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Abstract
The variogram characterizes the spatial variability of a regionalized variable. Variogram calcula-

tion and modeling require a significant amount of professional time. The variogram has a significant

impact on estimation and simulation, and it has a considerable impact in the mining industry since

ordinary kriging is one of the most used tools for resource estimation. This thesis proposes novel

tools and techniques related to automatic variogram calculation.

The first contribution of this thesis is implementing a GSLIB-like program: autovar. This pro-

gram calculates the variograms for disseminated and tabular deposits. Autovar prompts the user

for some basic parameters only. Autovar implements all necessary steps to get the experimental

variogram points and its model directly from the data. The program infers the principal directions

of continuity by eigendecomposition of the inertia tensor, followed by an order of the vectors. Then,

the program calculates the experimental variogram points and models them. This thesis considers

standard guidelines for variogram calculation and modeling. Different search parameters are imple-

mented based on the deposit type. An important functionality of the program is the geolocated

option, which allows the identification of variability centred at points (anchor locations) selected by

the practitioner.

The second contribution is a novel technique to estimate a block model using a mix of ordinary

kriging models. This mixed estimation technique considers several block kriging models and mixes

them at each node of the block model. Each estimated model has a different variogram as input,

reflecting different continuity characteristics. The variograms used in the kriging estimations are

outputs from the autovar program: a general variogram and geolocated variograms centred at each

selected anchor location. The weights are calculated based on the distance from each node to the

anchor points. The postprocessing step standardizes the weights to add up to one, ensuring that

kriging is exact. Generally, this technique recognizes local variability better than a regular technique.

This thesis presents different examples to show the potential and limitations of the proposed

methodologies. This research presents a comparison of the proposed workflows with regular method-

ologies. Finally, a summary of tests is shown at the end to compare the results of the mixed

estimation methodology with a regular estimation workflow.
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Chapter 1

Introduction
Mining is an important economic activity with the primary goal of mineral resource extraction.

The final goal of resource estimation is to characterize in terms of tonnage and grade all economic

mineral deposits. Kriging is one of the most used techniques to estimate mining deposits. Simulation

is another technique that allows to predict the resources with a measure of uncertainty. Both

techniques depend on the characterization of spatial variability.

There are different tools to characterize the spatial variability of a regionalized variable; the

most common ones are the two-point statistics measures, which include the variogram, covariance,

and correlogram. Another option is to use multipoint statistics, where the difficulty lies in getting a

training image that represents the variable under study. This thesis focuses on the characterization

of spatial variability through the variogram.

The percentage of samples extracted from a deposit for chemical analysis is tiny compared to

the total volume to estimate; this scarcity of data makes two-point statistics a challenging but

widely used tool. For an oil industry example, the volume of data investigated from the Brent field

(North Sea) for cores is 0.000 000 001, cuttings (drilling debris) is 0.000 000 007, and for logging

(geophysical measurement in the wellbore) is 0.000 001 (Chilès & Delfiner, 2012). Rossi and Deutsch

(2013) mention that for mining, it is common to drill less than one billionth of the mass (Rossi &

Deutsch, 2013). It could be challenging to find a variogram model that reasonably represents the

spatial variability of the regionalized variable.

The variogram characterizes the spatial variability of a regionalized variable; it accounts for the

available data and geology interpretation of the deposit (Gringarten & Deutsch, 2001). It is one of

the most used tools in geostatistics, and the quality and consistency of it highly influence the results

of any estimation or simulation process.

The variogram works under the assumption of the first and second order of stationarity, and

under these assumptions, the variogram, covariance, and correlogram are related (Pyrcz & Deutsch,

2014). A definite positive model fits the experimental variogram. The model should fairly represent

the regionalized variable’s experimental points and variability. Usually, a trade off between precision

and stability is needed to have a model that is as close to reality as possible and coherent with all

the mathematical assumptions regarding stationarity.

The quality of a variogram depends on the data characteristics, the experience of the geostatis-

tician and knowledge of the deposit’s characteristics. Parameters and tolerances must be carefully

chosen to produce a realistic experimental variogram based on the geological characteristics of the

deposits.
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1. Introduction

Knowledge of the geology of the deposit gives insight into the interpretation of the calculated

variogram (e.g. the trend in the deposit matches the trend in the variogram, or a zone of high

mineralization explains the hole effect). The geostatistician evaluates the experimental variogram

and its model to decide if it is representative of the spatial variability in the domain.

The automation of processes saves time, and it could give a reference starting point for manual

tuning. The variogram is widely used in geostatistics, and its calculation significantly impacts the

final estimates. After preparing the dataset, three steps can be considered: 1) finding the principal

directions of continuity, 2) calculating experimental variogram points, and 3) fitting a model to the

experimental variogram points.

Different steps or programs must be set to perform the three mentioned steps. Autovar executes

all of them, inferring parameters directly from the dataset, and its final result is a variogram model.

Nevertheless, a manually tuned variogram could be better, but it is not automatic and demands

expertise and time from the practitioner. Figure 1.1 shows the input dataset and the program

outputs.

Figure 1.1: Input dataset and autovar outputs. Vertical exaggeration on the Z axis for visualization
purposes.

Using the geolocated option, the practitioner can declare n anchors and obtain n+1 variograms.

The presented workflow for estimation utilizes each geolocated variogram for each kriging estimation.

The workflow combines a weighted mix of each kriging estimation, with each node being influenced

by different estimation models that resemble the recognized spatial characteristics of the variogram.

2



1. Introduction

The suggested workflow standardizes the weight depending on the distance from the node to the

anchor.

Geostatistical Software Library (GSLIB) is a set of programs developed for geostatistics in

Fortran language (C. V. Deutsch & Journel, 1997). This library has been constantly improved and

expanded by many researchers. Autovar modifies code from several previous programs of this library.

The GSLIB autovar aims to produce a reasonable variogram for two kinds of deposits: disseminated

and tabular, prompting the user to some basic parameters (e.g. the data file, the grid to consider

and the deposit type). Autovar implements the common decisions in defining parameters according

to the deposit type. The thesis explains the constraints and conditions and presents many examples

to show the results.

Although the goal is to automatically produce an experimental variogram and its model for

every deposit, there will be cases where this is not possible, and it could be related to the position

of the samples or the poor continuity of the dataset. The automatic variogram output is a fast,

reasonable reference; however, it must be validated.

1.1 Problem motivation

The variogram is a key tool for determining spatial variability for estimation and simulation

techniques. The variogram’s stability, precision, and representativeness will significantly impact the

final results of resource modeling; thus, it is a step that demands significant time and effort to

produce in a resource estimation workflow.

There are many deposit types with different geological characteristics. Each deposit has its

unique spatial variability characteristics. Each variable potentially has different spatial characteris-

tics, including differences in anisotropy, directions of continuity, and magnitude of continuity. The

challenge is to characterize the deposit as good as possible with the available data.

Although each deposit is different, they have some characteristics in common. Similar geological

processes will produce similar deposits, which translates to similar spatial variability characteristics.

For each deposit type, there are general guidelines for selecting parameters and their tolerances to

find the best variogram. A good parameter selection will produce a variogram that shows a structure

and is consistent with the deposit; otherwise, the variogram could be noisy or non-representative.

In summary, the time and effort dedicated to generating the variogram is considerable, and an ad-

equate parameter selection is challenging for a new practitioner. The autovar program looks to help

with these challenges by automatically providing the experimental variogram and its model, where

the practitioner sets only a few parameters. Autovar includes the most common configurations for

the disseminated and tabular deposit types; it also evaluates the final model and relaxes constraints

to look for a more stable variogram if required by the user. Autovar provides a good reference for

the spatial characterization in a short time because it infers all parameters automatically.

3



1. Introduction

The geolocated option is another functionality of autovar to identify local variability on datasets.

A common practice when a deposit exhibits local variability is to divide it into stationary domains

and model each domain separately; autovar analyzes the dataset without division.

The geolocated function allows the user to pick anchor points in areas with local variability. For

this function, each pair analyzed for the variogram calculation will be weighted differently based on

the distance from the pair to the anchor. The geolocated function could identify local variability

better.

The practitioner can pick as many anchor points as necessary since the calculation is automatic

and fast. A visual evaluation of the principal directions of continuity and the characteristics of the

variogram (i.e. contributions, ranges) will help to identify an optimal number of anchors.

A domain is usually estimated with a unique variogram; this could generate an improper recog-

nition of the characteristics of different areas of the domain. Autovar allows the calculation of

geolocated variograms that can be used to generate different models that could better recognize

local variability. These different models can be mixed to produce a unique kriging estimate.

Autovar could be a valuable tool to quickly characterize a deposit or help a new practitioner with

a reference variogram; however, the practitioner’s responsibility will always be the final evaluation

and consideration of how good the variogram model is.

1.2 Literature review

There is extensive research with respect to automatic variogram modeling; however, there are

few related to automatic experimental calculation. Some authors prefer to skip the presentation

of the experimental variogram and get the model directly. This section will mention some of the

research done mainly on automatic variogram fitting.

The most common methodologies for fitting are least squares (fit the experimental variogram),

maximum likelihood (optimization on the parameters directly) and machine learning methods, such

as using a convolutional neural network (CNN).

Pardo-Igúzquiza (1999) presents an automatic fitting using squared differences; the program

needs the experimental variogram as input, and the user picks a weighting function. The program

uses the simplex method for minimization of the objective function. The program considers one

variable, and it is for 2-D datasets.

Larrondo, Neufeld, and Deutsch (2003) shows the methodology for a semiautomatic variogram

modeling where the user provides the experimental variogram and could set some parameters to

restrict the modeling or let the program calculate everything. The varfit program calculates an

initial model. Then, it performs random changes in one parameter at a time to find the model

that provides the lowest objective function value (best fit). The objective function could consider

4



1. Introduction

more than one variable and allows a Linear Model of corregionalization (LMC). It also supports 3-D

datasets.

Emery (2010) presents three different algorithms to fit an LMC, all of which aim to reduce the

squared differences between the experimental variogram and the fitted model; one includes the use

of simulated annealing.

Wilde and Deutsch (2012) show a method to directly fit the variogram volume (3-D variogram

map) using an optimization function where simulated annealing perturbates the initial model. The

program integrates the varfit algorithm.

Li, Zhang, Clarke, Liu, and Zhu (2018) mention a fitting technique that considers the genetic

algorithm. This method considers an objective function that includes the approach of fitting the

experimental points and the approach to validate the results of kriging estimation using cross-

validation.

de Carvalho and da Costa (2021) mention a fitting for 2D datasets based on the Fourier integral

method (FIM). The objective function compares the squared differences between the original map

and a map produced using a theoretical variogram model using FIM. They use a genetic algorithm

to find the parameters that produce a good fit.

The maximum likelihood method gives the variogram model directly. It gives uncertainty in vari-

ogram model parameters such as NE, sill, and range. It assumes that the variables are Gaussian. Dif-

ferent authors presented research about it, including Mardia and Marshall (1984), Pardo-Igúzquiza,

Mardia, and Chica-Olmo (2009).

Jo and Pyrcz (2022) present an automatic semivariogram model using convolutional Neural Net-

works (CNN). This methodology involves two CNNs: (1) generate exhaustive data with sequential

Gaussian simulation (SGS) conditioned to the original data, and (2) get the variogram parameters

(ranges, directions, anisotropy) from the exhaustive data. The results will provide more than one

possible variogram model the practitioner must evaluate.

Mokdad, Koushavand, and Boisvert (2022) present automatic variogram inference using CNN.

This work presents the use of two CNNs, where the first one directly calculates the variogram model

parameters, and the second one predicts the experimental variogram for the major directions of

continuity. The user only needs to provide the data after the CNN is trained.

1.3 Thesis statement and contribution

Variogram calculation and modeling can be automated for disseminated and tabular deposits

since the parameter selection is generalized based on the common characteristics of each deposit

type, inferring parameters directly from the dataset. The mixed estimation technique will better

characterize a domain that exhibits local scale variability because it combines models with different

spatial continuity.
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The first contribution of this work is the automation of the spatial variability characterization

using the variogram and a proposed methodology for mixed estimation. The autovar program

infers the principal directions of continuity, calculates an experimental variogram, and then fits it

with an optimization by minimization algorithm. The geolocated option in the program allows

the identification of local variability and the production of several estimation models for the same

domain. The second contribution is the mixed estimation, a novel methodology for getting a final

estimation considering local variation. The final mixed results combine all the models from the

general and geolocated variograms.

1.4 Thesis outline

This thesis explains the automatic calculation and modeling of the variogram through the GSLIB-

like autovar program. It explains the logic behind the program and gives the workflow to achieve

the automatic variogram model. It also compares this program with previous programs used in

CCG for several years. Finally, it gives an alternative methodology for estimation. The outline is

detailed as follows.

The second chapter covers all the theoretical background related to the program implementation.

It includes geostatistical concepts related to spatial variability, variogram calculation and modeling,

tensor of inertia, the geolocated concept and weighted order moments, and the optimization function.

This chapter also includes theory related to simple and ordinary kriging.

The third chapter describes the program thoroughly. It presents a detailed workflow, the pa-

rameter file and some practical considerations implemented on the algorithms. It also describes

constraints, hard coding, and the logic behind these decisions. It presents both program functional-

ities, the general variogram and the geolocated version.

The fourth chapter shows case studies for the use of autovar from both synthetic and real

datasets, including disseminated and tabular deposits. There are examples of regular and irregular

sampling patterns. It also compares autovar with varcalc and varmodel to highlight the differences

and similarities with the different methodologies.

The fifth chapter shows the workflow and application of autovar for estimation and compares a

regular with the autovar workflow. The last chapter presents the conclusions of the thesis and gives

some paths for future work.
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Chapter 2

Theoretical Background
This chapter presents the theoretical background for the concepts presented in this thesis. The

first section presents definitions and formulas related to spatial variability. The second section

presents the theory related to the tensor of inertia for calculating the principal directions of continuity.

The third section presents the geolocated concept to understand local spatial variability better. The

fourth section presents variogram modeling. Finally, the last section presents content related to the

estimation with simple and ordinary kriging.

2.1 Spatial variability

The variogram characterizes the spatial variability of a Regionalized Variable (ReV). Some

concepts and definitions are described in this chapter that help to understand it. A Random Variable

(RV) can take any outcome according to a probability distribution (C. V. Deutsch & Journel, 1997),

and the outcome is randomly generated according to some random probabilistic mechanism (Isaaks

& Srivastava, 1989). The first order moment of a RV or the mathematical expectation is written as

E
{
Z(u)

}
= m(Z) (A. G. Journel & Huijbregts, 1978). The second-order moments are the variance,

covariance, and the variogram. A Random Function (RF) is a set of Random Variables.

A ReV exhibits a particular spatial structure and has two characteristics: a random aspect

related to the unpredictability at a short scale and a structured aspect related to larger scale trends

(Matheron, 2019). A RF is used to characterize a ReV.

The variogram is the expected value of the squared differences between pairs of points for given

lags and directions. The strict definition will imply many realizations for each location; however,

there is only one value per location for mining since only one physical sample exists. Therefore,

the intrinsic hypothesis is assumed, stating that the variogram value only depends on the vector’s

separation h and not the location itself (A. G. Journel & Huijbregts, 1978). The principal features

of the variogram are the sill, the range, and the nugget effect; many geostatistical textbooks explain

their significance in detail.

Equation 2.1 shows the variogram for a domain A. Equation 2.2 shows the stationary covariance.

The semivariogram (divide equation 2.1 by 2) is commonly used and referred to as a variogram.

Equation 2.3 shows the stationary covariance related to the data variance when h = 0. Equation 2.4

shows the stationary correlogram. Equation 2.5 shows the relations between covariance, correlogram,

and variogram when the domain is deemed stationary. Nevertheless, these relationships (2.5) are
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2. Theoretical Background

approximate unless the domain is really stationary.

2γ(h) = E
{
[Z(u+ h)− Z(u)]2

}
∀u,u+ h ∈ A (2.1)

C(h) = E{Z(u+ h)Z(u)} − E{Z(u)Z(u+ h)} ∀u,u+ h ∈ A (2.2)

C(0) = Var{Z(u)} = σ2 (2.3)

ρ(h) = C(h)
C(0)

(2.4)

C(h) = C(0) · ρ(h) = C(0)− γ(h) (2.5)

The variance of the data values is considered the sill of the variogram. Even though geostatistics

needs to make stationarity assumptions, usually regionalized variables are not. Stationarity is a

decision, and it is related to a RF model property, not a characteristic of the physical phenomenon

(Pyrcz & Deutsch, 2014).

The previous equations show the variogram and covariance in probabilistic notation; the fol-

lowing equations are the experimental versions of the variogram (Equation 2.6) and covariance

(Equation 2.7):

γ̂(h) = 1
2N(h)

N(h)∑
i=1

[z(ui)− z(ui + h)]2 (2.6)

Ĉ(h) = 1
N(h)

N(h)∑
i=1

[z(ui) · z(ui + h)]−mz
2 (2.7)

Where z(ui) and z(ui + h) are the pair of sampled values separated by a lag distance h, and

N(h) is the number of pairs for lag h.

Knowledge of the geology of the deposit gives valuable insight into calculating and evaluating

the variogram, and it allows to enrich the interpretation of the computed variogram (e.g., the trend

in the variogram is coherent with the trend on the deposit, a zone of high mineralization explains

the hole effect). The geostatistician needs to evaluate the experimental variogram and its model

to decide if it is representative of the spatial variability in the domain. Journel mentions that

samples from different deposit types could produce a similar variogram and encourages multipoint

statistics from an image related to the site’s geology (A. Journel, 2018). The challenge is getting

the right image, which also points out the importance of the geology for the variogram calculation

and interpretation.

Although the previous equations assume stationarity, non-ergodic versions could be considered.

The non-ergodic covariance does not assume that the mean of the head and tails are the same, and

it is considered a more general spatial covariance; the non-ergodic correlogram is considered a robust

alternative to the variogram (Rossi & Deutsch, 2013). The following equations show the non-ergodic
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covariance (Equation 2.8) and non-ergodic correlogram (Equation 2.9).

C(h) = 1
N(h)

N(h)∑
i=1

[z(ui) · z(ui + h)]−m−h ·m+h (2.8)

ρ(h) = C(h)/
(
σ−h · σ+h

)
(2.9)

Where m−h is the mean for the tails and m+h is the mean for the heads, while σ−h is the

standard deviation for the tails and σ+h is the standard deviation for the heads, the following

equations show the calculations for these terms:

m−h = 1
N(h)

N(h)∑
i=1

z(ui) (2.10)

m+h = 1
N(h)

N(h)∑
i=1

z(ui + h) (2.11)

σ−h =

√√√√ 1
N(h)

N(h)∑
i=1

[
z(ui)−m−h

]2 (2.12)

σ+h =

√√√√ 1
N(h)

N(h)∑
i=1

[
z(ui + h)−m+h

]2 (2.13)

This thesis uses the non-ergodic versions of covariance and correlogram to obtain the variogram

indirectly. The following section explains practical considerations for the parameter selection and

its tolerances to define the search per lag distances.

The selection of the variable to calculate the variogram is an essential step for the future tech-

niques that would be applied. Generally, the variable does not need to be transformed for kriging,

but if Gaussian or indicator techniques are used, the data must be transformed accordingly (Pyrcz

& Deutsch, 2014).

In mining, the samples are not a regular grid for various reasons, such as accessibility, the hard-

ness of the rock, and more interest in certain areas. A variogram calculation must include tolerance

parameters to group data pairs for different lag distances to get enough pairs to be representative.

At least seven parameters have to be defined by the user to calculate an experimental variogram

in a three dimensional dataset: three angles (azimuth, dip, and tilt) that characterize the principal

directions of continuity, three lag distances for each direction of continuity, and the number of lags.

Additionally, the pair selection considers direction tolerance parameters: azimuth and dip tolerance

and vertical and horizontal bandwidths. A good selection of these parameters defines the quality of

the experimental variogram.

The unit lag distance (h) is different per each direction of continuity (i.e. often larger for the

major and shorter for the minor direction). The lag distance tolerance is usually half the unit lag

distance; however, it could be larger to include more pairs per lag and get a more stable variogram.
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Angle tolerances are also important for short distances. The azimuth tolerance is usually larger than

the dip tolerance when working on the horizontal directions (major and minor); this is especially

important for tabular deposits (J. Deutsch, 2015a). In contrast, the tolerances are similar and

smaller for the tertiary direction, especially in tabular deposits where the goal is to keep the pairing

of samples in the same drillhole (J. Deutsch, 2015b).

Figure 2.1: Schematic perspective of the variogram parameters, the red arrow represents the principal
direction. The figure shows the following tolerance parameters for experimental variogram calculation:
bandwidth, angles, and lag tolerances.

Figure 2.2: Sections from Figure 1. Left: section at the principal direction and Z axis to show the vertical
bandwidth and dip tolerance. Right: Plan view (XY) to show the horizontal bandwidth and azimuth
tolerance.

The horizontal and vertical bandwidth parameters have different importance for each deposit

type. For tabular deposits, the definition of vertical tolerance is essential to get a representative

model. For disseminated deposits, there could be more flexibility in selecting this parameter; in

both cases, adequate tolerance parameters facilitate the detection of anisotropy.
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Figure 2.1 shows the parameters for the major direction considering a configuration for azimuth

of 45◦, dip of 0◦, and tilt of 0◦. Consider the origin of the coordinate system as the location of a

sample. X, Y and Z denotes a reference coordinate system. The solid red line shows the lag direction,

the azimuth tolerance is 20◦, and the dip tolerance is 30◦. The vertical tolerance is bigger than the

horizontal tolerance for visual effects; all the points inside this blue polyhedron will be compared

with the point on the origin of the coordinates using the squared difference. The search compares

all points for different lag distances.

Figure 2.2 shows two cuts of Figure 2.1 to show better the parameters and their tolerances.

Since the dip is zero, the XY plane contains the lag vector. The dip tolerance is 30◦. The azimuth

of the vector is 45◦, and the azimuth tolerance is 20◦.

2.2 Tensor of inertia to find principal directions

The correct identification of the principal directions will ensure a good characterization of the

spatial variability with the variogram. Different methods can be applied to identify the principal

directions, such as variogram map, variogram sphere, neutral model, and Moment of inertia (MOI)

or tensor of inertia (Kim & Deutsch, 2022). Nevertheless, MOI is preferred for this thesis because

it can be automated.

A rotating rigid body with angular velocity ωv can be characterized using the tensor of inertia

to calculate its angular momentum (Greiner, 2010). The tensor of inertia is a three by three matrix

where the diagonal elements are known as moments of inertia while off the diagonal elements are

the deviation moments (Greiner, 2010). One important property is that this tensor is real and

symmetric; thus, only six elements of the matrix need to be calculated. The tensor of inertia can be

understood as the mass distribution for a body with a gravity center in the origin of a coordinate

system (Greiner, 2010).

The principal axis of inertia is defined when the deviation moments are zero, and there are only

values for the diagonal of the matrix (moments of inertia). In this scenario, the body rotates around

one of the principal axes of inertia, and the angular momentum and angular velocity will have the

same orientation; this property allows to calculate the principal axis by eigendecomposition (Greiner,

2010). The principal axis can be considered the principal direction for a dataset. Therefore, this

property helps determine a dataset’s principal directions of continuity.

Equations for a rigid body are shown in different textbooks using an integral over the mass;

however, since the analysis here considers discrete points, the integral is replaced with a summation.

A point represents each pair, and the relative coordinates and mass (pseudo-correlation) can be

calculated.

Equation 2.17 are modified from (Blundell & Damian, 2015). The original equations do not

consider the inverse distance weighting. The relative distances from the points to the axis could be
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of big influence. For instance, a small mass could have a big impact if it is far away from the origin

of the coordinates. An inverse distance weighting (power of 2.5) is applied to reduce this effect: d2.5i .

The 2.5 exponent reduces the effect of distance for every point.

Different ways to calculate the mass were tested: (1) a squared difference of values as in Equation

2.14 (pseudo-variogram), (2) a modified version of covariance (pseudo-covariance) as in Equation

2.15, and (3) a modified version of the correlation (pseudo-correlation) as in Equation 2.16. Equation

2.14 has the advantage that all mass values will be positive, while Equations 2.15 and 2.16 could

produce negative values. All negative mass values will be set to zero, and the information for that

pair will not inform the tensor. After testing, the results were inconsistent or inadequate in the first

two cases, while the pseudo-correlation gives consistent and coherent results.

mi−sq = [z(ui)− z(ui + h)]2 (2.14)

mi−pscov = z(ui) ∗ z(ui + h)−mz (2.15)

mi =
[z(ui) ∗ z(ui + h)]−mz

σ2 (2.16)

Where mz and σ2 are the mean and variance of the selected point for the tensor of inertia

analysis.

Ixx =
N∑
i=1

mi

(
y2i + z2i

)
di

2.5 Ixy = Iyx = −
N∑
i=1

mi
xiyi

di
2.5

Iyy =
N∑
i=1

mi

(
x2
i + z2i

)
di

2.5 Ixz = Izx = −
N∑
i=1

mi
xizi

di
2.5

Izz =
N∑
i=1

mi

(
x2
i + y2i

)
di

2.5 Iyz = Izy = −
N∑
i=1

mi
yizi

di
2.5

(2.17)

Where the Ixy is the moment of inertia around the y axis when x is the referential axis of

rotation; mi is the mass of the point (pseudo-correlation); xi, yi and zi are the distance in the X,

Y and Z direction respectively, from the point to the rotation axis; and, di is the distance from the

point to the center of the rotation axis.

The final result of these calculations is a tensor; then, the eigenvectors and eigenvalues of the

matrix can be calculated by eigendecomposition. Each vector is sorted using the eigenvalues, and

finally, the transpose of them is the rotation matrix.
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
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


Tensor of inertia

−→
Eigendecomposition, ordering

and transpose
−→


R11 R12 R13

R21 R22 R23

R31 R32 R33


Rotation matrix

Different angle conventions are potential sources of confusion. This thesis uses the GSLIB

convention to avoid this. In summary, the GSLIB convention considers Y as the major direction,

X the minor, and Z the tertiary; the geostatistical lesson about GSLIB angles (M. Deutsch, 2015)

provides a complete explanation of the rotation order. The angles can be calculated analytically using

the equations to generate the rotation matrix following the GSLIB convention or using optimization

by minimization to get a similar rotation matrix (Hadavand & Deutsch, 2022).

Whether the dip angle is 90◦ or not determines how the equations are solved; Slabaugh (1999)

presents a detailed explanation of calculating the angles for any convention. The equations used

in the program follow the GSLIB convention adapted from varcalc, and are specifically set for this

thesis. When the dip is 90◦, the value of the element R13 is one; also, the azimuth and tilt will be

related, and there will be infinity solutions (Gimbal lock). The tilt is set to zero (Slabaugh, 1999)

for convenience; the following equations show the solution system. In Fortran, the calculations are

in radians; here, they will be presented as if all the calculations are done in degrees:

azm = 90− arctan
(
−R21

R31

)
(2.18)

dip = 90◦ (2.19)

tilt = 0◦ (2.20)

When the dip is different than 90◦, the following equations are used:

dip = − arcsin
(
−R13

)
(2.21)

azm = 90◦ − arctan
(
R12

R11

)
(2.22)

tilt = − arctan
(
−R23

R33

)
(2.23)

The previous equations show the general case and could be used for 2-D or 3-D cases. However,

for a 2-D dataset only the azimuth is inferred because the dip and tilt are zero. Then, only Equation

2.22 is used for 2-D datasets.

These equations are the analytical solution to define the principal directions of continuity using

three angles (GSLIB convention). Additionally, each vector of the principal direction can be defined

by calculating two angles.
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2.3 Geolocated variogram and weighted order moments

A domain could have local variations; there are two approaches to face this: (1) separate the

domain in subdomains that are deemed stationary or (2) consider different influences from data

based on the distance to a reference point in the domain. The reference point will be referred to

as an anchor from this point on the thesis. This thesis allows the practitioner to declare anchors to

identify local variations in the data without making subdomains. Avoiding the domain division can

be helpful if there is local variability or if there is not enough data in the domain, and it also could

be considered to get the most information from the data available.

The geolocated variogram assigns a different weight to each pair based on the distance from

the points being evaluated for that pair to the anchor. A unique weight for each pair is calculated

using the geometric mean of the two Gaussian weights of the points. There are different ways to

combine two different components that are derived from the general mixture rule (Korvin, 1982) as

in Equation 2.24. Machuca (2010) details that a t value that approaches to 0, which generates the

geometric average (consider ϕ = 0.5), disregards effects from large lag distances, and when the lag

distance is zero, the two point weight is a one point weight.

M
(
g1, g2, ϕ, t

)
=
[
ϕgt1 + (1− ϕ)gt2

]1/t
, t ̸= 0 (2.24)

Where ϕ is the volume fraction, g1 and g2 are the values of a property being mixed, t is a real

number different than zero that characterizes the mix.

A Gaussian weighting function is applied to have a smooth transition of weights; inverse distance

weighting does not produce smooth transitions. Equation 2.25 shows the calculation of weight for

each point, and Equation 2.26 shows the mixture of two weights using the geometric average.

ω
(
ui;o

)
= exp

(
−dist(ui,o)

2

2 · sp2

)
+ ϵ (2.25)

Where dist(ui,o) is the distance from the point i to the anchor o, sp is the smoothing factor, and

ϵ is a small number that ensures that the weight is greater than zero. The smoothing parameter

(sp) is calculated for each dataset and comes from the maximum extension of the dataset in the X

or Y direction (the code assumes that the biggest extension would be on the horizontal coordinates

rather than the vertical extension).

ω
(
ui,ui + h;o

)
=
√
ω
(
ui;o

)
· ω
(
ui + h;o

)
(2.26)

This concept assumes local stationarity at each anchor location. Machuca presents a detailed

explanation of the local stationarity decision (Machuca, 2010); following this logic, first and second

moment orders can be weighted to have the respective local statistics of the first and second order

moment for each anchor point. Machuca (2010) provides the formulas for calculating the weighted

first and second order moments. The following formulas (from 2.27 to 2.35) are adapted or taken

from Machuca’s Ph.D. thesis. Equation 2.27 shows the standardized weight. Equation 2.28 shows
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the standardized variogram; it uses the standardized weights. Equation 2.29 shows the weighted

variance used to standardize the geolocated variogram.

ω′ (ui,ui + h;o
)
=

ω
(
ui,ui + h;o

)∑N(h)
i=1 ω

(
ui,ui + h;o

) (2.27)

γ̂(h;o) = 1
2

N(h)∑
i=1

ω′ (ui,ui + h;o
)
·
[
z (ui)− z

(
ui + h

)]2
(2.28)

Ŝ(o) ≈ 1

2
∑N

i=1
∑N

j=1 ω
(
ui,uj ;o

) N∑
j=1

N∑
i=1

ω
(
ui,uj ;o

)
·
[
z (ui)− z(uj)

]2
(2.29)

Where ω′ (ui,ui + h;o
)

and ω
(
ui,uj ;o

)
are the standardize and non standardize weights for

the points ui and uj with respect to anchor o, respectively; z (ui) and z(uj) are the i and j sample

values. N is the total number of data being analyzed for anchor o.

Equation 2.30 shows the weighted version of the non-ergodic covariance, Equations 2.31 and

2.32 shows the local weighted means used on Equation 2.30. Equation 2.33 shows the local weighted

correlogram, and Equations 2.34 and 2.35 show the local weighted standard deviations used on

Equation 2.33.

Ĉ(h;o) =
N(h)∑
i=1

ω′ (ui,ui + h;o
)
· z (ui) · z

(
ui + h

)
− m̂−h(o) · m̂+h(o)

=
N(h)∑
i=1

ω′ (ui,ui + h;0
) [

z (ui)− m̂−h(o)
] [

z
(
ui + h

)
− m̂+h(o)

] (2.30)

m̂−h(o) =
N(h)∑
i=1

ω′ (ui,ui + h;o
)
· z (ui) (2.31)

m̂+h(o) =
N(h)∑
i=1

ω′ (ui,ui + h;o
)
· z
(
ui + h

)
(2.32)

ρ̂(h;o) = Ĉ(h;0)√
σ̂2
−h(0) · σ̂2

+h(0)
∈ [−1,+1] (2.33)

σ̂2
−h(0) =

N(h)∑
i=1

ω′ (ui,ui + h;o
)
·
[
z (ui)− m̂−h(o)

]2 (2.34)

σ̂2
+h(o) =

N(h)∑
i=1

ω′ (ui,ui + h;o
)
·
[
z
(
ui + h

)
− m̂+h(o)

]2
(2.35)

Where: ω′ (ui,ui + h;o
)

is the standardized weight for the pair of points ui and ui + h with

respect to the anchor o. γ̂(h;o) is the weighted variogram for lag h; Ŝ(o) is the weighted variance;

Ĉ(h;0) is the weighted covariance; ρ̂(h;o) is the weighted correlogram; m̂−h(o) and m̂+h(o) are the

weighted means for tails and heads; σ̂2
−h(0) and σ̂2

+h(0) are the weighted tail and head variances,
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all of the previous first and second order moments are with respect to the anchor o.

Equations 2.36 and 2.37 show the relationships between the geolocated variogram, geolocated

covariance and geolocated correlation.

γ̂(h;o) = (Ŝ(o)− Ĉ(h;o))
Ŝ(o)

(2.36)

γ̂(h;o) =
(
1− ρ̂(h)

)
(2.37)

Where γ̂(h) is the geolocated variogram (Equation 2.28), Ŝ(o) is the geolocated variance (Equa-

tion 2.30), and ρ̂(h) is the geolocated correlogram (Equation 2.33). This thesis calculates the

experimental variogram points using Equations 2.36 and 2.37.

2.4 Variogram modeling and optimization function

Variogram modeling allows having the covariance value for all distances and directions, and

not only at the experimental points; this is required to perform estimation or simulation since

every possible distance can be obtained from the model. A variogram model includes geological

interpretation such as anisotropy, nugget effect and trends (Rossi & Deutsch, 2013).

A positive definite model is required to solve the kriging equations with a unique solution and

positive kriging variance (Rossi & Deutsch, 2013). The practitioner can use any model that satisfies

the positive definite condition or use the most common positive definite models. The spherical,

exponential, Gaussian and power-law models are the most used, especially the first two.

The variogram model can combine different licit models known as nested structures; Rossi and

Deutsch (2013) mentions that three structures will usually satisfy most fitting needs. Different

proportions of the model can be assigned to different structures, which usually have different ranges.

For instance, a variogram model can combine three different structures of a spherical model with

different ranges.

Pyrcz and Deutsch (2014) describe three steps to model a variogram: (1) find the minimum

necessary nested structures, (2) for each nested structure, select the model type, variance contribu-

tion and anisotropy parameters (angles and ranges for each principal direction), and (3) refine the

model to get a ‘good’ fit. Thus, seven parameters are required to fit each structure: three angles,

three ranges, and the model. The angles and ranges are related to the three principal directions

of continuity. The fit can be manual or automatic, using optimization to minimize a measure of

mismatch.

Some practical considerations are evaluated when modeling the experimental points: (1) a rep-

resentative and stable fit are preferred, (2) some points should not be considered for modeling if

they are adding noise (especially near the origin), (3) how to model the variogram with respect to

the sill. The sill is the variance of the values for this thesis.
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There are three approaches to model the experimental points: (1) Above the sill, (2) to the sill,

and (3) considering the sum of each structure as sill (Samson & Deutsch, 2021). Another important

consideration is to calculate the nugget effect (NE). Rossi and Deutsch (2013) mentions that a

common practice is to calculate the downhole variogram to get its value; Chilès and Delfiner (2012)

mentions that the NE value could be calculated by extrapolating the first points of the variogram,

but it could be adjusted based on the knowledge of the physical property being studied.

An optimization model calculates values of decision variables that maximize or minimize an

objective function considering given constraints (Winston & Goldberg, 2004). The experimental

points are used to fit a function that minimizes the mean square error (MSE), comparing them with

the values of the model at those distances. The decision variables for variogram modeling are the

contributions and ranges of each structure. The experimental points are in the principal directions,

and there is no need to evaluate angles.

2.5 Estimation with kriging

Kriging is an estimation technique developed in 1960 and has been extensively used since, initially

focused on mining; nowadays, there are applications in different areas, including other types of

natural resources and earth sciences (Chilès & Desassis, 2018). A comprehensive explanation of

the Kriging equations and assumptions can be found in many geostatistical references (Chilès &

Delfiner, 2012; Isaaks & Srivastava, 1989; A. G. Journel & Huijbregts, 1978; Pyrcz & Deutsch, 2014;

Rossi & Deutsch, 2013). The kriging weights can be calculated using the normal equations, where

the covariances are calculated from the variogram model.

Kriging can be used on many deposit types of simple or moderate complexity (e.g. tabular or

porphyry deposits with simple faulting or folding); a more detailed reference of kriging and other

estimation methods can be reviewed in (Darling, 2011). Kriging techniques are widely used in

the mining industry; the block models for mineral deposits are generally estimated using ordinary

kriging (OK). A few reports were reviewed to get an idea of the use of kriging in the industry; eight

mines mention the use of ordinary kriging out of ten mines. Table 2.1 shows a summary of these

technical reports.

The references for table 2.1 are: Krolak et al. (2017) 33, Lehouiller et al. (2020) 37, Gray et al.

(2022) 23, Ellis et al. (2023) 19, Graden (2022) 22, Lozada and Espinoza (2011) 39, Schalekamp and

McAllister (2022) 53, Seward et al. (2022) 54, Glencore (2022) 21.

Bazania and Boisvert (2023) present an extensive analysis of techniques for estimation in the

mining industry. They revised 150 reports and showed that ordinary kriging is used 47% of the

time. The classification of the resources according to the industry standards shows that mainly

geometric methods are used. Silva and Boisvert (2013) mention that 6% of the reports using kriging

variance from a total of 120 revised technical reports that had enough information related to resource

17



2. Theoretical Background

Table 2.1: Estimation methods in selected mines. IDW, ID2 and ID stand for inverse distance weighting,
inverse distance weighting to the power of 2, and inverse distance weighting to the power of 1, respectively.
OK stands for ordinary kriging. MIK stands for Multiple indicator kriging.

Mine Metal/Mineral Estimation method Year
Red Dog Mine 33 Zn, Pb, Fe, Ba, Ag OK 2017
Canadian Malartic Mine37 Au OK and ID2 2021
Ravensthorpe Nickel Operations23 Ni OK and MIK 2022
The Neves-Corvo Mine19 Cu,Zn,Sn,Pb OK and IDW 2023
Highland Valley Copper22 Cu, Mo OK 2013
Antamina39 Cu, Zn, Ag, Mo, Fe OK and SK 2011
Elkview Coal Operation53 Coal ID and ID2 2022
Greenhills Coal Operation54 Coal ID2 2022
Lomas Bayas (II)21 Cu OK 2022
Antappaccay21 Au,Cu,Ag OK 2022

classification. Owusu (2019) reviewed 45 NI 43-101 technical reports related to the gold industry;

only two reports include the use of kriging variance for resource classification. Bazania and Boisvert

(2023) show that Drillhole Spacing (DHS) and Search Neighbourhood (SN) are used more than 80%

of the time for resource classification.

Before the application of kriging, some conditions have to be reasonably ensured: data quality,

outlier management, definition of estimation domains, manage of contacts, and others (J. Deutsch

& Deutsch, 2015). The kriging search plan is defined based on the purpose of the estimate, which

could be interim estimates, visualization and trend model estimates, final estimates, and probabilistic

predictions estimates (J. Deutsch & Deutsch, 2015).

2.5.1 Simple kriging

Kriging estimates a value at an unsampled location using a linear weighted combination of the

available samples. A strong assumption in simple kriging is that the mean is known for a domain

deemed stationary. The practitioner can calculate the cumulative distribution function, mean, vari-

ance (σ2), variogram (γ(h)), and the covariance (C(h)) from the available data (C. Deutsch, 2021).

Equation 2.38 shows the form of a linear estimator; the left part of the equation is also known as

the residual of the estimated value, and it is usually represented as Y ∗(u).

Z∗(u)−m =
n∑

i=1
λi

[
Z(ui)−m

]
(2.38)

Where Z∗(u) is the estimated value at an unsampled location, m is the mean, and λi is the

weight applied to the data value Z(ui). A more consistent notation for the weights is λ(ui); however,

λi is displayed to keep the notation simple.

The error of the estimation is the difference between the estimated value and the true value

at that location; the problem is that we do not have access to the true value, so it needs to be

probabilistically approached using the Random Function (Isaaks & Srivastava, 1989). Since the

domain is deemed stationary, the sampled locations are considered outcomes of a random variable;

18



2. Theoretical Background

also, the unsampled location is a random variable because it is a linear estimation of the sampled

values.

The criteria for best estimate used in kriging is the one that minimizes the error variance

(C. Deutsch, 2021). The idea is to minimize the error variance (MSE) because there is no access to

the true values at the locations being estimated. Equation 2.43 will be minimized to get the kriging

equations, also known as normal equations.

Equation 2.38 can be expressed in terms of residuals (Y ∗(u)), as in Equation 2.39; this is

implemented for easy calculations and takes advantage of the stationarity assumptions. Equations

2.40, 2.41, and 2.42 are the first and second order moments for the residuals assuming stationarity

on the domain.

Y ∗(u) =
n∑

i=1
λiY (ui) (2.39)

E
{
Y (u)

}
= 0 (2.40)

C(ui,uj) = E
{
Y (ui)Y (uj)

}
(2.41)

V ar[Y ] = E
{
Y 2(u)

}
− (E

{
Y (u)

}
)2 = E

{
Y 2(u)

}
= C[Y (u), Y (u)] (2.42)

Where Y ∗(u) is the estimated residual at the unsampled location, λi is the weight for the

sampled (residual) value Y (ui). The expected value of the residuals is zero as in Equation 2.40. The

covariance of sampled values is expressed as the expected value of the product of the sampled values

as in Equation 2.41. The variance of the residuals is the covariance of sampled values at the same

locations as in Equation 2.42.

The following equations show the expansion of this expression to reach the kriging equations.

Equation 2.42 is used in Equation 2.45 to express the last term as a function of the covariance.

Equation 2.41 is used in Equation 2.46 to express the first two terms in function of the covariance.

Equation 2.47 shows the estimation variance (σ2
E) in terms of covariance (C). The first term

accounts for the redundancy of the data, the second for the closeness of the data, and the third for

the variance (Pyrcz & Deutsch, 2014). Equation 2.47 can be derived with respect to λi to get the

kriging equations. The last term of the equation will be zero after the derivation since there is no

λi in it, giving Equation 2.48.

Equation 2.49 shows the simple kriging equations, where λj are the weights that will be calcu-

lated using the covariances between the data (C(ui,uj)) and the covariance between the data and

unsampled location (C
(
ui,u

)
). The covariance values could be calculated from the variogram.

σ2
E = E

{[
Y ∗ − Y

]2} (2.43)

σ2
E = E


( n∑

i=1
λiY (ui))2 − 2(

n∑
i=1

λiY (ui))(Y (u)) + (Y 2(u))


 (2.44)
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σ2
E = E


n∑

i=1

n∑
j=1

λiλjY (ui)Y (uj)

− E

2(
n∑

i=1
λiY (ui))(Y (u))

+ E
{
(Y 2(u))

}
(2.45)

σ2
E =

n∑
i=1

n∑
j=1

λiλjE
{
Y (ui)Y (uj)

}
− 2

n∑
i=1

λiE
{
Y (ui)(Y (u))

}
+ C[Y (u), Y (u)] (2.46)

σ2
E =

n∑
i=1

n∑
j=1

λiλjC[Y (ui), Y (uj)]− 2
n∑

i=1
λiC[Y (ui), Y (u)] + C[Y (u), Y (u)] (2.47)

∂σ2
E

∂λi
= 2

n∑
j=1

λjC(ui,uj)− 2C
(
ui,u

)
= 0 (2.48)

n∑
j=1

λjC(ui,uj) = C(ui,u), for i = 1, ..., n (2.49)

Kriging has remarkable properties, these properties are explained by many authors in different

geostatistical books (C. Deutsch, 2021; A. G. Journel & Huijbregts, 1978; Pyrcz & Deutsch, 2014;

Rossi & Deutsch, 2013). Some properties are: (1) kriging minimizes the error variance by taking the

second derivative of the error variance respect to each weight (C. Deutsch, 2021), (2) it has a unique

solution since the variance is positive definite and there is only one data at each sample location

(C. Deutsch, 2021), (3) kriging is exact since the value estimated at the sampled locations is the

actual sample value (Rossi & Deutsch, 2013), (4) the kriging variance depends on the covariance

values, not on the data values (Rossi & Deutsch, 2013), (5) the weights assigned to each sampled

value depends on the sampled geometry rather than the actual values (Rossi & Deutsch, 2013), (6)

the distance used to estimate in kriging is a structural distance (considers the structural continuity

of the variable), not a Euclidean one (Rossi & Deutsch, 2013), (7) kriging accounts for clustering

because of the covariances between data values (Rossi & Deutsch, 2013), and (8) kriging produces

smoother estimates which are suitable for some mining applications (Rossi & Deutsch, 2013).

2.5.2 Ordinary kriging

There are different kriging types, such as simple kriging, ordinary kriging, kriging with a trend or

universal kriging, indicator kriging and multi-Gaussian kriging; however, in this thesis, only simple

and ordinary kriging will be used, thus only they are covered on this chapter.

The main difference between simple and ordinary kriging is the assumptions related to the mean.

In ordinary kriging, the mean is not assumed to be known; this makes ordinary kriging widely used

in the mining industry.

Equation 2.38 can be rewritten as in Equation 2.50. Then, the sum of weights is set as 1

to ensure the unbiased condition, and this constraint will disregard the mean value. Equation

2.51 shows the kriging estimator. The Lagrange parameter is necessary to minimize and solve the

estimation variance. The ordinary kriging system is expressed in Equations 2.52 and 2.53. The
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ordinary kriging system is not shown as the equations in the simple kriging section (see Equations

2.43 to 2.49); however, the procedure is similar and only needs to consider the Lagrange parameter.

Z∗(u) =
n∑

i=1
λi

[
Z(ui)

]
+

1−
n∑

i=1
λi

m (2.50)

Z∗
OK(u) =

n∑
i=1

λi

[
Z(ui)

]
(2.51)

n∑
j=1

λjC(ui,uj) + µ = C(ui,u), for i = 1, ..., n (2.52)

n∑
i=1

λi = 1 (2.53)

Where Z∗(u) and Z∗
OK are simple and ordinary kriging estimators, respectively, n is the number

of data used to estimate that point, m is the mean of the dataset, µ is the Lagrange parameter,

λi are the weights, Z(ui) are the sampled values, C(ui,uj) is the covariances between the data,

C
(
ui,u

)
is the covariance between the data and unsampled location.

This chapter gives the theoretical background related to this thesis. It includes important

concepts and presents the equations that are implemented in the autovar program (Chapter 3) and

the kriging theory necessary for Chapter 5. The next chapter describes in detail the workflow and

assumptions for the program.
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Chapter 3

Autovar program
Variogram calculation and modeling are key tools to estimate or simulate a variable in a domain.

The GSLIB-like autovar program aims for automatic calculation and modeling of variograms. The

main goal is to get a model that represents the spatial distribution of the variable. This thesis

considers a set of parameters to get representative experimental variogram points and common

modeling decisions to fit them properly.

This chapter explains the logic and the assumptions of the program. Autovar considers the

data and standard parameters according to the geology of disseminated and tabular deposits. The

following workflow gives the order in which the program infers parameters and a general overview of

the implemented algorithms. Specific details and reasons for the selected parameters of the workflow

are presented after this overview.

1. Initial set up:

a) Read the parameter file, perform initial calculations, and check the data file (trimming

limits, data inside grid definition, count valid data and allocate memory, basic statistics).

b) Read anchor file (if the practitioner uses the geolocated option).

c) Calculate weights per anchor (if the practitioner uses the geolocated option).

2. Identification of directions of continuity:

a) Select points with omnidirectional search: get points inside a selected radius (max_dist)

based on the domain size.

i. Calculate horizontal spacing.

ii. Select pairs with different algorithms based on the deposit type and if the dataset is

2-D or 3-D.

iii. Calculate the vertical spacing.

b) Calculate the rotation matrix from the tensor of inertia calculated from the pseudo-

correlation between pairs. Calculate GSLIB and referential angles of the vectors that

characterize the principal directions.

3. Experimental variogram calculation:

a) Calculate the lag size per direction based on data spacing. The program uses the rotated

coordinates.
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b) Calculate the extension of the variogram per direction using the rotated coordinates (set

to 0.5 × max_dist for the major and minor in disseminated deposits; 0.75 × max_dist

and 0.5 × max_dist for the major and minor of the tabular deposits). If the geolocated

option is selected, the maximum extension permitted is 0.3× max_dist.

c) Check if extensions and lag sizes are reasonable based on data spacing and domain ex-

tension. The program enforces extensions from the original coordinates if the rotation

matrix is inadequate.

d) Check order relations and enforce them if needed.

e) Call varexp subroutine to calculate the experimental variogram and weighted experimen-

tal variogram if the program uses the geolocated option.

4. Automatic modeling: Get the experimental variogram points from 3 and fit them using the

spherical model and an optimization algorithm.

a) Set the angles according to the GSLIB angle definition.

b) Set parameters general parameters and array for modeling.

c) Model the experimental variograms using an objective function. Only the spherical vari-

ogram model is available.

5. Evaluate the variogram if asked by user:

a) Evaluate based on the anisotropy ratio between the major and minor.

b) Recalculate the experimental variogram with larger tolerance parameters if the current

ratio is smaller than the anisotropy ratio.

6. Write outputs (GSLIB format):

a) Variogram model.

b) Experimental variogram.

c) Rotation matrix (for plotting and quick check).

d) Variogram model in text format for GSLIB program.

e) Weights for each anchor.

When the user selects the geolocated option, the steps from two to six are repeated in a loop to

calculate the variograms per anchor. Equation 3.1 shows the maximum distance (max_dist) param-

eter calculation. Step 5 is only recommended for disseminated deposits. The user can optionally

declare general anisotropy ratios between major-minor and major-tertiary; otherwise, the program

uses the default ratio (1.1). The next sections give a detailed explanation of these steps.
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3.1 Initial set up

The autovar program infers all the parameters from the data. The user needs to specify the

deposit type and if the geolocated option will be used. The practitioner can optionally declare

anisotropy relationships. For the geolocated option, it is necessary to add a file with the location of

the anchor points.

3.1.1 Parameter file

Step one in autovar relates to the parameter file and datafile management. The program creates

a default parameter file if one does not exist. When a complete and adequate parameter file is

provided, the program reads the information from it. The user declares the data file in Line 5. Line

6 informs the columns for coordinates, variable and drillhole identification (DHID). Line 7 specifies

the variable’s range values.

1 Parameters f o r AUTOVAR

2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

3

4 START OF PARAMETERS:

5 o i l s ands . dat − f i l e with data

6 2 3 4 5 1 − columns f o r X, Y, Z , var , DHID

7 −1.0e21 1 .0 e21 − trimming l i m i t s

8 0 1 − Geolocated variogram , number o f anchors

9 anchor . out − f i l e with anchors

10 2 3 4 − X Y Z column of anchor f i l e

11 0 − Attempt to s t a b i l i z e variogram ?

12 0 2 4 − Use anisotropy rat io , maj/min , maj/ t e r

13 67 587.0 50.0 − nx ,xmn, x s i z

14 120 5030.0 50.0 − ny ,ymn, y s i z

15 47 142.5 3 .0 − nz , zmn, z s i z

16 autovarmod_oil . out − f i l e f o r variogram model output

17 autovar_oi l . out − f i l e f o r experimental pa i r s output

18 debug_oil . out − f i l e f o r d i r e c t i o n s

19 v a r f i t _ o i l . out − variogram model text GSLIB format

20 weights_oi l . out − weights f o r each anchor

21 1 − Debug (1=yes )

22 2 − Disseminated (1) or tabular (2) depos i t type ?

The user specifies 1 to use the geolocated function and specifies the number of anchors in Line 8.

Line 9 gives the anchor file, and Line 10 shows the columns for the coordinates of each anchor; the
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program automatically assigns numbers to each anchor in ascending order (e.g., the first line with

coordinates will be the first anchor).

If the user declares Line 11 as 1, the program will attempt to get a more stable variogram using

fewer restrictions for pair selection in each lag. Line 12 is optional, and it informs anisotropy ratios.

Lines 13, 14 and 15 inform the grid limits following the GSLIB format. The user can declare the

name of the outputs on Lines 16 to 20. Line 21 selects the debug option (the user specifies 1), which

allows to display some extra calculations on the screen. Line 22 declares the deposit type, where 1

stands for disseminated and 2 for tabular.

The previous parameter file shows the correct configuration without using anchors (Line 8 option

0) and with no stabilization attempt selected (Line 11 option 0) for a tabular deposit type (Line 22

option 2). In this thesis, a variogram where all the pairs have constant weight will be referred to as

a general variogram (see Equation 2.6). In contrast, variograms that consider different weights per

pair will be referred to as geolocated variograms (see Equation 2.28).

The user does not have to declare names for the geolocated variograms when the geolocated

option is used. The program will generate output files that follow the format of the general variogram

files, including the anchor number at the end. For instance, “varfit_oil.out” will be the file for the

general variogram, while “varfit_oil1.out” will be the file for the first anchor.

3.1.2 Data consistency and basic statistics

The program reads the data and analyzes it. It selects points inside the grid and in the trimming

limits range. Autovar calculates a reference parameter (max_dist) for consistency checks in the

program’s next steps. It takes the maximum and minimum coordinates in X, Y, and Z. Equation

3.1 illustrates the reference parameter (max_dist) calculation.

max_dist =
√
(xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2 (3.1)

Where xmax and xmin are the maximum and minimum value for the X coordinates, respectively;

ymax and ymin are the maximum and minimum value for the Y coordinates respectively, zmax and

zmin are the maximum and minimum value for the Z coordinates respectively.

This thesis implements workflows for 2-D or 3-D datasets only, and there is no omnidirectional

calculation of variograms. The program uses the DHID column for the dataset to calculate the

sample spacing in the vertical direction. The vertical spacing determines the vertical bandwidth

parameters for the horizontal directions (major and minor).

The program displays the selected options in the parameter file at the beginning. It also displays

if the dataset is 2-D or 3-D and some basic statistics, such as the number of data, and the variable

average and variance. Autovar also shows the minimum, average and maximum spacing in the

horizontal direction for 2-D and 3-D datasets; the program is set to compare the spacing between

the four closest samples. For 3-D datasets, the program displays the total number of drillholes and
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the averages of Z spacing, drillhole length, and number of samples per drillhole. The initial spacing

information is in the units of the dataset (e.g. meters or feet).

If the option debug on screen is selected, the program displays more information on the screen,

including the inertia tensor, eigenvectors and eigenvalues, and referential information of the original

coordinates: the 90% extension in each direction and a referential lag distance. At this point, the

program rotates the original coordinates using the rotation matrix to align them with the principal

directions. The program displays information on the spacing in the principal directions, such as the

maximum search distances and all the spacing information, but for the rotated coordinates. Autovar

will select a maximum search and lag size according to the deposit type selected by the user. The

program will calculate the experimental variogram according to all the previous inferred parameters.

All the variogram experimental points, the variogram model, and the initial and final value of the

objective function will be displayed on the screen if the debug option is selected.

3.2 Identification of directions of continuity

The second part identifies the directions of continuity using the eigendecomposition of the iner-

tia tensor. The first step is to calculate the horizontal spacing of the points using the datspac_horz

subroutine, which is an adaptation of the GSLIB datspac program. It calculates a dataset’s mini-

mum, average, and maximum average spacing, assuming that all drillholes are vertical; otherwise,

it will find distances between the projections of the last point of each drillhole onto a 2-D horizontal

plane. The algorithm compares the closest four points, and the program shows the spacing results

on the screen.

Autovar could consider all pairs; however, the distance from a mass point to the centre of

reference highly influences the moment of inertia, as explained in Section 2.2. Autovar implements

some additional constraints according to the dataset characteristics. For 2-D, the average spacing in

sampling usually tends to be similar, and pre-processing is generally unnecessary. For 3-D datasets,

the influences of the samples (spacing and number of samples per drillhole) in the vertical direction

will have a big impact (i.e. the sampling spacing in the downhole could be 3 m, and the average

spacing in the horizontal could be over 100 m).

For a 3-D dataset, the program calculates the average spacing between adjacent downhole sam-

ples using datspac_vert subroutine. For a disseminated deposit type, autovar scales the Z coordi-

nates by a ratio (see Equation 3.3) that allows a proper selection of points for the tensor of inertia

since all points will be at a similar distance from each other.

Fsc =
horzspac
vertspc

(3.2)

Where Fsc is the factor to scale the coordinates, horzspac and vertspc are the average horizontal

and vertical spacing, respectively.

26



3. Autovar program

For 2-D datasets, the subroutine omnipair gets all possible pairs in every direction and calculates

the relative coordinates and a pseudocorrelation value for each pair, which is the input for the

moi subroutine. For 3-D disseminated deposit type, the points are scaled using Equation 3.3 and

only points inside a cube are considered. The cube’s edge is the minimum extension in the X

or Y directions; this ensures that the same extension is considered in X and Y directions. For 3-D

tabular deposits, all points are considered with no scaling; however, a ratio (stratratio) compares the

averages of horizontal spacing and the drillhole length to determine if a stratigraphic transformation

is necessary.

stratratio = horzspac
vertext

(3.3)

Where stratratio is the stratigraphic ratio, horzspac is the average horizontal spacing, and vertext

is the vertical extension of the dataset.

The program compares each point against other points in a radius of 0.2× max_dist. Different

factors were tested (from 0.1 to 0.5) using 40 synthetic datasets with different 3-D orientations.

Smaller factors (< 0.2) are not representative, and bigger factors (> 0.2) get inconsistent results.

The factor 0.2 gives the correct extension for pair selection, which is key to identifying the directions

of continuity. Figure 3.1 shows how the pairs are selected for a 2-D dataset. The two circles have

the mentioned radius. All the points are compared to the points located in the centre of each circle.

A plot of the relative coordinates of the pairs generated is shown on the right of Figure 3.1.

Figure 3.1: Pair selection for omnidirectional search. Left: Plan view of samples and two selected points
that are compared to the closest neighbours. Right: Representation of the relative coordinates from the two
selected points.

The program calculates a pseudocorrelation, and the relative coordinates are the differences

of X, Y, and Z coordinates between pairs. Each pair has a delta of X (xi), Y (yi), and Z (zi)

and a pseudocorrelation (mi) that acts as mass. The program sets the pseudocorrelation to zero

if the value is less than zero because the mass can not be negative, and that pair is no longer

analyzed. Autovar considers only values below the 99th percentile to minimize the influence of

outliers; they will produce a huge mass that can lead to inaccurate results. The program calculates
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the pseudocorrelation or ‘mass’ using the Equation 2.16.

For 3-D disseminated deposits, the moi subroutine uses the original coordinates after the point

selection done by omnipair. If the geolocated option is selected, only samples up to 0.3×max_dist

distance from the anchor are selected. The 0.3 factor was calculated by testing synthetic datasets

and showed the best local characterization of principal directions. Smaller factors do not capture

the local variability correctly, and bigger factors will show more regional principal directions. The

selection of points near the anchors allows for better local identification of directions at each anchor.

For 3-D tabular deposits, the stratratio is evaluated. When stratratio is less than 10, the

omnipair subroutine is executed. Otherwise, the dataset is transformed internally to stratigraphic

coordinates using the proportional method, and then the omnipair subroutine is applied. The ratio

of 10 was determined after testing real cases of stratigraphic deposits. The results of the variogram in

the tertiary direction will be in stratigraphic units when the stratigraphic transformation is applied.

Subsequently, the program performs only the inference of directions for major and minor, while the

tertiary direction is vertical by default.

The user is encouraged to provide a dataset that has already been properly transformed in the

desired stratigraphic units; otherwise, autovar will check the stratratio and set a transformation.

The proportional, truncation, and onlap methods (or a combination of them) are possible options to

transform the data to stratigraphic units (Latifi & Boisvert, 2022). Only the proportional method is

implemented in autovar to cover some common cases. The program calculates the average thickness

of the drillholes to do the transformation as in Equation 3.4.

zstrat =
z − zbot

ztop − zbot
× Th (3.4)

Where zstrat is the stratigraphic coordinate for the original z coordinate, zbot and ztop are the

bottom and top coordinates of the drillholes (bottom and top surfaces), and Th is the average

thickness of the drillholes.

The user is encouraged to ensure that the data provided is adequate to get a reasonable vari-

ogram (i.e. Exploratory data analysis). Exploratory data analysis (EDA) consists of a univariate

or bivariate statistical analysis to understand the data (Tukey, 1977). Aditionally, some of the

prerequisites before variogram calculation could be coordinate transformation for tabular deposits,

compositing the data, outlier management, and normal score transformation (J. Deutsch, 2015a).

The variogram could be unstable and noisy if the variable has a highly skewed distributions and

preferential sampling in highly valued areas (Kumara & Deutsch, 2017).

The moi subroutine takes the output from omnipair and calculates the tensor of inertia, eigen-

values and eigenvectors (see equations in Section 2.2). The eigenvectors are set in ascending order

using the eigenvalues for 2-D and 3-D disseminated and tabular deposits. If the program uses the

stratigraphic coordinates, the first two vectors are sorted in descending order, while the last vector

remains in the same position in the matrix.
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There are other methods to determine the principal directions, such as variogram maps, var-

iogram sphere, and neutral model (Kim & Deutsch, 2022). The MOI is preferred since it can

be automated. The program transposes the ordered eigenvectors to get the rotation matrix; this

calculation skips the need to prompt the user with the angles of the three directions on continuity.

The rotation matrix is an output of the program to facilitate reviewing and validating the

inferred directions. For a 3-D dataset, a three by three matrix is calculated; for a 2-D dataset, a

two by two matrix is calculated, but a three by three matrix is used for consistency. For the 2-D

datasets, only four terms out of the matrix are calculated, and R31, R32, R13, R23 others are filled

with zeros except for element R33 which is one. Figure 3.2 shows a 3-D representation of the rotation

matrix as vectors, and the following matrices show the exact values for both plots.

3-D rotation matrix:


0.492 0.587 0.643

−0.852 0.176 0.492

0.176 −0.790 0.587



2-D rotation matrix:


0.500 0.866 0.000

−0.866 0.500 0.000

0.000 0.000 1.000



Figure 3.2: Schematic representation of the rotation matrices with vectors. Left: Plot for 3-D dataset
rotation matrix. Right: Plot for 2-D dataset rotation matrix.

There is more than one set of angles that will produce the same rotation matrix. There are two

sets of angles that produce the same matrix considering the following ranges for the azimuth, dip

and tilt: [-360,360], [-90,90] and [-90,90]. For instance, considering the GSLIB convention (‘Azimuth,

Dip, Tilt’), the set of angles of ‘40, 40, 40’ produces the same rotation matrix as ‘-320, 40, 40’. The

same pair search can be defined with two rotation matrices. Consequently, four sets of angles can

define the same pair search. For instance, ‘40, 40, 40’, ‘-320, 40, 40’, ‘220, -40, -40’, ‘-140, -40, -40’
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produces the same pair search.

Figure 3.3: Schematic representation of two rotation matrices that define the same pair search. Left:
rotation matrix defined by angles ‘40, 40, 40’. Right: rotation matrix defined by angles ‘-320, 40, 40’.

One important property of the variogram and covariance is that they are even functions (Mon-

tero, Fernández-Avilés, & Mateu, 2015). This means that γ(h) = γ(−h) or C(h) = C(−h). Then,

any of the four sets of angles will produce the same variogram or covariance.

All the analytic equations to find the GSLIB angles are in Section 2.2 (see Equations 2.20 and

2.23.) Depending on the orientation of the eigenvectors, the equations could generate a set of angles

that is different than the GSLIB convention. There are eight combinations of eigenvectors that

will produce the same pair search, and only two of them can be defined using the GSLIB angle

convention. The program implements a subroutine to force the eigenvectors to be coherent with the

GSLIB angles.

All the possible combinations of vectors with GSLIB angles were characterized to recognize the

valid set of eigenvectors that comes from the GSLIB rotation matrix. Tables 3.1 and 3.2 show the

valid position of the major, minor and tertiary in octants for 3-D datasets. The index of the octant

is a unique number that identifies each possible combination (see Equation 3.5). The subroutine

prioritizes that the major direction vector is in the octants where x ≥ 0 because this ensures a

correct azimuth calculation with the analytical solution. All the combinations are compared to the

valid set of eigenvectors to pick the one that follows the GSLIB angle convention.

octidx = octmaj × 100 + octmin × 10 + octter (3.5)

Where octidx is the unique octant index, octmaj , octmin, and octter are the octants where the

major, minor and tertiary vectors are located, respectively.

This solves most inconsistencies in the angle calculation with analytical equations. A rotation

matrix is calculated using the inferred angles. This matrix is compared against the right set of

eigenvectors with an objective function shown in Equation 3.6. A last consistency check generates

another set of possible angles, changing the dip and tilt for its negative values and getting a rotation
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Table 3.1: Valid combinations of vectors for the GSLIB angle convention for 3-D datasets. Part 1.

Octant for major Octant for minor Octant for tertiary Octant index
1 1 1 111
1 1 2 112
1 1 4 114
1 3 2 132
1 4 1 141
1 4 2 142
1 4 3 143
1 5 1 151
1 5 3 153
1 5 4 154
1 8 3 183
1 8 4 184
2 1 3 213
2 1 4 214
2 4 3 243
2 4 4 244
2 5 1 251
2 5 4 254
2 6 1 261
3 1 4 314
3 2 1 321
3 2 4 324
3 6 1 361
3 6 2 362
3 7 1 371
3 7 2 372
4 2 1 421
4 2 2 422
4 3 1 431
4 3 2 432
4 7 2 472
4 7 3 473
4 8 2 482
4 8 3 483
5 1 1 511
5 1 2 512
5 4 1 541
5 4 2 542
5 7 4 574
5 8 1 581
5 8 4 584
6 1 1 611
6 1 2 612
6 1 3 613
6 2 3 623
6 5 1 651
6 5 2 652
6 8 1 681
6 8 2 682

31



3. Autovar program

Table 3.2: Valid combinations of vectors for the GSLIB angle convention for 3-D datasets. Part 2.

Octant for major Octant for minor Octant for tertiary Octant index
7 2 3 723
7 2 4 724
7 3 3 733
7 3 4 734
7 5 2 752
7 6 2 762
7 6 3 763
8 3 1 831
8 3 4 834
8 4 1 841
8 4 4 844
8 6 3 863
8 6 4 864
8 7 3 873
8 7 4 874

matrix that is compared to the correct set of eigenvectors. If the error of the second comparison is

smaller than the error of the first comparison, these angles are set as output; otherwise, the initial

angles are set.

OFeig =
3∑

i=1

3∑
j=1

∣∣∣(E(i,j))2 − (Tr(i,j))2
∣∣∣ (3.6)

Where OFeig is a measure of comparison between rotation matrices, E(i,j) is the correct rotation

matrix and Tr(i,j) is the matrix generated with the inferred GSLIB angles, i and j are the rows and

columns of the matrix.

Equation 3.6 works because it allows the comparison between opposite vectors, which makes no

difference for the search of pairs. Once the rotation matrix and angles are calculated, the program

calculates the experimental variogram points.

3.3 Experimental variogram calculation

The third step is to get the experimental variograms for each principal direction. Autovar will

use the original or stratigraphic coordinates, depending on which set was used to infer the directions.

Before using the rotation matrix, the program calculates 90% of the extension in X, Y, and Z to have

as a reference for the ranges of the variograms. The 90% reference extension has been determined

after testing synthetic and real examples; it ensures the proper functionality of the program if the

extension is not properly recognized using the rotated coordinates. The product of the selected

coordinates and the rotation matrix gives the rotated coordinates. The variogram calculation uses

the rotated coordinates. The maximum ranges are printed on the screen as a reference for the

practitioner.
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The subroutines datspac_horz and datspac_vert calculate the horizontal and vertical spacing

of the rotated coordinates. These distances are the data spacing in each principal direction, and

they are set as the lag spacing for each corresponding direction. A constraints is applied to ensure

that the lag sizes is reasonable and respect order relations: the tertiary lag is set to 0.75 times the

size of the average vertical spacing if the ratio between the tertiary lag and the average vertical

spacing is less than 0.25. These ratio and factor (0.75 and 0.25) were selected after testing real

datasets deposits because they gave consistent results.

For 2-D datasets, all parameters related to the tertiary direction are set as constants and not

analyzed. Inconsistencies in lag distances of the variograms can appear when the rotation matrix is

inadequate or when the spacing on the horizontal presents high variability. An inadequate matrix is

produced when pairs with big mass and far away from the origin of rotation coordinates are present,

even after all the measures taken to avoid this situation (see Section 2.2).

The next step is to calculate the extension of the variogram in each direction. It is recommended

that the maximum range of the variogram in each direction does not exceed more than half of the

domain size (A. G. Journel & Huijbregts, 1978). Different constraints exist based on the type of

deposit. The maximum extent is half the maximum distance in that direction (i.e., a factor of

0.5) for the disseminated deposits. In contrast, there are different factors per direction for tabular

deposits: 0.75 for the major, 0.5 for the minor and 0.35 for the tertiary direction. The ratios for

the tabular deposits have been calculated experimentally after testing and ensuring the program’s

functionality. The factors for the tabular deposits are different per direction because the horizontal

continuity on a tabular deposit is considerably greater than in the vertical direction.

When the geolocated option is selected, the program reduces the maximum allowed extension to

emphasize data closer to each anchor. For 2-D data, the extension is set to 0.3 times the maximum

extension (0.3× max_dist) of the dataset, while for 3-D data, the extension is set to 0.4 times the

maximum extension (0.4× max_dist). The factors 0.3 and 0.4 were selected after testing synthetic

and real datasets. These factors ensure that the analysis is local and representative for each anchor.

After the calculation of the extension of the variogram, autovar checks the order relations to ensure

that they are respected; otherwise, it enforces them, as shown in the next equations.

Extmaj ≥ Extmin ≥ Extter (3.7)

Extmin = 0.85× Extmaj (3.8)

Extter = 0.85× Extmin (3.9)

Where Extmaj , Extmin, Extter are the calculated extensions for the experimental variogram in

the major, minor and tertiary direction, respectively. The 0.85 factor has been selected because it

works consistently and it ensures the program functionality.

Equations 3.7, 3.8, and 3.9 ensure order relations of the rotated coordinates. Nevertheless,
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another set of consistency tests is implemented to compare the inferred extensions with respect to the

dataset extension. For disseminated deposit types, the extension in the tertiary direction is checked

to ensure that it has a reasonable value. The extension is set to 0.5 times the referential extension

in Z if the rotated coordinates are inconsistent. These factor follows the general recommendation

for the variogram extension (A. G. Journel & Huijbregts, 1978). A wrong extension in the vertical

direction could happen if the rotation matrix is inadequate for the tertiary direction. For tabular

deposits, the extension of the horizontal directions (major and minor) is checked to ensure they have

at least half the domain’s extension.

After the second test in the extension of the variograms, a double check on the order relations

is performed. The results are printed on the screen when the debug option must be selected. At

this point, the extension of the variogram and lag size are coherent for each direction. This allows

to calculate a reasonable number of lags using Equation 3.10.

Nlagdir = Extdir
Lszdir

(3.10)

Where Nlagdir is the number of lags in the direction dir, Extdir and Lszdir are the total

extension and lag size for the direction being analyzed.

All necessary arrays for the experimental variogram calculation are set according to the required

number of lags per direction. Then, the subroutine varexp is called. This subroutine was adapted

from the GSLIB varcalc program (J. Deutsch, 2015c).

The subroutine varexp takes all the parameters previously inferred in the main code that is

necessary for the experimental variogram points calculation. Angle tolerances are set to 22.5◦ for

the azimuth and 22.5◦ for the dip. These angles are the most common to use in an initial variogram

calculation in the industry, and they generally allow fair stability and precision for the experimental

variogram points. The subroutine identifies if the stratigraphic coordinates are being used. The

rotated coordinates are aligned with the principal directions: the major direction is X ′, the second

is Y ′, and the third is Z ′; this allows to easily set the constraints for the pair search, such as

bandwidth and angle tolerances.

The calculation of the general variogram is indirect; the program calculates the correlogram

first, and then the variogram is obtained using Equation 2.37. The correlogram has shown to be a

robust alternative to the direct variogram calculation, and it is preferred since the goal of the general

variogram is to give a stable variogram from the dataset. In contrast, the geolocated variograms

will provide more detail at a local scale.

Table 3.3 shows the tolerances for deposit type. Each lag size is used according to each direction

for the horizontal bandwidth (e.g. lszmaj is used for the restriction on the horizontal bandwidth of

the major direction). At the same time, for the vertical, a factor of the vertical spacing is set. For

the horizontal directions (major and minor), the bandwidth tolerances for the tabular deposits are

half of the disseminated tolerances, and this better represented the continuity for each deposit type.
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For the tertiary direction, 4 and 0.5 times the vertical spacing were the most stable parameters for

disseminated and tabular deposits, respectively. The factors in Table 3.3 were selected after testing

with the real and synthetic examples.

Table 3.3: Tolerance parameters for pair selection for covariance and correlogram. Where lszmaj , lszmin,
and lszter are the lag sizes for the major, minor and tertiary directions, respectively, and vspc is the vertical
spacing. The tolerances for the tabular deposit are more restrictive than the ones for the disseminated
deposit type since the tabular deposit has strong controls on the horizontal directions.

Major direction Minor direction Tertiary direction
Bandwidth
tolerances: Horizontal Vertical Horizontal Vertical Horizontal Vertical

Disseminated lszmaj vspc lszmin vspc lszter 4×vspc

Tabular 0.5×lszmaj 0.5×vspc 0.5×lszmin 0.5×vspc lszter 0.5×vspc

The experimental variogram points are evaluated to decide which points are going to be con-

sidered for the optimization process in the variogram modeling; this weight will be referred to as

modeling weight (mwt). Simple conditions are set to determine the consistency of the first and last

points. The mwt of each experimental point is set to one as a default value, allowing to change the

mwt to zero after evaluation. Points with mwt of zero will not be considered in the optimization.

The first point of the variogram is compared to the second point. The weight of the first point is

set to zero if the first point has fewer pairs and the variogram value is larger than the second point.

This analysis is done for the three directions. This is a common practice in variogram modeling

since outliers, proportional effect, or preferential sampling could generate an inconsistent variogram

value for short distances. The number of pairs is the support for each lag, and if few pairs are being

analyzed, it will not represent the spatial variability in the deposit.

Figure 3.4: Experimental variogram points selection for modeling. Left: Experimental variogram showing
the number of pairs per lag; the first point will have a modeling weight (mwt) of zero. Right: Experimental
variogram with some experimental points decreasing as the lag distances increase; these points will have a
mwt of zero.

A second check compares the last points of the variogram in the secondary direction for 2-D

or in the tertiary direction for 3-D datasets. The weight of these points will be set to zero if the
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variogram value is below the sill and if they decrease as the lag distance increases. Typically, the

variogram value increases when the lag distance increases; if this is not observed, it could be related

to a hole effect or not enough pairs being analyzed for larger lags. It is common practice to not

model these points and focus on the precision of the shorter range. Figure 3.4 shows examples where

both checks are applied.

The mentioned constraints are similarly executed for both general and geolocated variograms.

For the general variogram, all steps are as described. For the geolocated option, each pair will

have a different weight. Weighted formulas for calculating the geolocated version of the variogram,

covariance and correlogram consider a standardized weight, as explained in Equations 2.28, 2.30,

and 2.33.

The output is the experimental standardized variogram, including the number of pairs, lag

distances, standardized variogram value and a binary weight of each point that will be used for the

modeling stage.

3.4 Automatic modeling

Autovar embeds a modified version of varmodel in the main subroutine. A detailed explanation

of varmodel can be found in (J. Deutsch, 2015c). The optimal variogram model is calculated

by minimizing the mean square error as a metric. The subroutine compares different randomly

generated models against the experimental points; these different models come from small random

variations of the modeling parameters.

Initial parameters are set as the starting point for the varmodelfit subroutine. The number

of structures is set to three, the spherical model is set as default, the nugget effect is set to zero,

and each of the three contributions is set to 1/3 (the standardized sill is 1). The angles are set to

follow the GSLIB convention. This ensures that the fit is performed in the recognized directions

of continuity, following the same convention as in the experimental variogram calculation. Three

structures give enough flexibility to generate a consistent model.

V armodelfit subroutine takes the output of the experimental variogram: variogram values, lag

distances, number of points and modeling weights (mwt). Points with values above the sill are

set as one since the focus of the autovar program is to recognize the variability in the short to

medium range. The experimental points are temporally modified inside the subroutine, but the

actual experimental point values are reported in the corresponding output file. The subroutine does

not model the points that have a modeling weight of zero. Figure 3.5 shows the points that are

considered for modeling.

Some internal checks are performed (as in the original varmodel code) and hardcoded: the

minimum number of points to model is two, and a minimum of ten pairs per point are necessary to

consider modeling it. Initial parameters from the main subroutine are used to calculate an initial
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objective function. Random shifts change the initial parameters by +/- 7.5%. Different combinations

of parameters are compared to the experimental points until the one with the smaller mean squared

error is selected as the best model. Equation 3.11 shows the objective function for the algorithm.

Figure 3.5: Variogram models fitting selected points. Left: Variogram model excluding the first point for
the optimization process because it has a modeling weight (mwt) of zero. Right: Variogram model that
disregards experimental points after 60000 because they have a mwt of zero.

Objective Function =
nlag∑
j=1

ndir∑
i=1

[γ(j,i)e− γ(j,i)m]2 (3.11)

Where nlag is the number of lags, ndir is the number of directions, γ(j,i)e is the experimental var-

iogram value, and γ(j,i)m is the variogram model value at the same lag distance as the experimental

value.

The original varmodel program allows to optimize the contributions of structures, the ranges

for each structure, the angles of the directions of continuity, and the type of structure (spherical,

exponential or Gaussian); in contrast, autovar does not need to optimize the directions and the

structure is fixed as spherical.

The subroutine performs the following iterative random changes: (1) a random value is used to

select if the ranges or structure will be modified; both have the same probability of change (0.5).

The contribution of a random structure will be modified if the random value is less or equal to 0.5;

otherwise, the range of one random structure in one random direction will be modified.

There are two extra steps when the random iteration is modifying the structure contribution:

(1) another random number is generated to pick which structure will be modified using the random

shift, and (2) the sills are recalculated to add up to one. Similarly, there are two other steps when

changing the range: (1) two different random numbers are used to pick the structure and direction,

(2) check if the order relations of the structures are respected, and enforce a change on the modified

structure if needed.

The new set of parameters is used to calculate the spherical variogram model value at the same
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distances as the experimental variogram points; then, all the points are compared using the mean

square error (MSE). If the new set gives a smaller MSE, the set of parameters is saved. If the new

set of parameters gives a larger MSE, the set of parameters is discarded, and another random change

is made. 2 million random changes are performed because the error is ensured to be small and the

time of processing is short. The internal output is the optimized spherical model with the optimum

ranges and contributions for each direction and structure.

A future consideration could be to allow the user to set a value for the nugget effect. The

program prints the optimized model on the screen: the values of the structures and ranges are

displayed. The model is saved in point and text file format following a GSLIB-like convention.

3.5 Geolocated function

The practitioner picks the location of the anchors to identify local variability in different areas

of the domain. These areas could exhibit different directions of continuity or different anisotropy

characteristics. The program calculates the general variogram first using all the data points; then,

it loops over each anchor to calculate the geolocated variograms.

The program selects points up to 0.3 times the maximum distance (see Equation 3.1) to identify

the direction locally. A bigger factor captures regional characteristics, and a smaller factor produces

non-representative results while 0.3 showed a consistent and correct identification of directions. After

the principal directions are locally identified, the program looks at all pairs and groups them by lag.

The extension of the variogram is restricted to one third of the domain because it looks to focus on

the characterization of the first lags at each anchor. Each pair will have a different weight. This

forces to centre the spatial analysis at the anchor, giving more importance to pairs located at a

closer distance without disregarding information for the initial lags from the whole domain.

Figure 3.6 shows two different pairs that are located at different distances from the anchor to

illustrate the different weighting concept. The first step is to get the weight of each point with

respect to the anchor using a Gaussian weighting function (see Equation 2.25). The second step is

to calculate the weight of each pair using the geometric average (see Equation 2.26). The third step

is to standardize all the weights per lag distance (see Equation 2.27). The fourth step is to apply

the standardized weight to each pair for the correlogram or covariance calculation (see Equations

2.33 and 2.30). Thus, the closer pair will receive a bigger weight.

The calculation of the geolocated variograms is similar to the general variogram. Nevertheless,

the calculation and standardization of weights represent an extra step. All possible pairs are analyzed

and grouped by lag distance to get the total weight of pairs per lag.

The subroutine calculates the weighted non-ergodic mean and variance of the heads and tails

and the geolocated variance. All the variograms are standardized to the sill of one. The respective

equations are presented in Section 2.3. The results are printed on the screen if the debug option is
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Figure 3.6: Schematic representation of weighting for two pairs with the same lag distance but located at
different distances from the anchor location (red cross). The pair on the south will receive less weight than
the pair closer to the anchor.

selected.

The geolocated variograms are calculated indirectly from the geolocated covariance using Equa-

tion 2.36. Although the covariance is less stable than a correlogram, it is preferred since the correlo-

gram could not recognize the anisotropy correctly (Kumara & Deutsch, 2017). Correct recognition of

anisotropy is important to characterize local spatial variability, which is why the geolocated option

is used.

3.6 Model evaluation

The model evaluation option allows to compare the anisotropy on the variogram model. Most

deposits in mining or oil exhibit anisotropy, and when the variogram does not detect it, it indicates

that the parameters could be improved. This option is recommended only for the disseminated

deposit type. The practitioner declares this optional process in Line 11 of the parameter file. Line

12 informs the anisotropy ratios between the major against minor and tertiary; this line is optional

and can be skipped even when the model evaluation is active.

In default mode, the program compares the ratio of the major to the minor of the model’s third

nested structure (major/minor). When the ratio is less than 1.1, the program will recalculate the

variogram, allowing more points per lag to stabilize the variogram. The 1.1 ratio was selected after

testing synthetic and real datasets. The program does not produce better but similar results when a

ratio is above 1.1, while smaller ratios generally lead to improvement after the constraints in Table

3.4 are used.

If the practitioner has provided the desired anisotropy ratios in line 12, the program will pick

the model that presents the closest ratios to the declared input. A set of more flexible constraints

allows more pairs per lag interval when this option is used.

The varexpflx subroutine works slightly different than the varexp subroutine. V arexpflx finds
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the relative distance in X, Y, and Z and then uses the rotation matrix to get the components by

matrix multiplication of both. Nevertheless, the main difference is in the parameter configuration

for the pair selection.

The constraints in Table 3.4 will locate each pair on the respective lag, comparing the compo-

nents of the major, minor and tertiary directions. Table 3.4 shows the parameters that are different

for each deposit type and direction. The variogram is calculated indirectly as well; the program gets

a correlogram first, and the variogram is calculated as in Equation 2.37. The factors presented in

Table 3.4 were calculated experimentally and are the ones that give experimental variograms that

have a balance between precision and stability.

Table 3.4: Tolerance parameters for pair selection - correlogram to variogram. Where dmaj is the current
distance of this pair in the major direction, lszmaj is the major lag size, dmin is the current distance of
this pair in the minor direction, lszmin is the minor lag size, lszter is the tertiary lag size, and vspc is the
tertiary lag size.

Major direction Minor direction Tertiary direction
Bandwidth
tolerances: Horizontal Vertical Horizontal Vertical Horizontal Vertical

Disseminated 0.5×dmaj 4×vspc 0.5×dmin 4×vspc 2×lszter 4×vspc

Tabular lszmaj 1.5×vspc lszmin 1.5×vspc 2×lszter 3×vspc

Tabular
and
Stratigraphic
transformation

0.25×dmaj 1.5×vspc 0.25×dmin 1.5×vspc 0.125×lszter 0.5×vspc

A loop evaluates all pairs according to its restrictions (see Table 3.4), and each pair is classified

on the corresponding lag. In an attempt to stabilize the variogram, the correlogram is used because

it is a robust tool to reduce the influence of outliers; it also ensures the standardization of the

variogram; however, it is theoretically incorrect and could mask zonal anisotropy or trends (Kumara

& Deutsch, 2017). The user is encouraged to provide the best data possible before using the option

to attempt for a more stable variogram.

The program saves the first calculated variogram and proceeds to calculate the second variogram.

The program shows the experimental and model results on the screen when the debug mode is

selected; however, only the best variogram will be the output. There will be cases in which this

option will not detect a better anisotropy. When the program could not calculate a variogram that

shows better anisotropy ratios, a variogram with similar behavior for the major and minor will be

the output, and it is recommended to tune the parameters manually in programs that allow more

customization.

Autovar evaluates the general and all geolocated variograms when selecting this option. The

execution time increases but not significantly. Table 3.3 shows the parameters for point selection

for the initial variogram, and Table 3.4 shows the less restricted parameters for the second search.

The optimization function considers the same conditions and constraints as explained in Section 3.4
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because the main change must be identified in the experimental variogram.

3.7 Outputs

Autovar generates outputs in GSLIB format. The main outputs are the experimental variogram

and its model, including the angles to define each principal direction. The model has two output

files: (1) GSLIB text format and (2) GSLIB point format. The first one is suitable for input to other

GSLIB programs such as kt3dn and sgsim; the point file is for plotting using the pygeostat library.

The model text file presents the three angles to rotate the coordinates for the GSLIB convention.

The model point file gives the angle values for each of the vectors.

The experimental variogram from autovar has the same format as the varcalc’s output. It

presents the following columns: variogram index, lag distance, number of pairs, variogram value,

inferred azimuth and inferred dip, which defines each direction of continuity (not the angles in

GSLIB convention).

The rotation matrix is also presented as a debug file. It could be plotted as vectors to give an

idea of the orientation of the principal directions and to visually asses if the directions are coherent

with the dataset.

The weights file gives the coordinate of each point and the weight with respect to the anchor

being analyzed; all the weights in this file will be one for the general variogram.

This chapter describes the autovar program. It explains the application of several equations

and theoretical concepts covered in Chapter 2. The following chapter will show a set of examples of

variogram calculation and modeling using autovar.
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Chapter 4

Variograms
This chapter summarizes the results of autovar in datasets with different characteristics. There

are four sections to group different results, including (1) synthetic datasets with regular and irregular

distribution of samples, (2) real datasets for disseminated and tabular deposits, (3) a comparison

between autovar and varcalc− varmodel, and (4) an example using the geolocated functionality.

The first group of examples shows the results for synthetic datasets generated with different sets

of GSLIB angles. This section shows the consistency of autovar to identify the principal directions

correctly and produce stable variograms for the synthetic datasets.

The second group of case studies shows the results for real 3-D datasets for disseminated and

tabular deposits. The samples on these datasets are irregularly spaced. These datasets have different

spatial characteristics that the program identifies. The sample locations and autovar’s results are

presented.

The third group of case studies compares results between autovar and varcalc−varmodel since

these programs have been used for years, giving consistent results. The geolocated option is not

used for these first three groups.

The fourth group of case studies presents the use of the geolocated option for a 2-D synthetic

dataset. Another example showing the functionality of the geolocated option can also be reviewed

in Chapter 5.

4.1 Synthetic datasets

Synthetic datasets are a control group for every test in this thesis because there is a clear idea

of what to expect as results. The main goal of these tests is to evaluate the identification of the

principal directions of continuity and the variogram structure for every generated dataset. The

datasets are generated with simulation using the SGSIM program and then.

The grid definition for each synthetic dataset is 100 nodes with a spacing of 1 meter, where the

first node starts on the origin of coordinates for every direction. Consequently, the total number

of grid nodes is 106 per synthetic dataset. The variogram to generate them has no nugget effect

and one structure with ranges of 64, 32 and 16 meters on the major, minor and tertiary directions,

respectively. The orientation of the principal directions are defined by three GSLIB angles.

The simulations are sampled in a regular grid with a spacing of 5 meters in X, Y and Z or in a

irregular pattern. Figure 4.1 shows a simulated dataset, Figure 4.2 and Figure 4.6 show a regular

and irregular sampled data.
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In this thesis we refer to octant to characterize the location of a vector. An octant is one of the

eight divisions of a 3-D coordinate system (Brailov, 2016). For this thesis the first octant is where

all coordinates are greater than 0 (x ≥ 0, y ≥ 0, and z ≥ 0). In the second octant all coordinates

are greater or equal than zero, except for Y (x ≥ 0, y ≤ 0, and z ≥ 0). In the third octant all

coordinates are less than zero, except for Z (x < 0, y < 0, and z ≥ 0). In the fourth octant all

coordinates are greater than zero, except for X (x < 0, y < 0, and z ≥ 0). Octants five, six, seven

and eight follow the same sequence as the first four described octants, just that in every case the Z

coordinates are negative.

Figure 4.1: Synthetic data generation with 40 as the azimuth, 40 as the dip and 40 as the tilt. Left: Plan
view of simulated values. Right: XZ view of simulated values.

Five datasets with different continuity directions were generated per octant. Five selected direc-

tions were generated per octant, which gives a total of 40 test datasets. Results from sampled values

related to only five of them are shown in this section. The angles in this thesis follow the GSLIB

convention; the notation used is ‘70,50,10’, where 70 is the azimuth, 50 is the dip, and 10 is the tilt.

The selected directions have angles separated every 20◦ in azimuth, dip and tilt. For instance, the

angles that define two directions in the second octant are ‘90,0,0’ and ‘110,20,20’. The simulation

process generates values that follow a Gaussian distribution. After the new datasets’ sampling, the

behavior is not exactly Gaussian, but it is very similar to it.

4.1.1 Regular sampling

The synthetic simulated datasets are sampled in a regular grid with spacings of 5 meters in X, Y

and Z. The number of samples is 8000 per dataset. These datasets were the first set of tests used to

evaluate the accuracy of the program to infer the directions and to give the experimental variogram

and its model. Figure 4.2 shows the selected samples for the dataset with azimuth, dip and tilt of

40◦.

Figure 4.3 shows the variograms and directions for the dataset shown in Figure 4.2. Listing

4.1 shows the variogram model parameters in GSLIB format for Figure 4.3. The inferred angles

(‘35,38,40’) are close to the initial set of angles used for generating the datasets (‘40,40,40’). The

ranges of each principal direction are consistent with the initial setup; however, the ranges for the
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Figure 4.2: Regularly spaced samples to test the program. Left: Plan view of sampled values. Right:
section looking north showing the selected drillholes.

major are bigger than the original data. The option of attempting to stabilize the variogram (Line

11 of the parameter file) was used because it generated results closer to the original dataset.

Figure 4.3: Experimental variogram and its model for samples taken from a dataset with orientation
‘40,40,40’. The dashed lines represents the ranges of the original variogram used to generate the synthetic
data. The major direction is in blue, the minor in green and the tertiary in red. The anisotropy relations
and the directions are consistent with the truth data.

Listing 4.1: Variogram model for Figure 4.3

3 0.00 −nst , nugget e f f e c t

1 0.34 35.57 38.48 40.36 −it , cc , azm , dip , t i l t

4 .58 4.04 4.04 −a_hmax, a_hmin , a_vert ( ranges )

1 0.17 35.57 38.48 40.36 −it , cc , azm , dip , t i l t

30.95 30.95 20.13 −a_hmax, a_hmin , a_vert ( ranges )

1 0.49 35.57 38.48 40.36 −it , cc , azm , dip , t i l t

84.51 35.41 20.14 −a_hmax, a_hmin , a_vert ( ranges )

Figure 4.4 shows the result for the dataset that was generated with ordinary kriging using the

principal directions defined by an azimuth, dip and tilt of 20◦ (‘20,20,20’). List 4.2 shows the

variogram model parameters in GSLIB format for Figure 4.4. It is clear from the figure and the text

model that the principal directions (‘18,22,16’) and anisotropy relations are accurately recognized
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by autovar.

Figure 4.4: Experimental variogram and its model for samples taken from a dataset with orientation
‘20,20,20’. The dashed lines represents the ranges of the original variogram used to generate the synthetic
data. The major direction is in blue, the minor in green and the tertiary in red. The anisotropy relations
and the directions are consistent with the synthetic data.

Listing 4.2: Variogram model for Figure 4.4

3 0.00 −nst , nugget e f f e c t

1 0.34 18.87 22.75 16.65 −it , cc , azm , dip , t i l t

36.02 28.85 15.03 −a_hmax, a_hmin , a_vert ( ranges )

1 0.01 18.87 22.75 16.65 −it , cc , azm , dip , t i l t

61.64 39.08 15.02 −a_hmax, a_hmin , a_vert ( ranges )

1 0.65 18.87 22.75 16.65 −it , cc , azm , dip , t i l t

62.35 35.79 15.03 −a_hmax, a_hmin , a_vert ( ranges )

The results for many of the tests showed consistency with identifying angles similar to its re-

spective synthetic dataset as in the examples of Figures 4.3 and 4.4. However, there are cases where

the inferred angles are not as close to the input angles that define the principal directions of the

synthetic datasets.

The differences between the angles used to generate the input sampled dataset and the inferred

angles could be generated for the selected sampled values as a matter of chance. Autovar identifies

the directions with less accuracy but it is consistent with the available sampled data. Figure 4.5 and

Listing 4.3 show an example of this scenario. Nevertheless, the ranges are quite close to the initial

anisotropy relationships.

Figure 4.5 shows the result for the dataset that was generated with kriging with an azimuth,

dip and tilt of 80◦ (‘80,80,80’). The anisotropy is consistent as in the previous examples. There are

approximate differences of 12◦, 5◦, and 3◦ in the azimuth, dip and tilt, respectively. Nonetheless,

these three angles (‘68,75,83’) are consistent with the rotation matrix generated from the sampled

values (see Section 2.2). The variogram model presents ranges similar to the variogram used to

generate the initial dataset.
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Figure 4.5: Experimental variogram and its model for samples taken from a dataset with orientation
‘80,80,80’. The dashed lines represents the ranges of the original variogram used to generate the synthetic
data. The major direction is in blue, the minor in green and the tertiary in red. The anisotropy relations
are consistent with the sampled data. The inferred angles are consistent with the rotation matrix.

Listing 4.3: Variogram model for Figure 4.5

3 0.00 −nst , nugget e f f e c t

1 0.52 68.91 75.33 83.50 −it , cc , azm , dip , t i l t

6 .63 3.62 3.62 −a_hmax, a_hmin , a_vert ( ranges )

1 0.31 68.91 75.33 83.50 −it , cc , azm , dip , t i l t

61.00 35.08 25.31 −a_hmax, a_hmin , a_vert ( ranges )

1 0.17 68.91 75.33 83.50 −it , cc , azm , dip , t i l t

61.14 35.13 25.32 −a_hmax, a_hmin , a_vert ( ranges )

4.1.2 Irregular sampling

The same synthetic initial datasets (see Figure 4.1) were sampled irregularly for these tests.

The purpose of testing irregular datasets is to assess the consistent identification of the principal

directions of continuity and variogram structure with unequally spaced samples. These results can

be compared to the results of the regularly sampled datasets.

Figure 4.6: Irregularly spaced samples to test the program. Left: Plan view of sampled drillhole values.
Right: section looking north showing drillholes (section includes drillholes from 0 to 10 meters in the Y
direction).
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These datasets consisted of 150 vertical drillholes in an irregular pattern, considering a minimum

spacing of 4 by 4 meters in X and Y directions, respectively. The spacing in the Z direction is

a constant value of 5 meters. This sampling setup produces 3000 samples per irregular spacing

dataset. Figure 4.6 shows the selected samples from Figure 4.1, which has principal directions set

by an azimuth, dip and tilt of 40◦ (‘40,40,40’).

Figure 4.7 shows autovar’s experimental variogram points, the variogram model and the repre-

sentation of the principal directions of continuity for the dataset shown in Figure 4.6. Listing 4.4

shows the variogram model parameters in GSLIB text format for Figure 4.7. Comparing with the

principal directions of the synthetic dataset (‘40,40,40’), the inferred azimuth has an approximate

difference of 6◦, but the dip and tilt are closer to 40◦. The anisotropy ratios are consistent with the

original synthetic dataset and keep a relationship of 3:2:1 (major:minor:tertiary).

Figure 4.7: Experimental variogram and its model for the irregularly sampled from a dataset with orien-
tation ‘40,40,40’. The major direction is in blue, the minor in green and the tertiary in red. The anisotropy
relations and the directions are consistent with the truth data.

Listing 4.4: Variogram model for Figure 4.7

3 0.00 −nst , nugget e f f e c t

1 0.30 34.92 46.31 42.44 −it , cc , azm , dip , t i l t

3 .34 3.31 3.25 −a_hmax, a_hmin , a_vert ( ranges )

1 0.62 34.92 46.31 42.44 −it , cc , azm , dip , t i l t

64.45 34.58 19.89 −a_hmax, a_hmin , a_vert ( ranges )

1 0.09 34.92 46.31 42.44 −it , cc , azm , dip , t i l t

60.75 34.48 19.80 −a_hmax, a_hmin , a_vert ( ranges )

Figure 4.8 shows autovar’s result for the irregularly sampled dataset from a synthetic dataset

with principal directions defined by an azimuth, dip and tilt of 80◦ (‘80,80,80’). The plot of the

sampled data is not presented, but it is similar to the plot in Figure 4.7. Listing 4.5 shows the

variogram model parameters in GSLIB format for figure 4.8. The principal directions and anisotropy

relations are closer to the directions of the synthetic dataset, and autovar recognizes the directions

from the available samples.
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Figure 4.8: Experimental variogram and its model for the irregularly sampled from a dataset with orien-
tation ‘80,80,80’. The major direction is in blue, the minor in green and the tertiary in red. The anisotropy
relations and the directions are consistent with the synthetic data.

Listing 4.5: Variogram model for Figure 4.8

3 0.00 −nst , nugget e f f e c t

1 0.44 90.73 83.49 −79.06 −it , cc , azm , dip , t i l t

4 .69 2.99 2.99 −a_hmax, a_hmin , a_vert ( ranges )

1 0.34 90.73 83.49 −79.06 −it , cc , azm , dip , t i l t

55.21 36.03 22.86 −a_hmax, a_hmin , a_vert ( ranges )

1 0.22 90.73 83.49 −79.06 −it , cc , azm , dip , t i l t

55.25 36.05 21.80 −a_hmax, a_hmin , a_vert ( ranges )

The presented examples of synthetic datasets for regular and irregular sampled spacing show the

consistency of the program in calculating and modelling the variogram in the principal directions of

continuity. The models that come from the same synthetic dataset are fairly similar independently

of the sampling configuration (see Figures 4.3 and 4.7). The variogram model could be fit with less

than three structures in some of the presented cases. However, this could generate weak fitting for a

more complicated set of experimental variogram points. The following section shows other examples

of the variogram calculation and modeling of real datasets using autovar.

4.2 Real datasets

Real datasets give a better idea of the program’s functionality, while synthetic datasets are

valuable at the initial stages of testing a program. Real datasets usually present irregularly spaced

samples, which could be sparse, scarce, or both. This section presents examples of real datasets of

disseminated and tabular deposits.

4.2.1 Disseminated deposits

Two datasets were tested for disseminated deposit types: Large and Training datasets. These

datasets have porphyry characteristics such as big volume and predominance of low grades. The type
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and depth of drilling and sampling space of the drillholes are also characteristics of these deposits.

The Large dataset represents a copper-molybdenum porphyry deposit. There are sparse samples

in some areas; however, only the area with the highest density of samples is evaluated. The dataset

consists of 124 vertical drillholes with an average length of 240 meters. The sampling spacing

downhole is 10 meters, and the average sampling spacing in the horizontal plane is 107 meters.

There are 3107 samples for copper with an average of 0.262 and 0.053 variance. Figure 4.9 shows

the data location of the sampled values. Figure 4.10 shows the variogram outputs using autovar.

Listing 4.6 shows the variogram model parameters for Figure 4.10. In the second structure there all

the ranges are the same because of the order relation rules implemented on the code.

Figure 4.9: Left: Plan view of the Large dataset for the copper variable. Right: XZ view of the large
dataset. The range scales exhibits relatively low anisotropy, which is characteristic of a disseminated deposit.

Figure 4.10: Variogram, model and directions for the Large dataset using autovar program. The anisotropy
relationships are typical for a disseminated deposit.

Listing 4.6: Variogram model for Figure 4.10

3 0.00 −nst , nugget e f f e c t

1 0.26 112.10 0.63 13.01 −it , cc , azm , dip , t i l t

105.65 58.28 7.87 −a_hmax, a_hmin , a_vert ( ranges )

1 0.36 112.10 0.63 13.01 −it , cc , azm , dip , t i l t

221.81 221.81 221.81 −a_hmax, a_hmin , a_vert ( ranges )

1 0.38 112.10 0.63 13.01 −it , cc , azm , dip , t i l t

742.57 305.96 305.96 −a_hmax, a_hmin , a_vert ( ranges )
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The Training dataset consists of 322 vertical drillholes with an average length of 90 meters.

The sampling spacing downhole is 1 meter, and the average sampling spacing in the horizontal is

276 meters. The variable being analyzed is gold, with 30774 samples with an average of 6.361 and

29.344 variance. Figure 4.11 shows the data location of the sampled values. Figure 4.12 shows the

variogram outputs using autovar. The Listing 4.7 shows the variogram model for Figure 4.12.

Figure 4.11: Left: Plan view of Training dataset for the gold variable. Right: YZ view of the training
dataset with vertical exaggeration for visualization purposes.

Figure 4.12: Variogram, model and directions for the training dataset using autovar program

Listing 4.7: Variogram model for Figure 4.12

3 0.00 −nst , nugget e f f e c t

1 0.49 111.60 0.12 0.05 −it , cc , azm , dip , t i l t

170.74 91.90 9.00 −a_hmax, a_hmin , a_vert ( ranges )

1 0.34 111.60 0.12 0.05 −it , cc , azm , dip , t i l t

865.53 865.53 37.00 −a_hmax, a_hmin , a_vert ( ranges )

1 0.18 111.60 0.12 0.05 −it , cc , azm , dip , t i l t

10001.97 5519.27 30.77 −a_hmax, a_hmin , a_vert ( ranges )
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The results of autovar for both disseminated datasets are representative of their spatial continu-

ity. It provides the correct identification of principal directions and variograms that show structure

in each direction. The attempt to stabilize the variogram option has been used in the first case.

4.2.2 Tabular deposits

Tabular deposits present significantly more continuity in the horizontal directions (major and

minor) than in the vertical (tertiary) direction. This difference makes the variogram very sensitive

to the vertical bandwidth tolerance parameter. The program implements a more restrictive vertical

bandwidth for tabular deposits. This section presents two examples: Oilsands and Conklin datasets.

Figure 4.13: Left: Plan view of Oilsands dataset for the bitumen variable. Right: YZ view of the Oilsands
dataset, which presents a vertical exaggeration in the vertical for visualization purposes.

Figure 4.14: Variogram, model and directions for the Oilsands dataset using autovar program. The major
directions exhibits local anisotropy.
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The Oilsands dataset is a clear example of the differences in continuity in different directions.

The anisotropy relations of the major to the tertiary is around 50‐100:1 while major to minor is

around 1:2. The dataset consists of 280 vertical drillholes with an average length of 59 meters. The

sampling spacing downhole is 3 meters, and the average sampling spacing in the horizontal is 235

meters. The variable being analyzed is bitumen, with 5808 samples with an average of 7.7 and 26.3

variance. Figure 4.13 shows the location map, and Figure 4.14 shows the variograms and directions

using autovar. Listing 4.8 shows the variogram model in text format for the Figure 4.14.

Listing 4.8: Variogram model for Figure 4.14

3 0.00 −nst , nugget e f f e c t

1 0.23 27.83 0.14 0.16 −it , cc , azm , dip , t i l t

111.30 90.28 22.99 −a_hmax, a_hmin , a_vert ( ranges )

1 0.22 27.83 0.14 0.16 −it , cc , azm , dip , t i l t

1114.62 1114.62 22.99 −a_hmax, a_hmin , a_vert ( ranges )

1 0.55 27.83 0.14 0.16 −it , cc , azm , dip , t i l t

20014.62 4874.58 23.00 −a_hmax, a_hmin , a_vert ( ranges )

Figure 4.15: Left: Plan view of Conklin dataset collars for the porosity variable, a cluster of collars is
visible on the northeast area. Right: XZ view of the Conklin dataset showing the difference on the vertical
position of the collars of each drillhole.

The Conklin dataset represents a tabular dataset with 62 vertical drillholes and an average

length of 51 meters. The sampling spacing downhole is 1 meter, and the average sampling spacing

in the horizontal is 1500 meters. The variable being analyzed is porosity, with 3257 samples with an

average of 8.3 and 11.4 variance. This dataset is more challenging for automatic analysis because it

presents a clustering on the Northeast area and the collars of the drillholes are in an inclined surface.

Figure 4.15 shows the location map for the variable porosity. Figure 4.16 shows the variograms and

principal directions of continuity using autovar. The stratigraphic transformation option has been
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used automatically by the program. Listing 4.9 shows the variogram model in text format for the

Figure 4.16.

Figure 4.16: Variogram, model and directions for the Conklin dataset using autovar program.

Listing 4.9: Variogram model for Figure 4.16

3 0.00 −nst , nugget e f f e c t

1 0.41 171.83 0.07 −0.10 −it , cc , azm , dip , t i l t

889.44 408.23 2.98 −a_hmax, a_hmin , a_vert ( ranges )

1 0.21 171.83 0.07 −0.10 −it , cc , azm , dip , t i l t

5442.51 2326.69 9.97 −a_hmax, a_hmin , a_vert ( ranges )

1 0.39 171.83 0.07 −0.10 −it , cc , azm , dip , t i l t

7923.91 5734.48 75.25 −a_hmax, a_hmin , a_vert ( ranges )

The results of autovar for both tabular datasets are reasonable. It provides the right identi-

fication of principal directions and variograms that show structure. The ranges of the variograms

reflects the characteristics of tabular deposits. The next section presents a comparison between

autovar and varcalc− varmodel.

The execution time for the program using a disseminated 3-D dataset with 3107 points, including

the option of attempting to stabilize the variogram, is 9.4 seconds. For the same dataset without the

stabilization option, the program has an execution time of 4.6 seconds. The program ran another

3-D dataset with 30774 without attempting to stabilize the variogram in 13.2 seconds. Considering

the last two cases where no attempt to stabilize the variogram is made, the number of samples grows

approximately ten times while the execution time of the program grows three times. The program

has similar or slightly less execution times for tabular deposits.

4.3 Comparison with varcalc and varmodel

This section compares the results between autovar and varcalc−varmodel (GSLIB programs) to

show the similarities and differences between both. It could be challenging to select good parameters

to get a variogram model that reasonably represents the spatial continuity of the variable. Autovar
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prompts the user with fewer parameters than varcalc − varmodel, which is convenient for new

practitioners and reduces the variogram’s calculation and modeling.

A variogram calculation and modeling require several steps. Rossi and Deutsch (2013) recom-

mend some requirements before calculating a variogram: (1) data visualization and understanding

considering the geology, (2) definition of the coordinate system, and (3) outlier management and

data transformation. These requirements are important to met for any dataset at the beginning of

the workflow.

The next step is to identify the directions of continuity. Several tools are available, such as

the variogram maps, the moment of inertia, and neutral models (Kim & Deutsch, 2022). The

geology interpretation will provide valuable insight into correctly identifying the directions and the

positioning of the data (Rossi & Deutsch, 2013).

Then, all the parameters for pair selection must be established as detailed in Section 2.1. After

calculating the experimental variogram points, they are fitted with a positive definite model. The

varcalc-varmodel methodology considered in this thesis has the following steps:

1. Identification of directions of continuity: visually or other options (varmap program).

2. Experimental variogram calculation: set all paramaters in varcalc.

3. Semiautomatic variogram modeling using varmodel.

4. Evaluate if the model represents the spatial variability of the domain.

The best characteristics of varcalc and varmodel are the high customization of options, param-

eters and constraints according to the deposit characteristics. A complete explanation of both CCG

programs can be found in previous CCG papers (J. Deutsch, 2015c).

The methodology of autovar is described in Chapter 3. Essentially, autovar infers the princi-

pal directions of continuity, calculate the experimental variogram points and fit a positive definite

model to them. All these steps are automatic and speeds the spatial characterization process for

disseminated and tabular deposits. The practitioner needs to evaluate the final result to see if it is

consistent with the characteristics of the deposit.

A major difference between both workflows is autovar’s geolocated option, which allows centring

the variogram calculation with respect to anchors the user selects. Nevertheless, just the general

variogram will be compared with varcalc− varmodel.

4.3.1 Comparison using a synthetic example

The first example is a synthetic dataset generated by sequential Gaussian simulation. The

dataset is regularly sampled every 5 meters in each direction to get the sampled data. Both workflows
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are tested with the same sampled data. Figure 4.17 shows the samples, and Figure 4.18 shows the

results using varmap, varcalc and varmodel.

Nevertheless, the angles were known, the principal directions were calculated using varmap, and

they were set to the corresponding identified angles (‘170,0,0’). The lags are set according to the

sampling spacing by direction (5 meters for all directions), and lag tolerances are half that value;

bandwidths had the same sizes as lag sizes. Figure 4.19 shows the result of autovar. Only basic

Figure 4.17: Location plot of the synthetic dataset generated for autovar and varcalc − varmodel com-
parison. Left: Plan view of the synthetic dataset. Right: XZ view of the synthetic dataset.

Figure 4.18: V arcalc− varmodel results for dataset in Figure 4.17. Left: Experimental variogram points
and their models for the major and minor direction. Centre: Experimental variogram points and tits models
for the tertiary direction. Right: Plan view of the variogram map.

parameters are declared by the user. Comparing Figures 4.18 and 4.19 is clear that the variogram

map and the directions inferred by autovar are very similar. The variogram map shows 170◦ as the

principal direction. This direction coincides with the major direction inferred by autovar, which is

slightly less than 180. The same similarity is observed for the minor and tertiary directions.

Figure 4.20 shows results from varcalc− varmodel and autovar in one plot. The results for the

major are similar, while the model on the minor and tertiary shows differences. Nevertheless, the

points behavior are similar in all directions. The lag sizes inferred by autovar are slightly larger

than those used for varcalc and varmodel.
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Figure 4.19: Autovar results for dataset in Figure 4.17. Left: Experimental variogram points and their
models for the major and minor directions. Centre: Experimental variogram points and their models for the
tertiary direction. Right: Principal directions recognized by autovar (major in blue, minor in green, and
tertiary in red).

Figure 4.20: Comparison of autovar and varcalc − varmodel results. Left: Comparison of experimental
variogram points and its models for the major direction. Centre: Comparison of experimental variogram
points and its models for the minor direction. Right: Comparison of experimental variogram points and its
models for the tertiary direction.

4.3.2 Comparison using a 2-D real dataset

The following example is a real 2-D dataset that shows clear directions of continuity and cyclicity.

Dubois (1998) describes the Spatial Interpolation Comparison (SIC) dataset. This dataset consist

of measurements of rainfall in Swiss. There are different websites to access it; however, the ‘SIC’

dataset used in this thesis was retrieved online from (Clark & Harper, 2020). The anisotropy is

obvious and has an approximate relation of 5:1 (major: minor); the zonal anisotropy is shown in

the variograms calculated with both workflows. The principal directions of continuity are clear

to identify visually. Figure 4.21 shows the distribution of the values and the principal directions

of continuity calculated by autovar; they are consistent with the visually identified directions of

continuity.

Figure 4.22 compares results for the varcalc − varmodel against autovar. For the varcalc −

varmodel workflow, the lag size is 9000 in the major direction and 6000 in the minor direction, while

the lag tolerances are half each value, respectively. The azimuth of the principal direction is set to
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Figure 4.21: Location plot of 2-D real dataset and plot of principal directions. Left: Plan view of 2-D real
dataset. Right: Plot of principal directions: major in blue and minor in green.

40◦ after a visual analysis. The horizontal bandwidth tolerances have the same values as the lag size.

The only parameters given to the varmodel are the angles for the directions of continuity; then, the

program automatically calculates the contributions and ranges for each of the three structures.

Figure 4.22: Comparison of autovar and varcalc − varmodel for real 2-D dataset in Figure 4.21. Left:
Comparison of experimental variogram points and its model for the major direction. Right: Comparison of
experimental variogram points and its models for the minor direction.

The experimental points for the major direction show similar behavior but are not the same lag

distance since there are differences in the tolerances for pair selection in each workflow. Consequently,

the automatically fitted models show very similar behavior.

There are slightly more differences between the experimental points of both workflows in the

minor direction. However, the models converge to a similar behavior in the initial part of the

variogram, and when it reaches the sill. This difference is related to the horizontal bandwidth

settings for both workflows.
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4.3.3 Comparison using a 3-D real dataset

The last example compares the results of both methodologies for the Oilsands dataset (see

Figure 4.13). Figure 4.23 compares the results of both workflows. The experimental points of the

major and minor show similar behavior, while the points in the third direction exhibit almost equal

behavior and virtually the same model. The model of the major and minor directions exhibits more

differences due to the more severe constraints of autovar for the maximum modeling ranges with

respect to varmodel. This difference is noticeable when the experimental variogram does not reach

the sill of one. Otherwise, the behavior will be similar to varmodel, which model has a better fit in

the major direction.

Figure 4.23: Comparison of autovar and varcalc − varmodel for Oilsands dataset. Left: Comparison of
experimental variogram points and its models for the major direction. Centre: Comparison of experimental
variogram points and its models for the minor direction. Right: Comparison of experimental variogram
points and its models for the tertiary direction.

Both workflows have advantages, and the different examples show similar results. The flexibility

to pick parameters with varcalc and varmodel shows that different applicability and customization

can be set to have the best possible variogram. Nevertheless, it requires some expertise to tune it

correctly.

Another advantage of varcalc is that it could calculate different measures of spatial continuity,

such as variogram, covariance, correlogram, indicator variogram (continuous or categorical variables),

cross-variogram, and others.

Additionally, varcalc allows to generate more than one of the spatial measures of continuity

at once, while autovar results are only set for the classic variogram, and consequently using one

variable at the time.

The main advantage of autovar is the automation and speed to calculate a variogram for the

variable. This gives an initial idea of the spatial variability characteristics of the deposit; additionally,

the few parameters that need to be declared make it suitable for new practitioners. The next section

describes another useful functionality of autovar.
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4.4 Geolocated option

The geolocated option is useful when there are different directions of continuity in some areas of

the dataset. The practitioner needs to inform the number and location of the anchors. The program

will calculate geolocated variograms for each anchor. The following is an example of a 2-D dataset

with two anchors.

This example was generated by mixing two synthetic datasets. Both datasets have the same

anisotropy relations of 3:1 (major:minor) and ranges, but the directions of continuity are different.

These datasets are generated using the GSLIB sgsim program with different random seeds. Figure

4.24 shows the initial datasets with major directions given by GSLIB angles of 45◦ (‘45,0,0’) and

90◦ (‘90,0,0’).

Figure 4.24: Synthetic data generation of two datasets with different directions of continuity. Left: Plan
view of the first simulated dataset with a principal direction of 45◦. Right: Plan view of the second simulated
dataset with a principal direction of 90◦.

A Gaussian weighting function using the distance to the anchor is generated to assign weights

when mixing both datasets. Figure 4.25 shows the distances and weight with respect to a point in

the south (x1 = 49, y1 = 27). A similar set of weights are calculated for a point located in the north

(x2 = 49, y2 = 71). Then, the weights are standardized to add up to one because it ensures a smooth

mixing of both datasets. These weights are multiplied by the values of the corresponding datasets

(45◦ for the south and 90◦ for the north). Both weighted datasets are added together. Figure 4.25

shows the final mixed dataset.

The mixed dataset shows different orientations in the south and north areas, which is suitable

to be analyzed using the geolocated option. This dataset was regularly sampled (5 by 5 meters) to

analyze with autovar. The general variogram (see Figure 4.26) and the geolocated variograms for

the south (see Figure 4.27) and north (see Figure 4.28) are shown alongside the dataset and the

anchor’s position (red cross). The identified directions for each anchor are plotted to the right of

each image.

The general variogram (see Figure 4.26) considers all pairs with the same weight, the principal

direction is 55◦(‘55,0,0’). The variogram shows structure in both directions at the first meters. Both
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Figure 4.25: Mixed synthetic datasets generation. Left: Plan view of Gaussian weights for the simulated
dataset with principal direction of 45◦. Centre: Plan view of Gaussian weights for the simulated dataset
with principal direction of 90◦. Right: Mixed dataset using the datasets in Figure 4.24.

Figure 4.26: General variogram for mixed dataset. Left: General variogram and its model for the major
and minor direction. Centre: Plan view of the dataset’s samples. Right: Principal directions of the general
variogram (blue for major and green for minor).

Figure 4.27: Geolocated variogram for a mixed dataset for the South anchor. Left: General variogram and
its model for the major and minor direction. Centre: Plan view of the dataset’s samples with the location
of the anchor as a red cross. Right: Principal directions of the geolocated variogram.

directions are fairly fitted. The experimental points show some cyclicity.

The weighted variogram for the south anchor (see Figure 4.27) shows a direction of continuity

of 60◦ (‘60,0,0’). This direction is fairly close to the original 45◦ dataset of the south, considering

the added points of the 90◦ dataset.

The weighted variogram for the north anchor (see Figure 4.28) shows a principal direction of

81◦ (‘81,0,0’), which is reasonable considering that the dataset is generated by mixing two datasets.
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Figure 4.28: Geolocated variogram for a mixed dataset for the North anchor. Left: General variogram and
its model for the major and minor direction. Centre: Plan view of the dataset’s samples with the location
of the anchor as a red cross. Right: Principal directions of the geolocated variogram.

Both geolocated variograms show clean experimental points and well fitted models, similar to the

ones of the general variogram. In both of the weighted variograms, the experimental points in the

major direction suggest the presence of a trend. The execution time of the program for this dataset

and considering two anchors was 10.5 seconds.

This chapter summarizes the functionality of autovar for different datasets. It presents several

examples of synthetic and real datasets, a comparison with varcalc − varmodel, and an example

of using the geolocated option. The next chapter presents further applicability of the geolocated

option to generate a mixed estimate with a novel methodology.
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Chapter 5

Estimation with geolocated variograms
Estimation with ordinary kriging is a widely used technique in mining. This chapter presents

a novel technique of mixed estimation using geolocated variograms. A variogram is essential for

calculating weights in kriging, and autovar gives the option to get it automatically. Section 2.5

presents the theory for kriging. The mixed estimation with different variograms is recommended for

interim estimates and visualization or trend model estimates.

Previous authors had shown different methodologies to consider the local variability in the

estimation. Boisvert and Deutsch (2011) present kriging or simulation with local varying anisotropy

(LVA). This technique first generates an LVA field (strike, dip, plunge, anisotropy ratios); second, it

calculates the experimental variogram (GSLIB program prepared for LVA: gamv_LV A); third, it

selects the multidimensional scaling (MDS) parameters and finally perform the kriging or simulation

(Boisvert & Deutsch, 2011). Martin et al. present a case study comparing the standard workflow and

LVA estimation techniques (Martin, Machuca-Mory, Leuangthong, & Boisvert, 2019); they conclude

that LVA techniques outperform stationarity methodologies.

Machuca (2010) presents a different approach to recognizing the local variability by considering

anchor points that the user defines in the domain. A complete set of programs to develop the

workflow are prepared (Machuca, 2010). In summary, first, it is necessary to calculate a matrix of

distance weights. Second, build normal score transformation tables and model local transformation

functions using Hermite polynomials. Third, calculate ‘location-dependent experimental variograms’

(Machuca, 2010). Fourth, perform a joint fit of the local variograms, and finally, perform kriging or

simulation.

Autovar offers the option to declare n anchor locations, and there will n geolocated variograms,

which can be used to generate different models. These models will be mixed at each node location

based on the distance to each anchor. The kriging models are generated using the kt3dn program.

The complete workflow to mix the models and get the final estimate can be set using a jupyter

notebook.

5.1 Proposed methodology

The autovar program offers two options for variogram calculation: general and geolocated var-

iograms. The general variogram is the standard way to get the experimental pairs, where all pairs

have the same weight. The geolocated variogram is calculated after the local recognition of the

principal directions of continuity. The geolocated variogram considers different weights for each
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pair based on the distance to an anchor point. This local analysis allows to recognize the variability

relative to the anchor. The user could define any number of anchors. For instance, a domain with

four anchors will have four geolocated variograms and one general variogram.

If the user declares n anchors, the outputs will be n geolocated and 1 general variogram (n+ 1

variograms). Having n + 1 variograms allows the estimation of the domain n + 1 times. The

parameters for each kriging estimation change related to the variogram characteristics (whether it

is a general or geolocated variogram). Having n + 1 block estimates allows to combine them to

produce a unique mixed estimate that recognizes the local variability better.

The geolocated option is useful when the domain exhibits local variability. The practitioner

decides how to group the data in domains at the beginning of the statistical analysis, and it looks to

group data with similar spatial continuity. The decision of stationarity could lead to avoiding the use

of the geolocated option. Nevertheless, suppose there is not enough data or the practitioner prefers

to consider all available data for variogram calculations, allowing certain flexibility to recognize local

variability. In that case, autovar is an option to consider.

This thesis proposes that the final estimated value at each node of the model is a weighted

combination of the n+1 models at the respective node. The weights are standardized to add up to

1. This standardization ensures that kriging remains an exact estimator. Weighting many models

allows different influences for the same data points, reflecting a better recognition of local variability.

A detailed explanation of the geolocated option can be found in Section 3.5. The following workflow

can be considered for the estimation using the geolocation option of autovar after the EDA and all

prerequisites before the variogram calculation are reasonably met.

1. Run autovar with n number of anchors.

2. Estimate using all the n+ 1 generated models.

3. Calculate the weights at each node of the block model for the estimated value of the corre-

sponding geolocated variogram. Gaussian weighting is recommended.

4. Standardize weights for all anchors at each node (see Equation 5.1).

5. Mix the different estimation models using the standardized weights (see Equation 5.2).

6. Perform a cross validation of the block model to ensure that there is no bias and evaluate

the final estimate model comparing against a model that would be generated with a regular

workflow.

wγg +
n∑

i=1
wγi = 1 (5.1)

Z∗ = wγg

(
Z∗
γg

)
+

n∑
i=1

wγi

(
Z∗
γi

)
(5.2)
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Where Z∗ is the final mixed estimator at the current node (unsampled location), wγg is the

selected constant weight for the general variogram, Z∗
γg is the estimated value with the general

variogram (γg), wγi is the weight for the estimated value with the geolocated variogram (γi), Z∗
γi is

the estimated using the corresponding geolocated variogram, and n is the number of anchors.

A weight for each node is calculated as a function of the distance from the node to the anchor

of the geolocated variogram. A Gaussian weighting function is used because it ensures smooth

transitions and no artifacts for the final mixed estimate. The weight for the general variogram (wγg)

is set as fixed for the whole domain to get an estimation with no artifacts. The general variogram

weight (wγg) ranges from 0 to 1. The total sum of weights for the geolocated estimations will be

1− wtgen (see Equation 5.1). This ensures that kriging is exact at the data locations.

Sensitivity analysis with different datasets to evaluate the optimum weight for the general es-

timation (uses the general variogram) was performed. Weights from 0 to 1 (0.05 step) were tested

several times to evaluate which weights would produce the lowest root mean squared error (RMSE).

The results show that the value for the optimum weight is case dependent because each variogram

can be different based on the available samples.

For instance, a more stable general variogram will have a more significant weight to produce a

better estimate. In contrast, a more stable set of geolocated variograms could have more accumulated

weight. Consequently, the general variogram will have a smaller weight. Generally, a bigger weight

to the general variogram will produce a better estimate (less RMSE) if the general variogram is

more stable than at least one of the geolocated variograms.

The execution time of a mixed estimator is increased according to the number of anchors plus

the post processing (mixing n + 1 estimated block models). Then, it is essential to pick a reason-

able number of anchors that represent the local changes in the domain considering the subsequent

estimations steps.

A regular workflow is expected to provide similar or better results if the domain is stationary.

The estimation with autovar’s geolocated option is not recommended for stationary domains since

the time to complete the task will be longer. The following section details a methodology considered

regular for this thesis.

5.2 Regular methodology

There are several standard steps for estimation with kriging. This section explains the steps for

a methodology considered regular in this thesis. This workflow assumes that the data was revised

and prepared. This thesis uses GSLIB software to get the final block model: varmap, varcalc,

varmodel and kt3dn. The workflow considers the following steps:

1. Decision of stationarity.
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2. Identify principal directions (varmap).

3. Calculate the experimental variogram and models on the principal directions (varcalc and

varmodel).

4. Estimate using ordinary kriging (kt3dn).

5. Model checks.

The GSLIB kt3dn program performs the estimation calculations, and the practitioner can pick

different kriging types. The reader is referred to a previous CCG paper for a detailed description

of the program (J. Deutsch, Barnet, & Deutsch, 2015). One of the kriging inputs is the variogram

model (step 3). The practitioner needs to define the GSLIB angles to inform the principal directions

for the kriging. These GSLIB angles are the same as the ones used for the variogram calculation.

The search plan considers the variogram’s ranges as reference values.

The following section compares both methodologies with a synthetic 2-D dataset. It presents the

calculated variograms, the final estimated block models, and a validation plot for both workflows.

5.3 Comparison of estimation with autovar and regular workflow

This section shows a case study using workflows of Sections 5.1 and 5.2, where the main difference

is the use of the geolocated variograms. The general variogram will produce results similar to those of

the regular workflow. A comparison between the variograms of the autovar and varcalc−varmodel

programs can be reviewed in Section 4.3.

A synthetic dataset was prepared to test both workflows. Two datasets were simulated with

different principal directions and mixed with a weighting Gaussian distance function. Figure 5.1

presents the two initial and mixed datasets from the weighted combination of the first two. The

initial datasets have the same anisotropy ratio between the major and minor directions (3:1). The

final dataset has two different orientations: around 45◦ to the south and 0◦ to the north. An

explanation of how to mix the datasets is in Section 4.4 (see Figure 4.25). Two anchors will be

enough to characterize the local variability in this example. The mixed dataset is sampled regularly

every 5 meters (in X and Y directions). There are 324 samples with a mean of 0.016 and 0.787

variance. Figure 5.2 shows the location plot of the samples.

For the geolocated workflow, one anchor is located to the south, and the other one is located

to the north (coordinates: x1 = 27, y1 = 27, and x2 = 27, y2 = 71). Running autovar with the

geolocated option selected will produce three variogram models as part of the outputs: one for each

anchor plus the general variogram.

Figure 5.2 shows the general variogram where the principal direction is around 11◦(‘11,0,0’).

Figure 5.3 shows the weighted variogram for the anchor located in the south, where the principal
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Figure 5.1: Left: First synthetic dataset with principal direction of 45◦ (‘45,0,0’). Centre: Second synthetic
dataset with principal direction of 0◦ (‘0,0,0’). Right: Mixed dataset.

direction is around 32◦(‘32,0,0’). Figure 5.4 shows the weighted variogram for the anchor located in

the north, where the principal direction is around 6◦(‘6,0,0’).

Figure 5.2: General variogram output for the mixed dataset. Left: variograms in the major and minor
directions. Centre: location plot of samples. Right: Plot of the principal directions of continuity (blue for
major and green for minor).

Figure 5.3: Variogram for anchor 1 (south). Left: variograms in the major and minor directions. Centre:
Plan view of samples and anchor location (red cross). Right: Plot of the directions of continuity (blue for
major and green for minor).

Kriging is calculated three times using each variogram output from autovar (see Figures 5.2,

5.3, and 5.4). The parameter file is set to use the respective inferred directions for the general and

geolocated variograms. The variogram model text file has GSLIB format, which allows to integrate
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Figure 5.4: Variogram for anchor 2 (north). Left: variograms in the major and minor directions. Centre:
samples and anchor location (red cross symbol). Right: Plot of the principal directions of continuity (blue
for major and green for minor).

it easily in kt3dn.

For this specific example, the weight used for the general estimation is 0.1 (wγg). Figure 5.5

shows the distances for anchor 1 and the weights for both anchors. These weights are standardized

to add up to 0.9 (1− wγg = 0.9) at each node of the estimated model.

The three estimated models are mixed according to the standardized weights at each estimation

node (see Equation 5.2). Figure 5.6 shows the final estimate considering the three models. The

initial data was saved as true data to compare with the estimated values using a validation plot.

The true and estimated data have the same grid with 10000 nodes.

Figure 5.5: Plot of weights for the block estimation models using the geolocated variograms. Left: Plot
of distances from anchor 1. Centre: Weights for estimates using geolocated variogram of anchor 1. Right:
Weights for estimates using geolocated variogram of anchor 2.

For the regular estimation workflow (see Section 5.2), the same 324 samples are used. Figure

5.7 shows the variogram map and the experimental variogram and its model. The variogram map

suggests a direction similar to the inferred directions of the general variogram (‘15,0,0’). These

angles are set for the variogram calculation and modeling to keep a fair comparison with autovar.

The variograms are stable and consistent for both directions. Figure 5.8 shows the kriging results

using the variograms of the regular workflow (Figure 5.7).

Both workflows have similar kriging search parameters; the main difference is the variogram

models. Figures 5.6 and 5.8 show the kriging results and a validation plot, which compares the
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Figure 5.6: Mixed estimation results using two anchors. Left: Final estimation model using autovar.
Right: A validation plot comparing the exhaustive and estimated data using autovar.

Figure 5.7: Variogram map and experimental variograms points and their models for the regular workflow.

Figure 5.8: Estimation results using regular workflow. Left: estimation using the variogram model of
Figure 5.7. Right: A validation plot comparing the exhaustive and estimated data using autovar.

estimated values to the true data. The results using autovar show a decrease in the RMSE of

1.37%.

This section compares the results of the regular workflow and autovar using two anchors. There

is a slight improvement using the anchor points; however, another point to evaluate is the optimal

number of anchors. The next section presents a sensitivity analysis concerning the number of

anchors.
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5.4 Sensitivity with respect to number of anchors

Another important factor is to select the number of anchors that will produce the best estimate

possible. The practitioner could consider identifying zones with different directions of continuity and

assign anchors there. Then, the suggestion is to increase the number of anchors until the variograms

become too similar or unstable.

For instance, in the previous example (see Figure 5.6), two anchors were set; then, increase the

number of anchors to three and compare the results. If the variograms are stable, the number of

anchors could be increased or located in different positions until they become unstable or similar.

Lets say that for the third anchor, the variograms are no longer representative, and the best option

will be to go the previous number of anchors with stable variograms, 2 in this case.

Close anchors will have similar directions of continuity and similar variograms. Even if these

geolocated variograms are stable, it is better to reduce the number of anchors because the time

for estimation will be increased based on the number of anchors. A 2-D example presents a mixed

estimation using the same synthetic dataset as in the previous example. All the steps to mix the

estimates are explained in Section 5.1.

Figure 5.9: Mixed estimation results considering three anchors. Left: samples and anchors location.
Centre: Final mixed estimation using the general and three geolocated variograms. Right: A validation plot
comparing the exhaustive and estimated data using autovar considering three anchors.

Figure 5.9 shows the samples and position of the three anchors and the final estimate. The RMSE

(0.575) of the mixed estimates using three anchors is slightly larger than the mixed estimation with

two anchors, although the variograms are stable. Figure 5.10 shows the samples and positions of

4 anchors. The RMSE of the mixed estimates using four anchors has increased to 0.580. Figure

5.11 shows the results when five anchors are used; the RMSE has also increased to 0.579. The best

option is to work with two anchors.

For this synthetic example, it is possible to do cross validation with the exhaustive true. For real

examples, the practitioner can check with cross validation and visual inspection of the geolocated

variograms, evaluating the stability and similitude between variograms. This section presented a

case study as an example. Nonetheless, more tests were done to compare the results using both
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Figure 5.10: Mixed estimation results considering four anchors. Left: samples and anchors location.
Centre: Final mixed estimation using the general and four geolocated variograms. Right: A validation plot
comparing the exhaustive data and the estimated data using autovar considering four anchors.

Figure 5.11: Mixed estimation results considering five anchors. Left: samples and anchors location. Centre:
Final mixed estimation using the general and five geolocated variograms. Right: A validation plot comparing
the exhaustive and estimated data using autovar considering five anchors.

methodologies. The next section summarizes their results.

5.5 Statistics of study cases

This section presents the statistics of the results for the mixed estimation for synthetic and

exhaustive images datasets (Mokdad, Binakaj, & Boisvert, 2022). Several synthetic datasets were

generated to test the geolocated option of the program for two anchor locations. Selected images

from the data validation project (Mokdad, Binakaj, & Boisvert, 2022) were used to analyze the

performance of this methodology. All examples are 2-D, and the position of the anchors is the same

as the example in Section 5.3 (coordinates: x1 = 27, y1 = 27, and x2 = 27, y2 = 71).

The methodology to create the synthetic mixed datasets is the same as the one explained in

Section 5.3. The dataset in the south will have a fixed direction at 0◦ degrees, and the north dataset

has variable directions every 10 degrees, from 0 to 180. This configuration generates 17 principal

directions (e.g. ‘0,0,0’,‘10,0,0’, ... ‘170,0,0’).

Different random seeds were used to generate three different sets of mixed data, generating 51

2-D datasets. This dataset is saved as the true dataset. Each synthetic dataset is sampled at a
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regular space (2, 4, 6, 8, and 10 meters spacing in X and Y directions). Consequently, there will be

five sets of samples per image and 255 datasets.

All the images from the data validation project can be customized to have a desired number of

nodes. For this case study, all the real images were set to have the same grid definition as in the

previous synthetic datasets. There are 104 nodes per image that are considered the true data. The

sampling is regular and has the same spacing as in the synthetic datasets. There are 48 images and

five subsets of samples per image, giving a total of 240 datasets.

For each set of samples (synthetic or not), the autovar program calculates the general and ge-

olocated variograms. The program was configured for disseminated deposits because the selected

datasets mainly exhibit this deposit type characteristics. Each general and geolocated variogram

model is used in the kt3dn program. Consequently, there will be three estimations. These estima-

tions will be mixed, selecting weights that reduce the RMSE. This selection can be done since the

exhaustive data (true data) is known. Then, each estimation is mixed with its respective weight at

each node location, generating the final mixed estimate.

The regular workflow generates a variogram map that has been compared to the results of

autovar, and the identification of directions is very similar. The same directions calculated from the

autovar’s general variogram are set as the directions for varcalc to keep a fair comparison, and the

semi-automatic fitting option is also picked for varmodel in the same directions. The lag spacing is

set to be the same as the sample distance, and the lag tolerance is half of this value; the horizontal

bandwidth is set to the same size as the lag distance, and the azimuth tolerance is set to 22.5 in all

cases. These parameters are the most suitable and possible to automate since the sample spacing

is regular. The selected azimuth tolerance show to give the most stable results for the tests. The

kriging parameters are set from the results of the varmodel, and the search angles are also the same

as those used for the variogram calculation and modeling.

The RMSE is calculated by comparing the estimates against the exhaustive truth. When less

data is used, there will be more RMSE for the synthetic datasets (see Figure 5.12). The same is not

observed for the exhaustive images datasets. This test allows the evaluation of different datasets,

sample spacings, and the statistics of the results from both workflows.

Table 5.1: Summary results for synthetic datasets with autovar.

RMSE regular RMSE mixed wγg Improvement (%) Succes (%)
count 255 255 255 255 255
mean 0.58 0.57 0.48 0.8 0.7
std 0.14 0.14 0.37 1.91 0.46
min 0.36 0.36 0 -4.03 0
25% 0.46 0.45 0.1 -0.14 0
50% 0.59 0.59 0.5 0.34 1
75% 0.66 0.65 0.9 1.35 1
max 1.02 0.88 0.9 13.53 1

71



5. Estimation with geolocated variograms

Figure 5.12: Summary results of mixed estimation for synthetic datasets using two anchors. Left: Scatter
plot comparing RMSE from the mixed estimation and the regular workflow. Centre: Histogram of improve-
ment for each case. Right: Histogram of optimal weight for the general variogram.

Table 5.2: Summary results for exhaustive images datasets with autovar.

RMSE regular RMSE mixed wγg Improvement (%) Succes (%)
count 240 240 240 240 240
mean 15.45 15.36 0.38 0.89 0.62
std 8.26 8.3 0.4 3.33 0.49
min 2.26 2.16 0 -7.19 0
25% 9.38 9.43 0 -0.85 0
50% 14.03 13.95 0.2 0.58 1
75% 19.94 19.55 0.9 2.09 1
max 42.51 43.75 0.9 12.83 1

Figure 5.13: Summary results of mixed estimation for exhaustive images datasets using two anchors. Left:
Scatter plot comparing RMSE from the mixed estimation and the regular workflow. Centre: Histogram of
improvement for each case. Right: Histogram of optimal weight for the general variogram.

Table 5.1 shows the summary of these results for the synthetic datasets. 70% of the time, the

autovar workflow is performing better, and the mean of improvement of the RMSE is 0.8%. Table

5.2 shows the summary of results for the exhaustive images datasets. 62% of the time, the autovar

workflow is performing better, and the mean of improvement of the RMSE is 0.9%.

Figure 5.12 shows the summary results for the synthetic datasets. The RMSE increases when

the number of samples decreases for the synthetic datasets. Figure 5.13 shows the summary results

for the exhaustive images datasets. In general, the errors are slightly larger for the regular workflow.
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There are cases where autovar does not improve the final results. This is produced when the

variograms are not stable or the geolocated variograms fail to recognize local characteristics on the

domain. This is related to the dataset characteristic and the selected samples as a matter of chance.

The right part of each figure (see Figures 5.12 and 5.13) presents a histogram of the optimal

weights. There is no clear distribution; however, the mean of the optimal weight for the general

variogram is around 0.4.

This chapter shows the methodology for mixed estimates using the general and geolocated

variograms. It also compares the mixed and regular methodology and presents a detailed case

study. This section summarizes several tests for synthetic and exhaustive images datasets to test

the effectiveness of the mixed estimates. The following section presents the conclusions and future

work of this thesis.
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Chapter 6

Conclusions and Future work
The characterization of the spatial variability of a regionalized variable is an essential step for

resource estimation. The variogram is a widely used tool in geostatistics to characterize the conti-

nuity of the regionalized variable. A significant amount of time is dedicated to having a variogram

model that reasonably represents the geological characteristics of the variable in the domain. Krig-

ing stands as one of the most used techniques in mining. This thesis presented several contributions

to optimize these processes.

Autovar allows to calculate experimental variogram points and model them automatically con-

sidering parameters inferred directly from the data and that considers common characteristics based

on the deposit type. It provides a initial variogram that can be tuned. The mixed estimation tech-

nique generally characterizes better domains with local scale variability because it considers the

recognition of this variability through the geolocated variograms.

This section summarizes the contributions of this research. This thesis presents the implemen-

tation of the autovar program (see Chapter 3), which integrates all steps to produce the spatial

variability characterization using variograms. This program also gives the geolocated option (see

Chapter 3 and 4), which helps to identify local variability representative of anchor locations. This

thesis also compares the varcalc− varmodel and the autovar workflow (see Chapter 4).

A novel methodology for estimation is detailed as an alternative to a regular estimation (see

Chapter 5). The proposed mixed estimation technique is compared to the regular methodology for

estimation with ordinary kriging.

The practitioner is encouraged to ensure the quality of the data and correct selection of the

variable, including but not limited to outlier management, normal score transformation, declustering,

and stratigraphic transformation.

6.1 Contributions

The autovar program provides a reasonable experimental variogram and its model. It provides

an initial model that could save time and be executed many times in different datasets, considering

one variable at a time. It considers the most common conventions in variogram calculation (see

Section 3.3) and modeling (see Section 3.4). Autovar enhances automation through parameter

inference inside the program. The program looks to cover a variety of cases; nevertheless, a final

evaluation by the practitioner is always the final test. Considering the geologic characteristics of the

deposits will allow a better evaluation of the program’s calculations.
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This thesis presents the workflow and the logic of the algorithms inside the main program (see

Chapter 3). The program infers all the parameters directly from the data for disseminated and

tabular deposits. It starts with consistency checks and proceeds to infer the principal directions by

eigendecomposition of the inertia tensor and subsequent ordered of vectors to get a rotation matrix.

The inferred rotation matrix replaces the need to prompt the user for the principal directions. All

the data points are rotated according to the principal directions, and the next stage is to calculate

the experimental variogram. The program implements different search parameters for getting pairs

for each lag based on the deposit type. The experimental points are evaluated to select the ones

that would be modeled using an optimization by minimization algorithm. The outputs are the

experimental variogram points, the variogram model, and the eigenvectors showing the principal

directions of continuity.

This thesis also presents a geolocated option (see Sections 3.5 and 4.4) to identify local variability

in a dataset without subdividing a domain. The program offers the geolocated option, where the

user can define anchors in areas of local variability inside the domain. The directions are recognized

centred at each anchor, and the geolocated variograms are calculated and modeled in these directions.

Each pair of points will have a weighted contribution to calculating the experimental variogram

points. This weight is based on the distance from the points to the anchor. The outputs for the

geolocated option include the same outputs as the general variogram plus a file that contains the

weights for the points with respect to each anchor.

This thesis compares the results of the autovar’s general variogram and the variograms produced

by varcalc and varmodel (see Section 4.3). The selected examples show the similitude of results

using both workflows, which supports the applicability of the autovar program. Both workflows

have advantages that can be used according to the practitioner’s goals. The flexibility to pick

parameters with varcalc and varmodel shows the high customization to have the best possible

variogram; however, it requires some expertise to tune it correctly. Another advantage of varcalc

is its numerous options to measure spatial continuity, such as variogram, covariance, correlogram,

and indicator variogram (continuous or categorical variables). In contrast, autovar results are only

for the variogram. The main advantage of autovar is the automation and speed of calculating a

variogram. Another advantage is the geolocated option and the few parameters required, which

makes it suitable for new practitioners.

A novel methodology of mixed estimation with ordinary kriging is presented in this thesis (see

Chapter 5). This methodology presents a weighted combination of different estimation block models.

The block models are produced using the geolocated variogram models. This technique better

recognizes local characteristics because it assigns different weights for each model at each node

based on the distance from the node to the anchor point.

A case study shows a decrease in the RMSE comparing the estimated model using the mixed

estimation technique and the regular methodology (see Section 5.3). A summary of a series of tests
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is shown for synthetic and exhaustive datasets that exhibit local variability (see Section 5.5). The

average improvement of the mixed estimation is 0.9%. Nevertheless, there are cases where there is

no improvement. To get a good mixed estimate, the user must pick the most appropriate weight for

the general variogram. The most stable set of variograms needs to be picked based on comparing the

goodness of the geolocated variograms against the general variogram. This goodness depends on the

appropriate selection of the directions, the structure of the variograms, and if there is recognizable

anisotropy. A valuable insight is the knowledge of the deposit’s geology.

6.2 Limitations

This thesis tested the presented methodologies many times to assess their potential and limita-

tions. Automatic variogram calculation does not provide flexibility to manually tune parameters.

This lack of flexibility is an issue when the dataset has few samples, or the spatial variability is too

high. According to the data characteristics, the program could identify the directions incorrectly,

leading to inconsistent or inappropriate results. A final evaluation of the accuracy and precision of

the variogram model is recommended.

This thesis implements a workflow for continuous variables and one variable at a time, which

could be cumbersome in a multivariate case. The algorithm is implemented to give only the var-

iogram as output. There are no options for other kinds of measures of spatial variability such as

covariance, correlogram or indicator variograms. The spherical model is the only model that fits the

experimental variogram points. The program does not allow to specify a nugget effect and sets it

with a constant value of zero.

The optimal weight for the general variogram has not been generalized for the mixed estimation

workflow because the optimal weight is case dependent. This limitation translates the responsibility

to the user to get the best mixed estimate and could be challenging to determine. There are cases

where the mixed estimation does not improve the final results, and it is related to the dataset’s

characteristics.

6.3 Future work

The following steps will be to enhance the program for a larger number of deposits. The future

autovar could consider a set of optional, more flexible parameters that experienced practitioners

could customize. This set of parameters could include a ratio for defining searches and directions.

Another essential feature to add is the flexibility to inform or infer the nugget effect for each case.

The uncertainty of the variogram could be evaluated using bootstrap, where the program could

give some metrics to characterize the final model and provide numerical feedback to the practitioner.

The number and location of anchors could be automatically inferred inside the subroutines, aiming

to get an optimal number of anchors in areas of local variability.
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Finally, the mixed estimation workflow requires using the autovar and the kt3dn program, plus

the post processing, getting the final mixed block model. This workflow could be implemented

in a unique program that could go from the data to the final estimates. This idea could also be

implemented for simulation, including the calculation of a normal score variogram. The program

could give several outputs as debug files for the practitioner. These debug files will help identify

whether the final results are reasonable.
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