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ABSTRACT

Sustainable forest management requires knowledge aboutiplotennomic and ecological
outcomes of policy decisions and management actiortgn @fis requires the use and
evaluation of models that capture and project the osiships between indicators and
management policies and practices. This project, whichasof several interrelated projects
undertaken by the Boreal Ecology and Synthesis Team$BlHbhad two main objectives
related to model development and evaluation. Thedbgctive was to evaluate the accuracy
and generality of songbird-habitat models and thus to deterttmeir usefulness as tools for
managing forest-dwelling birds and evaluating alternativestomanagement scenarios. The
second objective was to continue to develop and enhanddIRE& landscape simulation
model, and to apply it to evaluate management scenariqsodiog decisions.

We assessed the predictive capability of songbird-habidels developed in Calling Lake,
Alberta using (1) data from the same site but differeatsy@emporal validation), (2)
independent data collected at four sites within 125 km ofr@allake (external validation), and
(3) independent data collected in northeastern BritidhrGloia (external validation). All sites
were located within the boreal plains ecosection. mbdels were derived using logistic
regression analysis and their accuracy assessed usiaggthender a receiver operating
characteristic curve (AUC; see Model Validation).the temporal validation component, model
coefficients and reliability fluctuated across yearsparformance was generally satisfactory.
Increasing the number of years used to develop the modmisved only the predictive ability
of the Red-breasted Nuthatch model. Generally, regardiethe number of years of data used,
the models were reliable. In Alberta, when we combinlesikéernal validation sites, our results
indicated reasonable discrimination between occupied arctupied sites for 8 species, while
for the other 8 species the models showed poor discriminalitity. When the models were
tested against each validation site individually, perfereeadepended in part on broad
differences in landscape structure and disturbance historgomparison, when the habitat
models were developed and validated using only data frofothealidation landscape
(internal validation), they generally performed wellsing the BC validation data, none of the
four species models tested proved to be adequate — althounghthessame set of variables it
was possible to develop reliable models using local datas, our analyses indicate that
although model coefficients vary geographically, the ssg®f variables is consistently useful
in developing predictive models of site-occupancy witaimdscapes — especially when
developed using local data.

During the past three years, we continued to developramahee FEENIX, and apply it to
evaluate management scenarios and policy alternativeganEements to FEENIX include
improved performance, the addition of several sub-modelss@lvage logging, landscape
metrics, networks, strata-based harvest schedulinggbiligy to import and export common
GIS data, and the facility to perform Monte Carlo asa$y A prototype, “stripped-down”
version of FEENIX also has been developed to faaliitat use by non-programmers. Recent
applications of FEENIX for management purposes are itbescin a related BEEST project.
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INTRODUCTION

Sustainable forest management requires knowledge abcquitirgial economic and ecological
outcomes of policy decisions and management actionseXaonple, managers need to
understand the consequences of alternative managemermiceand policies on ecological
indicators such as forest songbirds. One of the nifesitige ways to accomplish this is to
capture relationships between songbirds and habitat atsiitten models, and to integrate
these models in tools that are able to simulate managekrities and landscape dynamics
over large spatial and temporal scales. Such habitatlsncale be used in two broad ways: (1)
by themselves to identify information gaps, assess cueedscape conditions, and test specific
species-habitat hypotheses and (2) within a landscape samtddtcilitate integrated resource
planning, scenario evaluation, and policy analysis. Batk aghabitat models can help
managers make better decisions. Over the past sgearal the Boreal Ecology and Economics
Team (BEEST) has developed two modeling platforms designgichtilate forest harvesting,
wildfire, stand dynamics, and wildlife habitat and popafadynamics in boreal forests. Each
platform comprises a number of sub-models, including &ebititability models, that are
parameterised and/or initialised from the same or sirddéa sets, but which differ in the scale
at which processes are represented, the size of tllmsdbat may be modeled, and in the sorts
of questions they are suited to answer. FEENIX, wisaescribed in more detail in this report,
operates at a relatively fine resolution (3 ha), anddeah with patch-level questions such as fire
ignition and spread, dispersal of seeds or individual beates, tactical harvest scheduling, and
cut-block layout. TARDIS, in contrast, works at vergdu scales({100 km) and is intended
primarily as a strategic level, policy analysis tool.

In collaboration with the BEEST, one of our goalewothe past few years was to contribute to
the development and validation of songbird-habitat mddelsse on their own and within
FEENIX for scenario evaluation and policy analyséspersistent criticism of habitat models
and models used in a management context, is that teewraly validated. Our ability to
generalize predictions from our existing songbird-habatatther locations in the boreal forest
may be restricted by geographic limits in the ranges dfdpecies, or by undetected variation in
links between forest habitat elements and particularspegies or communities within the
ecosystem. We explored these issues by attemptingidateabur models with data from other
locations in the Alberta boreal mixedwood forest andmeouring British Columbia (BC). By
testing the models it may possible to identify sour¢esoertainty and guide data collection to
reducing the causes of those uncertainties.

We had two main objectives. Our first objective wasualuate the accuracy and
generalizability of songbird-habitat models and thus to dwtertheir usefulness as tools for
managing forest-dwelling birds and evaluating alternativestomanagement scenarios. To do
this, we used existing bird survey data that have beerctadl@t independent locations in
Alberta and BC in conjunction with other research andagament projects. Our focus was on
evaluating habitat models for use in areas within thegbonexedwood forest. Specifically, we
assessed the predictive ability of the Calling Lake habitadels using:



1. Multi-year data from the same study area to (1) askesemporal variability in
songbird-habitat relationships (direction, strength, agoifecance of estimated
coefficients), (b) evaluate the temporal variabilityhe predictive performance of
models, and (c) determine if the predictive performandaemodels increased with the
number of years of data used to fit the model. [Tempdallation]

2. Independent data collected at four separate locationkerta within the same
ecological region (boreal plains ecosection). [ExaéNalidation]

3. Independent data collected at one location in northeeBte at the western edge of the
same broad ecological region (boreal plains ecosgc{Bxternal Validation]

Our second objective was to continue to develop FEEMXta apply it to evaluate
management scenarios. Consequently, in this report, seeiloe various enhancements that
have been made FEENIX over the past 3 years. Theapph of FEENIX in various
management scenarios and policy analyses in AlbertB@nd provided in a companion
BEEST project.

HABITAT MODEL EVALUATION

Habitat models are often used to make predictions beyershthple from which the models
were developed (Scott et al. 2002). For example, a modebenased to assess the suitability of
a forest management unit for a species of concernevainate and rank alternative future
management scenarios. Both examples illustrate thefusabitat models outside of their range
of development — both in space and time — raising conceous Hie use of models without
proper, or external, validation. Validation, howevemarely done due to limitations in time,
funding, and data (Morrison et al. 1999, Guisan and Zimmer2@dd). Recently, in an

attempt to address this situation, several papers haxsvexl and illustrated methods for
evaluating species distribution models and in particolgistic regression models such as the
ones described here (Fielding and Bell 1997, Pearce andriZ00i@).

A key aspect of prediction, is the consideration oéthier a model derived from an analysis of
the original data set is transportable to similar foleesiscapes in other geographic locations.
This concept is sometimes referred to as generalizabilivalidity, and a model that is found to
pass such a test is said to have been validated. Broatitigtion can be carried out both
internally and externally (Harrell 2001). Internal valida is used to test the accuracy of a
model using the same sample that was used to develop thé misdestricted to a single
geographic site. Methods include data splitting and computsnsive methods such as ‘leave-
one out’ cross-validation, and bootstrapping. Exterahdlation addresses the issue of the
generalizability of the models by using independent data éagther place) to test a model. A
third form of validation, referred to as temporal or pexgive validation, provides an
intermediate level of assessment whereby models devkiomse study area are tested against
past or future data collected in the same area.



No matter which validation approach is used (internag€real, or temporal), there are two
related aspects of predictive accuracy that can besestevhen evaluating a habitat model:
calibration and discrimination (Pearce and Ferrier 200&,efi2001). Calibration describes the
agreement between observations and predicted valugsgg@dness-of-fit) and therefore
describes the reliability with which a model predictsghgbability of a site being occupied by a
species of interest. A reliable model (i.e., welllwalted) should be able to correctly predict the
actual proportion of sites occupied by the speciestefast. Although revealing, this aspect of
model accuracy is not always directly useful to foreahagers. Discrimination, on the other
hand, is the model’s ability to reliably classify ldoats (e.g., patches or landscape units) into
two or more groups (e.g., presence/absence or diffeabitah suitability classes). Such
classifications can be used to provide feedback to infeier@nagement activities such as the
choice of treatment type to use in a particular locabioto evaluate and rank the suitability of
different landscape units or management scenariosseqaantly, our focus in this report is on
evaluating the discrimination capability of our songbird-tetbinodels.

Study Areas

All of the songbird-habitat models were initially deyedaol and tested using data collected
adjacent to Calling Lake, in north-central Alberta (55°183° W). Subsequently, the models
were tested at five independent sites, four near Callikg land one in BC (Figure 1). All sites
are within the Boreal Plains ecosection (Ecologicedt®ication Working Group 1996). Three
of the validation sites were located between 85 and 12&vkany from the development site
(Calling Lake). The fourth validation site was locatest porth of Calling Lake. The fifth site
was located near Chetwynd in northeastern BC. Althdlgte are many similarities among the
landscapes with respect to merchantable tree spdwes,dre also some important differences
relating to the disturbance history of the sites. CTh#ing Lake site has been logged extensively
during the early part of the 1990s but has not experiencethajoy recent burns. In contrast,
the Goodwin site is characterized by a very large burrfemdecent clearcuts. The Reference
site, as its name implies, has been relatively unloggddargely undisturbed by recent fires.
The North Calling Lake and Owl river sites are morelamnto Calling lake in that they have
both been logged recently. At the Alberta sites, tigmglaspen Populus tremuloidgsbalsam
poplar Populus balsamifefa and white sprucePcea glauca were the most abundant upland
tree species, often occurring together in old, mixeddstamhereas black sprudei¢ea.

mariang characterized hydric sites. The BC site is locati#imBlock 4 of TFL 48 near
Chetwynd and consists of few recent natural disturbpatehes but many widely distributed
cutblocks, especially in the lower elevations. Theitlgaderchantable tree species were
lodgepole pineRinus contorty, subalpine fir Abies lasiocarpp white spruce, trembling aspen,
and spruce hybridRjceacross).
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Figure 1. General locations of the Alberta and B@ birrvey sites (black circles). The map of the
Terrestrial Ecozones of Canada is from the 2002 Sta@awhda’s Forests website located at
http://www.nrcan.gc.ca/cfs-scf/national/what-quoi/sofdate.html.

Bird Survey Data

Calling Lake site We developed habitat models for selected songbird spesiies bird
abundance data collected by point-count surveys conducteddret®93-2001 as part of the
Calling Lake Fragmentation Experiment study in north+etritiberta (Schmiegelow et al.
1997). A total of 436 permanent sampling stations were logéthoh 65 sites, which were
defined as contiguous areas of similar forest type and it types included areas clearcut in
1993 as part of the experimental design, young and old deciftuesss, mature coniferous
forests, and mixedwood forests. There was at least 28lween each sampling station. In

each year that a station was sampled, point countseegiducted four times during the breeding

season, from the third week in May through early Jiilye point count stations were geo-
referenced and linked to the Calling Lake GIS databasecamneerted all bird abundance data
to presence/absence data prior to analysis. Schmiegeldw(E97) provide more details on
the survey design.
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Figure 2. Top left map indicates the location of develepiniblue stations) and validation (red stations) &ites
north-central Alberta. All Alberta sites are loahteithin the ALPAC FMU (grid). The 5 other maps shiw t
distribution of survey stations and habitat classdisimveach of the study sites. The BC site used a modifibdat

classification system and is not shown here.

Temporal validation We developed models using presence-absence data for bfbmesia
songbird species: Black-throated Green Warbler, Red-brehstatch, White-throated
Sparrow, Yellow-rumped Warbler, and Yellow Warbler (Table This is the same suite of
species for which we recently developed abundance mddaisiér et al., 2002). The songbird
models in this analysis component were developed andl tesitgg data from 1993-99, which, at
the time were the most current available to us (Boyed¢ 2002).

Alberta validation sites We validated our habitat models using bird abundance dig¢ated by
point-count surveys conducted in 1996 and 1997 in four separatetscal he sampling
protocol was similar to that described for the Callingd_aird survey. As with the model
development data, we converted all bird abundance datasence/absence data prior to
analysis. Details of the sampling protocols and stuelg ean be found in Hannon (1999). In
our analyses of model performance, we only consideregbgdrspecies that occurred in at least
10% of the stations but no more than 90% (Table 1).

BC validation site We used bird abundance data collected by point-count suceegucted in
2000 and 2001 as part of a Northern Goshawk inventory of Blo€kl448 near Chetwynd in
northeastern BC (Manning, Cooper and Associates 2001). Weénohlged survey stations that
were located in the Boreal White and Black Spruce (BWafs) Sub-boreal Spruce (SBS)
biogeoclimatic zones. As with the model developmerd,da¢ converted all bird abundance
data to presence/absence data prior to analysis. lrasbtdrthe Alberta bird surveys, the
songbird surveys in BC were biased toward older forpsistyhere Goshawks were more likely
to occur. Manning, Cooper and Associates (2001) provide morésaetdhe bird survey work.
We evaluated habitat models for Black-throated Green \WarREed-eyed Vireo, Swainson’s
Thrush, and Yellow Warbler (Table 1).



Table 1. Code, common name, and Latin name for speciésled in this project. AB = Alberta external
validation; BC = BC external validation; Temporal = tempugdidation.

Code Common name Latin name Study area

AMRE American Redstart Setophaga ruticilla AB

BGNW Black-throated Green Warbler Dendroica virens AB, BC, Temporal
CHSP Chipping Sparrow Spizella passerine AB

COWA Connecticut Warbler Oporornis agilis AB

LEFL Least Flycatcher Empidonax minimus AB

MOWA Mourning Warbler Oporornis philadelphia AB

OVEN Ovenbird Seiurus aurocapillus AB

RBGR Rose-breasted Grosbeak Pheucticus ludovicianus AB

RBNU Red-breasted Nuthatch Sitta canadensis AB, BC, Temporal
REVI Red-eyed Vireo Vireo olivaceus AB, BC

SWTH Swainson’s Thrush Catharus ustulatus AB, BC

TEWA Tennessee Warbler Vermivora peregrina AB

WIWR Winter Wren Troglodytes troglodytes AB

WTSP White-throated Sparrow Troglodytes troglodytes AB, Temporal
YRWA Yellow-rumped Warbler Dendroica coronata AB, Temporal
YWAR Yellow Warbler Dendroica petechia AB, BC, Temporal

Habitat Data

Forest inventory data and habitat classificatioRor the Alberta bird survey sites, we measured
habitat patterns around each bird sampling station using 1:20@@0 Alberta Vegetation
Inventory (AVI) maps for both model development and modediatibn sites from Alberta. In
BC, we did the same thing using Canfor’s Vegetation Resdnveatory (VRI) data. Although
the Alberta and BC forest inventory databases diffeemain respects (e.g., database structure,
stand attributes, etc.), both contained the attrib@tgsired to develop a common, albeit not
fully equivalent, habitat classification system. Tiweest cover layers of the AVI and VRI data
contain several attributes useful for modeling wildh&bitat relationships such as species
composition, crown closure, height, estimated standaagkthe location of non-forest cover
types such as permanent clearings, lakes, and wetlamgsadditional map layers described the
location of streams and logging roads. We developed tahalaissification system based on
overstory tree species, stand age, and managementsaundbaince history (Table 2). The
classification system was used to create a generaliapdbirforest and non-forest habitat
classes for each site.

Table 2. Habitat classification system used to catewdeveral local and neighborhood-level habitatkbes.
Italicized comments relate to the habitat classificasystem developed for the BC study area.

Habitat class Description
Water River, lake, ice, river, and reservoirs
Non-forested Vegetated — non forested upland and wetlansl area
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Early deciduous > 70% deciduous with burn but not cut modifier or origih970 (fire-origin stands 30

years)

Young deciduous > 70% deciduous and 31-90 years (191drigin < 1970); no cut modifier

Old deciduous > 70% deciduous and origin < 1910

White spruce Conifer stands with70% white spruce as leading species

Black spruce Conifer stands with black spruce as leadirgiespe

Pine Conifer stands with pine as leading species

Mixedwood Mixed deciduous/white spruce; include O_DECID if urtdeysCrown> A and understory
Sw > 30%; mixed deciduous/conifer stands

Recent cut Clearcuts; any stand with a cut modifidudicg burns that have been salvaged;
Cutblocks where stand age30 years

Non-vegetated Anthropogenic (wellsites, large cutlines);eton-vegetated — natural or anthropogenic
areas

Habitat-based predictor variablesFor all Alberta and BC sites, we used original andvedri
map layers to measure habitat characteristics arounch@dckampling station at two spatial
scales: the local-scale, which matched the size aqsifahe circular bird sampling stations
(100 m radius, or 3.14 ha buffer), and the neighbourhode, sghich extended from 100-500 m
beyond the sampling stations (75.4 ha annular bufferjheAlbcal scale, we measured habitat
class, stand height, crown closure, deciduous propodistance to nearest cutblock, and
distance to nearest lake or river. At the neighbouttsmale (74 ha annular buffer) we measured
the proportion of early (<15 years) and late (>90 yeses)l forest, the proportion of deciduous
and mixedwood forest, the presence of black spruce patoieethe variety of habitat classes.
We selected predictor variables that included a similegeaa@f variation in both model building
and model testing datasets (Harrell 2001). These 12 halwtietoteristics comprised our
candidate set of predictor variables (Table 3). Thega®of selecting, generating, and
evaluating the variables for inclusion in statisticald®ls is described in Vernier et al. (2002).

Table 3. Habitat variables were derived from AVI &M data. Local habitat variables(L) were measurghinva
100 m radius while neighborhood variables (N) were medsara 400 m radius beyond each local (inner) buffer.

Variable Description Study area

L CCUT Station located in recent cutblock (<15 yrs) AB, BE€mporal
L_YDEC Station located in young deciduous stand (<=90 yrs) TARporal

L ODEC Station located in old deciduous stand (>90 yrs) AB, Bamporal
L_MIXED Station is located within a mixedwood stand AB, BC
L_PINE Station is located in pine stand Temporal

L_SIZE Size of patch the station lies within (see tedhilasses) Temporal

L_CUTDIST Distance of station centre to nearest antlgepic edge (e.g. cutblock) AB, BC
L_WATERDIST Distance of station centre to nearesewhlbdy (river, lake, or reservoir) AB, BC

L_CROWN Mean crown closure of forested polygons x forkatea (percent) AB, BC, Temporal
L DEC Mean deciduous proportion of forested polygons x falestea AB, BC, Temporal
L HT Mean stand height of forested polygons x forested are AB, BC, Temporal
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N_CUT Proportion of neighbourhood in a recent cutblock B, BC, Temporal

N_MID Proportion of neighbourhood in mid seral forest-@byears) Temporal
N_LATE Proportion of neighbourhood in late seral fo(esigin < 1910) AB, BC, Temporal
N_DEC Proportion of neighbourhood in deciduous forest AB, Bemporal
N_MIXED Proportion of neighbourhood in mixedwood forest AR

N_SB Presence of black spruce forest AB, BC

N_SW Presence of white spruce forest Temporal

N_RICH Number of habitat classes in neighbourhood AB

N_SIMP Diversity of habitat classes in neighbourhooth{&ion's index) BC, Temporal
N_EDGEN* Density of natural edges AB, Temporal

* calculated using habitat classification system and edggast matrix
Model Development

All presence/absence models (GLM, logistic regressimtg developed using the same general
approach that we recently used to develop abundance nfgdetser et al., 2002; GLM,

Poisson regression). For each species at eachnstaticalculated the value of the Logit (P)
using the equation

LOgIt (P) :Bo + B1X1+ +Ban
from which we calculated the probability of occurrenciagis
pi = é]i /1+ é'i

where pis the detection probability (probability of occurreate given site or patch
occupancy) of a species in tiestation, andn; = Xip = Bo + PiXa+ ... +PrXa is the linear
predictor. x; is the vector of independent variables for thetation and is the vector of
parameters to be estimated. Up to three different maaeks developed for each species: one
that only included local-level habitat variables, anothat included only neighbourhood-level
habitat variables, and a third that included a combinafitcott types of variables. Variables in
each model were selected by backward stepwise regrépsiorenter < 0.05, p-to-remove
<0.10). The best model among the competing models watesklesing Akaike’s Information
Criterion (AIC). Where necessary, we used STATAist#r option to calculate variance
estimates that are robust to influential observatioitbjmsite correlations, and undetected over-
dispersion (StataCorp 2001).

To build the models we used 1-7 years of data for the texhpalidation component (Calling
Lake 1993-1999) and 9 years of data for the external validedioponents (Calling Lake 1993-
2001). The discrepancy reflects the fact that we peridtime temporal evaluation of the
models two years prior to the external validation. ddigon, we compare model performance
among the three different model structures only forAberta external validation component.
In the other cases, we only evaluated the “best” model.

12



Model testing
data (1993-

Model building
data data

2001, Calling
Lake, AB, BC)

(1993-2001,
Calling Lake)

k.

Screen response Screen predictor
variable (10% < variables (similar range
prevalence < 90%) of variation)

i

Build logistic
regression model

2

k.

Species-habitat model

1

Assess predictive

accuracy of model
(calibration &
discrimination)

Explore source of
model failure

Is model reliable?

Use model
to make
management

decisions

Collect new
data
(monitoring)

Figure 3. Simplified flowchart of the habitat model dalion process.
Model Validation

We assessed the predictive accuracy of the songbirchhaimdels using Receiver Operating
Characteristic (ROC) analysis. ROC analysis is thateof measuring and comparing the
accuracy of a model at predicting whether each observati®s member of one of two groups
(e.g. presence / absence). The ROC curve plots tis#i8ien (true positive rate) against 1-
Specificity (false positive rate). The larger theaawader the ROC curve (AUC), the better the
model is at predicting group membership. As way of guidamcménagers using such models,
Swets (1988) considers models with AUC values between @.5.d@rto indicate poor
discrimination capacity, values between 0.7 and 0.9 tocatelireasonable discrimination ability
appropriate for many uses, and rates higher than 0.8itaie very good discrimination. A
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value of 0.5 indicates a model with no predictive powgompared to other measures of model
accuracy (e.g., sensitivity, specificity, correct sifisation rate, Kappa), AUC is not sensitive to
prevalence (i.e. proportion of sites occupied by a species

Table 4. Number of stations by year for developmgfi@iginal Models”) and validation datasets.

Study Area 1993 1994 1995 1996 1997 1998 1999 2000 2001

Original Models

Calling Lake, AB 174 264 341 234 367 385 385 282 258
Temporal Validation
Calling Lake, AB 264 341 234 367 385 385
External Validation
Goodwin, AB 86
North Calling, AB 53 80
Owl River, AB 186 122
Reference, AB 191
Chetwynd, BC 560 560

12000 and 2001 data were not used for developing the moddiinutbe temporal validation component.

Temporal validation (Calling Lake)To assess the temporal variability in songbird-habita
relationships, we developed separate models for eachi@3#8-1999) and recorded the
direction, strength, and significance of the estimategfficients. To evaluate the temporal
variability in the predictive performance of the models,used the models developed in
objective 1 to calculate AUCfor each year (e.g., 1995) and calculated plJ@sing data from
the following year (e.g., 1996) excluding, the last yeaamfipling. To determine if the
predictive performance of the models increased wittmtimber of years used to fit the model,
we developed models using 1 year of data, 2 years of datay8 of data, and so on, and
validated each of these models using data from the fmiipyear. For example, a model using
5 years of data would be developed 3 times (i.e., 1993-97, 1994-9899p8Ad tested 3 times
using AUG, (i.e., 1993-97, 1994-98, 1995-99) and 2 times using AL{Ce., 1998 and 1999).
Out-of-sample tests for models that included 1999 data wemossible. We summarized our
results graphically using the average AU&hd AUG,; value for each “number of years” group
(e.g. the mean of the 3 models developed with 5 yearga). dd/e made no attempt to interpret
inter-model variability because the number of possimelels decreased linearly as the number
of years included in the model increased. For instanc®del based on 1 year of data could be
developed 7 times, while one base on 7 years of data colylth® developed once.

External validation (Alberta) We evaluated songbird habitat models using 2 years of data
(1996-1997) from 4 independent validation sites. The numb&atbns in each year for each
of the model development and validation sites is shovlrable 4. We calculated the A{C
and AUG,; for each of the three models (i.e. models using leeaghbourhood, and local +
neighbourhood variables) for each species using the saméhdawas used to develop the
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models (internal validation) and using data from four geogecaphiindependent sites (external
validation). In all, we validated the predictive perfamoe of 16 songbird-habitat models.

External validation (BC) We evaluated modified versions of our “best” habitatlets for
Black-throated Green Warbler, Red-eyed Vireo, Swainsbimash, and Yellow Warbler using
AUC;, and AUC,,,. The models were modified because of minor differetetween the forest
inventory data of the two regions (see Table 2). In angitve only included survey stations
that were located in the BWBS and SBS biogeoclimatiege- the two zones that are most
similar to the Alberta sites.

Results of Temporal Validation (Alberta — Calling Lake)

There was moderate variability among years in thegtheand significance of songbird-habitat
model coefficients, and the overall model (all yeara} generally not a good indicator for
individual-year models (Table 5). Exploration of changesbundance between years could
provide further insight into why this might occur. Conedysthe direction (sign) of the
coefficients, was largely consistent across year2{l6ver all species). For each species except
Yellow-rumped Warbler, only one variable was considyesignificant across years, and only

for Red-breasted Nuthatch and Yellow Warbler was thigmbk also significant for the overall

(all years) model.

The predictive performance of songbird models was mariale across years when assessed
using out-of-sample data (RQ than when using in-sample data (RQCFigure 4).

Generally, all bird species had good model accuracy with;R&@ ROG,; values > 0.7 for alll
years; the exceptions being Yellow-rumped Warbler in 199FRaadbreasted Nuthatch in 1993-
1995. For 3 of the bird species (Black-throated Green WaiMette-throated Sparrow, and
Yellow Warbler), the values of RQGand ROG,; are very similar and show little variability

over time (Figure 4). In contrast, but only for thatfi8 years, the other 2 species (Red-breasted
Nuthatch and Yellow-rumped Warbler) have very differexlugs and exhibit high variability.
Differences in patterns for the first 3 years maybeounted for by landscape-level adjustments
to forest harvesting in the area (Schmiegelow and Harirg29; Norton et al. 2000).
Nevertheless, although the strength and significanceook| coefficients are quite variable, the
models themselves are consistently in the “useful aggpics” and “high accuracy” categories,
with the exceptions noted above. In other words, whedigtion is the objective, the models
appear to be robust, even though their reliability may saross years. This suggests that care
be taken when developing models shortly after disturlzance
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Table 5. Estimated coefficients for species pres@afsence models for the years 1993-1999. Emboldened
coefficients are significant at the 5% level; italesizcoefficients are significant at the 10% level.
Species/ all 1993 1994 1995 1996 1997 1998 1999
Variable years

BGNW

|_ht -0.018 0.251 0.279 0.272 0.195 0.136 0.179 0.122
n_cut 2.138 4.609 3.569 3.514 0.023 0.164  -0.813 2.704
n_late 5.032 0.929 2.671 4.409 2.233 2.133 2.929 2.523
n_dec 5.575 4.999 3.098 1.953 1.142 3.184 1.975 4.875
n_sw 0.566 1.624 0.679 1.239 0.479 0.891 0.127 0.997
n_simp 7.942 2.577 4.447 4.174 4.122 3.789 4.865 4.834
RBNU

|_ht 0.127 0.164 0.149 0.19 0.16 0.232 0.295 0.144
|_dec -4.053 0.023 -4.088 -1.477 -3.602 -2.986  -2.994  -1.463
WTSP

n_dec 7.317 5.659 7.083 0.587 3.309 4.234 3.114 6.006
n_simp 4.233 5.009 6.993 -0.013 2.812 5.227 4.515 4.832
|_dec 2.184 2.839 2.207 4921 4.247 3.129 2.442 2.657
|_ccut 19.297  -0.933 1.533 22229 5753 20.489 3.967 -0.389
n_mid -2.85 -1.646 -5.632 -3.856 -1.99 -3.618 -4.532 -2.168
|_pine 1.082 0.446 0.44 -3.728 -1.439 -0.946 0.307 0.736
n_edgen -0.014 -0.085 -0.029 -0.03 -0.036 -0.036 -0.024 -0.06
YRWA

n_late 5.48 3.197 3.14 0.505 1.864 1.712 2.361 4,72
|_odec -0.362 -1.959 -3.203 -16.922 -0.403 -0.46 0.325 -1.092
|_ccut 17.191  -6.52 -4.28 -20.862 -25.478 -4.466  -3.831 -3.491
n_mid 3.044 4.32 3.275 0.908 7.121 3.141 2.58 2.974
|_ydec 0.939 -3.122 -2.128 -17.01 -3.037 ~-1.774 -0.94  -0.577
|_size -0.006  -0.005 -0.004 -0.001 -0.003 -0.003 -0.001 -0.005
YWAR

|_odec 2.458 2.635 3.333 2.188 2.82 1.496 2.441 2.603
|_crown -0.026  -0.005 -0.014 -0.01 -0.038 -0.038 -0.039 -0.012

The relationship between mean model performancetfiaverage of the models with the same
number of years of data) and the number of years usgeledop the model is summarized in
Figure 5. With the exception of Black-throated Greenbi¢ay out-of-sample tests (RQ@

were more variable than in-sample tests (RPQCn fact, in-sample tests appeared to be little
affected by the number of years used to develop the mo@elksof-sample evaluations were
more variable, but only in the case of Red-breastetiatich did performance increase
consistently with number of years. This result isswprising, given that among those species
we analyze here, the Red-breasted Nuthatch exhibitsghedtispatial and temporal variance in
distribution and abundance (Carlson and Schmiegelow, 2@@R)two species, White-throated
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Sparrow and Yellow-rumped Warbler, out-of-sample testisadly indicated a loss in predictive
performance, albeit minor, with number of years. Mé&ke no attempt to assign significance, as
differences in the number of possible models as aibmof the number of years included in the
model made interpretation of variance problematic. Nbe&ess, both in-sample and out-of-
sample model performance was always greater than OGcaiimg) “useful applications” and

“high accuracy” models.
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Figure 4. Temporal variability in ROGUG,, andAUGC,,) for 5 species of boreal songbirds in Alberta. All models
were developed using 1 year of data and validated usirfgltwing year of data. No validation was possible for
the 1999 models because there is no data for the foljoyear.
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Figure 5. Relationship between mean model performgkid€;, andAUC,,) and the number of years used to build
the models. Data were validated using data fronfidlieving year. Note that out-of-sample predictiongeveot
possible for models developed using all 7 years of data.

Results of External Validation (Alberta — Mixedwood)

We developed logistic regression models for 16 specitsedt songbirds that occur in the
boreal mixedwood forest using data from the Calling Lakdysarea (Table 6). The number of
significant predictor variables in each model ranged #dor the Yellow-rumped Warbler to 10
for the Chipping Sparrow and Least Flycatcher. Localthabariables were included 67 times
in the models compared to 49 times for neighbourhooddtalatiables. All local habitat
variables except for L WATERDIST occurred in at leastodlets and as many as 11 models.
All neighbourhood habitat variables except for N_MIXEDwted in at least 6 and as many as
12 of the models. The internal predictive accuracy adets) as measured by AUC, ranged
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from 0.677 for Chipping Sparrow to 0.842 for American Redsfarily two species’ models,
those for Chipping Sparrow and Tennessee Warbler, were lie¢o0.7 cutoff indicating a
reasonable model — and in both cases they were just betb AUC values of 0.677 and 0.691,
respectively. In contrast, the other 14 models are derei to have reasonable discrimination
ability appropriate for management purposes, especiaiheiarea in which they were
developed i.e. Calling Lake. For all species, the bestein terms of predictive accuracy, was
the model comprising a combination of both local and n@igtinod variables.

Table 6. Summary of logistic regression models ftacsed songbird species using the Calling Lake bird survey
data. All predictor variables are significant (p < 0.10. = log likelihood; AUCin = in-sample predictive &by.

AUC
Species  Habitat variables LL n=3031
AMRE -4.401 -1.85-H_CUT + 1.276-H_ODEC -0.017-L_CC + 5.351-N_CUT + 1028 0.842

1.623-N_LATE + 3.119-N_DECID - 0.503-N_MIXED -0.358-N_SB

BGNW  -3.623-2.589-H_CUT + 1.322.H_ODEC + 0.689-H_MIXED -1.701.L_DEC+ 1575 0815
0.102-L_HT - 0.018-L_CC + 0.784-N_LATE + 1.374-N_DECID + 0.363-N SB
0.16:N_RICH

CHsp  -0.79-0.618-H_YDEC - 1.303-L_DEC + 0.033-L_HT - 1.728-N_CUT+ 1560 0.677
0.378:N_MIXED + 0.442-N_SB

COWA  -1.364-1.797-H_CUT + 0.633-H_YDEC + 2.55.L_DEC - 0.06-L_HT -0.0TCL 1535 758
- 1.05-N_LATE + 0.774-N_MIXED

LEFL  -2.565+ 1.479-H_ODEC + 1.1-H_YDEC + 2.443-L_DEC - 0.051-L_CC - 1263 0.796
0.001-DIST + 2.923-N_CUT + 1.139-N_LATE + 2.346-N_DECID -
0.421-N_MIXED - 0.311-N_SB

MOWA  -3.265+1.332.-H_ODEC + 1.181-H_YDEC + 1.098-L_DEC-0.026:.L_CC+ 1547  0.756
1.259-N_CUT + 1.032-N_LATE + 1.719-N_DECID - 0.503-N_SB + 0.189-NHRIC

OVEN  0.589-2.148-H_CUT + 1.274-H_YDEC + 0.961-H_MIXED + 0.909-L_DEC + 1365 0816
\L_HT - 1.255-N_CUT - 0.856-N_LATE

RBGR  -2.703+1.538-H_ODEC + 0.935-H_YDEC +0.031-L_HT-0.015L_CC+ 1937  0.730
2.112:N_CUT + 1.008-N_DECID - 0.103-N_RICH

RENU  -1.6-2.784-H_CUT - 0.496-H_YDEC + 0.551-H_MIXED - 1.13-L_DEC + 1357 0.751
0.068:L_HT - 0.008:L_CC - 0.935-N_CUT + 0.175-N_RICH

REV|  -0.208 + 1.14-H_ODEC + 1.685-H_YDEC + 0.604-H_MIXED + 0-DIST + 1660 0.720
2.553-N_CUT + 1.08:-N_DECID - 0.206-N_RICH

SWTH  -0.944 -1.767-H_CUT - 1.563-L_DEC + 0.054-L_HT + 1.444-N_LATE - 1424 0.752
0.77-N_DECID

TEwA  -0.988 + 0.831-H_ODEC + 0.413-H_MIXED - 0.006-L_CC + 2.574N_CUT + 1658 0691
1.418-N_DECID

WIWR  -1.938-2.485-H_CUT - 1.253-L_DEC + 0.046-L_HT + 0-DIST + L29:N_€UT 1315 0760
2.339:N_LATE

0.069-L_HT - 0.035-L_CC + 3.307-N_CUT + 1.068-N_LATE + 2.243-N_DECI
VRWA  1.909 - 4.056-H_CUT - 2.315.L_DEC + 0.097-L_HT - 0.928-N_DECID 1083 0.834

YWAR  -3.764 +0.617-H_ODEC - 1.105-H_MIXED + 2.329-L_DEC-0.046:.L_CC+ 1172 0791
2.248-N_CUT + 1.201-N_LATE + 1.739-N_DECID - 0.579-N_SB + 0.144-NHRIC

We tested all 16 songbird habitat models using external vialiddéta from 4 independent sites
individually and as a whole. The tests were only peré if a species’ prevalence at a given
test site was between 10-90%. No clear pattern emergediiie external validation of the
Calling Lake models. Fifteen of the 16 habitat modelsoperdd reasonably well in at least one
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of the validation sites or when all validation siesre combined (Table 7). The Red-breasted
Nuthatch models were the exception but they were ostgedeat the Owl River site and with all
the validation data. Two models, those for Chipping $waand Tennessee Warbler performed
reasonably well even though the original model was densd to be poor. Eight of the 16
habitat models had reasonable predictive accuracy whiexal t@gainst the validation data as a
whole. Among the individual validation sites there @po clear patterns — some species’
models appeared to perform better at some sites thareas.otfodels that were successfully
validated using all the data did not necessarily validsisanably well at individual sites and
vice-versa — models that did not validate using all tha diak validate at some individual sites.
The North Calling Lake and Reference sites had the noosber of models validated, 8 and 7,
respectively. Five models were validated at the Owl Rsiterand only 2 at the Goodwin site
that had the smallest sample size. Only one moder{dxd; local variables only) performed
reasonably well with all the validation data and at eadidation site. The Ovenbird model
(local + neighbourhood variables) and the Red-eye \finedel (local + neighbourhood
variables) both performed reasonably well using all vabdadata and at 3 of the 4 validation
sites. Among the species whose model(s) performednaalyovell when tested against
external validation data, individually or as a whole nidels comprised local and
neighbourhood level habitat variables, 8 consisted afl lo&bitat variables only, and 6 included
neighbourhood habitat variables only.

As a final step, we developed new logistic regression mddeeach species using all of the
validation data combined. The results (not included inrdpsrt; Vernier et aln prep clearly
show that these new models performed better at tieatiah sites in terms of discrimination
capability than the original models developed in the CalliakeLstudy area — although the test
only included internal data and thus was not as stringetfteavalidation results described in the
previous section. Fourteen of the 16 models had reasqmablietive capability. Models for
Least Flycatcher, Rose-breasted Grosbeak, and Redduréasthatch were the exceptions. In
general the models were more parsimonious i.e., fewdicpoe variables entered the models.
On average each species included 3.7 variables comparddfto the original models. As with
the original models the same five predictor variables W ON_DECID, L DEC, N_LATE,
L_CC) were most often selected among the 14 candidatbiesi

Table 7. Results of Alberta validation analysis. Ald€al, AUC nbr, AUC local+nbr = area under the RE&ve
for model using local, neighbourhood, or both setsadfbles. AUC values are not provided where prevaléenc
less than 0.10 or greater than 0.90.

Validation Sites

Species Statistic Calling  All valid. Goodwin  North CL Owl River  Reference
Lake sites
AMRE Prevalence 0.213 0.152 0.011 0.203 0.227 0.063
AUC local 0.801 0.558 0.787 0.504
AUC nbr 0.774 0.633 0.797 0.519
AUC local+nbr 0.842 0.652 0.891 0.539
BGNW Prevalence 0.32 0.105 0 0.241 0.11 0.052
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CHSP

COWA

LEFL

MOWA

OVEN

RBGR

RBNU

REVI

SWTH

TEWA

AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr
Prevalence
AUC local
AUC nbr
AUC local+nbr

0.79
0.746
0.815

0.313
0.627
0.652
0.677

0.232
0.745
0.694
0.758

0.274
0.771
0.708
0.796

0.407
0.736
0.693
0.756

0.561
0.814
0.709
0.816

0.209
0.695
0.665

0.73

0.287
0.738
0.695
0.751

0.511
0.675
0.656

0.72

0.31
0.743
0.715
0.752

0.603
0.664
0.663

0.691

0.633
0.721
0.703

0.317

0.732
0.678

0.723

0.306

0.561
0.599

0.584

0.22

0.614

0.575

0.622

0.378
0.67
0.716
0.72
0.582
0.861
0.806
0.864
0.248
0.597
0.67
0.651
0.126

0.538
0.465

0.528

0.528
0.685

0.741

0.764
0.073

0.863
0.601

0.52
0.573

0.222
0.648
0.615
0.673
0.189
0.47
0.572
0.41
0.189
0.472
0.289
0.379
0.278
0.527
0.467
0.496
0.456
0.81
0.619
0.753
0.1
0.333
0.694
0.527
0.078

0.333
0.647
0.743
0.765
0.078

0.889
0.516
0.483
0.576

0.751
0.752
0.753
0.474
0.622
0.631
0.585
0.173
0.351
0.366
0.393
0.263
0.581
0.533
0.577
0.759
0.668
0.594
0.646
0.158
0.771
0.766
0.684
0.331
0.626
0.618
0.641
0.083

0.451
0.719
0.549

0.759
0.18
0.818
0.807
0.827
0.805
0.527
0.534
0.592

0.553
0.574
0.593
0.175
0.792
0.712
0.769
0.39
0.398
0.368
0.422
0.237
0.568
0.567
0.593
0.406
0.616
0.52
0.609
0.805
0.862
0.803
0.869
0.334
0.576
0.564
0.606
0.188
0.606
0.514
0.591
0.685
0.608
0.746
0.74
0.045

0.88
0.706
0.477
0.595

0.482
0.67
0.568
0.664
0.319
0.775
0.809
0.783
0.178
0.742
0.687
0.755
0.115
0.735
0.756
0.752
0.576
0.799
0.714
0.801
0.12
0.679
0.704
0.652
0.079

0.419
0.681
0.679
0.679
0.042

0.864
0.864
0.877
0.873
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WIWR Prevalence 0.266 0.109 0.267 0.301 0.045 0.005

AUC local 0.749 0.652 0.606 0.707
AUC nbr 0.713 0.833 0.682 0.689
AUC local+nbr 0.76 0.734 0.671 0.669
WTSP Prevalence 0.747 0.699 0.778 0.917 0.666 0.565
AUC local 0.797 0.777 0.563 0.723 0.781
AUC nbr 0.77 0.704 0.46 0.645 0.717
AUC local+nbr 0.826 0.753 0.411 0.767 0.742
YRWA Prevalence 0.675 0.481 0.511 0.414 0.344 0.733
AUC local 0.833 0.727 0.63 0.696 0.641 0.724
AUC nbr 0.735 0.707 0.616 0.695 0.618 0.705
AUC local+nbr 0.834 0.731 0.639 0.668 0.633 0.755
YWAR Prevalence 0.221 0.086 0.056 0.271 0.065 0.005
AUC local 0.781 0.612
AUC nbr 0.736 0.699
AUC local+nbr 0.791 0.649
No. of stations: 2690 722 90 133 308 191

Results of External Validation (BC — Northeast)

We calculated the AUC for both the original (in-sampglada from Calling Lake Alberta (AUG
Table 8) as well as independent (out-of-sample) datected in Block 4, TFL 48 (AUG,). For
all four songbird species, the Aly@alues were greater than 0.75, indicating that the madels
reliable — at least in Alberta. However, when weg@stur models in BC, AUC values were
quite poor (AUG; Table 8), indicating that our Alberta models had poodiptee ability when
transferred to BC. We then used the same set of caegidadictor variables (Table 3) and the
approach described earlier to re-develop (refine) our songdlitah models, this time using the
BC validation data. Table 9 summarizes the structutieeofefined models as well as their
predictive ability using the BC data. In this case, $16f4 songbird models performed well
(AUC > 0.8), the exception being the habitat model fori8sen’s Thrush — a species whose
habitat associations may not be adequately captured witedghasizing overstory structure.

Table 8. Summary of logistic regression models foNBG REVI, SWTH, and YWAR developed using Alberta
survey data. LL = log likelihood; AUE= in-sample predictive ability; AUg: = out-of-sample predictive ability.

AUC;, AUC,
Species Habitat variables LL N=3031 N=431

BGNW -10.425 + 3.888-N_SB + 0.494-H_ODEC + 0.548-:H_MIXED +  -1336.6  0.839 0.571
2.974-N_MIXED - 1.369-LX_DEC + 0.207-LX_HT -
0.01-LX_CROWN + 4.53-N_DEC + 3.682-N_SIMP + 2.891-N_CUT
+1.324-N_LATE

REVI  0.52-2.897-N_SB - 0.506-H_MIXED + 2.079-LX_DEC - -1767.8  0.760 0.602
1.442-N_SIMP - 0.845-N_LATE - 0.363-L_ WATERDIST
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SWTH -0.7 + 1.199-N_MIXED - 1.341-LX_DEC + 1.79-N_LATE - -1529.8 0.763 0.474
3.282-H_CUT

YWAR -0.332-4.001-N_SB + 0.94-H_ODEC - 4.038-:N_MIXED + -1224.3 0.819 0.660
2.399-LX_DEC - 0.052:-LX_CROWN + 1.034-N_LATE -
0.341-L_WATERDIST - 1.182-L_CUTDIST

Table 9. Summary of logistic regression models foGBY, REVI, SWTH, and YWAR developed using bird
survey data from Block 4, TFL 48. LL = log likelihood; AlJ& in-sample predictive ability.

AUC;,
Species  Habitat variables LL N=560
BGNW -20.582 - 1.346-H_ODEC + 0.173-LX_HT + 11.455-N_SIMP + 8.32ANEL -75.5 0.873
REVI -4.398 + 3.477-N_DEC -87.4  0.802
SWTH -1.801 + 2.603-N_MIXED + 1.102-N_DEC -294.3  0.663
YWAR -4.827 + 4.242-N_DEC + 1.128-N_MIXED -112.7 0.848

Discussion and Management Implications

A number of in-sample and out-of-sample model evalnagohniques are available for
presence/absence modeling (Fielding and Bell, 1997). Withettesvaluations it is difficult to
interpret the predictive ability of habitat models, aner¢ifore, the reliability of these models as
resource management tools. Although in-sample resufistittechniques are frequently used,
they have a tendency to produce over-fitted models, opitneistimates of model performance
and loss of generality (Harrell 2001). Consequently, owgaofple or external validation
approaches provide a more realistic assessment of nadidéility. A compromise, but less
stringent approach when multiple years of data ardadokaifrom the same site, is to evaluate the
performance of models developed using one or more yédegawith data from subsequent
year(s) of sampling. In this project, we assessed ttierpgnce of a number of songbird-
habitat models using all three approaches. However, weausad the internal validation results
as a means of comparing the results from the tempiodatgternal validation analyses.

The temporal validation analyses identified that tHataamodel coefficients we estimated were
quite variable between years, making the developmegemdral models (multi-year response)
difficult for most species. Such behavior by some bir@isgecomplicates the possible
application of such models in natural resource managesmentonservation planning.

Likewise, year-to-year variability in model performaneas evident for most species. However,
most songbird models performed adequately across yearswmibin exceptions. The
relationship between model performance and the numheyan$ of data used to develop a
model was most pronounced for Red-breasted Nuthatch wiereewas a clear increase in
reliability as more data were used in the modeling proc8asprisingly, this was not the case
for the other four species investigated.

The songbird-habitat models performed reasonably to podwywoefficients estimated in
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Alberta were used to make predictions at other locatioAdberta and BC. In Alberta, the
performance of the songbird-habitat models differed sulisligrtbetween the original Calling
Lake data and the validation data. Using the originl,da of the 16 models had reasonable
predictive ability. The other two were just below thgoff defining a suitable model (AUE
0.7). In contrast, when we tested the models using dikovalidation data, only 8 models were
considered to have been validated. Similarly, wheneset the models against the individual
validation sites, between 2 and 8 models proved to bdeli@Dnly the Ovenbird habitat model
performed reasonably well across all validation sitEse White-throated Sparrow model
performed reasonably well with all datasets exceptifeiGoodwin site. When we tested four of
the Calling Lake songbird models against independent datatedllecnortheastern BC all four
models performed poorly. However, the predictive performai@ of the 4 models improved
when local data was used to develop the models. The wasitrue for most of the models
tested in Alberta and refined using local data (Vernier. & grep).

There are a number of possible reasons why severabisttbitat models fared poorly when
coefficients estimated in Calling Lake were used to makeigirens in other geographic
locations. These include:

* Non random / un-representative survey design;

* Regional differences in landscape-level habitat compositnd configuration;

» Differences in survey protocols including observer valitgbi

* Natural spatial and temporal variability in songbird abundan

» Differences in the prevalence of songbird species ana aviamunity structure in the

different sites and between BC and Alberta;

* Important habitat characteristics not identified or read;

» Differences in detectability of species in differeités and

» Spatial-temporal variation in habitat use.

Most of these reasons are likely to be more pronouimctéek BC validation site where
landscape characteristics and survey protocols weredivesgent from those of Calling Lake
and the other Alberta validation sites. In fact, thegbird survey data from northeast BC were
collected as part of a Northern Goshawk study and widesigned to be random or
representative of all forest types in the region.

Although the validation analyses pointed to some weakn@s#as current suite of songbird-
habitat models, they also demonstrated that it is pless use the same set of habitat attributes
in the model development and model validation siteyimvAlberta, to develop models that had
equally good predictive ability, at least for the majoat the species, when tested using in-
sample data (i.e. the validation data in this casefadt, the top 5 predictor variables in Alberta
in terms of the number of times they were includeth@habitat models, were the same for both
sets of models. The same pattern was also evider@ wlire we used the same set of habitat
attributes in both Alberta and BC to develop modelshhdtequally good predictive ability for

at 3 of our 4 focal species, when tested using in-sadgtle Moreover, the predictor variables
that we used in the BC and Alberta habitat models aseteaseasure and have the advantage
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that they can be manipulated thru management actititiashieve desired goals. Thus, even
though most of our models are not generalizable to atitmes, they can be adapted (re-
estimated) when or where necessary using the saroéfsabitat variables along with local
survey data. This last point underlines the importandeatwig local data to evaluate and refine
models to local conditions and to feedback into the agaptanagement process.

In some circumstances, the development of reliable Inooiey be quite straightforward (e.g.
habitat specialists like Northern Spotted Owls). Howegien the spatially and temporally
dynamic nature of habitat selection common to manyispemodels that can be used across
geographic areas are not necessarily expected. Analier is to develop expert-based models
(e.g., HSI) or to strive for general models by understanfiinctional responses and the
influence of environmental variation on the availapitit quality of habitat resources (Boyce
and McDonald 1999). Understanding such relationships islofad importance in natural
resource management and conservation, because maaadeanservationists are asked to
provide habitat-based models describing the influence of amguteyad-use activities on
sensitive or rare species (cumulative effects assggsppopulation viability analyses, climate
change models, etc.). Nevertheless, theoretical imatk® need to be validated to assess their
reliability in a management context. A less satisijongpossibly necessary approach is simply
to develop different models for different seasons, yeafscalities — as indicated by the results
of our analyses. Generalist species, like some feoagibirds, likely will require such an
approach, because substantial differences in selecgaapparent across years, between
geographic locations, and over regional scales. Ghespatial and temporal variability in
model performance, it may be best to use such habitdéisin a relative sense when evaluating
management scenarios i.e. using models to compare #itermanagement scenarios rather
than to make site/time specific predictions.

LANDSCAPE SIMULATION MODELING (FEENIX)

During the past three years, and in collaboration wiiler BEEST projects, we continued to
develop and enhance FEENIX, and apply it to evaluate mamagestenarios and policy
alternatives. In the following sections we descrilgetdthnological and functional
developments of the FEENIX software. A detailed dpsiomn of an earlier version of FEENIX
can be found in Cumming et al. (1998). The application &NAK for research and
management purposes is described in a companion BEEST project

FEENIX Enhancements
Profiling (FEENIX internals) A simple run-time profiling facility has been addedhe model.

This feature helps developers attempting to improve modelrpsifee by providing
performance benchmarks and identifying bottlenecks whergréatest gains may be made.
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Efficiency (FEENIX internals)A redesign of model internals has decreased model eaacuti
times by approximately 80% and also markedly reduced memguyeenents. A typical
simulation experiment (e.g. 100 model runs of 300 years@aah300,000ha landscape) can
now be executed in 8hr on a midrange contemporary PCa(8.4.MHz Pentium IV machine),
instead of 1.5 to 2 days as previously. As a resultesyic simulation experiments are now
much more feasible.

Spruce-dynamics model (FEENIX internal3he original implementation of the mixed stand
dynamics model (Cumming et al. 1998) contained severaliigoe, design and coding errors.
These have been corrected. Although preliminary assegsnmdicate that simulated landscape
dynamics (Cumming et al. 1999) are not markedly affectetidseterrors, their correction does
increase confidence in interpretation of model results.

Monte Carlo simulation FEENIX has successively produced full Monte Carlo stena
analyses. It can now be used more efficiently areca¥ely as a policy analysis tool. Users can
define key files and parameter ranges that define a manageosamario in a single project
definition file. Output can consist of maps or trackingalae files and can be performed for
any number of simulations, length of simulation runiamge of management options. All

output files are prefixed with the title of the projéeffinition file to provide the user with a
reference of which output corresponds to which scendi® operation is completely automatic
once the definition files have been produced.

FEENIX and GIS FEENIX now reads and operates on raster-based AB&jilfiles, such as
those that can be generated from ArcView and GRASS geloigrimformation systems (GIS).
The resolution of input layers defines the resolution BE&ENIX model, although currently the
model only has the option of running at 9ha or 3ha resaolsiti The flexibility of having the
resolution defined by the input data source is intended to suppetogeent of new spatial
models using the "stripped-down" FEENIX shell (see next papéyr FEENIX also has the
capability to output files in ESRI ASCII grid format.h@ choice of output layers and the interval
of layer production are set by the user. This choioebegpredefined in a project definition file
or executed by the user during a simulation run. Map prodgucéio be automatically defined
for scenario analysis in Monte Carlo simulations dhinithe graphic user interface at any point
in time.

FEENIX shell A prototype, "stripped-down" version has been developddantains only

basic spatial data management and graphics. It is intéodaaplify model production and use,
and to make it more accessible to non-programmersurriéritly reads base-maps as raster grids
and converts to FEENIX format. Functionality is bdsit provides the foundation for creating
spatial ecological models. The tool is ideal for botiggrecological model development, so that
researchers can build models without the overheadmptex detail and management options
currently in FEENIX. Because all internals are conmpatwith FEENIX, the functionality can
then be transferred to FEENIX and integrated by an expesd programmer. The shell version
has all the same input, output and scenario evaluagjoabilities as the full version.

26



Salvage logging In scenarios where both harvesting and fire arbledamerchantable burnt
areas may be salvaged. This prototype feature is enabled BDp8ualvage option. The
implementation simulates key features of regulatiarferice in the Province of Alberta as of
2002. In particular, contiguous patches of burnt area wethah salvaged fire are excluded from
salvage. The proportion and size of these leave deggnds on the size of the fire. A
reduction factor (0.85 by default) is applied to salvage ve&jrand unsalvaged standing burnt
wood decays at an annual rate (0.5 by default). Salvagmeslare counted towards per-strata
or per-landbase Annual Allowable Cuts (AACs) except shatage volumes may exceed
calculated AACs by up to 50% to allow for limited surgeiogtifter large fires.

Patch configuration metricsSupport for the computation of landscape pattern nsetas been
added at the application level. Most of the pattermioseidentified by Cumming and Vernier
(2002) are generated, including the FRAGSTATS metrics MIAIMRFD, TCA and MSI

which are based on relatively efficient implementagiof the published definitions (McGarrigal
and Marks 1995). These metrics are computationally inteasiteshould only be generated at
intervals within a simulation run. In typical applivas, we generate pattern metrics every 5
years, which accounts for 20-30% of total execution titneprinciple, these metrics could be
generated externally by exporting data from FEENIX and rgnRRAGSTATS or some similar
utility. In practice, however, this process would be mtimbersome and error-prone, especially
in Monte-Carlo simulation experiments.

Networks Various approaches for sub-resolution features suchessysaind road-networks
have been evaluated in prototype. At a 3ha resolutionNIPEEells are approximately 170m
square, but most roads and streams are much narrower. rGéds,and streams should not be
modelled as distinct vegetation or land-cover typesrditier as a cell attribute or modifier. Our
approaches use the lengths of streams, roads or sigatards intersecting a cell as a cell
attribute. These lengths can be easily generated@i@coverages. Some capabilities of
vector-based network representations, such as used@RRO, have been implemented,
including a join operator to connect disjoint but adjacetivork segments. These capabilities
add substantially to the dynamic road network construetiwhrouting algorithms already
present in the model, and have been critical to seggtahsion or knowledge transfer exercises
as described elsewhere. Further development of thpabities over the next two years will

be contributed through the SFMN project of Kurz, Steiod Cumming.
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Figure 7. An example of FEENIX's capability at geatgrg networks within a 10,000 ha landscape north of Lac La

Biche, Alberta. Some disjoint pieces of a stream agt\in green) were joined up (red cells). The pale bheas
are lakes, and the black areas are forested areageiteahetted out of the operable landbase. Also in green
buffer areas around the lakes.

Strata-based harvest schedulinfhe FEENIX forest management model has been suiadhan
revised to be flexible, general and robust. Each merdblantall has a yield class defined by a
two species-group yield table or volume/age curve (hardwodda@itwood species-groups are
sufficient for our applications in the boreal mixedwoogioa). FEENIX interpolates yield
curves to 1yr resolution and derives mean annual increprettsination or rotation ages and
minimum and maximum harvest ages. Cells are assigretthta based on their yield class and
other attributes, such as location or tenure. Withatatryield classes are assigned a
management objective. For example, the same mixedi gleeds could be managed for
coniferous production in one stratum, and for deciduous obic@ah production in another.
Periodic AACs are calculated for each stratum at@grvals using a variation of the Hanzlik
formula (Davis and Johnson, 1987. p.560). This allows foamytresponses to fires and to
changes in forest structure caused by management aaidmas stand conversion and natural
processes such as succession. It also allows forstemsevaluation of the AAC implications of
alternate management strategies, which would not béb&sAACs were pre-determined.
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Elaborateblocking rulesare used to assemble harvestable blocks for each stregimgp strata-
specific block size targets and age-ranges. Blocking opeuicdically (by default at Syr
intervals) to simulate the process of Detailed Faovkmtagement Plans. Small blocks are
merged with adjacent or nearby large blocks of the sapee t¥his significantly reduces the
frequency of small blocks that result from limitasoof the blocking algorithm and/or the initial
gridding process used to create the input maps. Finaftye sersions of FEENIX allow for the
creation of un-harvested retention areas within laxgblocks.

Forest &ge FRow = 318 Co Doubl . Map for Legend

— Categonical Map Scale

Cateqary Label Colour

Mon forest

1 [burned or logged)
2o 30

31 to 90

91 to 150

151 to 250

RARE IR |

Figure 6. Screen capture of FEENIX blocker and hasastduler in action on a small forest estate in the
Okanagan.

Blocks aresequencedor harvest according to strata-specific rules. Awd@aules are oldest
first, highest volume first, weighted combinations of agd volume, and highest loss. Age,
volume and loss are block-level means computed fromgeygeld class and net harvestable
areas of each cell in the block. Volumes and lossesaiculated as hof target volumes / ha.
Losses are calculated as the difference betwegprdfected block volume in the next planning
period and the present block volume. FEENIX simulatesraventoryof the forest at user-
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specified intervals (20yrs by default). Un-harvestets ¢bat have grown older than their
maximum operable age may be assigned a new yield dasihase or ownership and apparent
age, based on the species composition and other chiataztenaintained by the stand
dynamics sub-model.

The present version of the harvesting model performsoegipared to previous versions, and
resolves many persistent difficulties related to thbisty and sustainability of harvesting during
the 2 or later rotation. Our use of the Hanzlik formula mesult in significant fluctuations in
AAC during the first rotation. However, experience vatimulations conducted on several very
different forest estates shows that simulated AA@kilize during the % rotation. We
conjecture that these stable AAC levels closely appratdrthe long-run non-declining yields
that would be calculated from the starting inventory.

REFERENCES

Boyce, M.S. and McDonald, L.L., 1999. Relating populatimnisabitats using resource
selection functions. Trends Ecol. Evol., 14: 268-272.

Boyce, M., P.R. Vernier, S. Nielsen, and F.K.A. Sclgeiew. 2002. Evaluation of Resource
Selection Functions. Ecological Modelling 157: 281-300.

Bunnell, F.L., R.W. Wells, J.D. Nelson, and L.L. Krenesa1999. Effects of harvest policy on
landscape pattern, timber supply and vertebrates in arkBasenay watershed. Pp. 271-283
J.A. Rochelle, L.A. Lehman, and J. Wisniewski (edoyeBt fragmentation: wildlife and
management implications. Brill, Leiden, Netherlands.

Burnham, K.P., and Anderson, D.R. 1998. Model Selectiorirgatence. A Practical
Information-Theoretic Approach. Springer-Verlag, New York.

Carlson, M.J. and Schmiegelow, F.K.A. 2002. Cost-effect@rapling design for broad-scale
avian monitoring. Conservation Ecologubmitteql.

Cumming, S. G., D. A. Demarchi and C. Walters. 1998. A gasked spatial model of forest
dynamics applied to the boreal mixedwood region. SFMN \MgrRaper 1998-8.

Cumming, S.G. and Vernier, P.R. 2002. Statistical moddEndfcape pattern metrics, with
applications to regional scale dynamic forest simutatibandscape Ecology 17: 433-444

Cumming, S. 2003. Pilot modelling of tradeoffs between hiatstantion, forest management
practices and AAC on TFL 49. Project report for RiversideeBt Products Ltd, Armstrong B.C.

30



Cumming, S. and Wong, C. 2002. Pilot modelling of past firedyics in the IDF. Prepared for
Lignum Ltd., Williams Lake, BC. http://www.lignum.com/plications-research_papers.asp

McGarigal, K. and Marks, B.J. 1995. Fragstats: Spatiaépatinalysis program for quantifying
landscape structure. General Technical Report PNW-GTRWBS Eorest Service Pacific
Northwest Research Station, Oregon, Portland, USA.

Ecological Stratification Working Group. 1996. A Nationabibgical Framework for Canada.
Agriculture and Agri-Food Canada, Research Branch, Cémtiteand and Biological Resources
Research and Environment Canada, State of Environment @&zt Ottawa/Hull. 125pp. And
Map at scale 1:7.5 milliorittp://www.ec.gc.ca/soer-ree/English/Framework/framdvedm.

ESRI 2002. ArcView GIS Version 3.3. Environmental Syst®asearch Institute, Inc.
Redlands, California, USA.

Fielding, A.H., Bell, J.F. 1997. A review of methods foe essessment of prediction errors in
conservation presence/absence models. Environmental Catiser24, 38-49.

Guisan, A. and Zimmermann, N.E. 2000. Predictive habitatlaision models in ecology.
Ecological Modelling. 135, 147-186.

Hannon, S.J. 1999. Avian response to stand and landscaperstindiurned and logged
landscapes in Alberta. In T.S. Veeman, D.W. Smitkg.Burdy, F.J. Salkie, and G.A. Larkin
(eds.) Science and Practice: Sustaining the Boreal FdtesiSustainable Forest Management
Network Conference, Edmonton, Alberta, February 14-17, 1999.

Harrell, F.E. Jr. 2001. Regression Modelling Strategiath YApplications to Linear Models,
Logistic Regression, and Survival Analysis. Springer-\(eridewYork, Inc. New York, NY.

Manel, S., Williams, H.C., Ormerod, S.J. 2001 Evaluapresence-absence models in ecology:
the need to account for prevalence. Journal of Appleddgy 38(5): 921-930.

Manel, S., Dias, J.-M., and Ormerod, S.J. 1999. Compariegrdigant analysis, neural
networks and logistic regression for predicting specisisiblitions: a case study with
Himalayan river bird. Ecological Modelling 120: 337-347.

Manning, Cooper and Associates. 2001. 2001 Northern Goshawk Inven®lock 4, Canfor
TFL 48, Chetwynd, BC. Report prepared for Canadian Fétestucts Ltd., Chetwynd
Operation, Chetwynd, BC.

Morrison, M.L., Marcot, B.G., and Mannan, R.W. 1999. WidHabitat Relationships:

Concepts and Applications"Edition. The University of Wisconsin Press. Madison,
Wisconsin.

31



Norton, M.R., Hannon, S.J. and Schmiegelow. F.K.A., 20@@gments are not islands: patch vs
landscape perspectives on songbird presence and abundaritarwested boreal forest.
Ecography 23:209-223.

Pearce, J. and Ferrier, S. 2000. Evaluating the predictif@ pance of habitat models using
logistic regression. Ecological Modelling 133: 225-245.

Schmiegelow, F.K.A. and Hannon, S.J., 1999. Forest-lefedtsefof fragmentation on boreal
songbirds: the Calling Lake Fragmentation Studies. Pages 20h-2RA. Rochelle, L.A.
Lehmann and J. Wisniewski (eds), Forest Fragmentatioldlit#iand Management
Implications. Brill, Leiden.

Schmiegelow, F.K.A., C.S. Machtans, and S.J. Hannon. 1A8¥boreal birds resilient to forest
fragmentation? An experimental study of short-term comty responses. Ecology 78: 1914-
1932.

Scott, J.M., Heglund, P.J., and Morrison, M.L., eds. 2602dicting Species Occurrences:
Issues of Accuracy and Scale. Island Press, Washingtn D.

Snowling, S.D., Kramer, J.R., 2001. Evaluating modelling uacest for model selection.
Ecological Modelling. 138, 17-30.

StataCorp. 2001. Stata Statistical Software: Rele&@s€dllege Station, Texas: Stata
Corporation.

Swets. J.A. 1988. Measuring the accuracy of diagnostiersgstScience 240: 1285-1293.
Vernier, P., Schmiegelow, F.K.A., and Cumming, S.G. 2002. Modéird abundance from

forest inventory data in the boreal mixedwood fore$Sanada. In: Predicting Species
Occurrences: Issues of Scale and Accuracy. Island Réeshington D.C.

32



