PRECISIONSM RESOLUTION TARGETS

PM-1 3½"x4" PHOTOGRAPHIC MICROCOPY TARGET NBS 1010a ANSI/ISO #2 EQUIVALENT

•

National Library of Canada

Acquisitions and Bibliographic Services Branch

(195 Wellington Street Ottawa, Ontario K1A 0N4

reproduction possible.

Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your Ne Volre rélérence

Our file Notre référence

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of

NOTICE

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

THE DEVON OBSERVATORY CCD IMAGING SYSTEM AND ITS APPLICATION TO PHOTOMETRY OF THE ELLIPSOIDAL VARIABLE HR 4646

BY

ERIC STEINBRING

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

> DEPARTMENT OF PHYSICS UNIVERSITY OF ALBERTA

EDMONTON, ALBERTA FALL, 1995

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your file Votre rélérence

Our file Notre rélérence

THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS.

L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-612-06543-X

UNIVERSITY OF ALBERTA RELEASE FORM

NAME OF AUTHOR: ERIC STEINBRING

TITLE OF THESIS: THE DEVON OBSERVATORY CDD IMAGING SYS-TEM AND ITS APPLICATION TO PHOTOMETRY OF THE ELLIP-SOIDAL VARIABLE HR 4646

DEGREE: MASTER OF SCIENCE

YEAR THIS DEGREE GRANTED: 1995

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as hereinbefore provided neither the thesis nor any substantial portion thereof may be 1 inted or otherwise reproduced in any material form whatever without the author's prior written permission.

EA-

Eric Steinbring

Date: , fuguet 31, 1995

UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled THE DEVON OBSERVATORY CCD IMAGING SYSTEM AND ITS APPLICA-TION TO PHOTOMETRY OF THE ELLIPSOIDAL VARIABLE HR 4646 in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.

le Dr. D. P. Hube Dr. B. E. Martin Dr. E. H. Pinnington Dr. F. L. Weichman

-gl

Dr. D. Routledge

D Routled

Date: August 31, 1995

ABSTRACT

The Devon Astronomical Observatory 0.5 m Cassegrain reflecting telescope has recently been equipped with a SpectraSource Instruments CCD camera. The system uses a back illuminated Tektronix TK512 512×512 pixel chip. This corresponds to a 1.38 pix $\operatorname{arcsec}^{-1}$ image scale at a focal ratio of f/8. The operation of the CCD imaging system is discussed with an emphasis on stellar photometry. Observing as well as data transfer and reduction procedures for this system at its present early stage of development are discussed. A straightforward observing method enabling the operator to acquire and process potentially hundreds of observations per night is developed. A complete manual of the procedures is presented as an Appendix. The first application of these procedures, a program of observations of ellipsoidal variables, is discussed. Specifically, the first results, observations of the star HR 4646, are analyzed. The CCD photometry of the close binary HR 4646 is presented and analyzed in combination with previously published spectroscopic data and suggests that HR 4646 is an ellipsoidal binary system.

AKNOWLEDGMENTS

In writing this thesis, the author would like to aknowledge the support and advice of Dr. Douglas P. Hube and Dr. Brian E. Martin. This work was funded through a scholarship from the Natural Sciences and Engineering Research Council.

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1 The Devon Observatory CCD Stellar Photometer	1
	1.2 Ellipsoidal Variables	1
	1.2.1 General Properties of Ellipsoidal Variables	1
	1.2.2 The Ellipsoidal Variable Program	3
	1.3 HR 4646	4
2.	CCD PHOTOMETRY	5
	2.1 The Application of CCDs to Stellar Photometry	5
	2.1.1 General Characteristics of CCDs	5
	2.1.2 Stellar Photometry	6
	2.1.3 CCD Observations	8
	2.1.3 a Image Processing for CCD Observations	8
	2.1.3.b CCD Aperture Photometry	13
	2.2 The Devon Observatory CCD System	16
	2.2.1 Introduction	16
	2.2.2 System Hardware	19
	2.2.2 a Focal Ratio	19
	2.2.2.b Telescope Tracking	19
	2.2.2.c Vignetting	19
	2.2.2.d Equipment Setup	19
	2.2.2.e The Cooling System	19
	2.2.3 CCD Characteristics	21
	2.2.3.a Gain and Readout Noise	21
	2.2.3.b Thermal Characteristics	23
	2.2.3.c Flat-Fields	26
	2.2.3.d Other Effects	32

	2.2.4 Images	35	
	2.2.4.a Image Quality and Sampling	35	
	2.2.4.b Maintenance of Telescope Focus	35	
	2.2.4.c General Observing Procedures	35	
	2.2.4.d General Reduction Procedures	37	
3.	OBSERVATIONS / REDUCTIONS	39	
	3.1 Observations of HR 4646	39	
	3.2 Data Reductions	39	
	3.2.1 Image Processing	39	
	3.2.2 Differential Aperture Photometry	45	
	3.3 Noise Analysis	57	
	3.4 The Light Curve for HR 4646	59	
4.	MODELING OF HR 4646	65	
	4.1 A Simple Model	65	
	4.1.1 Purely Ellipsoidal Variability	65	
	4.1.2 Analysis of the Model	65	
	4.2 Spectroscopic Data	66	
	4.3 A More Sophisticated Model	66	
	4.3.1 Estimation of System Parameters	67	
	4.3.2 Wilson-Devinney Code Applied to HR 4646	72	
	4.3.2.a The Operation of LC \ldots	72	
	4.3.2.b The Operation of DC \ldots	73	
	4.3.3 WD Model Results / Analysis	74	
5.	CONCLUSIONS	80	
	5.1 The Devon CCD Imaging System / Stellar Photometer	80	
	5.2 The Ellipsoidal Variable HR 4646	82	
RI	REFERENCES		

APPENDIX	86
A Manual for the Operation of the Devon Observatory	
CCD Stellar Photometer	
1. CCD Observations	86
1.1 Getting Started	86
1.2 Camera Start-up	87
1.3 Focus	89
1.4 System Monitoring	89
1.5 Obtaining and Storing Images	90
1.6 Reduction Images	9 1
1.7 Data Transfer	92
2. Image Processing / Data Reduction	93
2.1 Processing the Frames	94
2.2 Stellar Photometry	96

LIST OF TABLES

Table 1.	Observed Stars	40
Table 2.	Observing Log	40
Table 3.	Differential Magnitudes Output from PHOT	49
Table 4.	Photometric Data for HR 4646 Phased in 0.01 Phase Bins	62
Table 5.	Fourier Coefficients for Photometric Variation of HR 4646	67
Table 6.	Radial Velocities for HR 4646	69
Table 7.	Spectroscopic Orbital Elements of HR 4646	69
Table 8.	DC Output for HR 4646	75
Table 9.	Devon Observatory CCD Imaging System Parameters	81

LIST OF FIGURES

Figure 1.	TK512 CCD quantum efficiency versus wavelength	18
Figure 2.	Cooling effectiveness of the TEC	24
Figure 3.	TK512 dark current as a function of temperature	25
Figure 4.	A typical flat-field for the Devon CCD system	27
Figure 5.	Spatial variation due to the shutter effect: 0.100 s exposure	29
Figure 6.	Spatial variation due to the shutter effect: 0.400 s exposure	30
Figure 7.	Spatial variation due to the shutter effect: 1.250 s exposure	31
Figure 8.	The linearity of the Devon CCD system with respect to signal.	34
Figure 9.	Flare-feature in a typical stellar profile	36
Figure 10.	A typical program frame for the HR 4646 observations	41
Figure 11.	A ruled-surface plot of an unprocessed program frame	43
Figure 12.	An intensity plot of a bias frame	44
Figure 13.	The program frame prior to flat-fielding	46
Figure 14.	The program frame after flat-fielding	47
Figure 15.	A ruled-surface plot of a processed program frame	48
Figure 16.	The (HR 4646–SAO 7521) differential magnitudes	61
Figure 17.	The HR 4646 fluxes phased in 100 phase bins	63
Figure 18.	The Fourier-fit to the HR 4646 light curve	68
Figure 19.	The radial-velocity curve for HR 4646	70
Figure 20.	The WD model of HR 4646: Stellar surface temperatures	77
Figure 21.	The WD model of HR 4646: Orbital inclination	78
Figure 22.	The WD model fit to the radial-velocity curve for HR 4646 \dots	79

broadside and dim as they turn end-on to the observer. Furthermore, waring tion should be seen even if no eclipses occur, provided the stars are not seen from directly above or below. This effect leads to an observed continuous ghtness variation which varies as roughly the ratio of projected surface area to maximum disk area or $\cos 2\theta$ where θ is the phase.

Of course, in reality the situation is more complicated. The stars are generally not perfect ellipsoids but actually somewhat "egg-shaped", with their narrower ends pointing towards each other (definded by a Roche geometry, see Shore 1992). This can lead to a difference in the intensities of emitted light towards mimima due to the difference in the profiles of the two end-on configurations.

As well, there are other effects which are enhanced by this distortion. Limb darkening is a drop in intensity towards the edge of the projected stellar disks due to the line of sight emerging from cooler surface layers. This effect can be important for ellipsoidal variables. For uniform limb darkening one would expect the effective projected stellar disks to be altered as well as the axial ratios of the ellipses. Gravity darkening refers to the effects of the non-coincidence of equipotential and isothermal surfaces of the rotating stars. Noting that for a rotationally distorted star, flux varies approximately linearly with the local surface gravity, gravitational distortion requires the star to be brighter at the poles. The global conservation of flux then requires the rotational equator to be dimmed (see, for example Shore 1992).

Considering that the stars are so close, one might also expect "reflection" effects. That is, light of one component irradiates and heats the other component. The resulting increase in surface brightness radiates from the far component toward the observer. Also, it is possible in these systems for tidal forces to draw out gas streams into revolution about the system, providing small variations in intensities that would be difficult to model. The light variations due to the combination of a few or all of these effects, however, would be very subtle as compared to the situation where the variability were due to eclipses.

1.2.2 The Ellipsoidal Variable Program

In July and August 1994, the author succesfully observed the star SAO 20517 using a single channel photometer attached to the Devon Observatory 0.5 m telescope (Martin et. al. 1994). After SAO 20517 was identified as a possible ellipsoidal binary system, it was decided in January 1995 that a program of observations of suspected ellipsoidal variables might be possible with the newly installed CCD imaging system.

From a list of ellipsoidal candidates suggested by D. P. Hube, the author selected a subset of the best candidates for an observing program of suspected ellipsoidal variables. Of these, three program stars were chosen to be observed. These were HR 4646, B 1413, and B 1414.

HR 4646 was selected for the following reasons:

i. Radial velocity data for this star were known to exist and showed that it has the characteristics of short period and large radial velocity amplitude typical of ellipsoidal variables. Both characteristics are indicative of a small separation between components and, therefore, large tidal effects and physical distortion.

ii. HR 4646 had been included in a short observing campaign in the summer of 1994, and therefore a small amount of 3-colour photoelectric photometry, although unreduced, might be available. The fact that the star field was thus familiar to the author and known to be compatible with the CCD detector field was also a factor.

iii. HR 4646 is a circumpolar object, i.e., from the latitude of the Devon Observatory it never sets. This was of particular advantage, since the number of available dark observing hours at this latitude ($\sim 54^{\circ}$) in mid-winter is more than 14 hours. Thus, the object could be observed, after initial setup and barring very poor sky conditions, for perhaps 12 continuous hours a night. If one considers that HR 4646 has a period of roughly 32 hours, full phase coverage from sections of 3 consecutive cycles could easily be observed on 4 consecutive clear nights. Overlapping coverage from night to night could also serve to eliminate the possibility of spurious systematic variation.

The other two stars chosen were, at the outset, possibly better candidates. B 1413 ($\alpha(2000)=22^{h}58^{m}46^{s}.56$, $\delta(2000)=+62^{\circ}46'11''.27$, V=9.^m02) and B 1414 ($\alpha(2000)=23^{h}00^{m}53^{s}.46$, $\delta(2000)=+62^{\circ}52'13''.84$, V=9.^m81) have shorter periods and comparable radial velocity amplitudes. They are also circumpolar objects. Best of all, as viewed with the CCD, they are in the same rich star field. They are also, however, very faint. They are ~ 4 to 5 magnitudes fainter than HR 4646. Problems associated with very long exposures suggested starting with the brighter HR 4646. At the time of writing, the observations with full phase coverage for the stars B 1413 and B 1414 are incomplete and will not be discussed further.

1.3 HR 4646

The Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Systems (Batten, Fletcher, and MacCarthy 1989) lists the star HR 4646 $(\alpha(2000)=12^{h}12^{m}11.^{s}8, \delta(2000)=+77^{\circ}36^{\prime}58^{"}, V=5.^{m}1, A5)$ as a singlelined spectroscopic binary with a period of $1.^{d}2709334$. This is based on spectroscopy due to Abt (1961). In the following chapters, analysis of these data combined with the photometry carried out January 20-24 and February 10-13, 1995 demonstrates two main results. First, the Devon CCD system can be operated as a stellar photometer, at least in the case of bright stars in uncrowded fields. Second, its first results in that capacity lead to evidence that HR 4646 is an ellipsoidal binary (Steinbring, Hube, and Martin 1995).

2. CCD PHOTOMETRY

2.1. The Application of CCDs to Stellar Photometry

2.1.1 General Characteristics of CCDs

A CCD or Charge Coupled Device is a small light sensitive silicon chip. Incident photons absorbed by the active layer of the CCD (the "epitaxial" layer) generate electron-hole pairs. Charge accumulates in potential wells (pixels) over its surface and the number of electrons in each well is linear with exposed intensity. After the chip is exposed, the charge can be electronically transferred from well to well to an on-chip amplifier (in what is by analogy called a bucket brigade) and then sampled and digitized by the associated camera electronics. The capacitors of the CCD are arranged along rows and columns. After the exposure, charge packets which have accumulated in the wells under each capacitor gate are transferred to the readout electronics by shifting them from row to row along columns. The charges in the final row are then sent individually to the on-chip amplifier. The electrons in each pixel across the surface are binned by the Analogue to Digital (A/D) converter to produce a smaller number of Analogue to Digital Units (ADU). The resulting output is a map of intensities. The set of all pixel intensities, each with its Cartesian coordinates known, is called a field (sometimes referred to as a frame).

Differences between typical CCDs used for astronomical applications are in the configuration of electrodes, overall size of the detector and the number of pixels, as well as the thickness of the chip and its spectral response characteristics. Typical formats range from arrays of $\sim 300 \times 500$ pixels, to very large detectors with 2048×2048 pixels. The sizes of the pixels themselves are typically $\sim 10-30 \ \mu$ m. Two basic classes among these CCDs are so-called front illuminated and back illuminated devices. In front illuminated devices, light passes through the electrodes to the silicon. In back illuminated devices, the silicon is thinned to ~10 μ m. In this way, the side opposite the electrodes can be exposed, and the light will pass directly into the silicon. For wavelengths between 400 nm and 800 nm, the photon absorption length in silicon is ~10 μ m. However, for wavelengths shorter than 400 nm, the photon absorption length is only ~10 nm. Thus, the potential for achieving high ultraviolet sensitivity is much greater in back illuminated devices rather than thick, front illuminated devices (Walker 1987).

2.1.2 Stellar Photometry

Observation of variable stars involves a process referred to as differential photometry. The magnitude of the target star is measured and compared to that of nearby stars of similar magnitude and spectral type. The magnitude of a star in the instrumental system, m, can be described by the expression

$$m = m_0 - 2.5 \log(C - C_{sky}), \tag{1}$$

where m_0 is the the zero point of the instrumental system, C is the total number of counts due to the star and background, and C_{sky} is the total number of counts in the sky background. If the comparison star is observed through the same air-mass as the target star, the differential magnitude in the instrumental system is found by

$$\Delta m = m_{prog} - m_{comp},\tag{2}$$

where m_{prog} is the instrumental magnitude for the program star, and m_{comp} is the instrumental magnitude of the comparison star.

In "classical" single-channel photoelectric photometry, the brightness of background sky as well as program and comparison stars are measured using a photomultiplier. The observations are made one at a time through the same set of filters. Observations must cycle between program star, comparison stars, and sky. The goal is to reduce the effects of changing background illumination by maintaining a short time interval between observations of program and comparison stars. Applications of single channel photometry at the Devon Observatory have yielded precisions of ~ $0.^{m}003$ under photometric conditions. Martin, Hube, and Lyder (1990) quote an average precision of ~ $0.^{m}006$ for observations of 42 Per (program and comparison stars of $V \approx 6^{m}$). This situation can be improved by using a photomultiplier centered on each star. Another detector can be used to simultaneously observe the background. The problem is that the slightly different gains and instrumental drifts in these detectors, each with its own set of filters, can obviate the attempt to reduce errors. Utilizing the Devon Observatory 2-channel photometer Martin, Hube, and Brown (1991) quote a typical precision of $0.^{m}005$ for their observations of 75 Peg (V $\approx 5^{m}$).

An advantage over the two previous methods can be realized with the use of a CCD. The advantage of this detector is that it covers a large field of sky. In this way, and of specific importance to differential photometry, many stars can be simultaneously exposed to an array of linear detectors. The star and its comparisons are exposed concurently. Thus, to a certain extent, differential effects such as thin haze obscuring the field of view can be eliminated. The stars are all observed through the same air-mass, eliminating the need for at least first order corrections for atmospheric extinction. As well, the values for background illumination can be determined directly, for each exposure, for the immediate region around each of the stars. It is in principle possible with proper data reduction to achieve precisions superior to $0.^{m}001$. Photometry with CCDs can typically achieve $0.^{m}002$ precision (Gilliland et al. 1991, Kjeldsen and Frandsen 1992).

2.1.3 CCD Observations

2.1.3.a Image Processing for CCD Observations

Discussion for the moment will concern three basic corrections necessary with CCD detectors and follows a discussion found in Kjeldsen and Frandsen (1992). An important consideration during this processing is the degradation of the S/N associated with each step. At each processing step correction frames are combined with each other and the program frame in order to account for the detector's base-level, variations in detector gain, etc.. At each instance where frames are combined, their intrinsic noise values compound. It is for this reason that all processing is kept to a minimum. Equations for the propagation of the S/N for an arbitrary pixel of signal S (in electrons) are given for each step in processing and are due to a treatment found in Newberry (1991).

i. A correction must be made for temporal and spatial variations in the detector's zero level. That is, the number of counts present in all pixels when they are receiving no signal. To accomplish this the chip can be digitized without any exposure. This is called a *bias* frame, and is an additive effect. Typically, many bias frames are made and a mean created. This averages the effects of small changes in spatial structure of the bias frames over time. Changes in mean bias levels between exposures can be corrected for by scanning a strip of bias frame along the edge of every frame. This zero level is then subtracted as a first step in processing. Thus, this correction has the form (Kjeldsen and Frandsen 1992)

$$Frame_{b}(x, y) = Frame_{0}(x, y) - \langle Bias \rangle(x, y), \qquad (3)$$

where Frame_b is the bias corrected frame, Frame_0 is the frame corrected for scanned mean bias level, and (Bias) is the average of all bias frames. The zero level correction amounts to a subtraction of a constant from all frames

other than the bias frames and their resultant S/N is calculated via the expression (Newberry 1991)

$$S/N = \left[1 \pm \frac{\text{const}}{S_{\text{Frame}}}\right] (S/N)_{\text{Frame}},\tag{4}$$

where

$$S = S_{\text{Frame}} \pm \text{const.}$$
⁽⁵⁾

Combining the *n* bias frames results in a S/N of the mean bias frame given by (Newberry 1991)

$$S/N = \sum_{i=1}^{n} \left[\left(\frac{S_i}{(S/N)_i} \right)^2 \right]^{-1/2} S,$$
 (6)

where

$$S = \sum_{i=1}^{n} S_i. \tag{7}$$

Subtracting the average bias frame from the raw program frame results in a S/N given by (Newberry 1991)

$$S/N = \left[S_{\text{Frame}_0} - S_{\text{(Bias)}} + B^2 \left(1 + \frac{1}{n}\right)\right]^{-1/2} S,\qquad(5)$$

where

$$S = S_{\text{Frame}_0} - S_{(\text{Bias})}, \qquad (9)$$

 \mathbf{and}

$$B^{2} = Q^{2} + \frac{g^{2} - 1}{12} + N_{0}^{2}.$$
 (10)

The base-level noise B includes the noise due to zero-level correction N_0 , as well as the intrinsic noise in each frame due to the readout noise Q. The latter are properties of the readout electronics and are discussed in § 2.2.3.a. The form of the term involving g arises from truncation of the signal when it is binned by the A/D converter (see Newberry 1991 and references therein). ii. The chip cannot differentiate between electrons resulting from exposure to light and those resulting from ambient heat. Thermal photons are accounted for by taking an integration of the same length but not exposing the chip to any light, i.e., keeping the shutter closed. As long as the chip is at the same temperature in this *dark* frame as in the exposure frame, one can subtract the dark frame from all exposures to correct for the effect. The result is (Kjeldsen and Frandsen 1992)

$$Frame_{bd}(x, y) = Frame_{b}(x, y) - \langle Dark_{0} \rangle(x, y),$$
(11)

where $\operatorname{Frame_{bd}}$ is the dark corrected frame and $\langle \operatorname{Dark}_0 \rangle$ is the average of zero level corrected dark frames. The analysis of the propagation of S/N for dark subtraction is similar to that for bias subtraction. Here, the form of the expression for S/N for zero corrected dark frames is the same as equation (4). Combining the dark frames follows equation (6). The average dark frame is subtracted and the resultant S/N of the dark corrected frames is calculated as in equation (8).

iii. Not all the pixels have the same response to light. This is corrected for by exposing the detector to spatially uniform illumination and measuring the differential response from pixel to pixel, and perhaps across the chip. Dividing the dark corrected fields by this *flat* field generates pixel values as if the detector had a uniform response.

This map of the detector gain is typically generated by one of three methods. The first method is to take an image of the inside of the illuminated observatory dome. It can, however, lead to some systematic errors. The colour-temperature of the dome illumination can be very different from that of actual stars or dark sky background. Since the detector is more sensitive to light of some wavelengths than others, this can give a biased result. Also, it is not always an easy matter to obtain uniform illumination for the detector. A great deal of experimentation is often necessary. A second, and often superior method, is to take an image of the sky at either dawn or dusk. The illumination in this case is often much more uniform than that obtainable with the first method. However, the light at dawn and dusk contains atmospheric emission lines at different amplitudes than dark night sky, and thus has a different colour-temperature. The third method involves taking eposures of "blank", night sky. This gives uniform illumination which is most like that of actual program exposures. The problem is that light levels are low and, therefore, the illumination of the CCD is often insufficient to map out the pixel to pixel variations. Also, the task can be made difficult by very faint stars in the fields. This requires the operator to take many frames in several different locations in order to average images and remove the stars.

With many detectors, and/or if higher precision is needed, more corrections to the program frames will need to be made. For example, optical effects at boundary layers in the chip can result in interference fringes appearing in the images. More correction frames will be required to remove this additive effect. Defective pixels can be masked by substituting an average value over neighbouring pixels. Smoothed dark sky flat-fields might be used for a second order correction for large scale gain variations. For the present analysis, the final reduction calculation includes corrections i., ii., and iii., and follows the expression (Kjeldsen and Frandsen 1992)

Image
$$(x, y) \propto \frac{\text{Program}_{bd}(x, y)}{\langle \text{Flat}_{bd} \rangle(x, y)} [1 + \delta_{\text{nonlinear}}(\text{ADU}, x, y)],$$
 (12)

where Image represents the processed image, $\operatorname{Program}_{bd}$ is the bias and dark corrected program frame, and $\langle \operatorname{Flat}_{bd} \rangle$ represents the average of bias and dark corrected flat-field frames. The term $\delta_{\operatorname{nonlinear}}(\operatorname{ADU}, x, y)$ would, if they were present, contain information about nonlinearities in CCD response. The calculation of S/N for zero correction and averaging of the flat fields is as in the case of bias subtraction. The division of the program frame by the averaged flat field results in a S/N of (Newberry 1991)

$$S/N = \left[1 + \left(\frac{(S/N)_{\text{Program}_{\text{bd}}}}{(S/N)_{(\text{Flat}_{\text{bd}})}}\right)^2\right]^{-1/2} S, \qquad (13)$$

where

$$S = (S/N)_{\text{Program}_{bd}}.$$
 (14)

The processing noise contributes to the final S/N of observations. Consider an image of an object which covers n pixels of the detector. The total number of counts attributable to C_{obj} , is given by (Newberry 1991)

$$Z_{\rm obj} = g \sum_{(x,y)} [z(x,y) - z_{\rm sky,est}(x,y)],$$
(15)

where z(x, y) is the number of counts in a pixel due to both the object and sky background, and $z_{sky,est}(x, y)$ is the estimated number of counts due to the background. The noise due to each of j different sources is uncorrelated and combine in quadrature, i.e., as $\sum_{j}^{2} N_{j}^{2}$. Thus, the total noise in a given pixel, after sky subtraction is given by (Newberry 1991)

$$N_{(x,y)}^{2} = \sigma^{2}[gz(x,y)] + \sigma^{2}[gz_{sky,est}(x,y)],$$
(16)

where σ^2 is the variance of the respective quantity. The total noise in Z_{obj} is then

$$N^{2} = \sum_{(x,y)} N^{2}_{(x,y)} = \sum_{(x,y)} \sigma^{2} [g z_{obj}(x,y)]$$

+
$$\sum_{(x,y)} \sigma^{2} [g z_{sky}(x,y)]$$

+
$$\sum_{(x,y)} \sigma^{2} [g z_{sky,est}(x,y)],$$

(17)

12

where the total noise before sky subtraction has been separated into its object and sky components. The sources of noise in each of the three terms of equation (17) are photon statistics, truncation noise, and processing noise. The stochastic noise contribution to $\sum_{(x,y)} [g_Z(x,y)]$ is just gZ. The total noise is then given by

$$N^{2} = gZ_{\rm obj} + n(gz_{\rm sky,avg} + B^{2}) + n\left[\frac{1}{n_{\rm sky}}(gz_{\rm sky,avg} + B^{2})\right],$$
(18)

where n_{sky} is the number of pixels over which the background is sampled, and

$$B^{2} = Q^{2} + \frac{g^{2} - 1}{12} + P^{2}.$$
 (19)

where P includes all the noise added due to processing the program frame (the resultant noise calculated using equation (13)). This can be written as

$$N^{2} = gZ_{\rm obj} + n(gz_{\rm sky,avg} + B^{2})(1 + \frac{1}{n_{\rm sky}}),$$
(20)

and results in a S/N for the object of

$$S/N = \frac{gZ_{\rm obj}}{\sqrt{gZ_{\rm obj} + n(gz_{\rm sky,avg} + B^2)(1 + \frac{1}{n_{\rm sky}})}},$$
(21)

2.1.3.b CCD Aperture Photometry

A brief analysis of the internal noise for an idealized case of CCD aperture photometry is now presented. It follows a treatment due to Kjeldsen and Frandsen (1992) (see also Gilliland and Brown 1988; Frandsen, Dreyer, and Kjeldsen 1989) and will be used to generate a few useful results. Consider a circular photometric aperture centered on a star. Let R represent the radius of the aperture in pixels, where $\rho^2 = (x - x_0)^2 + (y - y_0)^2$, and (x_0, y_0) is the centre position of the aperture. The present analysis will concern noise due to photon statistics and readout noise alone. In this case the variance in electrons for the magnitude of the star is given by, with z representing the counts in a pixel,

$$N_{R}^{2} = \sum_{\rho \leq R} N_{x,y}^{2} = \sum_{\rho \leq R} z(x,y)g + \frac{g}{z_{\text{flat}}} \sum_{\rho \leq R} [z(x,y)]^{2} + R^{2} \left[Q^{2} \left(1 + \frac{1}{n_{\text{sky}}} \right) + \frac{z_{\text{sky}}(x,y)g}{n_{\text{sky}}} \right],$$
(22)

where z_{flat} and z_{sky} are the counts in one pixel of the flat-field and background sky respectively, n_{sky} is the number of pixels in the sky background, Q is the readout noise, and g is the CCD gain. If the shape of the stellar profile is approximated by a Gaussian distribution of form

$$z(x,y) \approx z_{\rm sky}(x,y) + z_0 0.5^{(2\rho/\rm FWHM)^2},$$
 (23)

and the counts summed within the aperture, the result is

$$\sum_{\rho \le R} [z(x,y) - z_{\rm sky}(x,y)]^n \approx \int_0^R (z_0 0.5^{(2\rho/\rm FWHM)^2})^n 2\pi\rho \, d\rho.$$
(24)

Now, if $\rho > FWHM$,

$$\sum_{\rho \le R} \left[z(x,y) - z_{\rm sky}(x,y) \right]^n \approx \frac{(\rm FWHM)^2 \pi z_0^n}{4n \ln 2},\tag{25}$$

which can be written as

$$\sum_{\rho \le R} [z(x,y) - z_{\rm sky}(x,y)]^n \approx \frac{(4\ln 2)^{n-1}}{[\pi (\rm FWHM)^2]^{n-1}} \frac{Z_{\rm star}^n}{n},$$
(26)

where

$$Z_{\text{star}} = \sum_{\rho \le R} \left[z(x, y) - z_{\text{sky}}(x, y) \right].$$
(27)

The size of the aperture is optimized when it is not so small that portions of the stellar image are excluded, while not being so large that too much sky is included. If the aperture is too small, significant star counts can be lost and imaging centering errors can be a factor. If the aperture is too large, sky noise is increased. The value of aperture radius R can be optimized by considering the case of sky-limited exposures. This discussion is due to Harris (1990). In this case

$$S/N \approx \frac{e_{\rm star}}{\sqrt{\pi R^2 e_{\rm sky}}}.$$
 (34)

Now, the stellar intensity profile, $z(\rho)$, gives rise to a count rate of

$$e_{\text{star}} = \int_{0}^{R} z(\rho) 2\pi \rho \, d\rho. \tag{35}$$

this implies that

$$S/N \propto \frac{1}{R} \int_{0}^{R} z(\rho) \rho \, d\rho.$$
 (36)

For a Guassian profile, the intensity is given by

$$z(R) = z_0 \exp(-R^2/2\sigma^2)$$
 (37)

and S/N is maximized for $R_0 \approx 2\sigma \approx 0.85$ FWHM. Thus, the optimal aperture is approximately 1.7 FWHM.

2.2 The Devon Observatory CCD System

2.2.1 Introduction

The 0.5 m Cassegrain reflecting telescope at the Devon Astronomical Observatory has recently been fitted with a SpectraSource HPC-1 Peltier cooled CCD camera utilizing a Tektronix TK512 512×512 pixel CCD. This is a back illuminated chip with an array size of $13.8 \times 13.8 \text{ mm}^2$, and a pixel size of $27 \times 27 \ \mu \text{m}^2$.

The TK512 CCD has high quantum efficiency over the spectral range 400 nm to 800 nm. Quantum efficiency measures the probability of an incident photon being converted to a measured signal by the detector. Typical photographic films and photomultipliers have efficiencies of less than 1% and approximately 10% respectively. A plot of the quantum efficiency versus wavelength for the TK512 chip is presented in Figure 1. Note that the efficiency is well above 80% for most of the visible spectrum, which means that approximately 80% of these visible light photons incident on the CCD will be detected.

The camera is operated using a 33 MHz 486 personal computer located in the Observatory warm room. Digitization takes place onboard the PC via a peripheral card supplied by SpectraSource. Detector refrigeration is provided by the Thermo-Electric Cooling unit (TEC), located in a separate control box in the Observatory warm room. The Liquid Recirculation Unit (LRU) is also located in the warm room and helps to maintain detector temperature by continuously pumping coolant through the camera head. This removes heat generated by the camera electronics. The camera is temporarily mounted at the f/8 Cassegrain focus with a single V filter and has an 11.8×11.8 arcmin² field. The pixel size of 27 μ m corresponds to an angular scale of 1.38 arcsec.

The stock HPC-1 software supplied by SpectraSource provides control for all functions of the camera. This includes control of the shutter, the capturing of images as well as bias and dark exposures, and image display and storage. The PC can store 20 images in RAM and approximately 450 frames on hard disk. These are then transferred to 120 Mbyte data-cartridges at the end of the observing session using a tape drive. For a more complete discussion of the CCD camera operation, its associated software, and the

Fig. 1 - A plot of the TK512 CCD quantum efficiency versus wavelength The V filter used in observations is centered around 550 nm and has a band-pass of ~150 nm.

transfer and reduction of data see the Appendix.

Most of the major technical problems concerning observing with the new system were addressed in October and November of 1994. Many issues concerning camera operation presented themselves and were addressed. It came to light that there were problems with the telescope mechanics and optics, such as the telescope tracking rate and vignetting of the field. There were problems with the operation of the camera, including elevated dark counts and the effects of slow shutter speed on flat-fields, and of course, all the issues of set-up and operation had to be addressed before any successful observing could be done.

2.2.2 System Hardware

2.2.2.a Focal Ratio

The issue first addressed was at what focal ratio the telescope should be operated with the new detector. The field observed by the camera at the original f/18 focus was $\sim 5 \times 5$ arcmin² and was usually too small for the concurrent observation of both program and comparison stars. The Devon telescope has the advantage of interchangable front ends and the secondary mirror and housing for f/18 was replaced with that for f/8. This provided the more usable field of 11.8×11.8 arcmin² with an image scale of 1.38 arcsec pix⁻¹.

2.2.2.b Telescope Tracking

At this time, it was also noted that the telescope tracking needed adjustment. The stellar images taken were obviously "smeared out", suggesting that the tracking was not synchronous with the apparent movement of the star. Until this was finally corrected, exposures were limited to 100 seconds. For longer exposures, images became too distorted for photometry to be carried out on the frames. That is, stellar images left trails larger than could be accommodated by the available photometric reduction routines.

2.2.2.c Vignetting

The first problem associated with the new telescope front- end was the appearance of serious vignetting on one side of the field. This was for the most part addressed after several attempts at both collimation of the secondary and third mirrors and the modification of the filter holder in the camera mount. Finally, it was suspected that one of the telescope light baffles was interfering with the beam, and after this was removed and the mirrors aligned one last time, the vignetting problem was for the most part solved. Three corners of the field are still vignetted but this involves only ~ 1600 pixels or about 0.6% of the detector surface area.

2.2.2.d Equipment Setup

Coincident with this, an observing procedure was developing (see the Appendix) and equipment setup took its final form. The camera control computer is located in a warm room adjacent to the dome. This way, the display is visible for focussing the camera by turning the monitor towards a window from this room to the dome. The TEC and the LRU were also located in the warm room.

2.2.2.e The Cooling System

It was observed that the detector temperature, which is displayed on the HPC-1 operation screen, was at intervals rising and falling by as much as 100 K. It was subsequently determined that this did not correspond to the actual temperature of the CCD detector. The temperature was monitored via a method outlined in SpectraSource documentation. A voltmeter was connected directly to the sensor via an output jack located on the TEC control box. At this output jack the measured voltage is linear with sensor temperature. It was observed that the rise in temperature displayed on the HPC-1 screen corresponded to the TEC box overheating. The actual sensor temperature remained contstant. In future, the CCD detector temperature will be monitored continuously via a voltmeter connected to the TEC box. The temperature of the TEC box itself can be maintained with better air circulation for its cooling vents.

It was also noted that during operation large air cavities could form in the coolant lines and could become lodged in the catacombs of the camera head. When this happened, the coolant in the LRU failed to circulate. After consultation with SpectraSource and technicians in the Physics Department Low Temperature Laboratory, a possible solution was arrived at. The problem was addressed by the fashioning of a reservoir bottle, approximately 1 litre in volume, which continuously flushes small bubbles from the lines. Once all the air was purged from the camera head this problem was completely solved.

2.2.3 CCD Characteristics

2.2.3.a Gain and Readout Noise

The readout characteristics of the CCD were studied. That is, the values for CCD gain and readout noise were calculated. The CCD gain factor, g, is the number of recorded electrons in a well per digital unit (the bin size employed in the A/D converter). Typical values for gain are between 1 $e^- ADU^{-1}$ for very "shallow" wells, and 10 $e^- ADU^{-1}$ for "deep" wells The readout noise, Q, is a property of imperfections in the CCD readout electronics and is usually quoted in electrons. Typical values for readout noise are between 2 and 10 e^- (Walker 1987).

The values of CCD gain and readout noise were calculated on several occasions using a method employed in the image reduction software IRAF. The IRAF package FINDGAIN compares the mean signal in two unprocessed flats to the base-level calculated from two bias frames to estimate g and Q. The means and standard deviations are calculated for all four frames. The CCD gain is given by

$$g = \frac{\left[\langle \text{Flat}_1 \rangle + \langle \text{Flat}_2 \rangle\right] - \left[\langle \text{Bias}_1 \rangle + \langle \text{Bias}_2 \rangle\right]}{[\sigma(\text{Flat}_{1-2})]^2 - [\sigma(\text{Bias}_{1-2})]^2},$$
(38)

where the brackets represent the mean counts over all pixels, σ is the standard deviation, and the readout noise in electrons is given by

$$Q = g \times \frac{\sigma(\text{Bias}_{1-2})}{\sqrt{2}},\tag{39}$$

where

$$\operatorname{Flat}_{1-2}(x,y) = \operatorname{Flat}_1(x,y) - \operatorname{Flat}_2(x,y), \quad (40)$$

and

$$\operatorname{Bias}_{1-2}(x,y) = \operatorname{Bias}_1(x,y) - \operatorname{Bias}_2(x,y).$$
(41)

This calculation was carried out between several frames on different observing runs. The averaged results give a CCD gain of $g = 4.9 \pm 0.2 \text{ e}^- \text{ ADU}^{-1}$ and readnoise of $Q = 79 \pm 2 \text{ e}^-$. Although a value of CCD gain of 5 e⁻ ADU⁻¹ is typical of similar CCDs, a readout noise level of 80 e⁻ is high. Typical values for readout noise for the present generation of CCDs (manufactured in the 1990s) are less than 20 e⁻. For example, the Texas Instruments CCD TC213 (manufacturer quoted specifications for 1994 model year) has a readout noise of 15 e⁻. The specification for the readout noise for the TK512 is < 10 e⁻. The reason for the high readout noise is not known and SpectraSource is being consulted in order to solve the problem.

The readout noise puts limits on the dynamic range of the CCD. This is estimated via the expression

range
$$\simeq \frac{z_{max}}{Q}$$
, (42)

where in this case, $z_{max} = 65,535 \text{ ADU} \approx 3.21 \times 10^5 \text{ e}^-$, and $Q = 79 \text{ e}^-$. The dynamic range for this CCD is, therefore, approximately 4100.

2.2.3.b Thermal Characteristics

During initial setup the necessary information about the CCD thermal characteristics was obtained. Large dark counts with rate ~ 50 ADU pix⁻¹ s⁻¹ at a detector temperature of -27 °C were present in all frames. This number is arrived at by taking an exposure of the same length as a program frame but with the shutter closed, averaging the counts in all pixels and dividing by the integration time in seconds. The dark count rate was studied in more depth. It was found to be approximately constant with exposure length. That is, the rate of dark counts does not appear to increase with longer exposures. A 1.000 s exposure has a dark count rate of approximately 50 ADU pix⁻¹ s⁻¹, as does a 30.0 s or 300.0 s exposure.

The relationship between dark counts and detector temperature was later studied in more depth and was found to be linear for temperatures within 10 K of the system operating temperature of ~ 246 K \approx -27 °C. The operating temperature of the CCD maintained by the TEC was found to be stable to within 0.1 K. Plots of dark counts per second versus detector temperature are presented in Figures 2 and 3. Note that the full well depth for this 16-bit system is 65,535 ADU. In Figure 2 one can see that for the system uncooled (detector temperature ~ 290 K) the dark count rate reaches the level of nearly 1/3 full well depth or 2 × 10⁴ ADU pix⁻¹ s⁻¹. Near the operating temperature of 246 K, however, the rate is closer to 50 ADU pix⁻¹ s⁻¹. This can be seen in Figure 3, an enlargment of the region from 245 K to 255 K. The slope of the linear regression to the points in Figure 3 gives a rate of thermal counts of 22 ± 1 ADU pix⁻¹ s⁻¹ K⁻¹.

Since the TEC cools the CCD based on (although not 1:1 with) the difference between ambient and detector temperature, one might expect the

Fig 2. - Plot of the dark counts per second versus temperature, showing the cooling effectiveness of the TEC from room temperature down to 246 K \approx -27 °C. The elapsed time from room to operating temperatures is about 30 minutes.

Fig 3. - Plot of the dark counts per second versus temperature near the operating regime of -20 °C to -30 °C. The slope of the linear regression to the points gives a rate of thermal counts of 22 ± 1 ADU pix⁻¹ s⁻¹ K⁻¹.
detector to be somewhat colder when the ambient temperature is low, say, -10 °C to -20 °C. SpectraSource suggests that an enhanced cooling effect is possible at lower ambient temperatures. They suggest that this would correspond to a drop in detector temperature amounting to approximately 60% that of the ambient drop. Note that the data for the above plots were collected when both the camera and the TEC were at room temperature. Dark frames taken when the observations of HR 4646 were made (ambient temperature of -20 °C) suggest that the detector operating temperature was still only approximately -27 °C. Future workers will need to analyze the problem of detector refrigeration more in depth if lower dark counts are to be realized. SpectraSource is also being consulted with regard to this issue. 2.2.3.c Flat-Fields

It was noted that properly taken dome flats could be sufficient for the flat-fielding of images, but only if exposures were not shorter than 0.350 s. It had been observed that very short exposures had a detectable "shutter effect". That is, the slow mechanical shutter speed created noticeably higher illumination in the centre of the frame than at the edge (see Surma 1993). The flat fields have a region of greater intensity in the centre of the frame. This is evident in both dome and twilight illuminated flats and remains constant for longer exposures (≥ 2 seconds). An intensity plot along the central row of a typical flat-field is shown in Figure 4. It is a 0.5 second image of twilight sky taken at dusk. No alteration in shape of the central "hot spot" was evident when the camera was rotated with respect to the optical axis in the mount and it is therefore believed to be a property of the telescope optics. It is possibly due to blockages in the optical train such as the secondary mirror and its support structure.

The effect of the slow shutter can be seen in Figures 5-7. Each image was created by dividing a short exposure dome flat-field by one of much

Fig. 4 - An intensity plot along the central row of a 0.5 second twilight sky flat field. The left hand scale is in counts (ADU) while the right hand scale indicates the row number with a tick-mark on the axis. The central hot spot is a property of the telescope optics and is 4-6% higher in intensity than the rest of the image.

longer integration. A 2.000 s dome-flat was used, by which point no effects due to the shutter speed can be detected. These results are from tests done with the camera unfiltered; however, testing involving integrations through a V-band filter were also made, with similar results. The result of dividing the fields is the variation across the field due only to the shutter effect. One can see that once integrations reach about 0.4 seconds the effect is greatly reduced. Figures 5, 6, and 7 are intensity plots along the central row (left to right across the image) of the results from integrations of duration 0.100 s, 0.400 s, and 1.250 s respectively. The ratio of intensities against the 2.000 s integration flat are along the left hand axis. One can see that the effect has fallen from approximately 4% variation across the chip in the 0.100 s integration to less than 1% in the 0.400 s integration. Note that the brightness of the dome illumination was decreased twice during the procedure, which accounts for the non-monotonic change in intercept in the plots.

It was planned that a more sophisticated method of obtaining dome flats would be set up. This would have involved at least a method of illumination with light of known Planck temperature. A slide projector or a set of halogen projection lamps colour-balanced by filters could be employed to produce approximately the Planck temperature of sunlight. This set-up has not yet been constructed and the only available illumination for dome flats is the incandescent dome lights. As well, the only means of changing camera filters at present is by unbolting the camera mount, removing the camera head and filter holder from the mount, and manually inserting the filter in the filter holder. Thus, the extensive testing of flat-fields by both the methods of twilight sky and dome illumination has only been done either unfiltered or through a V filter.

It is not known if the rate at which the shutter opens and closes is

Fig. 6 - Intensity plot along the central row for the 0.400 s exposure. The variation is reduced to $\sim 1\%$ across the field.

Fig. 7 - Intensity plot along the central row for the 1.250 s exposure. The variation is reduced to less than 0.5% across the field.

uniform for short exposures. That is, it is not known for a given integration time if this effect varies in intensity from exposure to exposure. Although the shutter has been hand-timed for integrations longer than 30 seconds and is found to be accurate to within 1 second, the testing of shutter speed for short exposures has not yet been done. Since it is not known if the dome lights provide constant illumination, a time series of short exposure flat-fields may not demonstrate variability in the shutter speed. Surma (1993) suggests a method of correcting for the effects of shutter speed by deconvolving a CCD camera's intrinsic flat-field from a 2-dimensional function describing the illumination due to the shutter. However, it was decided that at least for the first observations with the camera, this regime of very short exposures (< 0.35 sec) could simply be avoided. A more sophisticated method of flatfielding images must be developed later.

2.2.3.d Other Effects

Some other effects sometimes noticed in CCD imaging systems have not been a factor in this system. Fringing refers to Michelson interference fringes created from the interaction of incoming light with surface and boundary layers within the chip. This effect is sometimes seen for illumination with strong emission lines. No fringing patterns above the level of background noise were evident in any of the flat-field or program frames from the present work. Variation in bias levels over time is corrected for by the automatic overscanning of a 30-40 pixel wide strip of bias level along one edge of the frame immediately after each exposure. This level is then automatically subtracted in the processing stage. In order to account for bias structure, a sample of 10 to 20 bias frames were taken before and/or after each run, averaged, and used in processing. Variation in bias structure over the course of minutes or hours was not observed. Bias frames taken at different times were divided by and subtracted from each other in order to reveal any variation. The results were uniform. The present work involved differential photometry of bright stars using exposures requiring a range of well depth from approximately 1×10^4 ADU pix⁻¹ to 5×10^4 ADU pix⁻¹. This involves the middle 60% of the response curve of the chip. It has been shown that CCDs in general have deviations from linearity of only 0.1-0.5%. This is true even with exposures approaching pixel saturation (McCall, English, and Shelton 1989).

Following a method employed in McCall, English, and Shelton (1989), a rough check of the linearity was made using the flat-field exposures employed in § 2.2.3.c. A function of the form $S - A = +Bt^{\alpha}$, where S is signal and t is time was fitted to the points. The growth of the logarithm of S - A, was plotted against the logarithm of the integration time, t. A departure of α from a value of 1.0 would be indicative of a nonlinearity in the system. This would not necessarily correspond to a nonlinearity in the response of the CCD, partly because of systematic errors due to the shutter speed as well as the possibility of temporal changes in intensity of the dome lights.

A plot of mean signal (the average of all pixels over the frame) versus time is shown in Figure 8. The brightness of the illumination was decreased twice over the course of the test in order to accommodate longer exposures. This is seen as changes — lope in the plotted data. The value of α was determined for three regimes. Exposures from 0.010 s to 0.100 s had signals from 5×10^3 ADU pix⁻¹ to 2×10^4 ADU pix⁻¹ and yielded a value of $\alpha =$ 1.036 ± 0.009 (s.d.). Exposures from 0.200 s to 0.900 s had a range of signals from 9×10^3 ADU pix⁻¹ to 4×10^4 ADU pix⁻¹ and yielded a value of $\alpha =$ 0.994 ± 0.004 (s.d.). Exposures from 1.000 s to 2.000 s had signals from 2×10^4 ADU pix⁻¹ to 5×10^4 ADU pix⁻¹, with a fit to the data yielding a value of $\alpha = 0.989 \pm 0.027$ (s.d.). The first regime corresponds to the region of integration times that were avoided due to slow shutter speed. The second regime roughly corresponds to the range of exposure times and counts per

Fig. 8 - A plot of signal (averaged over the frame) versus time for the unfiltered flat fields employed in § 2.2.3.c.

pixel employed in the present work. It is true that the counts in many of the pixels under the brightest star would have been in the range of the third region at $\sim 5 \times 10^4$ ADU pix⁻¹. However, the values for α calculated from this data do not indicate nonlinearity greater than 1% in either of the latter two regimes.

2.2.4 Images

2.2.4.a Image Quality and Sampling

With the mirrors collimated and the problem of vignetting corrected, the only issue of the telescope's optics that was not addressed is image quality. Typical stellar FWHM is approximately 6 arcsec, but this is only after very careful focussing of the telescope. Typically, there is a flare consistently on one side of the stellar image. See Figure 9.

In order to properly sample a stellar image, the Nyquist theorem requires that the FWHM be greater than 2 pixels. Otherwise, information about spatial image structure will be lost due to aliasing (Walker 1987). Now, for a 6 arcsec FWHM, it is required that 1 pixel be ≤ 3 arcsec. Note that the image scale with the present set-up is 1.38 arcsec pix⁻¹. Thus, in the present configuration, the Nyquist condition is met.

2.2.4.b Maintenance of Telescope Focus

The amount of flex with temperature variation in the telescope optics is considerable. The observer can notice when monitoring the stellar images on the HPC-1 display that a drop in ambient temperature of only a few degrees in the dome will correspond to the stellar images becoming badly out of focus. This can make the maintenance of focus difficult and stellar image quality can sometimes suffer. Note the flare emerging from the right of the star profile in Figure 9. For the present work, the apertures for photometry

Fig. 9 - A ruled-surface plot of section of image showing the apparently bright (5th magnitude) star HR 4646. The integration length is 0.500 s. The peak has been truncated at a height of 2000 ADU and the flare is evident to the right of the plateau.

36

chosen were very large $\sim 16-20$ arcsec, and never excluded this flare feature when it appeared.

2.2.4.c General Observing Procedures

In the present work, before each night's run, 10-20 flat fields were taken using a 0.5×0.5 m² white plastic square permanently affixed to the inside of the dome and using the dome lights for illumination. To avoid the shutter effect, integrations were always longer than 0.35 seconds and were the same duration as in the program frames. Care was taken to make the illumination of the square uniform (see the Appendix). As well, 10 - 20 bias frames were taken before and/or after each run. Dark fields were taken with integration times the same as those of program exposures. Usually only 5 frames were taken per night. If average dark frame intensities were less than 25 ADU pix^{-1} , dark reductions would not be necessary and more frames were not taken (see § 3.2.1). Some care was taken to keep stars in the same locations on the detector throughout an observing session despite small telescope tracking errors. The method employed was to mark the HPC-1 display screen with a piece of black electrician's tape. Thus, the locations of the centroids of stellar images in the fields can only be considered to be within ~ 50 pixels of their original locations at the beginning of the observing session.

2.2.4.d General Reduction Procedures

Reduction procedures were developed to handle the large number of observations per night. The general procedures are outlined in detail in the Appendix. Processing was carried out at the University of Alberta on a Sun Sparc-station using the image reduction software IRAF. As well, some simple post-processing subroutines were written in FORTRAN 77. These read the differential magnitudes from IRAF output files and matched them with the Julian Date, which was calculated from the time encoded in the HPC-1 image header file.

The procedures are basically as follows. The entire set of program frames for one night is imported into IRAF. Then they are processed as one batch. After this, aperture photometry is carried out as one batch. Finally, the differential magnitudes for the entire night are read from the IRAF magnitude files to a single output file for subsequent analysis. In this way, the entire night's work, usually hundreds of exposures, can be reduced in one afternoon. The only real impediment to quick reductions is computer speed.

3. OBSERVATIONS / REDUCTIONS

3.1 Observations of HR 4646

The data consist of 1599 observations over 7 nights. The January 20-24 1995 observations were 0.350 s integrations at approximately 2 minute intervals (~ 0.001 in phase). In the February 10-13 1995 observations, the telescope was stopped down to ~ 0.35 m and the integrations increased to 0.550 s. This was intended to ensure a wide range of possible integration times in that variable sky conditions sometimes required shorter exposures. Exposures less than 0.350 s were not advisable due to the effects of slow shutter speed. A typical program frame is presented in Figure 10. The program, check, and comparison stars are labelled by the numbers 1, 2, and 3. The coordinates for the stars given in Table 1. The large field $\sim 10 \times 3$ arcmin², encompassing object, comparison and check stars, necessitated one minor adjustment. The comparison star sometimes drifted slightly closer to the edge of the detector due to imperfect telescope tracking. To alleviate this, the camera mounting was rotated 30 \degree after the January observations so that the star field better fit the frame. Note that the observing procedure was to take flat-fields for each night's run, so any change in the optics associated with rotating the camera or stopping down the telescope would be accounted for.

3.2 Data Reductions

3.2.1 Image Processing

The set of bias frames was combined with the IRAF package ZERO-COMBINE in CCDRED. The flats were bias subtracted using this averaged frame and then combined using FLATCOMBINE. This provided two averaged processing frames for each night. Program fields were freed of bias and then flat-fielded using the package CCDPROC. Note that the additional

TABLE 1	
---------	--

star	α(2000)	$\delta(2000)$	V / sp. type
1. HR 4646	$12^{h}12^{m}11^{s}.8$	+77 ° 36 ′ 58″	5. ^m 1, A5
2. SAO 7519	12 ^h 11 ^m 37 ^s .0	+77°31′38″	8. ^m 9
3. SAO 7521	$12^{h}11^{m}48^{s}.3$	+77°26′27″	6. ^m 6, A0

TABLE 2

Observing Log

date	observations	JD - 2449000.0	duration	notes
Jan 20,'21, 1995	198	738.622-738.964	8 hours	thick haze
Jan 21/22, 1995	268	739.647-740.070	10 hours	
Jan 22/23, 1995	216	740.593-740.940	8 hours	aurora
Jan 23/24, 1995	219	741.560-741.945	9 hours	
Feb 10/11, 1995	322	759.606-760.038	10 hours	
Feb 11/12, 1995	89	760.590-760.713	3 hours	cloud
Feb 12/13, 1995	247	761.651-761.970	8 hours	

Fig. 10 - A typical plogram frame for HR 4646 observations. North is down and west is to the right. The program star HR 4646 is labelled as number 1. The comparison stars SAO 7519 and SAO 7521 are labelled as number 2 and number 3, respectively.

noise from simply adding two frames with readout noise of 16 ADU pix⁻¹ is $\sim \sqrt{2}$ (readnoise) ≈ 23 ADU pix⁻¹. Since the dark counts (~ 20 ADU pix⁻¹) were on the order of the readout noise, dark corrections were not made to the frames.

The basic processing steps are seen in Figures 12 through 16. Figure 11 is a ruled-surface map of the raw (unprocessed) program frame. After automatic correction for zero level (subtraction of the mean bias level in each frame), the mean-bias frame is subtracted. The intensity plot along the central row of the bias frame is shown in Figure 12. Ratios of two consecutive bias-frames and two consecutive flat-field frames were created. Estimates of the signal in bias and flat-field frames were obtained by averaging counts in 50×50 pix² regions of the ratio images and using an expression found in McCall, English, and Shelton (1988). For signal r and noise σ_r of the ratio image, the noise (in e⁻ pix⁻¹) of the frame is given by $\sigma_{\text{Frame}} = (\sigma_r/r)\frac{S}{\sqrt{2}}$, where S is the signal per pixel of the frame. The signal and noise of the ratio image was taken to be the mean and standard deviation. This yielded a value of S/N = 94 for the bias frame and S/N = 392 for the flat-field. The mean signal in regions under star profiles in the unprocessed frame is $\sim 5.5 \times 10^4$ e^- pix⁻¹ with a noise of ~ 2 × 10² e^- pix⁻¹ (photon shot noise). After zero-level correction (base-level of $7.4 \times 10^3 \text{ e}^- \text{ pix}^{-1}$) applying equation (4) yields a S/N of 203 for the program frame. The individual bias frames are combined. A sample of 5 bias frames from the first observing session have a combined signal of $7.5 \times 10^2 \text{ e}^- \text{ pix}^{-1}$. The noise for an individual bias frame is $\approx 2 \text{ e}^- \text{ pix}^{-1}$, which yields a S/N of 210 for the mean-bias frame using equation (6). From equation (8), the mean-bias subtracted program frame is found to have S/N = 137. The major contributors to this degradation of S/N are noise due to zero-level correction (236 e⁻) and the readout noise $(79 e^-)$ appearing = equation (10).

Fig. 12. The central row of the bias frame. This frame is subtracted as the second step in processing. The left hand scale is counts in ADU while the right hand scale gives an indicator to show the row number.

Finally, the mean-bias subtracted frame is divided by the mean flatfield, shown in Figures 13 and 14, and the result is shown in Figure 15. The mean flat-field has a signal of $1.4 \times 10^5 \text{ e}^- \text{pix}^{-1}$ with a noise of $5.8 \times 10^2 \text{ e}^$ pix⁻¹. Thus, after zero-level correction and bias-subtraction, the flat-field has a value of S/N = 243. Applying equation (13) yields a S/N = 119 for the flat-fielded program frame. The maximum count levels in the program images have been truncated at 2000 ADU pix⁻¹ in order for both to be plotted on the same scale.

3.2.2 Differential Aperture Photometry

Aperture photometry was carried out on the processed program frames with the IRAF package DAOPHOT. The star SAO 7521 (V= $6.^{m}6$) was used as a comparison with SAO 7519 (V= $8.^{m}9$) serving as a check star. In order to automate the differential photometry, the coordinates in the first frame of the three relevant stars were found using DAOFIND. The apertures for differential photometry were typically set to 16 pixels (≈ 22 arcsec) with a 4 pixel (\approx 6 arcsec) sky annulus. Afterwords, using IMALIGN, each of the entire set of frames for the night was shifted so the stars were at the same coordinates as in the first frame. This effectively formed a template from the coordinate file of the first frame that PHOT could use to automatically perform aperture photometry on all subsequent frames. The post-processing programs read the differential magnitudes from the DAOPHOT output files and matched them with the Julian Date, which was calculated from the time encoded in the HPC-1 image header file. The output of the first postprocessing program is presented in Table 3. Observations of program, check, and comparison stars through the V filter are labelled by v_1 , v_2 , and v_3 , respectively. Note that these magnitudes have not been transformed from the local to the standard UBV system. Also, note that the individual apparent magnitudes are calculated from an arbitrary base-level of 26th magnitude set

Fig. 13 - Intensity plot along the central row of the program field prior to flat-fielding.

Fig. 14 - Intensity plot along the central row of the program field after flat-fielding.

Fig. 15 - The processed frame, effect sero level correction, bias frame subtraction and flat-fielding. The background is at a level of $\sim 75 \pm 25$ ADU pix⁻¹.

TABLE 3
Differential Magnitudes Output from PHOT
epoch = JD + 2449000.0

							+ 113000.0						
	v1 9.688 9.752	v ₂ 13.120 13.122	v3 11.503 11.513 11.474	V1-3 -1.815 -1.761	V1-2 -3.432 -3.370	V2-3 1.617 1.609	JD 738.799 238.800	v ₁ 10.213 10.159	V2 13.626 13.727 13.608	V3 12.014 11.997	V₁1 -1.801 -1.838	V1-2 -3.413 -3.568	¥2-3 1.612 1.730
738.622 738.623 738.624 738.624 738.625 738.625 738.626 738.627 738.627	9.662 9.672 6.716	13.126	11.474 11.434 11.460 11.489	-1.812 -1.762 -1.744 -1.775	-3.456 -3.454 -3.387 -3.377 -3.406	1.644 1.692 1.643 1.602	738.802 738.803 738.804	10.191	13.608 13.698 13.656 13.601 13.776	11.946 12.001 12.003	-1.838 -1.755 -1.786 -1.838 -1.820 -1.791	-3.483 -3.491	1.662 1.697 1.653
738.627 738.628 738.629 738.629 738.631	9.714 9.707 9.707 9.707 9.705	13.091 13.113 13.078 13.126 13.118	11.499 11.474 11.472 11.477	-1.792 -1.767 -1.765 -1.772	-3.419	1.604 1.654	738.806 738.808 738.810 738.810 738.811 738.813	10.910	13.776 13.726 13.681 13.730	12.010 12.001 12.043 12.067 12.089	-1.822	-3.411 -3.566 -3.505 -3.435	1.591 1.775 1.683 1.614
738.632	9.705 9.699 9.687	13.118 13.119 13.121	11.477 11.496 11.495	-1.772 -1.797 -1.808	-3.413	1.641 1.623 1.626	770 014	10 000	13.730 13.744 13.738		-1.821 -1.852 -1.872 -1.837	-3.435 -3.493 -3.446 -3.367	1.641 1.574 1.530
738.636 738.638 738.639	9.692 9.688 9.691 9.687	13.070	11.465 11.526 11.480 11.466	1.773	-3.434 -3.378 -3.429 -3.422	1.605 1.591 1.633	738.815 738.817 738.817 738.817 738.818 738.820 738.820	10.421 10.340 10.335 10.334	13.858 13.854 13.883 13.782	12.170 12.208 12.210 12.177 12.158	-1.789 -1.837 -1.823	-3.437	1.648
738.633 738.638 738.639 738.642 738.642 738.643 738.643 738.647	9.687 9.689 9.717 9.723	13.113 13.109 13.113 13.144 13.137 13.154	11.466 11.463 11.457 11.468	-1.789 -1.779 -1.774 -1.740 -1.745	-3.422 -3.424 -3.427 -3.414	1.643 1.650 1.687 1.669	738.822 738.824 738.825 738.825 738.827	10.262	13.782 13.788 13.664 13.749 13.793	12.143 12.057 12.042 12.131	-1.809 -1.807 -1.780	-3.448 -3.538 -3.402 -3.459 -3.457	1.725 1.639 1.731 1.622
(30.013	9.689 9.705 9.692		11.494	-1.805	-3.465 -3.415 -3.437	1.660 1.644 1.636	738.828 738.829 738.831 738.831	10.336	13:793 13.811 13.713	12:146	-1.844 -1.810 -1.854 -1.817	-3.531	1.615 1.647 1.677
738.650 738.652 738.653 738.653 738.654 738.656	9.730	13.120 13.129 13.146 13.142 13.112	11.476 11.493 11.485 11.474 11.488	-1.801 -1.755 -1.769 -1.805	-3.437 -3.416 -3.437 -3.429	1.636 1.661 1.668 1.624	738.831 738.832 738.833 738.833 738.833	10.280 10.280 10.256 10.280 10.279		12.097 12.069 12.120 12.106	-1.817 -1.813 -1.810 -1.827	-3.433 -3.443 -3.606	1.616
738.656 738.657 738.658 738.661 738.661 738.661	9.683 9.715 9.690 9.742 9.826	13.142 13.112 13.132 13.109 13.090 13.125	11.465 11.469 11.489 11.462	-1.805 1.750 -1.779 -1.747 -1.636 -1.764	-3.417 -3.419 -3.348 -3.299	1.667 1.640 1.601 1.601 1.663	738.838 738.839 738.840 738.840 738.842	10.328	13.899 13.886 13.793 13.877 13.802 13.967 13.795	12.119 12.193 12.130 12.065	-1.791 -1.847 -1.804 -1.783	-3.514 -3.549 -3.456 -3.641 -3.513	1.766 1.687 1.758 1.609 1.837 1.730
738.668	9.688	13.125 13.158 13.053	11.452	.1 791	-3.470	1.663 1.706 1.582	738.843	10.285	13.600	12.100	-1.783 -1.815 -1.778	-3.513 -3.515 -3.382	1.700
738.670 738.671 738.672 738.674 738.674 738.677	9.790 9.702 9.694	13.135 13.104 13.087	11.485 11.462 11.465 11.487	-1.695 -1.760 -1.771	-3.373 -3.345 -3.402 -3.393 -3.399	1.650	738.846	10.189	13.825 13.768	12.075 12.027 12.011	-1.886	-3.636	1.604 1.750 1.741 1.717
738.677 738.680 738.681 738.681 738.682	9.667 9.755 10.198 10.204 10.234	13.066 13.101 13.650 13.683 13.627	11.441 11.998 12.002 11.986	1.820 -1.686 -1.800 -1.798 -1.752	3.346 3.452 3.479	1.622 1.579 1.660 1.652 1.681	738.850 738.852 738.853 738.853 738.854 738.856 738.856	10.215	13.599 13.749 13.747 13.697 13.711	12.013 12.003 1.986 12.027 12.008	-1.815 -1.798 -1.797 -1.835 -1.793 -1.786	-3.532 -3.384 -3.543 -3.555 -3.505	1.586 1.746 1.761 1.670
738.683	10.234 10.182 10.203	13.608	12.004	-1.822	-3.393 -3.426	1.604	(38.858	10.182	13.013	11.968		-3.496 -3.461	1.675
738.685 738.686 738.688 738.688 738.689	10.209	13.621 13.616 13.603 13.643 13.637	12.015 11.997 12.018 11.976	-1.812 -1.788 -1.826 -1.785	-3.418 -3.407 -3.411 -3.452	1.606 1.619 1.585 1.667	738.860 738.861 738.864 738.864 738.865	10.180	13.732 13.672 13.601 13.785	12.005 12.010 11.996 12.014	-1.813 -1.807 -1.816 -1.797	-3.540 -3.469 -3.421 -3.568 -3.450	1.727 1.662 1.605 1.771
738.692 738.693 738.695 738.695 738.696 738.697	10.222 10.231 10.209 10.210 10.239	13.693	11.982 11.982 12.014	-1.760 -1.751 -1.805	-3.415 -3.462 -3.487 -3.421 -3.425	1.682	738.867 738.868 738.870 738.871 738.871 738.872	10 194	13.634 13.672 13.610 13.573 13.663	11.998	-1.814 -1.828 -1.792 -1.798 -1.821 -1.773	-3.450 -3.495 -3.417 -3.361 3.460	1.636 1.667 1.625 1.563 1.563
(20.033	10.292	13.631 13.684 13.730	12.053 12.061 12.088	-1.843 -1.822 -1.796	-3.439	1.578 1.623 1.642	1 10.061	10.230	13.663 13.648	11.985 12.010 12.024 12.003	-1.798 -1.821 -1.773	-3.361 3.460 -3.418	1.645
738.700 738.702 738.703 738.706 738.707 738.707	10.287 10.356 10.308	13.699 13.824 13.812 13.761 13.735	12.041 12.126 12.109 12.138 12.062 12.117	-1.754 1.770 -1.801 -1.778	-3.412 -3.468 -3.504	1.658 1.698 1.703	738.875 738.879 738.879 738.879	10.207	13.695 13.730 13.729	12.030 11.993 12.048	-1.816 -1.786 -1.869 -1.859	-3.481 -3.523 -3.550	1.665 1.737 1.681
738.707 738.708 738.708 738.710 738.711	10.360 10.260 10.347 10.283		12.062 12.117 12.095	-1.802	-3.401 -3.475 -3.363 -3.519 -3.433	1.623 1.673 1.593 1.707	738.881 738.882 738.882 738.882 738.883	10.193	13.645 13.716 13.716 13.599	12.047 12.009 12.009 12.024 11.994	-1.816	-3.457 -3.523 -3.523 -3.421	1.598 1.707 1.707 1.575
738.713 738.715	10.283 10.243 10.202 10.345	13.802 13.676 13.712 13.765	12.095 12.013 11.986 12.176	-1.812 -1.770 -1.784 -1.831	-3.433 -3.510 -3.420	1.663 1.726 1.589	738.885 738.888 738.905	10.185	13.716 13.599 13.537 13.669 13.666	11.994 12.002 11.961	-1.846 -1.809 -1.801 -1.792	-3.421 -3.352 -3.468 -3.497	1.707 1.575 1.543 1.667 1.705
738.717 738.718 738.721 738.721 738.724	10.240 10.202 10.218 10.204	13.644 13.663 13.615 13.662	12.027 12.017 11.983	-1.787 -1.815 -1.765	-3.404 -3.461 -3.397	1.617 1.646 1.632	738.906 738.907 738.908 738.908	10.178 10.162 10.160	13.698 13.751 13.618	11.973 11.986 11.980 11.981	-1.795 -1.824 -1.820	-3.520 -3.589 -3.458	1.725 1.765 1.638 1.655 1.625 1.625 1.679 1.547 1.675 1.716 1.716
738.725	10.181	13.585 13.640 13.627	12.009 11.992 12.026 11.990	1.805 1.811 1.831 1.756	-3.458 -3.404 -3.445 -3.393	1.653 1.593 1.614 1.637	738.910	10.152	13.636 13.616 13.628	11.981 11.991 11.949 12.018	-1.824 -1.820 -1.829 -1.831 -1.782	-3.458 -3.484 -3.456 -3.461 -3.395	1.655 1.625 1.679
738.728 738.729 738.731 738.731 738.732	10.234 10.214 10.208 10.229	13.565 13.650 13.611	11.990 12.022 11.970 11.984	1.808 -1.762 -1.755	-3.351 -3.442 -3.382	1.513 1.680 1.627	738.914 738.916 738.918 738.918 738.920	10.180 10.172 10.190	13.565 13.645 13.705 13.777	11.970 11.989 12.010	-1.848 -1.790 -1.817 -1.820	-3.465 -3.533 -3.587	1.675 1.716 1.767
738.734 738.753 738.754 738.756 738.756 738.757 738.757	10.200 10.189 10.197 10.170	13.624 13.626 13.619	11.988 11.979 12.003	-1.788 -1.790 -1.806	-3.424 -3.437 -3.452	1.636 1.647 1.646	738.921 738.922 738.922		13 777	12.028	-1.811	-3.560 -3.515	1.749 1.704 1.667 1.775
130.130	10.187	13.604	11.987	1.800	-3.494 -3.422 -3.478 -3.411	1.694 1.617 1.625	738.925 738.928 738.929 738.929 738.929	10.217 10.218 10.226 10.241 10.223 10.221 10.221	13.733 13.696 13.798 13.800 13.712 13.715	12.028 12.029 12.029 12.023 12.018 12.018 12.044 12.017	-1.811 -1.803 -1.782 -1.795 -1.823 -1.794 -1.782	-3.515 -3.470 -3.557 -3.577 -3.491	1.775
738.761 738.763 738.764	10.204 10.218 10.198 10.164	13.615 13.636 13.644 13.577	11.999 12.003 11.968 11.980	-1.853 -1.795 -1.785 -1.770 -1.816	-3.418 -3.446 -3.413	1.616 1.633 1.676 1.597	738.932 738.933 738.935 738.936	10.223 10.215 10.193 10.191	13.745 13.745 13.809 13.747	12.017 11.997 12.011 12.021	-1.794 -1.782 -1.818 -1.830	-3.491 -3.522 -3.530 -3.616 -3.556	1.728 1.748 1.798 1.726
738.767 738.768 738.770 738.771	10.201 10.167	13.620 13.624 13.734 13.641	11.992 11.966	-1.791	-3.419	1.628 1.658 1.766	738.938		13.581 13.745 13.765		-1.804 -1.803 -1.795 -1.809	-3.364 -3.521 -3.536 -3.40?	1.560 1.718 1.741 1.598
738.771 738.772 738.774	10.160 10.160 10.184 10.210	13.641 13.590 13.643	11.968 11.996 11.997 11.951	-1.808 -1.836 -1.813 -1.741	-3.574 -3.481 -3.406 -3.433 -3.481	1.645 1.593 1.692	738.940 738.942 738.943 738.943	10.229	13.765 13.649 13.730 13.687	12.024 12.051 12.067	-1.795 -1.809 -1.832 -1.833	-3.536 -3.407 -3.495	1.741 1.598 1.663 1.658
738.772 738.774 738.776 738.777 738.777 738.778 738.778 738.781	10.184 10.210 10.195 10.174 10.199 10.178	13.590 13.643 13.676 13.623 13.619 13.685	11.997 11.951 11.996 11.971 11.991 11.991 11.962	-1.801 -1.797 -1.792 -1.784	-3.481 -3.449 -3.420 -3.507	1.680 1.652 1.628 1.723	738.940 738.940 738.942 738.943 738.946 738.946 738.947 738.949 738.950 738.950	10.217 10.224 10.229 10.235 10.196 10.285 10.359 10.439 10.523	13.649 13.730 13.687 13.761 13.916 14.055 13.920	12.021 12.027 12.024 12.051 12.067 12.029 12.014 12.184 12.263 12.357	-1.829 -1.825 -1.824 -1.834	-3.495 -3.491 -3.476 -3.557 -3.616 -3.397	1.647 1.732 1.792
	10.1.0	13.656 13.656		1.786	-3.465	1.679 1.675	738.952 738.953 738.954	10.523 10.656 10.688 10.648	14-179	12.357 12.447 12.526	-1.834 -1.791 -1.838 -1.808	-3.397 -3.523 -3.613	1.563 1.732 1.775
738.782 738.783 738.785 738.786 738.788 738.789 738.789 738.792 738.792	10.191 10.232 10.182 10.209 10.164	13.615 13.645 13.686	11.977 11.989 11.999 12.003 11.958 11.967 12.052 11.968	-1.817	-3.463 -3.436 -3.522	1.646	738.956 738.957 738.960 738.960	10.648 10.636 10.573		12.456 12.462 12.385	-1.808 -1.826 -1.812 -1.775		1.695
738.792 738.795 738.795 738.797 738.797	10.163 10.195 10.177 10.173 10.214	13.614 13.608 13.640 13.590 13.717	12.052 11.968 11.993 12.018	-1.804 -1.859 -1.791 -1.820 -1.804	-3.451 -3.415 -3.463 -3.417 -3.503	1.647 1.556 1.672 1.597 1.699	738.953 738.954 738.955 738.957 738.960 738.960 738.961 738.963 738.963 738.963	10.048 10.573 10.784 10.754 10.935 10.043 10.058	$14.151 \\ 14.151 \\ 14.175 \\ 14.225 \\ 14.173 \\ 14.298 \\ 14.709 \\ 13.463 \\ 13.488 $	12.447 12.526 12.456 12.385 12.559 12.608 12.802 11.826 11.837	-1.775 -1.854 -1.867 -1.783 -1.779	-3.539 -3.652 -3.389 -3.544 -3.774 -3.420	1.840 1.614 1.690 1.907 1.637
738.797	10.214	13.717	12.018	-1.804	-3.503	1.699	1 739.648	10.058	13.488	11.837	-1.779	-3.420 -3.430	1.637

-															-
	JD	v 1	٧a	٧J	V1-3	V1-2	V2-3	at	۷1	¥2	v,	v1-3	v ₁₋₂	¥2-3	
	739.649 739.652 739.652 739.653 739.654 739.656 739.656 739.659 739.660 739.661	10.047 10.063 10.055 10.042 10.049 10.079 10.032 10.034 10.047 10.058	13.418 13.491 13.456 13.456 13.496 13.432 13.440 13.438 13.466 13.459	11.820 11.832 11.847 11.829 11.834 11.841 11.851 11.840 11.819 11.828	-1.773 -1.769 -1.792 -1.787 -1.785 -1.762 -1.819 -1.806 -1.772 -1.770	-3.371 -3.428 -3.401 -3.413 -3.447 -3.353 -3.408 -3.404 -3.419 -3.401	1.598 1.659 1.609 1.626 1.662 1.591 1.589 1.598 1.647 1.631	739.810 739.811 739.813 739.814 739.815 739.817 739.819 739.819 739.820 739.820 739.822	10.037 10.040 10.038 10.036 10.037 10.030 10.030 10.047 10.039 10.043	13.524 13.509 13.534 13.599 13.510 13.540 13.408 13.486 13.486 13.529 13.557	11.801 11.808 11.827 11.808 11.826 11.797 11.802 11.798 11.798 11.793	-1.764 -1.768 -1.789 -1.772 -1.795 -1.760 -1.772 -1.751 -1.750 -1.750	-3.487 -3.469 -3.563 -3.563 -3.479 -3.503 -3.479 -3.439 -3.439 -3.439 -3.514	1.723 1.701 1.707 1.684 1.606 1.688 1.740 1.740 1.764	
	739.663 739.664 739.665 739.665 739.667 739.670 739.671 739.671 739.674 739.675	10.051 10.057 10.056 10.058 10.065 10.074 10.069 10.054 10.064 10.030	13.443 13.557 13.518 13.516 13.516 13.511 13.486 13.533 13.400 13.403	11.815 11.837 11.877 11.839 11.814 11.830 11.821 11.821 11.833 11.833	-1.764 -1.780 -1.821 -1.781 -1.759 -1.759 -1.755 -1.769 -1.803	-3.392 -3.462 -3.410 -3.451 -3.437 -3.417 -3.417 -3.336 -3.373	1.628 1.720 1.629 1.702 1.681 1.665 1.684 1.567 1.570	739.824 739.825 739.826 739.829 739.831 739.832 739.833 739.833 739.835 739.836 739.836 739.836	$10.037 \\10.043 \\10.039 \\10.035 \\10.042 \\10.052 \\10.033 \\10.021 \\10.038 \\10.036 \\10.036 \\$	13.516 13.510 13.529 13.530 13.431 13.555 13.431 13.555 13.474 13.501 13.515	11.822 11.777 11.789 11.781 11.785 11.785 11.785 11.785 11.785 11.793 11.789	-1.785 -1.734 -1.750 -1.758 -1.739 -1.743 -1.752 -1.755 -1.755 -1.753	-3.479 -3.467 -3.480 -3.494 -3.488 -3.379 -3.522 -3.453 -3.453 -3.479	1.694 1.733 1.630 1.736 1.749 1.636 1.770 1.684 1.708 1.708 1.726	
	739.677 739.678 739.681 739.681 739.682 739.683 739.683 739.685 739.688 739.688 739.688	10.027 10.053 10.053 10.029 10.058 10.059 10.056 10.047 10.050 10.047	13.429 13.536 13.413 13.493 13.516 13.516 13.490 13.490 13.461 13.461	11.839 11.877 11.827 11.823 11.814 11.819 11.819 11.818 11.818 11.811 11.847	-1.812 -1.824 -1.774 -1.794 -1.756 -1.760 -1.789 -1.789 -1.781 -1.761 -1.803	-3.402 -3.483 -3.483 -3.464 -3.438 -3.438 -3.437 -3.434 -3.432 -3.411 -3.422	1.590 1.639 1.586 1.670 1.682 1.697 1.645 1.661 1.650 1.619	739.839 739.840 739.842 739.843 739.845 739.845 739.845 739.849 739.849 739.852	$10.035 \\ 10.040 \\ 10.034 \\ 10.036 \\ 10.037 \\ 10.041 \\ 10.041 \\ 10.038 \\ 10.019 \\ 10.022 \\$	13.585 13.559 13.512 13.512 13.566 13.525 13.525 13.611 13.611 13.439	11.788 11.813 11.787 11.787 11.777 11.777 11.777 11.778 11.804 11.820 11.802	-1.753 -1.753 -1.753 -1.732 -1.741 -1.741 -1.763 -1.782 -1.771 -1.780	-3.550 -3.525 -3.463 -3.463 -3.459 -3.459 -3.459 -3.592 -3.592 -3.417	1.797 1.769 1.772 1.731 1.789 1.718 1.721 1.725 1.821 1.821 1.637	
	739.690 739.692 739.693 739.695 739.696 739.697 739.697 739.702 739.703 739.703	10.051 10.056 10.056 10.054 10.081 10.058 10.069 10.069 10.081 10.091	13.453 13.507 13.507 13.455 13.493 13.428 13.433 13.489 13.489 13.489 13.489 13.489	11.859 11.821 11.810 11.855 11.843 11.855 11.844 11.833 11.833 11.837	-1.808 -1.761 -1.754 -1.754 -1.762 -1.797 -1.7752 -1.750 -1.786	-3.402 -3.393 -3.451 -3.401 -3.412 -3.370 -3.364 -3.354 -3.354 -3.379	1.594 1.632 1.697 1.600 1.550 1.573 1.589 1.656 1.604 1.593	739.853 739.856 739.857 739.858 739.860 739.861 739.864 739.864 739.865 739.862	10.030 10.035 10.042 10.059 10.017 10.040 10.043 10.025 10.021	13.558 13.523 13.529 13.522 13.496 13.486 13.486 13.480 13.545 13.555	11.768 11.786 11.794 11.768 11.795 11.795 11.790 11.802 11.784 11.803	-1.738 -1751 -1.752 -1.709 -1.773 -1.773 -1.762 -1.762 -1.783 -1.783	-3.528 -3.488 -3.463 -3.463 -3.469 -3.469 -3.450 -3.502 -3.534	1.790 1.737 1.725 1.754 1.751 1.696 1.688 1.761 1.688 1.761 1.688	
	739.706 739.707 739.709 739.710 739.711 739.713 739.713 739.715 739.715 739.717	10.060 10.067 10.030 10.040 10.054 10.058 10.058 10.058 10.057 10.044 10.062	13.479 13.535 13.522 13.488 13.452 13.502 13.438 13.500 13.500 13.500 13.500	11.837 11.860 11.818 11.832 11.843 11.843 11.846 11.828 11.848 11.848 11.837	-1.777 -1.793 -1.788 -1.792 -1.799 -1.768 -1.788 -1.788 -1.788 -1.788 -1.789 -1.804 -1.775	-3.419 -3.468 -3.492 -3.448 -3.408 -3.408 -3.493 -3.493 -3.495 -3.390	1.642 1.675 1.704 1.656 1.680 1.592 1.722 1.652 1.615	739.8 739.871 739.871 739.874 739.874 739.876 739.879 739.879 739.879 739.879	10.047 10.044 10.029 10.032 10.035 10.039 10.058 10.075 10.031 10.035	13.460 13.508 13.572 13.531 13.540 13.586 13.566 13.577 13.5490 13.587	11.763 11.786 11.802 11.785 11.772 11.788 11.796 11.824 11.781 11.819	-1.716 -1.742 -1.753 -1.753 -1.757 -1.749 -1.738 -1.749 -1.750 -1.784	-3.413 -3.464 -3.499 -3.505 -3.502 -3.502 -3.459 -3.459 -3.552	1.697 1.722 1.770 1.746 1.768 1.770 1.753 1.709 1.768	
	739.720 739.721 739.723 739.724 739.725 739.725 739.730 739.731 739.733 739.733	10.041 10.046 9.946 10.071 10.047 10.023 10.019 10.007 10.026	13.453 13.558 13.356 13.356 13.507 13.507 13.505 13.505 13.533 13.443 13.568	11.842 11.839 11.839 11.731 11.861 11.809 11.809 11.806 11.806 11.805	-1.801 -1.774 -1.778 -1.785 -1.790 -1.776 -1.786 -1.799 -1.779	-3.412 -3.512 -3.424 -3.436 -3.436 -3.463 -3.4814 -3.4814 -3.436 -3.512	1.611 1.738 1.646 1.625 1.646 1.686 1.696 1.738 1.637 1.763	7395 739.805 739.888 739.888 739.889 739.890 739.890 739.893 739.895 739.895 739.895	10.040 16.031 9.989 10.043 10.031 10.046 10.028 10.020 10.031	13.549 13.519 13.5496 13.580 13.566 13.543 13.5066 13.551	11.787 11.807 11.761 11.805 11.804 11.812 11.833 11.791 11.803 11.783	-1.747 -1.776 -1.7762 -1.773 -1.766 -1.805 -1.755 -1.753 -1.752	-3.509 -3.488 -3.453 -3.523 -3.520 -3.515 -3.515 -3.520 -3.520 -3.520 -3.520 -3.520 -3.520 -3.520	1.762 1.712 1.751 1.691 1.754 1.754 1.710 1.712 1.763 1.763	
	739.735 739.736 739.738 739.739 739.741 739.743 739.745 739.745 739.747 739.747 739.749	10.042 10.036 10.053 10.036 10.040 10.036 10.040 10.060 10.035 10.042 10.036	13.525 13.508 13.450 13.504 13.504 13.455 13.455 13.533 13.493 13.501 13.501 13.502	11.820 11.819 11.801 11.807 11.807 11.809 11.781 11.839 11.808 11.808 11.819	-1.778 -1.761 -1.761 -1.762 -1.771 -1.769 -1.721 -1.804 -1.783	-3.483 -3.470 -3.451 -3.468 -3.468 -3.473 -3.458 -3.459 -3.466	1.705 1.689 1.689 1.689 1.697 1.646 1.752 1.654 1.653 1.683	739.898 739.899 739.900 739.902 739.903 739.904 739.904 739.906 739.907 739.909 739.909 739.909	10.046 10.035 10.023 10.023 10.043 10.043 10.043 10.043 10.043 10.043	13.547 13.580 13.533 13.533 13.538 13.536 13.595 13.566 13.569 13.610	11.818 11.798 11.787 11.775 11.784 11.784 11.805 11.803 11.803 11.794 11.787	-1.772 -1.763 -1.764 -1.747 -1.761 -1.765 -1.761 -1.765 -1.760 -1.767 -1.767	-3.50. -3.5.535 -3.5.535 -3.5.583 -3.5.583 -3.5.583 -3.5.523 -3.5.523 -3.5.523 -3.5.523 -3.5.523 -3.5.523 -3.5.523 -3.5.523	1.729 1.782 1.772 1.758 1.758 1.748 1.789 1.763 1.775 1.823	
	739.750 739.752 739.753 739.753 739.772 739.774 739.775 739.775 739.778 739.778 739.778	10.036 10.051 10.060 10.046 10.052 10.042 10.045 10.043 10.058 10.037	13.488 13.593 13.436 13.556 13.543 13.543 13.507 13.478 13.478 13.431 13.505	11.793 11.806 11.834 11.828 11.822 11.806 11.799 11.810 11.786 11.807	-1.757 -1.774 -1.782 -1.770 -1.764 -1.754 -1.728 -1.728 -1.770	-3.452 -3.376 -3.510 -3.501 -3.485 -3.501 -3.465 -3.373 -3.468	1.695 1.787 1.602 1.728 1.715 1.737 1.708 1.668 1.665 1.698	739.934 739.935 739.936 739.938 739.939 739.941 739.943 739.943 739.945 739.945	$10.055 \\ 10.050 \\ 10.029 \\ 10.039 \\ 10.040 \\ 10.046 \\ 10.099 \\ 10.060 \\ 10.055 \\ 1$	13.585 13.632 13.510 13.554 13.503 13.515 13.642 13.515 13.574 13.480	11.808 11.818 11.830 11.837 11.837 11.832 11.815 11.822 11.826 11.826 11.839	-1.753 -1.768 -1.801 -1.798 -1.798 -1.775 -1.775 -1.770 -1.766 -1.784	-3.530 -3.6103 -3.471 -3.520 -3.596 -3.596 -3.514 -3.514 -3.425	1.777 1.842 1.673 1.673 1.628 1.688 1.820 1.646 1.748 1.641	
	739.781 739.782 739.784 739.785 739.786 739.786 739.788 739.789 739.790 739.790 739.792 739.793	10.046 10.047 10.051 10.020 10.020 10.027 10.020 10.025 10.036 10.037	13.478 13.482 13.482 13.520 13.579 13.578 13.589 13.589 13.592 13.507 13.527	11.803 11.781 11.793 11.783 11.803 11.785 11.785 11.794 11.804 11.791 11.790	-1.757 -1.734 -1.732 -1.732 -1.758 -1.758 -1.758 -1.779 -1.755 -1.753	-3.432 -3.479 -3.441 -3.459 -3.551 -3.569 -3.567 -3.567 -3.471 -3.490	1.675 1.745 1.689 1.737 1.676 1.793 1.795 1.788 1.716 1.737	739.947 739.950 739.951 739.951 739.953 739.954 739.956 739.956 739.957 739.959 739.959	10.064 10.062 10.058 10.043 10.029 10.049 10.044 10.049 10.049 10.023 10.049	13.483 13.470 13.488 13.599 13.501 13.515 13.522 13.515 13.515 13.466 13.449	11.832 11.814 11.819 11.795 11.797 11.805 11.793 11.793 11.783 11.783 11.826	-1.768 -1.752 -1.761 -1.752 -1.768 -1.756 -1.749 -1.745 -1.760 -1.777	-3.419 -3.408 -3.430 -3.456 -3.472 -3.466 -3.478 -3.466 -3.443 -3.400	1.651 1.656 1.669 1.804 1.704 1.710 1.729 1.720 1.683 1.683	
	739.795 739.796 739.8797 739.809 739.804 739.804 739.806 739.806 739.806 739.806	*.).044 10.043 10.043 10.043 10.043 10.041 10.041 10.041 10.041 10.041 10.041 10.043	13.520 13.509 13.537 13.537 13.511 13.507 13.455 13.455 13.455 13.536	11.796 11.785 11.787 11.791 11.795 11.792 11.806 11.811 11.785 11.795	$\begin{array}{c} -1.752\\ -1.754\\ -1.754\\ -1.763\\ -1.763\\ -1.765\\ -1.765\\ -1.765\\ -1.663\\ -1.663\\ -1.762\end{array}$	-3.476 -3.466 -3.494 -3.494 -3.454 -3.471 -3.468 -3.478 -3.470 -3.503	1.724 1.724 1.713 1.716 1.691 1.719 1.701 1.644 1.707 1.741	739.963 739.965 739.965 739.967 739.967 739.967 739.973 739.971 739.973 739.973 739.973	10.042 10.036 10.032 10.033 10.043 10.043 10.043 10.043 10.020 10.011	13.562 13.652 13.553 13.553 13.516 13.516 13.525 13.478 13.478 13.476	11.802 11.795 11.793 11.777 11.791 11.787 11.788 11.788 11.785 11.782 11.789	-1.760 -1.759 -1.755 -1.745 -1.755 -1.755 -1.765 -1.765 -1.771 -1.772	-3.520 -3.616 -3.521 -3.483 -3.468 -3.505 -3.505 -3.459	1.760 1.857 1.776 1.725 1.729 1.763 1.763 1.760 1.696 1.687	
															-

_

				•	poch = JD	+ 24490	0.000						
D	v ₁	v2	v3 v1-3	v1-2	¥3-3		dr	¥1	٧J	٧3	v1-3	v ₁₋₂	v ₃₋₃
739.977 739.978 739.980 739.981 739.982 739.982 739.984 739.985 739.989 739.991 739.991 739.992	$\begin{array}{c} 10.028\\ 10.014\\ 10.015\\ 10.018\\ 10.038\\ 10.038\\ 10.029\\ 10.029\\ 10.026\\ 10.038\\ 10.022\\ 10.022\\ \end{array}$	13.549 13.548 13.502 13.456 13.456 13.457 13.557 13.485 13.611 13.588 13.547	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3.521 -3.534 -3.487 -3.438 -3.455 -3.455 -3.456 -3.595 -3.550 -3.525	1.754 1.768 1.722 1.683 1.693 1.755 1.703 1.837 1.791 1.779	l I	740.639 740.640 740.642 740.643 740.645 740.648 740.650 740.652 740.653 740.653	$10.049 \\ 10.071 \\ 10.055 \\ 10.082 \\ 10.071 \\ 10.061 \\ 10.033 \\ 10.067 \\ 10.024 \\ 10.031 \\ 1$	13.467 13.514 13.436 13.485 13.510 13.476 13.441 13.487 13.485 13.433	11.819 11.820 11.804 11.843 11.802 11.808 11.841 11.837 11.834 11.814	-1.770 -1.749 -1.761 -1.731 -1.74? -1.808 -1.770 -1.810 -1.783	-3.418 -3.443 -3.381 -3.403 -3.439 -3.415 -3.415 -3.420 -3.461 -3.402	1.618 1.694 1.632 1.642 1.642 1.668 1.660 1.650 1.650 1.651 1.619
739.994 739.995 739.996 739.997 739.997 740.000 740.002 740.003 740.004 740.004	10.027 10.028 10.020 10.051 10.029 10.009 10.016 10.016 10.053 10.008	13.493 13.592 13.536 13.5783 13.583 13.583 13.491 13.563 13.496 13.542 13.558	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-3.466 -3.564 -3.516 -3.52? -3.554 -3.54? -3.489 -3.489 -3.550	1.698 1.799 1.756 1.757 1.754 1.724 1.724 1.788 1.685 1.780 1.780		740.656 740.659 740.660 740.661 740.663 740.665 740.665 740.665 740.668 740.668 740.670	10.041 10.061 10.061 10.082 10.089 10.025 10.063 10.052 10.052	13.450 13.496 13.439 13.556 13.528 13.528 13.477 13.477 13.475 13.503	11.837 11.842 11.825 11.813 11.866 11.813 11.854 11.853 11.803 11.817	-1.796 -1.781 -1.751 -1.752 -1.784 -1.724 -1.829 -1.770 -1.751 -1.777	-3.409 -3.365 -3.365 -3.428 -3.4274 -3.429 -3.414 -3.423 -3.423	1.613 1.654 1.614 1.676 1.690 1.715 1.643 1.644 1.672 1.686
$\begin{array}{c} 740.007\\ 740.008\\ 740.010\\ 740.011\\ 740.013\\ 740.013\\ 740.014\\ 740.017\\ 740.018\\ 740.020\\ 740.021\\ \end{array}$	$\begin{array}{c} 10.013\\ 10.037\\ 10.047\\ 10.029\\ 10.014\\ 10.007\\ 10.002\\ 10.005\\ 10.051\\ 10.026\end{array}$	13.537 13.577 13.476 13.538 13.599 13.576 13.550 13.609 13.601	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.524 -3.540 -3.509 -3.580 -3.582 -3.552 -3.552 -3.558 -3.558 -3.558 -3.558	1.735 1.792 1.684 1.766 1.873 1.751 1.769 1.792 1.830 1.818		740.671 740.672 740.675 740.677 740.678 740.679 740.681 740.681 740.683 740.683 740.683	$10.058 \\ 10.032 \\ 10.042 \\ 10.044 \\ 10.057 \\ 10.067 \\ 10.025 \\ 10.080 \\ 10.059 \\ 10.067 \\ 1$	13.489 13.464 13.456 13.481 13.462 13.480 13.470 13.470 13.510 13.506	11.800 11.801 11.798 11.795 11.810 11.814 11.812 11.827 11.819 11.825	-1.742 -1.769 -1.756 -1.751 -1.753 -1.747 -1.787 -1.787 -1.760 -1.758	-3.431 -3.432 -3.414 -3.437 -3.405 -3.413 -3.445 -3.445 -3.451 -3.439	1.689 1.653 1.658 1.652 1.656 1.652 1.656 1.658 1.672 1.691 1.691
740.022 740.024 740.025 740.027 740.028 740.029 740.031 740.031 740.034 740.035	10.022 10.033 10.039 10.014 10.036 10.054 10.104 10.170 10.083 10.018	13.592 13.509 13.558 13.548 13.548 13.545 13.545 13.552 13.777 13.578 13.579	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.570 -3.476 -3.513 -3.534 -3.509 -3.497 -3.607 -3.495 -3.561	1.802 1.717 1.749 1.773 1.750 1.723 1.723 1.723 1.723 1.715 1.715 1.790		740.686 740.688 740.690 740.690 740.692 740.693 740.695 740.695 740.698 740.698 740.698 740.699	10.059 10.051 10.065 10.069 10.057 10.054 20.058 10.078 10.063 10.046	13.470 13.454 13.467 13.512 13.483 13.479 13.479 13.474 13.487 13.474	11.820 11.796 11.813 11.827 11.829 11.829 11.829 11.829 11.826 11.851 11.835	-1.761 -1.745 -1.748 -1.758 -1.758 -1.755 -1.726 -1.748 -1.788 -1.789	-3.411 -3.403 -3.402 -3.443 -3.426 -3.419 -3.414 -3.424 -3.424 -3.424 -3.428	1.650 1.658 1.654 1.631 1.644 1.644 1.648 1.636 1.636 1.639
740.036 740.038 740.039 740.041 740.042 740.045 740.046 740.046 740.047 740.049 740.050	10.023 10.025 10.027 10.026 10.036 10.036 10.017 10.025 10.005 10.025	13.508 13.501 13.549 13.530 13.499 13.508 13.528 13.528 13.495 13.530 13.471	11.789 1.766 11.816 1.791 11.795 1.768 11.799 -1.773 11.793 -1.768 11.793 -1.758 11.813 -1.756 11.805 1.780 11.805 1.780 11.814 11.774 -1.749	-3.485 -3.476 -3.522 -3.504 -3.474 -3.474 -3.511 -3.511 -3.525 -3.446	1.719 1.685 1.754 1.731 1.706 1.712 1.715 1.690 1.711 1.697		740.700 740.722 740.722 740.724 740.725 740.727 740.727 740.727 740.728 740.731 740.731	10.072 10.067 10.055 10.069 10.077 10.082 10.081 10.094 10.142 10.152	13.471 13.442 13.521 13.514 13.494 13.545 13.486 13.504 13.596 13.596	11.822 11.857 11.846 11.845 11.862 11.880 11.887 11.887 11.859 11.953	1.750 -1.790 -1.791 -1.785 -1.785 -1.798 -1.806 -1.765 -1.781	-3.399 -3.375 -3.466 -3.445 -3.463 -3.463 -3.405 -3.410 -3.410 -3.454	1.649 1.585 1.675 1.669 1.665 1.699 1.645 1.673 1.673 1.673
740.052 740.053 740.055 740.055 740.057 740.057 740.060 740.061 740.061	10.017 10.035 10.044 10.041 10.018 10.021 10.014 10.019 10.014 10.019	13.465 13.440 13.495 13.548 13.508	11.762 -1.745 11.798 -1.763 11.786 -1.742 11.764 -1.723 11.790 -1.772 11.787 -1.766 11.778 -1.764 11.820 1.801 11.778 -1.764 11.820 1.801	-3.448 -3.405 -3.451 -3.507 -3.490 -3.544 -3.435 -3.494 -3.494 -3.494	1.703 1.642 1.709 1.784 1.718 1.778 1.671 1.693 1.671 1.693	{	740.733 740.735 740.736 740.738 740.739 740.739 740.740 740.742 740.743 740.743 740.745 740.746	10.202 10.257 10.250 10.241 10.244 10.269 10.278 10.268	13.599 13.689 13.689 13.651 13.653 13.717 13.633 13.704 13.690	11.964 12.022 12.014 12.018 12.018	-1.762 -1.765 -1.764 -1.777 -1.791 -1.759 -1.785 -1.785	-3.397 -3.382 -3.439 -3.381 -3.410 -3.384 -3.384 -3.439 -3.439 -3.483	1.635 1.617 1.675 1.604 1.619 1.625 1.654 1.654 1.572 1.665
740.063 740.066 740.066 740.067 740.070 740.070 740.593 740.595 740.595 740.595	9.997 10.018 10.017 10.022 10.037 10.026 10.089 10.128 10.110 10.095	13.437 13.504 13.517 13.514 13.530 13.476 13.538 13.538 13.538 13.538	11.788 -1.791 11.796 -1.778 11.761 -1.744 11.778 -1.756 11.800 -1.763 11.801 -1.775 11.871 -1.733 11.874 -1.764 11.869 -1.774	-3.440 -3.504 -3.507 -3.485 -3.507 -3.507 -3.387 -3.387 -3.420	1.649 1.726 1.743 1.739 1.744 1.729 1.599 1.646 1.664		740.749 740.750 740.752 740.753 740.754 740.754 740.757	10.152 10.154 10.113 10.088 10.087 10.067 10.028 10.050 10.050 10.043	13.543 13.576 13.541 13.501 13.483 13.468 13.490 13.476 13.558	11.953 11.903 11.874 11.865 11.848 11.831 11.802 11.814 11.826	-1.801 -1.749 -1.761	-3.391 -3.422 -3.413 -3.396 -3.401 -3.401 -3.426 -3.426 -3.515	1.590 1.673 1.667 1.635 1.635 1.637 1.688 1.662 1.732
740.599 740.600 740.603 740.604 740.606 740.606 740.607 740.609 740.610 740.610	10.081 10.082 10.082 10.082 10.098 10.073 10.097 10.084 10.084 10.060	13.490 13.538 13.509 13.439 13.466 13.521 13.499 13.481 13.488 13.498	11.855 1.774 11.831 1.749 11.865 1.773 11.853 1.773 11.830 1.732 11.875 1.802 11.829 1.732 11.847 1.763 11.845 1.785 11.845 1.785	-3.409 -3.456 -3.357 -3.368 -3.449 -3.492 -3.492 -3.4938 -3.438	1.635 1.707 1.644 1.586 1.636 1.646 1.670 1.634 1.653 1.653		740.763 740.764 740.766 740.767 740.769 740.770 740.771 740.772	10.055 10.061 10.065 10.049	13.441 13.477 13.499 13.502 13.446 13.446 13.444 13.467 13.535	11.823 11.843 11.871 11.804 11.848 11.817 11.797 11.819	-1.768 -1.782 -1.806	-3.386 -3.416 -3.434 -3.453 -3.399 -3.384 -3.417 -3.496	1.618 1.634 1.628 1.698 1.598 1.627 1.670 1.716 1.619
$\begin{array}{c} 740.610\\ 740.613\\ 740.613\\ 740.614\\ 740.616\\ 740.620\\ 740.620\\ 740.621\\ 740.623\\ 740.623\\ 740.624\end{array}$	10.060 10.091 10.090 10.078 10.097 10.097 10.072 10.069 10.031 10.049	13.498 13.517 13.483 13.515 13.488 13.488 13.494 13.494 13.495 13.435 13.488	11.845 -1.785 11.818 -1.727 11.851 -1.798 11.838 -1.748 11.834 -1.766 11.814 -1.717 11.927 -1.715 11.813 -1.764 11.755 -1.764 11.838 -1.789	-3.438 -3.426 -3.393 -3.437 -3.351 -3.427 -3.427 -3.429 -3.404 -3.439	1.653 1.699 1.633 1.645 1.671 1.634 1.667 1.627 1.627 1.640 1.650		740.778 740.779 740.781 740.782 740.784 740.785 740.785 740.787 740.788 740.788 740.789 740.789	10.220 10.308 10.325 10.247 10.214 10.138 10.194 10.153 10.206	13.747 13.754 13.826 13.738 13.640 13.629 13.674	12.021 12.046 12.118 12.03? 11.993 11.948 11.986	-1.801 -1.738 -1.793 -1.790 -1.779 -1.810 -1.792	-3.527 -3.446 -3.501 -3.491 -3.426 -3.491	1.726 1.708 1.708 1.701 1.681 1.681 1.683 1.726 1.671
740.625 740.627 740.629 740.631 740.631 740.632 740.634 740.635 740.638 740.638	$\begin{array}{c} 10.089\\ 10.055\\ 10.066\\ 10.081\\ 10.077\\ 10.046\\ 10.072\\ 10.061\\ 10.061\\ 10.031\\ 10.067\end{array}$	13.478 13.456 13.433 13.445 13.512 13.450 13.418 13.532 13.418 13.532 13.543	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.389 -3.401 -3.367 -3.364 -3.435 -3.404 -3.404 -3.446 -3.471 -3.411 -3.476	1.665 1.614 1.612 1.689 1.610 1.598 1.731 1.731 1.590 1.683		740.792 740.793 740.795 740.796 740.796 740.799 740.800 740.804 740.806 740.807	10.179 10.131 10.120 10.073 10.049 10.033 10.042 10.017 10.047 10.026	13.617 13.5393 13.528 13.496 13.455 13.455 13.465 13.465 13.472 13.425 13.425	11.961 11.907 11.895 11.880 11.815 11.825 11.820 11.798 11.832 11.810	1.782 -1.776 -1.775 -1.807 -1.762 -1.778 -1.781 -1.785 -1.785 -1.784	-3.438 -3.405 -3.473 -3.455 -3.447 -3.422 -3.423 -3.455 -3.378 -3.378 -3.410	1.656 1.629 1.698 1.648 1.681 1.630 1.645 1.674 1.593 1.626
7400.0347 7400.0347 7400.03389 7400.03589 7400.0359 7400.03589 7400.03599 7400.03599 7400.03599 7400.03599 740	10.104 10.104 10.176 10.025 10.024 10.021 10.021 10.021 10.021 10.021 10.021 10.021 10.021 10.0221 10.0222 10.0221 10.0221 10.0222 10.0231		$\begin{array}{c} 11.954 & 1.784\\ 11.863 & 1.784\\ 11.863 & 1.784\\ 11.789 & 1.771\\ 11.789 & 1.771\\ 11.789 & 1.771\\ 11.795 & 1.768\\ 11.793 & 1.768\\ 11.793 & 1.768\\ 11.793 & 1.768\\ 11.793 & 1.768\\ 11.794 & 1.738\\ 11.819 & 1.814\\ 11.762 & 1.745\\ 11.7764 & 1.772\\ 11.7764 & 1.772\\ 11.7786 & 1.772\\ 11.7786 & 1.772\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7786 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.762\\ 11.7788 & 1.773\\ 11.829 & 7.732\\ 11.855 & 1.774\\ 11.855 & 1.774\\ 11.855 & 1.774\\ 11.853 & 1.774\\ 11.853 & 1.774\\ 11.853 & 1.774\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.838 & 1.778\\ 11.833 & 1.764\\ 11.833 & 1.764\\ 11.833 & 1.774\\ 11.833 & 1.764\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.833 & 1.774\\ 11.823 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\ 11.832 & 1.774\\$		1.87190 9541 87190 9541 1.77715062 1.768541 1.77715062 1.76753162501 1.76753162501 1.767777788 1.76762501 1.767777788 1.76773162501 1.7677878 1.76773162501 1.7677878 1.7677878 1.7677878 1.7677878 1.7677878 1.7677878 1.767788 1.7677878 1.767788 1.767788 1.767788 1.76788 1.76788 1.76788 1.77777788 1.777788 1.777788 1.777788 1.777788 1.777788 1.777788 1.777788 1.777788 1.777788 1.7777788 1.777788 1.7777788 1.77777788 1.77777788 1.77777788 1.777777788 1.777777788 1.777777788 1.777777788 1.777777777777777777777777777777777777		740.6698 9 0022277389012 335689899 00222773467 00222773467 0022773456 9 0022773457 0022777440027784002773457 0022773457 0022777440022773457 0022773457 0022773457 0022773457 002277747400227774740022777474002277747400227774740022777474002277744002277747400227774400227774400227774400227774400227774400227780022777440022778002277744002277800227774400227774400227774400227774747477474774747747747477474774747747	0.0233 0.0633 0.0463 0.0463 0.0463 0.0463 0.0463 0.0464 0.0463 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 0.1533 0.1533 0.1643 0.1643 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644 0.1644	1314 1314 <td< td=""><td>111.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.</td><td>1 1</td><td></td><td>1.644 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1</td></td<>	111.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1 1		1.644 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1.6444 1

JD	v1	v2	¥3	v ₁₋₃	v1-2	v ₂₋₃	1	JD	v1	¥3	٧3	v1-1	¥1-2	¥2-3
740.809 740.810 740.811 740.811 740.813 740.813 740.814 740.814 740.816 740.817 740.818	$10.016 \\ 10.054 \\ 10.059 \\ 10.059 \\ 10.059 \\ 10.052 \\ 10.052 \\ 10.052 \\ 10.050 \\ 10.050 \\ 10.069 \\ 10.023 \\ 1$	13.513 13.513 13.513 13.513 13.501	11 882 11,882 11,882 11,887 11,863 11,823 11,823 11,826 11,815	-1.823 -1.823 -1.805 -1.811 -1.773 -1.757 -1.792	-3.421 -3.448 -3.454 -3.454 -3.454 -3.459 -3.439 -3.439 -3.422 -3.411 -3.450	1.629 1.657 1.631 1.631 1.614 1.628 1.629 1.654 1.658		741.621 741.622 741.625 741.628 741.630 741.630 741.631 741.631 741.632 741.634	10.010 10.068 10.043 10.072 10.126 10.043 10.015 10.015 10.036 10.085	13.471 13.439 13.452 13.452 13.471 13.505 13.500 13.500 13.510 13.453	11.812 11.786 11.809 11.764 11.779 11.870 11.781 11.781 11.821 11.821 11.769	-1.802 -1.718 -1.764 -1.692 -1.653 -1.827 -1.766 -1.785 -1.785 -1.684	-3.461 -3.371 -3.307 -3.3299 -3.3399 -3.34855 -3.4485 -3.474 -3.368	1.659 1.653 1.643 1.707 1.726 1.565 1.719 1.719 1.689 1.684
740.820 740.821 740.822 740.825 740.825 740.827 740.829 740.831 740.831 740.832	10.042 10.052 10.067 10.082 10.066 10.081 10.067 10.053 10.048 10.053	13.482 13.455 13.535 13.465 13.461 13.487 13.503 13.546	11.834 11.865 11.843 11.852 11.852	-1.781	-3.388 -3.430 -3.388 -3.453 -3.399 -3.450 -3.420 -3.420 -3.420 -3.423	1.609 1.648 1.590 1.692 1.613 1.612 1.634 1.639 1.717 1.656		741.635 741.636 741.638 741.638 741.641 741.642 741.643 741.645 741.646 741.646	10.047 10.158 9.982 10.032 10.059 10.070 10.048 10.033 10.050 10.050	13.491 13.483 13.453 13.450 13.450 13.446 13.391 13.391 13.391 13.391	11.818 11.787 11.781 11.812 11.772 11.755 11.842 11.797 11.781 11.781	-1.771 -1.629 -1.799 -1.780 -1.713 -1.685 -1.794 -1.764 -1.731 -1.731	-3.444 -3.325 -3.471 -3.449 -3.3763 -3.3763 -3.341 -3.341 -3.341	1.673 1.696 1.672 1.669 1.671 1.549 1.691 1.699 1.610
740.835 740.836 740.839 740.840 740.840 740.842 740.845 740.845 740.845 740.845	10.045 10.058 10.065 10.050 10.035 10.035 10.042 10.044 10.066	13.486 13.462 13.462 13.506 13.512 13.464 13.459 13.496	11.823 11.815 11.825 11.840 11.840 11.828 11.819 11.828 11.844 11.809	-1.790 -1.779 -1.793	-3.424 -3.414 -3.421 -3.421 -3.401 -3.471 -3.462 -3.422 -3.415 -3.430	1.646 1.657 1.661 1.622 1.622 1.678 1.678 1.693 1.636 1.615 1.687		741.649 741.651 741.653 741.653 741.654 741.656 741.659 741.660 741.661	10.03? 10.049 10.086 10.051 10.059 10.051 10.051 10.063 10.063 10.047 10.065	13.414 13.389 13.440 13.437 13.494 13.465 13.429 13.363 13.450 13.547	11.766 11.805 11.779 11.834 11.768 11.773 11.834 11.834 11.772 11.808	-1.734 -1.756 -1.693 -1.783 -1.709 -1.722 -1.762 -1.762 -1.735 -1.725 -1.743	-3.382 -3.354 -3.354 -3.386 -3.435 -3.414 -3.357 -3.403 -3.403 -3.482	1.648 1.584 1.661 1.603 1.722 1.595 1.595 1.568 1.678 1.739
740.849 740.851 740.853 740.853 740.854 740.874 740.875 740.875 740.877 740.873	$10.066 \\ 10.027 \\ 10.048 \\ 10.028 \\ 10.041 \\ 10.024 \\ 10.034 \\ 10.039 \\ 10.039 \\ 10.053 \\ 1$	13.507 13.424 13.448 13.448 13.448 13.448 13.451 13.451 13.454 13.454	11.828 11.813 11.831 11.809 11.809 11.808 11.820 11.809 11.818 11.826	-1.762 -1.786 -1.783 -1.781 -1.766 -1.784 -1.786 -1.770 -1.789 -1.773	-3.441 -3.397 -3.400 -3.439 -3.405 -3.424 -3.424 -3.425 -3.381	1.679 1.611 1.617 1.658 1.639 1.640 1.631 1.636 1.636 1.608		741.663 741.664 741.666 741.667 741.668 741.670 741.670 741.671 741.672 741.674 741.675	10.096 10.073 10.045 10.065 10.060 10.052 10.053 10.053 10.029 10.029 10.101	13.390 13.484 13.426 13.419 13.436 13.427 13.471 13.469 13.470 13.375	11.796 11.794 11.835 11.775 11.772 11.812 11.833 11.790 11.763	-1.700 -1.721 -1.790 -1.712 -1.760 -1.726 -1.726 -1.761 -1.662	-3.294 -3.381 -3.354 -3.376 -3.375 -3.413 -3.437 -3.441 -3.274	1.594 1.690 1.591 1.644 1.664 1.615 1.687 1.687 1.680 1.680 1.612
740.881 740.882 740.883 740.885 740.886 740.888 740.889 740.890 740.892 740.893	10.039 10.031 10.057 9.922 10.053 10.053 10.033 10.026 10.041 10.037	13.446 13.418 13.434 13.434 13.464 13.459 13.459 13.441 13.508 13.443	11.783 11.797 11.782 11.807 11.721 11.815 11.815 11.799 11.796 11.806 11.808	-1.744 -1.766 -1.749 -1.750 -1.799 -1.762 -1.766 -1.770 -1.765 -1.771	-3.407 -3.387 -3.415 -3.421 -3.421 -3.411 -3.426 -3.4267 -3.4067	1.663 1.621 1.626 1.627 1.622 1.649 1.660 1.645 1.602 1.635		741.675 741.678 741.681 741.681 741.684 741.684 741.685 741.688 741.688 741.688	10.101 10.034 10.036 10.036 10.071 10.060 10.041 10.062 10.029 10.019	13.375 13.330 13.447 13.394 13.438 13.424 13.492 13.492 13.413 13.354 13.354	11.763 11.769 11.804 11.761 11.815 11.784 11.802 11.802 11.803 11.821 11.787	-1.662 -1.723 -1.725 -1.725 -1.744 -1.724 -1.761 -1.761 -1.792 -1.768	-3.274 -3.284 -3.355 -3.367 -3.364 -3.364 -3.351 -3.351 -3.351 -3.341	1.612 1.561 1.643 1.623 1.623 1.620 1.690 1.610 1.533 1.573
740.895 740.897 740.897 740.902 740.903 740.904 740.906 740.906 740.909 740.909	$\begin{array}{c} 10.041\\ 10.021\\ 10.025\\ 10.031\\ 10.045\\ 10.056\\ 10.0563\\ 10.028\\ 10.048\\ 10.030\\ \end{array}$	13.409 13.435 13.434 13.434 13.431 13.437 13.457 13.465 13.465 13.469	11.820 11.809 11.816 11.816 11.795 11.839 11.818 11.802 11.808 11.802	-1.779 -1.788 -1.791 -1.785 -1.750 -1.783 -1.775 -1.774 -1.760 -1.772	-3.368 -3.414 -3.409 -3.403 -3.446 -3.381 -3.394 -3.437 -3.380 -3.439	1.589 1.626 1.618 1.696 1.598 1.639 1.663 1.663 1.667		741.691 741.692 741.693 741.695 741.696 741.697 741.699 741.700 741.703	$10.075 \\ 10.047 \\ 10.059 \\ 10.092 \\ 10.017 \\ 10.052 \\ 10.049 \\ 10.049 \\ 10.073 \\ 10.073 \\ 10.042 \\ 1$	13.482 13.410 13.428 13.470 13.483 13.436 13.376 13.376 13.516 13.500	11.806 11.786 11.771 11.722 11.805 11.801 11.772 11.773 11.792 11.766	-1.731 -1.739 -1.712 -1.690 -1.788 -1.749 -1.723 -1.771 -1.771 -1.779 -1.724	-3.407 -3.369 -3.378 -3.378 -3.384 -3.384 -3.327 -3.445 -3.445 -3.458	1.676 1.624 1.657 1.688 1.635 1.635 1.604 1.674 1.724 1.734
740.910 740.911 740.915 740.915 740.915 740.917 740.918 740.920 740.921 740.922	$\begin{array}{c} 10.027\\ 10.027\\ 10.061\\ 10.015\\ 10.048\\ 10.015\\ 10.037\\ 10.037\\ 10.039\\ 10.030\\ \end{array}$	13.477 13.443 13.434 13.440 13.481 13.512 13.484 13.484 13.516 13.445	11.802 11.789 11.808 11.818 11.841 11.809 11.797 11.805 11.777 11.774	-1.775 -1.762 -1.747 -1.775 -1.826 -1.761 -1.782 -1.782 -1.768 -1.758 -1.758 -1.758 -1.758	-3.450 -3.416 -3.373 -3.397 -3.466 -3.464 -3.464 -3.419 -3.497 -3.497 -3.415	1.675 1.654 1.622 1.622 1.640 1.703 1.637 1.679 1.739 1.671		741.723 741.724 741.725 741.725 741.728 741.730 741.731 741.732 741.734 741.735	$10.027 \\ 10.038 \\ 10.070 \\ 10.044 \\ 10.039 \\ 10.013 \\ 10.021 \\ 10.050 \\ 10.024 \\ 10.040 \\ 1$	13.420 13.440 13.396 13.485 13.365 13.443 13.414 13.427 13.327 13.353	11.818 11.768 11.776 11.820 11.782 11.764 11.789 11.757 11.759 11.756	-1.791 -1.730 -1.706 -1.776 -1.743 -1.751 -1.768 -1.707 -1.735 -1.716	-3.393 -3.402 -3.411 -3.326 -3.430 -3.430 -3.393 -3.303 -3.303 -3.313	1.602 1.672 1.620 1.665 1.583 1.679 1.625 1.670 1.568 1.597
	$\begin{array}{c} 10.020\\ 10.043\\ 10.043\\ 10.016\\ 10.036\\ 10.036\\ 10.034\\ 10.013\\ 10.035\\ 10.035\\ 10.033\end{array}$	13.465 13.431 13.439 13.464 13.473 13.467 13.435 13.435 13.435 13.471 13.442	11.807 11.793 11.791 21.809 11.805 11.801 11.802 11.788 11.796 11.795	-1.787 -1.750 -1.748 -1.793 -1.765 -1.765 -1.768 -1.768 -1.761 -1.761	-3.445 -3.388 -3.396 -3.448 -3.437 -3.431 -3.431 -3.401 -3.401 -3.436 -3.409	1.658 1.638 1.655 1.668 1.666 1.633 1.647 1.675 1.675		741.738 741.739 741.740 741.742 741.742	$10.038 \\ 10.049 \\ 10.020 \\ 10.022 \\ 10.057 \\ 10.014 \\ 10.027 \\ 10.060 \\ 10.040 \\ 10.011 \\ 1$	13.385 13.423 13.432 13.363 13.465 13.395 13.430 13.430 13.438 13.413	11.788 11.772 11.771 11.790 11.772 11.762 11.821 11.801 11.797 11.803	-1.750 -1.723 -1.751 -1.768 -1.715 -1.748 -1.794 -1.741 -1.757 -2.792	-3.347 -3.374 -3.343 -3.410 -3.310 -3.310	1.597 1.651 1.592 1.642 1.595 1.703 1.574 1.629 1.671 1.610
741.607 741.609	10.035 10.034 10.063 9.998 10.078 10.078 10.057 10.034 10.061 10.094	13.430 13.458 13.548 13.520 13.450 13.423 13.423 13.423 13.398 13.398 13.397 13.491	11.809 11.798 11.792 11.804 11.828 11.791 11.793 11.793 11.719 11.832	-1.774 -1.764 -1.729 -1.806 -1.750 -1.713 -1.728 -1.759 -1.658 -1.738	394 392 392 392 392 392 392 392 392 392 392	1.621 1.660 1.756 1.622 1.632 1.631 1.605 1.678 1.659		741.752 741.753 741.754 741.756 741.756 741.759 741.760 741.761 741.763		13.454 13.493 13.458 13.458	11.773 11.794 11.773 11.777 11.803 11.768 11.768 11.766 11.802 11.778	-1.747 -1.750 -1.741 -1.732 -1.768 -1.716 -1.738	-3.428 -3.449 -3.426 -3.443 -3.436 -3.413 -3.392	1.681 1.699 1.685 1.711 1.668 1.697 1.654 1.654 1.698 1.698
[11.013	$\begin{array}{c} 10.031 \\ 10.031 \\ 10.040 \\ 10.043 \\ 10.072 \\ 10.021 \\ 10.060 \\ 10.049 \\ 10.068 \\ 10.010 \end{array}$	13.429 13.499 13.494 13.430 13.3888 13.525 13.433 13.435 13.471	11.834 11.834 11.817 11.827 11.820 11.800 11.780 11.824 11.820 11.812	$\begin{array}{c} -1.803\\ -1.803\\ -1.777\\ -1.784\\ -1.749\\ -1.779\\ -1.720\\ -1.775\\ -1.752\\ -1.802\end{array}$	-3.398 -3.398 -3.454 -3.387 -3.314 -3.367 -3.465 -3.384 -3.367 -3.461	1.595 1.677 1.603 1.565 1.588 1.745 1.609 1.615 1.659		741.766 741.767 741.768 741.770 741.771 741.773 741.774	10.042	13.415 13.426 13.489 13.375 13.375 13.328 13.384 13.499 13.454	11.789 11.790 11.739 11.784 11.784	-1.747 -1.752 -1.685	-3.373 -3.388 -3.435 -3.442 -3.323 -3.364 -3.341 -3.341	1.626 1.636 1.750 1.715 1.582 1.634 1.657 1.657 1.607 1.721 1.673

																_
								1							¥23	
	741.784 741.785 741.785	10.036 10.006 10.046 10.051	13.471 13.435 13.442 13.448 13.476 13.412 13.424 13.436 13.436 13.475 13.505	11.798	-1.732	-3.406 -3.442 -3.430 -3.361 -3.394 -3.413	1.609 1.678 1.665 1.650 1.676		759.611	9.540 9.553 9.532 9.519		11.365	-1.812 -1.803 -1.813 -1.805 -1.874 -1.799	-3.452 -3.492 -3.486 -3.339 -3.396 -3.429 -3.507	1.645 1.680 1.683 1.526 1.55 1.55 1.708 1.716	
	741.796 741.797 741.799 741.800 741.802 741.802 741.804 741.804 741.806	10.019 10.010 10.003 10.124 10.024 9.999 10.028	13.405 13.379 13.420 13.361 13.437 13.442 13.406 13.387	11.765 11.801 11.789 11.769 11.779 11.768 11.768 11.766 11.781	-1.718 -1.782 -1.779 -1.766 -1.655 -1.744 -1.767 -1.753	-3.360 -3.410 -3.313 -3.313 -3.418 -3.407 -3.359	1.640 1.578 1.631 1.592 1.658 1.674 1.640 1.606		759.625 759.627 759.628 759.628 759.629	9.552 9.535 9.535 9.542 9.533	13.074 12.953 12.981 12.969 12.966 13.121	11.360 11.387 11.371 11.373 11.385 11.385	-1.844 -1.832 -1.826 -1.839 -1.796 -1.824 -1.796 -1.830	-3.410 -3.442 -3.422 -3.569 -3.529 -3.497 -3.500	1.566 1.610 1.596 1.581 1.773 1.705 1.701 1.670	
	741.811 741.813 741.814 741.815 741.817 741.818 741.818 741.820	10.029 10.029 10.030 10.058 10.010 10.039		11.771 11.780 11.781 11.738 11.782 11.765	-1.740 -1.725 -1.720 -1.742 -1.751 -1.751 -1.680 -1.772 -1.726 -1.774	-3.391 -3.357 -3.284 -3.340 -3.369	1.641 1.655 1.684 1.640 1.606 1.604 1.568 1.568		759.635 759.636 759.638 759.639 759.641 759.642 759.644	9.546 9.556 9.552 9.539 9.530 9.555 9.530	12.928 12.999 13.040 13.031 13.036 13.037	11.383 11.357 11.374 11.360 11.360	-1.828 -1.804 -1.784 -1.796 -1.821 -1.794 -1.826	-3.443	1.666 1.671 1.700 1.702 1.701 1.619 1.616	
771 3338 9.5322 1.3341 1.3427 1.771 <td< td=""><th>741.825 741.826 741.827 741.828 741.828 741.832 741.832 741.834 741.835</th><td>10.040 10.037 10.035 10.026 10.015 10.034 10.048 10.048</td><td>13.460 13.380 13.432 13.465 13.433 13.434 13.436 13.431 13.438</td><td>11.769 11.764 11.782 11.753 11.797</td><td>1.752 -1.756 -1.761 -1.734 -1.738 -1.767 1.719 -1.749 -1.749</td><td>-3.340 -3.395 -3.430 -3.407 -3.407 -3.402 -3.402 -3.383 -3.398</td><td>1.584 1.634 1.696 1.669 1.652 1.633 1.652</td><td></td><td>759.647 759.649 759.650 759.652 759.653 759.653 759.656 759.658</td><td>9.527 9.529 9.529 9.529 9.529 9.529 9.529 9.532 9.532 9.532</td><td>13.034 13.044 12.964 13.024 13.142 13.005 12.984 12.998</td><td>11.351 11.351 11.334 11.335 11.340 11.368 11.352 11.360</td><td>-1.824 1.805 -1.795 -1.811 -1.828 1.820 -1.822 1.817</td><td>-3.51? -3.435 -3.484 -3.613 -3.465 -3.425 -3.446</td><td>1.693 1.630 1.689 1.802 1.637 1.655 1.624 1.624</td><td></td></td<>	741.825 741.826 741.827 741.828 741.828 741.832 741.832 741.834 741.835	10.040 10.037 10.035 10.026 10.015 10.034 10.048 10.048	13.460 13.380 13.432 13.465 13.433 13.434 13.436 13.431 13.438	11.769 11.764 11.782 11.753 11.797	1.752 -1.756 -1.761 -1.734 -1.738 -1.767 1.719 -1.749 -1.749	-3.340 -3.395 -3.430 -3.407 -3.407 -3.402 -3.402 -3.383 -3.398	1.584 1.634 1.696 1.669 1.652 1.633 1.652		759.647 759.649 759.650 759.652 759.653 759.653 759.656 759.658	9.527 9.529 9.529 9.529 9.529 9.529 9.529 9.532 9.532 9.532	13.034 13.044 12.964 13.024 13.142 13.005 12.984 12.998	11.351 11.351 11.334 11.335 11.340 11.368 11.352 11.360	-1.824 1.805 -1.795 -1.811 -1.828 1.820 -1.822 1.817	-3.51? -3.435 -3.484 -3.613 -3.465 -3.425 -3.446	1.693 1.630 1.689 1.802 1.637 1.655 1.624 1.624	
741.852 10.011 13.418 11.762 1.751 3.407 1.6569 759.674 9.528 13.077 11.345 -1.826 -3.577 1.6671 741.852 10.010 13.499 11.765 -1.765 -3.469 1.724 -3.467 1.6672 741.852 10.010 13.499 11.765 -1.765 -3.469 1.724 -3.466 1.672 -7.852 -3.469 1.6672 -7.852 -3.469 1.6672 -7.852 -3.469 1.6672 -7.852 -1.839 -3.4571 1.6672 -7.852 -1.839 -3.4571 1.6672 -7.852 -1.839 -3.4571 1.6672 -7.852 -1.839 -3.4571 1.6672 -7.856 -7.856 -7.856 -7.856 -1.839 -3.4571 1.6672 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -1.839 -1.839 -1.757 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856 -7.856	741.839 741.841 741.842 741.844 741.845 741.845 741.848 741.848 741.848	10.022 10.009 10.034 10.017 10.023 10.024 10.041 10.025	13.384 13.460 13.355 13.493 13.355 13.401 13.401 13.536	11.785 11.802 11.782 11.773 11.783 11.769 11.750 11.796	-1.756 -1.760 -1.745 -1.709 -1.771	-3.451 -3.321 -3.476 -3.332 -3.377 -3.455 -3.511	1.599 1.658 1.573 1.720 1.572 1.632 1.746 1.740		759.663 759.665 759.665 759.667 759.669 759.670 759.671	9.518 9.519 9.541 9.531 9.524 9.529 9.530	12.953 12.971 12.957 12.984	11.358 11.360 11.341 11.351 11.351 11.346 11.358	-1.837 -1.824 -1.823 -1.832 -1.810 -1.815	-3.474 -3.470 -3.435 -3.452 -3.457 -3.457 -3.524 -3.422	1.637 1.646 1.620 1.620 1.638 1.638 1.6237 1.6237 1.580	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	741.853 741.854 741.856 741.857 741.877 741.878 741.878	10.024 10.010 10.001 10.000 10.016 10.023	13.490 13.499 13.494 13.416	11.762 11.781 11.765 11.772 11.784 11.750 11.767 11.757 11.757 11.752	-1.751 -1.755 -1.755 -1.771 -1.784 -1.734 -1.744 -1.744 -1.743 -1.743 -1.747	-3.466 -3.489 -3.493 -3.416 -3.466 -3.425 -3.438	1.709 1.734 1.722 1.632 1.732 1.681 1.728 1.670		759.675 759.677 759.678	9.528 9.526 9.530 9.529 9.525 9.527 9.537 9.537	13.097 12.965 12.969 12.960 12.972 13.013 12.977 12.988	11.345 11.354 11.343 11.348 11.348	-1.825 -1.826 -1.817 -1.818	-3.577 -3.437 -3.443 -3.430 -3.443 -3.443	1.752 1.611 1.626 1.612 1.643 1.672	
741.897 10.003 13.442 11.763 -1.745 -3.419 1.674 741.897 10.0007 13.442 11.763 -1.745 -3.468 1.701 759.700 9.674 13.158 11.482 -1.808 -3.484 1.676 741.901 10.0007 13.443 11.766 -1.771 -3.326 1.556 759.702 9.689 13.126 11.508 -1.827 -3.445 1.618 741.901 10.0076 13.444 11.780 -1.771 -3.326 1.556 759.702 9.689 13.226 11.522 -1.800 -3.577 1.664 759.705 9.689 13.226 11.522 -1.800 -3.474 1.664 741.907 10.0007 13.4422 1.771 -3.3280 1.644 759.709 9.762 13.226 11.522 -1.800 -3.474 1.664 741.907 10.0001 13.4422 1.775 -3.4320 1.707 759.709 9.764 13.181 11.571 -1.807 -3.417 1.610 741.917 1.3184 11.764 1.7749 -3.4501	741.886 741.889 741.891 741.892 741.892 741.893 741.893	10.014 10.007 10.008 9.996 9.985 10.003 10.004	13.451 13.403 13.443 13.435 13.436 13.571 13.395	11.731 11.737 11.762 11.784 11.748 11.764 11.734 11.752 11.745 11.760	-1.748 -1.777 -1.740 -1.768	-3.439 -3.451 -3.568 -3.391	1.689 1.619 1.695 1.671 1.702 1.819 1.650		759.686 759.691 759.691 759.691 759.693 759.693 759.695 759.695 759.697	9.690 9.675 9.659 9.659 9.668 9.668	13.044 13.127 13.072 13.115 13.179 13.169 13.066	11.356 11.373 11.499 11.524 11.500 11.491 11.499 11.516 11.512	-1.837 -1.847 -1.809 -1.849 -1.826 -1.832 -1.825 -1.848 -1.825 -1.824	-3.430 -3.467 -3.354 -3.452 -3.398 -3.398 -3.505 -3.501 -3.378	1.593 1.620 1.545 1.603 1.572 1.624 1.680 1.683 1.554	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	741.901 741.902 741.903 741.907 741.909 741.910 741.911 741.911	10.000 10.017 10.026 10.013 10.001	13.424 13.402 13.492	11.768 11.767 11.788 11.780 11.764 11.761	-1.751 -1.751 -1.760	-3.468 -3.327 -3.398 -3.389 -3.491 -3.482 -3.482 -3.450 -3.375	1.556 1.644 1.638 1.731			9.681 9.689 9.662 9.762 9.761 9.751 9.764	13.126 13.089 13.239 13.236	11 800		-3.484 -3.445 -3.400 -3.577 -3.474 -3.400	1.676 1.518 1.597 1.777 1.664 1.599 1.545 1.610 1.599	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	741.918 741.920 741.922 741.922 741.924 741.925 741.925 741.927	10.021 10.011 10.024 10.032 9.995 9.996	13.419 13.408 13.449	11.751 11.782 11.764	1.735	-3.426 -3.401 -3.374 -3.390 -3.509	1.668 1.626 1.691 1.629 1.598 1.598 1.567 1.628 1.729		759.713 759.714 759.716 759.717 759.718 759.719 759.721 759.721 759.722	9,946 9,946 9,942 9,943 9,933 9,855 9,855 9,855 9,855 9,855 9,855	13.474	11.749 11.795 11.765 11.763 11.763 11.655 11.655 11.676 11.671 11.700	-1.803 -1.849 -1.837 -1.831 -1.802 -1.802 -1.825 -1.818 -1.854	-3.528 -3.412 -3.428 -3.544 -3.441 -3.442 -3.460 -3.475 -3.416	1.725 1.563 1.591 1.767 1.610 1.640 1.635 1.657 1.562	
	741.935 741.936 741.938 741.939 741.940 741.942	10.010 9.998 10.010 9.984 10.005 9.992 10.032	13.468 13.422 13.541 13.511 13.480 13.532 13.492 13.430 13.398	11.775 11.780 11.759 11.764	-1.766 -1.764 -1.769 -1.765 -1.815 -1.815 -1.793 -1.758	-3.531 -3.513 -3.470 -3.548 -3.487 -3.438	1.642 1.782 1.747 1.705 1.733 1.730			9.850 9.835 9.842 9.836 9.836 9.8358 9.852	13.306 13.265 13.289 13.397 13.348 13.247 13.284 13.257 13.283 13.287	11.661 11.695 11.655 11.655 11.656 11.652 11.652 11.666	-1.811 -1.860 -1.823 -1.819 -1.820 -1.794 -1.824 -1.833	-3.456 -3.430 -3.447 -3.561 -3.512 -3.389 -3.462	1.645 1.570 1.624 1.742 1.692 1.595 1.638 1.591 1.569	

53

TABLE 3 (continued) epoch = JD + 2419000.0

JD	¥1	¥2	V3	v1-3	v ₁₋₂	V2-3	ľ	l	JD	¥3	¥2	v,	V1-3	¥1-2	v2-3
759.742 759.743 759.743 759.745 759.746 759.747 759.749 759.750	9.845 9.841 9.851 9.833 9.858 9.820 9.820 9.820 9.820 9.830 9.805 9.805 9.822	13.262 13.263 13.344 13.300 13.257 13.189 13.251 13.215 13.268 13.290	11.656 11.628 11.653 11.636 11.691 11.663 11.663 11.662 11.618 11.618 11.621	-1.811 -1.787 -1.803 -1.833 -1.833 -1.833 -1.833 -1.833 -1.854 -1.832 -1.813 -1.799	-3.417 -3.422 -3.493 -3.467 -3.399 -3.425 -3.385 -3.563 -3.468	1.606 1.635 1.691 1.664 1.566 1.571 1.553 1.750 1.669			759.872 759.874 759.875 759.877 759.878 759.878 759.881 759.881 759.883 759.884 759.884	9.817 9.817 9.811 9.838 9.830 9.836 9.836 9.814 9.834 9.819	13.336 13.313 13.306 13.289 13.304 13.373 13.3786 13.3786 13.3724 13.324 13.417	11.611 11.630 11.671 11.695 11.6559 11.6559 11.662 11.613 11.619	-1.794 -1.813 -1.860 -1.823 -1.865 -1.823 -1.827 -1.827 -1.818 -1.779 -1.800	-3.519 -3.495 -3.495 -3.451 -3.451 -3.558 -3.558 -3.558 -3.598 -3.598	1.725 1.683 1.635 1.628 1.609 1.714 1.714 1.710 1.711 1.798
759.764	9.828 9.829 9.839 9.825 9.825 9.825 9.825 9.825 9.825 9.813 9.831 9.831 9.841 9.841	13.312 13.270 13.333 13.280 13.223 13.199 13.318 13.268 13.309	11.651 11.684 11.654 11.690 11.652 11.652 11.658 11.651 11.666 11.676	-1.823 -1.845 -1.830 -1.858 -1.858 -1.828 -1.820 -1.820 -1.826 -1.832	-3.484 -3.431 -3.509 -3.455 -3.401 -3.374 -3.436 -3.487 -3.487 -3.428 -3.465	1.661 1.586 1.679 1.590 1.543 1.54? 1.551 1.66? 1.602 1.633			759.886 759.888 759.889 759.891 759.892 759.893 759.893 759.895 759.898 759.898 759.898	9.834 9.840 9.878 9.836 9.836 9.783 9.827 9.833 9.827 9.833 9.827	13.313 13.313 13.299 13.290 13.300 13.388 13.389 13.336 13.281 13.281 13.332	11.649 11.664 11.626 11.647 11.591 11.682 11.673 11.671 11.664	-1.815 -1.832 -1.836 -1.790 -1.821 -1.808 -1.860 -1.840 -1.855 -1.837	-3.479 -3.473 -3.471 -3.454 -3.474 -3.605 -3.570 -3.503 -3.505	1.664 1.635 1.635 1.653 1.797 1.710 1.663 1.610 1.668
759.768 759.770 759.771	9.831 9.833 9.829 9.816 9.814 9.832 9.835 9.847 9.835 9.847 9.832	13.355 13.313 13.334 13.269 13.231 13.224 13.224 13.301 13.246 13.288	11.641 11.667 11.664 11.671 11.684 11.654 11.680 11.695 11.688	-1.810 -1.841 -1.831 -1.842 -1.868 -1.840 -1.840 -1.845 -1.848 -1.856	-3.524 -3.487 -3.501 -3.410 -3.415 -3.432 -3.432 -3.432 -3.432 -3.439 -3.456	1.714 1.646 1.670 1.598 1.547 1.570 1.642 1.621 1.550 1.600			759.900 759.902 759.903 759.906 759.906 759.906 759.907 759.907 759.910 759.911	9.836 9.836 9.836 9.8355 9.8355 9.8325 9.821 9.927 9.879 9.879 9.844	13.309 13.259 13.321 13.341 13.341 13.384 13.326 13.386 13.341 13.358	11.627 11.677 11.642 11.645 11.641 11.692 11.634 11.698 11.698 11.710 11.667	-1.795 -1.861 -1.829 -1.809 -1.806 -1.867 -1.793 -1.793 -1.771 -1.831 -1.823	-3.477 -3.443 -3.469 -3.485 -3.459 -3.459 -3.459 -3.459 -3.459 -3.459 -3.514	1.682 1.582 1.676 1.700 1.592 1.686 1.688 1.731 1.691
759.782	9.829 9.830 9.820 9.824 9.823 9.834 9.834 9.834 9.834 9.829 9.827 9.827 9.827	13.249 13.231 13.279 13.361 13.330 13.315 13.347 13.336 13.336 13.337	11.687 11.666 11.670 11.628 11.641 11.646 11.669 11.668 11.668 11.668	-1.858 -1.836 -1.850 -1.814 -1.818 -1.812 -1.835 -1.835 -1.854 -1.837	-3.420 -3.459 -3.547 -3.438 -3.496 -3.481 -3.481 -3.481 -3.510	1.562 1.565 1.609 1.733 1.620 1.684 1.684 1.564 1.568 1.668			759.913 759.914 759.916 759.917 759.920 759.920 759.921 759.922 759.922 759.922 759.922	9.932 9.855 9.838 9.8435 9.8435 9.8435 9.8435 9.843 9.827 9.848 9.830 9.830	13.453 13.379 13.379 13.315 13.353 13.353 13.353 13.343 13.343 13.360	11.785 11.691 11.672 11.682 11.682 11.664 11.701 11.658 11.658	-1.853 -1.8365 -1.829 -1.829 -1.829 -1.821 -1.821 -1.8715 -1.824 -1.824 -1.84?	-3.521 -3.521 -3.527 -3.527 -3.520 -3.510 -3.430 -3.495 -3.495 -3.530	1.668 1.679 1.678 1.633 1.633 1.536 1.556 1.556 1.680 1.632
759.793 759.795 759.796 759.797 759.799 759.800 759.802	9.811 9.820 9.827 9.824 9.814 9.829 9.829 9.829 9.829 9.829 9.826 9.819 9.832	13.496 13.289 13.231 13.231 13.318 13.323 13.589 13.589 13.286 13.286 13.327	11.609 11.665 11.673 11.673 11.648 11.636 11.517 11.656 11.656 11.659	-1.798 -1.845 -1.835 -1.839 -1.834 -1.807 -1.839 -1.839 -1.837 -1.827	-3.685 -3.469 -3.469 -3.504 -3.504 -3.460 -3.460 -3.460 -3.495	1.887 1.624 1.649 1.558 1.670 2.072 1.621 1.620 1.668			759.927 759.928 759.929 759.931 759.932 759.932 759.935 759.935 759.938 759.938	9.837 9.828 9.838 9.840 9.810 9.810 9.828 9.828 9.828 9.828 9.824 9.831	13.350 13.430 13.345 13.354 13.302 13.385 13.230 13.355 13.355 13.337	11.667 11.599 11.656 11.656 11.646 11.647 11.673 11.664 11.641 11.645	-1.830 -1.771 -1.824 -1.828 -1.828 -1.807 -1.845 -1.845 -1.8407 -1.814	-3.502 -3.502 -3.504 -3.514 -3.514 -3.545 -3.5425 -3.5425 -3.5522 -3.506	1.683 1.831 1.683 1.698 1.656 1.738 1.738 1.705 1.705 1.715 1.692
759.806 759.807 759.809 759.810 759.811 759.813 759.813	9.829 9.835 9.835 9.822 9.815 9.845 9.826 9.837 9.835	13.287 13.374 13.304 13.309 13.379 13.340 13.311 13.315 13.435 13.238	11.657 11.662 11.662 11.668 11.639 11.653 11.667 11.674 11.615 11.684	-1.828 -1.797 -1.827 -1.846 -1.823 -1.808 -1.841 -1.841 -1.841 -1.795 -1.849	-3.458 -3.5409 -3.5469 -3.563 -3.563 -3.485 -3.485 -3.475 -3.403	1.630 1.743 1.642 1.641 1.740 1.687 1.644 1.644 1.644 1.820 1.554			759.942 759.942 759.943 759.945 759.946 759.948 759.948 759.948 759.950 759.950 759.950	9.836 9.838 9.833 9.836 9.836 9.836 9.836 9.839 9.829 9.829 9.829 9.841 9.837	13.388 13.329 13.318 13.331 13.470 13.387 13.282 13.272 13.371 13.346	11.669 11.682 11.671 11.659 11.614 11.696 11.684 11.684 11.684 11.649	-1.833 -1.844 -1.838 -1.823 -1.778 -1.857 -1.867 -1.845 -1.845 -1.801 -1.812	-3.552 -3.4991 -3.4995 -3.4955 -3.4955 -3.4953 -3.4533 -3.4533 -3.509	1.719 1.647 1.647 1.856 1.712 1.586 1.588 1.588 1.588 1.588 1.588 1.588
759.820 759.821 759.821 759.822 759.824 759.824 759.825 759.827 759.828	9.775 9.832 9.829 9.829 9.822 9.822 9.827 9.827 9.823 9.823 9.837	13.228 13.349 13.629 13.309 13.313 13.298 13.357 13.357 13.353 13.294 13.381	11.614 11.674 11.674 11.674 11.678 11.678 11.643 11.643 11.684 11.684	-1.839 -1.842 -1.765 -1.842 -1.860 -1.851 -1.819 -1.838 -1.854 -1.843	-3.453 -3.517 -3.800 -3.477 -3.487 -3.487 -3.533 -3.530 -3.530 -3.544	1.614 1.675 2.035 1.635 1.627 1.620 1.714 1.692 1.610 1.701			759.954 759.956 759.957 759.960 759.961 759.963 759.963 759.966 759.966 759.967	9.829 9.839 9.8357 9.8357 9.8329 9.8325 9.8325 9.8325 9.8321 9.832 9.832 9.832	13.300 13.354 13.388 13.388 13.387 13.352 13.357 13.357 13.325 13.325 13.342	11.627 11.653 11.653 11.674 11.629 11.617 11.639 11.639 11.670 11.644	-1.799 -1.826 -1.823 -1.837 -1.800 -1.779 -1.814 -1.798 -1.832 -1.812	-3.472 -3.5153 -3.5547 -3.5547 -3.560 -3.478 -3.4967 -3.510	1.673 1.689 1.730 1.723 1.723 1.721 1.664 1.698 1.655 1.658
759.832 759.834 759.835 759.836 759.836	9.826 9.848 9.853 9.866 9.823 9.817 9.817 9.841 9.837 9.836 9.836	13.325 13.292 13.346 13.340 13.351 13.295 13.363 13.3291 13.328 13.318	11.685 11.671 11.666 11.680 11.655 11.692 11.680 11.674 11.670 11.640	-1.859 -1.823 -1.813 -1.814 -1.832 -1.875 -1.837 -1.837 -1.837 -1.834 -1.816	-3.499 -3.493 -3.493 -3.528 -3.528 -3.522 -3.524 -3.492 -3.492 -3.491	1.640 1.621 1.680 1.660 1.696 1.693 1.683 1.617 1.658 1.678			759.969 759.970 759.971 759.974 759.974 759.975 759.977 759.978 759.978 759.979 759.978	9.8459 9.8399 9.8399 9.8346 9.8846 9.8845 9.8845 9.8845 9.8845 9.8845 9.8845 9.8845 9.8845	13.335 13.283 13.364 13.348 13.326 13.382 13.353 13.313 13.313 13.371 13.293	11.669 11.686 11.615 11.615 11.657 11.663 11.678 11.639 11.617 11.677	-1.824 -1.847 -1.804 -1.756 -1.823 -1.817 -1.833 -1.799 -1.729 -1.828	-3.490 -3.444 -3.525 -3.489 -3.492 -3.536 -3.508 -3.473 -3.526 -3.414	1.666 1.597 1.721 1.669 1.719 1.675 1.674 1.674 1.674 1.616
759.845 759.846 759.848 759.851 759.852 759.852 759.853 759.853 759.854	9.819 9.773 9.826 9.835 9.735 9.745 9.745 9.740 9.733 9.742 9.755	13.414 13.252 13.286 13.295 13.168 13.243 13.243 13.249 13.264 13.207 13.227	11.607 11.644 11.669 11.705 11.588 11.580 11.561 11.567 11.595 11.572	-1.788 -1.871 -1.843 -1.870 -1.857 -1.835 -1.821 -1.834 -1.853 -1.817	-3.595 -3.460 -3.460 -3.437 -3.438 -3.438 -3.438 -3.459 -3.465 -3.472	1.807 1.608 1.617 1.590 1.580 1.663 1.658 1.658 1.697 1.612 1.655			759.982 759.983 759.984 759.985 759.985 759.986 759.988	9.839 9.838 9.841 9.847 9.838 9.832 9.832 9.849 9.832 9.844 9.854 9.854 9.832	13.299 13.322 13.406 13.504 13.317 13.368 13.334 13.334 13.326 13.319 13.394	11.668 11.693 11.662 11.652 11.652 11.652 11.653 11.658 11.658 11.658 11.661	-1.829 -1.855 -1.821 -1.750 -1.814 -1.811 -1.821 -1.814 -1.846 -1.829	-3.460 -3.484 -3.565 -3.657 -3.479 -3.536 -3.485 -3.482 -3.482 -3.465 -3.562	1.631 1.629 1.744 1.965 1.725 1.665 1.664 1.619 1.619
759.861	9.752 9.829 9.833 9.831 9.831	13.232 13.304 13.371 13.293 13.356 13.402 13.642 13.375	11.553 11.678	-1.801 -1.849	-3.480 -3.475 -3.538 -3.541 -3.559 -3.823 -3.523 -3.512 -3.455	$1.679 \\ 1.626 \\ 1.730 \\ 1.611 \\ 1.691 \\ 1.760 \\ 2.064 \\ 1.703 \\ 1.666 \\ 1.635 \\ 1.63$			759.995 759.996 759.998 759.999 759.999	9.818 9.827 9.820 9.845 9.850 9.845 9.845 9.842 9.848 9.854 9.854 9.832	13.348 13.323 13.366 13.377 13.384 13.316 13.398 13.434 13.473 13.345		-1.800 -1.860 -1.804 -1.804 -1.835 -1.835 -1.800 -1.796 -1.765 -1.828	-3.500 -3.496 -3.526 -3.532 -3.534 -3.534 -3.556 -3.586 -3.619 -3.513	1.700 1.636 1.722 1.726 1.750 1.634 1.756 1.750 1.634 1.756 1.790 1.854 1.685

											<u> </u>			
JD	¥1	V2	٧э	v1-3	v1-2	v2-3	1	JD	v,	V2	٧J	¥1-3	v ₁₋₂	¥2-3
760.009 760.010 760.013 760.013 760.014 760.015 760.015 760.018 760.018 760.020 760.021	9.846 9.857 9.855 9.855 9.855 9.855 9.854 9.840 9.840 9.844	13.264 13.336 13.243 13.376 13.456 13.471 13.304 13.386 13.452	11.689 11.674 11.738 11.659 11.655 11.657 11.657 11.686 11.674 11.643	-1.842 -1.831 -1.829 -1.801 -1.803 -1.803 -1.840 -1.834 -1.799	-3.418 -3.493 -3.386 -3.526 -3.5016 -3.517 -3.458 -3.546 -3.508	1.576 1.662 1.505 1.697 1.800 1.726 1.814 1.618 1.712 1.809		760.696 760.699 760.702 760.703 760.704 760.704 760.704 760.707 760.709 760.709	9.978 10.185 9.961 10.193 10.079 10.025 9.946 9.946 9.895 9.889	13.463 13.957 13.456 13.5783 13.5783 13.5783 13.526 13.426 13.361 13.453	11.777 12.108 11.782 11.971 11.916 11.839 11.677 11.675 11.678	-1.799 -1.923 -1.821 -1.778 -1.837 -1.814 -1.731 -1.730 -1.789	-3.475 -3.772 -3.495 -3.499 -3.478 -3.478 -3.4590 -3.466 -3.564	1.676 1.849 1.674 1.62 1.662 1.664 1.671 1.859 1.686 1.775
760.022 760.024 760.025 760.028 760.030 760.030 760.032 760.033 760.033	9.852 9.847 9.850 9.850 9.853 9.853 9.853 9.835 9.835 9.835 9.835	13.605 13.291 13.331 13.259 13.401 13.305 13.784 13.342 13.309 13.423	11.625 11.699 11.707 11.645 11.645 11.692 11.696 11.713 11.651	-1.773 -1.852 -1.857 -1.852 -1.838 -1.838 -1.838 -1.857 -1.861 -1.816	-3.753 -3.444 -3.481 -3.451 -3.551 -3.451 -3.503 -3.503 -3.457 -3.588	1.939 1.597 1.560 1.613 1.613 2.139 1.646 1.596 1.596 1.772		760.712 760.713 761.651 761.651 761.653 761.653 761.653 761.665 761.662 761.662	9.900 9.908 10.002 9.884 9.979 10.018 9.626 9.633 9.648 9.648	13.370 13.4669 13.4659 13.4556 13.456 13.1879 13.222 13.222	11.732 11.703 11.847 11.761 11.808 11.835 11.489 11.489 11.485 11.467	-1.832 -1.845 -1.8477 -1.8297 -1.8677 -1.8652 -1.8552 -1.819 -1.819	-3.470 -3.5587 -3.557 -3.450 -3.554 -3.554 -3.5574 -3.5574 -3.574	1.638 1.763 1.812 1.587 1.621 1.851 1.697 1.694 1.755 1.755
760.035 760.036 760.038 760.591 760.591 760.593 760.593 760.593 760.597 760.599	9.853 9.860 9.881 9.727 9.4769 10.035 9.814 9.784	13.424 13.503 13.467 13.575 13.575 13.339 14.031 13.735 13.306	11.659 11.630 11.64? 11.701 11.531 11.249 11.60? 11.892 11.650 11.613	-1.806 -1.777 -1.787 -1.820 -1.804 -1.839 -1.838 -1.857 -1.836 -1.829	-3.650 -3.607 -3.641 -3.8485 -3.560 -3.9921 -3.921 -3.522	1.765 1.873 1.820 1.821 2.044 1.726 1.732 2.139 2.085 1.693		761.663 761.664 761.666 761.666 761.667 761.670 761.671 761.672 761.674	9.814 9.809 9.804 9.794 9.801 9.793 9.793 9.793 9.775 9.801 9.810	13.285 13.224 13.229 13.373 13.373 13.373 13.373 13.373 13.373 13.397 13.397 13.206	11.657 11.616 11.616 11.618 11.618 11.618 11.627 11.607 11.607 11.650	-1.843 -1.847 -1.812 -1.827 -1.827 -1.821 -1.838 -1.838 -1.806 -1.840	-3.471 -3.416 -3.579 -3.579 -3.5579 -3.554 -3.596 -3.396	1.628 1.569 1.833 1.752 1.705 1.758 1.716 1.528 1.790 1.556
760.600 760.602 760.603 760.606 760.606 760.607 760.614 760.614 760.614 760.614	9.756 9.811 9.750 9.835 9.835 9.890 9.811 9.799 9.796	13.445 13.450 13.33 13.285 13.255 13.255 13.255 13.297 13.297 13.232 13.254	11.575 11.589 11.507 11.699 11.600 11.600 11.600 11.643 11.605	-1.819 -1.778 -1.800 -1.807 -1.864 -1.818 -1.819 -1.849 -1.844 -1.809	-3.689 -3.584 -3.585 -3.585 -3.585 -3.585 -3.419 -3.496 -3.496 -3.498 -3.558	1.870 1.861 1.784 1.778 2.023 1.680 1.637 1.589 1.749		761.675 761.676 761.679 761.681 761.682 761.682 761.684 761.684 761.685 761.685	9.798 9.811 9.800 9.782 9.782 9.782 9.782 9.889 9.8882 9.8881	13.281 13.198 13.282 13.269 13.300 13.229 13.203 13.203 13.279 13.356	11.625 11.676 11.689 11.627 11.595 11.652 11.598 11.683 11.735 11.688	-1.827 -1.878 -1.878 -1.827 -1.813 -1.876 -1.876 -1.871 -1.853 -1.807	-3.483 -3.421 -3.469 -3.518 -3.518 -3.4486 -3.394 -3.497 -3.475	1.656 1.522 1.593 1.642 1.705 1.577 1.670 1.520 1.524 1.668
760.616 760.617 760.620 760.622 760.623 760.624 760.624 760.625 760.627 760.629	9.792 9.784 9.796 9.807 9.803 9.803 9.999 9.975 9.949 10.043	13.371 13.423 13.313 13.403 13.312 13.539 13.392 13.423 13.735 13.488	11.601 11.600 11.593 11.611 11.649 11.581 11.625 11.625 11.820 11.714 11.897	-1.809 -1.816 -1.797 -1.804 -1.848 -1.778 -1.825 -1.825 -1.765 -1.854	-3.579 -3.539 -3.517 -3.596 -3.511 -3.736 -3.548 -3.786 -3.445	1.770 1.823 1.720 1.792 1.663 1.958 1.767 1.603 2.021 1.591		761.688 761.689 761.691 761.692 761.693 761.693 761.693 761.693 761.695 761.695	9.883 99.88998 99.888998 99.888888 99.888888 99.888888 99.88888 99.88888 99.8888 99.8888 99.8888 99.988 99.999 99.999 99.999	13.321 13.260 13.268 13.275 13.268 13.289 13.323 13.323 13.323 13.323 13.3237 13.373	11.719 11.732 11.719 11.749 11.730 11.711 11.687 11.744 11.757 11.706	-1.831 -1.859 -1.8526 -1.851 -1.840 -1.840 -1.840 -1.878 -1.878 -1.878 -1.836	-3.433 -3.387 -3.387 -3.380 -3.380 -3.436 -3.436 -3.436 -3.436 -3.503	1.602 1.528 1.656 1.519 1.540 1.578 1.636 1.556 1.480 1.667
760.630 760.631 760.632 760.634 760.634 760.635 760.638 760.638 760.639 760.639	10.210 10.042 9.856 9.781 9.747 9.729 9.729 9.829 10.254 9.786 9.764	13,745 13,593 13,424 13,323 13,5 13,299 13,299 14,075 14,075 13,424 13,406	12.082 11.901 11.716 11.582 11.560 11.529 11.529 11.578 11.578 11.562	1.872 1.869 1.860 1.801 1.801 1.800 1.697 1.792 1.798	3.535 3.5551 3.568 3.5542 -3.570 3.570 3.570 -3.638 -3.642	1.663 1.692 1.708 1.741 1.770 1.685 2.174 1.846 1.844		761.696 761.693 761.699 761.701 761.701 761.704 761.704 761.704 761.709	9.8275 99.9883 99.98870 99.88870 99.88870 99.88870 99.88870 99.88870	13.401 13.290 13.206 13.459 13.438 13.190 13.304 13.251 13.251	11.639 11.723 11.762 11.690 11.715 11.743 11.758 11.759 11.761	-1.812 -1.8359 -1.8502 -1.8502 -1.8455 -1.8645 -1.8579 -1.8579 -1.909	-3.574 -3.405 -3.503 -3.571 -3.568 -3.324 -3.324 -3.371 -3.371 -3.378	1.762 1.567 1.444 1.769 1.723 1.447 1.546 1.539 1.459 1.469
760.642 760.643 760.645 760.645 760.647 760.659 760.650 760.652 760.657	9.710 9.714 9.715 9.735 9.703 9.703 9.708 9.951 10.011	13.181 13.287 13.257 13.508 13.288 13.150 13.270 13.147 13.526 13.418	11.541 11.499 11.507 11.503 11.501 11.554 11.509 11.552 11.784 11.803	1.831 -1.789 -1.793 -1.788 -1.766 -1.850 -1.844 -1.833 -1.792	-3.471 -3.577 -3.543 -3.543 -3.553 -3.5467 -3.5639 -3.575 -3.575 -3.407	1.640 1.788 1.750 2.005 1.787 1.596 1.761 1.595 1.742 1.615		761.710 761.712 761.713 761.714 761.714 761.714 761.717 761.717 761.719 761.720	99999999999999999999999999999999999999	13.3283 13.283 13.2871 13.3271 13.351 13.317 13.317	11.740 11.742 11.743 11.699 11.693 11.705 11.709 11.757 11.689 11.687	-1.863 -1.863 -1.873 -1.873 -1.823 -1.821 -1.834 -1.884 -1.816	-3.404 -3.445 -3.495 -3.473 -3.473 -3.436 -3.444 -3.446 -3.446	1.541 1.561 1.540 1.572 1.655 1.655 1.655 1.557 1.560 1.624 1.630
760.659 760.660 760.660 760.663 760.663 760.665 760.665 760.665 760.665	9.927 9.856 9.810 9.754 9.7747 9.7755 9.7759 9.737 9.826	13.482 13.259 13.407 13.375 13.324 13.428 13.405 13.326 13.298 13.448	11.699 11.700 11.609 11.558 11.541 11.613 11.596 11.546 11.541 11.605	-1.772 -1.844 -1.799 -1.804 -1.794 -1.835 -1.831 -1.787 -1.804 -1.779	-3.553 -3.597 -3.621 -3.650 -3.550 -3.561 -3.561 -3.561 -3.562	1.783 1.559 1.798 1.817 1.783 1.815 1.809 1.780 1.780 1.780 1.787 1.843		761.721 761.723 761.724 761.725 761.727 761.728 761.729 761.731 761.734 761.734	9.8859 9.88574 99.88571 99.885717 99.88857 99.88857 99.88856 99.88567 99.99.88567	13.394 13.379 13.279 13.260 13.275 13.252 13.252 13.302 13.302 13.403	11.689 11.740 11.735 11.735 11.704 11.735 11.735 11.731 11.731 11.720 11.665	-1.833 -1.8557 -1.8551 -1.8551 -1.858 -1.8685 -1.8685 -1.868 -1.988	-3.538 -3.447 -3.420 -3.426 -3.419 -3.404 -3.425 -3.456 -3.456 -3.536	1.705 1.563 1.563 1.525 1.568 1.568 1.557 1.571 1.575 1.738
760.670 760.671 760.672 760.675 760.675 760.677 760.679 760.681 760.681	9.784 9.942 10.074 9.753 9.736 9.724 9.729 9.203 9.828	13.471 13.464 13.716 13.501 13.316 13.186 13.170 13.281 13.382 13.363	11.626 11.765 11.888 11.721 11.536 11.600 11.585 11.528 11.616 11.610	-1.842 -1.823 -1.814 -1.777 -1.783 -1.864 -1.861 -1.799 -1.813 -1.782	-3.687 -3.5642? -3.5557 -3.5550 -3.4452 -3.579 -3.579 -3.575	1.845 1.699 1.828 1.780 1.780 1.586 1.585 1.585 1.753 1.766 1.753		761.736 761.737 761.739 761.741 761.742 761.743 761.743 761.745 761.746 761.748	9.85594 9.885547 9.8885476 9.8885555 9.999.885555 9.999.885455 9.999.885555 9.999.885555 9.999.885555 9.999.999.885555 9.999.999.999.999.999.999.999.999.9	13.270 13.339 13.289 13.230 13.364 13.275 13.289 13.288 13.288 13.287 13.186	11.734 11.707 11.723 11.738 11.683 11.683 11.718 11.735 11.722 11.728 11.738 11.713	-1.885 -1.853 -1.864 -1.836 -1.862 -1.862 -1.863 -1.863 -1.863 -1.863 -1.885 -1.886	-3.421 -3.485 -3.430 -3.517 -3.517 -3.419 -3.427 -3.432 -3.432 -3.359	1.536 1.566 1.566 1.492 1.681 1.557 1.554 1.554 1.549 1.549 1.473
$\begin{array}{c} 760.684\\ 760.685\\ 760.686\\ 760.686\\ 760.689\\ 760.689\\ 760.689\\ 760.692\\ 760.691\\ 760.692\\ 760.693\\ 760.693\\ 760.693\end{array}$	9.817 9.826 9.900 9.890 9.895 9.907 9.909 9.909 9.909 9.914	13.432 13.269 13.331 13.430 13.473 13.421 13.462 13.462 13.476 13.513	11.600 11.653 11.734 11.703 11.703 11.723 11.676 11.700 11.740 11.738	-1.783 -1.827 -1.834 -1.813 -1.805 -1.816 -1.767 -1.792 -1.811 -1.825	-3.615 -3.443 -3.431 -3.540 -3.578 -3.578 -3.553 -3.553 -3.5652 -3.599	1.832 1.616 1.597 1.773 1.698 1.786 1.786 1.776 1.841 1.775		761.749 761.750 761.753 761.753 761.754 761.757 761.758 761.760 761.760 761.761	9.858 9.868 9.868 9.868 9.838 9.844 9.844 9.844 9.844 9.844 9.843 9.843 9.843	13.266 13.239 13.330 13.445 13.294 13.343 13.271 13.282 13.234 13.234 13.281	11.728 11.745 11.632 11.718 11.677 11.733 11.727 11.733 11.727 11.719 11.733	-1.870 -1.877 -1.823 -1.794 -1.850 -1.850 -1.83 -1.863 -1.880 -1.876 -1.885	-3.408 -3.371 -3.466 -3.607 -3.426 -3.499 -3.401 -3.435 -3.391 -3.433	1.538 1.494 1.643 1.813 1.576 1.666 1.555 1.555 1.515 1.548

epoch = JD + 2449000.0								
	v ₂₋₃ JD v ₁		V ₃₋₂ V ₂₋₃					
761.770 9.849 13.464 11.1667 -1.818 -3.615 1 761.771 9.848 13.212 11.706 -1.858 -3.364 1 761.772 9.843 13.222 11.706 -1.858 -3.364 1 761.772 9.845 13.292 11.732 -1.887 -3.447 1	.549 761.893 9.83 .737 761.895 9.83 .737 761.896 9.83 .525 761.998 9.83 .526 761.896 9.83 .768 761.909 9.82 .498 761.900 9.82 .506 761.902 9.83 .505 .761.903 9.83 .506 761.905 9.84 .505 .761.905 9.84 .506 .761.905 9.83 .505 .761.905 9.84 .500 .761.905 9.84	15 13.312 11.658 -1.823 4 13.352 11.672 -1.848 3 13.347 11.703 -1.848 3 13.347 11.703 -1.877 11 13.299 11.658 -1.827 (6 13.346 11.660 -1.864 11.645 -1.821 13.370 11.667 -1.816 13.331 11.645 -1.802 9 13.331 11.645 -1.802 9 13.331 11.645 -1.802 9 13.331 11.645 -1.802 13.458 -1.802 14.458 -1.802 14.458 -1.802 15.458 -1.802	-3.477 1.654 -3.528 1.680 -3.514 1.644 -3.468 1.641 -3.490 1.686 -3.490 1.686 -3.419 1.603 -3.419 1.603					
761.780 9.846 13.221 11.627 -1.713 -3.300 17.715 17.715 17.715 19.851 13.308 11.556 -1.555 -3.457 17.761.781 9.851 13.308 11.656 -1.555 -3.457 17.761.782 9.849 13.328 11.651 -1.802 -3.476 17.761.782 9.843 13.467 11.634 -1.791 -3.624 17.761.785 9.846 13.297 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.714 -1.868 -3.451 17.761.785 9.845 13.295 11.715 -1.868 -3.451 17.751.785 9.845 13.295 11.715 -1.868 -3.451 17.751.785 9.845 13.295 11.755 17.751 17.751.785 9.845 13.295 11.755 17.751 17.751.785 9.845 13.295 11.755 17.751 17.751.785 9.845 13.295 11.755 17.751 17.751.785 9.845 13.295 11.755 17.751 17.751.785 9.845 13.295 11.755 17.751 17.	.540 761.907 9.80 .533 761.909 9.83 .693 761.910 9.83 .618 761.912 9.83 .609 761.913 9.83 .652 761.913 9.87 .603 761.913 9.87 .677 761.915 9.84 .833 761.917 9.74	9 13.266 11.673 -1.864 5 13.353 11.654 -1.800 13.353 11.654 -1.800 13.353 11.666 -1.833 13.288 11.666 -1.833 13.289 11.666 -1.833 13.295 11.684 -1.836 13.295 11.684 -1.836 13.295 11.684 -1.836	-3.457 1.593 -3.508 1.699 -3.453 1.655 -3.455 1.622 -3.459 1.611 -3.467 1.637 -3.407 1.512 -3.574 1.741					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.707 761.919 9.86 .506 761.920 9.85 .655 761.921 9.85 .634 761.922 9.83 .637 761.924 9.84 .707 761.925 9.83 .700 761.925 9.83 .710 761.925 9.83 .730 761.929 9.84 .733 761.929 9.83 .733 761.931 9.83	33 13.412 11.650 -1.78 13.315 11.665 -1.80 27 13.284 11.647 -1.80 13.434 11.647 -1.79 31 33.311 11.647 -1.79 31 33.311 11.647 -1.844 81 33.294 11.628 -1.78 81 33.294 11.628 -1.76 91 33.331 11.635 -1.776 91 33.331 11.635 -1.776	3 -3.458 1.650 -3.432 1.637 -3.595 1.811 -3.595 1.811 -3.468 1.662 -3.543 1.669 -3.541 1.811					
761.803 9.854 13.451 11.627 -1.773 -3.597 1 761.804 9.869 13.243 11.722 -1.853 -3.374 1 761.804 9.844 13.256 11.715 -1.851 -3.374 1 761.805 9.826 13.512 11.616 -1.790 -3.666 1 761.807 9.848 13.492 11.655 -1.807 -3.644 1 761.809 9.870 13.346 11.659 -1.789 -3.476 1 761.809 9.870 13.346 11.659 -1.778 -3.544 1	.588 761.932 9.85 .562 761.334 9.84 .824 761.935 9.84 .521 761.936 9.84 .521 761.936 9.84 .521 761.939 9.85 .836 761.939 9.85 .837 761.941 9.84 .836 761.941 9.84 .837 761.942 9.84 .806 761.943 9.84 .806 761.943 9.85 .806 761.943 9.85	8 13.306 11.675 -1.817 9 13.290 11.653 -1.804 1 13.396 11.688 -1.804 1 13.311 11.647 -1.793 3 13.291 11.647 -1.793 3 13.3290 11.685 -1.842 2 13.326 11.645 -1.793 3 13.376 11.666 -1.797 8 13.305 11.612 -1.777 8 13.305 11.512 -1.575 8 13.575 8 13.575 8 13.575 8 15.575 8 15.5755 8 15.575 8 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
761.813 9.853 13.299 11.698 -1.845 -3.446 1 761.814 9.849 13.289 11.682 -1.833 -3.440 1 761.816 9.841 13.274 11.695 -1.854 -3.433 1 761.816 9.841 13.274 11.695 -1.854 -3.433 1	.601 761.946 9.86 .607 761.947 9.85 .579 761.947 9.85 .647 761.951 9.86 .655 761.951 9.86 .655 761.952 9.85 .844 761.953 9.85 .645 761.955 9.86 .613 761.936 9.85 .546 761.937 9.85 .542 761.950 9.85	7 13.318 11.682 -1.815 9 13.288 11.656 -1.790 13.308 11.656 -1.790 5 13.240 11.656 -1.833 1 13.393 11.617 -1.766 1 13.393 11.617 -1.766	-3.451 1.636 -3.429 1.632 -3.439 1.649 -3.375 1.542 -3.542 1.776 -3.497 1.688 -3.497 1.571 -3.477 1.678					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.581 761.960 9.84 .544 761.962 9.85 .555 761.963 9.85 .865 761.964 9.86 .804 761.966 9.84 .592 761.964 9.85 .592 761.967 9.85 .846 761.968 9.85 .660 761.970 9.83 .656 761.970 9.83	8 13.491 11.622 -1.774 3 13.260 11.700 -1.844 8 13.238 11.704 -1.846 8 13.292 11.710 -1.846 9 13.256 11.721 -1.872 9 13.256 11.677 -1.820 1 3.382 11.677 -1.820 1 3.392 11.677 -1.820	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.610 .710 .525 .525 .626 .718 .617 .689 .652 .652 .613							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	673 774 629 629 658 658 658 658 657 657 657							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.745 .616 .680 .577 .611 .9555 .955 .676 .634							
761.882 9.755 13.222 11.601 -1.846 -3.467 1 761.883 9.759 13.371 11.530 -1.771 -3.612 1 761.884 9.750 13.231 11.589 -1.839 -3.484 1 761.885 9.752 13.234 11.589 -1.839 -3.484 1 761.886 9.742 13.261 11.552 -1.801 -3.480 1 761.886 9.742 13.232 11.584 -1.832 -3.480 1 761.888 9.752 13.232 11.584 -1.832 -3.480 1 761.888 9.752 13.232 11.554 -1.801 -3.472 1 761.888 9.753 13.225 11.554 -1.801 -3.472 1 761.888 9.751 13.238 11.553 -1.801 -3.472 1 761.889 9.751 13.238 11.553 -1.801 -3.472 1 761.889 9.751 13.304 11.556 -3.491 1 761.889 9.753 13.304 11.556 -3.553 1	621 841 645 709 648 671 685 798 581							

56

Focusing problems often left the stellar images with a slightly distorted shape. A small flare, consistently from one side of the images, was often seen. In the case of the very bright HR 4646, this flare could extend up to 10 pixels from the centroid of the star image as focus drifted throughout the night. This required photometric apertures to be larger than optimal sizes. In the case of the present images, the stellar FWHM was about 4 pixels. This would correspond to an optimal aperture of approximately 7 pixels (see § 2.1.3.b). The apertures necessary were generally about twice this size, at 14-16 pixels. The effect of the flare is to involve more pixels under the stellar profile. Judging from the ruled-surface plot in Figure 9, n could be underestimated in equation (21) by ~ 20 pixels. Inserting n = 130 into equation (21), one finds that this increases the S/N by approximately 8%. That is, the presence of the flare increases the uncertainty in the observations by ~ $0.^m0006$.

The idealized analysis of CCD photometry in § 2.1.3.b did not include the noise due to atmospheric scintillation. An estimate of the contribution to noise due to scintillation per star, σ_{scint} , (in mag (min)⁻¹) was estimated using an expression found in Kjeldsen and Frandsen (1992).

$$\sigma_{\rm scint} = 0.^{m} 0058 \left(\frac{\Delta t + t_{\rm d}}{\Delta t^{-1}}\right)^{1/2} D^{-2/3} \chi^{3/2} \exp\left(-h/8\,{\rm km}\right),\tag{43}$$

where D is the telescope diameter in meters, Δt is the integration time in minutes, t_d is the observational deadtime (including readout, etc.) h is the telescope elevation in km, and χ is the airmass. The elevation at Devon is approximately 0.8 km. The aperture of the telescope is 0.5 m. For the present work integrations were approximately 0.0083 min. The deadtime was 1-2 minutes. Assuming an airmass ~ 1, the above expression gives a value of σ_{scint} per star per observation of $\approx 0.^{m}013$ (0.^m0016 for the telescope stopped down to D = 0.35 m). An illustrative result follows from the noise analysis. Two limitations to the system are the dark current and readout noise. It is instructive to consider what would be the S/N for the deepest possible integration. Consider a three minute exposure of a 17^{th} magnitude star. This gives a dark count of

$$0.0 \times 4.9 \text{ e}^{-} \text{ s}^{-1} \times 180 \text{ s} = 4.4 \times 10^{4} \text{ e}^{-}.$$

The sky count rate is

$$480e^- \times 1/0.5 s^{-1} = 9.6 \times 10^2 e^- s^{-1}$$

The star count rate (for 0.5 s) can be found from Pogson's equation,

$$\epsilon_5/\epsilon_{20} = 2.512^{17-5} = 2.512^{12} \approx 6.3 \times 10^4$$

giving a count rate of approximately 170 e⁻ s⁻¹. Thus, equation (21) yields (including the ~ 4.4×10^4 e⁻ noise due to the dark current) a value of $S/N \approx 5$ for a 17^{th} magnitude star.

3.4 The Light Curve for HR 4646

A systematic difference in the differential magnitudes between the January and February observing runs was discovered and calculated as follows. The mean values of v_{2-3} (check - comparison), and v_{1-3} (program - comparison) were calculated for sections of the January and February data. For v_{2-3} , the January data have an average of $1.^m776$ while the February data have an average of $1.^m724$. The difference is $0.^m052$. This is consistent with the calculations of average values for v_2 (check) and v_3 (comparison). The average value of v_2 increases by $13.^m562 - 13.^m541 = 0.^m021$ and the average value for v_3 decreases by $11.^m786 - 11.^m817 = -0.^m031$. For the mean of v_{1-3} between phases 0.40 and 0.60 (unbroken redundant coverage), the January data have an average of $-1.^m776$, while the February data have an average of $-1.^m828$. The difference is again $0.^m052$. Thus to correct for this difference, the first set of data was lowered $0.^m052$ relative to the second. Unfortunately, there was no other star in the field bright enough to serve as a second check star. The shift may be due to variation in the comparison and check star. One would not suspect that the changes made in the system between the two runs, that is, the increasing of exposure length and the rotation of the camera, had a significant effect. The increase in exposure lengths from 0.35 seconds to 0.50 seconds decreased the effect of slow shutter speed. Rotating the camera between the two runs placed the stars in different positions on the detector. The combination of these two changes might account for some small difference in magnitudes between runs, but a more reasonable explanation is that one or both of the comparison stars is a photometric variable.

The data of three nights, January 20/21, January 22/23, and February 11/12 were rejected due to poor quality, ie. an abnormally high degree of scatter (~ 2×) in comparison with the rest. Poor sky conditions and occasional weak auroral activity were factors throughout these runs. A plot of the remaining data for magnitude differences between program and comparison, in the sense $v_1 - v_3$, is presented in Figure 16. The data points were phased with respect to the period given by Abt (1961) of 1.^d2709334 and computed from his epoch of maximum radial velocity T_0 =JD 2436758.245. Finally, the observations were averaged in 100 phase bins. The 99 normal flux points are presented in Table 4 and are plotted in Figure 17. The highest value for flux was arbitrarily set to 1.000. Note that the data, as presented, have not been transformed from the local to the standard UBV system.

An analysis of the internal errors in magnitudes was carried out in § 3.2. This included the effects of both processing noise (readout noise, truncation, averaging correction frames, zero-level correction, bias subtraction, and flat-fielding) and observational noise (scintillation noise and stochastic

Fig. 16 - Plot of the differential magnitudes $v_1 = v_3$ for the remaining 1030 data points. The data have been phased using Abt's period of 1.42709334.

 TABLE 4

 Photometric Data for HR 4646 Phased in 0.01 Phase Bins

	Phase	v ₁₋₃	$\sigma_{\rm s.d.}$	Flux	$\sigma_{s.d.}$	N	Phase	v ₁₋₃	$\sigma_{s.d.}$	Flux	$\sigma_{s.d.}$	N
0.101 1.854 0.032 0.994 0.029 10 0.510 1.817 0.029 0.964 0.023 10 0.030 1.831 0.034 0.974 0.031 10 0.520 1.827 0.022 0.974 0.020 8 0.440 1.814 0.027 0.959 0.025 8 0.540 1.818 0.029 0.962 0.026 10 0.050 1.841 0.027 0.983 0.025 11 0.550 1.821 0.026 0.957 0.023 9 0.060 1.841 0.028 0.965 0.025 9 0.560 1.810 0.016 0.955 0.012 8 0.100 1.816 0.029 0.960 0.026 13 0.600 1.819 0.026 0.022 18 0.110 1.819 0.027 0.940 0.025 8 0.630 1.827 0.026 0.963 0.021 18 0.110 1.819<	0.000	1.855	0.024	0.995	0.022	11	0.500	1.831	0.019	0.974	0.017	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.010	1.854	0.032	0.994								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.020	1.841	0.036	0.983	0.033							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.030	1.831	0.034	0.974	0.031							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.040	1.814	0.027	0.959	0.025							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.050	1.861	0.020	1.000	0.018							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.060	1.841	0.027	0.983	0.025	11	0.560					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.070	1.826	0.021	0.969	0.019	9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.080	1.821	0.028	0.965	0.025	9	0.580	1.810				
$ 0.100 \ 1.816 \ 0.029 \ 0.960 \ 0.026 \ 13 \ 0.600 \ 1.819 \ 0.024 \ 0.963 \ 0.022 \ 18 \ 0.120 \ 1.831 \ 0.033 \ 0.974 \ 0.030 \ 0.972 \ 0.072 \ 0.023 \ 18 \ 0.130 \ 1.793 \ 0.027 \ 0.940 \ 0.025 \ 8 \ 0.630 \ 1.827 \ 0.025 \ 0.970 \ 0.023 \ 18 \ 0.130 \ 1.808 \ 0.022 \ 0.951 \ 0.026 \ 9 \ 0.640 \ 1.819 \ 0.025 \ 0.963 \ 0.023 \ 18 \ 0.110 \ 0.820 \ 0.972 \ 0.023 \ 18 \ 0.110 \ 0.978 \ 0.000 \ 9 \ 0.023 \ 18 \ 0.150 \ 1.808 \ 0.022 \ 0.953 \ 0.020 \ 10 \ 0.650 \ 1.838 \ 0.011 \ 0.978 \ 0.009 \ 8 \ 0.160 \ 1.819 \ 0.025 \ 0.964 \ 0.023 \ 18 \ 0.110 \ 0.972 \ 0.010 \ 9 \ 0.010 \ 9 \ 0.110 \ 0.772 \ 0.010 \ 9 \ 0.010 \ 9 \ 0.110 \ 0.772 \ 0.010 \ 9 \ 0.010 \ 9 \ 0.110 \ 0.772 \ 0.010 \ 9 \ 0.011 \ 0.972 \ 0.010 \ 9 \ 0.010 \ 0.972 \ 0.010 \ 9 \ 0.110 \ 0.772 \ 0.011 \ 0.972 \ 0.010 \ 9 \ 0.110 \ 0.770 \ 0.023 \ 0.964 \ 0.020 \ 9 \ 0.100 \ 0.770 \ 0.111 \ 0.972 \ 0.011 \ 0.972 \ 0.010 \ 9 \ 0.110 \ 0.770 \ 0.955 \ 0.014 \ 6 \ 0.210 \ 1.796 \ 0.023 \ 0.938 \ 0.021 \ 3 \ 0.720 \ 1.810 \ 0.017 \ 0.955 \ 0.014 \ 6 \ 0.220 \ 1.790 \ 0.022 \ 0.940 \ 0.023 \ 9 \ 0.710 \ 1.810 \ 0.017 \ 0.955 \ 0.014 \ 6 \ 0.220 \ 1.790 \ 0.022 \ 0.940 \ 0.023 \ 0.023 \ 3 \ 0.730 \ 1.816 \ 0.007 \ 0.951 \ 0.006 \ 8 \ 0.023 \ 0.951 \ 0.025 \ 0.955 \ 0.023 \ 8 \ 0.750 \ 1.806 \ 0.017 \ 0.955 \ 0.013 \ 8 \ 0.270 \ 1.797 \ 0.021 \ 0.955 \ 0.023 \ 8 \ 0.750 \ 1.806 \ 0.017 \ 0.955 \ 0.013 \ 8 \ 0.270 \ 0.777 \ 0.955 \ 0.023 \ 0.023 \ 0.750 \ 0.800 \ 0.770 \ 0.800 \ 0.770 \ 0.951 \ 0.011 \ 9 \ 0.260 \ 0.777 \ 0.955 \ 0.023 \ 0.023 \ 0.750 \ 0.770 \ 0.777 \ 0.955 \ 0.023 \ 0.023 \ 0.750 \ 0.770 \ 0.777 \ 0.955 \ 0.$	0.090	1.822	0.019	0.966	0.017	8	0.590	1.812	0.026	0.957		
$ 0.110 \ 1.819 \ 0.029 \ 0.963 \ 0.026 \ 10 \ 0.610 \ 1.829 \ 0.024 \ 0.972 \ 0.072 \ 18 \\ 0.120 \ 1.831 \ 0.033 \ 0.974 \ 0.025 \ 8 \ \ 0.630 \ 1.827 \ 0.030 \ 0.970 \ 0.027 \ \ 18 \\ 0.130 \ 1.793 \ 0.027 \ 0.940 \ \ 0.025 \ \ 8 \ \ 0.630 \ \ 1.827 \ \ 0.025 \ \ 0.970 \ \ 0.023 \ \ 18 \\ 0.140 \ 1.805 \ \ 0.029 \ \ 0.951 \ \ 0.026 \ \ 9 \ \ 0.640 \ \ 1.819 \ \ 0.025 \ \ 0.963 \ \ 0.023 \ \ 18 \\ 0.150 \ 1.808 \ \ 0.022 \ \ 0.953 \ \ 0.020 \ \ 10 \ \ \ 0.650 \ \ 1.836 \ \ 0.010 \ \ 0.978 \ \ 0.009 \ \ 8 \\ 0.160 \ \ 1.819 \ \ 0.025 \ \ 0.963 \ \ 0.021 \ \ 1.829 \ \ 0.011 \ \ 0.970 \ \ 0.023 \ \ 18 \\ 0.170 \ \ 1.788 \ \ 0.052 \ \ 0.936 \ \ 0.024 \ 12 \ \ 0.660 \ \ 1.829 \ \ 0.011 \ \ 0.972 \ \ 0.010 \ \ 9 \\ 0.180 \ \ 1.779 \ \ 0.036 \ \ 0.928 \ \ 0.033 \ \ 10 \ \ 0.660 \ \ 1.829 \ \ 0.011 \ \ 0.975 \ \ 0.010 \ \ 9 \\ 0.170 \ \ 1.790 \ \ 0.036 \ \ 0.928 \ \ 0.033 \ \ 10 \ \ 0.700 \ \ 1.811 \ \ 0.017 \ \ 0.955 \ \ 0.016 \ \ 9 \\ 0.210 \ \ 1.790 \ \ 0.023 \ \ 0.938 \ \ 0.021 \ \ 3 \ 0.720 \ \ 1.806 \ \ 0.007 \ \ 0.955 \ \ 0.016 \ \ 8 \\ 0.230 \ \ 1.790 \ \ 0.023 \ \ 0.938 \ 0.021 \ \ 3 \ 0.720 \ \ 1.806 \ \ 0.007 \ \ 0.955 \ \ 0.016 \ \ \ 8 \\ 0.230 \ \ 1.790 \ 0.023 \ \ 0.938 \ 0.021 \ \ 3 \ 0.720 \ \ 1.806 \ \ 0.017 \ \ 0.955 \ \ 0.013 \ \ \ 0.025 \ 0.955 \ 0.023 \ \ 0.023 \ \ 0.022 \ \ 0.770 \ \ 1.806 \ \ 0.012 \ \ 0.955 \ 0.013 \ \ \ 0.011 \ \ 9 \ 0.260 \ 0.11 \ \ 0.955 \ \ 0.013 \ \ 0.011 \ \ 0.955 \ \ 0.011 \ \ 0.011 \ \ 0.955 \ 0$	0.100	1.816	0.029	0.960	0.026		0.600			0.963		
0.120 1.831 0.033 0.974 0.030 11 0.620 1.827 0.030 0.970 0.027 18	0.110	1.819	0.029	0.963	0.026	10	0.610	1.829	0.024			
$ 0.130 \ 1.793 \ 0.027 \ 0.940 \ 0.025 \ 8 \ \ 0.630 \ 1.827 \ \ 0.025 \ \ 0.970 \ \ 0.023 \ \ 18 \ 0.140 \ 1.805 \ \ 0.029 \ \ 0.951 \ \ 0.026 \ \ 9 \ \ 0.640 \ 1.819 \ \ 0.025 \ \ 0.963 \ \ 0.009 \ \ 8 \ \ 0.010 \ \ 0.778 \ \ 0.009 \ \ 8 \ \ 0.170 \ 1.888 \ \ 0.012 \ \ 0.978 \ \ 0.009 \ \ 8 \ \ 0.170 \ 1.888 \ \ 0.011 \ \ 0.978 \ \ 0.009 \ \ \ 8 \ \ 0.170 \ 1.788 \ \ 0.025 \ \ 0.936 \ \ 0.047 \ \ 9 \ \ 0.670 \ 1.829 \ \ 0.011 \ \ 0.978 \ \ 0.009 \ \ \ \ 8 \ \ 0.170 \ 1.779 \ \ 0.036 \ \ 0.925 \ \ 0.936 \ \ 0.047 \ \ 9 \ \ 0.670 \ 1.829 \ \ 0.011 \ \ 0.972 \ \ 0.010 \ \ \ \ \ 9 \ \ 0.170 \ 1.810 \ \ 0.017 \ \ 0.978 \ \ 0.029 \ \ \ 9 \ \ 0.110 \ \ 0.772 \ \ 0.010 \ \ \ 9 \ \ 0.021 \ \ 0.972 \ \ 0.936 \ \ 0.022 \ \ 0.936 \ \ 0.023 \ \ 0.939 \ \ 0.033 \ \ 0.680 \ \ 1.820 \ \ 0.011 \ \ 0.972 \ \ 0.955 \ \ 0.016 \ \ 9 \ \ 0.220 \ \ 1.790 \ \ 0.036 \ \ 0.928 \ \ 0.033 \ \ 0.720 \ \ 1.810 \ \ \ 0.017 \ \ 0.955 \ \ 0.016 \ \ 9 \ \ 0.220 \ 1.790 \ \ 0.023 \ \ 0.938 \ \ 0.021 \ \ 3 \ \ 0.720 \ \ 1.806 \ \ 0.077 \ \ 0.955 \ \ 0.013 \ \ 8 \ \ 0.230 \ \ 1.794 \ \ 0.036 \ \ 0.977 \ \ 0.955 \ \ 0.013 \ \ 0.023 \ \ 0.023 \ \ 0.011 \ \ 0.025 \ \ 0.013 \ \ 0.011 \ \ 0.011 \ \ 0.013 \ \ 0.011 \ \ 0.011 \ \ 0.011 \ \ 0.011 \ \ \ \ 0.023 \ \ 0.010 \ \ 0.023 \ \ $	0.120	1.831	0.033	0.974	0.030							
0.140 1.805 0.029 0.951 0.026 9 0.640 1.819 0.025 0.963 0.023 18 0.150 1.808 0.022 0.953 0.020 10 0.650 1.836 0.010 0.978 0.009 8 0.160 1.819 0.038 0.963 0.021 12 0.660 1.838 0.011 0.978 0.009 8 0.160 1.788 0.052 0.936 0.047 9 0.670 1.829 0.011 0.972 0.010 9 0.180 1.788 0.052 0.936 0.023 10 0.680 1.820 0.022 0.964 0.020 9 0.190 1.792 0.036 0.939 0.033 8 0.690	0.130	1.793	0.027	0.940	0.025	8	0.630	1.827	0.025			
0.150 1.808 0.022 0.953 0.020 10 0.660 1.836 0.010 0.978 0.009 8 0.160 1.819 0.038 0.963 0.034 12 0.660 1.838 0.011 0.980 0.010 8 0.170 1.788 0.052 0.936 0.047 9 0.670 1.829 0.011 0.972 0.010 9 0.180 1.788 0.025 0.936 0.023 10 0.680 1.320 0.022 0.964 0.020 9 0.190 1.792 0.036 0.929 0.033 8 0.690	0.140	1.805	0.029	0.951	0.026		0.640					
0.160 1.819 0.038 0.963 0.034 12 0.660 1.838 0.011 0.980 0.010 8 0.170 1.788 0.052 0.936 0.047 9 0.670 1.829 0.011 0.972 0.010 9 0.180 1.788 0.025 0.936 0.023 10 0.680 1.820 0.022 0.964 0.020 9 0.190 1.792 0.036 0.928 0.033 8 0.690	0.150	1.808	0.022	0.953	0.020	10	0.650	1.836	0.010			
0.170 1.788 0.052 0.936 0.047 9 0.670 1.829 0.011 0.972 0.010 9 0.180 1.788 0.025 0.936 0.023 10 0.680 1.820 0.022 0.964 0.020 9 0.190 1.792 0.036 0.928 0.033 8 0.690	0.160	1.819	0.038	0.963	0.034	12	0.660	1 838	0.011	0.980		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.788	0.052	0.936	0.047	9	0.670	1.829	0.011	0.972	0.010	
$ 0.190 \ 1.792 \ 0.036 \ 0.939 \ 0.033 \ 8 \ 0.690 \ $	0.180	1.788	0.025	0.936	0.023	10	0.680	1.820	0.022	0.964	0.020	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.036	0.939	0.033	8	0.690	-	-		-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.200	1.779	0.036	0.928	0.033	10	0.700	1.811	0.015	0.956	0.014	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.032	0.943	0.029	9	0.710	1.810	0.017	0.955	0.016	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.023	0.938	0.021	3	0.720	1.806	U.007	0.951	0.006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.036	0.941	0.033		0.730	1.815	J. O 35	0.959	0.032	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.022	0.940	0.020	9	0.740	1.804	0.014	0.950	0.013	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.250	1.810	0.025	0.955	0.023	8	0.750	1.806	0.012	0.951		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.260	1.797	0.017	0.944	0.016	8	0.760	1.810	0.017	0.955	0.016	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.777	0.021	0.926	0.019	10	0.770	1.805	0.025	0.951	0.023	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.280	1.791	0.023	0.938	0.021	8	0.780	1.806	0.015	0.951	0.014	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.290	1.805	0.024	0.951	0.022	8	0.790	1.822	0.016	0.966	0.015	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.300	1.790	0.029	0.938	0.026	12	0.800	1.813	0.011	0.958	0.010	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1.807	0.027	0.952	0.025	20	0.810	1.819	0.000	0.963	0.000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.320	1.809	0.022	0.954	0.020	15	0.820	1.794	0.000	0.941		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.330	1.808	0.018	0.953	0.016	20	0.830	1.830	0.016	0.973	0.015	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.340		0.011	0.960	0.010	12	0.840	1.813	0.011	0.958	0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.823	0.015	0.966	0.014	10	0.850	1.807	0.011	0.952	0.010	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.812	0.024	0.957	0.022	21	0.860	1.819	0.010	0.963	0.009	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.964	0.016	17	0.870	1.810	0.007	0.955	0.006	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.955	0.012	17	0.880	1.818	0.032	0.962	0.029	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.390	1.817	0.019	0.961	0.017	17	0.890	1.814	0.024	0.959	0.022	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.400			0.968	0.016	20						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.410	1.820	0.018	0.964	0.016	13	0.910	1.813	0.018	0.974	0.016	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.420	1.832	0.021	0.975	0.019	8	0.920	1.823	0.023	0.966	0.021	19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.430	1.840	0.021	0.982								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.440	1.833	0.021									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$0.480 \ 1.833 \ 0.017 \ 0.975 \ 0.016 \ 8 \ 0.980 \ 1.859 \ 0.027 \ 0.999 \ 0.025 \ 9$												
	0.490		0.025	0.982				1.859	0.027	0.999	0.025	9

Fig. 17 - Plot of normal points in 100 phase bins. Phasing is with respect to a period of 1.42709334.

noise due to sky and source photons). Estimates of the internal errors in magnitudes were calculated. The uncertainty in the differential magnitude $v_1 - v_3$, was found to be σ_{1-3} , was $0.^m 007$. The scintillation for one star per observation was estimated to be $\sigma_{\text{scint}} \approx 0.^m 013$. That is, the contribution of scintillation to the errors in observations should be $\sim 0.^m 02$. The sum of these sources is then between $0.^m 02$ and $0.^03$, which is consistent with the scatter in observations. Values for $\sigma_{\text{s.d.}}$ for the data averaged in 0.01 phase bins (approximately 20 minute intervals) are tabulated in Table 4. A typical value is $0.^m 025$.

No attempt was made to optimize the photometry carried out on the frames other than to omit dark-corrections during processing. As a final test to see if the scatter in the final light curve could be reduced, aperture photometry as per § 3.2.2 was carried out on groups of unprocessed frames. As expected, this did not decrease scatter. For example, the average of $v_1 - v_3$ for the 10 observations starting with the one depicted in Figure 11 yields a value of $\sigma_{s.d.} = 0.^m 045$.
4. MODELING OF HR 4646

4.1 A Simple Model

4 ... 1 Purely Ellipsoidal Variabilty

In order to create an approximate model of HR 4646 one can start by assuming that the observed photometric variability is due entirely to ellipsoidal distortion of the primary star. Since the two maxima of the light curve are not obviously asymmetric, reflection effects are neglected and the situation can be illustrated by a simple result due to Binnendijk (1960). The observed intensity I_{obs} is given by the following expression:

$$I_{obs} = I_{max} - I_0 \cos(2\theta), \tag{44}$$

where

$$I_0 = \frac{1}{2} \frac{15+u}{15-5u} (1+\tau) \varepsilon \sin^2 i, \qquad (45)$$

and where I_{max} is maximum light, u and τ are the limb and gravity darkening coefficients, ε is the ellipticity of the star and i is the orbital inclination. Thus, from the form of this expression one would expect the light curve of an ellipsoidal variable to vary predominantly as $\cos(2\theta)$.

4.1.2 Analysis of the Model

To test the model, that is, to see if the light curve varies predominantly as $cos(2\theta)$, a Fourier series of the form

$$I = \alpha_0 + \sum_{i=1,2} (\alpha_i \cos i\theta + \beta_i \sin i\theta), \qquad (46)$$

where θ is the orbital phase measured from the time of maximum velocity, was fitted to the data. Linear regression analysis was used to perform a Fourier least-squares fit for the first 4 terms. The coefficients along with standard errors are presented in Table 5. The residual error in the fit is roughly 0.010 in flux. The dominance of the $\cos 2\theta$ term supports the suggestion that HR 4646 is an ellipsoidal binary system. The Fourier series is plotted with the observations in Figure 18. Also note that the value of the Fourier fit at phase 0.0 and 1.0 is approximately 0.985 flux. Due to the high degree of scatter in the data this was taken as an estimate of the flux at maximum light. Thus, after this analysis 0.015 was added to the flux of each datum.

4.2 Spectroscopic Data

The most recent radial velocity data for HR 4646 are due to Abt (1961). HR 4646 was included in a campaign to determine the frequency of binaries among Am stars. Observations were made with the McDonald spectrograph in 1960 and yielded 9 radial velocities which are presented in Table 6 and are plotted with respect to phase in Figure 19. Abt states the errors in velocity to be on the order of a few km s⁻¹. Abt determined the spectral type for HR 4646 as A5 (Ca_{II} K), F2 (Hydrogen), and F5 IV (metals). The elements from Abt's orbital solution are also used in the present analysis and are presented in Table 7.

4.3 A More Sophisticated Model

4.3.1 Estimation of System Parameters

Typical values listed for the mass and radius of A5 stars from tables can be used to estimate for the primary star: $M_1 \approx 2.1 M_{\odot}$ and $R_1 \approx 1.7 R_{\odot}$ (Popper 1980, Wolff 1983) These can be used to constrain the values for the secondary via the mass function

$$f(M) = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2}.$$
(47)

Now, $sini \le 1$ which implies

$$f(M) \le \frac{M_2^3}{(M_1 + M_2)^2}.$$
(48)

TABLE 5

Fourier Coefficents for Photometric Variation of HR 4646

α_0	α_1	α_2	eta_1	eta_2
0.963	0.002	0.017	-0.006	-0.001

standard error of coefficients = ± 0.001

Fig. 18 - v flux observations of HR 4646 phased in bins of width 0.01. Phasing is with respect to a period of 1⁴.2709334 and from epoch date $T_0 =$ JD 2436758.245. The solid line represents a least-squares, fourth-order Fourier fit to the data.

JD	Phase	$v ({\rm km \ s^{-1}})$
744.783	0.408	-62.4
745.712	0.139	+44.3
746.612	0.847	+41.2
746.691	0.910	+54.1
747.639	0.655	-42.1
764.672	0.057	+63.2
765.636	0.815	+23.2
766.663	0.623	-51.4
771.650	0.547	-67.2

TABLE 6Radial velocities for HR 4646

epoch=JD+2436000.000

-

TAE	3LI	E 7
-----	-----	-----

Spectroscopic Orbital Elements of HR 4646

Element	Value
P	$1.^{d}2709334 \pm 0.0000007$
T_0	JD 2436758.245
γ	-2.2 km s^{-1}
K	69.8 km s ⁻¹
e	0.00 (assumed)
$a_1 sini$	$1.220 \times 10^{6} \text{ km}$
f(M)	$0.0449~M_{\odot}$

Fig. 19 - Radial velocities for HR 4646 plotted against phase. Phasing is with respect to a period of 1.42709934. A sine-wave approximation to the radial velocity curve with an amplitude of 69.8 km s⁻¹ is plotted along with the data (valid in the case of approximately circular orbits).

mainly varying, say, inclination i and secondary temperature T_2 , until an adequate fit is achieved.

4.3.2 Wilson-Devinney Code Applied to HR 4646

A version of the Wilson-Devinney (1971) DC light curve fitting routine, capable of simultaneously fitting both photometric fluxes and radial velocities, was applied to the data (see Martin, Hube, and Lyder 1990 and references therein for a discussion of this package). It was chosen due to its availability to the author and its commonly accepted use for modeling close binary systems. A solution is obtained by comparing the observed data to a set of synthetic light and radial velocity curves. DC then returns differential corrections to the preselected variable parameter set. Convergence is signalled by parameter corrections becoming smaller than their internal errors. The method followed was guided to a certain extent by that outlined in Martin, Hube, and Lyder (1990). There, the two stars of the ellipsoidal variable 42 Per are assumed to be tidally locked with synchronized rotational and orbital motion. In the present case the high degree of scatter in the photometric data and only small amount of radial velocity data made it difficult to constrain the variable parameters. Although convergence was not possible, a rough fit was obtained. The quality of the fit was judged by the output value for residual error. A typical value of 0.005 or less suggests that the DC code is converging to a solution.

4.3.2.a The Operation of LC

Binary Maker (Bradstreet 1993), which operates the LC, or light curve component of the Wilson-Devinney code, was used to generate several initial synthetic light curves to compare to the data. Some intuition was gained as to the appropriate range of values to use in an attempt to find a solution by a more quantitative method. Of particular interest were parameters which could not be estimated easily by other means, such as the potentials and the inclination. Typical curves that roughly fit the data had values for surface potential between approximately 3.0 and 4.0 and inclinations between 60° and 75° .

4.3.2.b The Operation of DC

The method adopted was as follows. The value for secondary temperature T_2 was set initially to 8500 K, the same value as the primary. Both of the potentials, Ω_1 and Ω_2 , were set initially to 3.5. The value of q was set to 0.34, both values for limb darkening to u = 0.50, and both values of gravity darkening to $\tau = 0.80$. At first, all the parameters were varied independently by $\pm \sim 20\%$. The inclination *i* was set initially at 75⁻ and variation of this parameter returned corrections which centered on 65°. The changes in secondary temperature T_2 and the potentials Ω_1 , Ω_2 reduced the returned value of residual error the most (from ≈ 0.09 to ≈ 0.07). It was decided that the values for T_2 , Ω_1 , and Ω_2 would mainly be the parameters that would be varied. The values from parameter set (51). as well as the inclination, were fixed. The values for T_2 , Ω_1 , and Ω_2 were varied in turn, each independently. At first they were varied by $\approx \pm 10\%$ (the amount and in the sense suggested by DC). Later, the changes decreased to $\approx \pm 5\%$. Periodically, one of the fixed parameters was varied by $\approx 10\%$ in order to see if this would change the situation. The returned residual errors did not increase drastically ($\leq \pm 0.01$). By this method, the residual error values dropped to approximately 0.025 after 25 iterations. The residual error values could not be reduced beyond this.

The final results are presented in Table 8. The uncertainties in each of the values are taken to be $\approx \pm 5\%$ since this was the amount the parameters were varied before iterations stopped. It should be noted that following the DC code, even if a solution is found, does not guarantee uniqueness.

Furthermore, it is a path-dependent process. The initial choices for variable parameters and their initial values will preclude a wide class of solutions. In this case, there may be many choices of values for any of the above parameters which could give a slightly lower value for the residual error.

4.3.3 Results / Analysis

Binary Maker was used to generate several light curves to illustrate the fit of the WD model to the data, As an example, the basic model in Table 8 is plotted for a few different choices of the parameters T_1 , T_2 , and *i*. In Figure 20, the data are plotted along with models with ranges of $6000K \leq T_1 \leq 10000K$ and $5000K \leq T_2 \leq 6000K$. Also, models with $60^{\circ} \leq i \leq 70^{\circ}$, are plotted in Figure 21. These suggest ranges of model parameter values which will fit the data within their scatter. Also, one can see the possibility of partial eclipses (deeper as inclination increases) being hidden by the large uncertainties in the data. In all typical models the secondary component has a diameter about half that of the primary and the photometric variation is principally due to ellipsoidal distortion of the primary component. A plot of the radial velocity data along with the WD synthetic radial-velocity curve (for the model described by the parameters in Table 8) is given in Figure 22. The preliminary model is then described by

$$i = 65 \pm 3^{\circ}$$

$$q = 0.34 \pm 0.02$$

$$T_{1} = 8.5 \pm 0.4 \times 10^{3} K$$

$$T_{2} = 5.0 \pm 0.3 \times 10^{3} K$$

$$R_{1} = 2.6 \pm 0.1 R_{\odot}$$

$$R_{2} = 1.0 \pm 0.1 R_{\odot}$$

$$a = 6.97 R_{\odot}$$
(52)

where the quoted errors in i, q, and T are the estimated 5% uncertainties from the application of the DC code. Judging from the fit of the resulting

Element	Value
i	65 ± 3 °
9	0.34 ± 0.02
T_1	$8500 \pm 400 \text{ K}$
T_2	$4500 \pm 200 \text{ K}$
Ω_1	3.1 ± 0.2
Ω_2	3.6 ± 0.2
$r_1(pole)$	$0.36 \pm 0.02 \ a$
r ₁ (point)	$0.39 \pm 0.02 \ a$
$r_1(side)$	$0.37 \pm 0.02 \ a$
r1(back)	$0.38 \pm 0.02 \ a$
$r_2(pole)$	$0.15 \pm 0.01 \ a$
$r_2(\mathrm{point})$	$0.15 \pm 0.01 \ a$
$r_2(side)$	$0.15 \pm 0.01 \ a$
$r_2(back)$	$0.15 \pm 0.01 \ a$

TABLE 8DC Output for HR 4646

light curves to the data, however, one would suspect that these formal errors underestimate to a great extent the actual range of uncertainty in the parameters. For example, the values of T are more likely to have uncertainties ~ 2000 K while the uncertainties in the values of i, q, and Ω are more likely ~ 10%. The range of values for primary radius corresponding to these uncertainties is $2.1R_{\odot} \leq R_1 \leq 2.6R_{\odot}$.

It should be again stressed that this model is only very weakly constrained. This is due to the availability of only a small amount of radial velocity data and the high degree of scatter in the photometric data. The model could be improved by higher quality multi-colour photometry, a greater amount of radial velocity data, and the possible detection of short eclipses. The latter, if present, would facilitate the modeling of the system by providing u geometric constraint on the radius of the secondary.

Fig 20 - The data are plotted along with synthetic light curves for models with ranges for parameters: $6000K \le T_1 \le 10000K$ and $5000K \le T_2 \le 6000K$. All the other parameters are as listed in Table 8.

Fig 21 - Light curves for models with 60 $\le \pm \le 70^{\circ}$ are plotted together with the data to illustrate the possibility of partial eclips s (deeper as inclination increases) being hidden in the scatter. All the other parameters are as listed in Table 8.

Fig 22. Fit between the radial-velocity data for HR 4646 and the synthetic r dial-velocity curve produced by the WD-code.

5. CONCLUSIONS

5.1 The Devon CCD Imaging System/Stellar Photometer

The final result of the present work is a basic overview of the characteristics of the CCD camera and the completion of the first step in developing an effective operating procedure for a future CCD photometer. The protocols developed for data handling and processing provide for relatively fast and, in the case of reductions, largely automated operation. The basic parameters of the CCD system are listed in Table 9. Where the values differ from manufacturer specifications, the latter are shown in brackets. The complete system, including observing procedures, data transfer protocols, and data processing, demonstrated some utility in the collection and reduction of observations for HR 4646.

A theoretical limit on photometry with the present system was discussed. The dark current of ~ 50 ADU pix⁻¹ s⁻¹ and readout noise of ~ 80 e⁻ yields an estimate of the limiting magnitude of the system $(S/N \approx 5)$ of V $\approx 17^m$ for a 180 second exposure. The work done so far has obtained photometry with a photometic precision of approximately $0.^m 025$ at V $\approx 5^m$. Much of this error is attributable to atmospheric scintillation, source photon noise and sky-noise, as well as noise associated with processing the frames. This is worse than the $0.^m 003$ precision which is possible with the photoelectric system at Devon. It is also worse than the potential $0.^m 002$ precision which is commonly quoted for CCD imaging systems. The primary problem of obtaining high precision flat-fields will have to be addressed, as well as issues involving high readout noise and dark counts. The regime of short exposure times may need to be avoided by a greater margin (exposures limited to longer than 1 second) to avoid the problem of slow shutter speed. It is therefore possible that high precision photometry cannot be obtained

TABLE 9

Devon Observatory CCD Imaging System Parameters

	Telescope
Aperture	0.5 m
Focal Ratio	<i>f</i> /8
Scale at Focus	51.1 arcsec mm^{-1}
	CCD
Pixels	$27 \times 27 \ \mu m^2 = 1.38 \times 1.38 \ arcsec^2$
Full Frame	$512 \times 512 \text{ pix}^2 = 11.8 \times 11.8 \text{ arcmin}^2$
Operating Temperature	−27 °C (−30 °C)
CCD Gain	$4.9 \pm 0.2 e^{-1} ADU^{-1}$
Readout Noise	$79 \pm 2 e^- (< 10 e^-)$
Signal Maximum	$320,000 e^{-} pix^{-1} = 65,535 ADU pix^{-1}$
Dynamic Range	4100
Dark Current	245 e ⁻ pix ⁻¹ s ⁻¹ (\sim 5e ⁻ pix ⁻¹ s ⁻¹ @-30°C)
Dark Current Rate	$108 \pm 5 e^{-1} pix^{-1} s^{-1} K^{-1}$
Peak Quantum Efficiency	$\sim 80\%~(\lambda pprox 400\text{-}800~\mathrm{nm})$
	Data Storage
Full Frames in RAM	Maximum 20
Full Frames on Hard-Disk	Maximum 450

Maximum 250

Full Frames on Tape-Cartridge

=

with the present system for apparently very bright stars such as the $V \approx 5^{14}$ HR 4646. In this case, stars such as the $V \approx 9^m$ magnitude B 1413 and B 1414 may provide future workers with a better means of testing the CCD photometer and assessing its noise characteristics. It is hoped that future workers will benefit from the present discussion while making improvements to both the camera and its operating procedures.

5.2 The Ellipsoidal Variable HR 4646

The results of the Wilson-Devinney code seem to confirm the results of the simple model. They are strongly indicative of tidal distortion in the primary component of HR 4646 leading to its principally ellipsoidal photometric variability. The best models have a primary component large enough to reproduce the length and depth of both primary and secondary minima while not so large as to require deep eclipses.

An observed value for projected rotational velocity of the primary component of HR 4646 was published after the present analysis was completed. Abt and Morrell (1995) and a value of 78 ± 10 km s⁻¹ determined from fitting line profiles to a provide a value of 78 ± 10 km s⁻¹ determined by fitting Guassian profiles to the lines λ 4481 Mg_{II} and λ 4476 Fe_I. This can provide a check of the internal consistency of the model by assuming tidal synchronization of rotational and orbital velocities (valid for this case of close proximity of primary and secondary components). Under these conditions the following relation between the projected equatorial rotational velocity $v \sin i$ (measured in km s⁻¹), the radius R_1 (in solar units), and period P (in days) can be applied (Martin, Hube, and Lyder 1990):

$$v\sin i = \frac{50.6R_1\sin i}{P}.$$
 (53)

Using the quoted value of $v \sin i = 78 \pm 10$ km s⁻¹, the adopted value for period of $1.^{d}2709934$, and the range of values for primary radius of $2.1R_{\odot} \leq$

 $R_1 \leq 2.6R_{\odot}$, equation (53) yields an inclination of $49^{\circ} \leq i \leq 69^{\circ}$. This is consistent with the preliminary model value for orbital inclination: $i = 65 \pm 5^{\circ}$ (see Figure 22).

It is hoped that the preliminary result discussed here will generate interest for a follow-up study of this system.

REFERENCES

- 1. Abt, Helmut J., 1961, Astr. J. Suppl. Ser., 6, 37.
- 2. Al-Naimiy, H.M., 1978, Ap. & S. S., 53, 181.
- 3. Batten, A. H., Fletcher, J. M., and MacCarthy D. G., 1989, Eighth Cataloque of the Orbital Elements of Spectroscopic Binary Systems, Victoria, Publ. of the Dom. Astr. Obs..
- Binnedijk, L., 1960, Properties of Double Stars, London, W & J Mackay & Co. Ltd..
- 5. Bowers, R. L., Deeming, T., 1984, Astrophysics, Vol. 1, Boston, Jones and Bartlett Publishers.
- 6. Bradstreet, D. H., 1993, Binary Maker 2.0, Users Manual, Contact Software.
- Frandsen, S., Dreyer, P., Kjeldsen, H., 1989, Astron. Astrophys., 215, 287.
- 8. Gilliland, R. L., Brown, T. M., 1988, P. A. S. P., 100, 754.
- Gilliland, R. L., Brown, T. M., Duncan, D. K., Suntzeff, N. B., Lockwood, G. W., Thompson, D. T., Schild, R. E., Jeffrey, W. A., Penprase, B. E., 1991, A.J., 101, 541.
- 10. Harris, W. E., 1990, P. A. S. P., 102, 949.
- 11. Kjeldsen H., Frandsen, S., 1992, P.A.S.P., 104, 413.
- Kopal, Z., 1959, Close Contact Binary Systems, New York, John Wiley and Sons.
- 13. Martin, B. E., Hube, D. P., Lyder, D. A., 1990, P.A.S.P., 102, 1153.
- 14. Martin, B. E., Hube, D. P., Brown, C., 1991, P. A. S. P., 103, 424.
- Martin, B. E., Hube, D. P., Steinbring, E., Cartledge, S., 1994, I. B. V.
 S., Number 4093.

APPENDIX

A Manual for the Operation of the Devon Observatory CCD Stellar Photometer

Introduction

At the time of writing, the Devon Observatory 0.5 m telescope is configured with its CCD camera temporarily installed at the eyepiece mount with a single V filter. In the near future, however, the camera will be installed at prime focus in a new telescope front-end complete with a filter wheel assembly offering U.B.V.R.I. and H_{α} as well as [O_I], [O_{III}], and [S_{II}] line filters. One goal of this appendix is to outline the set of observing procedures that have been applied to date and provide a guide to the development of an operating procedure for the telescope in its final form. The main purpose, however, is to develop tested methods and routines for data transfer and reduction procedures applicable for its use as a stellar photometer.

The appendix is in two parts and is intended to guide the user from initial set-up and observation to final light-curve. Section 1 deals with the taking of program and reduction frames and subsequent data transfer protocols, while Section 2 addresses processing steps appropriate for reducing large volumes of photometric data on the available computing platforms.

1. CCD Observations

1.1 Getting Started

The telescope driving/tracking software which runs the 2 channel photometer is adequate for telescope pointing in its present form. This software runs on the IBM PC, hereafter referred to as the Drive Computer, in the Observatory "trailer". After starting up this machine, the drive clock, and the electronics bin in the warm room, run C:/ oldmain. Choose a bright standard star from the menu and set the telescope origin by first centering the 5" telescope on the star and hitting <enter>. The drive software can be used by typing in the star name or coordinates, hitting <enter>, and then <esc>. Then simply use <m> for move telescope, hitting the <data>button on the drive paddle to confirm star position. Next, turn on the PC which runs the camera (hereafter referred to as the Camera Computer), the coolant pump, and the TEC unit.

1.2 Camera Start-up

The camera operation software runs in a typical Windows environment, and is adequate for control of all camera functions. It is, unfortunately, not well adapted for taking a long series of exposures. A few simple tricks, however, can serve to alleviate this problem. Start by double-clicking on the HPC-1 icon. The HPC-1 application will automatically perform the initialization procedures necessary for system operation. It will initialize the camera head, close the shutter, and turn on the thermoelectric cooler.

The user is then presented with a set of operations. These are File, View, Process, Analyze, Expose, and Initialize. File controls all the data storage operations, including saving and opening of images. The display scale can be controlled by View, and simple tasks like false colour mapping and histograms can be obtained through Analyze. The image reduction tasks in Process are crude at best, and will not be used. The main operations of interest are Expose and Initialize, which controls the overscan region, integration times, and the taking of reduction frames.

First, go to the Initialize option and click on the Configure command. Make sure the Enable camera switch is on for Camera 1. Also, the on/off switch for the TEC is located here, as well as the paths for image and reduction frames. The best choice for the paths is into a single directory, called for instance C:/data. This means that when the frames are transferred to tape, only one directory need be selected for saving.

Next, select the Expose option. A dialog box is displayed when the Exposure Control function is selected. The controls for overscan and exposure length are really the only functions used here. The Sub-frame command allows for a smaller frame size when the focus command is used. This will speed the refresh rate somewhat. As in the case of the TEC, there is an Enable switch for the overscan. Make sure this is on. The overscan region is a mean bias level digitized onto the right edge of the frame. IRAF will need this region to set a zero intensity level for all the frames. A good choice for overscan width is 20-30 pixels. There is also an option of enabling an overscan along the top of the image as well as the right hand side. This will probably not be useful, and can be shut off.

Almost all other options can be shut off as well. The **Delay Time** is just a measured pause before the shutter is opened and can be set to 0.000 seconds. **DOS-based focus**, and **Low Gain** are not active with the present set-up. The options **Antibloom** and **Auto Stretch** are intended to control image bleeding and automatically perform reduction adjustments on images. Neither works well enough to be used effectively. Both should be shut off. The **Binning** option enables the pixels to be binned in groups of size say, 2×2 and might prove useful in reducing noise under very poor seeing conditions. Otherwise, this option can be disabled.

The integration length is contolled by the command Exposure Time and is in seconds. The shortest supported integration length is 0.001 seconds, although anything shorter than 0.1 seconds is not advised due to the slow mechanical shutter speed. The longest possible controlled integration is 7200 seconds, but very high dark current will limit viable exposures to less than approximately 700 seconds.

1.3 Focus

After you have selected a bright star on the Drive Computer and centered it in the finder-scope, call up the Expose option and select the Exposure Control function. Set the integration time to perhaps 0.05 seconds and select Sub Frame Focus. If you set the sub-frame size to say, 100 \times 100 pixels, the refresh rate is about 15 seconds. Next, turn the Camera Computer monitor towards the warm room window and go into the dome. The screen should be easily visible from the dome. Notice that in the present setup, the E-W and N-S paddle directions for the finder-scope have the same directions in the HPC-1 display. Locate the second mirror focus-motor control buttons at the back end of the telescope. If the focus is not very good, the best method is to adjust the telescope right out of focus in order to know which direction to turn the motor. Then, adjust the telescope into focus with short pulses on the control button. Make sure you wait long enough for the screen to refresh before you hit the focus button again. When the telescope is in focus hit the <esc> key on the Camera Computer.

1.4 System Monitoring

It is a good idea to familiarize yourself with the functions available in the **Analyze** option. The preset colour schemes for the **False Color** function are useful for determining the quality of telescope focus. Good focus should be accompanied by concentric rings in the stellar images. There is a sometimes useful **Histogram** option. As well, there is a function for integrating counts along a line or column or in a user defined box. Note that for this 16-bit system, the highest pixel ADU readout is 65,535.

The **Coordinate Window** function will bring up a small display of cursor location as well as a readout of the sensor temperature. However, at present the temperature readout does not function properly. It will rise when the TEC box becomes too warm, and does not give the proper temperature of the CCD. In future, the temperature will be monitored via a voltmeter at the TEC output jack. If this reading were to fluctuate by more than approximately ± 0.1 K (0.001 Volts), the TEC would not be operating properly.

First, check the control box. If it feels warm to the touch it has overheated. Make sure the cooling-fan vents are not blocked and that the warm room is not too warm. If this does not work, check in the *CCD Imaging Systems Installation and User's Guide* (1994) for the proper method to re-adjust the TEC set-point temperature.

The other potential source of trouble is that the coolant pump can stop working. Air cavities can form in the catacombs in the camera head. The only way these bubbles can be large enough to stop the pump is if the reservoir bottle has been tipped over while the pump is operating. The best method to remove cavitation is to shut off the pump (and camera) for an hour or so to let air collect at the highest point in the system. Then remove the camera head and rotate it in all directions until the bubbles rise out of the camera head towards the pump intake hose (marked with a white plastic ring). Start the pump. The air will simply bubble out into the reservoir.

1.5 Obtaining and Storing Images

You can store up to about 20 images in HPC-1's available memory. These are automatically stored as untitled*.fts. This should probably be avoided, however, because if HPC-1 hangs before you have a chance to save, you cannot retrieve these images. The best method is to decide on a consistent labelling scheme and immediately save each frame. After you select **Full Frame Exposure**, HPC-1 will automatically operate the shutter, digitize the image, and display it on the screen. Go to the **File** option and select the Save As function. You will find later that saving all program images with labels prefixed by a letter, say v', and then a 3 or 4 digit increment will save time when it comes to post-processing the data. You should also check that the camera computer system clock is accurate and thus encoding the correct time to the images. This will also ensure smooth post-processing. The lack of a means for creating macros with HPC-1 will probably soon demonstrate the need for a good labelling scheme. Thankfully, HPC-1 will warn you if you attempt to overwrite.

1.6 Reduction Images

Before program observations, and to account for systematic variations preferably during and after observing, you need to take at least 10 to 20 bias frames. These are automatically taken using the function **Bias Field** in the option **Initialize**. Depending on how you have set up your image paths, these will be saved as C:/data/bias.fts. You need to manually relabel these to avoid overwriting and should label them conveniently by, say, a prefix `z' followed by a three digit increment.

For each exposure length you want to be sure to obtain dark frames. Dark counts with this system are very high and for any integration greater than about a second a set of 10 to 20 dark frames is probably advisable if not necessary. There is also an automatic function for this. Use the function **Dark Field** in the option **Initialize**. These will need to be relabelled as well. Use perhaps the prefix `d´ followed by a three digit increment.

The automatic function for taking flat frames is not useful. It will automatically use the bias frame saved as C:/data/bias.fts to perform a bias correction on each new flat. You will do all reductions later using IRAF. It is assumed that the user is working with the V filter fixed in the camera mount. Of course, flats would need to be taken in all of the filters used. You can

take acceptable dome flats using the dome lights and the white plastic square fixed to the dome opposite the shutter. Close the shutter, turn the dome so that the square is on the meridian, and carefully point the telescope so that it is centered on the square. Turn the dome lights down low and make sure that there are no shadows falling on the square. You will probably need at least 10-20 flat frames. Take these as you do program images but be sure that exposures are not shorter than about 0.4 seconds. Check the ADU readout levels using the Analyze option. You want to try for integrations that are around the 4 to 10 thousand mark. The goal is to have enough counts to incorporate the pixel-to-pixel gain variations. The spectral response of the chip to incandescent light sources is unknown and, of course, the telescope is pointed at a possibly non uniformly illuminated near field object (badly out of focus). This makes dome flats undesirable and one should try to obtain good twilight-sky and/or blank-sky flats. For sky flats taken at twilight, try to obtain flats in a few different telescope positions. The secondary mirror support structure does stick out of the front end and sunlight reflecting off this for a single position might create hot spots. Experiments with blank sky exposures suggest that you can leave the tracking motor off and average a large number of frames in order to eliminate at least faint star streaks. Save each of the dome, twilight-sky, and blank-sky frames with the prefixes `fd', `ft', `fb' and three digit increments. Each set can be averaged later and compared.

1.7 Data Transfer

At the end of the observing run you will have perhaps a few hundred images. The Camera Computer can hold approximately 400-500 images on hard disk. Although it is now possible to use a network connection to the University in order to transfer files directly, if you have any doubts you can, and should, copy all images onto 120 Mbyte mini-cartridges. You will have to save some data to tape anyway, because the Sparc-station used to perform data reductions (hereafter referred to as the Processing Computer) usually has only enough available memory to hold 1-3 hundred frames at a time.

Exit HPC-1, shut off the TEC but leave the pump running for a while. Locate the Conner tape drive application icon for **Backup Exec** and doubleclick on it. If you choose the **Backup** option, everything is automatically set to transfer the contents of C:/data to tape. Simply select the **Select Files** function, highlight the C:/data directory and hit <spacebar>. Select the **Start Backup** command. Conner Backup will automatically create a directory of transferred files and write this to the tape. All that is left is to read the Universal Time code from the WWVB clock in the trailer and note the local time on the Camera Computer. The post-processing software will need this in order to encode the data points with a Julian Date.

If you only save to tape, you will of course have to transfer the data from tapes to the Processing Computer. This can be accomplished by transferring the data from tape to the PC in office P501 (hereafter referred to as the Transfer Computer). This too is pre-set. Start up the Conner Backup software here using the command C:/cbackup. Make sure drive D:/ is empty, which leaves about 60 Mbytes of available space (approximately 100 frames). When you select the Start Restore function in the option Restore, Conner Backup will prompt you for a destination drive for the files. Type in D:/. Conner Backup will automatically recreate the directory C:/data on drive D:/. Now, all that remains is to use an ftp command to transfer files to the Processing Computer as they are needed.

2. Image Processing/Data Reduction

The goal is to process all the data as efficiently as possible with the

available computing power. Since the Processing Computer has a somewhat limited available memory, the best method seems to be one which reduces the amount of space used on the disk. The idea is to process the *.fts files as they come in from the Transfer Computer. Then, photometry can be carried out on the processed frames in one step, greatly reducing the amount of work. The following steps are geared towards the processing of a set of observations in one filter. It should be readily apparent, however, where the labelling scheme v*.imh could be replaced with, say, b*.imh or u*.imh, etc.. It would only be necessary to have flat fields for these other filters.

2.1 Processing the Frames

It is assumed here that you are at least familiar with IRAF and know how to edit parameter files using epar. Also, you need to call up images on the display software SAOIMAGE. The processing steps outlined here are basically "stock" commands outlined in IRAF documentation such as *IRAF User Hundbook Volume 1A: IRAF System* (Valdes 1987) and you should familiarize yourself with these manuals.

The best way to start is to import your reduction images to the Processing Computer into the IRAF directory. You can, for the present discussion, use the following set-up. Open an **xterm** window on the Processing Computer in room P504 (called stellar, with address 129.128.7.50). The **xterm** tool is located in /usr/openwin/demo. Logon again to stellar as **iraf**, run **saoimage** in background by entering **saoimage** &, and then type **cl**. IRAF is now running from directory /kepler/users/iraf/local. You can put your data into a sub-directory set aside for *.fts files, called, say, /.../iraf/local/pixel. Then use the command **rfits** in order to convert these *.fts files to IRAF files with an image-header. You can erase all of the *.fts files once they are transferred to IRAF format.

Open the package ccdred in imred. The next step is to display one of

the flat fields to determine the regions of good overscan information as well as the region to trim. The package ccdred will need to know these regions, known as biassec and trimsec with the notation *.imh [x1:x2,y1:y2]. You can display this by typing in disp and entering f0001.imh. Also, you should get an intensity readout along a column by typing in implot f001.imh 1. Take only perhaps the outside 15 columns of the overscan (some of the columns closer to the image area are usually corrupted). Trim as much as possible in the image, but make sure to leave a margin of 40 to 50 pixels around the coordinates of stars used in the analysis. Process the bias frames first. Use the package zerocombine with the default values at startup. This will have combine=average and reject=minmax. For the most part the default settings in all the following commands will also be used. The advantages of some of the more sophisticated options are usually fairly modest, but where appropriate, changes will be outlined. If you are following the suggestions for labels, your value for input will be z*.imh and a good choice for output would be Zero. This output is a nightly averaged bias frame and all the input bias frames can be erased. Now you can zero level and bias correct the rest of the reduction frames. First, set up the the parameters for ccdproc. The settings are all default values with the following exceptions. For now, you only want to correct for the overscan and bias, and trim the images. Thus, oversca=yes, trim=yes, and zerocor=yes, but all other corrections are set to no. Set the biassec and trimsec to the values determined in the last step. If you leave the value of ccdtype unset, ccdproc will automatically correct the rest of the images. Check the darks. If the counts are significant you can easily combine them as a super dark-field called say, Dark. This can be accomplished with darkcombine with the default setup, with input=d*.imh and output=Dark. You will have to use ccdproc to dark correct the flat-fields before you go on to the next step.

In this discussion, only one set of the flat-fields is used, preferably good twilight sky-flats. It has been noticed that with sufficiently exposed dome (and sky) flats, there is a central bright patch in the field. You will notice that this appears (after proper bias and dark corrections, of course) in images as well. It is probably due to the telescope optics. In any case, with the present analysis, it should be possible to remove all large scale variations down to $\sim 2\%$ variation in background intensity across the fields. Combine the flat-fields with flatcombine. Good results can be obtained using the settings combine=average and reject=avsigclip. Here, the input would be f*.imh and the output perhaps Flat. Erase all of the input flats (and darks).

Now, you should be left with only two super-fields (three if you have significant dark counts) to reduce all of the data. Start importing program images. The best choice is 100 at a time, as this is the maximum number that can be stored in the Transfer Computer. Once a batch of 100 *.fts files are imported to the pixel directory, convert them to IRAF image header files and erase the input. Then use ccdproc to process the IRAF images. You only need to change the setting for images to v^* .imh and make sure flatcor (and possibly darkcor) is set to on. If you trim significantly it should be possible to get the images of an entire night (~ 300) onto the Processing Computer hard-drive. The final result should be only the set of, say, 300 image header files labelled v*.imh (with, obviously, IRAF image pixel files stored somewhere else).

2.2 Stellar Photometry

Open the package daophot in digiphot. This package can be run successfully in mostly default settings. It performs aperture photometry, and

in the present analysis will use a single size for aperture and sky annuli on each individual star. The approach will be to use the initial frame, probably labelled v0001.imh, to act as a template for all the subsequent frames. Thus, you will determine the star coordinates on the first frame and shift the rest of the frames so that those stars are in the same positions. You can make one coordinate file for the first frame and use this to run the aperture photometry program on all the frames.

There are really only two values which need to be estimated and input. You need an estimate of the mean sky counts and a value for stellar FWHM. These values are needed for the search program daofind. The mean sky level can be found quickly by using imstat on a small region of blank sky in the image. The FWHM can be found using a stellar profile plot with the command imexamine; a typical value is 4.5 pix. All of the settings are defaults except for these parameters and user chosen values for aperture sizes. In daopars set fitrad to the stellar FWHM. In datapars set fwhmpsf to the stellar FWHM, sigma to the standard deviation of the average image background, and thresho to at least 10 times the standard deviation. In photpars set apertur to a sufficiently large aperture radius, say 10 arcseconds. Also, in fitskypars set the annulus using annulus, and the sky annulus using dannulu. The sky annulus should also be about 10 arcseconds. That is, we have a circular aperture of 20 arcseconds with a 10 arcsecond sky annulus on the perimeter. The average background value is set by **skyvalue**.

Next, run daofind on the first image. Look in the output coordinate file, default-labelled v0001.imh.coo.1, for the coordinates of the program, comparison, and check stars. Write these coordinates in a coordinate file called, say, `coord'. Now you can set up **imalign** to adjust the rest of the images. If you are following the suggested notation, set **images** to v^* .imh, the list and opens each of the corresponding files v*.imh.mag.1, and v*.imh. The program then reads the magnitude entries for program, comparison, and check stars from v*.imh.mag.1, as well as the exposure time from v*.im It does a standard calculation with the time to get the Julian Date and tak s the differences in magnitudes between program and comparison stars, and between comparison and check stars, to get the differential magnitudes. It then writes all of the values to a single file, called mag.dat. The code is set up for calculating Julian Date, t, for February, 1995. The last term in the calculation of t is the correction between HPC-1 and WWVB clock times. A copy of mcpdrv, is located in /kepler/users/iraf/local and is run by using the command mcpdrv.out. After being appended by the subsequent observing runs, all post-processing, including calculation of fluxes and phase, and the binning of the data can be carried out on a single file. Copies of the author's programs for this purpose, called mpdrv and mdbdrv, are also located in /kepler/users/iraf/local. These programs are modified by altering the source-code files labelled m*drv.for, and reformatting. The number of observations is controlled by the parameter n, and the number of phase bins by the parameter \mathbf{m} . The values of \mathbf{x} are the magnitudes of the stars, the values of d are the differential magnitudes, phs and bin are the phase and phase-bin size, and the variables \mathbf{t} are the components of the Julian Date read from the HPC-1 header file (hours, minutes, and seconds). The programs are run using the commands m*drv.out and the final output is phased and binned differential magnitudes or fluxes for the star combinations program-comparison, program-check, and comparison-check.

Overall, one can see that with a consistent labelling scheme, a simple and straightforward analysis, and wise choices concerning the amount of data handled at one time, the processing should be very smooth. In practice, none of the labels and, given that the same program star is observed, none of the settings need be changed from night to night. Once all the switches are set, really all that is required of the user is to input the frames and type in each of the above listed processing commands in sequence. When one considers that in this method, the frames will already be properly sequenced and time encoded as they are stored and transferred to the Processing Computer, the entire process, observation to final light-curve, becomes very efficient.

```
PROGRAM mcpdrv
С
         Driver for copying data-files and calculating dy f-mags
         implicit none
         integer n,i
         integer t11,t12,t21,t22,t31,t32,t41,t42
         parameter (n=225)
         character*17 mag(n)
character*11 frm(n)
character*68 tme(n)
         real t,t1,t2,t3,t4,x1,x2,x3,d1,d2,d3
open(8,file='mag.dat',status='new')
open(9,file='maglist',status='old')
         do 10 i=1,n
           read(9, (a) ') mag(i)
read(mag(i), (a) ') frm(i)
10
         continue
         close(9)
         do 11 i=1,n
          open(10,file=frm(i).status='old')
read(10,'(///////.a)') tme(i)
close(10)
          read(tme(i), '(37x, i1, x, i1, 3x, i1, x, i1, 3x, i1, x, i1, 3x, i1, x, i1, 3x, i1, x, i1)')
t11,t12,t21,t22,t31,t32,t41,t42
t1=10.000000*float(t11)+float(t12)
t2=10.000000*float(t21)+float(t22)
t2=10.000000*float(t21)+float(t22)
           t3=10.000000*float(t31)+float(t32)
           t4=10.000000*float(t41)+float(t42)
           t=-0.023611+717.500000+float(t1)+0.041667*float(t2)
            +0.000694*float(t3)+0.000012*float(t4)
            +0.291667
          d1 = x1 - x3
          d2=x1-x2
          d3=x2-x3
          write(8, (f12.6,6f12.3)') t,x1,x2,x3,d1,d2,d3
11
         continue
         close(8)
         END
```

PROGRAM mdbcpdrv С Driver for binning diff-mags implicit none integer n,m,i,j,tot parameter (n=1567,m=100) integer jtot(m) real t.x1,x2,x3,x4,eps,bin real phs.dd1.dd2,dd3,jj real xx1(m),xx2(m),xx3(m),xx4(m)
open(8,file='vb.dat',status='old')
open(9,file='vl.dat',status='new') eps=1.271000/float(m) do 11 i=1,n
 read(8, (f12.6,4f12.3)) t,x1,x2,x3,x4 j=1 do 12 while(j.lt.m+1)
 bin=eps*float(j) j=j+1 if(t.gt.bin) goto 12 xx1(j-1)=xx1(j-1)+x1 xx2(j-1)=xx2(j-1)+x2 xx3(j-1)=xx3(j-1)+x3 xx4(j-1)=xx4(j-1)+x4 jtot(j-1)=jtot(j-1)+1 goto 11 12 continue 11 continue tot=0 do 13 i=1,m tot=tot+jtot(i) tot=tot+jtot(1)
phs=float(i-1)/float(m)
jj=float(jtot(i))
dd1=(xx1(i)-xx4(i))/jj
dd2=(xx1(i)-xx2(i))/jj
dd3=(xx2(i)-xx4(i))/jj
write(9,'(f12.3,3f12.3)')
phs,-1.000000*dd1
continue * 13 continue close(8) close(9) END

102

```
PROGRAM fixdrv
C Driver for copying data-files and fixing time
implicit none
integer n,i,m
parameter (n=99)
real t,d1,d1f
open(8,file='v100.dat',status='old')
opeň(9,file='hr4646lss.dat',status='new')
do 12 i=1,n
read(8,'(2f12.3,i12)')
* t,d1,m
d1f=10**(-0.4*(1.830-d1))
write(9,'(2f12.3,i12)')
* t,d1f,m
12 continue
close(8)
close(9)
END
```