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ABSTRACT

The Devon Astronomical Observatory 0.5 m Cassegrain reflecting tele-
scope has recently been equipped with a SpectraSource Instruments CCD
cainera. The system uses a back illuminated Tektronix TK512 512x512
pixel chip. This corresponds to a 1.38 pix arcsec™! image scale at a focal
ratio of f/8. The operation of the CCD imaging system is discussed with an
emphasis on steliar photometry. Observing as well as data transfer and re-
duction procedures for this system at its present early stage of development
are discussed. A straightforward observing method enabling the operator to
acquire and process potentially hundreds of observations per night is devel-
oped. A complete manual of the procedures is presented as an Appendix.
The first application of these procedures, a program of cbservations of ellip-
soidal variables, is discussed. Specifically, the first results, observations of
the star HR 4646, are analyzed. The CCD photometry of the close binary
HR 4646 is presented and analyzed in combination with previously published
spectroscopic data and suggests that HR 4646 is an ellipsoidal binary system.
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broadside and dim as they turn end-on to the observer. Furthermci-, variz-
tion should be seen even if no eclipses occur, provided the stars are not seesc
from directly above or below. This effect leads to an observed continuous

zhtness variation which varies as roughly the ratio of projected surface

area to maximum disk area or cos 20 where 8 is the phasc.

Of course, in reality the situation is more complicated. The stars are
generally not perfect ellipsoids but actually somewhat “egg-shaped”, with
their narrower ends pointing towards each other {definded by a Roche ge-
ometry, see Shore 1992). This can lead to a difference in the intensities of
emitted light towards mimima due to the difference in the profiles of the two

end-on configurations.

As well, there are other effects which are enhanced by this distortion.
Limb darkening is a drop in intensity towards the edge of the projected stellar
disks due to the line of sight emerging from cooler surface layers. This effect
can be important for ellipsoidal variables. For uniform limb darkening one
would expect the effective projected stellar disks to be altered as well as
the axial ratios of the ellipses. Gravity darkening refers to the effects of
the non-coincidence of equipotential and isothermal surfaces of the rotating
stars. Noting that for a rotationally distorted star, flux varies approximately
linearly with the local surface gravity, gravitational distortion requires the
star to be brighter at the poles. The global conservation of flux then requires

the rotational equator to be dimmed (see, for example Shore 1992).

Considering that the stars are so close, one might also expect “reflec-
tion” effects. That is, light of one component irradiates and heats the other
component. The resulting increase in surface brightness radiates from the far
component toward the observer. Also, it is possible in these systems for tidal
forces to draw out gas streams into revolution about the system, providing

small variations in intensities that would be difficult to model. The light
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variations due to the combination of a few or all of these effects, however,
would be very subtle as compared to the situation where the variability were

due to eclipses.

1.2.2 The Ellipsoidal Variable Program

In July and August 1994, the author succesfully observed the star SAO
20517 using a single channel photometer attached to the Devon Observatory
0.5 m telescope (Martin et. al. 1994). After SAO 20517 was identified as
a possible ellipsoidal binary system, it was decided in January 1995 that a
program of observations of suspected ellipsoidal variables might be possible
with the newly installed CCD imaging system.

From a list of ellipsoidal candidates suggested by D. P. Hube, the au-
thor selected a subset of the best candidates for an observing program of
suspected ellipsoidal variables. Of these, three program stars were chosen to
be observed. These were HR 4646, B 1413, and B 1414.

HR 4646 was selected for the following reasons:

i. Radial velocity data for this star were known to exist and showed
that it has the characteristics of short period and large radial velocity ampli-
tude typical of ellipsoidal variables. Both characteristics are indicative of a
small separation between components and, therefore, large tidal effects and
physical distortion.

ii. HR 4646 had been included in a short observing campaign in the
summer of 1994, and therefore a small amount of 3-colour photoelectric pho-
tometry, although unreduced, might be available. The fact that the star field
was thus familiar to the author and known to be compatible with the CCD

detector field was also a factor.

iii. HR 4646 is a circumpolar object, i.e., from the latitude of the Devon

Observatory it never sets. This was of particular advantage, since the number
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of available dark observing hours at this latitude (~54 °) in mid-winter is
more than 14 hours. Thus, the object could be observed, after initial setup
and barring very poor sky conditions, for perhaps 12 contin: ous hours a
night. If one considers that HR 4646 has a period of roughly 32 hours, full
phase coverage from sections of 3 consecutive cycles could easily be observed
on 4 consecutive clear nights. Overlapping coverage from night to night could
also serve to eliminate the possibility of spurious systematic variation.

The other two stars chosen were, at the outset, possibly better candi-
dates. B 1413 (a(2000)=22"58™46°.56, 6(2000)=+62 ° 46 "11".27, V=9.™02)
and B 1414 {a(2000)=23"00™53°.46, §(2000)=+62°52°13".84, V=9.81)
have shorter periods and comparable radial velocity amplitudes. They are
also circumpolar objects. Best of all, as viewed with the CCD, they are in
the same rich star field. They are also, however, very faint. They are ~
4 to 5 magnitudes fainter than HR 4646. Problems associated with very
long exposures suggested starting with the brighter HR 4646. At the time of
writing, the observations with full phase coverage for the stars B 1413 and

B 1414 are incomplete and will not be discussed further.
1.3 HR 4846

The Eighth Catalogue of the Orbital Elements of Spectroscopic Binary
Systems (Batten, Fletcher, and MacCarthy 1989) lists the star HR 4646
(2(2000)=12"12™11.28, §{2000)= +77°36 58", V=5.m1, A5) as a single-
lined spectroscopic binary with a period of 1.42709334. This is based on
spectroscopy due to Abt (1961). In the following chapters, analysis of these
data combined with the photometry carried out January 20-24 and February
10-13, 1995 demonstrates two main results. First, the Devon CCD system
can be operated as a stellar photometer, at least in the case of bright stars in
uncrowded fields. Second, its first results in that capacity lead to evidence

that HR 4646 is an ellipsoidal binary (Steinbring, Hube, and Martin 1995).
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2. CCD PHOTOMETRY

2.1. The Application of CCDs to Stellar Photometry
2.1.1 General Characteristics of CCDs

A CCD or Charge Coupled Device is a small light sensitive silicon chip.
Incident photons absorbed by the active layer of the CCD (the “epitaxial”
layer) generate electron-hole pairs. Charge accumulates in potential wells
(pixels) over its surface and the number of electrons in each well is linear with
exposed intensity. After the chip is exposed, the charge can be electronically
transferred from well to well to an on-chip amiplifier (in what is by analogy
called a bucket brigade) and then sampled and digitized by the associated
camera electronics. The capacitors of the CCD are arranged along rows and
columns. After the exposure, charge packets which have accumulated in the
wells under each capacitor gate are transferred to the readout electronics by
shifting them from row to row along columns. The charges in the final row are
then sent individually to the on-chip amplifier. The electrons in each pixel
across the surface are binned by the Analogue to Digital (A/D) converter to
produce a smaller number of Analogue to Digital Units (ADU). The resulting
output is a map of intensities. The set of all pixel intensities, each with its
Cartesian coordinates known, is called a field (sometimes referred to as a

frame).

Differences between typical CCDs used for astronomical applications are
in the configuration of electrodes, overall size of the detector and the number
of pixels, as well as the thickness of the chip and its spectral response char-
acteristics. Typical formats range from arrays of ~300x 500 pixels, to very
large detectors with 2048x2048 pixels. The sizes of the pixels themselves
are typically ~10-30 um. Two basic classes among these CCDs are so-called

front illuminated and back illuminated devices. In front illuminated devices,
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light passes through the electrodes to the silicon. In back illuminated de-
vices, the silicon is thinned to ~10 pm. In this way, the side opposite the
electrodes can be exposed, and the light will pass directly into the silicon.
For wavelengths between 400 nm and 800 nm, the photon absorption length
in silicon is ~10 pm. However, for wavelengths shorter than 400 nm, the
photon absorption length is only ~10 nm. Thus, the poiential for achieving
high ultraviolet sensitivity is much greater in back illuminated devices rather

than thick, front illuminated devices (Walker 1987).

2.1.2 Stellar Photometry

Observation of variable stars invoives a process referred to as differential
photometry. The magnitude of the target star is measured and compared to
that of nearby stars of similar magnitude and spectral type. The magnitude

of a star in the instrumental system, m, can be described by the expression
m = mgy — 2.5log(C — Cary), (1)

where mg is the the zero point of the instrumental system, C is the total
number of counts due to the star and background, and Cyy is the total
number of counts in the sky background. If the comparison star is observed
through the same air-mass as the target star, the differential maguitude in

the instrumental system is found by
Am = Mprog — Mcomp, (2)

where mpy o4 is the instrumental magnitude for the program star, and mcomp
is the instrumental magnitude of the comparison star.
In “classical” single-channel photoelectric photometry, the brightness of

background sky as well as program and comparison stars are measured using
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a photomultiplier. The observations are made one at a time through the
same set of filters. Observations must cycle between program star, compari-
son stars, and sky. The goal is to reduce the effects of changing background
illumination by maintaining a short time interval between observations of
program and comparison stars. Applications of single channel photometry
at the Deven Observatory have yielded precisions of ~ 0.™003 under photo-
metric conditions. Martin, Hube, and Lyder (1990) quote an average preci-
sion of ~ 0.™006 for observations of 42 Per (program and comparison stars
of V = 6™). This situation can be improved by using a photomultiplier cen-
tered on each star. Another detector can be used to siraultaneously observe
the backgrrund. The problem is that the slightly different gains and instru-
mental drifts in these detectors, each with its own set of filters, can obviate
the attempt to reduce errors. Utilizing the Devon Observatory 2-channel
photometer Martin, Hube, and Brown (1991) quote a typical precision of
0.™005 for their observations of 75 Peg (V =~ 5™).

An advantage over the two previous methods can be realized with the
use of a CCD. The advantage of this detector is that it covers a large field
of sky. In this way, and of specific importance to differential photometry,
many stars can be simultaneously exposed to an array of linear detectors.
The star and its comparisons are exposed concurently. Thus, to a certain
extent, differential effects such as thin haze obscuring the field of view can be
eliminated. The stars are all observed through the same air-mass, eliminating
the need for at least first order corrections for atmospheric extinction. As
well, the values for background illumination can be determined directly, for
each exposure, for the immediate region around each of the stars. It is in
principle possible with proper data reduction to achieve precisions superior
to 0.™001. Photometry with CCDs can typically achieve 0.™002 precision
(Gilliland et al. 1991, Kjeldsen and Frandsen 1992).
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2.1.3 CCD Observations
2.1.3.a Image Processing for CCD Observations

Discussion for the moment will concern three basic corrections necessary
with CCD detectors and follows a discussion found in Kjeldsen and Frandsen
(1992). An important consideration during this processing is the degradation
of the S/N associated with each step. At each processing step correction
frames are combined with each other and the program frame in order to
account for the detector’s base-level, variations in detector gain, etc.. At each
instance where frames are combined, their intrinsic noise values compound.
It is for this reason that all processing is kept to a minimum. Equations for
the propagation of the S/N for an arbitrary pixel of signal S (in electrons)
are given for each step in processing and are due to a treatment found in
Newberry (1991).

1. A correction must be made for temporal and spatial variations in the
detector’s zero level. That is, the number of counts present in all pixels when
they are receiving no signal. To accomplish this the chip can be digitized
without any exposure. This is called a bias frame, and is an additive effect.
Typically, many bias frames are made and a mean created. This averages
the effects of small changes in spatial structure of the bias frames over time.
Changes in mean bias levels between exposures can be corrected for by scan-
ning a strip of bias frame along the edge of every frame. This zero level is
thess subtracted as a first step in processing. Thus, this correction has the

form (Kjeldsen and Frandsen 1992)
Framey (z,y) = Framey(z,y) — (Bias)(z,y), (3)

where Framey, is the bias corrected frame, Framey is the frame corrected for
scanned mean bias level, and (Bias) is the average of all bias frames. The

zero level correction amounts to a subtraction of a constant from all frames
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other than the bias frames and their resultant S/N is calculated via the
expression (Newberry 1991)

S/N = [1 =+ const :|(S/N)Frame7 (4)
SFra.me
where
S = Sprame T const. (5)

Combining the n bias frames results in a S/N of the mean bias frame given

by (Newberry 1991)

29 —1/2
S/N = Z[((S/N))] S, (6)

where .
S=ZS,~. (7)

Subtracting the average bias frame from the raw program frame results in a

S/N given by (Newberry 1991)

-1/2
1
S/N = SFrameo - S(Bia,s) + 32 (1 + '7;)] S, (S)
where
S = S,Frmnco - S(Bias), (9)
and
2
-1
= QP+ I =+ M2 (10)

The base-level noise B includes the noise due to zero-level correction Ny, as
well as the intrinsic noise in each frame due to the readout noise Q. The
latter are properties of the readout electronics and are discussed in § 2.23.a.
The form of the term involving ¢ arises from truncation of the signal when it

is binned by the A /D converter (see Newberry 1991 and references therein).
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ii. The chip cannot differentiate between electrons resulting from expo-
sure to light and those resulting from ambient heat. Thermal photons are
accounted for by taking an integration of the same length but not exposing
the chip to any light, i.e., keeping the shutter closed. As long as the chip is
at the same temperature in this dark frame as in the exposure frame, one
can subtract the dark frame from all exposures to correct for the effect. The

result is (Kjeldsen and Frandsen 1992)
Framepq(z,y) = Framey(z,y) — (Darke)(z, y), (11)

where Framepq is the dark corrected frame and (Darkg) is the average of
zero level corrected dark frames. The analysis of the propagation of S /N for
dark subtraction is similar to that for bias subtraction. Here, the form of the
expression for S/N for zero corrected dark frames is the same as equation (4).
Combining the dark frames follows equation (6). The average dark frame is
subtracted and the resultant S/N of the dark corrected frames is calculated
as in equation (8).

ii. Not all the pixels have the same response to light. This is corrected
for by exposing the detector to spatially uniform illumination and measuring
the differential response from pixel to pixel, and perhaps across the chip.
Dividing the dark corrected fields by this flat field generates pixel values as
if the detector had a uniform response.

This map of the detector gain is typically generated by one of three
methods. The first method is to take an image of the inside of the illumi-
nated observatory dome. It can, however, lead to some systematic errors.
The colour-temperature of the dome illumination can be very different from
that of actual stars or dark sky background. Since the detector is more sen-
sitive to light of some wavelengths than others, this can give a biased result.

Also, it is not always an easy matter to obtain uniform illumination for the
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detector. A great deal of experimentation is often necessary. A second, and
often superior method, is to take an image of the sky at either dawn or dusk.
The illumination in this case is often much more uniform than that obtain-
able with the first method. However, the light at dawn and dusk contains
atmospheric emission lines at different amplitudes than dark night sky, and
thus has a different colour-temperature. The third method involves taking
eposures of “blank”, night sky. This gives uniform illumination which is most
like that of actual program exposures. The problem is that light levels are
low and, therefore, the illumination of the CCD is often insufficient to map
out the pixel to pixel variations. Also, the task can be made difficult by very
faint stars in the fields. This requires the operator to take many frames in
several different ications in order to average images and remove the stars.
With many detectors, and/or if higher precision is needed, more cor-
rections to the program frames will need to be made. For example, optical
effects at boundary layers in the chip can result in interference fringes ap-
pearing in the images. More correction frames will be required to remove this
additive effect. Defective pixels can be masked by substituting an average
value over neighbouring pixels. Smoothed dark sky flat-fields might be used
for a second order correction for large scale gain variations. For the present
analysis, the final reduction calculation includes corrections i., ii., and iii.,

and follows the expression (Kjeldsen and Frandsen 1992)

Programy 4(z, y)
(Flatbd)(wa y)

Image(a:, y) X [1 + 5nonlinear(ADUv T, y)] ) (12)

where Image represents the processed image, Program,, is the bias and
dark corrected program frame, and (Flatpq) represents the average of bias
and dark corrected flat-field frames. The term pontinear(ADU, z, y) would, if
they were present, contain information about nonlinearities in CCD response.

The calculation of S/N for zero correction and averaging of the flat fields is
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as in the case of bias subtraction. The division of the program frame by the

averaged flat field results in a S/N of (Newberry 1991)

29 -1/2
— (S/N)Pro ram,
SIN = [”( (S/N)mig,,d)“) ] 5 (13

where

S = (S/N)Programbd- (14)

The processing noise contributes to the final S/N of observations. Con-
sider an image of an object which covers n pixels of the detector. The total

number of counts attributable tc '~ . object, Zopj, is given by (Newberry

1991)

Zobj =g Z [Z(:B, y) — zsky,est(za y)]a (15)
(z,y)

where z(z,y) is the number of counts in a pixel due to both the object and
sky background, and zsky est(z,y) is the estimated number of counts due to
the background. The noise due to each of j different sources is uncorrelated
and combine in quadrature, i.e., as Zf N _,2 Thus, the total noise in a given

pixel, after sky subtraction is given by (Newberry 1991)

N(2:t,y) = 02 [gZ(.’L‘, y)] + 02 [ngky,GSt(xv y)]’ (16)

where o2 is the variance of the respective quantity. The total noise in Z,,;

is then

N? = Z N(21.,y) = z az[gzobj(m: y)]

(z,y) {(z,y)

+ ) o%[gzany(z,y)]

(z,y)

+ Z o? [gzsky,est(xa y)],
(z,¥)

(17)
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where the total noise before sky subtraction has been separated into its
object and sky components. The sources of noise in each of the three terms
of equation (17) are photon statistics, truncation noise, and processing noise.

The stochastic noise contribution to 35, .,[92(z,y)] is just gZ. The total

noise is then given by

1
Nsky

N2 = gZobj + n(gzsky,avg + B2) +n (gzsky,avg + B2)] ’ (18)

where ngky is the number of pixels over which the background is sampled,

and

g’-1
12

<

B2___Q2+

+ P2, (19)

where P includes all the noise added due to processing the program frame

(the resultant noise calculated using equution (13)). This can be written as

1
1V2 = .(/Zobj + n(gzsky,avg + B2 )(1 + )’ (20)
Nsky
and results in a S/N for the object of
S/N = 9Zab) : (21)
\/gZobj + n('gzsky,avg + B2)(1 4+ n:ky)

2.1.3.b CCD Aperture Photometry

A brief analysis of the internal noise for an idealized case of CCD aper-
ture photometry is now presented. It follows a treatment due to Kjeldsen and
Frandsen (1992) (see also Gilliland and Brown 1988; Frandsen, Dreyer, and
Kjeldsen 1989) and will be used to generate a few useful results. Consider a
circular photometric aperture centered on a star. Let R represent the radius
of the aperture in pixels, where p? = (v — x0)? + (y — y0)?, and (z0,y0) is

the centre position of the aperture. The present analysis will concern noise
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due to photon statistics and readout noise alone. In this case the variance in
electrons for the magnitude of the star is given by, with z representing the

counts in a pixel,

Ni=> N2 =3 z(z,9)g

P<R PSR
g 2
+ = Z [z(za y)]
Zflat <R
Nsky Ngky

(22)

where zg, and 2y are the counts in one pixel of the flat-field and background
sky respectively, ngy is the number of pixels in the sky background, Q is the
readout noise, and g is the CCD gain. If the shape of the stellar profile is

approximated by a Gaussian distribution of form
2(2,y) = zsiey (2, ) + 200.520/FWHM), (23)

and the counts summed within the aperture, the result is

R
Z [2(z,y) — zsky(z,y)]" ~ /(200'5(2P/FWHM)2)n27rP dp. (24)
PSR 0

Now, if p > FWHM,

7 2__n
S [+, ) — 2oy (2 )" o EVAD) 2 (25)
=% 4nln2
which can be written as
n~1 n
S (22, y) — zaky (2 9)]" & — e B2 Zotar (26)
poy [r(FWHM)"]*-1 n
where
Zstar = Z [z(a:, y) - zsky(x, y)] (27)
P<R
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The size of the aperture is optimized when it is not so small that portions
of the stellar image are excluded, while not being so large that too much sky
is included. If the aperture is too small, significant star counts can be lost
and imaging centering ervors can be a factor. If the aperture is too large,
sky noise'is increased. The value of aperture radius R can be optimized
by considering the case of sky-limited exposures. This discussion is due to

Harris (1990). In this case
Cstar
SIN = ————— (34)

Now, the stellar intensity profile, z(p), gives rise to a count rate of

R
Cotar = / =(p)27p dp. (35)
0
this implies that
R
1
SIN o & / (p)p dp. (36)
0

For a Guassian profile, the intensity is given by
z(R) = zg exp(—R?/20%) (37)

and S/N is maximized for Ry =~ 20 =~ 0.85 FWHM. Thus, the optimal
aperture is approximately 1.7 FWHM.

2.2 The Devon Observatory CCD System
2.2.1 Introduction

The 0.5 m Cassegrain reflecting telescope at the Devon Astronomical
Observatory has recently been fitted with a SpectraSource HPC-1 Peltier
cooled CCD camera utilizing a Tektronix TK512 512x512 pixel CCD. This
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is a back illuminated chip with an array size of 13.8 x 13.8 mm?, and a pixel

size of 27 x 27 pm?.

The TK512 CCD has high quantum efficiency over the spectral range
400 nm to 800 nm. Quantum efficiency measures the probability of an inci-
d.nt photon being converted to a measured signal by the detector. Typical
phctographic films and photomultipliers have efficiencies of less than 1% and
approximately 10% respectively. A plot of the quantum efficiency versus
wavelength for the TK512 chip is presented in Figure 1. Note that the effi-
ciency is well above 80% for most of the visible spectrum, which means that
approximately 80% of these visible light photons incident on the CCD will
be detected.

The camera is operated using a 33 MHz 486 personal computer located in
the Observatory warm room. Digitization takes place onboard the PC via a
peripheral card supplied by SpectraSource. Detector refrigeration is provided
by the Thermo-Electric Cooling unit (TEC), located in a separate control
box in the Observatory warm room. The Liquid Recirculation Unit (LRU) is
also located in the warm room and helps to maintain detector temperature by
continuously pumping coolant through 'e camera head. This removes heat
gencrated by the camera electronics. The camera is temporarily mounted at
the f/8 Cassegrain focus with a single V filter and has an 11.8x11.8 arcmin?
field. The pixel size of 27 un corresponds to an angular scale of 1.38 arcsec.

The stock HPC-1 software supplied by SpectraSource provides control
for all functions of the camera. This includes control of the shutter, the
capturing of images as well as bias and dark exposures, and image display
and storage. The PC can store 20 images in RAM and approximately 450
frames on hard disk. These are then transferred to 120 Mbyte data-cartridges
at the end of the observing session using a tape drive. For a more complete

discussion of the CCD camera operation, its associated software, and the
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Fig. 1 - A plot of the TK$12 CCD quantum efficiency versus wavelength The V filter used in observations is centered around
550 nm and has a band-pass of ~150 nm.
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transfer and reduction of data see the Appendix.

Most of the major technical problems concerning observing with the
new system were addressed in October and November of 1994. Many issues
concerning camera operation presented themselves and were addressed. It
came to light that there were problems with the telescope mechanics and
optics, such as the telescope tracking rate and vignetting of the field. There
were problems with the operation of the camera, including elevated dark
counts and the effects of slow shutter speed op flat-fields, and of course, all

the issues of set-up and operation had to be addressed before any successful

observing could be done.

2.2.2 System Hardware

2.2.2.a Focal Ratio

The issue first addressed was at what focal ratio the telescope should
be operated with the new detector. The field observed by the camera at

the original f/18 focus was ~5x5 arcmin?®

and was usually too small for the
concurrent observation of both program and comparison stars. The Devon
telescope has the advantage of interchangable front ends and the secondary
mirror and housing for f/18 was replaced with that for f/8. This provided
the more usable field of 11.8x11.8 arcmin? with an image scale of 1.38 arcsec
pix~!.

2.2.2.b Telescope Tracking

At this time, it was also noted that the telescope tracking needed ad-
justment. The stellar images taken were obviously “smeared out”, suggesting
that the tracking was not synchronous with the apparent movement of the
star. Until this was finally corrected, exposures were limited to 100 seconds.
For longer exposures, images became too distorted for photometry to be car-

ried out on the frames. That is, stellar images left trails larger than could
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be accommodated by the available photometric reduction routines.
2.2.2.c Vignetting

‘The first problem associated with the new telescope front- end was the
appearance of serious vignetting on one side of the field. This was for the
most part addressed after several attempts at both collimation of the sec-
ondary and third mirrors and the modification of the filter holder in the
camera mount. Finally, it was suspected that one of the telescope light
baffles was interfering with the beam, and after this was removed and the
mirrors aligned one last time, the vignetting problem was for the most part
solved. Three corners of the field are still vignetted but this involves only

~1600 pixels or about 0.6% of the detector surface area.
2.2.2.d Equipment Setup

Coincident with this, an observing procedure was developing (see the
Appendix) and equipment setup took its final form. The camera control
computer is located in a warm room adjacent to the dome. This way, the
display is visible for focussing the camera by turning the monitor towards
a window from this room to the dome. The TEC and the LRU were also

located in the warm room.
2.2.2.e The Cooling System

It was observed that the detector temperature, which is displayed on
the HPC-1 operation screen, was at intervals rising and falling by as much as
100 K. It was subsequently determined that this did not correspond to the
actual temperature of the CCD detector. The temperature was monitored
via a method outlined in SpectraSource documentation. A voltmeter was
connected directly to the sensor via an output jack located on the TEC
control box. At this output jack the measured voltage is linear with sensor

temperature. It was observed that the rise in temperature displayed on the
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HPC-1 screen corresponded to the TEC box overheating. The actual sensor
temperature remained contstant. In future, the CCD detector temperature
will be monitored continuously via = voltmeter connected to the TEC box.
The temperature of the TEC box itself can be maintained with better air
circulation for its cooling vents.

It was also noted that during operation large air cavities could form
in the coolunt lines and could become lodged in the catacombs of the cam-
era head. When this happened, the coolant in the LRU failed to circulate.
After consultation with SpectraSource and technicians in the Physics De-
partment Low Temperature Laboratory, a possible solution was arrived at.
The problem was addressed by the fashioning of a reservoir bottle, approxi-
mately 1 litre in volume, which continuously flushes small bubbles from the
lines. Once all the air was purged from the camera head this problem was

completely solved.

2.2.3 CCD Characteristics
2.2.3.a Gain and Readout Noise

The readout characteristics of the CCD were studied. That is, the values
for CCD gain and readout noise were calculated. The CCD gain factor, g,
is the number of recorded electrons in a well per digital unit (the bin size
employed in the A/D converter). Typical values for gain are between 1
e~ ADU™! for very “shallow” wells, and 10 e~ ADU™! for “deep” wells
The readout noise, @, is a property of imperfections in the CCD readout
electronics and is usually quoted in electrons. Typical values for readout
noise are between 2 and 10 e~ (Walker 1987).

The values of CCD gain and readout noise were calculated on several
occasions using a method employed in the image reduction software IRAF.

The IRAF package FINDGAIN compares the mean signal in two unprocessed
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flats to the base-level calculated from two bias frames to estimate g and Q.
The means and standard deviations are calculated for all four frames. The

CCD gain is given by

g= [(Flat;) + (Flatz)] — [(Bias;) + (Bias;)]

[o(Flat;_2)]2 — [o(Bias;—2)]? ’ (38)

where the brackets represent the mean counts over all pixels, o is the standard

deviation, and the readout noise in electrons is given by

a'(Biasl _2)

- , 39
Q=gx 7 (39)
where
Flat;_2(z,y) = Flat;(z,y) — Flata(z, y), (40)
and
Bias;_2(z,y) = Bias;(z,y) — Bias(z, y). (41)

This calculation was carried out between several frames on different observing
runs. The averaged results give a CCD gain of ¢ =4.94+0.2 e~ ADU™! and
readnoise of Q = 79+ 2 e~. Although a value of CCD gaian of 5~ ADU™! is
typical of similar CCDs, a readout noise level of 80 e~ is high. Typical values
for readout noise for the present generation of CCDs (manufactured in the
1990s) are less than 20 e~. For example, the Texas Instruments CCD TC213
(manufacturer quoted specifications for 1994 model year) has a readout noise
of 15 e~. The specification for the readout noise for the TK512 is < 10 e~.
The reason for the high readout noise is not known and SpectraSource is
being consulted in order to solve the problem.

The readout noise puts limits on the dynamic range of the CCD. This

is estimated via the expression

range ~ ~maz (42)

Q ?
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where in this case, zmar =65,535 ADU &~ 3.21x10° e~, and Q = 79 e~. The
dynamic range for this CCD is, therefore, approximately 4100.

2.2.3.b Thermal Characteristics

During initial setup the necessary information about the CCD thermal
characteristics was obtained. Large dark counts with rate ~ 50 ADU pix™?
s~! at a detector temperature of —27 °C were present in all frames. This
number is arrived at by taking an exposure of the same length as a program
frame but with the shutter closed, averaging the counts in all pixels and
dividing by the integration time in seconds. The dark count rate was studied
in more depth. It was found to be approximately constant with exposure
length. That is, the rate of dark counts does not appear to increase with
longer exposures. A 1.000 s exposure has a dark count rate of approximately
50 ADU pix~' s~!, as does a 30.0 s or 200.0 s exposure.

The relationship between dark ccuvnis and detector temperature was
later studied in more depth and was found to be linear for temperatures
within 10 K of the system operating temperature of ~ 246 K ~ —27 °C.
The operating temperature of the CCD maintained by the TEC was found
to be stable to within 0.1 K. Plots of dark counts per second versus detector
temperature are presented in Figures 2 and 3. Note that the full well depth
for this 16-bit system is 65,535 ADU. In Figure 2 one can see that for the
system uncooled (detector temperature ~ 290 K) the dark count rate reaches
the level of nearly 1/3 full well depth or 2 x 10* ADU pix~! s~!. Near the
operating temperature of 246 K, however, the rate is closer to 50 ADU pix ™!
s~!. This can be seen in Figure 3, an enlargment of the region from 245 K
to 255 K. The slope of the linear regression to the points in Figure 3 gives a
rate of thermal counts of 22 + 1 ADU pix~! s=1 K~!.

Since the TEC cools the CCD based on (although not 1:1 with) the

difference between ambient and detector temperature, one might expect the
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Fig 2. - Plot of the dark counts per second versus temperature, showing the cooling effectiveness of the TEC from room
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detector to be somewhat colder when the ambient temyperature is low, say,
-10 °C to -20 °C. SpectraSource suggests that an enhanced cooling effect
is possible at lower ambient temperatures. They suggest that this would
correspond to a drop in detector temperature amounting to approximately
60% that of the ambient drop. Note that the data for the above plots were
collected when both the camera and the TEC were at room temperature.
Dark frames taken when the observations of HR 4646 were made (ambient
temperature of -20 °C) suggest that the detector operating temperature was
still only approximately -27 °C. Future workers will need to analyze the
problem of detector refrigeration more in depth if lower dark counts are to

be realized. SpectraSource is also being consulted with regard to this issue.
2.2.3.c Flat-Fields

It was noted that properly taken dome flats could be sufficient for the
flat-fielding of images, but only if exposures were not shorter than 0.350 s.
It had been observed that very short exposures had a detectable “shutter
effect™. That is, the slow mechanical shutter speed created noticeably higher
illumination in the centre of the frame than at the edge (see Surma 1993).
The flat fields have a region of greater intensity in the centre of the frame.
This is evident in both dome and twilight illuminated flats and remains
constant for longer exposures (> 2 seconds). An intensity plot along the
central row of a typical flat-field is shown in Figure 4. It is a 0.5 second
image of twilight sky taken at dusk. No alteration in shape of the central
“hot spot” was evident when the camera was rotated with respect to the
optical axis in the mount and it is therefore believed to be a property of the
telescope optics. It is possibly due to blockages in the optical train such as
the sccondary mirror and its support structure.

The effect of the slow shutter can be seen in Figures 5-7. Each image

was created by dividing a short exposure dome flat-field by one of much
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Fig. 4 - An intensity plot along the central row of a 0.5 second twilight sky flat field. The left hand scale is in counts (ADL)
while the right hand scale indicates the row number with a tick-mark on the axis. The central hot spot is a property of the
telescope optics and is 4-6% higher in intensity than the rest of the image.
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longer integration. A 2.000 s dome-flat was used, by which point no effects
due to the shutter speed can be detected. These results are from tests done
with the camera unfiltered; however, testing involving integrations through
a V-band filter were also made, with similar results. The result of dividing
the fields is the variation across the field due only to the shutter effect.
One can see that once integrations reach about 0.4 seconds the effect is
greatly reduced. Figures 5, 6, and 7 are intensity plots along the central row
(left to right across the image) of the results from integrations of duration
0.100 s, 0.400 s, and 1.250 s respectively. The ratio of intensities against
the 2.000 s integration flat are along the left hand axis. One can see that
the effect has fallen from approximately 4% variation across the chip in
the 0.100 s integration to less than 1% in the 0.400 s integration. Note
that the brightness of the dome illumination was decreased twice during the
procedure, which accounts for the non-monotonic change in intercept in the

plots.

It was planned that a more sophisticated method of obtaining dome flats
would be set up. This would have involved at least a method of illumination
with light of known Planck temperature. A slide projector or a set of halogen
projection lamps colour-balanced by filters could be employed to produce
approximately the Planck temperature of sunlight. This set-up has not yet
been constructed and the only available illumination for dome flats is the
incandescent dome lights. As well, the only means of changing camera filters
at present is by unbolting the camera mount, removing the camera head
and filter holder from the mount, and manually inserting the filter in the
filter holder. Thus, the extensive testing of flat-fields by both the methods
of twilight sky and dome illumination has only been done either unfiltered

or through a V filter.

It is not known if the rate at which the shutter opens and closes is
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uniform for short exposures. That is, it is not known for a given integration
time if this effect varies in intensity from exposure to exposure. Although the
shutter has been hand-timed for integrations longer than 30 seconds and is
found to be accurate to within 1 second, the testing of shutter speed for short
exposures has not yet been done. Since it is not known if the dome lights
provide constant illumination, a time series of short exposure flat-ficlds may
not demonstrate variability in the shutter speed. Surma (1993) suggests
a method of correcting for the effects of shutter speed by deconvolving a
CCD camera’s intrinsic flat-field from a 2-dimensional function describing
the illumination due to the shutter. However, it was decided that at least for
the first observations with the camera, this regime of very short exposures
(< 0.35 sec) could simply be avoided. A more sonhisticated method of flat-

fielding images must be developed later.
2.2.3.d Other Effects

Some other effects sometimes noticed in CCD imaging systems have not
been a factor in this system. Fringing refers to Michelson interference fringes
created from the interaction of incoming light with surface and boundary lay-
ers within the chip. This effect is sometimes seen for illumination with strong
emission lines. No fringing patterns above the level of background noise were
evident in any of the flat-field or program frames from the present work. Vari-
ation in bias levels over time is corrected for by the automatic overscanning
of a 30-40 pixel wide sirip of bias level along one edge of the frame immedi-
ately after each exposure. This level is then automatically subtracted in the
processing stage. In order to account for bias structure, a sample of 10 to 20
bias frames were taken before and/or after each run, averaged, and used in
processing. Variation in bias structure over the course of minutes or hours
was nct observed. Bias frames taken at different times were divided by and

subtracted from each other in order to reveal any variation. The results were
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uniform. The present work involved differential photometry of bright stars
using exposures requiring a range of well depth from approximately 1 x 10?
ADU pix™! to 5 x 10* ADU pix~!. This involves the middle 60% of the
response curve of the chip. It has been shown that CCDs in general have
deviations from linearity of only 0.1-0.5%. This is true even with exposures

approaching pixel saturation (McCall, English, and Shelton 1989).

Following a method employed in McCall, English, and Shelton (1989), a
rough check of the linearity was made using the flat-field exposures employed
in § 2.2.3.c. A function of the form S — A = +Bt*, where S is signal and
t is time was fitted to the points. The growth of the logarithm of S — A4,
was plotted against the logarithm of the integration time, t. A departure of
a from a value of 1.0 would be indicative of a nonlinearity in the system.
This would not necessarily correspond to a nonlinearity in the response of
the CCD, partly because of systematic errors due to the shutter speed as

well as the possibility of temporal changes in intensity of the dome lights.

A plot of mean signal (the average of all pixels over the frame) versus
time is shown in Figure 8. The brightness of the illumination was decreased
twice over the course of the test in order to accommodate longer exposures.
This is seen as changes -~ !ope in the plotted data. The value of a was
deterinined for three regimes. Exposures from 0.010 s to 0.100 s had signals
from 5x10* ADU pix~! to 2x10* ADU pix~! and yielded a value of a =
1.036 £ 0.009 (s.d.). Exposures from 0.200 s to 0.900 s had a range of signals
from 9x10® ADU pix~! to 4x10* ADU pix~! and yielded a value of a =
0.994 + 0.004 (s.d.). Exposures from 1.000 s to 2.000 s had signals from
2x10* ADU pix~! to 5x10* ADU pix~!, with a fit to the data yielding a
value of a = 0.989 £ 0.027 (s.d.). The first regime corresponds to the region
of integration times that were avoided due to slow shutter speed. The second

regime roughly corresponds to the range of exposure times and counts per
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pixel employed in the present work. It is true that the counts in many of
the pixels under the brightest star would have been in the range of the third
region at ~ 5 x 10* ADU pix~!. However, the values for a calculated from
this data do not indicate nonlinearity greater than 1% in either of the latter

two regimes.

2.2.4 Images
2.2.4.a Image Quality and Sampling

With the mirrors collimated and the problem of vignetting corrected, the
only issue of the telescope’s optics that was not addressed is image quality.
Typical stellar FWHM is approximately 6 arcsec, but this is only after very
careful focussing of the telescope. Typically, there is a flare consistently on

one side of the stellar image. See Figure 9.

In order to properly sample a stellar image, the Nyquist theorem requires
that the FWHAI be greater than 2 pixels. Otherwise, information about
spatial image structure will be lost due to aliasing (Walker 1987). Now, for
a 6 arcsec FWHM, it is required that 1 pixel be <3 arcsec. Note that the
image scale with the present set-up is 1.38 arcsec pix~!. Thus, in the present

configuration, the Nyquist condition is met.
2.2.4.b Maintenance of Telescope Focus

The amount of flex with temperature variation in the telescope optics is
considerable. The observer can notice when monitoring the stellar images on
the HPC-1 display that a drop in ambient temperature of only a few degrees
in the dome will correspond to the stellar images becoming badly out of
focus. This can make the maintenance of focus difficult and stellar image
quality can sometimes suffer. Note the flare emerging from the right of the

star profile in Figure 9. For the present work, the apertures for photometry
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Fig. 9 - A ruled-surface plot of gection of image showirg the apparently bright (5! magnitude) star HR 4646. The integration
length is 0.500 8. The peak has been truncated at a height of 2000 ADU and the flare is evident o the right of the plateau.
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chosen were very large ~16-20 arcsec, and never excluded this flare feature

when it appeared.
2.2.4.c General Observing Procedures

In the present work, before each night’s run, 10-20 flat fields were taken
using a 0.5x0.5 m? white plastic square permanently affixed to the inside of
the dome and using the dome lights for illumination. To avoid the shutter
effect, integrations were always longer than 0.35 secon-Is and were the same
duration as in the program frames. Care was taken to make the illumination
of the square uniform (see the Appendix). As well, 10 - 20 bias frames were
taken before and/or after each run. Dark fields were taken with integration
times the same as those of program exposures. Usually only 5 frames were
taken per night. If average dark frame intensities were less than 25 ADU
pix~!, dark reductions would not be necessary and more frames were not
taken (sce § 3.2.1). Some care was taken to keep stars in the same locations on
the detector throughout an observing session despite small telescope tracking
errors. The method employed was to mark the HPC-1 display screen with
a piece of black electrician’s tape. Thus, the locations of the centroids of
stellar images in the fields can only be considered to be within ~ 50 pixels

of their original locations at the beginning of the observing session.
2.2.4.d General Reduction Procedures

Reduction procedures were developed to handle the large number of
observations per night. The general procedures are outlined in detail in the
Appendix. Processing was carried out at the University of Albc:ita on a
Sun Sparc-station using the image reduction software IRAF. As well, some
simple post-processing subroutines were written in FORTRAN 77. These
read the differential magnitudes from IRAF output files and matched them

with the Julian Date, which was calculated from the time encoded in the
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HPC-1 image header file.

‘The procedures are basically as follows. The entire set of program frames
for one night is imported into IRAF. Then they are processed as one batch.
After this, aperture photometry is carried out as one batch. Finally, the
differential magnitudes for the entire night are read from the IRAF magni-
tude files to a single output file for subsequent analysis. In this way, the
entire night’s work, usually hundreds of exposures, can be reduced in one

afternoon. The only real impediment to quick reductions is computer speed.
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3. OBSERVATIONS / REDUCTIONS

3.1 Observations of HR 4646

The data consist of 1599 observations over 7 nights. The January 20-
24 1995 observations were 0.350 s integrations at approximately 2 minute
intervals (~0.001 in phase). In the February 10-13 1995 observations, the
telescope was stopped down to ~0.35 m and the integrations increased to
0.550 s. This was intended to ensure a wide range of possible integration
times in that variable sky conditions sometimes required shorter exposures.
Exposures less than 0.350 s were not advisable due to the effects of slow
shutter speed. A typical program frame is presented in Figure 10. The
program, check, and comparison stars are labelled by the numbers 1, 2, and
3. The coordinates for the stars given in Table 1. The large field ~10x3
arcmin?, encompassing object, comparison and check stars, necessitated one
minor adjustment. The comparison star sometimes drifted slightly closer to
the edge of the detector due to imperfect telescope tracking. To alleviate this,
the camera mounting was rotated 30 ° after the January observations so that
the star field better fit the frame. Note that the observing procedure was to
take flat-fields for each night’s run, so any change in the optics associated
with rotating the camera or stopping down the telescope would be accounted
for.
3.2 Data Reductions
3.2.1 Image Processing

The set of bias frames was combined with the IRAF package ZERO-
COMBINE in CCDRED. The flats were bias subtracted using this averaged
frame and then combined using FLATCOMBINE. This provided two aver-

aged processing frames for each night. Program fields were freed of bias

and then flat-fielded using the package CCDPROC. Note that the additional
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TABLE 1

Observed Stars

star «(2000) 6(2000) V / sp. type
1. HR 4646 12212™11°.8 +77°36°58" 5.™1, Ab
2. SAO 7519 12"11™37°.0 +77°31°38" 8.m9
3. SAO 7521 12%11m48%.3 +77°26°27" 6.6, A0
TABLE 2
Observing Log

date observations JD — 2449000.0 duration notes
Jan 20,/21, 1995 198 738.622-738.964 8 hours thick haze
Jan 21/22, 1995 268 739.647-740.070 10 hours
Jan 22/23, 1995 216 740.593-740.940 8 hours aurora
Jan 23/24, 1995 21¢ 741.560-741.945 9 hours
Feb 10/11, 1995 322 759.606-760.038 10 hours
Feb 11/12, 1995 89 760.590-760.713 3 hours cloud
Feb 12/13, 1995 247 761.651-761.970 8 hours
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Fig. 10 - A typical p.ogram frame for HR 4646 observations. North is down and west is to the right. The program star
HR 4646 is labelled as number 1. The comparison stare SAO 7519 and SAQ 7521 are labelled as number 2 and number 3,
respectively.
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noise from simply adding two frames with readout noise of 16 ADU pix™! is
~ v/2(readnoise) ~ 23 ADU pix~'. Since the dark counts (~ 20 ADU pix™?)
were on the order of the readout noise, dark corrections were not made to

the frames.

The basic processing steps are seen in Figures 12 through 16. Figure
11 is a ruled-surface map of the raw (unprocessed) program frame. After
automatic correction for zero level (subtraction of the mean bias level in
each frame), the mean-bias frame is subtracted. The intensity plot along the
central row of the bias frame is shown in Figure 12. Ratios of two consecutive
bias-frames and two consecutive flat-field frames were created. Estimates of
the signal in bias and flat-field frames were obtained by averaging counts in
50 x 50 pix® regions of the ratio images and using an expression found in
McCall, English, and Shelton (1988). For signal r and noise o, of the ratio
image, the noise (in e~ pix™') of the frame is given by oFrame = (0,/ r)%,
where S is the signal per pixel of the frame. The signal and noise of the ratio
image was taken to be the mean and standard deviation. This yielded a value
of §/N = 94 for the bias frame and S/N = 392 for the flat-field. The mean
signal in regions under star prcfiles in the unprocessed frame is ~ 5.5 x 104
e~ pix~! with a noise of ~ 2 x 102 &~ pix~! (photon shot noise). After
zero-level correction (base-level of 7.4 x 103 e~ pix™!) applying equation (4)
yields a S/N of 203 for the program frame. The individual bias frames are
combined. A sample of 5 bias frames from the first observing session have a
combined signal of 7.5 x 102 e~ pix~!. The noise for an individual bias frame
is = 2 e~ pix~', which yields a S/N of 210 for the mean-bias frame using
equation (6). From equation (8), the mean-bias subtracted program frame
is found to have S/N = 137. The major contributors to this degradation of

S/N are noise due to zero-level correction (236 e~ ) and the readout noise

(79 e~ ) appearing = equation (10).
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Finally, the mean-bias subtracted frame is divided by the mean flat-
field, shown in Figures 13 and 14, and the result is shown in Figure 15. The
mean flat-field has a signal of 1.4 x 10° e~ pix~! with a noise of 5.8 x 102 e~
pix~'. Thus, after zero-level correction and bias-subtraction, the flat-field
has a value of S/N = 243. Applying equation (13) yields a S/N = 119 for

the flat-fielded program frame. The maximum count levels in the program

images have been truncated at 2000 ADU pix™! in order for both to be

plotted on the same scale.
3.2.2 Differential Aperture Photometry

Aperture photometry was carried out on the processed program frames
with the IRAF package DAOPHOT. The star SAO 7521 (V=6."6) was used
as a comparison with SAO 7519 (V=8."9) serving as a check star. In order
to automate the differential photometry, the coordinates in the first frame
of the three relevant stars were found using DAOFIND. The apertures for
differential photometry were typically set to 16 pixels (=~ 22 arcsec) with a
4 pixel (= 6 arcsec) sky annulus. Afterwords, using IMALIGN, each of the
entire set of frames for the night was shifted so the stars were at the same
coordinates as in the first frame. This effectively formed a template from
the coordinate file of the first frame that PHOT could use to automatically
perform aperture photometry on all subsequent frames. The post-processing
programs read the differential magnitudes from the DAOPHOT output files
and matched them with the Julian Date, which was calculated from the
time encoded in the HPC-1 image header file. The output of the first post-
processing program is presented in Table 3. Observations of program, check,
and comparison stars through the V filter are labelled by v;, v, and v;, re-
spectively. Note that these magnitudes have not been transformed from the
local to the standard UBV system. Also, note that the individual apparent

magnitudes are calculated from an arbitrary base-level of 26!* magnitude set
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TABLE 3
Differential Magnitudes Output from PHOT
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TABLE 3 {continued)
epoch = ID + 244950000

JD ' v VY3 Viea Vieg Vaa) JD
739.649 10.047 13.418 11.820 -1.773 -3.371 1.598 739.810
739.650 063 13.491 11.832 -1.769 -3.428 1.659 7398
739.652 10.085 13456 11.847 -1.792 -3.401 1.6G9 739.813
739.653 10042 13455 118329 -1.787 -3413 1.626 739814
:gg.gs qu 3.395 831 - ‘2 ‘?,-}’7 :gsz 739815
739.65 4’3 B3 Y 43 34 .535 9319
739659 10.034 13438 11.840 -1.806 -3.404¢ 1.598 739820
739660 10047 13.466 .sy -1.272 3419 1.6A7 739.8

9.6 8 13459 11328 -1.770 -3401 1631 9.3
739.663 10.051 13.443 11.815 -1.764 -3.392 1.628 739.824
739.664 10.057 13.557 11.837 -1.780 -3.500 1.720 739.825
39 056 13518 11877 -1821 -3462 1541 73982
i E s I RO E O ]
1 074 13511 11830 -1.756 -3.437 1681 73338
739.6'_3 069 13486 11821 -1.252 -3417 1.665 739833
7396 054 13533 11.849 -1.795 -34 63 739835
739674 10064 13400 11.333 -1.763 -3.336 1.567 739.836
739.675 30 13403 11833 -1:803 -3.373 1.570 739838
739.677 10.027 13.429 11. -1.812 -3.402 1.590 739.93
733.613 .3 7 342 18 - .354 3433 189 739. 3
Map A I fam b e i
ns.sg .og 3496 118134 -1.756 -34 682 739845
ng.sga 259 3‘533 819 -1.760 -3457 1.697 739.846
739635 10056 134 845 -1.789 -3434 1.645 739347
739636 10047 13479 11318 -1.771 -3.432 1.661 739.849
739.688 10050 13461 11.811 -1.761 -3.411 1.650 739350

9.68 044 13466 11347 -1303 -3422 1.619 739.852
A 180 S 1A 1 I B
7%9.69 .3 6 g.so 30 178 333 &% 739. %
39.69 054 13145 855 -1.8¢i -3.401 1.600 739858
739.639 081 13149 213 -1762 3412 1650 739860
7396 1058 1342 855 -1.79% 3370 13573 7337861
733. 39 069 1343 844 -1.775 -3364 1.589 733. 3
739.702 1 13433 11833 -1.752 -34is 235864
739.703 10.091 13445 11341 -1.75G -3.354¢ 1.604 739.86¢
739.70%¢ 10.051 131430 113837 -1.786 -3.379 1.593 739867
739.7 06 3.47 837 -1.777 -3.419 1.642 739.
739.739 08 134 860 -1.793 -3463 1675 733.
739.709 10.030 13.52 313 -1.788 -2.492 1.704 739371
739.710 10040 13.48 832 -1.792 -3448 1656 739873
iR I E R IR I R s
739711 18:05% g.«% 846 -1.788 3. 3 592 7%9. ?
733715 10057 1358 828 -1.771 -3493 172 739878
739.7 044 133500 11348 -1804 -3.456 165 739.
739.719 10.062 13.452 11.837 -1.775 .3.39C 1.615 739381
739.720 10.041 13.453 842 -1.801 -3.412 1.611 73¢ "
739.721 10046 13.55 820 -1.774 -3.512 1.738 7391058
739723 10061 13348 B39 -1.778 3424 1.646 739.3%6
739.724 9946 13.3% 731 -1.785 -3.41Q 1625 739338
739.725 10071 13.50 861 -1.790 -3436 1.646 739.389
AR RA IS Hah 1 dag Lo e
739.731 100019 13333 11795 -1.776 335 1%3% 73939
739.733 10007 13443 113806 -1.799 -3.436 1.637 7398
739734 10.026 13.568 11.805 -1.779 .3.542 1.763 739896
739.735 10. 3.5 820 -1.778 -3.483 1.705 739.898
;gg.;gs 0842 323 21 -1:783 3. gg .g 9 ;gg.g 9
133738 16:083 1342 20 c17g 3410 £33 733:309
739741 10036 1350 807 1771 -3468 1.697 739903
739.743 10040 13145 B09 -1.769 -3415 1.616 739504
SRR I e I BE 8 50
739.74 3. 2 33 803 - .96 -3.459 1.69 739909
739.749 10.036 13.503 819 -1.783 -3.466 1.633 739532
739.750 10.036 13.43 793 -1.757 -3.452 1.63 739.
739.7 0.0 1 3.59 86 -1.755 -3.842 1.7 739
739.7 0.0¢ 343 834 -1.774 .3376 1.6 739.
739.734 10046 13.55¢ 828 -1.782 -3510 172 739
739.7 0052 13537 822 -1.770 -3485 1.71 739
739:774 10.042 13.543 806 -1.764 -3.501 1.73 739
739.77 3. 5 13.507 11799 -1.754 3462 1.7 733. :
397is loess 13438 11%a¢ 1% 338 1% 739343
7397 0837 138 807 -1.770 -31463 1.69 739.94¢
739.7 046 13.478 11.803 -1.757 -3.432 1.675 739.947
739.7 047 13.526 11.781 -1.734 -3479 1.745 739.949
739.7 041 13452 11.793 -1.752 -3441 16 739.950
7397 051 133820 110783 -1.732 -3469 1.73 739
739.7 020 3.173 803 -1.783 -3.459 167 739.
739.7 K 357 735 -1.758 -3.551 1.79 739
739.7 020 13589 11.794 -1.774 -33569 1.79 739
739.7 1025 1359 804 -1.779 -3.567 1.78 739
739.792 1036 13350 791 -1.785 -3471 1.71 739
739.793 037 13527 11.790 -1.753 -3490 1.73 739.

0).044 13.520 796 -1.752 -3.476 1.72 739.963

%4043 13309 11.783 1742 3466 1.73 733383
} 033 g.sgg’ .;s'r - ; 4 -3.3 z by 41 ;as. 65

- 10683 13:3% 11781 1783 3431 1 73832
©319.040 13513 792 -1.752 -34 1 2 73997
i,.n 41 138 806 -1.765 -3468 1.7 73997

7 13.455 11811 -1.784 -3.428 1.644 739.97.

}83 3492 11785 -1.663 3379 1.7 739.97

X 3536 11.795 -1.762 -3.503 1.74 739.97
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V3-2

Vi-2

vi-y

va

va

Vi

JD

JD + 24490000

TABLE 3 (continued)
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TABLE 3 (continued)
epoch = 3D - 24490000
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Focusing problems often left the stellar images with a slightly distorted
shape. A small flare, consistently from one side of the images, was often
seen. In the case of the very bright HR 4646, this flare could extend up
to 10 pixels from the centroid of the star image as focus drifted throughout
the night. This required photometric apertures to be larger than optimal
sizes. In the case of the present images, the stellar FWHM was about 4
pixels. This would correspond to an optimal aperture of approximately 7
pixels (see § 2.1.3.b). The apertures necessary were generally about twice
this size, at 14-16 pixels. The effect of the flare is to involve more pixels under
the stellar profile. Judging from the ruled-surface plot in Figure 9, n could
be underestimated in equation (21) by ~ 20 pixels. Inserting n = 130 into
equation (21), one finds that this increases the S/N by approximately 8%.
That is, the presence of the flare increases the uncertainty in the observations
by ~ 0.™0006.

The idealized analysis of CCD photometry in § 2.1.3.b did not include
the noise due to atmospheric scintillation. An estimate of the contribution
to noise due to scintillation per star, oscint, (in mag (min)~!) was estimated
using an expression found in Kjeldsen and Frandsen (1992).

At + g

1/2
e ) D™2/3,3/2 exp(—h/8km), (43)

Tycine = 0.0058 (

where D is the telescope diamszter in meters, At is the integration time in
minutes, ¢4 is the observational deadtime (including readout, etc.) h is the
telescope elevation in km, and x is the airmass. The elevation at Devon
is approximately 0.8 km. The aperture of the telescope is 0.5 m. For the
present work integrations were approximately 0.0083 min. The deadtime was
1-2 minutes. Assuming an airmass ~ 1, the above expression gives a value
of oscint per star per observation of = 0.m013 (0.m0016 for the telescope

stopped down to D = 0.35 m).
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An illustrative result follows from the noise analysis. Two limitations to
the system are the dark current and readout noise. It is instructive to con-
sider what would be the S/N for the deepest possible integration. Consider

a three minute exposure of a 17'* magnitude star. This gives a dark count

of
0 x4.9e” s7! x180 s=4.4 x 10* e~.
The sky count rate is
480e~ x1/0.5s7! =9.6 x 102 e~ s7!.
The star count rate (for 0.5 s) can be found from Pogson’s equation,
es/€z0 = 2.5121775 = 2. 51212 = 6.3 x 10%,

giving a count rate of approximately 170 e~ s~!. Thus, equation (21) yields
(including the ~ 4.4 x 10* e~ noise due to the dark current) a value of

S/N = 5 for a 17" magnitude star.

3.4 The Light Curve for HR 4646

A systematic difference in the differential magnitudes between the Jan-
uary and February observing runs was discovered and calculated as follows.
The mean values of v,_3 (check - comparison). and v;_3 (program - com-
parison) were calculated for sections of the January and February data. For
vz—3, the January data have an average of 1.™776 while the February data
have an average of 1.”724. The difference is 0.052. This is consistent with
the calculations of average values for va (check) and v3 (comparison). The
average value of v, increases by 13.™562 — 13.™541 = 0.™021 and the aver-
age value for v; decreases by 11.m786 — 11.M817 = —0.™031. For the mean
of v;_3 between phases 0.40 and 0.60 (unbroken redundant coverage), the
January data have an average of —1.™776, while the February data have an

average of —1.m828. The difference is again 0.™052. Thus to correct for this
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difference, the first sct of data was lowered 0.™052 relative to the second.
Unfortunately, there was no other star in the field bright enough to serve
as a second check star. The shift may be due to variation in the compar-
ison and check star. One would not suspect that the changes made in the
system between thc two runs, that is, the increasing of exposure length and
the rotation of the camera, had a significant effect. The increase in expo-
sure lengths from 0.35 seconds to 0.50 seconds decreased the effect of slow
shutter speed. Rotating the camera between the two runs placed the stars
in different positions on the detector. The combination of these two changes
might account for some small difference in magnitudes beween runs, but a
more reasonable explanation is that one or both of the comparison stars is a

photometric variable.

The data of three nights, January 20/21, January 22/23, and February
11/12 were rejected due to poor quality, ie. an abnormally high degree of
scatter (~ 2x) in comparison with the rest. Poor sky conditions and occa-
sional weak auroral activity were factors throughout these runs. A plot of the
remaining data for magnitude differences between program and comparison,
in the sense vy — v3, is presented in Figure 16. The data points were phased
with respect to the period given by Abt (1961) of 1.42709334 and computed
from his epoch of maximum radial velocity To=JD 2436758.245. Finally, the
observations were averaged in 100 phase bins. The 99 normal flux points are
presented in Table 4 and are plotted in Figure 17. The highest value for flux
was arbitrarily set to 1.000. Note that the data, as presented, have not been

transformed from the local to the standard UBV system.

An analysis of the internal errors in magnitudes was carried out in §
3.2. Thus included the effects of both processing noise (readout noise, trun-
cation, averaging correction frames, zero-level correction, bias subtraction,

and flat-fielding) and observational noise (scintillation noise and stochastic
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TABLE 4
Photometric Data for HR 4646 Phased in 0.01 Phase Bins

Phase vi_3 044. Flux o054, N Phase v;.3 0s4. Flux os4. N
0.000 1.855 0.024 0.995 0.022 11 0500 1831 0.019 0974 0.017 9
0.010 1.854 0.032 0994 0.029 10 0.510 1.817 0.029 0.961 0.026 9
0.020 1.841 0.036 0.983 0.033 10 0.520 1.827 0.025 0.970 0.023 10
0.030 1.831 0.034 0974 0.031 10 0.530 1.831 0.022 0.974 0.020 8
0.040 1814 0.027 0959 0.025 8 0540 1.818 0.029 0.962 0.026 10
0.050 1.861 0.020 1.000 0.018 8 0.550 1.838 0.018 0.980 0.016 9
0.060 1.841 0.027 0.983 0.025 11 0.560 1.821 0.022 0.965 0.020 10
0.070 1.826 0.021 0.969 0.019 9 0.570 1.833 0.025 0.975 0.023 9
0.080 1.821 0.028 0.965 0.025 9 0.580 1.810 0.016 0.955 0.015 9
0.090 1.822 0.019 0.966 0.017 8 0.590 1.812 0.026 0.957 0.024 8
0.100 1.816 0.029 0.960 0.026 13 0.600 1.819 0.024 0.963 0.022 18
0.110 1.819 0.029 0.963 0.026 10 0.610 1.829 0.024 0.972 0.00°2 18
0.120 1.831 0.033 0974 0.030 11 0.620 1.827 0.030 0.970 0.027 18
0.130 1.793 0.027 0.940 0.025 8 0.630 1.827 0.025 0.970 0.023 18
0.140 1.805 0.029 0.951 0.026 9 0.640 1.819 0.025 0.963 0.023 18
0.150 1.808 0.022 0953 0.020 10 0.650 1.836 0.010 0.978 0.009 8
0.160 1.819 0.038 0.963 0.034 12 0.660 1838 0.011 0.980 0.010 8
0.170 1.788 0.052 0.936 0.047 9 0.670 1.829 0.0i1 0.972 0.010 9
0.180 1.788 0.025 0.936 0.023 10 0.680 1.820 0.022 0.964 0.020 9
0.190 1.792 0.036 0.939 0.033 8 0.690 - - -
0.200 1.779 0.036 0.928 0.033 10 0.700 1.81 1 0.015 0.956 0.014 6
0.210 1.796 0.032 0.943 0.029 9 0.710 1.810 0.017 0.955 0.016 9
0.220 1.790 0.023 0.938 0.021 3 0.720 1.806 (.007 0.951 0.006 8
0.230 1.794 0.036 0.941 0.033 3 0.730 1.815 J.035 0.959 0.032 10
0.240 1.793 0.022 2.940 0.020 9 0.740 1.804 0.014 0.950 0.013 8
0.250 1.810 0.025 0.955 0.023 8 0.750 1.806 0.012 0.951 0.011 9
0.260 1.797 0.017 0.944 0.016 8 0.760 1.810 0.017 0.955 0.016 8
0.270 1.777 0.021 0.926 0.019 10 0.770 1.805 0.025 0.951 0.023 10
0.280 1.791 0.023 0.938 0.021 8 0.780 1.806 0.015 0.951 0.014 8
0.290 1.805 0.024 0.951 0.022 8 0.790 1.822 0.016 0.966 0.015 8
0.300 1.790 0.029 0.938 0.026 12 0.800 1.813 0.011 0.958 0.010 10
0.310 1.807 0.027 0.952 0.025 20 0.810 1.819 0.000 0.963 0.000 1
0.320 1.809 0.022 0954 0.020 15 0.820 1.794 0.000 0.941 0.000 1
0.330 1.808 0.018 0953 0.016 20 0.830 1.830 0.016 0.973 0.015 9
0.340 1.816 0.011 0960 0.010 12 0.840 1.813 0.011 0.958 0.010 8
0.350 1.823 0.015 0.966 0.014 10 0.850 1.807 0.011 0.952 0.010 9
0.360 1.812 0.024 0.957 0.022 21 0.860 1.8t5 0.010 0.963 0.009 10
0.370 1.820 0.018 0.964 0.016 17 0.870 1.810 0.007 0.955 0.006 7
0.380 1.810 0.013 0.955 0.012 17 0.880 1.818 0.032 0.962 0.029 9
0.390 1.817 0.019 0.961 0.017 17 0.890 1.814 0.024 0.959 0.022 9
0.400 1.825 0.018 0.968 0.016 20 0.900 1.819 0.010 0.963 0.009 8
0.410 1.820 0.018 0.964 0.016 13 0.910 1.813 0.01R 0.974 0.016 12
0.420 1.832 0.021 0.975 0.019 8 0.920 1.823 0.023 0.966 0.021 19
0.430 1.840 0.021 0.982 0.019 10 0.930 1.836 0.027 0.978 0.025 18
0.440 1.833 0.021 0.975 0.019 11 0.940 1.840 0.022 0.982 0.020 11
0.450 1.833 0.018 0.975 0.016 9 0.950 1.845 0.028 0.986 0.025 12
0.460 1.824 0.018 0.967 0.016 9 0.960 1.858 0.031 0.998 0.028 9
0.470 1.830 0.027 0.973 0.025 11 0.970 1.851 0.018 0.992 0.016 11
0.480 1.833 0.017 0.975 0.016 8 0.980 1.859 0.027 0.999 0.025 9
0.490 1.841 0.025 0.982 0.023 10 0.990 1.859 0.027 0.999 0.025 9
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noise due to sky and source photons). Estimates of the internal errors in
magnitudes were calculated. The uncertainty in the differential magnitude
vy — vz, was found to be 0,3, was 0.™007. The scintillation for one star per
observation was estimated to be oyt = 0.™013. That is, the contribution
of scintillation to the errors in observations should be ~ 0.™02. The sum of
these sources is then between 0.™02 and 0.°3, which is consistent with the
scatter in observations. Values for o, 4. for the data averaged in 0.01 phase
bins (approximately 20 minute intervals) are tabulated in Table 4. A typical
value is 0.™025.

No attempt was made to optimize the photometry carried out on the
frames other than to omit dark-corrections during processing. As a final
test to see if the scatter in the final light curve could be reduced, aperture
photometry as per § 3.2.2 was carried out on groups of unprocessed frames.
As expected, this did not decrease scatter. For example, the average of v; —v3
for the 10 observations starting with the one depicted in Figure 11 yields a

value of 05 4. = 0.m045.
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4. MODELING OF HR 4646

4.1 A Simple Model
4 ..1 Purely Ellipsoidal Variabilty

In order to create an approximate model of HR 4646 one can start
by assuming that the observed photometric variability is due entirely to
ellipsoidal distortion of the primary star. Since the two maxima of the light
curve are not obviously asymmetric, reflection effects are neglected and the
situation can be illustrated by a simple result due to Binnendijk (1960). The

observed intensity I,ps is given by the following expression:

Iobs = Ima.t - IO COS(QG), (44)
where
154+ u ;
=1 in?
Iy = 5 15_Su(l-{--r)esm 7, (45)

and where I,,4, is maximum light, © and 7 are the limb and gravity darkening
coeflicients, € is the ellipticity of the star and ¢ is the orbital inclination.
Thus, from the form of this expression one would expect the light curve of

an ellipsoidal variable to vary predominantly as cos(26).
p p Y

4.1.2 Analysis of the Model

To test the model, that is, to see if the light curve varies predominantly
as cos(20), a Fourier series of the form
I=ag+ Z (a; cos i + B;sini6), (46)
i=1,2
where 0 is the orbital phase measured from the time of maximum velocity,
was fitted to the data. Linear regression analysis was used to perform a

Fourier least-squares fit for the first 4 terms. The coefficients along with

standard errors are presented in Table 5. The residual error in the fit is
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roughly 0.010 in flux. The dominance of the cos 26 term supports the sug-
gestion that HR 4646 is an ellipsoidal binary system. The Fourier series is
plotted with the observations in Figure 18. Also note that the value of the
Fourier fit at phase 0.0 and 1.0 is approximately 0.985 flux. Due to the high
degree of scatter in the data this was taken as an estimate of the flux at
maximum light. Thus, after this analysis 0.015 was added to the flux of each

datum.

4.2 Spectroscopic Data

The most recent radial velocity data for HR 4646 are due to Abt (1961).
HR 4646 was included in a campaign to determine the frequency of binaries
among Am stars. Observations were made with the McDonald spectrograph
in 1960 and yielded 9 radial velocities which are presented in Table 6 and are
plotted with respect to phase in Figure 19. Abt states the errors in velocity
to be on the order of a few km s™!. Abt determined the spectral type for HR
4646 as A5 (Caj1 K), F2 (Hydrogen), and F5 IV (metals). The elements from
Abt’s orbital solution are also used in the present analysis and are presented

in Table 7.

4.3 A More Sophisticated Model
4.3.1 Estimation of System Parameters

Typical values listed for the mass and radius of A5 stars from tables
can be used to estimate for the primary star: M) =~ 2.1 and R, =~ 1.7Rq

(Popper 1980, Wolff 1983) These can be used to constrain the values for the

secondary via the mass function

M3 sin3:
M)y=-“*2"_"_ 47
Now, s:n:<1 which implies
M3
M<-—2__ 48
M) < i (48)
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TABLE 5

Fourier Coefficents for Photometric Variation of HR 4646

ag ay as Jo B2

0.963 0.002 0.017 -0.006 -0.001

standard error of coefficients = +£0.001
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Fig. 18 - v flux observations of HR 4646 phased in bins of width 0.01. Phasing is with respect to a period of 19,2709334 and
from epoch date Zo= JD 2436758.245. The solid line represents a least-squares, fourth-order Fourier fit to the data.
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TABLE 6
Radial velocities for HR 4646

JD Phase v (km s~1)
744.783 0.408 —62.4
745.712 0.139 +44.3
746.612 0.847 +41.2
746.691 0.910 +54.1
747.639 0.655 —42.1
764.672 0.057 +63.2
765.636 0.815 +23.2
766.663 0.623 —51.4
771.650 0.547 —67.2

epoch=JD+2436000.000

TABLE 7
Spectroscopic Orbital Elements of HR 4646

Element Value

P 1.42709334 + 0.0000007
To JD 2436758.245

- -2.2 km s~!

R 69.8 km s™!

€ 0.00 (assumed)
aysini 1.220x10% km
F(M) 0.0449 M
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Fig. 19 - Radial velocities for HR 4646 plotted against phase. Phasing is with respect to a period of 1.42709934. A sine-wave
approximation to the radial velocity curve with an amplitude of 69.8 km s~ is plotted along with the data (valid in the case
of approximately circular orbits).
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mainly varying, say, inclination i and secondary temperature 75, until an

adequate fit is achieved.
4.3.2 Wilson-Devinney Code Applied to HR 4646

A version of the Wilson-Devinney (1971) DC light curve fitting rou-
tine, capable of simultaneously fitting both photometric fluxes and radial
velocities, was applied to the data (see Martin, Hube, and Lyder 1990 and
references therein for a discussion of this package). It was chosen due to
its availability to the author and its commonly accepted use for modeling
close binary systems. A solution is obtained by comparing the observed data
to a set of synthetic light and radial velocity curves. DC then returns dif-
ferential corrections to the preselected variable parameter set. Convergence
is signalled by parameter corrections becoming smaller than their internal
errors. The method followed was guided to a certain extent by that outlined
in Martin, Hube, and Lyder (1990). There, the two stars of the ellipsoidal
variable 42 Per are assumed to be tidally locked with synchronized rota-
tional and orbital motion. In the present case the high degree of scatter in
the photometric data and only small amount of radial velocity data made
it difficult to constrain the variable parameters. Although convergence was
not possible, a rough fit was obtained. The quality of the fit was judged by
the output value for residual error. A typical value of 0.005 or less suggests

that the DC code is converging to a solution.
4.3.2.a The Operation of LC

Binary Maker (Bradstreet 1993), which operates the LC, or light curve
component of the Wilson-Devinney code, was used to generate several initial
synthetic light curves to compare to the data. Som:z intuition was gained as
to the appropriate range of values to use in an attempt to find a solution by

a more quantitative method. Of particular interest were parameters which
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could not be estimated easily by other means, such as the potentials and the
inclination. Tynical curves that roughly fit the data had values for surface
potential between approximately 3.0 and 4.0 and inclinations between 60 °

and 75°.
4.3.2.b The Operation of DC

The method adopted was as follows. The value for secondary tempera-
ture 7> was set initally to 8500 K, the same value as the primary. Both of
the potentials, 2, and Q2, were set initially to 3.5. The value of ¢ was set to
0.34, both values for limb darkening to u = 0.50, and both values of gravity
darkening to 7 = 0.80. At first, all the parameters were varied indepen-
dently by + ~20%. Thne inclination ¢ was sev initially at 75~ and variation
of this parameter returned corrections which centered on €5 °. The changes
in secondary temperature T and the potentials Q;, Q5 reduced the returned
value of residua' error the most (from =0.09 to =0.07). It was decided that
the values for T3, Q,, and Q; would mainly be the parameters that would
be varied. The values from parameter set (51). as well as the inclination,
were fixed. The values for T,, Q,, and Q; were varied in turn. each inde-
pendently. At first they were varied by = +10% (the amount and in the
sense suggested by DC). Later. the changes decreased to =~ +5%. Periodi-
caliy, one of the fixed parameters was varied by =10% in order to see if this
would change the situation. The returned residual errors did not increase
drastically (< £0.01). By this method, the residual error values dropped to
approximately 0.025 after 25 iterations. The residual error values could not
be reduced beyond this.

The final results are presented in Table 8. The uncertainties in each of
the values are taken to be =~ £5% since this was the amount the parameters
were varied before iterations stopped. It should be noted that following

the DC code, even if a solution is found, does not guarartee uniqueness.
9
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Furthermore, it is a path-dependent process. The initial choices for variable
parameters and their initial values will preclude a wide class of solutions. In
this case, there may be many choices of values for any of the above parameters

which could give a slightly lower value for the residual error.
4.3.3 Results / Analysis

Binary Maker was used to generate several light curves to illustrate
the fit of the WD model to the data, As an example, the basic model in
Table 8 is plotted for a few different choices of the parameters Ty, T, and
t. In Figure 20, the data are plotted along with models with ranges of
6000K < 77 < 10000K and 5000K < T < 6000K. Also, models with
60°< ¢ <70°, are plotted in Figure 21. These suggest ranges of model
parameter values which will fit the data within their scatter. Also, one can
see the possibility of partial eclipses (deeper as inclination increases) being
hidden by the large uncertainties in the data. In all typical models the
secondary component has a diameter about half that of the primary and
the photometric variation is principally due to ellipsoidal distortion of the
primary component. A plot of the radial velocity data along with the WD
synthetic radial-velocity curve (for the model described by the parameters in

Table 8) is given in Figure 22. The preliminary model is then described by

i =65+3°
g = 0.34 +0.02
Ty =85+04 x 103K
T, =5.0+0.3 x 103K (52)

Rz = 1.0+0.1R,
a = 6.97R@

where the quoted errors in 7, g, and T are the estimated 5% uncertainties

from the application of the DC code. Judging from the fit of the resulting
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TABLE 8
DC Output for HR 4646

Element Value

i 65+3°

q 0.34 £ 0.02
T, 8500 + 400 K
Ty 4500+ 200 K
193] 3.1+0.2
Q. 3.6+0.2
r1(pole) 036+ 0.02 a
ri{point) 0391+ 002 a
ri(side) 0371+£0.02a
ri(back) 0.38+0.02a
ra(pole) 0.15+ 001 a
ra(point) 0.15+0.01 a
ra(side) 0.15£0.01 a
rs(back) 0.15+ 001 a
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light curves to the data, however, one would suspect that these formal er-
rors underestimate to a great extent the actual range of uncertainty in the
parameters. For example, the values of T" are more likely to have uncertain-
ties ~ 2000 K while the uncertainties in the values of i, g, and © are more
likely ~ 10%. The range of values for primary radius corresponding to these
uncertainties is 2.1Rg < R; < 2.6Rg.

It should be again stressed that this model is only very weakly con-
strained. This is due to the availability of only a small amount of ra-
dial velocity data and the high degree of scatter in the photometric data.
The model could be improved by higher ¢uality multi-colour photometry, a
greater amount of radial velocity data, and the possible detection of short
eclipses. The latter, if present, would facilitate the modeling of the system

by providing « geometric constraint on the radius of the secondary.
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5. CONCLUSIONS

5.1 The Devon CCD Imaging System/Stellar Photometer

The final result of the present work is a basic overview of the characteris-
tics of the CCD camera and the completion of the first step in developing an
effective operating procedure for a future CCD photometer. The protocols
developed for data handling and processing provide for relativel; ast and, in
the case of reductions, largely automated operation. The basic parameters of
the CCD system are listed in Table 9. Where the values differ from manufac-
turer specifications, the latter are shown in brackets. The complete system,
including observing procedures, data transfer protocols, and data processing,

demonstrated some utility in the collection and reduction of observations for

HR 4646.

A theoretical limit on photometry with the present system was dis-
cussed. The dark current of ~ 50 ADU pix~?! s~! and readout noise of ~ 80
e~ yields an estimate of the limiting magnitude of the system (S/N = 5)
of V = 17™ for a 180 second exposure. The work done so far has obtained
photometry with a photometic precision of approximately 0.™025 at V & 5™,
Much of this error is attributable to atmospheric scintillation, source photon
noise and sky-noise, as well as noise associated with processing the frames.
This is worse than the 0.™003 precision which is possible with the photoelec-
tric system at Devon. It js also worse than the potential 0.™002 precision
which is commonly quoted for CCD imaging systems. The primary problem
of obtaining high precision flat-fields will have to be addressed, as well as
issues involving high readout noise and dark counts. The regime of short
exposure times may need to be avoided by a greater margin (exposures lim-
ited to longer than 1 second) to avoid the problem of slow chutter speed.

It is therefore possible that high precision photometry cannot be obtained

80



TABLE 9

Devon Observatory CCD Imaging System Parameters

Aperture
Focal Ratio

Scale at Focus

Pixels

Full Frame

Operating Temperature
CCD Gain

Readout Noise

Signal Maximum
Dynamic Range

Dark Current

Dark Current Rate

Peak Quantum Efficiency

Full Frames in RAM
Full Frames on Hard-Disk

Full Frames on Tape-Cartridge

Telescope
0.5m
f/8
51.1 arcsec mm™!
CCD

27 x 27 um? = 1.38 x 1.38 arcsec?
512 x 512 pix? = 11.8 x 11.8 arcmin®
—27 °C (=30 °C)
4.9+02e" ADU™!
79+ 2e= (< 10e)
320,000 e~ pix~! = 65,535 ADU pix~!
4100
245 e pix~! s~! (~5e~ pix~!'s~1@-30°C)
108 £ 5 e~ pix~! s—1 K-!
~ 80% (X ~ 400-800 nm)

Data Storage
Maximum 20

Maximum 450

Maximum 2530
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with the present system for apparently very bright stars such as the V ~ 5™
HR 4646. In this case, stars such as the V =~ 9™ magnitude B 1413 and B
1414 may provide future workers with a better means of testing the CCD
photometer and assessing its noise characteristics. It is hoped that future
workers will benefit from the present discussion while making improvements

to both the camera and its operating procedures.

5.2 The Ellipsoidal Variable HR 4646

The results of the Wilson-Devinney code seem to confirm the results
of the simple model. They are strongly indicative of tidal distortion in the
primary component of HR 4646 leading to its principally ellipsoidal photo-
metric variability. The best models have a primary component large enough
to reproduce the length and depth of both primary and secondary minima.
while not so large as to require deep eclipses.

An observed value for projected rotational velocity of the primary com-
ponent of HR 4646 was published after the present analysis was completed.
Abt and Morrell (1927 - ~te a value of 78 4= 10 km s™! determined from
fitting line profiles to . spectra. Line half widths were determined by
fitting Guassian profiles to the lines A4481 Mg;; and A\476 Fe;. This can
provide a check of the internal consistency of the model by assuming tidal
synchronization of rotational and orbital velocities (valid for this case of close
proximity of primary and secondary components). Under these conditions
the following relation between the projected equatorial rotational velocity
vsin¢ (measured in km s™1), the radius R, (in solar units), and period P (in
days) can be applied (Martin, Hube, and Lyder 1990):

50.6R; sinz
—p

Using the quoted value of vsini = 78 &+ 10 km s™?!, the adopted value for

vsin: =

(53)

period of 1.92709934, and the range of values for primary radius of 2.1Rg <

82



R; < 2.6Rgp, equation (53) yields an inclination of 49° < i < 69°. This
is consistent with the preliminary madel vainue for orbital inclination: i =
65 + 5° (see Figure 22).

It is hoped that the preliminary resuli d.scussed here will generate in-

terest for a follow-up study of this system.
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APPENDIX

A Manual for the Operation of the Devon Observatory
CCD Stellar Photometer

Introduction

At the time of writing, the Devon Observatory 0.5 m telescope is config-
ured with its CCD camera temporarily installed at the eyepiece mount with
a single V filier. In the near future, however, the camera will be installed at
prime focus in a new telescope front-end complete with a filter wheel assem-
bly offering U.B.V.R.L. and H, as well as [O{], [Oq], and [Sy] line filters.
One goal of this appendix is to outline the set of observing procedures that
have been applied to date and provide a guide to the development of an
operating procedure for the telescope in its final form. The main purpose,
however, i1s to develop tested methods and routines for data transfer and
reduction procedures applicable for its use as a stellar photometer.

The appendix is in two parts and is intended to guide the user from
initial set-up and observation to final light-curve. Section 1 deals with the
taking of program and reduction frames and subsequent data transfer pro-
tocols, while Section 2 addresses processing steps appropriate for reducing

large volumes of photometric data on the available computing platforms.

1. CCD Observations
1.1 Getting Started

The telescope driving/tracking software which runs the 2 channel pho-
tometer is adequate for telescope pointing in its present form. This software
runs on the IBM PC, hereafter referred to as the Drive Computer, in the
Observatory “trailer”. After starting up this machine, the drive clock, and

the electronics bin in the warm room, run C:/ oldmain. Choose a bright
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standard star from the menu and set the telescope origin: by first centering
the 5 telescope on the star and hitting <enter>. The drive software can be
used by typing in the star name or coordinates, hitting <enter>, and then
<esc>. Then simply use <m> for move telesccpe, hitting the <data>
button on the drive paddle to confirm star position. Next, turn on the PC
which runs the camera (hereafter referred to as the Camera Computer), the

coolant pump, and the TEC unit.

1.2 Camera Start-up

The camera operation software runs in a typical Windows environment,
and is adequate for control of all camera functions. It is, unfortunately,
not well adapted for taking a long series of exposures. A few simple tricks,
however, can serve to alleviate this problem. Start by double-clicking on
the HPC-1 icon. The HPC-1 application will automatically perform the
initialization procedures necessary for system operation. It will initialize the
camera head, close the shutter, and turn on the thermoelectric cooler.

The user is then presented with a set of operations. These are File,
View, Process, Analyze, Expose, and Initialize. File controls all the
data storage operations, including saving and opening of images. The display
scale can be controlled by View, and simple tasks like false colour mapping
and histograms can be obtained through Analyze. The image reduction
tasks in Process are crude at best, and will not be used. The main oper-
ations of interest are Expose and Initialize, which controls the overscan
region, integration times, and the taking of reduction frames.

First, go to the Initialize option and click on the Configure command.
Make sure the Enable camera switch is on for Camera 1. Also, the on/off
switch for the TEC is located here, as well as the paths for image and recuc-

tion frames. The best choice for the paths is into a single directory, called
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for instance C:/data. This means that when the frames are trausferred to

tape, only one directory need be selected for saving.

Next, select the Expose option. A dialog box is displayed when the
Exposure Control functien is selected. The controls for overscan and
exposure length are really the only functions used here. The Sub-frame
command allows for a smaller frame size when the focus command is used.
This will speed the refresh rate somewhat. As in the casc of the TEC, there
is an Enable switch for the overscan. Make sure this is on. The overscan
region is a mean bias level digitized outo the right edge of the frame. IRAF
will need this region to set a zero intensity level for all the frames. A good
choice for overscan width is 20-30 pixels. There is also an option of enabling
an overscan along the top of the image as well as the right hand side. This

will probably not be useful, and can be shut off.

Almost all other options can be shut off as well. The Delay Time is
Just a measured pause before the shutter is opened and can be set to 0.000
seconds. DOS-based focus, and Low Gain are not active with the present
set-up. The options Antibloom and Auto Stretch are intended to control
image bleeding and automatically perform reduction adjustments on images.
Neither works well enough to be used effectively. Both should be shut off.
The Binning option enables the pixels to be binned in groups of size say, 2 x
2 and might prove useful in reducing noise under very poor seeing conditions.
Otherwise, this option can be disabled.

The integration length is contolled by the command Exposure Time
and is in seconds. The shortest supported integration length is 0.001 seconds,
although anything shorter than 0.1 seconds is not advised due to the slow
mechanical shutter speed. The longest possible controlled integration is 7200
seconds, but very high dark current will limit viable exposures to less than

approximately 700 seconds.
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1.3 Focus

After you have selected a bright star on the Drive Computer and cen-
tered it in the finder-scope, call up the Expose option and select the Ex-
posure Control function. Set the integration time to perhaps 0.05 seconds
and select Sub Frame Focus. If you set the sub-frame size to say, 100
x 100 pixels, the refresk rate is about 15 seconds. Next, turn the Camera
Computer monitor towards the warm room window and go into the dome.
The screen should be easily visible from the dome. Notice that in the present
setup, the E-W and N-S paddle directions for the finder-scope have the same
directions in the HPC-1 display. Locate the second mirror focus-motor con-
trol buttons at the back end of the telescope. If the focus is not very good,
the best method is to adjust the telescope right out of focus in order to know
which direction to turn the motor. Then, adjust the telescope into focus
with short pulses on the control button. Make sure you wait long enough
for the screen to refresh before you hit the focus button again. When the

telescope is in focus hit the <ese> key on the Camera Computer.

1.4 System Monitoring

It is a good idea to familiarize yourself with the functions available in the
Analyze option. The preset colour schemes for the False Color function are
useful for determining the quality of telescope focus. Good focus should be
accompanied by concentric rings in the stellar images. There is a sometimes
useful Histogram option. As well, there is a function for integrating counts
along a line or column or in a user defined box. Note that for this 16-bit
system, the highest pixel ADU readout is 65,535.

The Coordinate Window function will bring up a small display of
cursor location as well as a readout of the sensor temperature. However,

at present the temperature readout does not function properly. It will rise
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when the TEC box becomes too warm, and does not give the proper tem-
perature of the CCD. In future, the temperature will be monitored via a
voltmeter at the TEC output jack. If this reading were to fluctuate by more
than approximately 0.1 K (0.001 Volts), the TEC would not be operating
properly.

First, check the control box. If it feels warm to the touch it has over-
heated. Make sure the cooling-fan vents are not blocked and that the warm
room is not too warm. If this does not work, check in the CCD I'maging Sys-
tems Installation and User’s Guide (1994 ) for the proper method to re-adjust

the TEC set-point teinperature.

‘The other potential source of trouble is that the coolant pump can stop
working. Air cavities can form in the catacombs in the camera head. The
only way these bubbles can be large enough to stop the pump is if the
reservoir bottle has been tipped over while the pump is operating. The best
method to remove cavitation is to shut off the pump (and camera) for an
hour or so to let air collect at the highest point in the system. Then remove
the camera head and rotate it in all directions until the bubbles rise out of
the camera head towards the pump intake hose (marked with a white plastic

ring). Start the pump. The air will simply bubble out into the reservoir.

1.5 Obtaining and Storing Images

You can store up to about 20 images in HPC-1’s available memory.
These are automatically stored as untitled*.fts. This should probably be
avoided, however, because if HPC-1 hangs before you have a chance to save,
you cannot retrieve these images. The best method is to decide on a consis-
tent labelling scheme and immediately save each frame. After you select Full
Frame Exposure, HPC-1 will automatically operate the shutter, digitize

the image, and display it on the screen. Go to the File option and select the
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Save As function. You will find later that saving all program images with
labels prefixed by a letter, say “v’, and then a 3 or 4 digit increment will save
time when it comes to post-processing the data. You should also check that
the camera computer system clock is accurate and thus encoding the correct
time to the images. This will also ensure smooth post-processing. The lack
of a means for creating macros with EPC-1 will probably soon demonstrate
the need for a good labelling scheme. Thankfully, HPC-1 will warn you if

you attempt to overwrite.

1.6 Reduction Images

Before program observations, and to account for systematic variations
preferably during and after observing, you need to take at least 10 to 20 bias
frames. These are automatically taken using the function Bias Field in the
option Initialize. Depending on how you have set up your image paths,
these will be saved as C:/data/bias.fts. You need to manually relabel these
to avoid overwriting and should label them conveniently by, say, a prefix "z’

follawed by a three digit increment.

For each exposure length you want to be sure to obtain dark frames.
Dark counts with this system are very high and for any integration greater
than about a second a set of 10 to 20 dark frames is probably advisable if
not necessary. There is also an automatic function for this. Use the function
Dark Fiecld in the option Initialize. These will need to be relabelled as

well. Use perhaps the prefix "d’ followed by a three digit increment.

The automatic function for taking flat frames is not useful. It will
automatically use the bias frame saved as C:/data/bias.fts to perform a bias
correction on each new flat. You will do all reductions later using IRAF. It is
assumed that the user is working with the V filter fixed in the camera mount.

Of course, flats would need to be taken in all of the filters used. You can
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take acceptable dome flats using the dome lights and the white plastic square
fixed to the dome opposite the shutter. Close the shutter, turn the dome so
that the square is on the meridian, ar:d carefully point the telescope so that
it is centered on the square. Turn the dome lights down low and make sure
that there are no shadows falling on the square. You will probably need at
least 10-20 flat frames. Take these as you do program images but be sure that
exposures are not shorter than about 0.4 seconds. Check the ADU readout
levrls using the Analyze option. You want to try for integrations that are
around the 4 to 10 thousand mark. The goal is to have enough counts to
incorporate the pixel-to-pixel gain variations. The spectral response of the
chip to incandescent light sources is unknown and, of course, the telescope is
pointed at a possibly non uniformly illuminated near field cbject (badly out
of focus). This makes dome flats undesirable and one should try to obtain
good twilight-sky and/or blank-sky flats. For sky flats taken at twilight, try
to obtain flats in a few different telescope positions. The secondary mirror
support structure does stick out of the front end and sunlight reflecting off
this for a single position might create hot spots. Experiments with blank sky
exposures suggest that you can leave the tracking motor off and average a
large number of frames in order to eliminate at least faint star streaks. Save
each of the dome, twilight-sky, and blank-sky frames with the prefixes fd”,
“ft”, "fb” and three digit increments. Each set can be averaged later and

compared.

1.7 Data Transfer

At the end of the observiug run you will have perhaps a few hundred
images. The Camera Computer can hold approximately 400-500 images on
hard disk. Although it is now possible to use a network connection to the

University in order to transfer files directly, if you have any doubts you can,
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and should, copy all imnages onto 120 Mbyte mini-cartridges. You will have
to save some data tc tape anyway, because the Sparc-station used to perform
data reductions (hereafter referred to as the Processing Computer) usually
has only enough available memory to hold 1-3 hundred frames at a time.

Exit HPC-1, shut off the TEC but leave the pump running for a while.
Locate the Conner tape drive application icon for Backup Exec and double-
click on it. If you choose the Backup option, everything is automatically
set to transfer the contents of C:/data to tape. Simply select the Select
Files function, highlight the C:/data directory and hit <spacebar>. Select
the Start Backup command. Cenner Backup will automatically create a
directory of transferred files and write this to the tape. All that is left is to
read the Universal Tin:2 sl fozn the WWVB clock in the trailer and note
the local time on the Camera Computer. The post-prv.otusiny software will
need this in order to encode the data points with a Julian Date.

If you only save to tape, you will of course have to transfer the data from
tapes to the Processing Computer. This can be accomplished by transfer-
ring the data from tape to the PC in office P501 (hereafter referred to as the
Transfer Computer). This too is pre-set. Start up the Conner Backup soft-
ware here using the command C:/cbackup. Make sure drive D:/ is empty,
which leaves about 60 Mbytes of available space (approximately 100 frames).
When you select the Start Restore function in the option Restore, Conner
Backup will prompt you for a destination drive for the files. Type in D:/.
Conner Backup will automatically recreate the directory C:/data on drive
D:/. Now, all that remains is to use an ftp command to transfer files to the

Processing Computer as they are needed.

2. Image Processing/Data Reduction
The goal is to process all the data as efficiently as possible with the
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available computing power. Since the Processing Computer has a somewhat
limited available memory, the best method seems to be one which reduces
the amount of space used on the disk. The idea is to process the *.fts files
as they come in from the Transfer Computer. Then, photometry can be
carried out on the processed frames in one step, greatly reducing the amount
of work. The following steps are geared towards the processing of a set of
observations in one filter. 1t should be readily apparent, however, where the
labelling scheme v*.imh could be replaced with, say, b*.imh or u*.imh, etc..

It would only be necessary to have flat fields for these other filters.
2.1 Processing the Frames

It is assumed here that you are at least familiar with IRAF and know
how to edit parameter files using epar. Also, you need to call up images
on the display software SAOIMAGE. The processing steps outlined here are
basically “stock” commands outlined in IRAF documentation such as JRAF
User Handbook Volume 1A: IRAF System (Valdes 1987) and you should
familiarize yoursclf with these manuals.

The best way to start is to import your reduction images to the Pro-
cessing Computer into the IRAF directory. You can, for the present dis-
cussion, use the following set-up. Open an xterm window on the Pro-
cessing Computer in room P504 (called stellar, with address 129.128.7.50).
The xterm tool is located in /usr/openwin/demo. Logon again to stellar
as iraf, run saoimage in background by entering saoimage &, and then
type cl. IRAF is now running from directory /kepler/users/iraf/local. You
can put your data into a sub-directory set aside for *.fts files, called, say,
/..-/iraf/local/pixel. Then use the command rfits in order to convert these
*.fts files to IRAF files with an image-header. You can erase all of the *.fts
files once they are transferred to IRAF format.

Open the package ccdred in imred. The next step is to display one of
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the flat fields to determine the regions of good overscan intormation as well
as the region to trim. The package ccdred will need to know these regions,
known as biassec and trimsec with the notation *.imh [x1:x2,y1:y2]. You
can display this by typing in disp and entering f0001.imh. Also, you should
get an intensity readout along a column by typing in implot f001.imh
1. Take only perhaps the outside 15 columns of the overscan (some of the
columns closer to the image area are usually corrupted). Trim as much as
possible in the image, but make sure to leave a margin of 40 to 50 pix-
cls around the coordinates of stars used in the analysis. Process the bias
frames first. Use the package zerocombine with the default values at start-
up. This will have combine=average and reject=minmax. For the most
part the default settings in all the following commands will also be used.
The advantages of some of the more sophisticated options are usually fairly
modest, but where appropriate, changes will be outlined. If you are following
the suggestions for labels, your value for input will be z*.imh and a good
choice for output would be Zero. This output is a nightly averaged bias
frame and all the input bias frames can be erased. Now you can zero level
and bias correct the rest of the reduction frames. First, set up the the pa-
rameters for ccdproc. The settings are all default values with the following
exceptions. For now, you only want to correct for the overscan and bias,
and trim the images. Thus, oversca=yes, trim=yes, and zerocor=yes,
but all other corrections are set to no. Set the biassec and trimsec to
the values determined in the last step. If you leave the value of ccdtype
unset, ccdproc will automatically correct the rest of the images. Check the
darks. If the counts are significant you can easily combine them as a super
dark-field called say, Dark. This can be accomplished with darkcombine
with the default setup, with input=d*.imh and output=Dark. You will

have to use ccdproc to dark correct the flat-fields before you go on to the
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next step.

In this discussion, only one set of the flat-fields is used, preferably good
twilight sky-flats. It has been noticed that with sufficiently exposed dome
(and sky) flats, there is a central bright patch in the field. You will notice
that this appears (after proper bias and dark corrections, of course) in images
as well. It is probably due to the telescope optics. In any case, with the
present analysis, it should be possible to remove all large scale variations
down to ~ 2% variation in background intensity across the fields. Combine
the flat-fields with flatcombine. Good results can be obtained using the
settings combine=average and reject=avsigclip. Here, the input would
be f*.imh and the output pechaps Flat. Erase all of the input flats (and
darks).

Now, you should be left with only two super-fields (three if you have
significant dark counts) to reduce all of the data. Start importing program
images. The best choice is 100 at a time, as this is the maximum number
that can be stored in the Transfer Computer. Once a batch of 100 *.fts files
are imported to the pixel directory, convert them to IRAF image header files
and erase the input. Then use ccdproc to process the IRAF images. You
only need to change the setting for images to v*.imh and make sure flatcor
(and possibly darkcor) is set to on. If you trim significantly it should be
possible to get the images of an entire night (~ 300) onto the Processing
Computer hard-drive. The final result should be only the set of, say, 300
image header files labelled v*.imh (with, obviously, IRAF image pixel files

stored somewhere else).

2.2 Stellar Photometry

Open the package daophot in digiphot. This package can be run

successfully in mostly default settings. It performs aperture photometry, and
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in the present analysis will use a single size for aperture and sky annuli on
each individual star. The approach will be to use the initial frame, probably
labelled v0001.imh, to act as a template for all the subsequent frames. Thus,
you will determine the star coordinates on the first frame and shift the rest
of the frames so that those stars are in the same positions. You can make one
coordinate file for the first frame and use this to run tlic aperturc photometry

program on all the frames.

There are really only two values which need to be estimated and input.
You need an estimate of the mean sky counts and a vulue for stellar FWHM.
These values are needed for the search program daofind. The mean sky
level can be found quickly by using imstat on a small region of blank sky
in the image. The FWHM can be found using a stellar profile plot with
the command imexamine; a typical value is 4.5 pix. All of the settings
are defaults except for these parameters and user chosen values for aper-
ture sizes. In daopars set fitrad to the stellar FWHM. In datapars set
fwhmpsf to the stellar FWHM, sigma to the standard deviation of the
average image background, and thresho to at least 10 times the standard
deviation. In photpars set apertur to a sufficiently large aperture radius,
say 10 arcseconds. Also, in fitskypars set the annuvlus using annulus, and
the sky annulus using dannulu. The sky annulus should also be about 10
arcseconds. That is, we have a circular aperture of 20 arcseconds with a 10
arcsecond sky annulus on the perimeter. The average background salue is

set by skyvalue.

Next, run daofind on the first image. i.ook in the output coordinate
file, default-labelled v0001l.imh.coo.1, for the coordinates of the program,
comparison, and check stars. Write these coordinates in a coordinate file
called, say, ‘coord’. Now you can set up imalign to adjust the rest of the

images. If you are following the suggested notation, set images to v*.imh,

97



the list and opens each of the corresponding files v*.iinh.mag.1, and v*.imh.
The program then reads the magnitude entries for program, comparisast. and
check stars from v*.imh.mag.1, as well as the exposure time from w”.ip:*:.
It does a standard calculation with the time to get the Julian Date and
tak:s the differences in magnitudes between program and comparison stars,
and vctween comparison and check stars, to get the differential magnituvdes.
It then writes all of the values to a single file, called mag.dat. The code
is set up for calculating Julian Date, t, for February, 1995. The last term
in the calculation of t is the correction between HPC-1 and WWVB clock
times. A copy of mcpdrv, is located in /kepler/users/iraf/local and is run by
using the command mcpdrv.out. After being appended by the subsequent
observing runs, all post-processing, including calculation of fluxes and phase,
and the binning of the data can be carried out on a single file. Copies of the
author’s programs for this purpose, called mpdrv and mdbdrv, are also
located in /kepler/users/iraf/local. These programs are modified by altering
the source-code files labelled m*drv.for, and reformatting. The number of
observations is controlled by the parameter n, and the number of phase
bins by che parameter m. The values of x are the magnitudes of the stars,
the values of d are the differential magnitudes, phs and bin are the phase
and phase-bin size, and the variables t are the components of the Julian
Date read from the HPC-1 header file (hours, minutes, and seconds). The
programs are run using the commands m*drv.out and the final output is
phased and binned differential magnitudes or fluxes for the star combinations

program-comparison, program-check, and compatison-check.

Overall, onc can see that with a consistent labelling scheme, a simple
and straightforward analysis, and wise choices concerning the amount of data
handled at one time, the processing should be very smooth. In practice, none

of the labels and, given that the same program star is observed, none of the
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settings need be changed from night to night. Once all the switches are set,
really all that is required of the user is to input the frames and tvpe in each
of the above listed processing commands in sequence. When one considers
that in this method, the frames will already be properly sequenced and time
encoded as they are stored and transferred to the Processing Computer, the

entire process, observation to final light-curve, becomes very efficient.
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PROGRAM mcpdrv
Driver for copying data-files and calculating d» . f-mags
implicit none
integer n.i
integer t11,t12,t21,t22,t31,t32,t41,t42
parameter (n=225)
character*17 mag(n)
character*11 fra(n)
character*68 tme(n)
real t,t1,t2,t3,t4,%x1,%2,%3, d1 d2,d3
open(8, file=" wag. dat’.status="new ‘)
open(S,file="maglist’ ,status="01d")
do 10 i= 1 .N
read(9,’(a)”) mag(i)
read(mag(i). (a)’) frm(i)
continue
close(9)
do 11 i=1.,n
open(10,fi1e=frm(i).status=’o]df)
read(10,°(////77///777.3)°) twe(d)
close(10)
read({tme(i), " (37x,i1,%,11,3%,11,%,i1.,3%x,11.%.11.3%.i1.%.i1)°)
t11.,t12,t21,t22,t31,t32,t41,t42
t1=10.000000*f1oat{t11)+Ffloat{t12)
t2=10.000000*f1oat (t21)+float(t22)
t3=10.000000*f1oat(t31)+fl1oat{t32)
t4=10.000000*f1oat{t41)+Ffloat{t42)
t=-0.023611+717.500000+f10at(t1)+0.041667*f10at (t2)
+0.000694*f10at (t3)+0.000012*f1oat(t4)
+0.291667
open(11,file=mag(i),status="01d")
read(11.'(//////////////////1!//////////////////////////////
////////////!//ff////////// 38x%.f12.3)7) «
read(11,°(////.38%,F12.3)°) x
read(11.’(////.38x.f12.3)') xa
close(11)
d1=x1-x3
d2=x1-%2
d3=%2-%3
write(8, (f12.6,6f12.3)") t.x1.%x2,x3.d1.d2.d3
continue
close(8)
END
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PROGRAM mdbcpdry
Driver for binning diff-mags
implicit none
integer n,m,i,j.tot
parameter (n=1567,m=100)
integer jtot(m)
real t,x1,x2,x3,x4,eps,bin
real phs,dd1,dd2,dd3.33
real xx1(m),xx2(m),xx3(m),xx4(m)
open(8,file="vb.dat” ,status="01d")
open(3.file="vl.dat’ ,status="new’)
eps=1.271000/f1oat (m)
do 11 i=1,n
read(8, (f12.6,4f12.3)7) t.x1.%2.%3,x4
j=1
do 12 while(j.1t.m+1)
bin=eps*float(j)
j=j+1
if(t.gt.bin) goto 12
®R1(F-1)=xx1(j-1)+x1
®x%2(3-1)=xx2(J-1)+x2
®®3(F-1)=xx3(j-1) +x3
XX4(F-1)=x%4(J-1) +x4
Jtot(j-12=jtot(j-1)+1
goto 11
continue
continue
tot=0
do 13 i=1,m
tot=tot+jtot (i)
phs=float(i-1)/float(m)
jij=float(jtot(i))
dd1={xx1(i)~-xx4(i))/ij
dd2=(xx1(i)-%xx2(i))/3j
dd3=(xx2(i)-xx4(i)) /33
write(9,7(f12.3,3f12.3)")
phs,-1.000000*dd1
continue
close(8)
close(9)
END
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PROGRAM fixdrv
Driver for copying data-files and fixing time
implicit none
integer n,i.m
parameter (n=99)
real t.d1,d1f
cpen{(8,file="v100.dat’,status="01d’)
open(9,file="hr46461ss.dat”’ ,status="new’)
do 12 i=1.n
read(8, " (2f12.3,i122°)
t.di.m
d1f=10**(-0.4*(1.830-d1))
write(9,7(2f12.3,112)7)
t.d1f.m
continue
close(8)
close(9)
END
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