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ABSTRACT 
 
Sustainable forest management requires knowledge about potential economic and ecological 
outcomes of policy decisions and management actions.  Often this requires the use and 
evaluation of models that capture and project the relationships between indicators and 
management policies and practices.  This project, which is one of several interrelated projects 
undertaken by the Boreal Ecology and Synthesis Team (BEEST), had two main objectives 
related to model development and evaluation.  The first objective was to evaluate the accuracy 
and generality of songbird-habitat models and thus to determine their usefulness as tools for 
managing forest-dwelling birds and evaluating alternative forest management scenarios.  The 
second objective was to continue to develop and enhance FEENIX, a landscape simulation 
model, and to apply it to evaluate management scenarios and policy decisions. 
 
We assessed the predictive capability of songbird-habitat models developed in Calling Lake, 
Alberta using (1) data from the same site but different years (temporal validation), (2) 
independent data collected at four sites within 125 km of Calling Lake (external validation), and 
(3) independent data collected in northeastern British Columbia (external validation).  All sites 
were located within the boreal plains ecosection.  The models were derived using logistic 
regression analysis and their accuracy assessed using the area under a receiver operating 
characteristic curve (AUC; see Model Validation).  In the temporal validation component, model 
coefficients and reliability fluctuated across years but performance was generally satisfactory.  
Increasing the number of years used to develop the models improved only the predictive ability 
of the Red-breasted Nuthatch model.  Generally, regardless of the number of years of data used, 
the models were reliable.  In Alberta, when we combined all external validation sites, our results 
indicated reasonable discrimination between occupied and unoccupied sites for 8 species, while 
for the other 8 species the models showed poor discrimination ability.  When the models were 
tested against each validation site individually, performance depended in part on broad 
differences in landscape structure and disturbance history.  In comparison, when the habitat 
models were developed and validated using only data from the four validation landscape 
(internal validation), they generally performed well.  Using the BC validation data, none of the 
four species models tested proved to be adequate – although, using the same set of variables it 
was possible to develop reliable models using local data.  Thus, our analyses indicate that 
although model coefficients vary geographically, the same set of variables is consistently useful 
in developing predictive models of site-occupancy within landscapes – especially when 
developed using local data. 
 
During the past three years, we continued to develop and enhance FEENIX, and apply it to 
evaluate management scenarios and policy alternatives.  Enhancements to FEENIX include 
improved performance, the addition of several sub-models (i.e. salvage logging, landscape 
metrics, networks, strata-based harvest scheduling), the ability to import and export common 
GIS data, and the facility to perform Monte Carlo analyses.  A prototype, “stripped-down” 
version of FEENIX also has been developed to facilitate its use by non-programmers.  Recent 
applications of FEENIX for management purposes are described in a related BEEST project. 



 3 

ACKNOWLEDGEMENTS 
 
We thank T. Morcos and C. McCallum for database management and GIS assistance.  We also 
thank the numerous field assistants who collected the point count data as part of the Calling Lake 
Fragmentation Experiment.  S. Hannon collaborated on the analysis and provided data for the 
Alberta validation component of this project.  M. Boyce and S. Nielsen collaborated on the 
temporal validation component.  R. Lessard contributed to the development of FEENIX for the 
past three years while conducting research for his SFM-funded PhD.  The BC validation data 
was provided by Canadian Forest Products Ltd. (thru a contract to Manning, Cooper and 
Associates).  This research was supported by the Sustainable Forest Management Network and 
by Alberta Pacific Forest Industries Inc.  Participating SFM Network Partners/Affiliates: 
Alberta-Pacific Forest Industries Inc., Government of Alberta, Weyerhaeuser Company. 



 4 

INTRODUCTION 
 
Sustainable forest management requires knowledge about the potential economic and ecological 
outcomes of policy decisions and management actions.  For example, managers need to 
understand the consequences of alternative management scenarios and policies on ecological 
indicators such as forest songbirds.  One of the most effective ways to accomplish this is to 
capture relationships between songbirds and habitat attributes within models, and to integrate 
these models in tools that are able to simulate management activities and landscape dynamics 
over large spatial and temporal scales.  Such habitat models can be used in two broad ways: (1) 
by themselves to identify information gaps, assess current landscape conditions, and test specific 
species-habitat hypotheses and (2) within a landscape simulator to facilitate integrated resource 
planning, scenario evaluation, and policy analysis.  Both uses of habitat models can help 
managers make better decisions.  Over the past several years, the Boreal Ecology and Economics 
Team (BEEST) has developed two modeling platforms designed to simulate forest harvesting, 
wildfire, stand dynamics, and wildlife habitat and population dynamics in boreal forests.  Each 
platform comprises a number of sub-models, including habitat suitability models, that are 
parameterised and/or initialised from the same or similar data sets, but which differ in the scale 
at which processes are represented, the size of the regions that may be modeled, and in the sorts 
of questions they are suited to answer.  FEENIX, which is described in more detail in this report, 
operates at a relatively fine resolution (3 ha), and can deal with patch-level questions such as fire 
ignition and spread, dispersal of seeds or individual vertebrates, tactical harvest scheduling, and 
cut-block layout.  TARDIS, in contrast, works at very broad scales (∼ 100 km2 ) and is intended 
primarily as a strategic level, policy analysis tool. 
 
In collaboration with the BEEST, one of our goals over the past few years was to contribute to 
the development and validation of songbird-habitat models for use on their own and within 
FEENIX for scenario evaluation and policy analysis.  A persistent criticism of habitat models 
and models used in a management context, is that they are rarely validated.  Our ability to 
generalize predictions from our existing songbird-habitat to other locations in the boreal forest 
may be restricted by geographic limits in the ranges of bird species, or by undetected variation in 
links between forest habitat elements and particular bird species or communities within the 
ecosystem.  We explored these issues by attempting to validate our models with data from other 
locations in the Alberta boreal mixedwood forest and neighbouring British Columbia (BC).  By 
testing the models it may possible to identify sources of uncertainty and guide data collection to 
reducing the causes of those uncertainties. 
 
We had two main objectives.  Our first objective was to evaluate the accuracy and 
generalizability of songbird-habitat models and thus to determine their usefulness as tools for 
managing forest-dwelling birds and evaluating alternative forest management scenarios.  To do 
this, we used existing bird survey data that have been collected at independent locations in 
Alberta and BC in conjunction with other research and management projects.  Our focus was on 
evaluating habitat models for use in areas within the boreal mixedwood forest.  Specifically, we 
assessed the predictive ability of the Calling Lake habitat models using: 



 5 

 
1. Multi-year data from the same study area to (1) assess the temporal variability in 

songbird-habitat relationships (direction, strength, and significance of estimated 
coefficients), (b) evaluate the temporal variability in the predictive performance of 
models, and (c) determine if the predictive performance of the models increased with the 
number of years of data used to fit the model. [Temporal Validation] 

2. Independent data collected at four separate locations in Alberta within the same 
ecological region (boreal plains ecosection). [External Validation] 

3. Independent data collected at one location in northeastern BC at the western edge of the 
same broad ecological region (boreal plains ecosection). [External Validation] 

 
Our second objective was to continue to develop FEENIX and to apply it to evaluate 
management scenarios.  Consequently, in this report, we describe various enhancements that 
have been made FEENIX over the past 3 years.  The application of FEENIX in various 
management scenarios and policy analyses in Alberta and BC is provided in a companion 
BEEST project. 
 
 

HABITAT MODEL EVALUATION 
 
Habitat models are often used to make predictions beyond the sample from which the models 
were developed (Scott et al. 2002).  For example, a model may be used to assess the suitability of 
a forest management unit for a species of concern or to evaluate and rank alternative future 
management scenarios.  Both examples illustrate the use of habitat models outside of their range 
of development – both in space and time – raising concerns about the use of models without 
proper, or external, validation.  Validation, however, is rarely done due to limitations in time, 
funding, and data (Morrison et al. 1999, Guisan and Zimmermann 2000).  Recently, in an 
attempt to address this situation, several papers have reviewed and illustrated methods for 
evaluating species distribution models and in particular logistic regression models such as the 
ones described here (Fielding and Bell 1997, Pearce and Ferrier 2000).   
 
A key aspect of prediction, is the consideration of whether a model derived from an analysis of 
the original data set is transportable to similar forest landscapes in other geographic locations.  
This concept is sometimes referred to as generalizability or validity, and a model that is found to 
pass such a test is said to have been validated.  Broadly, validation can be carried out both 
internally and externally (Harrell 2001).  Internal validation is used to test the accuracy of a 
model using the same sample that was used to develop the model; it is restricted to a single 
geographic site.  Methods include data splitting and computer-intensive methods such as ‘leave-
one out’ cross-validation, and bootstrapping.  External validation addresses the issue of the 
generalizability of the models by using independent data (e.g., another place) to test a model.  A 
third form of validation, referred to as temporal or prospective validation, provides an 
intermediate level of assessment whereby models developed in one study area are tested against 
past or future data collected in the same area. 
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No matter which validation approach is used (internal, external, or temporal), there are two 
related aspects of predictive accuracy that can be assessed when evaluating a habitat model: 
calibration and discrimination (Pearce and Ferrier 2000, Harrell 2001).  Calibration describes the 
agreement between observations and predicted values (e.g., goodness-of-fit) and therefore 
describes the reliability with which a model predicts the probability of a site being occupied by a 
species of interest.  A reliable model (i.e., well calibrated) should be able to correctly predict the 
actual proportion of sites occupied by the species of interest.  Although revealing, this aspect of 
model accuracy is not always directly useful to forest managers. Discrimination, on the other 
hand, is the model’s ability to reliably classify locations (e.g., patches or landscape units) into 
two or more groups (e.g., presence/absence or different habitat suitability classes).  Such 
classifications can be used to provide feedback to influence management activities such as the 
choice of treatment type to use in a particular location or to evaluate and rank the suitability of 
different landscape units or management scenarios.  Consequently, our focus in this report is on 
evaluating the discrimination capability of our songbird-habitat models. 
 
Study Areas 
 
All of the songbird-habitat models were initially developed and tested using data collected 
adjacent to Calling Lake, in north-central Alberta (55° N, 113° W).  Subsequently, the models 
were tested at five independent sites, four near Calling Lake and one in BC (Figure 1).  All sites 
are within the Boreal Plains ecosection (Ecological Stratification Working Group 1996).  Three 
of the validation sites were located between 85 and 125 km away from the development site 
(Calling Lake).  The fourth validation site was located just north of Calling Lake.  The fifth site 
was located near Chetwynd in northeastern BC.  Although there are many similarities among the 
landscapes with respect to merchantable tree species, there are also some important differences 
relating to the disturbance history of the sites.  The Calling Lake site has been logged extensively 
during the early part of the 1990s but has not experienced any major recent burns.  In contrast, 
the Goodwin site is characterized by a very large burn and few recent clearcuts.  The Reference 
site, as its name implies, has been relatively unlogged and largely undisturbed by recent fires.  
The North Calling Lake and Owl river sites are more similar to Calling lake in that they have 
both been logged recently.  At the Alberta sites, trembling aspen (Populus tremuloides), balsam 
poplar (Populus balsamifera), and white spruce (Picea glauca) were the most abundant upland 
tree species, often occurring together in old, mixed stands, whereas black spruce (Picea. 
mariana) characterized hydric sites.  The BC site is located within Block 4 of TFL 48 near 
Chetwynd and consists of few recent natural disturbance patches but many widely distributed 
cutblocks, especially in the lower elevations.  The leading merchantable tree species were 
lodgepole pine (Pinus contorta), subalpine fir (Abies lasiocarpa), white spruce, trembling aspen, 
and spruce hybrid (Picea cross). 
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Figure 1.  General locations of the Alberta and BC bird survey sites (black circles).  The map of the 

Terrestrial Ecozones of Canada is from the 2002 State of Canada’s Forests website located at 

http://www.nrcan.gc.ca/cfs-scf/national/what-quoi/sof/latest_e.html. 

 

Bird Survey Data 
 
Calling Lake site.  We developed habitat models for selected songbird species using bird 
abundance data collected by point-count surveys conducted between 1993-2001 as part of the 
Calling Lake Fragmentation Experiment study in north-central Alberta (Schmiegelow et al. 
1997).  A total of 436 permanent sampling stations were located within 65 sites, which were 
defined as contiguous areas of similar forest type and age.  Site types included areas clearcut in 
1993 as part of the experimental design, young and old deciduous forests, mature coniferous 
forests, and mixedwood forests.  There was at least 200 m between each sampling station.  In 
each year that a station was sampled, point counts were conducted four times during the breeding 
season, from the third week in May through early July.  The point count stations were geo-
referenced and linked to the Calling Lake GIS database.  We converted all bird abundance data 
to presence/absence data prior to analysis.  Schmiegelow et al. (1997) provide more details on 
the survey design. 
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Figure 2.  Top left map indicates the location of development (blue stations) and validation (red stations) sites in 

north-central Alberta.  All Alberta sites are located within the ALPAC FMU (grid).  The 5 other maps show the 

distribution of survey stations and habitat classes within each of the study sites.  The BC site used a modified habitat 

classification system and is not shown here. 
 
Temporal validation.  We developed models using presence-absence data for 5 boreal forest 
songbird species: Black-throated Green Warbler, Red-breasted Nuthatch, White-throated 
Sparrow, Yellow-rumped Warbler, and Yellow Warbler (Table 1).  This is the same suite of 
species for which we recently developed abundance models (Vernier et al., 2002).  The songbird 
models in this analysis component were developed and tested using data from 1993-99, which, at 
the time were the most current available to us (Boyce et al. 2002). 
 
Alberta validation sites.  We validated our habitat models using bird abundance data collected by 
point-count surveys conducted in 1996 and 1997 in four separate locations.  The sampling 
protocol was similar to that described for the Calling Lake bird survey.  As with the model 
development data, we converted all bird abundance data to presence/absence data prior to 
analysis.  Details of the sampling protocols and study area can be found in Hannon (1999).  In 
our analyses of model performance, we only considered songbird species that occurred in at least 
10% of the stations but no more than 90% (Table 1). 
 
BC validation site.  We used bird abundance data collected by point-count surveys conducted in 
2000 and 2001 as part of a Northern Goshawk inventory of Block 4, TFL 48 near Chetwynd in 
northeastern BC (Manning, Cooper and Associates 2001).  We only included survey stations that 
were located in the Boreal White and Black Spruce (BWBS) and Sub-boreal Spruce (SBS) 
biogeoclimatic zones.  As with the model development data, we converted all bird abundance 
data to presence/absence data prior to analysis.  In contrast to the Alberta bird surveys, the 
songbird surveys in BC were biased toward older forest types where Goshawks were more likely 
to occur.  Manning, Cooper and Associates (2001) provide more details on the bird survey work.  
We evaluated habitat models for Black-throated Green Warbler, Red-eyed Vireo, Swainson’s 
Thrush, and Yellow Warbler (Table 1). 
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Table 1.  Code, common name, and Latin name for species modeled in this project.  AB = Alberta external 

validation; BC = BC external validation; Temporal = temporal validation. 

Code Common name Latin name Study area 

AMRE American Redstart Setophaga ruticilla AB 

BGNW Black-throated Green Warbler Dendroica virens AB, BC, Temporal 

CHSP Chipping Sparrow Spizella passerine AB 

COWA Connecticut Warbler Oporornis agilis AB 

LEFL Least Flycatcher Empidonax minimus AB 

MOWA Mourning Warbler Oporornis philadelphia AB 

OVEN Ovenbird Seiurus aurocapillus AB 

RBGR Rose-breasted Grosbeak Pheucticus ludovicianus AB 

RBNU Red-breasted Nuthatch Sitta canadensis AB, BC, Temporal 

REVI Red-eyed Vireo Vireo olivaceus AB, BC 

SWTH Swainson’s Thrush Catharus ustulatus AB, BC 

TEWA Tennessee Warbler Vermivora peregrina AB 

WIWR Winter Wren Troglodytes troglodytes AB 

WTSP White-throated Sparrow Troglodytes troglodytes AB, Temporal 

YRWA Yellow-rumped Warbler Dendroica coronata AB, Temporal 

YWAR Yellow Warbler Dendroica petechia AB, BC, Temporal 

 
Habitat Data 
 
Forest inventory data and habitat classification.  For the Alberta bird survey sites, we measured 
habitat patterns around each bird sampling station using 1:20,000 digital Alberta Vegetation 
Inventory (AVI) maps for both model development and model validation sites from Alberta.  In 
BC, we did the same thing using Canfor’s Vegetation Resource Inventory (VRI) data.  Although 
the Alberta and BC forest inventory databases differ in certain respects (e.g., database structure, 
stand attributes, etc.), both contained the attributes required to develop a common, albeit not 
fully equivalent, habitat classification system.  The forest cover layers of the AVI and VRI data 
contain several attributes useful for modeling wildlife habitat relationships such as species 
composition, crown closure, height, estimated stand age, and the location of non-forest cover 
types such as permanent clearings, lakes, and wetlands.  Two additional map layers described the 
location of streams and logging roads.  We developed a habitat classification system based on 
overstory tree species, stand age, and management and disturbance history (Table 2).  The 
classification system was used to create a generalized map of forest and non-forest habitat 
classes for each site. 
 
Table 2.  Habitat classification system used to calculate several local and neighborhood-level habitat variables.  

Italicized comments relate to the habitat classification system developed for the BC study area. 

Habitat class Description 

Water River, lake, ice, river, and reservoirs 

Non-forested Vegetated – non forested upland and wetland areas 
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Early deciduous > 70% deciduous with burn but not cut modifier or origin ≥ 1970 (fire-origin stands ≤ 30 

years) 

Young deciduous > 70% deciduous and 31-90 years (1910 ≤ origin < 1970); no cut modifier 

Old deciduous > 70% deciduous and origin < 1910 

White spruce Conifer stands with > 70% white spruce as leading species 

Black spruce Conifer stands with black spruce as leading species 

Pine Conifer stands with pine as leading species 

Mixedwood Mixed deciduous/white spruce; include O_DECID if understory Crown > A and understory 

Sw  > 30%; mixed deciduous/conifer stands 

Recent cut Clearcuts; any stand with a cut modifier including burns that have been salvaged; 

Cutblocks where stand age ≤ 30 years 

Non-vegetated Anthropogenic (wellsites, large cutlines, etc.); non-vegetated – natural or anthropogenic 

areas 

 
Habitat-based predictor variables.  For all Alberta and BC sites, we used original and derived 
map layers to measure habitat characteristics around each bird sampling station at two spatial 
scales: the local-scale, which matched the size and shape of the circular bird sampling stations 
(100 m radius, or 3.14 ha buffer), and the neighbourhood scale, which extended from 100-500 m 
beyond the sampling stations (75.4 ha annular buffer).  At the local scale, we measured habitat 
class, stand height, crown closure, deciduous proportion, distance to nearest cutblock, and 
distance to nearest lake or river.  At the neighbourhood scale (74 ha annular buffer) we measured 
the proportion of early (<15 years) and late (>90 years) seral forest, the proportion of deciduous 
and mixedwood forest, the presence of black spruce patches, and the variety of habitat classes.  
We selected predictor variables that included a similar range of variation in both model building 
and model testing datasets (Harrell 2001).  These 12 habitat characteristics comprised our 
candidate set of predictor variables (Table 3).  The process of selecting, generating, and 
evaluating the variables for inclusion in statistical models is described in Vernier et al. (2002). 
 
Table 3.  Habitat variables were derived from AVI and VRI data.  Local habitat variables(L) were measured within a 

100 m radius while neighborhood variables (N) were measured in a 400 m radius beyond each local (inner) buffer. 

Variable Description Study area 

L_CCUT Station located in recent cutblock (<15 yrs) AB, BC, Temporal 

L_YDEC Station located in young deciduous stand (<=90 yrs) AB, Temporal 

L_ODEC Station located in old deciduous stand (>90 yrs) AB, BC, Temporal 

L_MIXED Station is located within a mixedwood stand AB, BC 

L_PINE Station is located in pine stand Temporal 

L_SIZE Size of patch the station lies within (see habitat classes) Temporal 

L_CUTDIST Distance of station centre to nearest anthropogenic edge (e.g. cutblock) AB, BC 

L_WATERDIST Distance of station centre to nearest water body (river, lake, or reservoir) AB, BC 

L_CROWN Mean crown closure of forested polygons x forested area (percent) AB, BC, Temporal 

L_DEC Mean deciduous proportion of forested polygons x forested area AB, BC, Temporal 

L_HT Mean stand height of forested polygons x forested area AB, BC, Temporal 
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N_CUT  Proportion of neighbourhood in a recent cutblock AB, BC, Temporal 

N_MID Proportion of neighbourhood in mid seral forest (15-90 years) Temporal 

N_LATE Proportion of neighbourhood in late seral forest (origin < 1910) AB, BC, Temporal 

N_DEC Proportion of neighbourhood in deciduous forest AB, BC, Temporal 

N_MIXED  Proportion of neighbourhood in mixedwood forest AB, BC 

N_SB Presence of black spruce forest AB, BC 

N_SW Presence of white spruce forest Temporal 

N_RICH Number of habitat classes in neighbourhood AB 

N_SIMP Diversity of habitat classes in neighbourhood (Simpson's index) BC, Temporal 

N_EDGEN* Density of natural edges AB, Temporal 
* calculated using habitat classification system and edge contrast matrix 
 
Model Development 
 
All presence/absence models (GLM, logistic regression) were developed using the same general 
approach that we recently used to develop abundance models (Vernier et al., 2002; GLM, 
Poisson regression).  For each species at each station we calculated the value of the Logit (P) 
using the equation 
 

Logit (P) = 0 + 1x1+ ... + nxn 
 
from which we calculated the probability of occurrence using 
 

pi = è i / 1 + èi 
 
where pi is the detection probability (probability of occurrence at a given site or patch 
occupancy) of a species in the ith station, and  i = x i  = 0 + 1x1+ ... + nxn is the linear 
predictor.  xi is the vector of independent variables for the ith station and  is the vector of 
parameters to be estimated.  Up to three different models were developed for each species: one 
that only included local-level habitat variables, another that included only neighbourhood-level 
habitat variables, and a third that included a combination of both types of variables.  Variables in 
each model were selected by backward stepwise regression (p-to-enter < 0.05, p-to-remove 
<0.10).  The best model among the competing models was selected using Akaike’s Information 
Criterion (AIC).  Where necessary, we used STATA’s cluster option to calculate variance 
estimates that are robust to influential observations, within site correlations, and undetected over-
dispersion (StataCorp 2001). 
 
To build the models we used 1-7 years of data for the temporal validation component (Calling 
Lake 1993-1999) and 9 years of data for the external validation components (Calling Lake 1993-
2001).  The discrepancy reflects the fact that we performed the temporal evaluation of the 
models two years prior to the external validation.  In addition, we compare model performance 
among the three different model structures only for the Alberta external validation component.  
In the other cases, we only evaluated the “best” model. 
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Figure 3.  Simplified flowchart of the habitat model validation process. 

 
Model Validation 
 
We assessed the predictive accuracy of the songbird habitat models using Receiver Operating 
Characteristic (ROC) analysis.  ROC analysis is a method of measuring and comparing the 
accuracy of a model at predicting whether each observation is a member of one of two groups 
(e.g. presence / absence).  The ROC curve plots the Sensitivity (true positive rate) against 1-
Specificity (false positive rate).  The larger the area under the ROC curve (AUC), the better the 
model is at predicting group membership.  As way of guidance for managers using such models, 
Swets (1988) considers models with AUC values between 0.5 and 0.7 to indicate poor 
discrimination capacity, values between 0.7 and 0.9 to indicate reasonable discrimination ability 
appropriate for many uses, and rates higher than 0.9 to indicate very good discrimination.  A 
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value of 0.5 indicates a model with no predictive power.  Compared to other measures of model 
accuracy (e.g., sensitivity, specificity, correct classification rate, Kappa), AUC is not sensitive to 
prevalence (i.e. proportion of sites occupied by a species).   
 
Table 4.  Number of stations by year for developmental (“Original Models”) and validation datasets. 

Study Area 1993 1994 1995 1996 1997 1998 1999 2000 2001 

Original Models          

Calling Lake, AB 174 264 341 234 367 385 385 2821 2581 

Temporal Validation          

Calling Lake, AB  264 341 234 367 385 385   

External Validation          

Goodwin, AB     86     

North Calling, AB   53  80     

Owl River, AB    186 122     

Reference, AB     191     

Chetwynd, BC        560 560 
1 2000 and 2001 data were not used for developing the models used in the temporal validation component. 

 
Temporal validation (Calling Lake).  To assess the temporal variability in songbird-habitat 
relationships, we developed separate models for each year (1993-1999) and recorded the 
direction, strength, and significance of the estimated coefficients.  To evaluate the temporal 
variability in the predictive performance of the models, we used the models developed in 
objective 1 to calculate AUCin for each year (e.g., 1995) and calculated AUCout using data from 
the following year (e.g., 1996) excluding, the last year of sampling.  To determine if the 
predictive performance of the models increased with the number of years used to fit the model, 
we developed models using 1 year of data, 2 years of data, 3 years of data, and so on, and 
validated each of these models using data from the following year.  For example, a model using 
5 years of data would be developed 3 times (i.e., 1993-97, 1994-98, 1995-99) and tested 3 times 
using AUCin (i.e., 1993-97, 1994-98, 1995-99) and 2 times using AUCout (i.e., 1998 and 1999).  
Out-of-sample tests for models that included 1999 data were not possible.  We summarized our 
results graphically using the average AUCin and AUCout value for each “number of years” group 
(e.g. the mean of the 3 models developed with 5 years of data).  We made no attempt to interpret 
inter-model variability because the number of possible models decreased linearly as the number 
of years included in the model increased.  For instance, a model based on 1 year of data could be 
developed 7 times, while one base on 7 years of data could only be developed once. 
 
External validation (Alberta).  We evaluated songbird habitat models using 2 years of data 
(1996-1997) from 4 independent validation sites.  The number of stations in each year for each 
of the model development and validation sites is shown in Table 4.  We calculated the AUCin 
and AUCout for each of the three models (i.e. models using local, neighbourhood, and local + 
neighbourhood variables) for each species using the same data that was used to develop the 
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models (internal validation) and using data from four geographically independent sites (external 
validation).  In all, we validated the predictive performance of 16 songbird-habitat models. 
 
External validation (BC).  We evaluated modified versions of our “best” habitat models for 
Black-throated Green Warbler, Red-eyed Vireo, Swainson’s Thrush, and Yellow Warbler using 
AUCin and AUCout.  The models were modified because of minor differences between the forest 
inventory data of the two regions (see Table 2).  In addition, we only included survey stations 
that were located in the BWBS and SBS biogeoclimatic zones – the two zones that are most 
similar to the Alberta sites. 
 
Results of Temporal Validation (Alberta – Calling Lake) 
 
There was moderate variability among years in the strength and significance of songbird-habitat 
model coefficients, and the overall model (all years) was generally not a good indicator for 
individual-year models (Table 5).  Exploration of changes in abundance between years could 
provide further insight into why this might occur.  Conversely, the direction (sign) of the 
coefficients, was largely consistent across years (16/21 over all species).  For each species except 
Yellow-rumped Warbler, only one variable was consistently significant across years, and only 
for Red-breasted Nuthatch and Yellow Warbler was this variable also significant for the overall 
(all years) model. 
 
The predictive performance of songbird models was more variable across years when assessed 
using out-of-sample data (ROCout) than when using in-sample data (ROCin) (Figure 4).  
Generally, all bird species had good model accuracy with ROCin and ROCout values > 0.7 for all 
years; the exceptions being Yellow-rumped Warbler in 1993 and Red-breasted Nuthatch in 1993-
1995.  For 3 of the bird species (Black-throated Green Warbler, White-throated Sparrow, and 
Yellow Warbler), the values of ROCin and ROCout are very similar and show little variability 
over time (Figure 4).  In contrast, but only for the first 3 years, the other 2 species (Red-breasted 
Nuthatch and Yellow-rumped Warbler) have very different values and exhibit high variability. 
Differences in patterns for the first 3 years may be accounted for by landscape-level adjustments 
to forest harvesting in the area (Schmiegelow and Hannon, 1999; Norton et al. 2000).  
Nevertheless, although the strength and significance of model coefficients are quite variable, the 
models themselves are consistently in the “useful applications” and “high accuracy” categories, 
with the exceptions noted above.  In other words, when prediction is the objective, the models 
appear to be robust, even though their reliability may vary across years.  This suggests that care 
be taken when developing models shortly after disturbances. 
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Table 5.  Estimated coefficients for species presence/absence models for the years 1993-1999.    Emboldened 

coefficients are significant at the 5% level; italicized coefficients are significant at the 10% level. 

Species / 

Variable 

all 

years 

1993 1994 1995 1996 1997 1998 1999 

BGNW         

l_ht -0.018 0.251 0.279 0.272 0.195 0.136 0.179 0.122 

n_cut 2.138 4.609 3.569 3.514 0.023 0.164 -0.813 2.704 

n_late 5.032 0.929 2.671 4.409 2.233 2.133 2.929 2.523 

n_dec 5.575 4.999 3.098 1.953 1.142 3.184 1.975 4.875 

n_sw 0.566 1.624 0.679 1.239 0.479 0.891 0.127 0.997 

n_simp 7.942 2.577 4.447 4.174 4.122 3.789 4.865 4.834 

RBNU         

l_ht 0.127 0.164 0.149 0.19 0.16 0.232 0.295 0.144 

l_dec -4.053 0.023 -4.088 -1.477 -3.602 -2.986 -2.994 -1.463 

WTSP         

n_dec 7.317 5.659 7.083 0.587 3.309 4.234 3.114 6.006 

n_simp 4.233 5.009 6.993 -0.013 2.812 5.227 4.515 4.832 

l_dec 2.184 2.839 2.207 4.921 4.247 3.129 2.442 2.657 

l_ccut 19.297 -0.933 1.533 22.229 5.753 20.489 3.967 -0.389 

n_mid -2.85 -1.646 -5.632 -3.856 -1.99 -3.618 -4.532 -2.168 

l_pine 1.082 0.446 0.44 -3.728 -1.439 -0.946 0.307 0.736 

n_edgen -0.014 -0.085 -0.029 -0.03 -0.036 -0.036 -0.024 -0.06 

YRWA         

n_late 5.48 3.197 3.14 0.505 1.864 1.712 2.361 4.72 

l_odec -0.362 -1.959 -3.203 -16.922 -0.403 -0.46 0.325 -1.092 

l_ccut 17.191 -6.52 -4.28 -20.862 -25.478 -4.466 -3.831 -3.491 

n_mid 3.044 4.32 3.275 0.908 7.121 3.141 2.58 2.974 

l_ydec 0.939 -3.122 -2.128 -17.01 -3.037 -1.774 -0.94 -0.577 

l_size -0.006 -0.005 -0.004 -0.001 -0.003 -0.003 -0.001 -0.005 

YWAR         

l_odec 2.458 2.635 3.333 2.188 2.82 1.496 2.441 2.603 

l_crown -0.026 -0.005 -0.014 -0.01 -0.038 -0.038 -0.039 -0.012 

 
The relationship between mean model performance (i.e., the average of the models with the same 
number of years of data) and the number of years used to develop the model is summarized in 
Figure 5.  With the exception of Black-throated Green Warbler, out-of-sample tests (ROCout) 
were more variable than in-sample tests (ROCin).  In fact, in-sample tests appeared to be little 
affected by the number of years used to develop the models.  Out-of-sample evaluations were 
more variable, but only in the case of Red-breasted Nuthatch did performance increase 
consistently with number of years.  This result is not surprising, given that among those species 
we analyze here, the Red-breasted Nuthatch exhibits the highest spatial and temporal variance in 
distribution and abundance (Carlson and Schmiegelow, 2002).  For two species, White-throated 
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Sparrow and Yellow-rumped Warbler, out-of-sample tests actually indicated a loss in predictive 
performance, albeit minor, with number of years.  We make no attempt to assign significance, as 
differences in the number of possible models as a function of the number of years included in the 
model made interpretation of variance problematic.  Nevertheless, both in-sample and out-of-
sample model performance was always greater than 0.7 indicating “useful applications” and 
“high accuracy” models. 
 

1993 1994 1995 1996 1997 1998 1999

0.
5

0.
7

0.
9

Black-throated Green Warbler

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

1993 1994 1995 1996 1997 1998 1999

0.
5

0.
7

0.
9

Red-breasted Nuthatch

1993 1994 1995 1996 1997 1998 1999

0.
5

0.
7

0.
9

White-throated Sparrow

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

1993 1994 1995 1996 1997 1998 1999

0.
5

0.
7

0.
9

Yellow-rumped Warbler

Number of years

1993 1994 1995 1996 1997 1998 1999

0.
5

0.
7

0.
9

Yellow Warbler

Number of years

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

AUCin
AUCout

 
Figure 4.  Temporal variability in ROC (AUCin and AUCout) for 5 species of boreal songbirds in Alberta.  All models 

were developed using 1 year of data and validated using the following year of data.  No validation was possible for 

the 1999 models because there is no data for the following year. 
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Figure 5.  Relationship between mean model performance (AUCin and AUCout) and the number of years used to build 

the models.  Data were validated using data from the following year.  Note that out-of-sample predictions were not 

possible for models developed using all 7 years of data. 

 
Results of External Validation (Alberta – Mixedwood) 
 
We developed logistic regression models for 16 species of forest songbirds that occur in the 
boreal mixedwood forest using data from the Calling Lake study area (Table 6).  The number of 
significant predictor variables in each model ranged from 4 for the Yellow-rumped Warbler to 10 
for the Chipping Sparrow and Least Flycatcher.  Local habitat variables were included 67 times 
in the models compared to 49 times for neighbourhood habitat variables.  All local habitat 
variables except for L_WATERDIST occurred in at least 7 models and as many as 11 models.  
All neighbourhood habitat variables except for N_MIXED occurred in at least 6 and as many as 
12 of the models.  The internal predictive accuracy of models, as measured by AUC, ranged 
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from 0.677 for Chipping Sparrow to 0.842 for American Redstart.  Only two species’ models, 
those for Chipping Sparrow and Tennessee Warbler, were below the 0.7 cutoff indicating a 
reasonable model – and in both cases they were just below with AUC values of 0.677 and 0.691, 
respectively.  In contrast, the other 14 models are considered to have reasonable discrimination 
ability appropriate for management purposes, especially in the area in which they were 
developed i.e. Calling Lake.  For all species, the best model, in terms of predictive accuracy, was 
the model comprising a combination of both local and neighbourhood variables. 
 
Table 6.  Summary of logistic regression models for selected songbird species using the Calling Lake bird survey 

data.  All predictor variables are significant (p < 0.10).  LL = log likelihood; AUCin = in-sample predictive ability. 

 

Species 

 

Habitat variables 

 

LL 

AUC 

n=3031 

AMRE -4.401 - 1.85·H_CUT + 1.276·H_ODEC -0.017·L_CC + 5.351·N_CUT + 
1.623·N_LATE + 3.119·N_DECID - 0.503·N_MIXED -0.358·N_SB 

-1028 0.842 

BGNW -3.623 - 2.589·H_CUT + 1.322·H_ODEC + 0.689·H_MIXED -1.701·L_DEC + 
0.102·L_HT - 0.018·L_CC + 0.784·N_LATE + 1.374·N_DECID + 0.363·N_SB + 
0.16·N_RICH 

-1275 0.815 

CHSP -0.79 - 0.618·H_YDEC - 1.303·L_DEC + 0.033·L_HT - 1.728·N_CUT+ 
0.378·N_MIXED + 0.442·N_SB 

-1560 0.677 

COWA -1.364 - 1.797·H_CUT + 0.633·H_YDEC + 2.55·L_DEC - 0.06·L_HT - 0.011·L_CC 
- 1.05·N_LATE + 0.774·N_MIXED 

-1232 0.758 

LEFL -2.565 + 1.479·H_ODEC + 1.1·H_YDEC + 2.443·L_DEC - 0.051·L_CC - 
0.001·DIST + 2.923·N_CUT + 1.139·N_LATE + 2.346·N_DECID - 
0.421·N_MIXED - 0.311·N_SB 

-1263 0.796 

MOWA -3.265 + 1.332·H_ODEC + 1.181·H_YDEC + 1.098·L_DEC - 0.026·L_CC + 
1.259·N_CUT + 1.032·N_LATE + 1.719·N_DECID - 0.503·N_SB + 0.189·N_RICH 

-1541 0.756 

OVEN 0.589 - 2.148·H_CUT + 1.274·H_YDEC + 0.961·H_MIXED + 0.909·L_DEC + 
·L_HT - 1.255·N_CUT - 0.856·N_LATE 

-1365 0.816 

RBGR -2.703 + 1.538·H_ODEC + 0.935·H_YDEC + 0.031·L_HT - 0.015·L_CC + 
2.112·N_CUT + 1.008·N_DECID - 0.103·N_RICH 

-1231 0.730 

RBNU -1.6 - 2.784·H_CUT - 0.496·H_YDEC + 0.551·H_MIXED - 1.13·L_DEC + 
0.068·L_HT - 0.008·L_CC - 0.935·N_CUT + 0.175·N_RICH 

-1357 0.751 

REVI -0.208 + 1.14·H_ODEC + 1.685·H_YDEC + 0.604·H_MIXED + 0·DIST + 
2.553·N_CUT + 1.08·N_DECID - 0.206·N_RICH 

-1660 0.720 

SWTH -0.944 - 1.767·H_CUT - 1.563·L_DEC + 0.054·L_HT + 1.444·N_LATE - 
0.77·N_DECID 

-1424 0.752 

TEWA -0.988 + 0.831·H_ODEC + 0.413·H_MIXED - 0.006·L_CC + 2.574·N_CUT + 
1.418·N_DECID 

-1658 0.691 

WIWR -1.938 - 2.485·H_CUT - 1.253·L_DEC + 0.046·L_HT + 0·DIST + 1.29·N_CUT + 
2.339·N_LATE 

-1315 0.760 

WTSP -2.196 + 1.982·H_CUT + 1.809·H_ODEC + 1.334·H_YDEC + 0.678·H_MIXED + 
0.069·L_HT - 0.035·L_CC + 3.307·N_CUT + 1.068·N_LATE + 2.243·N_DECID 

-1149 0.826 

YRWA 1.909 - 4.056·H_CUT - 2.315·L_DEC + 0.097·L_HT - 0.928·N_DECID -1083 0.834 

YWAR -3.764 + 0.617·H_ODEC - 1.105·H_MIXED + 2.329·L_DEC - 0.046·L_CC + 
2.248·N_CUT + 1.201·N_LATE + 1.739·N_DECID - 0.579·N_SB + 0.144·N_RICH 

-1172 0.791 

 
We tested all 16 songbird habitat models using external validation data from 4 independent sites 
individually and as a whole.  The tests were only performed if a species’ prevalence at a given 
test site was between 10-90%.  No clear pattern emerged from the external validation of the 
Calling Lake models.  Fifteen of the 16 habitat models performed reasonably well in at least one 
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of the validation sites or when all validation sites were combined (Table 7).  The Red-breasted 
Nuthatch models were the exception but they were only tested at the Owl River site and with all 
the validation data.  Two models, those for Chipping Sparrow and Tennessee Warbler performed 
reasonably well even though the original model was considered to be poor.  Eight of the 16 
habitat models had reasonable predictive accuracy when tested against the validation data as a 
whole.  Among the individual validation sites there were no clear patterns – some species’ 
models appeared to perform better at some sites than at others.  Models that were successfully 
validated using all the data did not necessarily validate reasonably well at individual sites and 
vice-versa – models that did not validate using all the data did validate at some individual sites.  
The North Calling Lake and Reference sites had the most number of models validated, 8 and 7, 
respectively.  Five models were validated at the Owl River site and only 2 at the Goodwin site 
that had the smallest sample size.  Only one model (Ovenbird; local variables only) performed 
reasonably well with all the validation data and at each validation site.  The Ovenbird model 
(local + neighbourhood variables) and the Red-eye Vireo model (local + neighbourhood 
variables) both performed reasonably well using all validation data and at 3 of the 4 validation 
sites.  Among the species whose model(s) performed reasonably well when tested against 
external validation data, individually or as a whole, 13 models comprised local and 
neighbourhood level habitat variables, 8 consisted of local habitat variables only, and 6 included 
neighbourhood habitat variables only. 
 
As a final step, we developed new logistic regression models for each species using all of the 
validation data combined.  The results (not included in this report; Vernier et al. in prep) clearly 
show that these new models performed better at the validation sites in terms of discrimination 
capability than the original models developed in the Calling Lake study area – although the test 
only included internal data and thus was not as stringent as the validation results described in the 
previous section.  Fourteen of the 16 models had reasonable predictive capability.  Models for 
Least Flycatcher, Rose-breasted Grosbeak, and Red-breasted Nuthatch were the exceptions.  In 
general the models were more parsimonious i.e., fewer predictor variables entered the models.  
On average each species included 3.7 variables compared to 6.1 for the original models.  As with 
the original models the same five predictor variables (N_CUT, N_DECID, L_DEC, N_LATE, 
L_CC) were most often selected among the 14 candidate variables. 
 

Table 7.  Results of Alberta validation analysis.  AUC local, AUC nbr, AUC local+nbr = area under the ROC curve 

for model using local, neighbourhood, or both sets of variables.  AUC values are not provided where prevalence is 

less than 0.10 or greater than 0.90. 

   Validation Sites 

Species Statistic Calling 

Lake 

All valid. 

sites 

Goodwin North CL Owl River Reference 

AMRE Prevalence 0.213 0.152 0.011 0.203 0.227 0.063 

 AUC local 0.801 0.558  0.787 0.504  

 AUC nbr 0.774 0.633  0.797 0.519  

 AUC local+nbr 0.842 0.652  0.891 0.539  

BGNW Prevalence 0.32 0.105 0 0.241 0.11 0.052 
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 AUC local 0.79 0.633  0.751 0.553  

 AUC nbr 0.746 0.721  0.752 0.574  

 AUC local+nbr 0.815 0.703  0.753 0.593  

CHSP Prevalence 0.313 0.317 0.222 0.474 0.175 0.482 

 AUC local 0.627 0.732 0.648 0.622 0.792 0.67 

 AUC nbr 0.652 0.678 0.615 0.631 0.712 0.568 

 AUC local+nbr 0.677 0.723 0.673 0.585 0.769 0.664 

COWA Prevalence 0.232 0.306 0.189 0.173 0.39 0.319 

 AUC local 0.745 0.561 0.47 0.351 0.398 0.775 

 AUC nbr 0.694 0.599 0.572 0.366 0.368 0.809 

 AUC local+nbr 0.758 0.584 0.41 0.393 0.422 0.783 

LEFL Prevalence 0.274 0.22 0.189 0.263 0.237 0.178 

 AUC local 0.771 0.614 0.472 0.581 0.568 0.742 

 AUC nbr 0.708 0.575 0.289 0.533 0.567 0.687 

 AUC local+nbr 0.796 0.622 0.379 0.577 0.593 0.755 

MOWA Prevalence 0.407 0.378 0.278 0.759 0.406 0.115 

 AUC local 0.736 0.67 0.527 0.668 0.616 0.735 

 AUC nbr 0.693 0.716 0.467 0.594 0.52 0.756 

 AUC local+nbr 0.756 0.72 0.496 0.646 0.609 0.752 

OVEN Prevalence 0.561 0.582 0.456 0.158 0.805 0.576 

 AUC local 0.814 0.861 0.81 0.771 0.862 0.799 

 AUC nbr 0.709 0.806 0.619 0.766 0.803 0.714 

 AUC local+nbr 0.816 0.864 0.753 0.684 0.869 0.801 

RBGR Prevalence 0.209 0.248 0.1 0.331 0.334 0.12 

 AUC local 0.695 0.597 0.333 0.626 0.576 0.679 

 AUC nbr 0.665 0.67 0.694 0.618 0.564 0.704 

 AUC local+nbr 0.73 0.651 0.527 0.641 0.606 0.652 

RBNU Prevalence 0.287 0.126 0.078 0.083 0.188 0.079 

 AUC local 0.738 0.538   0.606  

 AUC nbr 0.695 0.465   0.514  

 AUC local+nbr 0.751 0.528   0.591  

REVI Prevalence 0.511 0.528 0.333 0.451 0.685 0.419 

 AUC local 0.675 0.685 0.647 0.719 0.608 0.681 

 AUC nbr 0.656 0.741 0.743 0.549 0.746 0.679 

 AUC local+nbr 0.72 0.764 0.765 0.759 0.74 0.679 

SWTH Prevalence 0.31 0.073 0.078 0.18 0.045 0.042 

 AUC local 0.743   0.818   

 AUC nbr 0.715   0.807   

 AUC local+nbr 0.752   0.827   

TEWA Prevalence 0.603 0.863 0.889 0.805 0.88 0.864 

 AUC local 0.664 0.601 0.516 0.527 0.706 0.864 

 AUC nbr 0.663 0.52 0.483 0.534 0.477 0.877 

 AUC local+nbr 0.691 0.573 0.576 0.592 0.595 0.873 
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WIWR Prevalence 0.266 0.109 0.267 0.301 0.045 0.005 

 AUC local 0.749 0.652 0.606 0.707   

 AUC nbr 0.713 0.833 0.682 0.689   

 AUC local+nbr 0.76 0.734 0.671 0.669   

WTSP Prevalence 0.747 0.699 0.778 0.917 0.666 0.565 

 AUC local 0.797 0.777 0.563  0.723 0.781 

 AUC nbr 0.77 0.704 0.46  0.645 0.717 

 AUC local+nbr 0.826 0.753 0.411  0.767 0.742 

YRWA Prevalence 0.675 0.481 0.511 0.414 0.344 0.733 

 AUC local 0.833 0.727 0.63 0.696 0.641 0.724 

 AUC nbr 0.735 0.707 0.616 0.695 0.618 0.705 

 AUC local+nbr 0.834 0.731 0.639 0.668 0.633 0.755 

YWAR Prevalence 0.221 0.086 0.056 0.271 0.065 0.005 

 AUC local 0.781   0.612   

 AUC nbr 0.736   0.699   

 AUC local+nbr 0.791   0.649   

No. of stations: 2690 722 90 133 308 191 

 
Results of External Validation (BC – Northeast) 
 
We calculated the AUC for both the original (in-sample) data from Calling Lake Alberta (AUCin, 
Table 8) as well as independent (out-of-sample) data collected in Block 4, TFL 48 (AUCout).  For 
all four songbird species, the AUCin values were greater than 0.75, indicating that the models are 
reliable – at least in Alberta.  However, when we tested our models in BC, AUC values were 
quite poor (AUCout; Table 8), indicating that our Alberta models had poor predictive ability when 
transferred to BC.  We then used the same set of candidate predictor variables (Table 3) and the 
approach described earlier to re-develop (refine) our songbird habitat models, this time using the 
BC validation data.  Table 9 summarizes the structure of the refined models as well as their 
predictive ability using the BC data.  In this case, 3 of the 4 songbird models performed well 
(AUC > 0.8), the exception being the habitat model for Swainson’s Thrush – a species whose 
habitat associations may not be adequately captured with data emphasizing overstory structure. 
 
Table 8.  Summary of logistic regression models for BGNW, REVI, SWTH, and YWAR developed using Alberta 

survey data.  LL = log likelihood; AUCin = in-sample predictive ability; AUCout = out-of-sample predictive ability. 

 

Species 

 

Habitat variables 

 

LL 

AUCin 

N=3031 

AUCout 

N=431 

BGNW -10.425 + 3.888·N_SB + 0.494·H_ODEC + 0.548·H_MIXED + 

2.974·N_MIXED - 1.369·LX_DEC + 0.207·LX_HT - 

0.01·LX_CROWN + 4.53·N_DEC + 3.682·N_SIMP + 2.891·N_CUT 

+ 1.324·N_LATE 

-1336.6 0.839 0.571 

REVI 0.52 - 2.897·N_SB - 0.506·H_MIXED + 2.079·LX_DEC - 

1.442·N_SIMP - 0.845·N_LATE - 0.363·L_WATERDIST 

-1767.8 0.760 0.602 
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SWTH -0.7 + 1.199·N_MIXED - 1.341·LX_DEC + 1.79·N_LATE - 

3.282·H_CUT 

-1529.8 0.763 0.474 

YWAR -0.332 - 4.001·N_SB + 0.94·H_ODEC - 4.038·N_MIXED + 

2.399·LX_DEC - 0.052·LX_CROWN + 1.034·N_LATE - 

0.341·L_WATERDIST – 1.182·L_CUTDIST 

-1224.3 0.819 0.660 

 
Table 9.  Summary of logistic regression models for BTGW, REVI, SWTH, and YWAR developed using bird 

survey data from Block 4, TFL 48.  LL = log likelihood; AUCin =  in-sample predictive ability. 

 

Species 

 

Habitat variables 

 

LL 

AUCin 

N=560 

BGNW -20.582 - 1.346·H_ODEC + 0.173·LX_HT + 11.455·N_SIMP + 8.329·N_LATE -75.5 0.873 

REVI -4.398 + 3.477·N_DEC -87.4 0.802 

SWTH -1.801 + 2.603·N_MIXED + 1.102·N_DEC -294.3 0.663 

YWAR -4.827 + 4.242·N_DEC + 1.128·N_MIXED -112.7 0.848 

 
Discussion and Management Implications 
 
A number of in-sample and out-of-sample model evaluation techniques are available for 
presence/absence modeling (Fielding and Bell, 1997).  Without such evaluations it is difficult to 
interpret the predictive ability of habitat models, and therefore, the reliability of these models as 
resource management tools.  Although in-sample resubstitution techniques are frequently used, 
they have a tendency to produce over-fitted models, optimistic estimates of model performance 
and loss of generality (Harrell 2001).  Consequently, out-of-sample or external validation 
approaches provide a more realistic assessment of model reliability.  A compromise, but less 
stringent approach when multiple years of data are available from the same site, is to evaluate the 
performance of models developed using one or more years of data with data from subsequent 
year(s) of sampling.  In this project, we assessed the performance of a number of songbird-
habitat models using all three approaches.  However, we only used the internal validation results 
as a means of comparing the results from the temporal and external validation analyses. 
 
The temporal validation analyses identified that the habitat model coefficients we estimated were 
quite variable between years, making the development of general models (multi-year response) 
difficult for most species.  Such behavior by some bird species complicates the possible 
application of such models in natural resource management and conservation planning.  
Likewise, year-to-year variability in model performance was evident for most species.  However, 
most songbird models performed adequately across years with minor exceptions.  The 
relationship between model performance and the number of years of data used to develop a 
model was most pronounced for Red-breasted Nuthatch where there was a clear increase in 
reliability as more data were used in the modeling process.  Surprisingly, this was not the case 
for the other four species investigated. 
 
The songbird-habitat models performed reasonably to poorly when coefficients estimated in 
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Alberta were used to make predictions at other locations in Alberta and BC.  In Alberta, the 
performance of the songbird-habitat models differed substantially between the original Calling 
Lake data and the validation data.  Using the original data, 14 of the 16 models had reasonable 
predictive ability.  The other two were just below the cutoff defining a suitable model (AUC  
0.7).  In contrast, when we tested the models using all of the validation data, only 8 models were 
considered to have been validated.  Similarly, when we tested the models against the individual 
validation sites, between 2 and 8 models proved to be reliable.  Only the Ovenbird habitat model 
performed reasonably well across all validation sites.  The White-throated Sparrow model 
performed reasonably well with all datasets except for the Goodwin site.  When we tested four of 
the Calling Lake songbird models against independent data collected in northeastern BC all four 
models performed poorly.  However, the predictive performance of 3 of the 4 models improved 
when local data was used to develop the models.  The same was true for most of the models 
tested in Alberta and refined using local data (Vernier et al. in prep). 
 
There are a number of possible reasons why several songbird-habitat models fared poorly when 
coefficients estimated in Calling Lake were used to make predictions in other geographic 
locations.  These include: 

• Non random / un-representative survey design; 
• Regional differences in landscape-level habitat composition and configuration; 
• Differences in survey protocols including observer variability; 
• Natural spatial and temporal variability in songbird abundance; 
• Differences in the prevalence of songbird species and avian community structure in the 

different sites and between BC and Alberta; 
• Important habitat characteristics not identified or measured; 
• Differences in detectability of species in different sites; and 
• Spatial-temporal variation in habitat use. 

 
Most of these reasons are likely to be more pronounced in the BC validation site where 
landscape characteristics and survey protocols were most divergent from those of Calling Lake 
and the other Alberta validation sites.  In fact, the songbird survey data from northeast BC were 
collected as part of a Northern Goshawk study and was not designed to be random or 
representative of all forest types in the region.  
 
Although the validation analyses pointed to some weaknesses in the current suite of songbird-
habitat models, they also demonstrated that it is possible to use the same set of habitat attributes 
in the model development and model validation sites, within Alberta, to develop models that had 
equally good predictive ability, at least for the majority of the species, when tested using in-
sample data (i.e. the validation data in this case).  In fact, the top 5 predictor variables in Alberta 
in terms of the number of times they were included in the habitat models, were the same for both 
sets of models.  The same pattern was also evident in BC where we used the same set of habitat 
attributes in both Alberta and BC to develop models that had equally good predictive ability for 
at 3 of our 4 focal species, when tested using in-sample data.  Moreover, the predictor variables 
that we used in the BC and Alberta habitat models are easy to measure and have the advantage 
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that they can be manipulated thru management activities to achieve desired goals.  Thus, even 
though most of our models are not generalizable to all locations, they can be adapted (re-
estimated) when or where necessary using the same set of habitat variables along with local 
survey data.  This last point underlines the importance collecting local data to evaluate and refine 
models to local conditions and to feedback into the adaptive management process. 
 
In some circumstances, the development of reliable models may be quite straightforward (e.g. 
habitat specialists like Northern Spotted Owls).  However, given the spatially and temporally 
dynamic nature of habitat selection common to many species, models that can be used across 
geographic areas are not necessarily expected.  An alternative is to develop expert-based models 
(e.g., HSI) or to strive for general models by understanding functional responses and the 
influence of environmental variation on the availability or quality of habitat resources (Boyce 
and McDonald 1999).  Understanding such relationships is of crucial importance in natural 
resource management and conservation, because managers and conservationists are asked to 
provide habitat-based models describing the influence of changing land-use activities on 
sensitive or rare species (cumulative effects assessments, population viability analyses, climate 
change models, etc.).  Nevertheless, theoretical models also need to be validated to assess their 
reliability in a management context.  A less satisfying but possibly necessary approach is simply 
to develop different models for different seasons, years or localities – as indicated by the results 
of our analyses.  Generalist species, like some forest songbirds, likely will require such an 
approach, because substantial differences in selection are apparent across years, between 
geographic locations, and over regional scales.  Given the spatial and temporal variability in 
model performance, it may be best to use such habitat models in a relative sense when evaluating 
management scenarios i.e. using models to compare alternative management scenarios rather 
than to make site/time specific predictions. 
 
 

LANDSCAPE SIMULATION MODELING (FEENIX) 
 
During the past three years, and in collaboration with other BEEST projects, we continued to 
develop and enhance FEENIX, and apply it to evaluate management scenarios and policy 
alternatives.  In the following sections we describe the technological and functional 
developments of the FEENIX software.  A detailed description of an earlier version of FEENIX 
can be found in Cumming et al. (1998).  The application of FEENIX for research and 
management purposes is described in a companion BEEST project. 
 
FEENIX Enhancements 
 
Profiling (FEENIX internals):  A simple run-time profiling facility has been added to the model.  
This feature helps developers attempting to improve model performance by providing 
performance benchmarks and identifying bottlenecks where the greatest gains may be made. 
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Efficiency (FEENIX internals):  A redesign of model internals has decreased model execution 
times by approximately 80% and also markedly reduced memory requirements.  A typical 
simulation experiment (e.g. 100 model runs of 300 years each on a 300,000ha landscape) can 
now be executed in 8hr on a midrange contemporary PC (e.g. a 2.4 MHz Pentium IV machine), 
instead of 1.5 to 2 days as previously.  As a result, systematic simulation experiments are now 
much more feasible. 
 
Spruce-dynamics model (FEENIX internals):  The original implementation of the mixed stand 
dynamics model (Cumming et al. 1998) contained several algorithmic, design and coding errors.  
These have been corrected.  Although preliminary assessments indicate that simulated landscape 
dynamics (Cumming et al. 1999) are not markedly affected by these errors, their correction does 
increase confidence in interpretation of model results.  
 
Monte Carlo simulation:  FEENIX has successively produced full Monte Carlo scenario 
analyses.  It can now be used more efficiently and effectively as a policy analysis tool.  Users can 
define key files and parameter ranges that define a management scenario in a single project 
definition file.  Output can consist of maps or tracking variable files and can be performed for 
any number of simulations, length of simulation run, or range of management options.  All 
output files are prefixed with the title of the project definition file to provide the user with a 
reference of which output corresponds to which scenario.  The operation is completely automatic 
once the definition files have been produced. 
 
FEENIX and GIS:  FEENIX now reads and operates on raster-based ASCII map files, such as 
those that can be generated from ArcView and GRASS geographic information systems (GIS).  
The resolution of input layers defines the resolution of a FEENIX model, although currently the 
model only has the option of running at 9ha or 3ha resolutions.  The flexibility of having the 
resolution defined by the input data source is intended to support development of new spatial 
models using the "stripped-down" FEENIX shell (see next paragraph).  FEENIX also has the 
capability to output files in ESRI ASCII grid format.  The choice of output layers and the interval 
of layer production are set by the user.  This choice can be predefined in a project definition file 
or executed by the user during a simulation run.  Map production can be automatically defined 
for scenario analysis in Monte Carlo simulations or within the graphic user interface at any point 
in time. 
 
FEENIX shell:  A prototype, "stripped-down" version has been developed and contains only 
basic spatial data management and graphics.  It is intended to simplify model production and use, 
and to make it more accessible to non-programmers.  It currently reads base-maps as raster grids 
and converts to FEENIX format.  Functionality is basic but provides the foundation for creating 
spatial ecological models.  The tool is ideal for bottom-up ecological model development, so that 
researchers can build models without the overhead of complex detail and management options 
currently in FEENIX.  Because all internals are compatible with FEENIX, the functionality can 
then be transferred to FEENIX and integrated by an experienced programmer.  The shell version 
has all the same input, output and scenario evaluation capabilities as the full version. 
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Salvage logging:  In scenarios where both harvesting and fire are enabled, merchantable burnt 
areas may be salvaged.  This prototype feature is enabled by the DoSalvage option. The 
implementation simulates key features of regulations in force in the Province of Alberta as of 
2002.  In particular, contiguous patches of burnt area within each salvaged fire are excluded from 
salvage.  The proportion and size of these leave areas depends on the size of the fire.  A 
reduction factor (0.85 by default) is applied to salvage volumes, and unsalvaged standing burnt 
wood decays at an annual rate (0.5 by default).  Salvage volumes are counted towards per-strata 
or per-landbase Annual Allowable Cuts (AACs) except that salvage volumes may exceed 
calculated AACs by up to 50% to allow for limited surge cutting after large fires. 
 
Patch configuration metrics:  Support for the computation of landscape pattern metrics has been 
added at the application level.  Most of the pattern metrics identified by Cumming and Vernier 
(2002) are generated, including the FRAGSTATS metrics MPI, AWMPFD, TCA and MSI 
which are based on relatively efficient implementations of the published definitions (McGarrigal 
and Marks 1995).  These metrics are computationally intensive and should only be generated at 
intervals within a simulation run.  In typical applications, we generate pattern metrics every 5 
years, which accounts for 20-30% of total execution time.  In principle, these metrics could be 
generated externally by exporting data from FEENIX and running FRAGSTATS or some similar 
utility.  In practice, however, this process would be both cumbersome and error-prone, especially 
in Monte-Carlo simulation experiments. 
 
Networks:  Various approaches for sub-resolution features such as stream and road-networks 
have been evaluated in prototype.  At a 3ha resolution, FEENIX cells are approximately 170m 
square, but most roads and streams are much narrower.  Thus, roads and streams should not be 
modelled as distinct vegetation or land-cover types, but rather as a cell attribute or modifier.  Our 
approaches use the lengths of streams, roads or similar features intersecting a cell as a cell 
attribute.  These lengths can be easily generated from GIS coverages.  Some capabilities of 
vector-based network representations, such as used in ARC/INFO, have been implemented, 
including a join operator to connect disjoint but adjacent network segments.  These capabilities 
add substantially to the dynamic road network construction and routing algorithms already 
present in the model, and have been critical to several extension or knowledge transfer exercises 
as described elsewhere.  Further development of these capabilities over the next two years will 
be contributed through the SFMN project of Kurz, Stelfox and Cumming. 
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Figure 7.  An example of FEENIX’s capability at generating networks within a 10,000 ha landscape north of Lac La 

Biche, Alberta.  Some disjoint pieces of a stream network (in green) were joined up (red cells).  The pale blue areas 

are lakes, and the black areas are forested areas that were netted out of the operable landbase.  Also in green are 

buffer areas around the lakes. 

 
Strata-based harvest scheduling:  The FEENIX forest management model has been substantially 
revised to be flexible, general and robust.  Each merchantable cell has a yield class defined by a 
two species-group yield table or volume/age curve (hardwood and softwood species-groups are 
sufficient for our applications in the boreal mixedwood region).  FEENIX interpolates yield 
curves to 1yr resolution and derives mean annual increments, culmination or rotation ages and 
minimum and maximum harvest ages.  Cells are assigned to strata based on their yield class and 
other attributes, such as location or tenure.  Within strata, yield classes are assigned a 
management objective.  For example, the same mixed yield class could be managed for 
coniferous production in one stratum, and for deciduous or combined production in another.  
Periodic AACs are calculated for each stratum at 5yr intervals using a variation of the Hanzlik 
formula (Davis and Johnson, 1987. p.560).  This allows for dynamic responses to fires and to 
changes in forest structure caused by management actions such as stand conversion and natural 
processes such as succession.  It also allows for consistent evaluation of the AAC implications of 
alternate management strategies, which would not be possible if AACs were pre-determined. 
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Elaborate blocking rules are used to assemble harvestable blocks for each stratum, using strata-
specific block size targets and age-ranges.  Blocking occurs periodically (by default at 5yr 
intervals) to simulate the process of Detailed Forest Management Plans.  Small blocks are 
merged with adjacent or nearby large blocks of the same type.  This significantly reduces the 
frequency of small blocks that result from limitations of the blocking algorithm and/or the initial 
gridding process used to create the input maps.  Finally, some versions of FEENIX allow for the 
creation of un-harvested retention areas within large cutblocks. 
 

 
Figure 6.  Screen capture of FEENIX blocker and harvest scheduler in action on a small forest estate in the 

Okanagan. 

 
Blocks are sequenced for harvest according to strata-specific rules.  Available rules are oldest 
first, highest volume first, weighted combinations of age and volume, and highest loss.  Age, 
volume and loss are block-level means computed from the age, yield class and net harvestable 
areas of each cell in the block.  Volumes and losses are calculated as m3 of target volumes / ha.  
Losses are calculated as the difference between the projected block volume in the next planning 
period and the present block volume.  FEENIX simulates a reinventory of the forest at user-
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specified intervals (20yrs by default).  Un-harvested cells that have grown older than their 
maximum operable age may be assigned a new yield class, landbase or ownership and apparent 
age, based on the species composition and other characteristics maintained by the stand 
dynamics sub-model. 
 
The present version of the harvesting model performs well compared to previous versions, and 
resolves many persistent difficulties related to the stability and sustainability of harvesting during 
the 2nd or later rotation.  Our use of the Hanzlik formula may result in significant fluctuations in 
AAC during the first rotation.  However, experience with simulations conducted on several very 
different forest estates shows that simulated AACs stabilize during the 2nd rotation.  We 
conjecture that these stable AAC levels closely approximate the long-run non-declining yields 
that would be calculated from the starting inventory. 
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