5, b -
- » - a 9 - - . \

‘T///TAL 2, ¢ T//ftl ,. a 1///T‘L 0.2}and EDJ

curve (curve e) models.
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‘ ~account in addition to the anisotropy in the moments of inertia, 80

that each curve in Fig. Iv-1 corresponds to a different r///'rl | -
ratio. The. curve for the FPL model with the ratio 1///11_- 1 1is
'almost identical to that for the EDJ model in the limit of rotational
diffusion (19 >> 13), which is consistent with conparisons ‘of the EDJ
and FPL moqels for linear and spherical [56], and asymmetric top ‘
molecules [60]. It is shown in Fig. IV-1 that the experimental
points for most solutions lie between the curves for: the FPL model
‘with T///Ti;= 1'and 1///tl_f 2 except for the solution‘in HMPA;"It
"is clear that the measured correlation times for TFB in the different ' *.;
solvents do not all agree with the predictions of the EDJ model. 1he. |
‘correlation time data does, however, show the Te « 1/’1J behaviour

predicted by the FPL and EDJ models. In the limit tJ' << 19.' the

FPL model [53] predicts the relationship o .

e

19Ty = (3 +3/00 4 ('t'///-tl)]}{cxz v c?+ ’2'(:22('1/‘/‘/1._1_‘0)
Asie? +c 2+ 2¢.2) ", | IA e aav-21)

4
.- -

' so*that the value of the ratio 1///rl_which best fits the - o . 1;~J‘;
experimental data for TFB in a particular solvent can be obtained
.from the average value of 19 tJ for that solution. ‘The values of
‘ t// /v _L obtained are given in Table Iv-z. 'I‘he data for HMPA solutions ,
is inconpatible with the FPL model for all positive values of 't/,/tl

and is incompatible with the EDJ model. ' f "l f : aﬁV‘: éf:n fﬂ'
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' Although the magnitude of the frictional anisotropy, as
. ',.v
characterized by ‘fflﬁi! does not vary over”a large range, it is
clear from the data in Table IV—2 that the ratio 1///1J_generally
decreases with increasing solvent polarity, but there are exceptions
(most notably methylene'chloride and toluene) to this generall
trend. The observation that‘t// 2\Ti;for TFB in most soivents‘is not
unexpected since rotation of the ring about the C,y axis (1//) should
., Create less disruption of neighboring solvent molecules than o ‘ fi!
rotations of the ring about the C2 axes- (tl). Although TFB does. hot’
have a net dipole moment, the C-F bond dipole moments may interact
‘ ﬁﬁth dipole moments on’ neighboring solvent molecules,.and these
‘interactions should retard rotations of the ring about the Cy axis as
well as about the C2 axes. When the solvent moleculesfhave small
dipole moments, molecular shape effects, as reflected by 1// > tl
determine the "friction between solute and solvent molecules. on
. .

_‘the other hand, if the solvent dipole moment 'is large, electrostatic

interactions, as reflected bY T//'v rl_ dominate the frictional o

torques. retarding the rotation‘ofATFB.

B. Relationship betueen te, D and 801ution VIscosity

. .

1 ¢

We now wish to disczss the reorientational correlation times and
‘the translational diffus on coefficients in terms of Eqs. (IV-7) and

(1v-9). In Fig. 1v—2, the reorientational correlation time 19 is

o

ieplotted against>n/T for TFB solutions in representative solvents. It

his shown in Fig. Iv-2 that 19 varies reasonably linearly with n/T.- { ¢¢;7fr

t"‘,
S



Fig.

Iv-2.

Viscosity-temperature depéndence of reorientational

.correlation tinmes’ for 1 3 S-trifluorobenzene in 0.15 mol

N \ .
fractlon solutions.. A- acetonitrile, @- chloroform, D—‘

methanol, B - tetrachloroethylene. Lines correspond to

“" | —~ |
1 -« = 0ﬂ27;‘1° = 0.48; 2 -k =0.23, 1, = 0.22;.3 - ¢ =

7 ——

0.20, T, = 0.24; 4 - x'= 0.16, 1, = 0.52.
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The datefwere fit‘to Eq. (IV-7) and the values of the'intercept.mo
‘and the anisotropiclinteraction parameter”k which were obtained from

;the 1east squares analysis, using an effective hydrodynamic radius of

' 0.282 nm, are given in Thble IV-2. K has significant dependence on

the solvent as found in earlier studies 8- 13] This is reflected by'

\\‘

"the difference in the slopes of the lines for different solvents as

' ‘.,

'shown in Fig..IV-Z. Eor the*calculation of K from the slope of the
plot of 1g versus n/T, a reasonable value of the fadius of TFB is

required. There are several methods.to'determine the molecular

‘radius. - One method As to deterimine the effective radius from the van'

~

der Waals volume of a molecule, which was suggested by Edward [85]

: In this method. the molecular volume is estimated by summing up the 3

,contributions from the atoms or groups of the molecule using the

increments for the various atoms or groups which have been tabulatedr

_ by Bondi (97] and Edward [85]. The van der Waals ‘radius of TFB was

estimatedfto be 0.282 nm.: Another method which may be used to

estimate-the molecular radius is;to,use the theoretical éxpression .

A

[

et

Crde /e 32 A3 s a2 - pean W7, T (a2

gg;uhere'the,dimensionless structure factor, Ai; is given by -

A2 2’/’ B R € o £
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This ekpression has beenxobtatned'for,a spheroidal particle with
.‘semiaxes r, < ry =“ry which undereoes rotational'diffhsion mOtion(
An effective radius of 0.291 nm was calculated‘from Eq (IV—22),'
'using x, = 0 185 nm and. rx = 0.347 nm which were estimated from the
'corresponding values for the benzene)ring [98] and by taking Ainto,

. -

account the difference between the C-H and C-F bond 1engths. These

values of r agree closely with the effective radius of - CGFG (0. 280 - |

nm) which has been determined by Sawyer et al [89] for close-packed\'

7 -

spheres at;the melting point, assuming CeFeg to be a spherical
: molecule. The Stokes-Einstein equation [Eq (IV—9)) can be also used

‘to estiMate the effective radiue of a molecule from its tranelat%onal'
ydiffusion coefficient as mentioned earlier. We examined the {

‘n applicability of this equation to our moledﬁlar system using the |
measured valuee of . the translational‘diffusion coefficient, D, and’ . v
the solution viscosity, U at‘various temperetures..‘It was found -

o

" that the values of the effective radius of TFB determined from the

<

‘Stokes-Einstein equation were in .the range 0. 16 to. 0. 21 nm (see rD

;given in Table IV-2) and that these values were significsntly smaller l'iy“'
ithan those determined from the van der Waals volume or Eq (IV-22) ‘
”irAOn the basis of the assumption that the size of TFB is very close to
‘that of C6F6' the value of the effective radius of TFB estimated from
the van der Waals volume or Eq (IV-22) seem to be‘gg£2~reasonab1e |

’ wthan that determined from the Stokes-Einstein equation.; This implies

"that the Stokes-Einstein equation derived for the hydrodynamic fluid

I -
S gy ' : e
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‘with the stick" boundary condition is probably not applicable to our
molecular system, since the translational friction coefficient for .
casesg intermediate between slip and. stick" boundary conditions

‘will be smaller than the stick" limit Therefore we have not used

‘the Stokes-Einstein equation for the estimation of the effective
'radius of TFB.‘ Instead we have used’ the van der Waals radius [85]

of 0 285 nm for the effective radius, r, in Eq (IV—7) to determine

¢ o
¢

K‘- o’ : : : o . ' : .
e K I . b

"' "PFriom TahlevIV—2,'oneQCan see that the values of k lie in-the

range 0.f6 to 0.32. These values are relatively small compared to 1

(the stick" hydrodynamic case), which means that TFB experiences

‘ relatively weak anisotropic intermolecular interactions An the )

|

Lsolvents studied in this work, and the boundary conditions

appropriate to these solute-solvent systems lie closer to slip“ than

to stick" This result is compatible with the previous finding that

-the Stokes-Einstein equation for the translational motion, based on

- the hydrodynamic ‘stick" boundary condition, is not applicable to our -

’

-solutersolvent systems. ~" o o o e 5 'J>
The variation of X with solvent may be’ correlated with some,

‘ properties of solvents (see Table IV-2).‘ Hwang et al. [9] have ‘

L‘determined r for dilute solutions of vanadyl acetylacetonate in

l

iVarious organic solvents and the values of « obtained were in the
j range 0 48 to 0 85-\ They have analyzed the variation of K- in terms
L@

of the effects of solvent size and solvent dipole moment,land found

that. in general. x decreases with solvent size and increases'with




©.Bolvent dipole‘moment- In this work, we tried to correlate the "'J

variation in K with the molecular volumes (van der Waals volumes

4'.:
s

(85]).0 the solvent molecules which are given in Table IV-Z. It is
very difficult to find a definite correlation between them This
might be due to the fact that the. difference in the molecular volumes

of the solute molecule (0.0942 nm ) and the solvent molecules is not

large and individnal BOlvents have quite different dipole moments 80

that solvent polqrity is more important then solvent size. In order

to investigate the effect of solvent size on K using the Wirtz theory

i

[66], we hsve computed the values of‘(w.defined in.Eq.w(IV-S) fOr‘thel

solute-solvent systems studied in this work and the results“ere.“
k . X c 2 . . o

included'in Table IV-Z: It. can/pe seen from Table IV—2 that as a

whole, xw and x are of comparable magnitude except for the cases of

‘the solvents with high dipole moment.- In highly polar solvents, K is‘

considerably larger than ‘w ‘This xesult indicatesfthat the wirtz%

theory msy account‘for the .observed variations 4in Kk in non-polar
. /_' . , . . ‘ . .

solvents, where molecular.’sizé effects are dominant, but it does not. -

work well in polar'solvents Qhere strong electrostatic(intermoleculsr

"" 1

“intersétiohg,dbminateL éecondlv;‘ve‘tried,to correlate the variation:

\ . . “

- in K witb the dipole momernts of the solvent molecules, since the ease

" of reorientation of the C—F bond dipole moments is. expected to‘

< .

-reflect the strength of the anisotroPic interactions between TPB and'r

nearby solvent molecules.. From Table 1v-2, it can ‘be: seen that K

: generally increases with the dipole moment of solvent moleculeslt.ﬂ

[

'rhis result is coupatible with the resu].ts of others [9-121

;i

'S
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- An interesting anomaly is the solution of TFB in toluéne, a

planar aromatic mdlecule. Since the dipole moment of toluene is very
low, one might expecc ‘a small value of x like that for the solvent
tetrachloroethylene- However, the value of x for toluene is

relatively high and similar to that for the polar solvent methanol.

“ ~

This unusual tgfult may indicate a specific interaction between
. l \ ‘ . .
aromatic solute molecule and aromatic solvent molecule. - Hwang et al

+found that x for vanadylacetylacetonate in toluene was much smaller

RPAY : , ' :
X%han the value in chloroform, while we observe almost the same values

of x for TFB in these solvents.
- It is interesting to note that the frictional anisotropy T///il

deéreaseq with 1ncreasing K - This can be rationallzed by recognizing

B
¢

that for smaller x, where interactions are weak, "molecular shape”.
effects ﬁake the larger contribution to the anisotropy of the

intermolecular potential and rotation of the benzene ring about the

&

C3 uxis is less hindered than rotation ‘about the C, axes. On é%e &
3
.
other hand, when electrostatic interactlons between bond . dipoles on

solute and eolvent molecules make sigﬁificant contributions‘to the
I ('x ) “ ) R
enisotrOpy of the 1ntermolecu1ar potential, x is larger- In .this

case, the difference between 1// and Tl-is smaller because rotations
abeut e C3 ana: Cz axes, all of which involve motion of a C-F bond
A @D

dipole. are retarded by~the electrostatic solvent-solute-

interactions. b . . .

e L. ) S
Several investigators [21-25,78) have found that the zero

,v§§¢031;y 1n;ercept T, might Se}essoéiated'with the free rotor

e
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correlation time [see Eq. (IV-8)]. We have cgmpared the values of To

with the values of TER in the temperature range studied in this work

4

. . / ~
and found that the calculated values of T#R (0.8 ~ 0.9 psec) were

/

somewhat higher than phe values of<ma, b#t were‘of-compérable
magnitude ekéept for the cases of DMF qﬁd HMPA. In those tw; bases,
the values of t, were found to be negaéive. We cagnot explAin the
negative values of T, but it should be noted that the intercept To
isinot the "true" zero xiscoaity value of tg, but an ext;apqlntion of
Tg from the region of relatively high viscosity, where retarding » b
torques and intermolecular torques are important, to the lgmit of
zero Yiscosity where inertial rﬁtational motion 13_1mportant. Si;ce
negative valueé of ©, are not allowed theoretically, we performed
least squares analyses in‘whicﬁ o was‘respricted‘to positive, values "
but obtained values for x which were similar to tﬁose given i; Table
. IV-2. We also fit the experimental data to Bq. (IV-7) with 1 _
replaced by TER [§9' (IV-B)] and oﬁtained the values for ¢ (denoéed
KER) w#iéh are giveq in Table IV-2. One can see that < pRr 18 slightly
smaller than x, but the general variation with solvent is not changed
significantly. |

It is usefpl to calculéte the stickiness facﬁor, S, defined in

Eq. (IV-6) td iﬁvestigate the contribution from non—geometric&l
aniéotrop;c interactions to the rot@tional rélaxatioﬁ. The parameter
f,'which is theAratio of the rotational fr;éﬁion coefficients
appropriate to thé‘"slip"ana "stick” boundary conéi£ions, has been

computed by Hu and Zwanzig (76), and represents a measure of the

faand



geometrical contribution to the total anisotropic intermolecular

, interaction. Uaingvds = 0.370 nm and dLﬂ= 0.694 nm, one estimates a

value ofv0.22,for f [76];0 We have calculated the stickiness factor
for the solute-solvent systems studied in this work and the results
qre given in Table Iv-2. VAccording to the definition of the

stickiness fector, its ‘lower limit corresponding tox = 0 i8 ~-0.28

and its upper 1imit corre8ponding tox = 1 is 1 for TFB.' fTbe\values

" N\
b

of the stickiness factor 'in Table IV-2 are close to the lower
(9

"1imit.. This means that all the solute-solvent systems of this work
lie cIo;é'to the "slip"™ boundary condition. and the, contribution from

non-geometric anisotropic interactions to the rotational relaxation

is not large.

5. CONCLUSION

L

The rotetional motion of TFB in various solvents has been
etudied'by nuclear relaxation measurehents. The re-
;orientetionel correlationAtime of this\symmetric to? moiecule nas
‘been described by Eq. (1V-7) wnich invoireé the anisotropic

interaction perameter,trl _The variation in x with the solvent was

PEENY
[

due mainly to. the difference in the dipole moments of- various

eolventa and the effect of the solvent size relative to the solute
—= '

size was not significant in the range of solvent'molecular size

. " i o, . -
athdied in this work.' Ooupardson of the experimental relationship
between the reorientational and angular momentum correlation times

' with those predicted by the EDJ and FPL models showed that the

@ ’ (.



: ‘ , v 12e

- ‘ {

! ®

rotati%nal motion of TFB was well described by the FPL model, but not
by the EDJ model. The frictional anisotropy was not large, but was
' , .

shown to\vary significantly with solvent polafity.\
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CHAPTER V

GENERAL stcussrdN
' L /é’ﬁ .
{f/

ln this‘thesis, the theoretical fornulation or the‘FfL model
[1 8] for the rotational dynamics of asymmetric top molecules in
liquids and applications of the FPL: [8] and EDJ {9, 10] models to
-symmetric and asymmetric top molecules have been presented.
The FPL model is a frictional model in which the molecules ‘“

experience ‘some intermolecular torques at all times ‘and the

fluctuations in the intermolecular torques %fe relatively weak 80 -
“that a large number of fluctuations in the torques are required to

bring about a aubstantial change in the angular velocity of the

molecule. ‘In the EDJ model, on the other hand, the moleculeslare
assumed to rotate freely except during instantaneous "collisions",
land eaqh collision causes a large random change in the angular

‘ jmomentum of the molecule: In addition, for symmetric and asymmetric ‘
top molecules a new feature has been intrqduced into the FPL mgdel.‘i

e

the anisotrqpy in the motional modnlation of the angular velocity

. ‘f !
‘ components which is referred to as frictional anisotropy. Numericalg

‘m . %

fcalculations of the FPL reorientational correlation functions,

';vﬁcotrelation times and epin-rotation functions have shown that these

. v

'fylproperties are sensitive to the frictional anisotropy.. s

PRSP A
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wdescribed 'in terms of the FPL model by incorporating frictional

“,anf%otropy than in terms of the EDJ model.‘ The degree of frictional

to the molecular dipole moment. .In the case of the other asymmetriC' !
-: top molecule, c102 [12], the experimental ESR linewidths in several .
s solvents have been conpared with the ESR linewidths predicted by theh

‘,'gFPL model., It wus found that the agreement between theory and

© 136 ¢

From the couparison of the reorientational correlation times and
N
spin-rotation functions computed using the FPL model for the case 'of -

0
v

f‘ an~isotropic friction tensor with the corresponding correlation times

4

and. functions computed using the EDJ model, it was found that the
predictions of the two. models were almost identical in the limit of

rotational diffusion although the basic physical pictures in the FPL

and EDJ models are very different. However, the two models were

'found to predict significantly different behavior in the region wherel

free rotation and precessional effects become important. ‘ o R

The applications of the FPL and EQJ models to the asymmetric top

N
&

molecules fluorobenzene—ds and.chlorine dioxide have been presented

in Chapter III. . The theoretical relationships between the'

reorientational correlation times and the angular momentum

correlation times have been compared with the experimental results

obtained from the nuclear relaxation studies of ' C605F neat liquid ;

[11] It was found that the rotational motion of Ceogé is better'

e,

ﬂanisotropy was found to be’ considerable and largely determined by

“"molecular shape effects rather than by electrostatic interactions due “

experiment was gqod in strongly interacting solvents, but the

'." e » M P

2 Ly, ‘

J



¥
B

agreement was poor in very weakly interacting solvents. It mst be

’

noted, hovever, that in very weakly interacting solvents, the angular
momentum correlation times obtained from the FPL model fit of the

observed linewidth data were: long (1' > 1), and that the validity of

[

‘& the FPL model is questionable in this region.

The application of the EDJ and FPL models to the description of
‘rotational motion of 1 3 5—trifluorobenzene~d3 (TFB), a symmetric top
.molecule, has been- presented in Chapter Iv. The theoretical

4 relationships between the reorientational correlation times and the
(”AA

angular momentum correlation times predicted by the two ‘models have

\
'

‘been compared with the relationship between the correlation times

1

obtained from nuclear relaxation ‘studies of 0. 15 mole fraction

solutions of TFB in various solvents.‘ ‘It was found that the

rotational motion of this symmetric top molecule in most solutions

~

was well described in terms of the FPL model with frictional'

anisotropy, as reflected by 1./&1, in the range 1 to 2 (1. and Ti are
the correlation times for the angular velocity components along the "

L axes parallel to and perpendicular to the molecular symmetry axis).,‘y

on the other hand, the observed variations of the reorientational

' ‘ e \ R

correlation times with the angular momentum correlation times in mostfi

'

: [‘solutions did not agree with the predictions of the EDJ model,‘, N

l_‘although the correlation time data shOWed the inverse proportionality‘fi"“

Vo

fqbetween the reotientational correlation times and the angular

n

‘:momentum correlation times predicted by the BDJ model.‘ This result ,"

a

‘fﬂ‘ﬂand the result“from the application to the astmetric t0p molecule,x

I
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N . " 0 ,
' [ [ . \

GDSF indicate that the effect ‘of . frictional~anisotropy is important
in the description of the rotational motion of symmetric and '

‘ asymmetric top molecules.

The viscosity and temperature dependence of the reorientational
corselation times of TFB in various solvents ‘has - been analyzed in
AN . ‘
' of a modified Debye equation (13—19] The values of the'

n, parameter, x.[12,20}, were found to be S ,

relatively small conpared to 1 (the stick" hydrodynamic case),‘which

conditions approoriate to these solute-solvent‘systems lie closer to o . \,}
N, L
slip than to stick“ The anisotropic inthraction parameter, K, of | BERRRY
i N N ) . . . .
;TFB shows significant dependence on the solvent. Thie‘solvent‘
'[dependence of x has been analyzed‘in terms g?isolvent siee;andn’

——

solvent dipole moment and it was,found that thé'variation of x With' v“j‘l L

5

‘ solvent was attributed mainly to the variation in the dipole ‘moment :
L ‘ ‘ : &

of the solvent molecales. ence one may conclude that the solvent

-.dipole moment is a decisive‘factor for determining x when the squte

[

.land the solvent are’ of comparable size‘for a given solute..i‘

It was found that the degree of frictional anisotropy generallyf3

P
b

' decreased as x and the solvent dipole moment increasedq. This was

‘¢ i

‘ interpreted in terms of the effects of molecular shape of TFB and
o ’ i
Q'electrostatic interactions between c-P bond dipole moments and Yo

"y

solvent dipole moments.g When the solvent dipole moment is emall, 3 ﬂl-»

»

molecular shape effects make a large contribution to the anisotropyld

1



.

of theliﬁtermolecular potential and rotation of the benzene ring

about the C3 axis (t.)‘is less hindered than rotation of the ring
, . ' \

- about the Cz‘axis (TL)dbo that Ty ? JE Ori ‘the other hand, when the

o

' Bolvent dipole moment is large, electrostatic interactions between

bond dipoles on solute and solvent molecules make significant cont~

y%ibutions to the anisotropy of the intermolecular potential and both
rotations about Cy and C, axes involving mdtioﬁ of the C-F bond d4i~

pole are retarded by the electrostatic interactions so that Ty~ Ty

139.



140

References
—_——n =T

1. M. Fixman and K. Rider, J. Chem. Phys. 51 (1969) 2425.
) ' )
2. P.§. Hubbarg, Ph}s. Rev. A6 (1972) 2421. e
3. P.S. Hubbard, Fhys. Rev. AB (1974) 1429.
m 4. G.f. Evans, J. Chem. Phys. 65 (1976) 3050. ‘ y
5. G.T. Evans, J. Chem. Phys. 67 (1977) 2911.
?- J.é. Powles ghd G. Rickayzen, Mol. P£ys. 33 (1975) 1207.
\Yc R.E.D. McClung, J. Chem. Pﬁys. 73 (1980) 2435.'
83\\?.E.D. Qcclung, J. Chem. Phys. 75 (1981) 5503.
9.  R.E.D. McClung, J. Chem. Phys. 57 (1972) 5478. K s

P

10. T.E. Bull, J. Chem. Phys. 81 (1984) 3181.

11. R.A. Assink and J. Jgﬁas,'J. Chem. Phys. 57 (1972) 3329.

12. R.E.D. McClung and’D. Kivelson, J. Ghem. Phys. 49 (1968) 3380.

13. G.R., Alms, D.R. Bauer, J.Il Brauman, and R. Pecora, J. Chem.
Phys. 58 (1973) 5570. |

14. G.R. Alms, D.R. Bauer, J.I. Brauman, and R. Pecora, J.>Chem.
Phys. 59 (1973) 5310.

15. b.R. quer, G.R. Alms, J.I. Brauman, and‘R. Pecora, J. Chem.
Phys. 61 (1974) 2255. | |

16. D.R. Bauer, J.I. Brauman, and R. Pecora, J. Am. Chem. Soc. 96

"\

(1974) 6840.

.

%

17. G.D.J. Phillies and D. Kivelson, J. Chem. Phys. 71 (1979) 2575.

18. D. Kivelson and P.A. Madden, Ann. Rev. Phys. Chem. 31 (1980) .
. ’ : . - . [ i .o . ‘.
5230 . ' » . . :



Y141

w ! ‘ -+
19. M. Fury and J. Jonas, J. Chem. Phys. 65 (1976) 2206.

~

20. D. Kivelson, M.G. Kivelson, and I. Oppenheim, J. Chem. Phys. 52

(1970) 1810.



APPENDIX I
EbJ MODEL FOR ASYMMETRIC TOP'MOLECOLES

Bull [1) and leicknam et al. (2] have discussed the EDJ model
for asymmetrlc top molecules. Bull's results have been used'ln‘
Chapters II and I1I of this thesis, so it is appropriate to give ~

‘._ . . ' '
Qrief derivations of these important results in this appendix.

4
~

A. EDJ reorientational correlation times

In the EDJ model, we can”define.a general diffusion trajectory

by defining the angular momentum vectors 3y, Iy, J3,---.J, of the -

molecule during the n successive diffuelve steps, and the timec
t1, tz,“t3;L..,tn_1‘at whichveach "collision®™ occurs. Suppose that
at time zero, the molecular frame (the principal coordinate ayatem)
is related to the laboratory frame by the Euler angles Q The

angular mome ntum vector J, is flxed An space,and its orientation is

‘described by the Euler anqlgs Q1 with respect to the molecular frame:

R

at time zero. ' We can construct a "J" frame in which the z axis liea“-

elbng the direction of the angular'mombhtumavector. 'Durlng
0< t< ty, the tranaformation from the “J“ frame to the, molecular
frame is’given by D(j)[AQ(t)], Where AQ () represents the Euler

angles which describe the,reorientation of the;molbcule dnring the_

o

first diftusive‘step.l Hence, for the -first step, the.transformation

I8 o
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v

“from the laboratory frame to the molecular frame is given by

o)), - 03 ) 0y b3 ag(e)) . . (ar=n)

\ . ' \ .
A
At the first collision (time t1) the angular momentum 1is randomized

and its orientation with respect to the molecular frame at time t1 is

specified by the Euler angles Qz. During the second diffusive step,

" the transformation from the "J" frame to the molecular frame is.

described by D(j)[AQ(t-t1)). Hence the transformation from the
laboratory frame to the molecular frame is given by
o, = 0P p ) 03 R ) b)) )y, p(3) a0 (t-t ;.

4

 (AI-2)
K _ ‘ ) ‘ (
This process continues and the general transformation relating R

the laboratory conponents of a spherical tensor of rank j to its

‘components in the molecular frame during the n~th diffusive step will
. , .
be given by . , ' “

5

j=1

D(j)[Q(t)] n = n‘j’to ol H {nﬁ’m ] D(j)[AQ(ti-ti 1)]} . (a1-3)

[

-y R S .
- . . .
' i3

-

. In this equation, we have made the identifications t, = 0 and t, =t

In order to calculate the reorientational correlation times, we

- must evaluate the ensemble average <Dmg’[Q°] DhQZIQ(t)]>. This

ensemble average ie over all possible trajectories and must involve

AT ‘. P
o

AT,
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d | o . T S TP

averages over (i) the number of "collisions" ekperienced by the

molecule up to time t, (ii)‘the times at'whichAthe "collisions"”

vy

‘occurred, (iii) the angular momentum in each diffusive step, and (iv)
the, initial molecular orientation. e“f‘ ‘ o . -

The probability that a molecule undergoee n—1 "colliaions .

[ e

between time zero and time t, on the time Antervals t1 to t+dt,, t,

to t2+dt2""'Fn-1 to tn—1+dtn—1' is
g ltq tpeeuty g1 t] = dtjat,...dr ) 130D exp(-t/1;).  (AI-4)

‘with an average time T3 between "coilisions". Therefore

v Jppe

bt

o popiliewn - ‘ .
" ”1~ t tn-1 | t2
¥ 13("- ) eXP(-t/tJ)-& dth_1£ dt'n_z...g‘ at,
n=1 o ‘ . ‘ -
.ox o) ol e > : L (ars)
" Here D(j)[Q(t)]n is given by'Ed.:(AI-3),.end one obtains ,
ofd w1 oflrwy - ] <ngg“’fm°)o,f,gh‘95i'>%.
o . ‘ . L a‘i'_'.an B . )
L ox <{D(j)[° nl D(”MQ(t,',-tn_1)'l'),.k.>,, e 7 (AT=6)
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- The subscripted bfackets denote'ensemble averages over the variables

indicated.
The ensemhle average over the initial orientation Q, is

L independent of all other averages and, 'in the. absence of any strong

e
V'

applied purturbations, all orientatione are equally probable so that

R 3

,<Dm2) R o] p(j)m ]> = (23+'1)-16k’;1 . R (AI-7)

Hence the reorientational correlation function Gkﬂ)(t) is given by -

i . ()% | p3) SN | a
,<D D (t)1>
()(e) = Tmk B ] Rer) . o
Oxk? (j) : :
<|D ‘R ]| > L B .
. E o N ' .. v,
. ne . .
: Z T3 exp(-t/t ;) £ a__, ... J “at,
n=1 .
S 1 s e an
% 6 | m <{pld) p3)aQ(r, - ‘ C e
*b,a, L {pi27@y) o0 iag ey ti-0aa, oay

o az...an‘i=1 . S o ' : :
R ‘ n S - (AI;Bk‘-

- | ‘ /
\The reorientational correlation time, which is the zero frequency

K Fourier traneform of reorientational correlation function, is given

R . . . o . "_ . . Wt a
b . N R . . . M D ‘. .. [ N N
' T T I TR D . :
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—

N .
\;};ﬁ-‘ -

| ‘ | . C o | ‘ - ’
xbyx 8. Lm0, o) aa(t; -e : e
°k,a, . ;g;a i { i) _ i 1‘1]}a1a1+1 3 N
2 n. . i ! a oy
C : ‘ : Co L v o)
e (‘ { 5. " n o ‘ o
= Z TJ.n. ) kra1 : 2 ! \f'd(‘ti-ti’q)‘
n=1 B a .. an i=1 ¢ eals

<(D(j)[Q ] D(J)[AQ(ti-ti 1]}5131 1J GXP{ (ti ti 1)/TJ} . v‘,“

(AI 9)

{+

If we introducé‘Akk. which is aefiﬂed‘as
Pyye = {"ch {op'3@) o3 pe (v) 1) kk*2g'exp(=t/15) 1 a1-10)

then Tgkk! can be written as

“4

J

. 'kk,' = b, " ) l ' l . 1N ’ A -
Ta e S Akkl + T ):‘ AkazAazk' & 2 X AAkaz Za3 3)(' + ’. .o
3,52 S s Ty ayay _

‘ . J ".. ' N - o JE ‘. ‘l".‘
 ‘~where 1 is the unit matrix, s;nce the series in Eq (AI-9) is a L
"geometric series. Eq. (AI~9) is the result used in Eqs. (11-51) and

7(111—6) of Chapters 1 ana 111.v,i.7
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B. KDJ‘spin-rotationnl'relhxation‘
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'

The spin—rotation 1nteraction is’ described by Eq. (}¥e31).. Thig .
. N '

Hapiltonian can be written as

Hgr = L0, CxSy * IywyCySy + Tw,Cp8, . 0 (AI-12)

\

where wx' ”y' and(nz are not in reduced units..

- | T T p
Hsr ™ (Seqeq + S_q_1) (3T0, - 2hCy) * Sgwo 16 -

\

terms of these irreducible tensor qomponents, HSR can be rewritten as‘ o

When w and s are expressed in terms of spherical tensor‘

conponents, then one obtains
. * t . . .

. K . 1 ' th . : . * .
* Syt Sy (- FLC, - STC) . B ~ (a1-13)

We can construct the irreducible spherical tensors, TLk' from the

o

productofs.andm[3] I S ‘{\}

Tik - i' c(11L; k“ k-k ¥ Sk.mk_kf;‘, o S “(51-14) N
T where C(11L; k" k-k . k) are the Clebsch-Gordsn coefficnets.tlin‘ o

At

:nén‘#n z o1, cﬁL’ T o s




1
x2° = U

p —~
N
~
]

xCx = IyCy)/1,

g
A4
N
- g
)

0 "‘__G_[I'ZCZ’ = (10 + I cy)]/I

0) _ ~V o . ) "»f ' o ‘ * ‘
-C((, ) = ,,—E[Ixcx ‘+ ;ycy + 1,C,)1/1, . . ‘ (A1-16)

No other spherical tensor conponents are involved in'the spin-

rotation interaction.

From ‘Eq. (AI-14) and Eq. (AI-15),

Hgg = r..I, {1 C(11L, XY, kek’ L KIS s - (AI-17)
R WY Sk - : :

~

: Since's is quantized in the laboratory coordinate system, it is

~

convenient to transform Sx+ into the corresponding components Sn in

o

. the laboratory coordinate system as follows

"Spy = I 8 D(”[Q(t)] oL (aT=18)
L . m = ‘ .'-' v ' o o . ‘. . _ !

t .
i

'..where;lﬂ1)[9(t)] is the transformation from laboratory to molecularH

frames at time t during the n-th diffusive step and is given by Eq.

A N . v
[ | [

o S B A RECE Do
A T A A

(AI—3)

From Eq tai;17)jana¥zq;‘(Aiﬁ1a)fwg&d‘f~¢(“f T L

o Y
‘(

| Hsg=£Sm % “’ln(t)]n 1,_ c,‘}" cnu.; k" k~k'» ):)mk k

e




‘-. I Sm vm“(t)“’ ‘ \ . : oo S ' § ‘ ‘ (AI-’Q) :
m’ ‘ : S '

In order to determine the spin-rotational relaxation rate, we
nust evaluate the ensemble average <v (t)v (0)>. In the ED model

each colliaion randomizes the angular ‘momentum. Hence we need"to

~“consider_the ensemble average only for “the first diffusive step (1 e.

\
n=1 ‘in Eq. (AI 18) and Eq (AI—3)) 80 that V (t) becomes

Yu(e) =z il Rer]y 1, ofR) cOriLs k', K-K') k) wy_yo

= (Mg M, oM e,

L, k,k’
: *x 1, o) cms k' kK, k) wgke
= . (Mg, o“’[Q 11 g xk!mm:n
' L2.L,k, k' o
1, ¢ G(11L; K, Kk K ws o (ATe20)
‘ zk 3 o ., ik I' ) k.-k' ) ‘ » )
The conponents of the angular velocity in the molecular u"

i
W

' coordinatw system are given by

‘,, .
PR

o fi- a1—-ng‘llan(t)1( -+ —-a +3 ng‘lixAQ(t)J (-—--“——4

1149,
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where J is the magnitude of the nnguler momentum. ~Note that
,{ b (2 (t)} b1} L. iae(e)) . o

= I COUN; fat)c(1ms k', k-k', k) pfMsace)) . (a1-22)
N S o .' - B ‘

"-and

[

z C1IL; k') k-k*, k) C(1IN; k" k-k', k) = 6NL . . .(AI-23)
k' ) . ' ‘ ‘ o B .

Using ‘Bgs. (AI-20), (AI-21), (AI-22), and (AI-23), one obtains

‘ . \ o ’ ) ' . o S | s
Vo) = (1) (M. | Lyl zyz
L IR C R CI L AL Y R )

p 2 . . , L,K x b4

x C(11L; xmz)ln){“mmt)]
“‘.' - I o o ! ' o .

+m - 25 e k, o, k) Dé”lAQ(t)] D‘”IAQM] S
.Y ‘ . ’ |

-

TE‘-" I cuu.; Kt k-k"' k) D‘() k._k[AQ(t)] Dﬂ? [AQ(tH)

Ler e ey o B e asee
T i 7 T

'*T>: Here we have defined WéL)(t) to represent the time dependent P&rt-q ARG




¢ ,
Vo (t) va(0)> = 1 -‘<(D“’m ) o"’m,n {n(”mo;;nﬁ’).m,n;&o{
' ' ' 1,1' ! ‘ E o
o x op g c“‘ ” w,{”(c) wko)® (0)> exp (- n/rJ)
. L,L' kP \ ‘
L) 1 - . ' A‘ . ' ' B N
3 Lz cﬁL?xgéL‘)f il () w}é * (0> exp (~t/t5)  ©
/Q- 'lk,l‘p ’ PR ' ‘ ' . v ' PR
‘ (A1-25)
‘He}ncv‘:e‘t.k‘le s‘pin;rota‘t‘ional‘ con_t:ribdfién to t:yhe' spin x:eyléxation ﬁime~ is
1 . | AI:“' h

ér;

35-5° wWie) v, (0)>ae

N

n

£ c(L) céL > J z <qéL)(t) q}L )*(0)> exp(—t/TJ)dt
3" L,L',k,p- | _ .

= 22 %3 iz kgT L CéL) CéL ” F(LPL' . (A1-26)
3K L.L',k,p : - ’ ‘ ‘

-~

' b b

where - Fk"f;"'v ) are-spin-rotation factors defv‘in‘e'dl as

‘7.

F,g%‘*f" - ('tJI kBT) J"’ x <W(L)(t) wx‘L y (0)> exp(-t/'tJ) dt .

il .

: e e P , ' 7]}2 1"‘;'.-: e e (51-27)
e ‘ , R
W ';nq (u-zs) 13 the result used in I-Jqs- (n~53) and (III-B) in R
 fijchapters II ananII.ﬂl - f_ ,ﬁf ;='f1  ‘ 'l'  ff3,,}"“' X“T E
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"\ APPENDIX II

“

INSTRUMENTATION FOR NMR EXPERIMENTS
a .
Nuclear spin relaxation times and translational diffusion
ceefficienta were measured using a Bruker SXP 4-100 pulsed NMR
‘ 1 N
spectrometer. This sgectrometer is operated under the control of a

Nicolet 1180 minicomputer along with a Nicolet '293a pulse
. .43

?ent radio frequency (rf) channels

1

programmer. It has four 1nd_

“*which can be gated on or off byithe Nicolet 293A pulse programmer.

*
The phase of the rf pulse can be adjusted independently in each of

the four chaﬁnela. Tunlnq tge'egectrometer to tﬁe reduired operating
frequency is carried ‘out by adjusting two variable capacitors on ‘the
~ngh power amplifier and on the NMR probe-arm. The signal detection
part of the spectrometer consists of a preamplifier, an rf filter"'
with adjustable bandwidth (0.1-100 kHz), and a detector which can be
operated in phaae'sensitive‘or diode detection mode. when it is .

operated in the'diqdé detection mode, the detector‘gives a signal
’~ ' ) v . .. ' '
which is proportional to-the square root of the sum of ‘the squares of

d—

éhe‘absorption and dispersidh signale. The Bignal in the diode

detection mode{is not affected by moderate changes in magnetic field
o
or operating frequency. Phase sensitive détection mode ‘has the

.advantage of Iinearity'of respohse(gper the full dynadic renge-of tﬁe
detector and better signa}-to-nqise ratio, particularly at low signal

.intensities.‘ B s A

2 N N .' . " .
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The pulse lengths correaponding to 90° and 180‘ tip angles were
determined by adjusting control knobs on the Nicolet 1180
minicomputer. Using a [pulse-aoquire—wait] asguence, the diode- o

C

detected signal should be a maximum for a 90° pulse and it should be
l“‘t "
a minimum for a 180° pulse. The spectrometer was tuned before

determination of the pulse lengths. In the experiments requiring rf

pulses of different phases, the relative phases of the pulseé on each

pulse channel were adjusted manually by observing the FID in the
| ¢

r

phase sensitive detection mode gftér a 90° pulse.
Thé temperature of the sample was cqntrolled by a Bruker B-ST

temperature contr61 unit which controlled tge sample temperature to

+0.5 K. A Dor;c Tfendicator 400 digiﬁal‘thermometer with a copger—

" constantan thermocouple was used to measure the temperature. The

sanple was allowed to equilibrate at each temperature for 15-20

minutes after inserting it into the probe.

A. Measurement of T,

VT; measurgments'were made using the 180°-¢~90° pulse sequence.
This pulsé.sehuence can be représented by [180°— -90°]-aamp1e-wa1t—
[180°—(‘t° + A)490°]-sampl;-wait;[180°-(1° + 2A)-90°],..,‘Qheré To and |
A are the iﬁitial delay and,%ﬁe inctemegt to the délay, ‘
respectively.. The "Qait" time is five times thb‘approximate T,

value. Eypfcally about ten t'values were used such that %t 1_'

3T4. The initial value To Was chosen as 0.8 times: the apptoxima e T,y

'.value. The FID after the 90° Rulse was detected in the diode

. P S ' P . " . . e
) . ' . . )

~
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detection mode and digitized. The intensity of the magnetization,

M{t), was determined by integratfng he initial Shrt of the FID. The

total acquisition time for the compllete FID was in the range of 10-~40
ms . The'aignai intensity M(t) was fit to

M(t) = Ay + By exp(~T/T;) (A1I~1)

" using a non-linear least squares analysis algorithm [1} with Ai, By,

and T, as variable parameters. The computer program wass designed to
make repetitive T4 measurements and to ccalculate the variance and the
standard deviation. The diode detection mode was used for‘signal

2 .
acquisition since it was insensitive to moderate varidtions in the

magnetic field over the period of time required to carry out the

JLepetitive T, measurements.

B. Meagurement of translational diffusion coefficients

The translational diffusion-coefficiénté of TFB in various

solvents were mgaéured by~the stationary field gradient spin echo

techniqﬁe,[2-4]. The amplitude of the spin echo from equivalent
spins is. modulated by diffusion of s?ins»along a m&gnetic field

gradient in the sample. The effective,T2¢re1axatidﬁltime, Tzéff' in

‘the preasence oan field gradient 1s'affected by the diffusion

4 coefficient D. Hégce,'for the experimehtalidetermination of D, the

transverse relaxation time is measurqd both in the ptesehce, and in

the absence of a magnetic field gradient,-using the “Carr-Purcell-
. ‘ .. . . N ) d " i
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 Meiboom-Gi11l (C?MG) pulse sequence {3,5). -The CPMG pulse sequence
h . : e > '

. can be represented by 90§—t/2-(180;—1]n-‘ This pulse sequence

minimizes the cumulative effect of inaccuracies in setting the 180°

'
"

pulse length bf applying the 180° pulses along the y axis, i.e. at
90° phase difference relative to the initial 90° pulse. The 902

pulse creates transverse magnetization which is allowed to dephase

\

for a time period 1/2. The 180; pulse is applied and refocusses the

dephased magnetization components. At time 1/2 after the 1809 pulse, A

B ' [,L/' .
a spin echo is formed and detected/ A train of spin echoes is formed
by successive 180; pu%spé and t “delays. The amplitude M(t) of the

spin echo at time t in the absence of a magnetic field gradient is

“given by (2] o : Q

M(t) = A, + B, exp(-t/T,)" Y (AII-2)
wheré A,, B, and T, are fitting parameters. In. the presence of a’
2 2 2 . - .

-magnetic-field gradient of magnitude G, the amplitude of the spin

- écho At time t is ([2,4)

M(t) = A3 + By expl-t/Tpqss] ‘ o (AII-3)
"/
where A3, By and'TZfo are fitting péfhmetegs and

o 2.2 2 ' S o o




where vy is the magnetogyric ratio of the spin of interest aq? D ie

the translational diffusion coefficient. The translational diffusion

coefficient D was determined from Eq. (AII—A) with the field gradient
v
.G obtained from calibration ‘using C6F6 (see below)

At the beginning of the experiment, the relative phases of the
90° and 180° pulses were adjusted using the rf phase_control knobs on’
- . -~ i o

the NMR‘epectrometer and the puise lengths were optimized by

adjusting the control knobs on the Nicolet 1180 minicomputer. The
signal was detected in the phase eensitive detection’mode at the
imaximum of‘the spin echo amplitude; 'In the first part of the-
expgximent, the normal T of 19F on TFB was measured in the absence
of a magnetic field gradient. The value of-T2 was‘determined.by

fitting to Eq. (AII—Z)yusing a non-linear least squares analysis

program [1]. In”the second part of'the experiment; T2eff was
measured in the presence of a static magnetic field gradient.’ A
magnetic field gradient was generated by passing current through a

Apair of copper coils mounted on the aluminum side‘plates'on both

1

sides of .the probe: The current to the coils{was supplied by a

'filtered'D,C;'power'supplgg(nodel b-6327, Electro Products
Iaboratories Inc.) and was gated on or‘off under computer control in‘

.

synchronization with the CPMG pulse sequence using programmable level

'line 7 of the Nicolet 293A unit. The current passing through the

~

coils was monitored with a Simpson digital multimeter (Model -461) .
w"»!he magnetic field gradient uas calibrated using C6F6 whose

: ‘?translational diffusion coefficients.are kncwn [6]. o

R L B R C .
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