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Abstract

Board game research has pursued two distinct but linked objectives: solving

games, and strong play using heuristics. In our case study in the game of chess,

we analyze how current AlphaZero type architectures learn and play late chess

endgames, which are solved. We study the open-source program Leela Chess

Zero in three, four and five piece chess endgames. We quantify the program’s

move decision errors for both an intermediate and a strong version, and for

both the raw policy network and the full MCTS-based player. We relate

strong network performance to depth and sample size. We discuss a number

of interesting types of errors by using examples, explain how they come about,

and present evidence-based conjectures on the types of positions that still

cause problems for these impressive engines. We show that our experimental

results are scalable by demonstrating the experiments on samples from the

five piece tablebase of KQRkq, the difficult endgame of king, queen and rook

against king and queen.
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Chapter 1

Introduction

Humans make a very large number of decisions using their intelligence every

day. Some of the decisions have a short-term single impact. Most of the time

these decisions are made with a very clear reason where the person is aware of

the consequences of the decision made. However, other decision problems may

have a long-term impact involving multiple decisions of subsequent actions.

Humans tend to make choices for these types of decision problems based on

heuristics and inference. Some of the actions have a small number of choices

whereas others may have a very large or even infinite number of choices. The

consequence of these subsequent actions can be intractable for the human

brain. With the advancement of computational resources, computer systems

nowadays are able to execute billions of instructions per second. Artificial

intelligence (AI) systems have evolved over time to automate tasks by com-

bining human-like thinking with the computational capacity of these modern

computer systems.

Humans make decisions based on a representation of the problem within

their brains [46]. Most real-world problems are too complex to represent in

computer systems as they involve a huge number of complex rules. Therefore

researchers need a simpler ground to compare the performance of an AI system

with human intelligence. Strategic combinatorial games have a finite number

of states and choices to make. Moreover, these games have simple rules that

are easy to implement in a computer system. Therefore, these games are an

excellent way to assess the performance of an AI system. Taking advantage of
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increasing computational resources, groundbreaking AI technologies have been

invented which can play difficult (for human) games at superhuman levels.

One of the technological breakthroughs in the field of AI is AlphaZero [17],

developed by DeepMind. In this work, we investigate how far an AlphaZero

approach is from perfect play.

1.1 Motivation of the Research

From zero human knowledge, AlphaZero learns to play at a superhuman level

of performance in different strategy games. AlphaZero won against its ancestor

AlphaGo Zero, which was a descendent of AlphaGo: the first program to

defeat a human world champion in Go. Furthermore, AlphaZero has beaten

Stockfish-8, the top chess engine in the 2017 TCEC Championship [17], which

is a renowned tournament in the computer chess community. AlphaZero also

defeated ELMO, the champion of the 2017 CSA championship in Shogi. From

these results it is clear that the method has significantly exceeded the human

level of play.

While the AlphaZero algorithm was demonstrated to work for board games,

its applications may go beyond. For applications such as drug design where

a small deviation from the exact result may cost a huge loss, we need exact

solutions. However it is still an open question if AlphaZero-like algorithms

can be applied to find exact solutions. To answer this question we have to

investigate how these modern programs learn to play, especially in cases where

we have exact solutions to compare with. Therefore in this thesis we will

analyze how far such a program is from perfect play by comparing it’s decision

with perfect ones from chess endgame tablebases.

1.2 Research Questions

Our Research is focused on finding answers for the following questions:

• How do stronger and weaker policies differ for selecting moves?
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• Regarding the performance of raw neural networks vs networks combined

with search, how does search improve move selection?

• How does a stronger neural network improve search results?

• What’s the impact of an increased search budget on the performance?

• How well does the engine recognize wins and losses?

• Which is easier to learn, wins or draws?

• In terms of prediction accuracy, what is a good measure of a position’s

difficulty, and how does the accuracy change with more learning?

• Are there cases where search negatively impacts move prediction? If

they exist, why do they occur?

1.3 Contributions of the Thesis

Our work makes the following main contributions:

• We show that the move prediction accuracy of the raw policy network is

correlated with the sample size of each decision depth 1 more than with

the decision depth.

• We show that in specific cases, the whole engine using networks combined

with MCTS can be wrong even when the raw neural network is correct.

• In an AlphaZero style program, the policy and value head output do

not always agree. We observe that, even if the policy correctly selects

the correct move, the value head is not always correct in estimating the

value of the position.

• If the value head error is consistently large in the sub-tree, then search

leads to a worse result than no search.

1Endgame positions are categorized according to the distance to win or loss. These
categories are referred to as the decision depth. More details will be provided in Section 3.1.2.
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1.4 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2. Literature Review: We review the basic concepts un-

derlying this research.

• Chapter 3. Experimental Setup: We describe the hardware and

software setup along with the network used. We discuss the parameter

settings which ensure the reproducibility of our results.

• Chapter 4. Details of Experiments and Analysis: The details

of all experiments and the experimental results along with our analysis

is given in this chapter.

• Chapter 5. Experiments on a Five Piece Tablebase: In order

to observe how our results scale for a larger tablebase, we discuss the

experimental results on samples from the KQRkq five piece tablebase in

this chapter.

• Chapter 6. Conclusion and Future Work: Concluding remarks

about the research are stated and some future research directions based

on our findings are proposed.

4



Chapter 2

Literature Review

In this chapter we review the necessary background materials for our exper-

iments. Furthermore, we discuss related research. In this thesis we focus on

two player perfect information zero sum games. So all the terminology we use,

is for these types of games.

2.1 Game Tree Search

The game tree is a type of state space representation of game play. It is

a directed graph that represents every possible way that the game can be

played. The nodes represent the game position and the edges represent moves

which lead from one state to another. Each level of the game tree represents

a single turn of a player, sometimes also referred to as one ply. From a state

every possible legal move for the current player is included as edges; the edges

from the next state denote legal moves for the opponent. The root denotes the

current game position.Terminal nodes denote the end of the game. There is

a true value associated with every terminal node, which is determined by the

outcome of the game. In chess, these values can be chosen as +1 for a win, -1

for a loss and 0 for a draw.

A search tree is a tree where leaf nodes may or may not be terminal nodes.

A leaf node in a search tree may contain a true value or a heuristic value

evaluation depending on whether it is terminal node or not. In the setting

above, positive and negative heuristic values are in the range (-1,+1).

The strategy of playing a move which leads to the best possible outcome
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Figure 2.1: Game tree for a Tic-Tac-Toe position.

regardless of the opponent’s strategy is called perfect play. A game is called

strongly solved, when the perfect play from all legal positions of the game is

known [3]. Chess as a whole is an unsolved game. However, endgames of up to

seven pieces have been solved and the results are publicly available [1]. When

a game is not solved the perfect play of the game is not known [3].

2.1.1 The Minimax Algorithm

To pick the optimal move from a state it is sufficient to determine the minimax

value of each state of the game tree. The minimax value of a game tree is the

value of the final outcome if both players (i.e. the player to move and the

opponent) play perfectly [43].

A simple recursive algorithm called the minimax algorithm can be used to

determine the minimax value of all the nodes rooted in the current state from

6



the viewpoint of the current player. The recursion computes the minimax

value by proceeding all the way down to the leaves and then backing up to the

root.

Since the minimax algorithm performs a complete depth-first exploration

of the game tree, with b legal moves at each node and a depth of d, the

complexity of the algorithm is O
(
bd
)

[43]. For nontrivial games like Go or

chess this cost is impractical.

2.1.2 Alpha-Beta Search

In the best case, the exponent of the minimax game tree complexity can be

cut into half from O(bd) to O(bd/2) by using alpha-beta search [43].

This algorithm maintains two values, alpha and beta to represent the min-

imum score guaranteed for the max player and maximum score guaranteed

for the min player, respectively. The trick is to ignore the nodes that do not

stand a chance to influence the final decision [43]. The algorithm can be easily

understood with the example in Figure 2.2. From the example it can be seen

that the minimax value of the root node can be determined without evaluating

two of the leaf nodes.

2.1.3 Further Improvements

Though the generated tree size can be reduced from O(bd) to O(bd/2), the

exponent can not be eliminated. Moreover, cutoffs are not guaranteed. In the

worst case, alpha-beta can not prune any nodes and the full tree would need

to be searched.

However, if the best move is searched before other sub-optimal moves,

alpha-beta search can effectively prune a huge number of game states [50].

Hence, the effectiveness of alpha-beta search depends on the order in which

successors are examined. Therefore, move ordering heuristics can be used to

further improve the performance of the alpha-beta algorithm.

In real games such as chess or Go, finding the exact solution of the game

tree is often not feasible because of the size of the search tree. For example

the game tree complexity of chess from the starting position is at least 10123

7



Figure 2.2: Determining the minimax value using alpha-beta search [43].

assuming a depth of 80 and a branching factor 35 [3]. Therefore, depth limited

alpha-beta search with a heuristic evaluation function is used in such cases [44].

The search tree is generated up to a certain depth using alpha-beta search.

When the maximum depth is reached the leaf nodes are evaluated using a

heuristic evaluation function. These functions need lots of domain knowledge

in order to estimate the expected value of a node and produce reliable search

results. For example, chess experts used features such as the number and

type of remaining pieces on the board, and many other ‘positional’ features,

to produce a handcrafted evaluation function which estimates the outcome of

a position.

Some features that impact the outcome can still go unnoticed by human

experts when designing evaluation functions. An alternative method of heuris-

tic evaluation is Monte Carlo [9] sampling where handcrafted knowledge is not

required (though it can definitely help). More on Monte Carlo methods, in-

cluding Monte Carlo Tree Search, will be provided in Section 2.4.
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2.2 The Game of Chess and Computer Chess

Chess is a two player perfect information zero sum game. It is an ancient

game which was brought to the western world from India through Persia. Back

then it was a royal game, which was a measure of someone’s intelligence and

sharpness on the battlefield [52]. Later it also became a measure of machine

intelligence.

Back in 1770 Kempelen built a chess-playing machine named the Mechani-

cal Turk, which became famous before it was revealed that there was a person

hiding inside [52]. Though the machine did not play chess by itself, it gave an

idea for making a machine to play chess. After that, inventors tried to build

chess playing machines using automata, which was not successful for centuries.

In 1950 Alan Turing proposed an algorithm for computers to play chess,

where he acted as the automated agent by following the algorithm [30, 52].

Later in the same year Shannon devised a chess playing program and pub-

lished a paper [44] that was recognized as a fundamental paper on computer

chess [39]. In 1958 the chess program NSS defeated a beginner level human

player for the first time [52]. However, it was not until 1997 that a com-

puter program was able to beat a human world champion when Deep Blue [7]

defeated Garry Kasparov in a match under standard chess tournament time

controls. Deep Blue used an enhanced parallel alpha-beta algorithm for its

game tree search [16].

2.2.1 Stockfish: A Strong Modern Chess Engine

After the development of Deep Blue, a number of strong open source chess

engines were developed using alpha-beta search and heuristic evaluation func-

tions. Among those, Stockfish [8] is one of the strongest modern open source

chess engines. Of the 10 most recent TCEC tournaments, it won 8 times [51].

The engine uses alpha-beta search to find the best move and assigns one single

value to each position by evaluating those positions. Initially this evaluation

was a heuristic evaluation created by domain experts, where handcrafted fea-

tures were used. In recent years the developers introduced neural network

9



Figure 2.3: A chess board [40].

evaluation, which takes the basic board position as input [8]. It can be tuned

to play at different skill levels, from 1 (lowest) to 20 (highest). Weaker moves

are selected with a certain probability at lower skill levels.

2.3 Endgame Tablebases

Because of the complexity of chess, it has not been possible to strongly solve

the whole game. However, researchers have been able to solve chess endgame

problems with a reduced number of pieces. The solutions include perfect play

information (e.g. minimax optimal outcome, number of ply to win or lose) of

all legal game states containing 3 to 7 pieces on the board. The results are

stored in databases called endgame tablebases.

As there is a huge number of such positions, storing them requires signifi-

cant space. If symmetric [19] positions are omitted for compactness, the query

performance can be affected. Therefore, to generate these tablebases, one

has to trade off between compactness of the tablebase and query speed [19].

In order to compress the tablebase while simultaneously speeding up queries,
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specialized indexing techniques are used [19].

2.3.1 Sources of Endgame Tablebases

A number of endgame tablebases are hosted on different websites [19, 33, 35].

They differ by storage space and metrics used. One can query these websites

to get perfect play results. Moreover, whole tablebases [49] and generator

source codes [5, 34] are also available. Syzygy [34] and Gaviota [5] tablebases

are free and widely used in recent years, while Nalimov [35] is commercially

available.

2.3.2 Probing

In order to get perfect play information from a tablebase, one has to query

it. This is called tablebase probing. At first a given query position is checked

for legality. After that, the position is mapped to a unique index. Then the

result for the index is retrieved and presented for the particular symmetry of

the board. Symmetry in chess endgame tablebases will be discussed further in

Section 3.1.2.

2.3.3 Metrics

Different types of metrics are used in different tablebases. Each has its advan-

tages. Some metrics provide more exact game paths to finish the game quickly

whereas others take less space to store. The most often used metrics are [14]:

• DTM: Depth to Mate is the number of ply for a win or loss assuming

the winning side plays the shortest way to win and the losing side plays

the longest way to lose.

• DTZ: Depth to zeroing is the ply count to push a pawn or play a capture.

• DTZ50: If 100 consecutive plies of reversible moves are played, the

player ‘on move’ can claim a draw. This is the 50 move rule. DTZ50 is

the depth to zeroing in the context of the 50 move rule.
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• DTC: Depth to conversion is the number of ply until the material value

on the board changes, by capture and/or pawn-conversion. This means

switching to a different tablebase.

2.4 Monte Carlo Tree Search

Monte Carlo methods were first used in statistical physics to estimate the

probability of different outcomes that can not be easily estimated by any other

mathematical approach [6, 15]. Later Abramson [2] used such methods to

estimate the value of leaf nodes in a search tree. Using the game of Othello,

he showed that the estimated value using Monte Carlo sampling was better

than the handcrafted evaluation function of domain experts. Since then, Monte

Carlo methods have been used in a wide variety of games.

In 2006, Coulom [9] proposed Monte Carlo Tree Search (MCTS), which

directly combined Monte Carlo evaluation with tree search. The proposed

algorithm starts with only one node at the root and uses random simulation

to evaluate the estimated probability of winning. In general the family of

MCTS approaches applies four steps per iteration [6]:

• Select: Starting from the root a child is iteratively selected to descend

through the tree until the most urgent expandable (i.e. non-terminal

and has unvisited children) node is reached.

• Expand: From the available actions, one or more node(s) are added to

expand the tree.

• Rollout: Complete one or more random rollouts from a newly added

node to produce the value estimate. From the newly added node, rollout

plays following a randomised policy until the game ends.

• Backup: Backpropagate the rollout result along the path to the root to

update the node statistics.

Figure 2.4 shows one iteration of general MCTS approach. The pseudo-

code is given in Algorithm 1.
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Algorithm 1 General MCTS approach [6]

1: function MCTS(s0)
2: create root node v0 with state s0
3: while within computational budget do
4: v ← v0
5: while v is nonterminal do
6: if v is not fully expanded then
7: v ← Expand(v)
8: else
9: v ← SelectChild(v)

10: vl ← v
11: ∆← PlayOut(s(vl))
12: Backup(vl,∆)

13: return a(BestChild(v0))

14: function SelectChild(v)
15: return v′ ε children of v according to child selection policy

16: function Expand(v)
17: choose a ε untried actions from A(s(v)) . s(v) is the state of node v
18: add a new child v′ to v
19: with s(v′) = f(s(v), a) . f() is state transition function
20: and a(v′) = a . a(v′) is the incoming action to v′

21: return v′

22: function PlayOut(s(v))
23: while s is nonterminal do
24: choose aεA(s) uniformly at random . A(s): action space, a: action
25: s← f(s, a)

26: return reward for state s
27: function Backup(v,∆)
28: while v is not null do
29: N(v)← N(v) + 1 . N(v): total visit count
30: X(v)← X(v) + ∆(v, p) . X(v): total reward, ∆(v, p) component

of reward vector associated with current player p at node v

31: v ← parent of v

32: function BestChild(v)
33: return best v′ ε children of v . The exact definition of ’best’ is

defined by implementation
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Figure 2.4: One iteration of general MCTS approach [6].

The Upper Confidence Bound (UCB) algorithm is commonly used as the

child selection policy. At the end of the search the child of the node that has

the highest number of visits is chosen as the move.

2.4.1 UCB for Trees (UCT)

MCTS traverses a search tree by iteratively selecting one child of a node. In a

game, a player selects a move from K legal moves that maximizes the reward

and minimizes regret. To choose the next move, a player has to exploit the

current best move while exploring other moves to find a more promising one.

Therefore, the selection can be viewed as a K armed bandit problem [4], where

the value of a child node is the state’s expected reward.

The most popular algorithm for the multi-armed bandit problem is UCB1 [4],

which chooses the action that maximizes the UCB1 value [6]:

UCB1 = X̄j +

√
2ln(n))

nj
, (2.1)

where X̄j represents the average reward from arm j, nj is the visit count of j,

and n is the overall number of plays so far.

Kocsis and Szepesvari [18] proposed the upper confidence bound for trees

(UCT) method, which applies a modification of the UBC1 formula at the
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selection phase of MCTS. Here a child node j is selected to maximize:

UCT = X̄j + C

√
ln(n))

nj
(2.2)

Here C is a constant which controls the level of exploration, n is the visit count

of the parent node and the other terms are as in Equation 2.1.

2.4.2 PUCB and PUCT

Given unlimited resources, UCT eventually converges to the optimal move [6].

However for a small search budget it may not converge to the minimax value,

due to sampling error or not finding the strongest move in each tree node. As

the number of samples increases, the estimated (average) value of each action

tends to become more accurate. Without any prior knowledge, every action

needs to be sampled at least once for an initial value. This process wastes a

significant portion of the search budget on weaker actions, especially for games

with large branching factors.

Spending more of the budget on searching promising nodes improves the

performance of UCT significantly. Using this idea, Rosin [42] proposed to use a

predictor that places a prior weight on the available actions. The search budget

is then prioritized for promising actions, thereby reducing the waste of having

to sample many poor actions. The proposed algorithm is named Predictor +

Upper Confidence Bound (the term PUCT is used to refer to PUCB applied

for game trees), which is a modification of the UCB1 algorithm.

PUCB differs from UCB1 as it does not require pulling all the arms once in

the beginning. Also the equation is slightly different from Equation 2.1. It

selects the action that maximizes:

PUCB = X̄j + c(n, nj)−m(n, j) (2.3)

Here,

c(n, nj) =
√

3log(n))
2nj

if nj > 0, otherwise 0

m(n, j) = 2
Mj

√
log(n)
n

if n > 1, otherwise 2
Mj
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Mj is the prior weight placed on arm j.

All other notations hold the same meaning as in Equation 2.1. Obtaining a

predictor to use with PUCB can be done in two ways [42]: offline training that

maximizes the weight of the optimal arm, or fitting a probability distribution

over all arms, with the target reflecting the probability that a specific arm is

optimal.

2.5 The AlphaZero Approach

AlphaZero is a major breakthrough in the field of AI. Without any expert

knowledge it can achieve superhuman performance in many challenging games

for AI [46]. AlphaZero won against AlphaGo Zero, which defeated AlphaGo,

the first program to defeat a world champion in Go. AlphaZero beat Stockfish-

8, the top chess engine of the 2017 TCEC Championship [17]. AlphaZero also

defeated ELMO, the champion of the 2017 Computer Shogi Association (CSA)

championship. In this section we discuss the development of AlphaZero and

some open source AlphaZero based approaches.

2.5.1 AlphaGo

AlphaGo [45] was the first computer program that defeated a human profes-

sional player in the full sized game of Go. The program uses a value network

to evaluate a board position and a policy network to prioritize moves in the

search. The networks are trained using a pipeline of several stages of machine

learning as shown in Figure 2.5.

The training starts with the supervised learning (SL) of the policy network

from human expert game records. A rollout policy is also trained for repeat-

edly selecting moves during rollout. The SL policy network was then used

to initialize the reinforcement learning (RL) policy network. The RL policy

network is further improved using the policy gradient method to maximize the

outcome against previous versions of the policy network. Using the RL policy

network, a new dataset of self-play games is generated, which is later used to

train the value network.
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Figure 2.5: AlphaGo network training [45].

The policy and value networks are combined in an MCTS algorithm. Fig-

ure 2.6 shows the MCTS in AlphaGo. For selection of an action a variant of

the PUCT algorithm is used. At each time step t from state st an action at is

selected such that [45]:

a = arg max
a

(Q(st, a) + U(st, a)) (2.4)

Here,

U(s, a) ∝ P (s, a)

1 +N(s, a)

Q(s, a) is the action value, the average reward for choosing an a from state s.

N(s, a) is the visit count, and P (s, a) is the prior probability that the action

a is best in s from the SL policy network output.

2.5.2 AlphaZero

After the success of AlphaGo, AlphaGo Zero [48] was developed. Unlike Al-

phaGo, AlphaGo Zero starts learning from random play without any human

knowledge by self-play reinforcement learning. Moreover, it simplifies and im-

proves AlphaGo. It takes only the board position as input features and trains
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Figure 2.6: MCTS in AlphaGo [45].

a single network with two output “heads” for policy and value. Lastly, it

removed the Monte Carlo rollout and uses only neural network evaluation.

AlphaZero [47] is a more generic version of AlphaGo Zero From zero domain

knowledge AlphaZero can achieve superhuman level performance in the games

of chess and shogi as well as Go. As rotation and reflection can not be applied

in chess and shogi, AlphaZero does not take symmetry into consideration as

AlphaGo Zero did. Moreover, instead of waiting for an iteration to complete,

and evaluating it against the best previous network, AlphaZero maintains only

one network that is updated continually [47]. Despite these differences, the

training process of AlphaZero is similar to AlphaGo Zero. Figure 2.7 shows

an overview of the self-play reinforcement learning in AlphaZero.

The self-play training starts with a random weight initialization of the neural

network. The network takes the raw board position as input and returns the

value v and a vector of move probabilities p as output. The program plays

a game against itself where the moves are selected according to the search

probabilities π computed by MCTS. At each time step t, the MCTS execution

is guided by the neural network fθ. Figure 2.8 shows the MCTS used by

AlphaZero. It is similar to the one used in AlphaGo, except the rollout is

removed and the single value evaluation by the neural network is used.

For each time step t, the state st, search probabilities πt and the final out-

come zt is stored. The neural network parameters θ are adjusted to maximize

the similarity between the move probabilities p and the search probabilities

π while minimizing the error between the predicted value v and the self-play
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Figure 2.7: Self-play reinforcement learning in AlphaZero [47].

outcome z. The parameters θ are adjusted by gradient descent to minimize

the loss function:

l = (z − v)2 − π>logp+ c||θ||2 (2.5)

2.5.3 Leela Zero

Leela Zero [29] is an open source reimplementation of AlphaGo Zero. It uses

distributed resources to train the networks. Members of the community con-

Figure 2.8: Monte Carlo tree search in AlphaZero [47].
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tribute their computing resources to generate self-play training data and op-

timize the neural networks. A server website coordinates the training process.

The clients are connected to the server to provide their computing resources.

2.5.4 Leela Chess Zero

Leela Chess Zero(Lc0) is an adaptation of Leela Zero for chess. It is also

a distributed effort to reproduce the result of AlphaZero in chess [26]. Like

AlphaZero, Lc0 takes a sequence of consecutive raw board positions as input.

It uses the same two-headed (policy and value) network architecture and the

same search algorithm as AlphaZero. Though the original project was inspired

by the AlphaZero project, in 2020 Lc0 surpassed AlphaZero’s published playing

strength in chess [27].

Over time the developers of Lc0 introduced enhancements that were not

in the original AlphaZero. For example, an auxiliary output called the moves

left head was added to predict the number of plies remaining in the current

game [12]. Another auxiliary output called the WDL head separately predicts

the probabilities that the outcome of the game is a win, draw, or loss [32].

In addition to network heads, Lc0 uses two distinct training methods to

generate different types of networks that differ in playing strength. T networks

are trained by self-play, as in AlphaZero, while J networks are trained using

self-play game records generated from T networks [28]. J networks are stronger

and are used in tournament play.

2.6 Related Work

Our work is essentially a systematic measurement of one of the strongest

open source game engines for chess. In the original AlphaZero paper [47],

the performance was measured in comparison with specialized programs for

Go (AlphaGo Zero), chess (Stockfish), and shogi(Elmo). First, AlphaZero

was compared with other engines based on its win-draw-loss percentage in a

tournament against the baselines. Under the same time settings, AlphaZero

surpassed the performance of the specialized programs. Second, the AlphaZero
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program was evaluated again under reduced time settings against the baselines

for chess and shogi. For chess, AlphaZero achieved a higher win-rate as both

White and Black with one-third of thinking time than given to Stockfish. The

ELO rating of AlphaZero compared to specialized engines was also computed

based on tournament results, with one second thinking time. AlphaZero sur-

passed the ELO rating of all the specialized programs in chess, shogi, and

Go.

In terms of comparing game engine or algorithm performance to perfect

play, there are also two papers that are worth mentioning. First, in 2006, Lass-

abe et al . [20] proposed using genetic programming to solve chess endgames,

rather than the classic method of first using brute force search, then storing

the results in a table. The authors combined elementary chess patterns, de-

fined by domain experts, and applied their algorithm on the KRk endgame.

The resulting endgame engine was then evaluated by playing 17 reference KRk

endgames against the Nalimov tablebase, with the engine as attacker and per-

fect play as defender. For all 17 specific endgames, the genetic engine was

able to achieve the perfect outcome, but was unable to do so with the optimal

(least) number of moves. Performance was therefore measured by move count

to win. For reference, the average optimal move count was 9 moves, while

their algorithm was able to achieve the same outcome in 11 moves.

Second, Romein and Bal [41] first solved awari, then used the solution as

a basis to measure performance for two world champion level engines in the

2000 Computer Olympiad. Observing the two programs’ line of play in that

tournament, the authors counted the number of wrong moves made on each

side. The performance was measured as a percentage of right moves played;

both engines were able to achieve an accuracy of more than 80%.
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Chapter 3

Experimental Setup

In this chapter we discuss dataset preprocessing and parameter tuning for

our experiments. First we discuss the dataset used and the steps involved in

preprocessing in Section 3.1. In Section 3.2 we describe details of the chess

program used and the relevant parameter settings to closely mimic AlphaZero

for chess.

3.1 Tablebases and Datasets

To evaluate the performance of AlphaZero in terms of finding exact solutions,

a ground truth is required. For that, we used chess endgame tablebases, which

contain perfect play information of all positions up to 7 pieces on the board.

In this section we discuss how the tablebases are processed for analysis and

which tablebases are used.

3.1.1 Datasets

A number of endgame tablebases is available online, as discussed in Sec-

tion 2.3.1 . Among them, we used the open source Syzygy [33] and Gaviota [5]

tablebases as ground truth for the DTZ and DTM metrics.

As these tablebases are compressed using different types of indexing [10,

19], it is not directly possible to iterate through all unique legal positions.

Hence, we converted the relevant tablebases to a plain-text format for our

experiments.
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3.1.2 Dataset Preprocessing

To create our dataset in plain-text format we followed several steps:

Step 1: Generate all unique legal positions

First we generate all unique legal positions using the method proposed

by Kryukov [19] for each tablebase used. The positions are stored in the

FEN format. We tested each position for uniqueness and legality.

(a) Uniqueness: If multiple positions are in the same equivalence class,

only one entry of that class is generated. Positions can be equivalent

by board mirroring, rotation, of color swapping. Figure 3.1 shows

an example of an equivalence class.

(b) Legality: In chess, a position is legal if and only if:

• It has exactly one king of each color.

• It has no pawn on ranks 1 and 8.

• The side to move can not capture the opponent’s king.

Step 2: Create MySQL database

We use a MySQL database to store all plain text tablebase information.

For our experiments the transitive dependencies between two endgame

tablebases are not required. Therefore this information can be safely

omitted. We create a separate table for each different combination of

pieces.

Step 3: Probing and storing positional information

To get the perfect play information, we iterate through all the positions

generated in step 1. For each position we use the probing tool from

python-chess [11] to access the Syzygy and Gaviota tablebases. For each

position, the stored features are presented in Table 3.1. We use the term

decision depth to categorize positions in an endgame tablebase. For

winning positions, the decision depth is the DTM score of the position.

For drawing positions where losing moves exist, the decision depth is the

highest DTM of a losing successor.
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Figure 3.1: Example of equivalence class on a 4x4 board [19].

8 0Z0Z0Z0Z
7 L0Z0Z0Z0
6 0Z0Z0Z0J
5 ZqZ0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 j0Z0Z0Z0

a b c d e f g h

17

15

15

0

0

Figure 3.2: Example for decision depth.
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Feature Format
Position FEN

Winning moves Universal chess interface (UCI)
Drawing moves UCI

Losing moves UCI
WDL score number
DTZ score number

DTM score number
Decision depth number

Table 3.1: Features stored in the MySQL database.

Figure 3.2 illustrates the definition of decision depth. In the figure it is

Black’s turn to play. The green squares represent drawing moves, while red

represents losing moves. The decision depth of this position is:

decision depth = max (15, 15, 17) = 17 (3.1)

3.1.3 Tablebase Selection

Due to our limited computational resources, we select a subset of 3, 4 and 5

piece tablebases based on their win-draw-loss statistics to analyze.

• Simple 3 piece tablebases

We selected 3 piece tablebases which contain both winning and drawing

positions. These endgames are more balanced in that Black has a chance

to lose in the drawing positions.

We omit tablebases where all positions are drawing, or all the legal moves

from almost all positions are drawing. These do not provide interesting

situations for analysis. For example we did not study KBk and KNk.

• Interesting 4 piece tablebases

There are two types of 4 piece tablebases: (a) two pieces for each side,

(b) three pieces on one side and one piece (the king) on the other. We

analyze only the former because balanced situations tend to have more

interesting properties. More specifically, the side with just one king has

only drawing moves at best, and even those are rare.
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Tablebase
Piece Win

Draw Selected
White Black White Black

KQk KQ k 93.7 0 6.3
KRk KR k 94.4 0 5.6
KBk KB k 0 0 100
KNk KN k 0 0 100
KPk KP k 67.2 0 32.8

Table 3.2: Three piece tablebases with ratio of outcome.

Imbalanced positions like these tend not to be informative about an

engine’s performance. Next, among all type (a) tablebases, we selected

those in which both sides have at least some winning positions. This

method of selection ensures spending our limited resources and efforts on

a diverse collection of outcomes for each position (i.e winning, drawing,

and losing moves).

Tablebase
Piece % of Win

% of Draw Selected
White Black White Black

KQkq KQ kq 21.1 21.1 57.8
KQkr KQ kr 80.7 15.7 3.5
KQkb KQ kb 86.7 0 13.3
KQkn KQ kn 88.3 0 11.7
KRkr KR kr 14.9 14.9 70.2
KRkb KR kb 81.6 0 18.4
KRkn KR kn 28.2 0 71.8
KBkb KB kb 0.0025 0.0025 99.995
KBkn KB kn 0(3 positions) 0(6 positions) 100
KNkn KN kn 0(6 positions) 0(6 positions) 100
KPkq KP kq 4.6 87.9 7.5
KPkr KP kr 9.1 77.5 13.4
KPkb KP kb 14.9 0 85.1
KPkn KP kn 23 0 77
KPkp KP kp 33.3 33.3 33.4

Table 3.3: Four piece type (a) tablebases with ratio of outcome.

• Hard 5 piece tablebase

In order to observe how our analysis scales to larger tablebases, we con-

ducted one experiment on a 5 piece tablebase: the KQRkq tablebase.
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Considering our limited resources, we selected this pawn-less tablebase.

It has a high range of decision depths, that ensures that there are diffi-

cult positions for human players. We randomly sampled 1% of all unique

KQRkq positions, and checked legality for the sampled positions after-

wards.

In each selected tablebase, we further restricted our analysis to positions where

there are two or more game outcomes among all the legal move choices.

3.2 Leela Chess Zero Settings

We chose Lc0 0.27 [23] as our AlphaZero-style program in our analysis, because

it is both publicly available and strong. Lc0 has evolved from the original

AlphaZero in many ways, but with the proper configuration, it can still perform

similarly.

3.2.1 Parameter Settings for Lc0

A number of parameters can be set for Lc0 [22, 25]. In our experiments we

kept the default value for most of them, with the exception of the following:

• Smart Pruning Factor

AlphaZero selects the node having the highest PUCB value during MCTS.

Throughout our experiments we observed that the Lc0 search chooses

nodes with lower PUCB values occasionally [36]. This is due to smart

pruning, which uses the simulation budget differently: it stops consider-

ing less promising moves earlier, resulting in less exploration. To preserve

the standard AlphaZero behaviour, we disabled smart pruning with the

Lc0 option –smart-pruning-factor=0.

• Number of Execution Threads

When analyzing positions with Lc0, the move choices need to be con-

sistent. However, Lc0 is non-deterministic between different runs when

using the default number of threads [37]. The contributors confirmed

that deterministic multi-threaded search has not yet been implemented.
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In order to get a deterministic search result, we set the number of threads

to 1 by using the Lc0 option –threads=1.

3.2.2 Backend for Neural Network Evaluation

Lc0 supports a number of neural network backends [31]. Since we used Nvidia

Titan RTX GPUs for our experiments, we chose the cudnn backend.

3.2.3 Network Used

The Lc0 project saves a network snapshot whenever the network is updated.

The Lc0 training process creates a large number of snapshots. For the T60

generation training that we use, there are more than 10,000 snapshots as of

October 2021 [24]. For this research we chose two specific snapshots:

• Strong network: ID 608927, with (self-play) ELO rating of 3062.00

was the best-performing T60 snapshot up to May 2, 2021. It uses the

largest network size (30 blocks × 384 filters) [21].

• Weak network: ID 600060, with a rating of 1717.00, was a network

of the T60 generation after 60 updates starting from random play. This

snapshot was created before adding the “WDL” and “moves left” auxil-

iary targets and so it has a smaller size of 24 blocks × 320 filters.

3.3 Computational Resources

We preprocessed the tablebases with a single-threaded program that uses one

CPU core. This includes generating all unique legal positions, creating the

MySQL tablebase and probing and storing positional information for all unique

legal positions. As the tablebases are compressed, probing them took the most

time. For example, creating all unique legal positions of the KQkq tablebase

took 3 CPU hours, while probing and inserting the results into a database

took approximately 36 CPU hours. Using this as an estimate, probing the full

KQRkq tablebase would take approximately 82 CPU days. Therefore we took

only a 1% sample from this tablebase.
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To test the engine performance we run four engine settings simultaneously.

The engine settings are discussed on Section 4.3.2. The program uses CPU

for search and Nvidia TITAN RTX GPU for the neural network evaluation.

As we set the number of threads to 1, only one CPU core was working for

search of each engine. Therefore, the search took the largest amount of time

during our main experiment. For example, running the experiment for the

KQkq tablebase took 30 days to test all four engine settings.
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Chapter 4

Experiments and Analysis

In this chapter we discuss the experiments done and the findings of the exper-

iments. The experiments are closely related to each other. Some of them were

built on the findings of previous ones. Therefore, we discuss the experiments

in the way they progressed.

4.1 Quick Overview of Experiments

For all of our experiments, each engine plays one move from each position. We

define a mistake as a move decision that changes the game-theoretic outcome,

either from a draw to a loss, or from a win to not a win. Any outcome-

preserving decision is considered correct. The engine does not need to choose

the quickest winning move. Accuracy is measured in terms of the number or

frequency of mistakes, over a whole database.

4.2 Experiment 1: How Does More Learning

Improve Playing Strength?

Our experiment starts with evaluating a policy player, which does not use any

search to play. It plays the move for which the neural network’s policy output

is highest. We use the terms policy and Raw NN interchangeably to refer to

this policy player. In this experiment we evaluate the impact of learning on

playing strength. We evaluate both networks discussed in Section 3.2.3 for the

three and four piece endgame positions.
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Table 4.1 shows the total number of mistakes by the weak and the strong

policy. In the table, the weak policy has a much higher rate of mistakes than

the strong policy. The result suggests that policy approaches perfect play with

more training on these positions.

EGTB Total Number of
positions

Weak network Strong net-
work

KPk 8,596 390 5
KQk 20,743 109 0
KRk 24,692 69 0
KQkq 2,055,004 175,623 3,075
KQkr 1,579,833 141,104 4,011
KRkr 2,429,734 177,263 252
KPkp 4,733,080 474,896 20,884
KPkq 4,320,585 449,807 6,132
KPkr 5,514,997 643,187 13,227

Table 4.1: Total number of mistakes by strong and weak policy in 3 and 4
piece endgames.

4.3 Experiment 2: How Does Search Improve

Playing Strength?

To analyze how search improves accuracy, we compare the search budgets of

0 (raw policy) and 400 simulations per move decision. We call these settings

MCTS-0 = policy and MCTS-400. We chose these relatively low settings

considering our limited computational resources. We used the same move

decision and accuracy measurement as in the previous experiment.

4.3.1 Policy vs Policy+Search

Table 4.2 shows the percentage of errors for MCTS-400. The search result is

a substantial improvement compared to the raw policy in Table 4.1. While a

strong network by itself can work very well, search strongly improves perfor-

mance in each case where the network alone is insufficient.

This is because policy networks are trained to increase overall playing

strength, while the search on one specific position is more specifically look-
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ing ahead at the state space of the position initially guided by the policy.

Furthermore, AlphaZero also optimizes its search algorithm during learning.

EGTB Total Number of
positions

MCTS-400
with weak
network

MCTS-400
with strong
network

KPk 8,596 13 0
KQk 20,743 0 0
KRk 24,692 0 0
KQkq 2,055,004 12,740 36
KQkr 1,579,833 3,750 46
KRkr 2,429,734 6,097 0
KPkp 4,733,080 41,763 423
KPkq 4,320,585 46,981 13
KPkr 5,514,997 60,605 196

Table 4.2: Error rate using MCTS-400 with strong and weak networks on
different endgame tablebases.

4.3.2 Varying the Search Effect: Small Number vs Large
Number of Nodes

We continued our experiments with increased search budgets of 800 and 1600

nodes, to analyze how deeper search influences accuracy. Table 4.3 shows the

number of mistakes using MCTS-0, MCTS-400, MCTS-800, MCTS-1600 for

all three and four piece tablebases. Lc0 uses 800 simulations during self-play

training of the networks. Therefore we selected budget MCTS-400, 800 and

1600 to evaluate search performance using half, same and double budget of

self-play training simulation budget.

The experimental result shows that deeper search consistently helps pre-

dicting an accurate move for all these tablebases.

4.3.3 Impact of a Strong Policy on Search

From Table 4.1 it is clear that a strong policy makes a significantly lower num-

ber of mistakes than a weak policy. While search can improve the prediction

for both strong and weak policy, the stronger policy gives search a more accu-

rate baseline for further improvement. For example in KPk, the total number
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EGTB
Number of mistakes

Weak network Strong network
0 400 800 1600 0 400 800 1600

KPk 390 13 0 0 5 0 0 0
KQk 109 0 0 0 0 0 0 0
KRk 69 0 0 0 0 0 0 0
KQkq 175,623 12,740 8,999 4,429 3,075 36 24 6
KQkr 141,104 3,750 2,562 1,547 4,011 46 18 1
KRkr 177,263 6,097 1,717 644 252 0 0 0
KPkp 474,896 41,763 28,678 19,066 20,884 423 129 52
KPkq 449,807 46,981 27,395 18,756 6,132 13 5 4
KPkr 643,187 60,605 46,308 35,549 13,227 196 73 26

Table 4.3: Total number of errors using weak and strong network for MCTS
with search budgets of 0 (raw policy), 400, 800 and 1600 simulations.

of mistakes of MCTS-400 using the weak policy is still higher than the raw

strong policy. As a result a strong policy can lead the search in a more accurate

direction than a weaker policy.

Note that, while evaluating the performance of AlphaZero we expect the

network to be a fully trained strong network. Therefore, we conducted our

next experiments using the stronger network only.

4.4 Experiment 3: Are Wins or Draws Easier

to Play?

We added an experiment to find which types of positions Lc0 plays better,

wins or draws. We separated the results of our previous experiments based on

the perfect play outcome. Table 4.4 shows the log10 error rate of all versions

separately for winning and drawing positions. In most cases the fraction of

mistakes is higher for winning than for drawing positions.
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EGTB
log(% of Error)

Type MCTS-0 MCTS-400 MCTS-800 MCTS-1600

KPk
Win -1.0968 None None None
Draw None None None None

KQk
Win None None None None
Draw None None None None

KRk
Win None None None None
Draw None None None None

KQkq
Win -0.5284 -2.4934 -2.7944 None
Draw -1.5623 -3.2713 -3.0952 -3.2713

KQkr
Win -0.8144 -2.8522 -3.3963 None
Draw 0.3040 -1.5336 -1.8523 -2.9315

KRkr
Win -1.6324 None None None
Draw -2.3773 None None None

KPkp
Win -0.3572 -1.9897 -2.4816 -2.8348
Draw -0.3514 -2.2087 -2.8201 -3.4829

KPkq
Win -2.9277 -5.5310 -5.8734 -5.9703
Draw -2.5316 -5.4661 None None

KPkr
Win -0.6945 -0.3858 -2.4878 -2.3077
Draw -2.9148 -2.7426 -3.5412 -2.8839

Table 4.4: Error rate for winning and drawing move predictions for MCTS
with search budgets of 0 (raw policy), 400, 800 and 1600 simulations.

4.5 Experiment 4: How Well Does Lc0 Rec-

ognize Wins And Losses at Different De-

cision Depths?

We conducted a more detailed experiment to find out how accurately the

engine differentiates different types of moves (e.g . winning, drawing and losing)

at different decision depths. As the overall error rate on the 3 piece endgame

tablebase is very small for the strong network, we omit these results from this

experiment.

With the four piece EGTB we tested again if the engine can differentiate

a winning move from drawing and losing moves when the position is winning,

and drawing moves from losing when the position is drawing. This time, we

separate statistics by decision depth. For this experiment, if the program can

play a winning move in a winning position, we assume it can differentiate

at least one winning move from all drawing or losing moves. Similarly, for
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a drawing position, if the engine can play a drawing move we assume it can

differentiate at least one drawing move from all losing moves.

4.5.1 Error Rate of Raw NN at Different Decision Depths

We measure the percentage of errors made by Lc0 at each decision depth.

Figure 4.1 shows the total number of positions and the percentage of errors

made by the raw NN as a function of decision depth in the KQkr tablebase.

The total number of positions and the percentage of errors made by raw NN

as a function of decision depth for other four piece tablebases is shown in

Appendix A.

The percentage of mistakes at each decision depth is higher for drawing

positions than winning positions for this specific KQkr tablebase. The mistakes

by the raw neural network are higher at decision depths where there is only

a small number of positions. This holds even for ‘easy’ positions with low

decision depth. Figure 4.2 shows that there is an inverse relationship between

the sample size at each decision depth and the error rate of the raw net for

each tablebase. Here, the X-axis represents the percentage of samples at each

decision depth and the Y-axis shows the error rate at each decision depth on

a natural log scale.

4.5.2 Error Rate of MCTS-400 at Different Decision
Depths

We repeated the experiment of Section 4.5.1 with MCTS-400 instead of the

raw NN. As the number of mistakes significantly decreases with more search we

only used MCTS-400. Figure 4.3 shows the result for the KQkr tablebase. The

result for other four piece tablebases are given in Appendix A The engine only

makes mistakes in positions with high decision depths. Search can routinely

solve positions with shallower decision depths regardless of the policy accuracy.

At higher depths, some errors remain, but there is no simple relation between

decision depth and error rate there. Moreover, there is no relationship between

search error and sample size at each decision depth.
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(a) Total number of winning position. (b) Error rate on winning positions.

(c) Total number of drawing position. (d) Error rate on drawing positions.

Figure 4.1: Percentage of errors made by the policy at each decision depth for
the KQkr tablebase.
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(a) KRkr (b) KPkr

(c) KQkq (d) KPkq

(e) KQkr (f) KPkp

Figure 4.2: Percentage of positions at each decision depth vs ln (error + 1) for
four piece tablebases.

37



(a) Error rate on winning positions. (b) Error rate on drawing positions.

Figure 4.3: Percentage of errors made by 400 nodes searches at each decision
depth for the KQkr tablebase.

4.6 Case Studies of Interesting Mistakes

We stored the positions where Lc0 with 0, 400, 800 and 1600 simulation plays

a wrong move in experiment 2. We analyzed positions with different types of

errors as follows:

• Policy move wrong

• 400 simulations move wrong

• 800 simulations move wrong

• 1600 simulations move wrong

Comparing these four groups of positions, as expected, in most of the cases

where search selects a wrong move the policy is also wrong. Also, in most cases

where deeper search is wrong both the policy and the smaller searches are also

wrong. Surprisingly there are some cases where the search result is inaccurate

while the policy is correct. To find out the reasons for this we investigated

some of the errors where policy and search disagree:

• Policy Wrong but Search Correct

• Policy Correct but Search Wrong
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4.6.1 Policy Wrong but Search Correct

The most common type of error throughout our experiments is that the policy

move is wrong and search corrects this. As mentioned in Section 4.3.1, the

search looking ahead combined with the MCTS approximation of minimax

makes this possible.

Policy Is Wrong but Smaller Search Is Correct

One such position is given in Figure 4.4. The decision depth of this position

is 5. In this position the policy selects a drawing move Qa1 instead of the

winning move Qg1. The correct move selected by search is marked by a green

cell and the incorrect move selected by the policy is marked by a red cell in

the figure. For simplicity we include only these two moves in the Figure. The

network’s prior probability (policy head) of the incorrect move Qa1 (0.1065)

is higher than for the winning move Qg1 (0.0974). However, the value head

has a better evaluation for the position after the winning move (0.3477) than

after the drawing move (0.0067). Therefore Qg1 becomes the best-evaluated

move after only a few simulations.

Figure 4.5 shows details - the changes of Q, U , Q+U and N during MCTS

as a function of the number of simulations. At each simulation, the move

with the highest UCB value (Q + U) is selected for evaluation. The Q value

of a node is the average of its descendants’ values. The exploration term U

depends on the node’s visit count N and the node’s prior probability. For

this example, while the exploration term U(Qa1) > U(Qg1) throughout, the

UCB value remains in favour of the winning move. An accurate value head

can overcome an inaccurate policy in the search.

Policy and All Searches Are Wrong

In Figure 4.6 (decision depth 59), both Kd3 (green) and Kd5 (blue) win, but

both the raw network and the search choose Kc3 (red) which draws. Kd5

has by far the lowest policy (0.2776) and value (0.3855), and its Q and N are

consistently low, keeping it in distant third place throughout.
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8 0Z0Z0Z0Z
7 J0Z0Z0Z0
6 0ZkZ0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0ZQZ0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Zq

a b c d e f g h

V=0.0067 V=0.3477

Figure 4.4: A position where policy is wrong but smaller search is correct.

We now observe how the relevant terms in the UCB function affect the

engine’s choice for the top two moves. Both the initial policy and value are

higher for Kc3 (0.3229 and 0.9144) than for the correct Kd3 (0.2838 and

0.8501). We extended the search beyond the usual 1600 simulations to see

its longer-term behavior. The Q value of Kc3 remains highest for 6000 sim-

ulations, while Kd3 catches up, as shown in Figure 4.7(a). The UCB values

Q + U of all three moves remain close together. MCTS samples all three

moves but focuses most on the incorrect Kc3. Considering the correct move’s

Q value is consistently lower before 6000 simulations, its UCB value is propped

up by its exploration term U . At 1600 simulations, the inaccurate value esti-

mates play a large role in an inaccurate Q value for Kd3 and Kc3, resulting

in MCTS incorrectly choosing Kc3. Beyond 6000 simulations, the Q value

of Kd3 keeps improving, and MCTS finally chooses a correct move at about

12000 simulations.
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(a) Average action value Q. (b) Exploration value U.

(c) Upper Confidence Bound Q+U. (d) Visit count N.

Figure 4.5: The change of Q, U, Q+U and N during the search for the position
from Figure 4.4 where the policy is wrong and a smaller search is correct.

4.6.2 Policy Correct, Search Wrong

Surprisingly there are some positions where the policy finds the correct move

but search changes to an incorrect move. We show two examples in this section.

Policy Is Correct, Smaller Search Is Wrong

Figure 4.8 shows an example position where only MCTS-400 makes a mistake

while both the policy and deeper search choose the correct move. The decision

depth of this position is 23. In this case Kb5 (green) wins while Kd6 (red)

draws. The prior probability of Kb5 is 0.0728, slightly higher than Kd6 with

0.0702, but the value for Kb5 at 0.2707 is slightly lower than for Kd6 with
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8 0Z0Z0Z0Z
7 Z0O0Z0Z0
6 0Z0Z0Z0Z
5 j0Z0Z0Z0
4 0sKZ0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

V=0.9144 V=0.8501

V=0.3855

Figure 4.6: A position where policy and all searches are wrong.

0.2834.

Figure 4.9(a) shows that the Q value of Kd6 is higher early on due to

the value head. Initially, until 400 nodes are searched, the nodes within the

drawing subtree are evaluated better than in the winning subtree. As search

proceeds, this reverses since the values in the sub-tree of the winning move

improve. Consequently, the UCB value of the winning node increases signifi-

cantly, which in turn increases its visit count. In this example, MCTS over-

comes an inaccurate root value since the evaluations of its followup positions

are more accurate.

Policy Is Correct But All Searches Are Wrong

A complete list of such positions is given in Appendix B. In the example shown

in Figure 4.10, d4 (green) wins and decision depth is 33. Up to 1600 simula-

tions, MCTS chooses the drawing move Kb3 (red). The value of Kb3 (0.1457)

is higher than that of d4 (0.1053), but the prior probability of d4 (0.3563) is
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(a) Average action value Q. (b) Exploration value U.

(c) Upper Confidence Bound Q+U. (d) Visit count N.

Figure 4.7: The change of Q, U, Q+U and N during the search for the position
from Figure 4.6 where policy and all the searches are wrong.

higher than Kb3 (0.348). Figure 4.11(a-d) shows the search progress. The Q

value of d4 remains lower for longer than in the previous example in Figure 4.8.

At around 1500 simulations, the UCB value of the correct move becomes con-

sistently higher. This prompts the search to sample the correct move more. At

2200 simulations, the Q value of the correct d4 suddenly spikes dramatically.

Figure 4.12 shows a partial line of play from the position. The value of each

node is shown on the boards. For the drawing subtree, Lc0 follows the line

of perfect play. The value of the nodes on the drawing subtree becomes close

to zero searching deeper. For the winning subtree, the values of the winning

nodes are low initially, close to a draw score of 0. However, the deeper nodes
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8 qZ0Z0Z0Z
7 j0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0J0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0L0

a b c d e f g h

V=0.2834

V=0.2707

Figure 4.8: A position where the policy is correct but smaller search is wrong.

starting from the marked node in blue are evaluated over 0.99, a confirmed

win. At 2200 simulations, the search from the initial position starts seeing

these nodes which confirm the win. Finally, from 2700 simulations, the engine

selects the winning move.

The update rule of Q adds the neural network evaluation of each newly

added node in the tree to its ancestors [48]. As a result, the average action

value Q depends on how the value head estimates the value of the nodes within

the expanded subtree. In every case, the term Q dominates in the UCB value

Q+U as N gets larger. As a result, asymptotically the search is guided by the

value head rather than the policy head. Therefore, a higher value evaluation

error in the value head in the relevant state may lead the search to an incorrect

result, as seen in this section.
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(a) Average Action Value Q. (b) Exploration Value U.

(c) Upper Confidence Bound Q+U. (d) Visit Count N.

Figure 4.9: The change of Q, U, Q+U and N during the search for the position
from Figure 4.8 where the policy is correct but a smaller search is wrong.
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8 0Z0Z0Z0Z
7 Z0Z0Z0o0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 J0Z0Z0Z0
2 0Z0O0Z0Z
1 ZkZ0Z0Z0

a b c d e f g h

V=0.1457

V=0.1053

Figure 4.10: A position where policy correct but all the searches are wrong up
to budget 1600.
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(a) Average action value Q. (b) Exploration value U.

(c) Upper Confidence Bound Q+U. (d) Visit count N.

Figure 4.11: The change of Q, U, Q+U and N during the search for the position
from Figure4.10 where the policy is correct but all the searches are wrong up
to budget 1600.
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a b c d e f g h

V=0.2329
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40Z0O0Z0Z
3J0Z0Z0Z0
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a b c d e f g h
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1.d5 g4 2.d6 g3 3.d7 g2 4.d8=Q g1=Q 5.Qd3+ Kc1 6.Qc3+ Kd1
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20Z0Z0Z0Z
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a b c d e f g h

V=0.9934

80Z0Z0Z0Z
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3J0Z0Z0Z0
20Z0ZkZ0Z
1L0Z0Z0l0

a b c d e f g h
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a b c d e f g h
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60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3J0Z0Z0Z0
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1L0Z0Z0l0

a b c d e f g h

V=0.9999

K
d2

Q
a1+

g5

d4

80Z0Z0Z0Z
7Z0Z0Z0o0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3ZKZ0Z0Z0
20Z0O0Z0Z
1ZkZ0Z0Z0

a b c d e f g h

V=0.1053
K

b3

Figure 4.12: Partial search tree for the winning subtree of position from Fig-
ure 4.10.
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Chapter 5

Experiments on a Five Piece
Tablebase

In order to observe how our results scale for a larger tablebase, we conducted

experiments on samples from the KQRkq five piece tablebase. Considering our

limited resources, we selected only samples of this one pawn-less tablebase.

This tablebase has a high range of decision depths, that ensures there are

difficult positions for human players. The highest DTM in this tablebase is

131.

To conduct our experiments, we took 2049112 unique positions by ran-

domly sampling 1% from the total of 204911280 unique positions. From these

2049112 unique positions we got 1214165 unique legal positions, which is ap-

proximately 1% of the total number of 121812877 unique legal positions in

KQRkq. Among the samples taken, there are 683022 winning and 147694

drawing positions with more than one game outcome. In total our test case

contains these 830716 positions. The results presented in this chapter are an

approximation of the whole five piece tablebase results because of the sam-

pling.

5.1 Performance of the Strong Network on the

Five Piece Tablebase

As in Chapter 4 we evaluate the move decisions of Lc0 in KQRkq for both the

raw network policy, and for full Lc0 with 400, 800 and 1600 MCTS simulations.
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Table 5.1 shows the fraction of mistakes on the sample five piece tablebase.

The table shows that the error rate for draws is higher than for wins, unlike

the common case of four piece tablebases.

Search Budget Winning Error Drawing Error Overall Error
MCTS-0 1.137 5.186 1.857
MCTS-400 0.040 0.297 0.086
MCTS-800 0.025 0.17 0.052
MCTS-1600 0.011 0.105 0.028

Table 5.1: Error rate in percent on five piece sample tablebase.

5.2 How does the Error Rate Change with In-

creased Number of Pieces?

To evaluate the change of Lc0 performance with increased number of pieces

in Table 5.2 we compare the average error rate on our chosen 3, 4 and 5 piece

tablebases. The error rate increases strongly with the increased number of

pieces.

Search Budget Three Piece Four Piece Five Piece
MCTS-0 0.0092 0.2306 1.8573
MCTS-400 0 0.0034 0.0857
MCTS-800 0 0.0012 0.0516
MCTS-1600 0 0.0004 0.0278

Table 5.2: Average error rate in percent on all tested three, four and five piece
tablebases.

5.3 How Well Does the Engine Recognize Wins

and Losses at Different Decision Depths?

To find out how the error rate changes at each decision depth in the larger

tablebase, we extended the Experiment of Section 4.5 to the KQRkq tablebase.

As this tablebase has higher decision depths, we evaluated all four: raw NN

and MCTS-400 as well as MCTS-800 and MCTS-1600.
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5.3.1 Error Rate of Raw NN at Different Decision Depths

Figure 5.1 shows the total number of positions and the percentage of error for

the raw NN at different decision depths. The result is similar to the four piece

tablebases. The error rate is still higher for depths where there is only a small

number of positions, regardless of the depth of the position. Figure 5.2 shows

a similar relationship between the sample size at each decision depth and the

error rate of the raw net as for the four piece tablebases in Figure 4.2.

(a) Total number of winning positions. (b) Error rate on winning positions.

(c) Total number of drawing positions. (d) Error rate on drawing positions.

Figure 5.1: Percentage of error by the raw policy at each decision depth.

5.3.2 Error Rate of MCTS-400, 800 and 1600 at Differ-
ent Decision Depths

We evaluate all the search settings used in our experiment (MCTS-400, 800

and 1600) on the five piece tablebase. Similar to the four piece search result in

Section 4.5.2 the error rate does not depend on the sample size at each decision
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Figure 5.2: Percentage of positions at each decision depth vs ln (error + 1) for
the sample KQRkq tablebases.

depth. Figure 5.3 shows the error rate for all three levels of search at each

decision depth. The error rate tends to be higher for higher decision depths.

Moreover, large search can correct mistakes done by smaller searches at all

decision depths. Again there is no simple relation between decision depth and

error rate KQRkq.

5.4 Case Study: How Does Lc0 Play on the

Deepest Winning Position?

Figure 5.4 shows the winning position with highest decision depth (131) of all

positions in KQRkq tablebase. This position was filtered out from the sample

five piece tablebase. We examined Lc0 move selection on this position using

both the raw policy and searches. In this position both Kb3 (green) and Kb1

(blue) win while Ka3 (yellow) draws and Ka1 (red) loses.

The prior probability and value estimation of the child nodes are shown in

Figure 5.5. The prior probability of the winning move Kb3 is the highest.

Therefore, the raw NN selects this winning move. The value head estimation

of this winning move is also the highest. Therefore, Lc0 selects Kb3 from the

very beginning of search. Figure 5.6 shows the changes of Q, U , Q + U and
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N as search proceeds. The average action value Q of Kb3 remains highest

throughout the search. Consequently, this move gets the highest visit count

throughout the search. In this case Lc0 clearly differentiates one winning

move from drawing and losing moves even though the way to win is long.

Furthermore, at 1276 simulations the Q value of the losing move Ka1 suddenly

drops as the search reaches the terminal node. During this search this node is

selected only twice as both its policy and value are lowest.

5.5 Position Where the Policy Correct But

All the Searches are Wrong

In the position in Figure 5.7 both Kd4 (Blue) and Re5 (Green) are winning

moves while Kc4 (Magenta), Kc6 (Red) and Kd6 (Yellow) only draw. The

decision depth of the position is 43. Here, the policy selects the winning move

Re5.

Figure 5.8 shows the prior probability of the moves and the value of the

corresponding child nodes. The value of Re5 is the highest. Therefore, search

selects Re5 initially. However, as shown in Figure 5.9(a) the Q value of the

drawing move Kd6 becomes highest after 36 simulations and remains so for all

of MCTS-400, 800 and 1600. Figure 5.9(d) shows that after 1400 simulations

another drawing move Kc6 also achieves a higher visit count and Q value than

both winning moves.

Extending the search further, the drawing move Kc6 becomes the highest

visited at 3753 to 80187 simulations. After 80187 simulations, search finally

selects the other winning move Kd4 (Blue).

In this particular situation local pathology [38, 53] occurs on the subtree

of the game tree, as the search result is erroneous on deeper search with 37 to

80187 simulations, but correct with shallower search up to 36 simulations.
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(a) MCTS-400 error in winning positions.(b) MCTS-400 error in drawing positions.

(c) MCTS-800 error in winning positions.(d) MCTS-800 error in drawing positions.

(e) MCTS-1600 error in winning positions.(f) MCTS-1600 error in drawing positions.

Figure 5.3: Percentage of error by MCTS-400, 800, 1600 at each decision
depth.
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8 QZ0Z0Z0Z
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Figure 5.4: Position with deepest win in the whole KQRkq tablebase.

(a) Prior probability of moves. (b) Value evaluation of child nodes.

Figure 5.5: Neural network evaluation of the position from Figure 5.4.
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(a) Average action value Q. (b) Exploration value U.

(c) Upper Confidence Bound Q+U. (d) Visit count N.

Figure 5.6: The change of Q, U, Q+U and N during the search for the position
from Figure 5.4.
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Figure 5.7: Position where the policy is correct but all the searches are wrong
up to a budget of 1600.

(a) Prior probability of moves. (b) Value evaluation of child nodes.

Figure 5.8: Neural network evaluation of the position from Figure 5.7 where
the policy is correct but all the searches are wrong up to budget 1600.
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(a) Average action value Q. (b) Exploration value U.

(c) Upper Confidence Bound Q+U. (d) Visit count N.

Figure 5.9: The change of Q, U, Q+U and N during the search for the position
from Figure 5.7 where the policy is correct but all searches up to a budget of
1600 are wrong.
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Chapter 6

Conclusion

In this thesis we investigated the gap between a strong AlphaZero-style player

and perfect play using chess endgame tablebases. First, we evaluated perfect

play prediction accuracy for the AlphaZero-style Leela Chess Zero program un-

der different settings, including using different NN snapshots, and also between

the raw network policy and MCTS with different simulation budgets. We also

compared the prediction accuracy for winning and drawing positions. Second,

we evaluated the effect of training sample size to prediction accuracy by cate-

gorizing positions into different decision depths. We observed the relationship

between each decision depth’s sample size and the accuracy for that decision

depth with both the raw policy and MCTS. We examined specific examples

where the engine made different types of mistakes. Finally, we extended our

experiment to samples from a larger five piece tablebase and showed results

consistent with the four piece tablebases.

The most important findings are:

• NNs approach perfect play as more training is performed.

• Search strongly helps to improve prediction accuracy.

• The number of NN errors decreases for decision depths that have a higher

number of samples.

• Search increases the rate of perfect play with shallower decision depths.

• Search corrects policy inaccuracies in cases where the value head accu-

racy is high.
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• Search may negatively impact accuracy in cases where the value head

error is high.

• Both raw policy and MCTS performance degrades with increasing num-

ber of pieces.

Possible future extensions of this study include:

• Extend the study on samples of other five or more piece endgame table-

bases to get the broadest variety of results.

• Perform frequency analyses of self-play training data to measure the

number of samples at each decision depth.

• Analyze symmetric endgame positions to verify the decision consistency.

• Examine the value head prediction accuracy more closely and compare

it with the policy accuracy.

• Study the case where the program preserves the win, but increases the

distance to mate and the case where the program decreases the distance

to mate for the losing side.

• Train smaller neural networks to check performance degradation.
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Appendix A

Percentage of Error at Different
Decision Depths for Other Four
Piece Tablebases

The percentage of error made by the policy and MCTS-400 at each decision

depth for the KQkq, KRkr, KPkq, KPkr, and KPkp tablebases are shown in

Figures A.1- A.5. Generally, the error rate at each decision depth decreases

as the sample size for that depth increases. However, we do not observe any

relation between the error rate of MCTS-400 and the sample size. In other

words, in most cases, MCTS-400 can correct errors made by the policy at

shallower decision depths. In the KPkq and KQkq tablebases, some errors

still remain at shallow decision depths. Therefore, there is no simple relation

between search error and decision depth.
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(a) Total number of winning position. (b) Total number of drawing position.

(c) Policy error rate on winning positions.(d) Policy error rate on drawing positions.

(e) MCTS-400 rate on winning positions. (f) MCTS-400 rate on drawing positions.

Figure A.1: The percentage of errors made by policy and MCTS-400 at each
decision depth for the KQkq tablebase.
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(a) Total number of winning position. (b) Total number of drawing position.

(c) Policy error rate on winning positions.(d) Policy error rate on drawing positions.

(e) MCTS-400 rate on winning positions. (f) MCTS-400 rate on drawing positions.

Figure A.2: The percentage of errors made by policy and MCTS-400 at each
decision depth for the KRkr tablebase.
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(a) Total number of winning position. (b) Total number of drawing position.

(c) Policy error rate on winning positions.(d) Policy error rate on drawing positions.

(e) MCTS-400 rate on winning positions. (f) MCTS-400 rate on drawing positions.

Figure A.3: The percentage of errors made by policy and MCTS-400 at each
decision depth for the KPkq tablebase.
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(a) Total number of winning position. (b) Total number of drawing position.

(c) Policy error rate on winning positions.(d) Policy error rate on drawing positions.

(e) MCTS-400 rate on winning positions. (f) MCTS-400 rate on drawing positions.

Figure A.4: The percentage of errors made by policy and MCTS-400 at each
decision depth for the KPkr tablebase.
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(a) Total number of winning position. (b) Total number of drawing position.

(c) Policy error rate on winning positions.(d) Policy error rate on drawing positions.

(e) MCTS-400 rate on winning positions. (f) MCTS-400 rate on drawing positions.

Figure A.5: The percentage of errors made by policy and MCTS-400 at each
decision depth for the KPkp tablebase.
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Appendix B

Case Study Positions where the
Policy Is Correct But All the
Searches Are Wrong

Table B.1 includes the list of positions from the chosen four tablebases, where

policy is correct but all searches are wrong. Among all the four piece table-

bases, these types of positions occur only in the KPkp and KPkr tablebases.

The list of positions in the KQRkq tablebase, where policy is correct but all

searches are wrong, is given in Table B.2.These types of positions are more

common in this five piece tablebase than in four piece tablebases.
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Tablebase Positions

KPkp

8/6p1/8/8/8/K7/3P4/1k6 w - - 0 1
8/1p6/8/8/1P6/8/8/K5k1 w - - 0 1
8/1p6/8/8/1P6/8/8/1K3k2 w - - 0 1
8/1p6/8/8/1P6/8/8/1K2k3 w - - 0 1
6K1/4p3/7k/8/8/8/1P6/8 b - - 0 1
6K1/4p3/7k/8/8/1P6/8/8 b - - 0 1
1k2K3/8/8/1p6/8/8/1P6/8 b - - 0 1
1k3K2/8/8/1p6/8/8/1P6/8 b - - 0 1
k5K1/8/8/1p6/8/8/1P6/8 b - - 0 1
4K3/8/5pk1/8/8/P7/8/8 b - - 0 1
4K3/2k5/1p6/8/8/8/1P6/8 b - - 0 1
8/8/6p1/8/8/K7/3P4/1k6 w - - 0 1
8/1p6/8/8/8/1P6/2K5/4k3 w - - 0 1
8/1p6/8/7K/8/7k/3P4/8 b - - 0 1
8/8/3p3K/8/7k/1P6/8/8 w - - 0 1
8/3p4/7K/8/7k/8/1P6/8 w - - 0 1
8/3p4/7K/8/7k/1P6/8/8 w - - 0 1

KPkr
8/2P5/8/k7/2K5/8/3r4/8 w - - 0 1
8/2P5/8/k7/1r1K4/8/8/8 w - - 0 1

Table B.1: Positions in four piece tablebases where the policy is correct but
all searches are wrong.
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Tablebase Positions

KQRkq

2q5/8/K7/8/8/1R4Q1/8/k7 w - - 0 1
k7/4R3/8/3K1q2/8/8/8/6Q1 w - - 0 1
7k/6R1/K7/8/1q6/8/4Q3/8 w - - 0 1
6R1/6Q1/8/K4q2/8/8/8/2k5 w - - 0 1
8/8/8/2K3q1/8/3k4/R4Q2/8 w - - 0 1
1Q5R/8/8/2K3q1/8/8/8/3k4 w - - 0 1
7Q/8/8/1K1q4/2R5/4k3/8/8 w - - 0 1
k7/8/1q6/3K2R1/8/8/8/3Q4 b - - 0 1
1q6/8/8/2K5/8/Q7/R7/3k4 b - - 0 1
7R/8/2K5/7q/8/7Q/8/6k1 b - - 0 1
6R1/8/1K6/1Q6/8/8/3q4/7k b - - 0 1
8/2R5/K7/3q4/8/8/3k4/6Q1 b - - 0 1
7q/8/1K6/8/8/8/6QR/4k3 b - - 0 1
7k/8/1K6/8/7q/8/6R1/5Q2 b - - 0 1
K7/8/8/7Q/2q5/k7/7R/8 b - - 0 1
8/8/8/1K6/4q3/8/6QR/1k6 b - - 0 1
R7/8/8/K7/8/7q/Q7/4k3 b - - 0 1
8/q7/2K5/8/8/5k2/6R1/6Q1 b - - 0 1
7R/K7/8/8/8/7Q/8/1q4k1 b - - 0 1
5k2/8/8/KQ1q4/8/8/8/R7 b - - 0 1
8/8/8/K7/7Q/8/4qR2/k7 b - - 0 1
8/8/K7/8/1q6/4k3/5R2/5Q2 b - - 0 1
8/8/3k4/K6Q/8/5q2/8/7R b - - 0 1
8/8/K7/8/6q1/8/4QR2/7k b - - 0 1
7q/1R6/8/2K5/8/2k5/4Q3/8 b - - 0 1
2q5/8/1K6/1R6/8/4k3/8/Q7 b - - 0 1
8/7Q/8/1R1K4/5q2/8/8/k7 b - - 0 1

Table B.2: Positions in the KQRkq tablebase where the policy is correct but
all searches are wrong.
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