
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and continuing 

from left to right in equal sections with small overlaps.

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Better to illimiinate than merely to shine, 
to deliver to others coiueinplated truths than ntereiy to contemplate.
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Abstract

Computer vision attempts to find an abstract representation o f a scene from images. The ability to 

control the lighting o f the scene simplifies various tasks in the field. This thesis develops a new 

controlled lighting apparatus which uses a raster display device as a light source. The setup has the 

advantage over other alternatives in that it is relatively inexpensive and uses commonly available 

components.

Two applications arc examined. The first is shape reconstruction using photometric stereo. Ex

periments on synthetic and real images demonstrate how the depth map o f an object can be recovered 

using only a camera and an LCD display. The second application studied is the experimental eval

uation o f lighting estimation techniques. The use of the setup for this purpose is demonstrated with 

the evaluation o f Singh &  Ahuja’s method. Further development o f the core idea o f this thesis is 

expected to benefit a range o f applications.
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Chapter 1 

Introduction

One o f the main reasons why computer vision is difficult is because many factors affect the appear

ance o f a scene. The image o f a scene is simultaneously affected by the lighting, the geometry and 

the material properties of the objects in the path o f the light. With the goal o f estimating these factors 

given only an image, it is challenging and often impossible to uniquely determine the properties of 

all elements. The reason is that a wide range o f different combinations of lighting, geometry and 

material properties can all produce the same image.

For this reason many computer vision techniques assume that some o f these factors are already 

known prior to the analysis. For example, when estimating scene geometry, it is common to assume 

that the lighting conditions are known and that the types o f materials in the scene have certain 

properties [46. 50). Doing so reduces the number o f unknown variables in the model, simplifying 

the task to be accomplished.

Lighting conditions can be complex in real scenes. Without any knowledge o f the lighting, it 

is challenging to determine other properties o f the scene. Lighting estimation methods have been 

proposed to counteract this problem, but they often rely on limiting assumptions about the scene. 

Therefore, it is desirable to be able to control the lighting o f a scene to known conditions. It permits 

understanding the behaviour of computer vision algorithms and may contribute to future develop

ment o f algorithms that take advantage o f this feature. Since many shape recovery methods assume 

known lighting conditions, controlling the lighting o f a scene to the desired state allows application 

o f these techniques. Shape from shading and photometric stereo are examples o f shape recovery 

methods that can benefit from the ability to control the lighting. Furthermore, lighting estimation 

methods can be evaluated given the ability of specifying the scene illumination. The recovered 

lighting conditions can be compared to the known lighting to measure the recovery method's perfor

mance.

Controlled lighting can be accomplished by positioning a large set o f light sources in a manner 

such that a wide range o f different lighting conditions are achievable [13]. Or one can use a smaller 

set o f light sources and devise a method o f accurately moving them to desired locations [ 15[. Two 

key factors are the accuracy o f the positioning and the ease o f control o f the sources. This thesis
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presents a novel method which meets these requirements through the use of a raster display device. 

Such devices include CRT monitors. LCD screens, and LCD projectors in combination with a pro

jection screen. A ll these devices provide a dense grid o f accurately positioned light emitting cells. 

They can be easily controlled with the use o f a computer equipped with a standard graphics proces

sor. The wide availability o f raster display devices is also a definite advantage over constructing a 

rig specialised for controlling lighting.

Tlie controlled illumination framework is implemented using an LCD screen for the purposes 

o f this thesis. Its use is demonstrated and analysed through the application in two shape recovery 

methods, and with the performance evaluation of a lighting estimation method.

Both shape recovery methods estimate the shape o f an object, based solely on a set of images 

taken under different lighting conditions. The display is used to generate these lighting configura

tions. To the best knowledge o f the author, the use o f display devices for this purpose has so far not 

been proposed in literature.

Tlie first method recovers the shape in a two-step process. First the surface orientations are 

obtained, then the depth is determined from these surface orientations. For experiments using this 

method on a 22mm diameter sphere, the shape is estimated with 1.8mm average error in its depth 

from the camera. For a 180mm real model o f the Stanford bunny, the average depth error is 10mm. 

In analogous experiments on rendered images o f the models, depth errors below I mm are achieved. 

The accuracy depends on a depth estimate which specifies the distance o f the object to the camera. 

The results assume that this depth estimate is accurate. The necessity o f a depth estimate is one of 

the limitations o f the first method.

The second shape recovery method developed does not rely on a depth estimate. It recovers the 

depth in a single step and is thus called the direct depth recovery method. This is a novel approach 

which currently only performs well on synthetic images. Future enhancements might allow a robust 

performance on real images as well.

Both shape recovery methods are limited in that they only operate on diffuse reflecting surfaces, 

require an enclosure to reduce ambient light, and involve capture times o f over one minute. Future 

work is expected to reduce or completely eliminate some o f these requirements. This would lead 

to many applications in recovering shape using only a camera and display device. For example the 

shape o f a person's face could be recovered at a bank machine for security purposes. Or a computer 

user could obtain a 3D model of any object placed in front o f their computer monitor and camera.

The evaluation of a lighting estimation method presented in this thesis analyzes the performance 

o f a technique proposed by Singh &  Ahuja [38]. The published material for this technique, similar 

to many other lighting recovery papers, only examines the performance on synthetic images. So 

without real experiments it is difficult to know how well these techniques perform on images o f real 

surfaces taken with real cameras. The controlled lighting setup can be used to examine many lighting 

estimation methods and compare their performance through the use of clearly defined evaluation
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measures. The experiments performed in this thesis showed that Singh &  Ahuja's method can 

achieve angular accuracies ranging from 1° to 17° for estimating the position o f a point light source.

The main contributions o f this thesis include:

•  the development of a novel apparatus for controlling illumination with a raster display,

•  the implementation o f a shape recovery method based on photometric stereo, including the

presentation o f a new approach for estimating depth from surface orientation,

•  the development of a new shape recovery method for direct depth recovery, and

•  the experimental evaluation o f Singh &  Ahuja's method, as well as modifications to their

technique.

Background information and related research is provided in Chapter 2 o f this thesis. The con

trolled illumination setup as well as the associated calibration methods are discussed in Chapter 3. 

The next two chapters discuss the two application areas studied: shape recovery (Chapter 4) and the 

evaluation o f lighting estimation methods (Chapter 5). Both o f these chapters include an experimen

tal analysis. The results are summarized in Chapter 6 together with a discussion o f potential future 

work.
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Chapter 2

Background and Related Work

Controlled lighting has so far not been explored in a systematic fashion but merely in an ad hoe 

manner to assist in specific applications. In particular, the role o f lighting in various computer 

vision algorithms has rarely been investigated. Debevec has been incrementally refining a controlled 

lighting environment called the Light Stage. The first version o f the Light Stage was used to capture 

the rellectanee of human faces [11]. An apparatus was constructed to simultaneously spin and lower 

a single spot light over the surface o f a sphere, with the light directed at a person in the centre. A 

video camera captured the image o f the face while the position o f the light source covered a wide 

range o f positions. The result is a set o f images of the face, each under different lighting conditions. 

The captured images are then used to create maps o f how light is reflected by the skin. Finally, these 

maps can be used to synthesize images of the face under arbitrary lighting conditions.

To improve the speed o f the acquisition process, the Light Stage 2 was constructed with a semi

circular arm which was spun around a person in centre. Along the arm. a set o f strobe lights are 

directed at the person. This setup produces similar results as the previous one, but greatly reduces 

the acquisition time. The most recent version of the Light Stage [13] is constructed as a geodesic 

dome with red, green, blue and infrared LEDs evenly distributed over the sphere surface facing in

ward. This allows instantaneous control over the illumination o f a person or object placed in the 

centre o f the dome. This setup is targeted at the film industry for lighting actors under arbitrary 

illumination conditions. Similar light domes have been constructed for other purposes as well. For 

example Kawasaki et al. [29] use a light dome for an image based rendering approach.

Another controlled lighting apparatus is proposed by Furukawa et al. [15]. It is similar in 

construction to the Light Stage 2. A set of digital cameras and halogen lamps are placed on two 

concentric arcs. Each of the arcs can be rotated around the object, allowing controlled illumination 

which they utilize in their appearance-based object modeling approach.

The most similar controlled illumination apparatus to the one proposed in this thesis is found 

in the field o f environment matting. Environment matting is concerned with capturing images o f 

an object such that it can be composited on arbitrary backgrounds. Zongker et al. [53] propose 

an environment matting teehnique that uses three CRT monitors surrounding an object. A camera
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captures images o f the object while the monitors display a set of patterns. Zhii &  Yang [52| describe 

an improved environment matting method with a similar setup, as shown in Figure 2.1. However 

neither of these papers explore the more general aspeets o f using display devices as illumination 

sourees.

Figure 2.1: The environment matting setup developed by Zhu & Yang [52]. A digital camera is 
direeted at a refractive object placed in front o f a computer monitor.

The remainder o f this chapter provides the background necessary for understanding the subjects 

in later chapters. First the image formation process is outlined as it is a fundamental eoncept, 

essential for the understanding o f all computer vision teehniques. The following section on camera 

models discusses how the camera affects the captured image and how it can be used as an instrument 

for measuring light intensities from a scene. The section on camera calibration provides information 

on botb the geometric and radiometric properties o f cameras.

A general overview o f shape recovery methods is provided to show how the photometric stereo 

method compares to other approaches. The photometric stereo method is outlined in Section 2.5. 

This section includes a description o f the original photometric stereo method as well as ten modified 

methods. The output o f the photometric stereo algorithm is a map o f surface orientations. To obtain 

the final shape o f the object, a final step is required, and is outlined in Section 2.6.

Finally, to provide some background information about lighting estimation, the basic problem is 

outlined and the details o f the evaluated teehniques are discussed.
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2.1 Image Formation

Understanding the image formation process is essential for understanding existing computer vision 

techniques and for developing new ones. Horn [241 provides a good overview o f the process from 

the perspeetive o f computer vision. This section focuses on only the topics immediately applicable 

to this thesis.

An image can he understood as a 2D pattern o f light intensities in the image plane o f a eamera. 

Originating from light sources, the light is reflected o ff objects in the scene and a small fraction 

of this reflected light is received by the eamera. In a sense, the camera acts as a measurement 

instrument o f the light from the scene.

Instead o f using the term brightness to describe light intensity, the term radiance is used to refer 

to the energy flux per unit area radiating from a surface. And irradiance refers to the amount o f 

energy falling on a unit surface area. Radiance and irradiance can be measured in units o f Watts/m^.

For simplicity sake, while making many assumptions about the scene, the path o f the light can 

be broken down into three stages as illustrated in Figure 2.2:

1. Radiance o f the light source to scene irradiance

2. Scene irradiance to scene radiance

3. Scene radiance to image irradiance

Light Source 
Radiance

Scene
Irradiance

Scene
RadianceSensor

Irradiance

Figure 2.2: A simplified illustration o f the path o f light from a light source to the camera. This 
model assumes that there is a single reflection o f the light along the path from the light source to the 
camera.

The true path o f the light can be much more complex than in this model. Light w ill often not 

just be reflected once before entering the camera lens. Inierrefleciion is the processes of light being 

rellectcd multiple times between objects in the scene. This effect is not considered in this model. 

Materials also do not always only reflect light, but also absorb and refract light hitting their surfaces.
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Since this thesis does not consider these more complex interactions, the background information is 

focused on the components of the simple model. The following sections discuss the three stages as 

outlined earlier.

2.1.1 Light Source Radiance to Scene Irradiance

The light source radiance is determined by the light source model and parameters such as the in

tensity and size. The scene irradiance is determined by how this light travels through space. In this 

thesis the point light sotirce model is used. It is assumed to be localised at a point in space, with its 

light spreading equally in all directions.

With increasing distance from the source, the intensity decreases according to the invcrsc-sc/iiarc 

law. This law states that the energy of the light on a unit surface area is proportional to the inverse 

square of the distance to the point source. It can be explained by observing that the total energy on 

a sphere centred around the point source is independent o f the size o f the sphere. Since the surface 

area o f a sphere is proportional to the square o f its radius, the intensity per unit surface area decreases 

accordingly with increasing radius.

2.1.2 Scene Irradiance to Scene Radiance

The physical interaction o f light with surfaces is complex. The atomie structure of an object deter

mines how light is reflected, refracted, transmitted and absorbed. A ll common surface models only 

approximate the true interaction of light with the surface.

A wide range o f surfaces can be modeled with the use o f a bidirectional reflectance distribution 

function (BRDF). Assuming that the direction o f incoming light is specified by the spherical coordi

nates (Oi, (f>i), the BRDF /(O, , 0,, 0^, 4>c) determines how much o f the incoming light is rellectcd in 

the direction (0,;, </>,.)• Many surface models are a subset o f all possible BRDFs. This section focuses 

on one o f the simplest surface models, which is however also commonly found in real objects.

Lambertian rcjiection which is also known as diffuse reflection is a model that surfaces such as 

paper and matt paint nearly exhibit. The main feature o f this reflectance model is that the intensity 

o f the reflected light is independent o f the direction in which it is reflected. In other words, the 

BRDF is constant over all {0^, 0^) directions. Light that hits a point on the surface is assumed to be 

scattered equally in all directions.

For a Lambertian surface lit by a point light source, the radiance of the reflected light H can be 

calculated from the surface albedo p, the surface normal h, and the light source vector L as

II = pma.x{Q, L ■ n). (2.1)

The light source vector L points from the surface to the light source. Its magnitude represents the 

intensity o f the light source. This equation results from the geometry o f light falling on an inclined 

surface. The radiance II reaches a maximum when the surface is perpendicular to the light source.
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As the angle between the surface normal and the light direction increases, the radiance decreases 

until it reaches zero.

Figure 2.3: An illustration o f the Lambertian reflectance model. The radiance R  from the surface is 
determined by the surface albedo p, the surface normal fi, and the light source veetor L.

2.1.3 Scene Radiance to Image Irradiance

After the light is reflected from the surface, it is typically scattered in many directions, and only a 

small amount o f the reflected light enters the camera. Since the image irradiance is the measured 

quantity, we need to know how it relates to the radiance from the surface.

Horn [24] shows that for a simple camera model with a single thin lens, the image irradiance I  

is proportional to the radiance R in direction o f the camera. He derives the equation

/  =  / Î j  cos'* a , (2.2)

where d is the size o f the aperture and /  the focal length. The off-axis angle a  is measured between 

the optical axis and a ray passing through the foeal point and a point on the surface. According 

to the equation, the radiance/irradiance ratio I / R  is proportional to cos'* q . This is commonly 

referred to as the cos4 law. Tlie effect o f this term is that the I / R  ratio decreases for pixels further 

from the image centre. For example, when taking an image o f a blue sky, where the irradiance is 

approximately equal from all directions, the comers o f the image often appear darker than the centre. 

An interesting aspect of the above equation is that for a surface point located on a specific ray, the 

distance from the focal point docs not affect I /R .

Real camera lenses can be much more complex than the model used by Horn as w ill be pointed 

out in the next section. In addition to the cos4 law, having multiple lenses arranged in sequence 

introduces vlgnetilng which also darkens the comers o f the image with respect to the centre. This 

effect can be even more significant than the cos4 law i f  not compensated for properly. Most lenses 

are constructed in a way to minimize the vignetting effect but for wide-angle lenses vignetting is 

difficult to avoid.
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2.2 Camera Models

The main camera components in the path of the light are the lenses, the aperture and the image 

plane. A camera model combines the models o f these elements. Lenses can be modeled with a 

tliin-leiis model which assumes that the lens is planar. It is not physically possible, yet still provides 

a close approximation to real lenses. A more realistic model is the thick-icm model where lenses 

are modeled as volumes which refract the light.

The aperture is a hole which determines how much light enters the camera. Since image sensors 

and film measure high intensities more accurately, it is typically beneficial to open the aperture as 

wide as possible. The drawback is that increasing the aperture size reduces the range o f the scene 

that is in focus. An accurate camera model incorporates a set of thick-lens models with an aperture 

as proposed by Kolb et al. [30]. Such a model can simulate focusing and vignetting for example. 

This however comes at the cost o f high mathematical complexity.

For many applications, a much simpler camera model can be employed. The pinhole camera is 

such a model. It is an ideal model with an infinitely small aperture and no lenses. Due to the small 

aperture, the entire scene is in focus. Since the benefits o f the simple mathematical model outweigh 

the drawbacks such as the inability to simulate focus and vignetting, this model is employed in this 

thesis.

Hartley and Zisserman (20], as well as Horn [24] provide a good overview o f the pinhole model. 

Figure 2.4 shows the standard model. Light from the scene enters the camera through a point referred 

to as the focal point or camera centre. This point is also the origin o f the camera coordinate system, 

with the z-axis pointing towards the scene. The light is projected onto the image plane, located at 

2 =  - / .  This results in a perspective projection o f the scene onto the image plane.

Image plane Focal point

Figure 2.4: The pinhole camera is an ideal camera that projects all light through a point called the 
focal point. The coordinate system is such that the focal point is at the origin, the image plane is the 
plane where 2 — and the 2-axis coincides with the optical axis of the camera.

The only parameter o f the pinhole camera is the focal length f .  Using simple geometry one can
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see that a point p =  { x ,y ,z ) ‘' in the scene is projected to / /  =  ( - / f -  the image

plane. One can also map a point on the image plane to a line through the foeal point. The line can 

be expressed as a normalized point p„ = {x/ z .  y / z .  I ) '  through which the line passes.

2.3 Camera Calibration

Camera calibration is the task o f determining the parameters of the camera model. The term geo

metric calibration is used here to refer to the process of determining the geometric formation o f the 

image. This is commonly referred to as intrinsic calibration. This process allows pixel coordinates 

to be mapped to rays in the scene and points in the scene to be mapped to pixel coordinates. The 

raelioinetric calibration relates the pixel intensity values to the irradiance on the image sensor. These 

mappings are all essential in using the camera as a measurement instrument for the scene.

The following sections give a brief overview o f the calibration techniques used. It should be 

noted that there is much more detailed information about camera calibration available in other pub

lished material [12, 20,22, 33].

2.3.1 Geometric Calibration

The goal o f geometric camera calibration is to determine the mapping between the 3D world coordi

nates and the 2D image coordinates. In other words, it determines how a 3D object is projected onto 

the image plane. Typically this information is not available with the eamera. Although parameters 

such as the focal length can be adjusted on a lens, reading the value o ff the eamera is usually not as 

accurate as using a calibration method.

Most calibration methods use a set o f images o f a calibration object. The images are analysed 

by extracting positions o f features such as corners and edges from the calibration object. Then the 

parameters are estimated by attempting to closely fit the camera model to the observed positions. 

Parameters are grouped as extrinsic and intrinsic parameters. The extrinsic parameters include the 

position and orientation o f the calibration object with respect to the eamera. Alternatively, the pa

rameters can specify the orientation and position o f the camera with respect to the world coordinates. 

And the intrinsic parameters describe the internal camera parameters. Typically these include the 

effective focal length, principal point, image skew, and various distortion parameters such as radial 

distortion.

Tsai’s paper [43] is the first major advancement in camera calibration. A planar calibration 

pattern is used to estimate both the intrinsic and extrinsic parameters. After that article, a number of 

other camera calibration papers have been published.

This thesis uses the MATLAB Camera Calibration Toolbox written by Jean-Yves Bouguet [5], 

which is based on a paper by Hcikkila and Silvcn |22|. They use a cube with a grid of dots on 

every side for their method. The calibration toolbox simplifies their approach to operate on a planar 

checkerboard pattern. A set o f images of this pattern taken from different view points is used for
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the calculation o f the parameters. The implementation requires some manual interaction to select 4 

corner points in each image. After that, the remaining corner points are e.xtractcd automatically and 

used as an input for the calibration algorithm.

The intrinsic parameters estimated by the MATLAB Camera Calibration Toolbox are:

Foeal length: the focal length in both the x  and y  direction.

Principal point: the pixel coordinates o f the point where the c-axis and the image plane intersect. 

Skew coefficient: the angle between the x  and y axis.

Distortion parameters: up to 5 distortion parameters including radial and tangential distortion co

efficients.

The accuracy o f the estimated parameters is also calculated. By recalculating the location o f 

corner points and adding or removing images the accuracy o f the estimated parameters can be im

proved.

After the calibration, it is easily possible to map 3D points in the camera's reference frame to 

image coordinates. One can also do the reverse, and map a 2D image coordinate to a ray which 

passes through the camera’s effective focal point. This ability is foundational for many computer 

vision methods including photometric stereo as used in this thesis.

2.3.2 Radiometric Calibration

Camera response

As mentioned earlier, radiometric calibration relates the pixel iniensiiy values from a camera to the 

actual irradiance on the sensor. Unfortunately, in most cases, these values are not linearly related. 

There are multiple steps in the measurement of the irradiance, some o f which are not necessarily 

linear. Figure 2.5 shows the signal flow from the sensor to the storage files.

Most sensors used in digital cameras now are either CCD- or CMOS-based. Within a certain 

range of irradiance on the sensor, the response is near linear. However, above a certain irradiance 

level, the sensor becomes saturated and the output of the sensor is no longer proportional to the 

irradiance. Film also saturates at a certain level. So, in images taken with either a digital or film 

camera, there can be regions that are saturated. For example when taking an image of a scene which 

includes an uncovered light bulb, the region of the bulb is typically saturated. It is too bright in 

comparison to the rest o f the scene to be captured accurately. The dynamic range o f an image sensor 

specifies the range o f intensities it can measure without saturating.

In addition to the sensor non-linearities, the internal processing of the camera to the raw data 

also affects the “ measurements”  in a non-linear fashion. This step is referred to here as development 

processing due to its similarity to the development of a negative into a print. The pixel values 

are mapped such that more o f the available pixel values correspond to low intensities than to high

II
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Figure 2.5: The simplincd signal flow o f a typical digital consumer camera. The image sensor 
outputs a current dependent on the irradiance on its surface. The A/D converter digitizes this analog 
input. Some cameras allow storing this information directly in a “ raw file." The digitized values 
are further processed by the camera through application o f a response curve termed the devclopiiwni 
process before writing them to a compressed image file.

intensities. There are two reasons for this. CRTs respond in a non-linear power law relationship to 

the input voltage. So when CRTs were first used for displaying images, the images were stored to 

compensate for the non-linearity o f the monitors. That way, the pixel values in the image could be 

linearly converted to a voltage and result in a correct display o f the image. The second reason is that 

the human visual system is non-linear in its sensitivity. It is more sensitive at low intensities than at 

high intensities. So non-linear mapping is an effective way o f compressing the image data without 

loosing visual quality. It is now standard procedure to apply the non-linear mapping in consumer 

grade cameras where the main application is viewing the images on a display or as a print.

Standards have been established that specify how images should be stored and displayed to en

sure correct appearance on a wide range o f devices [40]. The process o f correcting for the non-linear 

response of displays is referred to as gamma correction. Gamma correction is a simple transform 

where the input value is raised to the power of 7 to obtain the output. The output value is calculated 

with

output — input''. (2.3)

According to the sRGB standard [40], CRT displays should display intensities with a gamma value 

o f 2.2. So. for the intensity on a CRT display to be proportional to the image irradiance in the camera, 

the camera needs to apply a gamma o f 1/2.2 for the effects o f the display response to be canceled 

out. The development process needs to consider the non-linear response o f the sensor to ensure that 

the combined effect o f the sensor response and processing results in an appropriate response. The 

combined response o f all individual internal responses is commonly referred to in literature as the 

camera response curve.

Figure 2.6 shows the response functions of the three main components. The sensor saturation and 

development response curve are the most important nonlinearilies in the processing. For computer 

vision purposes, nonlinearities in the response o f the camera are an obstacle. Ideally, the camera
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Figure 2.6: Response functions of the main camera components. The sensor and development pro
cessing steps introduce non-linearities in the irradiance measurement which need to be considered 
for computer vision applications.

would serve as a linear measuring device for the irradiance on the sensor. Most importantly, the 

response curve needs to be considered. For professional grade cameras, the gamma correction can 

typically be enabled or disabled. So the development response curve is linear. Intensity data from 

the sensor with little or no processing can be obtained directly. But with consumer grade cameras, 

getting the unprocessed data is not always possible.

Only high-end digital consumer cameras allow storing the data prior to gamma correction in a so- 

called raw file. For many cameras, the raw file format contains a 12-bit value for each colour channel 

for each pixel. I f  raw images are not an option, something needs to be done to reverse the gamma 

correction o f the camera. Although most cameras use a gamma o f around 1/2.2, it is often inaccurate 

to simply apply a gamma o f 2.2 to obtain the image irradiance from the pixel values. Cameras vary 

in their processing of the intensity data, so calibration o f the response becomes necessary.

Recovering the camera response curve

When working with intensity data that has a gamma applied to it, it is essential to determine how 

the values from the camera map to the irradiance. Data that has not been processed with a gamma 

curve can be handled in two ways. I f  the sensor responds linearly within the range o f the measured 

irradiance values, then it is safe to work directly from the raw data. I f  the data is partially above 

the linear range, yet still below complete saturation o f the sensor, determining the response o f the 

sensor is helpful. In any case, i f  the irradiance goes beyond the saturation level o f the camera, the 

information is irrecoverably lost.

The term radiometric calibration is used not only for recovering the camera response curve but 

also for determining the noise level o f a camera. There is published work on this particular aspect 

prior to 1994. but most o f the work on recovering the response curve of a camera was done later. 

The first camera response curve ctilibration papers are associated with high dynamic range (HDR)

13
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photography [12, 33|. The dynamic range is the irradiance range that an image can hold. For HDR 

photography, the camera response is used to combine a set o f images with differing exposure levels 

to a single image with a higher dynamic range than the individual images.

The first techniques use a set o f photos taken at different exposure levels (just like those used for 

HDR photography) to determine the response curve [12, 33]. The basic principle is best explained 

by an example: Capture two images A and B o f a still scene, but expose image B twice as long as 

image A. The position and orientation o f the camera stay the same, only the exposure changes. We 

can now assume that the irradiance in image B is double that o f image A.

Since the camera response curve is described by the mapping o f the sensor irradiance to the pixel 

values, it is our goal to recover this relationship. I f  we denote the pixel value in image j  at pixel i 

with Z ij, then the irradiance / . j is determined by

h j  = <j{Zij), (2.4)

where g  is the unknown mapping that we want to determine. From image A we get I i a  — g{Zi. .\)  

and from image B, Im  =  g(Zn}). Since we know that Im  = 2/,vi due to the doubled exposure 

time, we can form a constraint on the function g:

g{Zin) =  "ig{ZiA). (2.5)

So, each pair o f pixels from image A and B forms a constraint on the camera curve g. From these 

constraints, the shape of the camera curve can be determined, up to an unavoidable ambiguity of 

a scaling factor between the irradiance and pixel values. Mann and Picard [33] suggest a method 

o f determining the function that meets the constraints but do not explicitly describe it. Debevec 

and Malik [12] however clearly outline how the suggested method can be implemented. They also 

introduce a smoothness constraint to counteract the effects o f image noise and potential lack of 

samples at certain pixel values. The implementation o f their method is used in this thesis and is 

freely available as part o f the HDR-shop software [10].

More recent research in the field o f camera curve calibration has been done by Grossberg and 

Nayar [17, 18, I9|. They base their analysis on a database o f response functions o f real cameras. 

From this, they create an empirical model o f the response functions. Finally, when calibrating the 

response of a new camera, a set o f parameters for the empirical model is estimated. They claim that 

the results are better than those of previous methods such as Debevec and M alik’s.

2.4 Shape Recovery

The goal o f shape recovery methods is to obtain a 3D model o f a scene using a device that captures 

information o f the scene. Currently, there are a variety o f shape recovery methods, each with their 

own set o f strengths and weaknesses. They differ in the following aspects:

14
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Accuracy: The accuracy with which the surface is reconstructed. There is no standard method of 

measuring the accuracy. A common method is to compare the recovered and the true depth 

maps.

Applicable surface types: Some methods only operate on a small range o f different surface types.

Input: Examples o f input are a single image, multiple images from the same position, or multiple 

images from different positions.

Output: Some shape recovery methods recover not only shape but also surface albedo and surface 

reflectance information.

Active/Passive: Aciive methods project energy onto the scene, e.g. laser scanning, whereas passive 

methods do not.

Scale o f scene: Most methods are limited in the scale of objeets they can recover.

This seetion is intended to provide a brief overview o f some common methods and their features.

2.4.1 Laser Range Scanning

Laser range scanning has become a popular method and is now one o f the premier shape recovery 

methods. This can be mostly attributed to its accuracy and applicability to a relatively wide range o f 

surfaces. The basic principle is to direct a laser beam into the scene and measure the properties o f 

the reflected light. So naturally, for the scanning to operate properly, enough light must be reflected 

to be able to take measurements. This means that generally the method does not perform well on 

shiny surfaces. Measurements are taken at one point on the surface at a time, so the laser needs to 

be swept over the object to be scanned. BesI and Jain [4] offer a good overview and categorization 

o f different laser range methods;

Pulsed mode: determines the distance by measuring the time lag between sending and receiving a 

light pulse

Amplitude moduiated: measure distance by examining the phase difference between the received 

and reference signals

Triangulation-based: use a camera offset from the laser source to triangulate the position o f the 

surface point

It is also noteworthy that traditional laser range scanning does not recover surface attributes such as 

colour or BRDF.

15
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2.4.2 Structured Light

Structured light methods arc similar in a sense to triangulation-based laser range scanning. Light is 

projected in to the seene with a known structure (e.g. stripes, a set o f points, or a grid). A eamera 

viewing the scene from an offset position then captures images o f the scene lit by the projected light. 

Through triangulation, it is then possible to determine surface point locations.

An example of a struetured light approach is Bouguet and Perona’s work [6]. Their method 

recovers objects placed on a desk, lit by a desk lamp. A pencil, stick or wand is waved in front of 

the lamp to cast a shadow on the object. Then, based on the geometry o f the shadows cast onto the 

object, its shape is recovered.

2.4.3 Multiple Views

Multiple view based shape recovery is a general term for shape recovery methods that use multiple 

cameras to triangulate surface point positions. Typically they are passive. The most popular method 

is stereo vision which triangulates point positions from the disparity between two views. Stereo 

vision requires features in the image to be matched which is not always trivial (this is referred to as 

the correspondence problem). Hartley and Zisserman |20| provide a detailed discussion on multiple 

view geometry which can be applied to any number o f views.

2.4.4 Shading-based Methods

A subset o f shape recovery methods measure the rellccted radiance from surfaces to constrain the 

possible orientations of the surface. This is possible through consideration o f the surface BRDF, The 

complexity o f the possible surface BRDFs directly affects the complexity o f the approach. Early 

approaches focus on Lambertian surfaces [24, 28, 46| and later methods extend the application to 

more general BRDF models [1,23, 39,41].

Since the illumination o f the scene strongly influences the appearance o f the reflected radiance, 

the lighting is typically assumed to be known. Some methods attempt to recover the illumination 

configuration and shape together [8, 27].

Shape from Shading

Shape from shading is a passive method that attempts to recover shape from a single image [25]. 

Early methods assumed that the light is a distance point light source at a known position and the 

surface is Lambertian. Even under these assumptions accurate results arc difficult to achieve due to 

the ambiguity o f image information. Under these conditions, an infinite number o f different local 

surface orientations can produce the same image intensity so additional smoothness constraints are 

required to obtain a result. Zhang et al. [50] provide a comparison o f six shape from shading 

methods with an evaluation o f their results.
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Photometric Stereo

Photometric stereo uses multiple images lit under different illumination conditions to determine 

surface orientation. The images are all taken from the same view point. The original approach 

[46] assumes Lambertian surfaees and distant point illumination. For each image, the light source 

position is known. In comparison to shape from shading methods, this approach has the advantage 

o f having additional information through the multiple images. This results in a higher accuracy and 

robustness.

Since the output o f photometric stereo is surface orientation, not depth, a separate depth from 

surface orientation step is necessary. The next two sections go into detail about photometric stereo 

and depth from surface orientation methods as they form the foundation o f this thesis.

2.5 Photometric Stereo

The original photometric stereo (PS) method was proposed by Woodham in 1978 [46] and later 

rellned [47, 48]. After the initial development o f the PS method, numerous modifications to the 

technique have been proposed by a wide range o f researchers [1,2, 16, 21, 23, 34, 37, 39,41], This 

section first focuses on the original method since it is the one applied in this thesis. Other modified 

are discussed at the end o f this section.

2.5.1 Simple Photometric Stereo

The basic goal o f PS is to obtain a map of surface normals o f an object. The input into the algorithm 

is a set o f images, each taken from the same view but with the scene lit under different lighting 

conditions. For each image, the only light source is a distant point light source. This has the 

effect that the vector to the light source is constant over the entire surface o f the object. Figure 2.7 

illustrates the basic input and output o f the PS method.

Input images Normal map 
(output)

Figure 2.7: An example o f the input and output of the photometric stereo algorithm. In this example, 
three images o f a sphere under different lighting conditions serve as the input. The expected output 
is a map of the surface normals of the sphere.
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The most important assumptions made arc;

•  The positions o f the light sources are known.

• The visible surfaces are Lambertian.

•  There arc no intcrrellections. Points on the surface are lit solely by direct light from the light 

source.

An interesting aspect o f PS is that it is a local method. The calculations are performed indepen

dently at every pixel. The surface normal at each pixel is calculated only from the pixel values at 

that location in the set images. For now, assume that the pixel value can be unambiguously mapped 

to a surface radiance value. The following question arises; What can be known about the surface 

normal and albedo given a set o f radiance measurements with associated light vectors?

First, it might be easier to determine the answer to the following question: What can be known 

about the .surface normal and albedo from a single radiance measurement and light vector?

Woodham [46] based the original formulation o f photometric stereo on the idea o f njleciance 

maps. A reflectance map R{p,q) maps a specific surface orientation (p.r/) to a surface radiance 

value. The surface is defined as f { x ,y ) ,  so the surface orientation can he described by the partial 

derivatives p =  and q =  Tlie reflectance map combines the BRDF and light source

vector into one function. Instead o f using Woodham’s original formulation, this section derives the 

photometric stereo method from the formulation o f Lambertian surface reflection as a dot-product 

o f the light vector and surface normal. The derivation is clearer using this formulation.

As defined in Section 2.1, the radiance from a Lambertian surface R  can be calculated with

R  = p m a x(0 ,L  ■ n). (2.6)

where p is the surface albedo, L  is the light source vector, and n is the surface normal. Our earlier 

question becomes: What can be known about p and h  given R  and L'l The equation shows that 

when /? =  0, either p =  0 or h is a vector that results in a dot product that is < 0. Hence, when 

R  = 0 very little can be determined about the surface.

Instead, consider the case where R  > 0. With this constraint, the max function can be omitted 

since p is also assumed to be positive. The function can be further simplified by defining N  as the 

product of the albedo and the surface normal

N  =  ph, (2.7)

which results in the simplified definition of Lambertian reflection:

R = L - N .  (2.8)

The dot product can finally be expanded to result in

R — +  R)i^v  "F (2.9)
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This eqiialion Is very useful due to the simple linear relationship between the N  components and 

the radiance /?. One can start to see an answer to the earlier question. A known / f  value which 

is greater than 0 defines a constraint on the three components o f N . However it does not provide 

enough information to fully determine N .

So in summary, the answer to the above question “ What can be known about /> and h given R  

and L T .  is:

•  I f  /? =  0, then either p =  0 or L • n <  0.

•  I f  /? >  0. then R = l -  N .

Now we can try to answer the original question: What can be known about the surface normal 

and albedo given a sel o f radiance measurements w ith associated light vectors? Assuming that 

we had a second radiance measurement denoted by R 2 from the surface lit by a different light vector 

La, would we be able to uniquely determine N  then? The answer is no. Even with a second image, 

it would not he possible to uniquely determine N . But once the number of images is increased to 

three, the situation changes. The next steps show why this is the case.

Every image adds an additional constraint on the surface normal. By denoting the image number 

with a subscript, we can write this as:

or using matrix algebra as.

R i = R l x ^ x  +  R \ y N y  +  L j j f V j ,

R 2 = L 2 t. N x  +  L 2 y N y  +  L 2 z N z ,

R 3 = L ^ x N x  +  R i y N y  +  L a z N z ,

R i  ■ R \ x  R \ y  R \ z ■ N x

R 2 =r L 2 x  ^ 2 y  ^ 2 z N y

R 3 R i x  R s y  L z z N z

(2.10)

For an arbitrary number o f images n, equation 2.10 becomes

R\x ^ Iz■ Ri ■

. . Jny ^nz

N .
Ny
N ,

(2 . 11)

Finally, i f  we denote the vector o f radiance values by R  and the matrix o f light source vectors by L, 

then equation 2 .11 becomes

R = L N . (2.12)

Now, determining the vector N  is a just matter o f matrix algebra. Each image adds a row in the 

linear system o f equations. With three images, N  can be calculated with

(2.13)
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From N , the albedo t> and normal h can be extracted with

P  =  1 ^1

-  _  ^
P

Calculating p and fi this way requires that L  is invertible. For L  to be invertible, the rows o f L 

must be linearly independent. Three light vectors L i,  £2 and £3 arc linearly independent i f  C|£, + 

C2L 2 + C2L 2 = 0 implies that the scalars c,,C2 and C3 are all zero. Geometrically, this means that 

the light vectors are required to he non-coplanar.

With more than 3 rows, the system can become over-constrained and a least-squares approach 

becomes most applicable to determine N . This approach finds N  such that \R  — L/V| is at a mini

mum. It is worth repeating that the equations here are only accurate for R >  0.

2.5.2 Extending and Modifying Traditional Photometric Stereo

Traditional PS makes many assumptions about the scene which are typically not met for real scenes. 

The presence o f non-Lamhertian surfaces, shadows, and interrcflections all cause the PS method to 

perform poorly, and in some cases fail all together. This is no surprise since mathematically PS relies 

on a relatively simplistic model o f the scene. Furthermore, the assumption that the illumination is a 

set o f distant point light sources can he limiting.

Naturally, in the past two decades, many methods have been proposed to extend or modify the 

approaeh. They focus on considering non-Lamhertian surfaces and less restricted lighting condi

tions. Only few methods have been proposed to handle shadows.

Non-Lamhertian Surfaces

One o f the earlier methods was proposed by Tagarc and deFigueiredo [41] in 1991. It operates on 

a range o f diffuse non-Lamhertian surfaces under specific lighting conditions. Their approach is 

not general enough to account for all possible surfaces and illumination conditions, hut they claim 

that it is a first step towards a theory o f non-Lamhertian PS. They also show that it is inappropriate 

to attempt recovery o f non-Lamhertian surfaces under the Lambertian assumption. Solomon and 

Ikeuchi [39] discuss a method for using four-source PS on objects with specular highlights. They 

also propose a method for determining the surface roughness based on a simple specular model.

Georghiades [16] proposes a method for recovering the shape and surface parameters for the 

Torrance-Sparrow model. This method can also he used on certain surfaces when the light source 

positions arc unknown. Barsky and Petrou [1] propose a method to handle non-Lamhertian surfaces 

and also consider shadows.

One of the most recent techniques is described by Mulligan and Brolly [34]. They implement 

a photometric stereo method which also considers non-Lamhertian BRDFs. Their method, which 

is based on Magda’s work |32|. utilizes the inverse-square law for direct depth recovery. Finally.
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Hcrtzmann and Seitz [23) have recently developed a method entitled “ Photometric Stereo by Ex

ample.”  They use objects with known geometry with the same or similar BRDF as the object to 

be recovered. Their method handles arbitrary and spatially varying BRDFs and also performs a 

segmentation o f different surface types under unknown lighting conditions.

Modified Illumination Assumptions

The traditional PS method assumes that all the light sources arc distant point sources at known 

locations. Some o f the methods mentioned above such as [16] and [23] operate under more general 

or unknown lighting conditions. There arc also methods that operate with the original Lambertian 

surface assumption, but with less restricting lighting assumptions. Hayakawa [21] shows that it is 

possible to recover a Lambertian surface from a set of images lit by a light source with arbitrary 

motion. Basri and Jacobs [2] propose a method that uses a spherical harmonics based representation 

o f the illumination. Due to the nature o f Lambertian reflection, they show that surfaces can be 

recovered under more general illumination conditions than previous methods.

Bclhumeur ct al. [3] show that when viewing a height field lit by a distant point source under 

orthographic projection, the height field can be distorted using what they call the bas-relief trans

formation without affecting its appearance under specific lighting conditions. As a conclusion they 

state that photometric stereo with unknown light source directions is subject to an ambiguity that 

does not allow recovery beyond the bas-relief transformations. So i f  the lighting is unknown, pho

tometric stereo under these conditions can not recover a unique height field without making some 

assumptions.

Shadows

As pointed out earlier, it is difficult to determine anything about the surface when the measured 

surface radiance is zero. So when a shadow is cast on an object either from another object or by 

itself, the shadowed region contains less information about the surface orientation than i f  it was lit 

by a light source. A simple method of approaching this problem is to simply ignore the shadowed 

regions and add additional light sources so that all regions of the object are lit by at least three light 

sources.

There is also the possibility to use shadows as an additional source o f information. Schliins [37] 

proposes a method to increase the performance of the traditional three-source PS method to more 

accurately recover the surface orientation in regions that are shadowed by one light source and lit by 

the two others.

2.6 Depth from Surface Orientation

The result o f PS is a surface normal vector and albedo value at every pixel location in the image. 

The goal o f the depth recovery step is to accurately recover a depth value at each pixel. The result is
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a 2D map of the depth over the image domain. The surface orientation docs however not uniquely 

specify the shape o f the scene unless additional assumptions arc made.

Most methods express the surface normals in form of a surface gradient and refer to their tech

nique as a depth from gradient method [24, 14, 26|. They assume that the surface can be expressed 

as a function o f x  and y, where the x  -  y  plane is perpendicular to the optical axis o f the camera. So 

the depth is 2 =  f ( x ,  y) and the surface gradient is expressed as the pair o f partial differentials

Dz
P  =  -TT-.and  

Ox
Oz

" = Oi,

The surface gradient values are either recovered directly at each pixel by the photometric stereo 

algorithm, or they can be determined from the surface normals with:

p =  - n j i i - . a n d  

q =

where the surface normal is n = (n .x ,n ,j,n ~ )'. With these mathematical definitions in place, the 

goal o f this step can be expressed as follows: Given either îx o r p and q at each pixel, obtain z at 

each pixel.

There are some difficulties associated with expressing surface orientations as gradients, since 

at some locations might be very small or zero. In an implementation this can cause numerical 

instability and division by zero. Furthermore, expressing the depth as z =  f{ x ,  y) assumes that the 

image is projected with orthogonal projection, which is rare for real images.

2.6.1 Assumptions

One problem in recovering depth from surface orientation is that the surface normals do not neces

sarily dictate the relationship o f the depth at two adjacent pixels. For example, one pixel might be 

on the edge o f an object, with its adjacent pixel on a different object. The surface normal at either 

pixel does not provide any information about the relative depth between them. Even i f  the two adja

cent pixels are on the same object, there is nothing that necessitates their depth values to be related. 

Only i f  regions o f objects are assumed to be smooth can one start using the normals to determine 

the relationship between adjacent depth values. The normal map does not dictate the shape o f these 

regions of smoothness, so a further assumption needs to be made for this as well.

The surface normals also do not provide an absolute depth value from the camera. An object 

could be large and far away, or small and close to the camera while the associated normal map is the 

same. This adds another assumption which is the depth o f at least one point in each smooth region 

in the image.

These assumptions are not thoroughly discussed in literature although they are important for 

the application o f PS. Most methods implicitly assume that the entire image is one smooth region.
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Naturally they perform poorly when this assumption is not met.

Another problem with recovering depth from surface orientation is that there might not exist 

a depth map that matches the gradient field. In this case, the gradient is noii-iiitegrablc, and an 

assumption needs to be made on how to best fit the given gradient values. Some methods add an 

inicgmbiliiy conslraiiii for this purpose [ 14, 24],

2.6.2 Existing Methods

A range of different techniques exist. Most o f them arc either based on Horn’s [24] or Frankot and 

Chellappa’s [14] work.

Horn [24] proposes a method to minimize the difference between the given gradient data and 

the gradient field o f the recovered surface using variational calculus. He docs not however discuss 

the implementation o f the method. A more comprehensive variational approach is presented by 

Terzopoulos [42], He uses a multiresolution technique including smoothness constraints while also 

considering depth discontinuities. His paper also includes a discussion of the discretisation o f his 

variational method. More recently, Horovitz and Kiryati [26] present a method similar to those of 

Horn and Terzopoulos, however add the ability to use control points. These control points permit 

fixing the scene to given depth values, counteracting the bias problems associated with photometric 

stereo.

Frankot and Chellappa [14] propose a method to enforce an integrability constraint, by perform

ing the integration in the Fourier domain. Their method is fast in comparison to Horn’s, however the 

constraints imposed often result in unsatisfactory results.

A good comparison o f a wider range o f techniques together with a new method w ill be published 

by Robles-Kelly and Hancock [36] this year. They implemented the most popular techniques and 

compare them on synthetic and real data,

2.7 Lighting Estimation

2.7.1 Overview of Lighting Estimation Methods

The estimation o f the scene lighting is another important part o f computer vision. Many shape 

reconstruction techniques rely on known lighting conditions, and only few attempt to recover both 

shape and lighting simultaneously. For this reason, in cases where lighting conditions are unknown, 

a separate lighting estimation step is required for many techniques to work. Lighting estimation is 

also useful for certain applications such as augmented reality. This thesis w ill not propose a new 

method or modify an existing technique, but merely evaluate a method as a demonstration o f the 

developed controlled lighting setup.

Lighting estimation methods differ in the assumptions they make about the scene and about the 

lighting. Most early techniques assume the scene is lit by a single distant point light source. Methods
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Tabic 2 .1: A comparison o f nine lighting estimation techniques.

Year Allows
arbitrary
geometry

Geometry 
can be 

unknown

Recovered
lighting

Allows
textured
surfaces

Pentiand [35] 1982 / / SDPS
Wcinshaii [45] 1990 / / SDPS
Yang &  Vuiiie [49] 1991 / / SDPS
Hougen &  Ahuja [27] 1993 / Distribution /
Chojnacki et ai. [9] 1994 / / SDPS
Singh &  Ahuja [38] 1998 / Distribution
Zhang &  Yang [5 i ] 2001 MDPS
Wang &  Samaras [44] 2003 / MDPS
Li, Lin, Lu &  Shum [31] 2003 / MDPS /

proposed in the 1990s and iater also consider multiple sources or a more general lighting distribution. 

Some methods assume that the scene geometry and surface properties are known (e.g. the scene 

contains a sphere with a Lambertian surface), while others attempt to operate on an unknown scene.

Table 2. i compares the attributes o f several techniques. The recovered lighting is categorized as 

either single distant point source (SDPS), multiple distant point sources (MDPS), or a distribution.

For demonstrating the use o f the controlled lighting setup in evaluating lighting estimation meth

ods, a technique which recovers light distributions is most appropriate, it can be used to show re

covery o f single point sources, multiple point sources and distributions. Hougen &  Abuja’s method 

[271 recovers a distribution of point sources and is based on solving a least squares problem using 

the pixel intensities as constraints. Singh &  Ahuja [38] present an iterative method for recovering a 

lighting distribution. Compared to Hougen &  Ahuja, they demonstrate the recovery o f a more dense 

distribution o f sources and show a better evaluation o f their results. For this reason Singh &  Ahuja’s 

technique is evaluated in this thesis. Its details are described in the following section.

2.7.2 Singh & Ahuja

This method [38] recovers a distant illumination distribution. It assumes that the observed surface is 

Lambertian with a constant albedo. A specific shape is not assumed, although the geometry o f the 

object must be known. This technique is different from most others in that it is an iterative approach, 

it repeatedly estimates the lighting distribution by adjusting the previous estimate to lit within a set 

o f constraints.

The algorithm behind this technique is not new. The POCS framework (Projection Onto Con

vex Sets) [7] is used for restoring signals that were distorted by noise, it is also applied to image 

restoration. The similarity between image recovery and illumination estimation is that both can be 

formulated as a deconvolution problem.

The lighting distribution is described with the function L(0.,. ç).,). The image is represented by
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/( ( , j ) .  A simple model o f the Image formation process is constructed by discretising the domain of 

L. The two spherical coordinate parameters are replaced by integers i and j .  and the distribution over 

this discrete domain is referred to as L. Note that this form o f sampling on the sphere is not uniform. 

Towards the two poles, the sampling rate becomes higher. Singh &  Ahuja do not mention whether a 

more uniform sampling approach would have any benefits. A convolution kernel h { i.j,  k. I) which 

includes the BRDF and geometric factors is formulated to further simplify the equation describing 

the image formation. Finally, the image can be written as

=  (2.14)

Tbe basic concept of POCS is to define a set o f constraints C  tbat apply to tbe function to be 

recovered. In the case of lighting recovery, two constraints are that the recovered lighting is non- 

negative, and that the recovered lighting produces the same image as the original lighting. More 

specifically, in this paper, a constraint is defined for each pixel { i,j)  o f the image. A projection 

operator P  is derived for each constraint. This operator, when applied to an estimate, w ill alter the 

estimate enough for the associated constraint to be satisfied. I f  all projection operators could be 

applied at once the recovered estimate would meet all the constraints. But since only one projection 

is applied at once, each projection might cause previous constraints to no longer be satisfied. For 

this reason it is necessary to iterate.

For each iteration step, all o f the projection operators are applied. This can be written as

î^k+ i(i,j) = Pa Pn i .Ni Pn u N ^-i ■■■Pi,2Pi,i{Lk(i,j}), (2.15)

where P^\ is the amplitude projection and P ij  is the residual projection for each pixel (i, j ) .

The amplitude constraint simply constrains the illumination to a range from 0 to A:

Ca =  {L ( j,  j )  : 0 <  L { i,j)  < A  V(r, j ) } .  (2.16)

The associated projection operator Pa is

(  0 : x{ k , l )  <  0
P A [ x { k , l ) ] = l  x { k , l ) :  0 < x ( k , l ) < A .  (2.17)

[  / ! : / ! <  x{k,  I)

For this constraint it is easy to see how the projection operators function. Values that are below the

aeceptable range are moved to the lower lim it, and values above the range are reduced to the upper

lim it A.

The residual constraint is a little more involved. Here, for every pixel, the intensity generated 

from the estimated lighting is compared to the original intensity value. A maximum residual mag

nitude 6„ is allowed, although in experiments it is set to 0. The constraint is expressed as

C \j =  {L {k,t) : \ I { i , j)  -  T  k { i ,j ,k ,l)L { k ,l) \  < J,,)}, (2.18)
(fc.t)
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and the associated projection operator is defined as

m ,n )

x {k J )  + f f ’ j )  So

(2.19)

where

d "((,./) =  ^  h { i j ,k , l ) x { k , l ) .  (2.20)
(W )

It is noted that the result o f the POCS algorithm depends on the initial guess o f the distribution. 

The algorithm converges to the feasible solution closest to the initial guess.

Singh &  Ahuja implemented the POCS approach and ran a few simulations using the framework. 

The results they present show multiple circular and rectangular light sources, with up to two in 

each case. The recovered distribution is a slightly blurred version o f the original lighting (for 50 

iterations). They note that the recovered lighting features artifacts when the residual projections 

are applied in order. By applying these projections in a random order, the artifacts were almost 

completely removed and the rate o f convergence was greatly improved.
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Chapter 3

Using a Raster Display Device for 
Controlled Illumination

This chapter describes an apparatus for controlled illumination by a display device. The general 

aspects o f using a display device as a light source are discussed, and the details o f the experimental 

setup are provided. A mathematical model is described in Section 3.3 and calibration procedures 

are discussed in Section 3.4.

3.1 Display Devices as Light Sources

Currently, the most common raster display devices are CRT monitors, LCD screens and LCD pro

jectors. Plasma screens also qualify as raster display devices, yet their current popularity is limited. 

This chapter is meant to provide a theoretical foundation that can be applied to any o f these devices, 

although the focus w ill be on LCD screens as it is the device investigated experimentally.

Each of these devices has different characteristics. A CRT monitor contains a “ cathode ray tube” 

in which three electron beams are used to light up phosphors on the display surface. The light from 

LCD displays originates from a backlight which is covered by a layer o f liquid crystals between two 

polarization (liters. The liquid crystals are controlled to rotate the polarized light and thereby adjust 

the amount o f light passing through that layer. The screen is divided up into pixels which are again 

divided up into red, green and blue cells (or subpixels). Each are controlled individually to adjust 

the perceived colour. LCD projectors are based on a similar principle as LCD screens, except that 

the light is projected through the liquid crystal layer onto a screen. Lenses are used to focus the light 

such that the projected image is focused on the screen plane. Naturally, the LCD projector is similar 

to the other devices only when combined with the screen.

What all these devices have in common is that they can be modeled as a grid o f light sources. 

Assuming that the screen is flat, all light sources are within the same plane. At each pixel, the radi

ance from the screen can be controlled individually. The fact that each pixel is actually subdivided 

into red, green and blue cells is ignored in this thesis. For sake of simplicity, the pixels are treated as
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a single light source with no particular wavelength. In reality, the light I'rom each pixel spans a range 

o f wavelengths. Considering this fact and utilizing the individual control o f each cell is expected to 

be beneficial, yet it is not explored here.

It would be wrong to assume that the light radiance from the pi.xels o f any raster display device 

is constant in all directions. For example, most LCD screens appear brighter when viewed from 

the centre than when viewed at an angle. The radiance-direction dependency is an effect o f the 

physical construction of the device. Light sources that do not emit light equally in all directions are 

referred to as dircciional and the particular behaviour is termed clircclioncility. This term is adopted 

here to apply to display devices as well. This chapter examines how to determine the directionality 

properties o f LCD screens.

LCD sereens have certain features and limitations that need to be considered when using them 

as light sources. First, the intensity o f the backlight is typically not controllable. It constantly emits 

light, and only the liquid crystal layer can be controlled to attenuate that light. The layer can however 

not completely block all light, so even when a pi.xel is set to “ black,” a limited amount o f light w ill 

still be emitted from the screen, LCD monitors typically list a contrast ratio among their features. 

This value is the ratio between the highest and lowest radiance the screen can emit. The brightness 

o f the backlight does not affeet this ratio since the radiance o f a black pixel is affected in proportion 

to the radiance o f a white pixel. Contrast ratios range from around 500:1 for low-grade consumer 

monitors to over 1500:1 for industrial screens usable in sunlight. In any case, it should be noted that 

even when the entire screen is set to black, the LCD screen w ill still emit some light.

I f  one wants to examine the lighting from only a few pixels on the screen, it is necessary to 

compensate for the additional light from all other pixels which are set to black. This can be achieved 

by taking one image o f the scene lit  with the entire screen set to black, and a second image with 

the desired pixels on. Then, by subtracting the first image from the second, the contributions o f the 

desired pixels on the scene can be determined. This also eliminates potential contributions from 

ambient lighting o f the scene. It does however require that the ambient lighting conditions do not 

change from the first image to the second.

3.2 Experimental Setup

The setup used for experimentation consists of a mid-grade consumer LCD monitor, and a high-end 

consumer digital SLR camera. The apparatus is enclosed by black cloth to reduce the amount of 

ambient light entering the scene. A diagram of the setup is shown in Figure 3.1, and a picture of the 

real apparatus is provided in Figure 3.2.

A NEC Multisync LCD I760NX monitor was used for all the experiments. It is a 17-inch active 

matrix, thin film transistor (TFT) display with a native resolution o f 1280 x 1024. The listed white 

luminance is 260 cd/m^ and the contrast ratio is 450:1. The camera is a Canon EOS 300D (Digital 

Rebel). It includes a 22.7 x 15.1 mm CMOS sensor with 6.3 million effective pixels. The total sensor
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LCD Display

Scene

Camera

Figure 3.1: A diagram of the experimental setup.

Figure 3.2: The experimental setup. Visible in this picture arc the cnciosure. the screen, the camera 
(below the screen) and the captured object.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



resolution is 3152 x 2068 and the effective resolution is 3072 x 2048. Finally, the lens is a Canon 

EF-S18-55mm f/3.5-5.6 zoom lens with foeal length o f 18mm to 55mm. a maximum aperture of 

f/3.5-5.6. and a minimum aperture o f f/22-36. Detailed specifications of the display, camera, and 

lens can he found in Appendix 1.

3.3 Mathematical Model

This section defines a model o f the scene illumination as well as a model o f the camera imaging 

process. These models can be applied to any specific use o f the controlled illumination device. 

The scene illumination model defines the irradiance at a point in the scene given a specific lighting 

configuration on the display device. The camera model allows determining the irradiance from the 

scene given an image.

The path of the light from the screen to the camera is modeled as a five step process;

1. Screen directionality —» screen radiance

2. Inverse square drop-off to object —* scene irradiance

3. Interaction with scene —* scene radiance

4. Surface radiance —> sensor irradiance

5. Camera response —> pixel values

In this section, steps 1,2,4 and 5 are described. Step 3, the interaction with the surface is dependent 

on the assumptions made about the scene. These assumptions are application specific and vary 

depending on how the apparatus is employed.

The derivations assume that all points are expressed in the camera’s coordinate system. This 

requires a calibration o f the screen position and orientation with respect to the camera, which is 

discussed in Section 3.4.2,

3.3.1 Determining the Scene Irradiance

Since the screen radiance at each pixel i  is assumed not to be the same in all directions, it is modeled

as an arbitrary function over a hemisphere Rp(9,4>) and is expressed as

Rp{0,(j)) =  Rn,mltnnaifiO,(l>), (3.1)

where R„„uitcn is the unattenuated radiance from the backlight, rq is the pixel attenutation factor, 

and f(0 . (p) is the directionaliiy function. The pixel attenuation factor ranges from 0 to 1 depending 

on the pixel value. The association between the pixel value and the attenutation factor w ill not be 

discussed here since only factors o f 0 or 1 w ill be considered. The directionality function f{0 , (p) is
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determined through a calibration procedure discussed in Section 3.4.3. From here on. it is assumed 

that J{0, <!>) is known.

By considering the inverse square law. the irradiance on a scene point from a single pi.xel i can 

be modeled as

4, =  ( 3 j )

where r, is the distance of the point to the pixel. I f  the scene point is located at S  = (S'.,:, S,,, S . ) '  

and the pi.xel is centred at Pc = {Pcx, Pcy, Pc:)^< then r  =  |5 -  Pc\- The angles Oj and (pi 

depend on the location o f the scene point and can be calculated from the screen orientation.

Some assumptions are necessary for the above formulation:

•  The radiance from the backlight is independent o f the pixel location

•  The directionality function f (0 , <p) is independent o f the pixel location

•  The location o f pixels with respect to the camera can be determined

•  Pixels are point light sources

The directionality function and the relationship o f pixel coordinates to the camera coordinate system 

are calibrated according to sections Section 3.4.3 and Section 3.4.2 respectively.

3.3.2 From Scene Radiance to Pixel Values

For the vision techniques implemented in this thesis, it is necessary to know the relationship between 

the scene radiance and the pixel values. The pixel values are read from the image files o f the digital 

camera. Inferring the associated radiance from the seene is not as simple as a direct linear mapping. 

As Section 2.3.2 outlines, cameras do not all produce a linear mapping between the sensor irradiance 

and the pixel value.

In this thesis, it is assumed that the sensor irradiance is proportional to the scene radiance. 

Furthermore, the factor relating these two values is assumed to be constant over the entire image. 

For lenses with strong vignetting effects this assumption should not be made.

3.4 Calibration

As mentioned earlier, the computer vision methods implemented require knowing the screen posi

tion, the directionality function J(0, <p) and the radiometric response of the camera. The calibration 

procedures for screen position and directionality require that the camera is first calibrated geomet

rically and radiometrically. Geometric calibration o f the camera is performed using the MATLAB 

toolbox [5|. Through this process, the intrinsic parameters of the eamera are obtained as described 

in Section 2.3.1. Using these parameters, the toolbox provides means to map pi.xels to rays in the 

scene and scene points to pixels in the image.
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3.4.1 Radiometric Camera Calibration

Radiometric camera calibration is performed to determine the mapping o f image irradiance to pixel 

values. For the camera that was used for the experiments, the raw files contain the digitized values of 

the sensor output. With the camera software or API, one can convert the raw file using a normal or 

linear setting for the response curve. This process is termed development similar to the development 

o f film negatives into prints. The linear development does not manipulate the data from the raw 

file other than converting from 12-bit to 8-bit representation. The normal development applies a 

response curve in the same way the camera does internally when storing images as a compressed 

JPEG file.

Using the HDR shop software 110), the response curves were recovered for both normal and lin

ear development modes. Note that the response carve which is recovered combines all the responses 

o f the camera and the development process, including the sensor response and the development re

sponse. Multiple curves were recovered for each mode and averaged. It was noted that the results 

from HDR shop varied depending on the set o f input images. Significantly more variation was noted 

for the normal development mode. It is possible that this development mode does not apply exactly 

the same response curve to all images. In that case recovering a single curve from sets of images 

would only be an approximation o f the camera’s response.

Response cun^ for normal development

—  Gamma 2.2 
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Figure 3.3: The average camera response functions for images developed using the “ normal”  and 
“ linear”  development methods. Note that the axes are swapped in comparison to those in Sec
tion 2.3.2

Figure 3.3 shows the averaged response functions for the two development modes. Note that the
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y-axis is only an image irradiance nwasiirc which is proportional to the image irradianee, but with 

an unknown factor. Each individual curve is scaled to pass through the same point at a pixel value 

o f 128 since an assumption needs to be made to relate their irradianee values to eaeh other.

From the figure, it can be noted that the response under normal development is not exactly 

a gamma o f 2.2 (or a gamma o f 1/2.2 with the axes swapped). Camera manufacturers select a 

response curve they believe is suitable, so tbis deviation is expected. The response for the linear 

development setting shows several interesting features. One is that for pixel values above 160, the 

response becomes non-linear. This is expected due to sensor saturation. A t over 210, all pixel values 

are mapped to the same irradianee value. This is a result o f how the software develops images in 

linear mode. Even with saturated pixels present, the peak intensity in the linearly developed image 

does not reaeh 255. So the calibration software has no data to work with in this region.

Instead o f having to correct for the camera response, all experiments are eonduetcd using the 

linear development mode from raw files. It is ensured that pixel values are not higher than 160 so 

that the measurements remain in the linear response region o f the sensor.

3.4.2 Screen Position Calibration

The goal of the screen position calibration is to obtain a 4 x 4 matrix that relates the pixel eoordinates 

to 3D eoordinates in the camera reference frame. It is assumed that the screen is fiat and the pixels 

are square. I f  the sereen was directly visible from the camera, the calibration could be aceomplished 

by displaying a ealibration pattern on the screen at a known position. But sinee the sereen is not 

visible, the calibration is a little more challenging.

Display
(showing a calibration 
pattern)

Mirror

Mirror calibration pattern
Camera

Figure 3.4: The screen position calibration setup.

To make the sereen visible from the camera, a mirror is used in the developed calibration setup 

as shown in Figure 3.4. One calibration pattern is attached to the surface o f the mirror and a second 

pattern is displayed on the screen. Images of the mirror are captured such that the screen ealibration
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pattern is visible as a reflection in the mirror. An example of such an image is provided in Figure 3.5.

Mirror Screen calibration pattern

Mirror calibration pattern

Figure 3.5: An example image used for the calibration of the screen position. Note that the mirror 
fills nearly the entire image except the left and bottom edges.

The following derivation assumes that points are represented by column vectors and are trans

formed from one reference frame to another by left multiplication. A transformation matrix from the 

reference frame A  to the reference frame B  is denoted by T ua such that two consecutive transfor

mations can be written as Tc d T b a  to transform from the reference frame A to the reference frame 

C.

With a calibrated camera, the position and orientation o f each o f the calibration patterns can 

be determined. They are both 4 x 4 transformation matrices which can transform points in the 

reference frame o f the calibration pattern to the camera coordinate system. The matrix Tqm  is the 

mirror transformation matrix, and T c s ' is the mirrored screen transformation matrix. Both are 

shown in Figure 3.6 with thick black arrows. A subscript S ' is used to denote the mirrored screen 

while a subscript S  refers to the real screen.

The derivation is broken down into two steps. The first step determines the matrix T c s  which 

relates the location of the real screen calibration pattern to the camera reference frame. The second 

step relates the screen pixel coordinates to the calibration pattern. With this, pixel coordinates can 

then be transformed to camera coordinates.

To obtain Tcs, it is necessary to determine the transformation matrix relating the mirrored screen
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(mirror)(screen) (mirrored
screen)

A/5

A/CI

cs..

camera)

Figure 3.6: A diagram o f the important transformation matrices between the four reference frames 
C ,M ,S  and S '. The two known transformations T c s ' and Tc m  are highlighted with thick black 
arrows. The desired unknown transformation T c s  is highlighted with a thick gray arrow.

to the mirror. The mirrored screen matrix T c s ' can be broken up as

Tcs' =  Tc m T m s ', (3.3)

where Tc m  is the aforementioned mirror matrix, and the Ta/s- matrix transforms from the mirrored 

screen reference frame to the mirror reference frame. By multiplying the previous equation by TqI i 

one can obtain the equation

T m s ’ = T c I ,T c s '- (3.4)

To get the real screen to mirror transformation matrix Ta/s, the 7a/S' transformation is mirrored. 

The mirror surface is the x  — y  plane in the local coordinate system of the mirror. So the mirroring 

can be accomplished by inverting the sign o f the z component. This is easiest done by multiplying 

by

M  =

1 0  0 0 
0 1 0 0
0 0 - 1 0  
0 0 0 1

Having defined M , the transformation o f the real screen reference frame to the mirror is

T m s  =  M T m s ' =  M T c L T c s '-

(3.5)

(3.6)

Now, the desired transformation matrix o f the real screen to the camera reference frame can be 

defined as

T cs  =  Tc m T m s  =  Tc m  M 'lc h T c s '- (3.7)

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This equation allows one to transform from the reference frame o f the screen calibration pattern to 

the reference frame of the camera. The reference frame of the ealibration pattern is however not 

equivalent to the eoordinates used for pixel positions. It is necessary to convert the pixel coordinates 

to physical dimensions by measuring the size o f the pixels. Also, as Figure 3.7 shows, the origin 

o f the calibration pattern coordinate system is not the same as that of the pixel coordinate system. 

So converting from pixel coordinates to calibration pattern coordinates involves both sealing and 

translation.

Figure 3.7: The coordinate systems o f the screen and the calibration pattern displayed on the screen. 

The translation between the two coordinate systems can be accomplished with the matrix

Tt  =

1 0  0 ~0x
0 1 0  — o,.
0 0 1 
0 0 0

(3.8)

where o,.- and Oy are the pixel coordinates o f the calibration pattern origin. The scaling from pixel 

coordinates to real world coordinates is achieved by multiplying with the scaling matrix

T s =

Sx

0
0
0

0 0 0 
0 0 

0 1 0 
0 0 1

■’ I/ (3.9)

where .s,„ is the ratio of the physical width o f the display w  to the number o f pixels in the :t: direction, 

and .Sy is the ratio o f the display height h to the number o f pixels in the i; direction. Using the two
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matrices 7V and 'J's. a transformation matrix from pixel coordinates to camera coordinates can be 

constructed as

Tc p ^ T c s Ts Tt . (3.10)

Now, a pixel with coordinates Pp can be transformed to the camera reference frame with

P c = T cp P p , (3.11)

where Pc is the pixel's location in the camera reference frame. Pc  and Pp are both 4x1 vectors in 

homogeneous coordinates. The z component o f the Pp  vector is zero since the pixels are located on 

the X -  1/  plane.

In the calibration setup a first surface mirror was used since it has advantages over the more 

commonly available hack silvcrccl mirrors. A back silvered mirror reflects light from both the front 

glass surface and from the back silvered surface. Light can even be reflected within the glass causing 

multiple reflections to occur. With a first surface mirror, only a single reflection o f the light takes 

place, resulting in a clearer mirror image.

The accuracy o f this calibration procedure is limited by the accuracy o f the intrinsic camera 

calibration. For example an error in the calculated focal length w ill affect the extrinsic calibration 

o f the two input matrices T cs ' and Tc m . A significant amount of work would be required to 

determine the resulting error in the T c p  matrix given the error o f the intrinsic parameters. However 

since the calibration accuracy affects the accuracy o f the applications directly, further investigation 

is recommended for future work.

This section has shown how the location o f the screen can be calibrated with respect to the 

camera using a mirror with an attached calibration pattern. The transformation matrices obtained in 

the calibration procedure are manipulated to obtain the matrix T cp , allowing the transformation of 

pixel coordinates to camera coordinates.

3.4.3 Screen Directionality Calibration

This calibration step aims to determine the dependency o f the display radiance on the viewing direc

tion. In Section 3.3.1 this dependency is modeled as the directionality function over a sphere f{<p, 0). 

A basic assumption made is that the directionality function is spatial invariant on the display.

The calibration procedure outlined here also assumes that the directionality function varies only 

with the angle from the screen normal 0 (the colatitude). The angle about the screen normal 0 (the 

azimuth) is assumed to not affect the radiance.

Under these assumptions the radiance can be measured by taking images o f the screen from 

different angles. To accomplish this, the camera is directed at the centre o f the screen, which is 

placed on a turntable. The axis o f the turntable is in the same plane as the screen, and passes 

through the centre of the screen. A set o f images is taken with the camera in full manual mode, to 

ensure that each o f the images is exposed equally. The screen is rotated such that one image is taken
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at each 10° increment from (!> =  -8 0 ° to ci =  80°. An average is calculated from the measurements 

on the left and right sides.

The measured irradiance is then scaled such that the peak measurement becomes I. This is pos

sible since only a relative measurement is required. Linear interpolation is used to determine values 

o f f{<i>,0) where it is not directly sampled. Figure 3.8 shows a plot o f the calibrated directionality 

function.

Right
Average of left and right

0.8

0.6

0 .4

0.2

-20-80 -60 -40
Angie ,j, [degrees]

Figure 3.8; The directionality function f{<l>,0) with respect to <j>. The function is assumed to be 
constant over 0.

3.5 Capturing Images

One o f the main challenges in capturing images lit by an LCD screen is that the amount o f light 

emitted by the screen is low in comparison to most other light sources. Camera sensors are limited 

in their sensitivity, and sensor noise becomes considerable in comparison to the magnitude o f the 

measured irradiances.

Through experimentation, the following items were determined to have the most significant 

effect on increasing the measurement accuracy:

•  Downsampling the image reduces the amount of noise while loosing spatial detail. Since 

sensor noise is typically pixel-independent, averaging multiple pixels is very effective for 

reducing noise. Naturally this comes at the cost o f losing image detail, so an appropriate
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balance needs to be determined.

•  Kcducing ambient light by enclosing the apparatus with cloth or cardboard minimizes the 

amount o f light entering the camera. The camera can be set to longer exposure times without 

over-exposing the image.

•  Increasing the exposure time reduces image noise due to an increased signal strength on the 

sensor. The drawback is the increased total capture lime and the necessity to keep the captured 

object still during the capture process.

•  A large aperture also increases the signal strength on the sensor by letting more light on the 

sensor. The downside is a reduced depth of field.

The specific parameter values depend primarily on the brightness o f the display and the sensitivity 

o f the camera. For the camera and display used in the experiments, it was necessary to enclose the 

setup. Images were exposed at the maximum exposure time o f the camera which is 30 seconds. 

Acceptable noise levels could also be achieved with exposure times around 10 seconds but since 

minimizing the capture time was not considered crucial, the maximum exposure time was found 

most appropriate. The aperture was opened to its maximum o f f/3.5 at 18mm focal length and 

f/5.6 for a focal length of 55mm. A ll images were downsampled by a factor ranging from 5 to 10 

depending on the desired resolution for analysis. These parameters result in nearly unnoticeable 

image noise in the downsampled images. Depending on the application, more image noise may be 

tolerable, so a wider range o f parameter values becomes acceptable.

3.6 Synthetic Image Generation

To allow controlled analysis o f vision methods without the errors associated with real experiments, 

a synthetic image generation framework was implemented. It generates images lit by a simulated 

controlled lighting environment according to the model in Section 3.3. This includes the calibrated 

directionality function, inverse square law, an ideal pinhole camera corresponding to the calibrated 

real camera as well as the screen position and orientation from the calibrated setup.

The most significant factors that are controlled through this framework are;

•  The surface reflection can be adjusted to an arbitrary BRDF.

•  The camera model is an ideal pinhole model, causing the entire scene to be in focus,

•  There is no effect o f sensor noise on the generated images.

•  The light sources are finite point sources.

•  The directionality function of the sources correlates exactly to the calibrated model.

•  The screen position is as calibrated from a real scene.
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3.7 Summary

An apparatus for controlled illumination together with proeedures necessary for its calibration has 

been presented. This setup can be used as a tool in the analysis and development o f computer 

vision teehniques as the following chapters dernonstrate. Using the mathematical model presented, 

the contribution of individual screen pixels on the scene irradianee can be calculated. Through 

radiometric camera calibration, the mapping o f pixel values to scene radiance values is established. 

The model requires that the screen pose is known and that the screen directionality function is 

available. These two requirements are met through the calibration procedures presented.

The main challenge identified is the low light radiance from the LCD screen. Due to the limited 

sensitivity o f cameras, it is necessary to take measures ensuring the accuracy o f the scene radiance 

measurements. Primarily, reducing the ambient lighting through enclosing the apparatus is found to 

be beneficial. Furthermore, downsampling o f the captured images, use o f long exposure times, and 

a wide camera aperture were determined to be effective in reducing the image noise and therefore 

increasing the radiance measurement aeeuracy.

With the synthetic image generation framework implemented, a simulation o f the controlled 

lighting apparatus ean be used to generate images without the image noise and other factors associ

ated with capturing real images. This allows the analysis o f algorithms in a controlled environment 

and provides a method of determining their performance under ideal conditions.
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Chapter 4

Shape Recovery

To show how the controlled illumination setup can be used for shape recovery, and to test its applica

bility for this purpose, this chapter discusses the implementation of two methods. This entire chapter 

except for Section 4.6 focuses on the first method which is a two-step approach using photometric 

stereo to recover surface normals and a separate step to determine the depth from the recovered nor

mals. The second shape recovery method operates on the same input images as the first. It recovers 

the depth directly in a single step and is hence termed the direct depth recovery method.

As mentioned in the background chapter, the original photometric stereo method is relatively old 

and well established. Its simplicity in comparison to the newer modified methods is the key reason 

for why it was implemented. It allows a clearer analysis o f the strengths and weaknesses of the 

controlled illumination setup. The trade-off is a limited applicability to the surface types to which it 

can be applied.

Photometric stereo assumes that the light source illuminating each image is an infinitely distant 

point light source. With common raster displays, it is not possible to achieve exactly the same effect 

as a distant point source. So instead, a close approximation is used. Point sourees are simulated by 

displaying small white squares on the screen. A single pixel most closely approximates a finite point 

source, however it is not bright enough to allow accurate measurements o f its effects on the image. 

For this reason, a group of pixels need to be used to act as a single light source. Increasing the size 

o f the square acting as light source increases the accuracy o f the measured image irradianee contri

bution. but it also further deviates from the assumption that the light source is a distant point source. 

A square size o f 50x50 pixels was selected as it was the minimum size that provided sufficient light.

The implementation uses a total o f 6 squares. The number o f sources and their positions were 

chosen with the following factors in mind:

•  For the recovery of the surface normal and albedo at a point, at least three light sources need to 

contribute to the irradianee at that point. Certain areas o f objects can not be lit by every light 

source due to self-shadowing. Hence, more than three sources arc required for most objects.

•  To recover the local surface normal at points lit by only three sources, the light vectors must
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be non-coplanar as nieiilioncd in Section 2.5.1. For sources on the screen this means that il 

any three sources are collinear. they alone are not sufficient to recover a surface normal.

Increasing the angular separation between sources increases the numerical stability o f the 

method i f  the angle is below 90°.

Decreasing the number of sources decreases the total capture time.

Images displayed on screen

Processed captured Images

Figure 4.1: An example o f the images displayed on the screen with their associated processed images 
captured by the camera. The size o f the light sources is exaggerated for visibility. The processed 
images are generated by subtracting an image lit by only ambient and a “ black”  screen from tbe 
image lit by a ligbt source.

Figure 4 .1 shows an example set of images captured under associated lighting conditions. The 

processed images serve as the input for the photometric stereo method. One can note that the first 

two images are darker than the others. This is an effect o f both the inverse square law and the 

directionality o f the screen. The light sources from the top edge o f the screen are more distant from 

the object than the bottom ones, and the angle from the screen normal is greater. Both factors reduce 

the irradianee on the surface.

Using square areas as light sources on a screen that is near the captured object, rather than using 

distant point sources introduces the following problems:

1. The inverse square law needs to be considered.

2. The light direction is not the same at every point on the object.

3. At certain points on the object, the light sources can be partially occluded through self

occlusion.

The first two issues are handled as described in the following section. Considering the partial occlu

sion o f sources would add significant complexity to the shape recovery method. It is not explicitly 

considered in the developed method and should therefore be noted as a source o f error in the results.
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The shape recovery procedure requires calibration of the lighting apparatus prior to analysis. 

After calibration o f the setup, the following steps arc necessary;

1. Image capture

2. Region of interest (ROl) selection

3. Parameter selection

4. Image processing

5. Shape recovery

Steps 3, 4 and 5 are typically repeated to optimize the recovery results. The image processing step 

includes the downsampling o f the captured images and subtraction o f the image captured lit by the 

“ black”  screen.

The next sections discuss the first implemented photometric stereo method and the technique 

used to recover depth from surface orientation. Section 4.3 describes how the results can be im

proved through an iterative approach. An experimental analysis o f the method on synthetic images 

is provided in Section 4.4. Analysis o f the performance on real images is presented in Section 4.5. 

Finally, the direct depth recovery method is discussed in Section 4.6.

4.1 Photometric Stereo

Photometric stereo requires the surface irradianee to be known for each light source. However, with 

the inverse square law and directionality effects, the irradianee is dependent on the position of the 

surface. So the original photometric stereo formulation can not be applied unless some assumptions 

are made. Recall equation 3.2

where I s  is the scene irradianee contribution of a single pixel at a distance r, from the scene point. 

Substituting equation 3.1 (or Rp{0i,4>i) gives

4*ù
I s (4.1)

where R,,mittcn is the unattenuatcd radiance from the backlight, n,- is the pixel attenuation factor, 

and f{0,(j>) is the directionality function. The directionality function f{0i,4>i) is dependent on the 

direction from the pixel to the scene point.

To recover the surface normal, recall equation 2.11

Nx 
Nv 
N ,

■ /?! ■ ^ l.r L i ,  '

.  / f "  .
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and its matrix formulation from equation 2.12

n  =  LtV.

Here the R  values are the surface radiance values inferred from the images, L  are the light source 

vectors, and N  is the surface normal to be recovered. The magnitude o f each L vector is the scene 

irradianee from the associated light source. This irradianee is the sum o f all the pixel irradianee 

contributions from the square light source. To group them together as one light source, L  is directed 

at the centre o f the square as an approximation o f the combined effect o f all pixels.

The magnitude o f L could be calculated as the sum of all individual I s  contributions o f each 

pixel in the square for high accuracy. But since the variation o f their values is small due to their 

proximity, only the contribution o f the centre pixel is considered. Here it should be noted that only 

the relative irradianee values are o f interest. So all constants such as R,nmitcn and oj can be safely 

disregarded. Due to the assumption that all pixels in the square area contribute equal irradianee and 

the fact that all light sources contain the same number o f pixels, the relative irradianee measure can 

be written as

| Z \ | = =

’ i
where k  indexes the light sources ranging from 1 to 6. and ; is the index o f the centre pixel for the 

associated light source. For a scene point S  and a light source centre location Pfc, each light vector 

Lfc can be calculated with

And since is the distance from the scene point to the light source,

Lk = f(Oi, f/>i) (4.4)

Now that Lfc has been expressed, one can see how the light vector depends on the position o f the 

scene point S. The goal o f shape recovery is to determine the location o f all visible scene points, so 

S  is unknown.

A simple method o f finding the surface normal is by making an initial estimate o f the posi

tion o f S. This approach is chosen due to its simplicity in comparison to the alternatives. The 

drawback is that the accuracy of the normals depends on the accuracy o f the position estimate. 

A ll points are initially assumed to lie on a plane perpendicular to the camera axis at a distance 

2 = DEPTH.ESTIMATE from the camera origin. Then, for each point, the light source vectors are 

calculated using equation 4.4.

With the light source vectors known, the surface normals are determined by applying a least- 

squares approach to equation 2.12 at every pixel location. A normalized residual r  is obtained 

during this step which is calculated as

IL.'Y -  /f|

|/? l
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where N  is the calculated normal vector. The residual serves as a measure for how well the normal 

vector fits the light vectors and radiance values.

Shadows are handled by thresholding the surface radiance values and omitting light sources that 

cause a radiance below the selected threshold value. A parameter SHADOW .THRESHOLD sets 

the pixel value below which a radiance measurement is discarded. For each pixel, the number o f 

radiance measurements above the threshold is counted. If the number is above or equal to three, the 

photometric stereo algorithm is applied. Otherwise no normal can be recovered for the pixel in ques

tion. In the implementation, the shadow handling is accomplished by removing rows corresponding 

to radiance values below the threshold from the light source matrix and the surface radiance vector.

4.2 Depth from Surface Orientation

Two existing methods were implemented and did not provide satisfactory results, so a new method 

was developed. Horn’s method for recovering depth from gradients [24] was implemented but it 

only converged slowly and showed problems o f numerical instability for gradient maps with surface 

normals nearly perpendicular to the optical axis. Frankot &  Chellappa’s method [14] was also 

implemented. The main problem with this implementation was the lacking ability to handle depth 

discontinuities.

The new method considers the perspective projection o f most cameras rather than using ortho

graphic projection as assumed by tbe other methods implemented [24] [14]. It defines constraints 

relating the depth o f two adjacent pixels based on the direction o f their normals. One constraint

per adjacent pair o f pixels is defined and added to a large equation system. Then, adding a depth

constraint for each independent region allows finding a solution using sparse matrix methods.

4.2.1 Basic Method

The method is based on defining a large set o f constraints associating the depth at adjacent pixels. 

First, the constraint for a single adjacent pair o f pixels Pi and P j is derived. Figure 4.2 shows 

an exaggerated cross section o f a surface intersected by two rays r i  and 12 passing through these 

pixels. The rays are defined through the normalized values x „ i  and calculated from their pixel 

coordinates. The surface is intersected by the rays at points S\ = and S2 =  (22, 22). The

values of .T,.i and .x„2 relate the points (2, x) on the ray such that

.xi =  .T„i2i, and (4.6)

22 =  2 „ 2-:2. (4.7)

The unknown quantities to be determined are 21 and 22. The values o f .ci and .1.2 are also unknown. 

By assuming that slope (22- 2i ) / ( x 2 - 2 i)  ofthe line connecting S'l and S, is known, a relationship
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Image plane

Figure 4.2: Cross section o f a surface intersected by two rays ? i and passing through adjacent 
pixels P\ and P^. Note that the angle between the rays is exaggerated for better illustration. The 
true angle between the rays is small for common image resolutions.

between z, and zg can be established. The slope is

Z2 -  Zi
(4.8)

X2 -X X  n „.

where i‘i „ ;  and hax are the components o f the normal n „ to the line passing through S\ and 82- This 

normal is unknown, but it can be approximated by averaging the surface normals at the intersection 

points which are known. This assumes that the surface is smooth between the two intersection 

points. The error in this approximation decreases with decreasing angle between the two rays. The 

approximation used here is

» . »  (4.9)
|Al  + 7 1 2 1 ’

Using this approximation for 7"i„, equation 4.8 can be transformed to constrain zi and Z2 with the 

linear equation

(-71,12 -  7:„zZnt)zi +  (71,,, +  n„x.Xn2)~2 = 0. (4.10)

The coefficients of the z values can be written as c, j  =  - 7i „ ,  -  7i„  ,..);„j and (•*,/,. =  i i „ ,  +  /i„x.x-„fc, 

where i indexes the individual pixel pairs, j  indexes the first pixel, and k indexes the second pixel 

o f the pair. This allows each constraint to be written as

-  -  0 . (4.11)

This derivation examined two pixels adjacent in the .x-direction. Naturally, an equivalent relationship 

holds for the //-direction. For pixels adjacent in the //-direction, the z coefficients are calculated
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with Ci., =  -II,,: -  n„,,y„j and c/.t =  n,,; 4- n,„jy„k. The cocfricicnls can be zero under one 

circumstance. When n„ is perpendicular to a ray, then the corresponding coefficient is 0.

A large linear system o f equations can be constructed by listing the equations associated with 

all adjacent pixel pairs present in the image. For each equation, the ;  coefficients arc entered in a 

large sparse coefficient matrix II, such that the system can be expressed in matrix notation as the 

homogeneous system

I I f = 0 ,  (4.12)

where ;  is a column vector containing all depth values. For an in x n image, there are iii(n -  1) 

constraints in the ./.-direction (horizontal) and (m -  l ) / i  constraints in the y-direction (vertical). So 

I I  is o f size (///(// - 1 )  + (/// -  l) / i)  x mn, and the vector z is o f size m n  x I. This shows that even 

for relatively low resolutions such as 200 x 200, I I  is quite large at 79600 x 40000. It is also sparse, 

since every row contains at most two non-zero coeffieients.

The rank of the coefficient matrix I I  for an image with m n  pixels can be either mn -  1 or 

m n  assuming that all the coefficient values are non-zero. This property can be shown as follows. 

Assume the image pixels are represented by nodes, and the constraints form edges between pairs of 

nodes. Every edge corresponds to a row in I I  A tree that connects all nodes has m n  -  1 edges and 

corresponds to a set o f rows, termed tree rows here. A ll these rows are linearly independent, so the 

rank o f the matrix formed by all tree rows is m n — 1. Adding an edge between two nodes of tbe 

tree forms a cycle. Consider the case where the row of I I  corresponding to an added edge is linearly 

independent of the other rows corresponding to edges that are part of the cycle. Then the rank o f I I  

is increased to inn. So the rank o f I I  can only be m n  — 1 i f  every row that is not a tree row, is a 

linear combination o f tree rows.

I f  the rank is m n  -  1, there are an infinite number o f solutions. A ll solutions are related by a 

scalar factor A such that i f  5 is a solution, then so is Xz. This is a result o f the depth aiiihigiiity 

inherent in perspective projection where an object at a certain distance from the camera can appear 

the same as a smaller object at a closer location. I f  I I  is full rank (the rank is m n), the only solution 

is the trivial solution z = 0. In this case, an additional constraint is necessary to obtain a non-trivial 

solution. In the first case, where I I  is rank deficient, adding a constraint resolves the depth ambiguity 

problem. So in both cases, the addition o f a constraint is beneficial.

Two options for constraining the solution were considered. The first was to constrain |z| =  1 

and find a solution that minimizes Hz. This can be accomplished by performing an SVD on I I  such 

that I I  =  U D V '. The last column o f V then corresponds to the minimizing vector z. There was 

however difficulty in implementing this method due to the large size o f II. The second option, which 

was chosen for the implementation, is to specify one o f the z values to be non-zero. The non-trivial 

solution z is obtained as the least squares solution to

i l z  = ÿ, (4.13)
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where H is a modi lied coefficient matrix, and ÿ is a (m (n -  1) +  (m -  l)n  +  1) x 1 vector with all 

elements equal to zero, except the last element which is set to a desired depth value d. The modified 

coefficient matrix I I  is defined as

I I
I I
Ci

(4.14)

where Cj is a row vector with all elements equal to zero except the clement at position i which is 

equal to one. The index i determines the location at which the depth is constrained to the specified 

value d.

The structure of the coefficient matrix I I  is best shown by an example using a small image size. 

For a 3 X 3 image, there are 9 pixels in the itnage and a total o f 12 constraints between adjacent 

pixels. After adding the depth constraint, I I  is a 13 x 9 matrix. Here, the first 6 rows o f I I  are used 

for the vertical constraints, and rows 7 to 12 are used for the horizontal constraints. The last row 

corresponds to the additional depth constraint. Under these conditions the full equation system is 

written as

’  C |, t Cl,2 0 ■ 0 ■
0 C’2,2 C2.3 0

0 c;),.| C'3,5 0 2l
0 C.|,5 c.|,0 0 ^2

0 C5,7 C5,8 0 Z3
0 Ce,8 Cc,9 Z4

C7,l 0 0 C7,.| 0 Z5 =
0 C8.2 0 0 Cs,5 0 ze
0 0 <-!).:( 0 0 Co.o 0 ■27

0 Clll.l 0 0 Cm,7 0 0 ■28
0 C ll ,5 0 0 C ll,8 0 29

0 C |2,G 0 0 C l2 ,9 0
1 0 0 d

where the z  values are numbered in column-precedent order.

I f  some o f the coefficients c* j  are zero, a unique solution may not be obtainable for the associated 

pixels. Since the depth of these pixels can not be determined reliably in this case, it is best to 

simply omit the corresponding z elements from z, remove the associated columns from II, and 

remove all rows from both I I  and g that form constraints on the pixels involved. The implementation 

for this thesis only prints a warning message when a coefficient is determined to be zero. In all 

the experiments, the problem was never encountered so it was not necessary to handle this case. 

However, for critical applications it is recommended to handle zero coefficients as described to 

avoid problems in recovering the depth.

This section implicitly assumed that the entire visible depth field is smooth since the depth 

between all adjacent pixel pairs is assumed to change smoothly. The assumption is only acceptable 

for a small class o f depth fields. If depth field contains regions where the depth changes suddenly 

between two adjacent pixels, the discontinuity needs to be handled appropriately as the next section 

w ill discuss.
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4.2.2 Considering Depth Discontinuities

As mentioned in Section 2.6, it is possible that tiiere are discontinuities in the depth map where the 

normals on either side of the discontinuity do not provide any information about the relative depth 

over the edge.

The location o f these edges in the depth field (the occluding boundaries o f objects) can not be 

determined from the normal map alone without making some assumptions. For example, imagine a 

book placed flat on a desk viewed from the top. Assume all recovered surface normals o f the book 

and desk are parallel to the viewing direction. At the occluding boundaries o f the book, there is 

a depth discontinuity which can not be detected from the surface normal data alone. In addition, 

the normals provide no information on the distance between the book surface and the desk. The 

implementation for this thesis assumes that discontinuities in the depth are associated with rapid 

changes in the normal map. In the case o f the book, the depth recovery would not capture the depth 

discontinuity unless the surface normals change at the book edges. The depth difference between 

the book and the desk is not recoverable.

For the assumption used, an edge detection method can be applied to the normal map to find 

edges o f depth discontinuities. A threshold parameter COMPONENT_EDGE.THRES is introduced 

to adjust the sensitivity o f the edge detection method. At the locations where the difference in the 

normals o f two adjacent pixels is larger than the threshold, the associated constraint is removed 

from the l l z  = g system. By removing a constraint, the adjacent depth values are no longer directly 

constrained to eaeh other.

Region 1 Region 2

- 6 “ 9

Figure 4.3; An example of a 3 x I image divided into two regions by a depth discontinuity. Four 
constraints are removed due to large differences in the normals of adjacent pixels.
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As shown in Figure 4.3 it is possible that a region in the image is completely isolated from the 

rest o f the image, so its depth values become independent of the other image regions. For an image 

with k  regions, the minimum rank o f I I  then becomes nw  -  k. The depth ambiguity problem applies 

independently to each region, requiring the addition o f a constraint on each o f the regions for a non

trivial solution to be obtained. This is performed in a similar fashion to the single depth eonstraint 

in the previous section. The coeffieient matri,\ I I  is defined as

II

II
c , . i

^1.2

Ci.„

(4.15)

where e i j  is a row vector with all elements equal to zero except the element at position i which is 

equal to one. The index i identifies the pixel within a region at which the depth is constrained, and 

j  = I .. .k  indexes the image regions. The y  vector is similarly modified to [0,d j ,^ 2, da,. . . d^]^, 

where lij is the depth value to which the point in region j  is constrained. In the implementation, all 

depth values dj are set to the DEPTH.EST1MATE constant. The constrained pixels for each region 

arc the first pixel o f the region when scanned in a left-to-right top-down manner. An alternative 

would be to manually specify which point is constrained to manually specified depth values.

With the constraints described, it is possible to determine a unique solution using a least squares 

approach. It is important to keep in mind that the recovered depths o f each image region are depen

dent on the depth assumptions made.

4.3 Iterative Estimation

Since the initial depth estimation can deviate far from the actual geometry o f the object, the shape 

recovery results can be improved by repeating the photometric stereo and depth from surface ori

entation steps. The depth determined in the first step is used as depth estimate for the second step, in

creasing the accuracy of the recovered normals. In the implementation the constant N-PS.1TERAT10NS 

is used to lim it the number o f iterations. As the experiments show, this process converges quickly to 

an accurate estimation of the depth.

4.4 Performance on Synthetic Images

To analyse the performance o f the method, the intermediate results o f the normal map are examined 

as well as the final depth map. For the synthetic images, a 3D model is available from which surface 

normals and depth can be accurately extracted at each pixel. The images are generated from these 

models as mentioned in Section 3.6.
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Tabic 4.1 : Results of the synthetic sphere shape recovery experiment

Iteration Avg. normal error 
(degrees)

Avg. abs. depth error 
(mm)

1 0.4771 0.028
2 0.0065 0.012
3 0.0027 0.011
4 0.0026 0.011

The evaluation is performed by analysing the accuracy o f the surface normals and depth using 

two error measures:

1. The average normal e rror is calculated as the average angle between the recovered and the 

true normals. It is measured in degrees.

2. The average absolute depth error, measured in millimeters, is calculated by averaging the 

absolute difference between the recovered and true depth at each pixel.

The error measures are calculated over the image region containing the centre pixel. This region is 

obtained from the segmentation method used for handling depth discontinuities. A ll the experimen

tal parameters are included in Appendix B.

4.4.1 Sphere

A sphere with a radius o f 7mm, centred at the point (0,0,300)^ is rendered to an image o f size 

151 X 151. The depth estimate corresponds to the true depth at the centre pixel (293mm). The 

estimated depth map is scaled such that the centre depth equals the depth estimate, and therefore the 

true depth at that location.

The iterative estimation is applied for this experiment. As the results in Table 4.1 show, the ac

curacy improves with each iteration. After four iterations, further iterations show little improvement 

o f the results. A depth profile comparing the true and estimated depths is provided in Figure 4.4.

4.4.2 Stanford Bunny

The Stanford bunny model is scaled to a size o f approximately 180mm from its nose to its tail. The 

image size for the experiment was 168 x 200. The DEPTH.ESTIMATE value is set to 283mm 

corresponding to the depth o f the centre point.

Similar to the synthetic sphere experiment, the accuracy o f the results is improved by repeating 

the photometric stereo step after performing the initial shape recovery. Table 4.2 summarizes the 

results. A depth profile is provided in Figure 4.5.
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Figure 4.4: Comparison o f the true and calculated profiles from the synthetic sphere experiment.

Table 4.2: Results o f the synthetic Stanford bunny shape recovery experiment

Iteration Avg. normal error Avg. abs. depth error
(degrees) (mm)

1 2.39 1.7
2 2.29 4.0
3 0.42 0.9
4 0.42 0.9
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Figure 4.5: Comparison o f the true and calculated profiles from the synthetic Stanford bunny model 
after 7 iterations.

4.5 Performance on Real Images

The same error measures as applied in the performance evaluation on synthetic images are applied 

here. The parameters used for each experiment are listed in Appendix B.

4.5.1 Sphere

The sphere used is a 22mm diameter ball taken from a computer mouse. Its surface appears nearly 

Lambertian, but no tests were conducted to confirm this. For this object, the ground truth model 

was positioned manually such that it matched the position o f the sphere in the images captured. The 

image size is 51 x G4. The results o f the photometric stereo step are displayed in Figure 4.6 and 

Figure 4.7. It can be seen that the normals in the center o f the sphere do not point directly to the 

camera. The albedo is also not perfectly constant over the entire sphere surface. The main factors 

that are expected to contribute to these errors are the surface BRDF which might be non-Lambertian, 

the non-ideal light sources, and inaccuracies in the calibration of the screen directionality function 

and the screen position. The comparison o f the results to the ground truth is provided in Figure 4.8. 

The recovered depth is shown in Figure 4.9, and Figure 4.10 shows a comparison o f the recovered 

and true profiles.

After the first iteration, the average normal error is 17° and the average depth error is 1.8mm. 

These errors do not reduce in subsequent iterations.

During the analysis o f the images, it was noted that the quality of results depend on the shadow
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threshold. The shadow threshold should not affect the results in an ideal case where for example 

the BRDF is Lambertian, and all calibrations are exact. In this case, the shadow threshold affects 

whether 3, 4, 5, or all 6 light sources are used to determine the surface location at some points. 

Since the normal would be accurately determined by 3 sources in an ideal case, the addition o f more 

sources should not affect the recovered normal. The two most likely causes for this effect are that 

the surface is not Lambertian or that the screen directionality calibration is inaccurate.

» » » # / ////✓✓✓. ... t • t t t //////%%/I • f « «/ /

III

Figure 4.6; The recovered surface normals o f the real sphere.

Normalized Albedo Residual Relit Image

0.5 1 0.1 0.2 0.2 0.4 0.6 0.8

Figure 4.7: The recovered albedo o f the real sphere, the residual values, and the relit sphere. The 
light used for relighting is a single distant point source located on the camera’s optical axis.

4.5,2 Stanford Bunny

A plaster model of the Stanford bunny model was printed using a 3D printer. With this real object 

it is possible to compare the recovered depth to an accurate ground truth. The model was placed 

at a distance o f 280mm from the camera. The ground truth model was positioned by minimizing
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Figure 4.8: The results o f the shape recovery o f the real sphere.

Figure 4.9: The depth map recovered for the real sphere experiment.
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Figure 4.10: Comparison o f the true and calculated profiles for the real sphere experiment.

the distance between a set o f reprojected reference points on the model and the associated points 

manually selected in the captured images. An image size o f 1G8 x 200 was used for the analysis. 

A ll other experimental parameters are included in Appendix B.

The results o f the photometric stereo step are displayed in Figure 4.6 and Figure 4.7. It can 

be noted that although the albedo o f the bunny model is constant, it is not recovered as such. The 

reasons for the errors in the results are expected to be the same as those for the real sphere experi

ment. The comparison o f the results to the ground truth is shown in Figure 4.13. The angular error 

histogram shows that considerable errors are already present in the recovery o f the surface normals. 

So the depth errors are likely just a propagation o f these errors into the final result. The depth from 

surface orientation step is not expected to contribute much to the depth error.

The recovered depth is shown in Figure 4.14. and Figure 4.15 shows a comparison of the re

covered and true profiles. After the first iteration, the average error in the normals is 21° and the 

average absolute depth error is 10mm. Further iterations do not improve the results. It can be noted 

though that the visual appearance o f the relit recovered bunny model is quite good. This shows that 

the results can be used in applications where high accuracy is not required and visual appearance is 

more important.
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Figure 4.1! : The recovered surface normals o f the real Stanford bunny.

Normalized Albedo Residual Relit image

0.5 1 0.1 0.2 0.3

ijSâ’
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Figure 4.12: The recovered albedo of the real Stanford bunny, the residual values, and the relit 
bunny. The light used for relighting is a single distant point source located on the camera’s optical 
axis.
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Figure 4.13: Tire results o f the shape recovery o f the real Stanford bunny.

Figure 4.14: The depth map recovered for the real Stanford bunny experiment.
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Figure 4.15: Comparison o f the true and calculated profiles for the real Stanford bunny experiment.

4.6 Direct Depth Recovery

In addition to shape recovery using traditional photometric stereo, a new method o f depth recovery 

was developed. It is shown here to work accurately on the set o f synthetic Stanford bunny images. 

Unlike the previously examined method, this method determines the depth, surface normals and 

albedo all in a single step rather than breaking the process down into two steps.

The method is based on adjusting the depth at individual pixels such that the residual o f the 

photometric stereo equation is minimized. This would not be possible with distant point sources 

and orthographic projection since under those assumptions a pixel’s shading does not depend on its 

depth (assuming the pixel is not shadowed). But because the illumination model used in this thesis 

employs finite point sources and a screen directionality factor, the depth at a pixel does influence the 

pixel’s shading.

Experiments were performed on synthetic and real images. The direct depth recovery only 

succeeded on synthetic images. It is likely that for accurate results to be obtained in real experiments, 

the setup would need to be calibrated with very high accuracy. For this, more accurate equipment 

might be necessary.

4.6.1 Theory

For the previous method, a depth estimate is used to be able to calculate light vectors for the photo

metric stereo equation (equation 2. I I  ). In theory, given a setup where all assumptions are met, the
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residual o f this equation would be zero when the depth estimate is correct. I f  the depth estimate is 

incorrect, the light vectors become inaccurate and it is possible that there is no solution that meets 

all the constraints. In that case the residual is non-zero.

So the residual can be used as an indicator o f how well the estimated depth fits the image data. 

The depth estimate can be adjusted at each point individually such that the residual value is mini

mized. Recall equation 2.11

R i  ■ f^ l.T ■ N , .  '

= N y

R „  . f ' ï i x
N ,

and its matrix formulation from equation 2.12

/f =  L jV,

where R  contains the surface radiance values. L are the light vectors which arc grouped into the 

matrix L, and N  is the surface normal multiplied by the local surface albedo. The light source 

vectors Lk arc determined by equation 4.4

where f(Oi,(pi) is the directionality function, P/t is the light source center, and S  is the surface 

point. The depth estimate constrains the position o f S, so it can be clearly seen how the light vectors 

depend on this depth estimate. The residual r is determined as

;• =  \L N  -  P|, (4.16)

where N  is the normal vector determined through least solution equation 2.12. Since the residual r 

depends on the location o f the surface point 5, it can be written as r{S). Under ideal conditions the 

residual is zero when S  is accurate, so the location o f the point can be determined by minimizing 

r{S). Then for a single pixel the recovered surface point Sr can be written as

S, = argiiiin r{S).
S

(4.17)

By performing this minimization for every pixel location, a depth map o f the scene is recovered 

together with the surface normals and albedo as a byproduct.

In regions where traditional photometric stereo can not recover surface normals, this method can 

not recover depth. These regions include all areas that are lit by only 2 or fewer light sources, and 

areas where the surface albedo is zero.

4.6.2 Experiment

This experiment uses the same synthetic image data of the Stanford bunny as used in Section 4.4.2. 

A simplistic minimization approach was employed. The residual at each pixel was determined for
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200 different depth values in increments o f 2mm. Then, for each pixel the depth value associated 

with the smallest residual was recorded in the depth map.

As shown in Figure 4 .16, the depth accuracy is good. The average absolute depth error is 2.5mm. 

This error eould be further reduced by using a smaller increment for the depth.

Depth profile a t horizontal line 80

310

300

290
B
&  280

270 True profile 

Calculated profile
260

-40 -20 0-80 -60 20 40 60
X (m m )

Figure 4.16: The depth profile for the direct depth recovery experiment on the synthetie Stanford 
bunny images.

The main benefits of this approach over the traditional photometric stereo method is that no depth 

estimate is required. Depth discontinuities also do not pose as much o f an issue since no smoothness 

assumption needs to be made. The application of this approach to real images still requires future 

work. The recovered depth values are highly inaccurate with errors over 100mm. It is suspected that 

certain factors such as non-Lambertian BRDFs and inaccuracies in the calibration have a significant 

impact on location o f the minimum o f the residual. So, to obtain good results using direct depth 

recovery from real images, a more accurately calibrated setup would likely be required.

4.7 Summary

This chapter has demonstrated how the controlled illumination apparatus ean be used for shape 

recovery. Highly accurate results are achieved on synthetic images, showing the potential of the 

setup under ideal conditions. Good results were also obtained for real images with the first depth 

recovery method.

A novel method for calculating depth from surface orientation has been presented. To the best 

knowledge o f the author, it is the first method to use perspective projection for depth recovery. The 

high accuracy o f the method is demonstrated by the results o f the synthetic experiments.

The first depth recovery method which is based on photometric stereo, achieves good results on 

real images. The results do show noticeable errors in both the direction o f the surface normals and 

the recovered depth though. Since the depth recovery method is the same for both synthetic and 

real experiments, and the synthetic results show little depth error, it can be concluded that the depth
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error is mainly caused by the error in the normals. The diflcrences between the real and synthetic 

images listed in Section 3.6 show the potential sources o f error. Since the error in the normals is 

not random and pixel independent, image noise can be ruled out as the main source of error. More 

likely contributing factors are

• the potentially non-Lambcrtian surface reflection,

•  the effects caused by non-ideal light sources,

•  the inaccuracies in the screen directionality function, and

•  the error associated with screen position calibration.

It is non-trivial to determine which o f these factors are the primary sources o f error. But by ad

dressing each factor individually, the error in the normals is expected to be reduced. For example 

although the error associated with the screen position calibration would have a biasing effect on the 

normals as observed in the results, it is not necessarily the main contributing source o f error.

In addition to the shape recovery method based on photometric stereo, a new direct depth recov

ery method was presented. Rather than dividing the process into a normal recovery step followed by 

a depth recovery step, the depth is recovered directly by minimizing the residual o f the photomet

ric stereo equation. The method is too sensitive to the errors associated with real images for depth 

to be recovered within a reasonable error. However for synthetic images the accuracy is high, as 

demonstrated in the experiment.

The general results are promising as initial results from a new apparatus. Improvements to 

the apparatus and the applied methods would likely better the results considerably. To obtain a 

comparison to previous methods, Woodham’s work [46,47] would be best suited since this thesis is 

based on his early photometric stereo papers. However these papers do not provide an experimental 

analysis of the approach, so no direct comparison can be made. Only a few later methods [21,39,41] 

include a quantitative comparison o f experimental results on real scenes to a ground truth. Other 

methods [1,2, 23, 34, 37] do not provide this type o f comparison.

The methods that quantitatively evaluate results from real scenes provide an average angular 

error between the recovered and true surface normals. The ones discussed here achieve errors below 

5°, while the average angular errors o f the results presented in this chapter are 17° for the real sphere, 

and 21° for the Stanford bunny. Tagare and dePigueiredo’s method for non-Lambertian surfaces [41] 

is examined on Lambertian and non-Lambertian spheres. They also study how photometric stereo 

performs when attempting to recover the normals o f the non-Lamhertian sphere using a Lambertian 

surface assumption. For this case they report a rms error o f 19° and conclude that it is clearly 

inappropriate to use a Lambertian surface assumption on a non-Lambertian surface. When applying 

their non-Lambertian method the same images, the angular rms error is reduced to 2°. Hayakawa’s 

method [21] recovers normals under a light source with arbitrary motion. He evaluates the normals
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by measuring the angle between two planar surfaces on a milk carton. The recovered and true angles 

differ by less than 3°. Finally Solomon and Ikcuchi’s results [39] show accuracies o f 3° on a specular 

sphere. They use a bright bulb at over 2.6 meters distance from the scene, which generates more 

ideal lighting conditions than those achievable with a LCD display.

The lower angular errors can in part be explained by the more ideal lighting conditions and the 

ability o f some methods to eonsider non-Lambertian BRDFs. To effectively reduce the error in the 

results, it would be greatly beneficial to use a method that docs not assume Lambertian BRDFs. In 

addition, applying a method that employs extended light sources rather than distant point sourees 

would provide great benefits.
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Chapter 5

Evaluation of a Lighting Estimation 
Method

With a set o f images generated under known lighting conditions, one can evaluate the performance 

o f a lighting estimation method by comparing the recovered and true lighting conditions. Using a 

raster display for this purpose has an advantage over other real setups. The accuracy o f the evaluation 

depends on the accuracy with which one can generate lighting conditions. For example, the accuracy 

with which a point light source can be positioned limits the accuracy with which a point source 

estimator can be evaluated. Assuming that the position o f the screen is accurately calibrated with 

respect to the camera, all pixels are accurately aligned on a grid allowing fine control o f light source 

positions. The screen also allows the display o f complex distributions which becomes useful for the 

evaluation of distribution recovery methods. One limitation o f a raster display in comparison to a 

light dome is that one can not control the entire hemisphere around the scene. This chapter shows 

that despite this limitation, a very useful evaluation can be performed.

As pointed out in Section 2.7, lighting estimation methods differ in the types o f lighting condi

tions they recover. There arc methods that recover single distant point sources, some that estimate 

multiple distant point sources, and others that recover entire illumination distributions. Due to the 

variety in recovered illumination types, it becomes necessary to develop multiple evaluation mea

sures.

An implementation of the lighting estimation method proposed by Singh &  Ahuja [38J is evalu

ated. Since the technique recovers an illumination distribution, it can also be used for the recovery 

o f single distant point sources. The evaluation is performed using a set of six different lighting 

conditions, each with a single point source. Three evaluation measures arc used in each o f the 

experiments. Two of them use only the direction o f the estimated point source, while the other 

evaluates the recovered distribution. The different experiments examine how modifications to the 

method and changes to the parameters affect the results. The evaluation effectively demonstrates 

how the setup can be employed to obtain performance measures of a lighting estimation technique.
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5.1 Implementation

5.1.1 General Information

The implementation performs Singh &  Aluija’s method on images o f a sphere captured with the con

trolled lighting setup. Although the method can be applied to arbitrary known objects, the mapping 

o f radiance values to the Gaussian sphere is easier to perform with this setup.

The method requires a square map /( / ,  j )  o f the radiance as input. It produces an equally sized 

square map L { i,j)  o f the estimated light distribution. To determine the input radiance map, the im

age captured by the camera needs to be remapped. This is accomplished by manually specifying the 

centre and diameter o f the sphere in the image and assuming orthographic projection. To reduce the 

noise level in the resulting radiance map, the original image is first downsampled before remapping. 

The resolution o f the input map determines the output resolution, so maximising this parameter is 

desirable. However the computational time for the approach is considerable, and increases dramati

cally with increasing resolutions. While considering these factors, the experiments were performed 

with resolutions o f ,12 x 32 and G l x fid. An example o f the original input image and remapped 

intensities is shown in Figure 5.1.

O rig ina l Im a g e Remapped Radiance Data

Figure 5.1: An example o f the remapping o f an image to the diseretised Gaussian sphere map. The 
right side o f the remapped data is black since there is not data available for the back-facing side o f 
the sphere.

In order to have complete control over the light field, two images are taken and subtracted from 

each other. For the first image the screen is set to black. For the second, the desired lighting condition 

is displayed. The first image is subtracted from the second, resulting in an image that shows only the 

contributions o f the screen illumination without any ambient lighting. In the experiments, the images 

displayed on the screen are the same square white boxes used for the shape recovery experiments. 

The squares are 50 x 50 pixels in size.

An initial guess for the output distribution is required. The experiments use L { i,j)  = 0 for 

all i , j  in all experiments. The intensity estimation is not evaluated, so the maximum amplitude
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parameter A  is set to I and the input image is scaled in intensity such that the maximum amplitude 

lim it does not affect the results. The number of iterations was selected by observing the changes 

in the recovered distribution at regular intervals during the iteration process, and ensuring that the 

change due to successive iterations would be negligible. For resolutions o f 32 x 32 the iteration limit 

was set to 1000 and for resolutions o f 01 x 01, 3000 iterations were performed.

5.1.2 Handling Unknown Radiance Information

The original method assumes that the rcllectcd radiance is known over the entire Gaussian sphere 

o f surface orientations. However in the experiments not all that information is available. Assuming 

that the the images are taken using orthographic projection, radiance data is only available for half 

o f the sphere. This is visible in Figure 5.1, where half o f the remapped image is black.

A modification was necessary to handle this limitation on the input data. Since the original 

method uses the radiance value at each surface orientation as an individual constraint on the output, 

it is simple to omit the half o f these constraints corresponding to the unknown input data. It is 

however important to note that with this modification, there are a reduced number o f constraints on 

the output. This modification was used in all experiments.

5.1.3 Lighting Direction Constraint

Constraints can be added to the approach easily by applying additional projection operators in com

bination with the ones employed in the original method. For example, i f  the lighting distribution is 

known to be confined to a range of directions, then an additional constraint can be applied to ensure 

that lighting from all other directions is zero. Such a constraint is experimentally examined by con

fining the recovered distribution to the front facing side of the sphere. This should not be confused 

with the modification to handle unknown radiance information described in the previous section.

One experiment is performed without and another with this additional constraint. The expected 

effect o f the constraint is that the recovered distribution is more accurate due to the reduction of 

possible solutions.

5.2 Evaluation Measures

There are many possible ways to evaluate the performance o f a lighting estimation method. This 

is partially due to the variety o f representations used for lighting conditions. Here, three evaluation 

measures are described. They are applicable for the evaluation of single distant point source recovery 

and distribution recovery. Since the Singh & Ahuja method recovers a distribution rather than distant 

point sources, its output is processed in order for it to be evaluated as a single point source estimator. 

The direction o f the peak value in the recovered distribution is used as the direction to the point 

source.
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To obtain geometric measures o f the precision o f recovery, it is necessary to know the location 

o f the sphere. This is estimated from the size and projected location o f the sphere in the image. 

Since the pose o f the screen with respect to the camera is known, the pose of the screen with respect 

to the sphere can he determined. The sphere’s reference frame is assumed to have its origin at the 

sphere’s centre, with the e-axis pointing towards the camera. The //-axis is oriented such that it is on 

the camera’s y  -  z  plane. Since the remapping o f the radiance data to the Gaussian sphere assumes 

an orthogonal projection, there is a small error in the orientation o f the recovered distribution with 

respect to this reference frame. The error is minimized by placing the sphere near the image centre, 

and using a long focal length.

The experiments use the following evaluation measures to determine the accuracy o f the lighting 

estimation method:

• Projection of recovered distribution to the screen:

A visual evaluation o f the performance can he achieved by projecting the recovered lighting 

distribution onto the screen surface and comparing it to the true image displayed on the screen.

•  Angle between recovered and true light source direction:

The direction to the peak intensity of the recovered distribution and the direction to the centre 

o f the square light source are compared by measuring the angle between them.

•  Pixel position of light source:

The true pixel position o f the light source is compared to the intersection o f the estimated 

source direction with the screen.

5.3 Experiments

A ll analysis was performed on the same image set o f a sphere as used in shape recovery from real 

images. Figure 5.2 shows the sphere under the six different lighting conditions. Two factors that w ill 

influence the quality of the lighting estimation arc visible in the images. One is the partial occlusion 

o f the bottom part o f the sphere by the base. The second is image noise present in all images.

The implementation is first evaluated at a distribution resolution of 32 x 32 without a direc

tion constraint such that the unknown distribution spans the entire sphere of directions. A second 

evaluation is performed at the same resolution with the direction constraint confining the recovered 

distribution to the front facing side of the sphere. The final experiment performs the constrained 

estimation at a resolution o f 64 x 64.

5.3.1 Without Direction Constraint (32 x 32 resolution)

Table 5.1 summarizes the results o f this experiment. It is clear that the estimation of light source 

#4 fails since the angular error is 137°. The angular accuracy for the other light source directions 

ranges from 1° to 28°.
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Figure 5.2: The six downsampled images used for evaluation o f the Singh &  Ahuja lighting estima
tion method. A ll images were scaled in brightness such that their peak intensities match. Since the 
effective light source radiance is smaller for images I and 2, their relative noise level is higher.

Table 5.1: Comparison o f the recovered and true light source after 1000 iterations without the 
direction constraint at a distribution resolution o f 32 x 32.

SourceWI Souree#2 Source#3 Source#4 Source#5 Source#6
Angular error 1° 3° 28° 137° 8° 17°
Recovered X 84 1194 400 Failed 249 249
Recovered Y 105 102 1725 Failed 506 506
True X 50 1100 50 Failed 500 800
True V 50 50 900 Failed 500 500

A projection o f the recovered distribution is shown in the second column o f Figure 5.3. Due to 

the rough discretisation o f the distribution, large quadrilateral regions appear in the projection. The 

recovered point source location corresponds to the centre o f the brightest region.

5.3.2 With Direction Constraint (32 x  32 resolution)

The results in Table 5.2 as well as the projected distributions in the third column o f Figure 5.3 

show that the direction constraint improves the overall performance of the method. Due to the 

discretisation, the estimated directions o f light sources I, 2, 5. and 6 remain exactly the same. But 

the estimates o f light sources 3 and 4 are improved such that their angular errors are 12° and 13° 

respectively.
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True distribution
Without 

direction constraint 
(32 X 32 resolution)

With
direction constraint 
(32 X 32 resolution)

With
direction constraint 
(64 X 64 resolution)

Figure 5.3: Comparison of the true lighting distributions to the recovered distributions projected on 
the screen. The screen boundary is highlighted as a rectangle in each o f the images. Due to the 
discretisation of the recovered distribution, its projection on the screen appears as a grid o f large 
quadrilaterals. The intensity of each quadrilateral represents the intensity o f the recovered source 
located at its center.
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Tabic 5.2: Comparison of the recovered and true light source after 1000 iterations w ith the direction 
constraint at a distribution resolution o f 32 x 32.

Source# 1 Source#! Source#3 Source#4 Source#5 Source#6
Angular error 1° 3° 12° 13° 8° 17°
Recovered X 84 1194 -364 1458 249 249
Recovered Y 105 101 1050 1121 506 506
True X 50 1100 50 1100 500 800
True V 50 50 900 900 500 500

Table 5.3: Comparison of the recovered and true light source after 3000 iterations w ith the direction 
constraint at a distribution resolution o f Cd x 64.

Source# 1 Source#! Source#3 Souree#4 Source#5 Source#6
Angular error 1° 3° 40° 43° 32° 19°
Recovered X 72 1205 1297 240 209 249
Recovered V 78 74 1021 556 1473 149
True X 50 1100 50 1100 500 800
True Y 50 50 900 900 500 500

5.3.3 With Direction Constraint (64 x  64 resolution)

For the cases examined, increasing the resolution to 64 x 64 does not improve any o f the results 

significantly. In fact, the angular error is the same i f  not larger than with the previous experiment as 

can he seen in Table 5.3. The projected distribution results in the forth column o f Figure 5.3 also 

show that increasing the resolution does not necessarily increase the accuracy o f the estimates.

5.4 Summary

In this chapter a method was developed for evaluating the accuracy o f lighting estimation methods. 

Three evaluation measures were developed that serve to examine the performance o f such methods. 

Singh &  Ahuja’s technique was implemented, and three experiments were conducted to analyse 

its performance. The experimental results show that the method can he used even when only half 

o f the radiance data from the Gaussian sphere o f surface orientations is known. In addition, by 

constraining the distribution to the front facing side o f the sphere, the results were improved such 

that the direction o f single distant point sources were recovered within 1° to 17° angular error. It 

was found that increasing the resolution from 32 x 32 to 64 x 64 did not improve the point source 

recovery results and only slightly improved the distribution recovery.

This chapter demonstrates how the controlled lighting setup could he used for the experimental 

analysis o f many methods. Through the use o f the evaluation measures presented, lighting estimation 

techniques can he effectively compared to each other.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

6.1.1 Controlled Illumination

A framework for using raster display devices as controlled light sources has been proposed. An 

apparatus using an LCD screen was set up and calibrated. Calibration methods were proposed 

for the screen orientation and screen directionality function. They are not only applicable to the 

implemented setup, but also for other raster display devices. It was noted that the directionality of 

LCD screens is considerable and needs to be calibrated appropriately. A significant effort was put 

into ensuring a high accuracy in all calibration procedures. This is necessary since any errors in the 

controlled illumination setup directly affect the accuracy of the applications.

The main challenge discovered was the limited light emission from the LCD screen. Together 

with the unavoidable sensor noise and limited sensitivity o f the camera, the low light levels from 

the screen made it necessary to enclose the apparatus with a black cloth to reduce the ambient 

light. Large aperture settings and long exposure times o f more than 10 seconds were necessary to 

achieve good results. So the brightness o f the screen and noise level o f the camera form the greatest 

limitations on the accuracy of the results. But through the improvements suggested in Section 6.2.1 

these challenges are addressed.

The applications to shape recovery and the evaluation o f lighting estimation methods show that 

the developed framework is a useful tool with potential future use in multiple areas. Much o f the 

potential is still untapped, so further investigation is greatly encouraged.

6.1.2 Shape Recovery

To demonstrate the applicability o f the controlled illumination apparatus for shape recovery, two 

shape recovery techniques were implemented. For the first method, a novel technique for determin

ing the surface depth from the surface normals under projective projection was developed.

The performance of the first shape recovery method was tested through experiments on synthetic 

and real scenes. In both cases the results were compared to ground truth data. For synthesized
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images of a 180mm size model o f the Stanford bunny, an average depth accuracy o f 0.9mm was 

achieved. For real images o f the model at the same scale, the average depth accuracy was 10mm. 

The effects o f screen directionality and the inverse square law necessitated use o f an initial depth 

estimate. For both o f the results listed here, an accurate depth estimate value is assumed. Analysis 

o f the recovered normals showed that the depth errors most likely originate from the photometric 

stereo step and not from the subsequent depth from surface orientation.

The direct depth recovery method was shown to work accurately on synthetic images. Though 

it has the advantage o f not depending on an initial depth estimate, in its current state it is not robust 

enough to work on real images. The expected reason for this is that the location of the residual 

minimum is greatly affected by the inaccuracies associated with a real setup.

The methods are limited to application on Lambertian surfaces, so errors in the results can be 

partially attributed to not perfectly Lambertian surface BRDFs. Another cause for errors in the 

reconstruction is the inaccuracy in the directionality function calibration. Since the screen radiance 

depends greatly on the viewing direction, an inaccurate calibration o f the directionality function 

is expected to have considerable effects on the shape recovery results. In addition, errors in the 

geometric calibration and the necessity of using non-point sources increase the difficulty in achieving 

highly accurate results. But by using methods that consider the specific features o f the apparatus, 

great improvements are expected to be seen.

As initial results from a novel apparatus, the results are very promising. While the current 

methods do have the noted limitations, there are numerous possible modifications and extensions 

that would greatly increase the range o f applications as Section 6.2.2 describes.

6.1.3 Evaluation of Lighting Estimation Methods

An experimental performance analysis o f Singh &  Ahuja’s method was conducted, demonstrating 

the use o f the controlled lighting setup for the experimental evaluation o f lighting estimations meth

ods. The setup makes it possible to evaluate these techniques using real scenes. Although evaluation 

using synthetic images allows more precise control o f the lighting, the developed apparatus has the 

benefit o f easily capturing complex scenes under controlled illumination.

With some modifications to Singh & Ahuja’s original method, the direction o f point sources was 

estimated within 1° to 17° angular error. Similar experiments can be performed on other methods, 

allowing comparison o f different techniques to each other.

6.2 Future Work

6.2.1 Controlled Illumination

To further analyse the use o f raster displays for controlled illumination it would be beneficial to 

perform experiments using raster displays other than the LCD monitor used in this thesis. Use of
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an LCD projector for example would provide benefits o f greater brightness and less dependence on 

the directionality. Especially i f  a Lambertian projection surface was employed, the directionality 

function could be completely eliminated from the model. In general, different display devices are 

expected to have different characteristics which may prove beneficial for specific applications.

Tlie use o f more sensitive cameras with less sensor noise could greatly improve the accuracy of 

any application using a controlled lighting setup. The results of the shape recovery method applied 

to synthetic images shows that there is great potential for accurate shape recovery when given high 

quality input images.

The screen directionality calibration could be improved to not rely on use o f a turntable. It would 

be possible to develop a method that determines the screen directionality function based on a set o f 

images o f the screen take from arbitrary angles.

Finally, the necessity of enclosing the proposed apparatus to reduce ambient light is a consid

erable limitation. Brighter displays and more sensitive cameras would make it possible to perform 

experiments without the enclosure.

6.2.2 Shape Recovery

The ability to recover the shape o f non-Lambertian surfaces is the most desirable enhancement to the 

current implementations. This could be aeeomplished by implementing the more recent photometric 

stereo methods outlined in Section 2.5.2. The use of raster displays for controlled illumination has 

the advantage over other controlled illumination methods in that a dense distribution o f sources can 

be accurately controlled. For non-Lambertian BRDFs this dense distribution is expected to assist in 

accurately recovering both the surface orientation and BRDF simultaneously.

Some o f the newer photometric stereo methods can recover scenes lit under general lighting 

conditions including extended light sources |2] [16]. Using large areas of the screen rather than 

small patches as light sourees would provide the benefit o f greater screen radiance. This would lead 

to shorter capture times and it could alleviate the necessity for an enclosure.

Using multiple screens around scene would increase the range o f light directions and is expected 

to improve the accuracy o f the shape recovery. Integrating the proposed shape recovery method with 

other methods such as stereo or shape from silhouette also has promising potential and deserves 

further examination.

The direct depth recovery method could be improved by trying to determine the main causes o f 

poor performance on real images. Taking measures to reduce the effect o f these factors, would allow 

recovery on real images which might come near to the high precision achieved on synthetic images.

6.2.3 Evaluation of Lighting Estimation Methods

More evaluation measures could be developed to assess the performance o f multiple point source 

estimation and the estimation o f extended sources. These measures could also include the evaluation
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of the intensity estimation which most methods perform. Finally, a performance comparison o f 

multiple methods would provide useful information for future research in field o f lighting estimation.
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Appendix A

Hardware Specifications

A .l Display
The LCD monitor used for all cxpcricinenls is a NEC M ultisync LCD 1760NX. The pertinent 
manufacturer’s specifications as iisted on the NEC Web site are:

Active Display Area:
- Horizontal: 13.3 inches / 33.79 cm
- Vertical: 10.6 inches / 27.04 cm 

(Dependent upon signal timing used)

Display Colors:
16,194,277
(Dependent upon display card used)

LCD Module:
- 17-inch (17.0'' viewable image size)
- active matrix
- thin film transistor (TFT)
- liquid crystal display (LCD)
- 0.264 m m  dot pitch
- 260 cd/m2 white luminance - typical
- 450:1 contrast ratio - typical
- 16ms response time - typical

Recommended Resolution:
1280 X  1024 @ 60 Hz

Tilt / Swivel:
TILT: 35 deg (30 deg up / 5 deg down)
SWIVEL: 140 deg (70 deg left/right)

VESA Hole Configuration Spec.
100 X  100mm

Viewing Angle:
Left/Right : 80 deg 
Up: 80 deg 
Down: 80 deg
(5:1 measurement consideration)
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A.2 Camera
The camera used for all experiments is the Canon EOS 300D (Digital Rebel). The pertinent speci
fications as listed at the Web site http://www.dpreview.eom/reviews/canoneos300d/ are:

Sensor
- 22.7 X 15.1 m m  CMOS sensor
- RGB Color Filter Array
- Built-in fixed low-pass filter
- 6.5 million total pixels (3152 x 2068)
- 6.3 million effective pixels (3072 x 2048)
- 3:2 aspect ratio

Sensitivity
- Auto (100, 200 or 400)
- ISO 100
- ISO 200
- ISO 400
- ISO 800
- ISO 1600

Shutter
- Focal-plane shutter
- 30 - 1/4000 sec (0.3 EV steps)
- Flash X-Sync: 1/200 sec
- Bulb

File formats
- RAW (2048 X  1360 JPEG embedded)
- JPEG (EXIF 2.2)

A 3  Lens
A Canon EF-S18-5Smm f/3.5-5.6 zoom lens was used. Its features include:

Focal Length & Maximum Aperture 
18-55mm 1:3.5-5.6

Lens Construction
11 elements in 9 groups

Diagonal Angle of View 
75 deg 20' - 27 deg 50'

Focus Adjustment
Inner focusing system with Micro USM

Closest Focusing Distance
0.28m / 0.92 ft. to infinity

Zoom System 
Rotating Type

Filter Size 
58mm

Max. Diameter x Length, Weight
2 . 7 "  X 2 . 6 ” , 6 . 07 OZ .  /  69mm x 66.2mm,  190g
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Appendix B

Experimental Parameters

DEPTH.ESTIMATE............................. Initial depth estimate
SHADOW.THRES...............................The shadow threshold
READJtAW.DIRECT......................... Set to I to read directly from raw file
LINEAR-CURVES...............................Set to I i f  the camera curve is linear
W ID TH .................................................Desired pixel width o f processed images
COMPONENT.EDGE.THRES...........Threshold for the individual edge images in x and y direction
EDGE.THRES......................................Threshold for the combined edge images
N.PS.ITERATIONS............................. Number o f PS+depth iterations to make
HAS-GROUND-TRUTH....................Set to I i f  ground truth is available
DEPTH.TOLERANCE........................Depth estimate tolerance
PROFILE-COMP-LINE......................Location for the depth profile comparison
ESTIMATE.SCREEN.POS................ Flag to estimate screen position (not implemented)
IS.SYNTHETIC.................................. Flag to set i f  images are synthetic
SYNTH-W IDTH.................................. Width o f synthetic images
SYNTH-HEIGHT.................................Height o f synthetic images
CX, CY. CZ, R ......................................Position and radius o f synthetic sphere
N-CP.SQ-SIZE....................................Screen calibration pattern square size
N J(-OFFSET........................................Offset o f calibration pattern in X
N.Y.OFFSET........................................Offset o f calibration pattern in Y
SCR.SIZEJvlM.................................... Screen size in millimeters
SCR.SIZEJ’ I X ....................................Screen size in pixels

B .l Synthetic Sphere 

B.1.1 synthjsphere/session.m
DEPTH_ESTIMATE = 293;
SHADOW_THRES = eps;
%LINEAR_CURVES = 1 ;
%WIDTH = 100;
COMPONEMT_EDGE_THRES = 0.1;
EDGE_THRES = 0.2;
N_PS_ITERATIONS = 4 ;
HAS_GROUND_TRUTH = 1 ;
DEPTH_TOLERANCE = l.Oe-

PR0FILE_C014P_LINE = 80;
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ES TIM A T E _S C R E E N _P O S  = 0 ;

% synthetic specific options 
IS_SYNTHETIC = 1 ;
SYNTH_WIDTH = 3072;
SYNTH_HEIGHT = 2048;
CX = 0;%200
CY = 0 ;
CZ = 300;
R = 7;

% Screen calibration pattern offset and size 
N_CP_SQ_SIZE = 100;
N_X_OFFSET = 50;
N_Y_OFFSET = 50;

% screen size 
SCR_SIZE_MM = [337 269];
SCR_SIZE_PIX = (1280 1024];

% Region of interest 
roi ;

B.1.2 synth^phere/roi.m
% ROI for centered sphere 
ROI_top = 1061 - 75;
ROI_bottom = 1061 + 75;
ROI_left = 1513 - 75;
ROI_right = 1513 + 75;

B.2 Synthetic Stanford Bunny 

B.2.1 synth.bunny/scssion.m
DEPTH_ESTIMATE = 283;
SHADOW_THRES = 4 ;
LINEAR_CURVES = 1 ;
WIDTH = 200;
COMPONENT_EDGE_THRES = 0.08;
EDGE_THRES = 0.2;
N_PS_ITERATIONS = 10;
DEPTH_TOLERANCE = le-5;
HAS_GROUND_TRUTH = 1 ;
IS_SYNTHETIC = 1;
PROFILE_COMP_LINE = 80;
ESTIMATE_SCREEN_POS = 0;

% Screen calibration pattern offset and size 
N_CP_SQ_SIZE = 100;
N_X_OFFSET = 50;
N_Y_OFFSET = 50;

% screen size
SCR_SIZE_MM = (337 269];
SCR_SIZE_PIX = (1280 1024];

% Region of interest
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r o i  ;

% Model position 
t_model;

B.2.2 synth-bunny/roi.m
ROI_top = 36
ROI_bottom = 14 57
ROI_left = 628
ROI_right = 2318

B.3 Real Sphere 

B.3.1 rea!-sphere/scssion.m
DEPTH_ESTIMATE = 370;
SHADOW_THRES = 3 ;
READ_RAW_DIRECT = 1 ;
WIDTH = 64 ;
COMPONENT_EDGE_THRES = 0.06;
EDGE_THRES = 0.2;
N_PS_ITERATIONS = 1 ;
DEPTH_TOLERANCE = le-5;
HAS_GROUND_TRUTH = 0 ;
IS_SYNTHETIC = 0;
PROFILE_COMP_LINE = 30;
ESTIMATE_SCREEN_POS = 0;

% Screen calibration pattern offset and size 
N_CP_SQ_SIZE = 100;
N_X_OFFSET = 50;
N_Y_OFFSET = 50;

% screen size
SCR_SIZE_MM = [337 269];
SCR_SIZE_PIX = [1280 1024];

% Region of interest 
roi;

B.3.2 real^phere/roi.m
ROI_top = 741
ROI_bottom = 1131
ROI_left = 1128
ROI_right = 1614

B.4 Real Stanford Bunny 

B.4.1 reaLbunny/session.m
DEPTH_ESTIMATE = 280;
SHADOW_THRES = 4 ;
READ_RAW_DIRECT = 1;
WIDTH = 200;
COMPONENT_EDGE_THRES = 0.06;
EDGE_THRES = 0.2;
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N_PS_ITERATIONS = 1;
DEPTH.TOLERANCE = le-5;
HAS_GROUND_TRUTH = 1;
IS.SYNTHETIC = 0;
PROFILE.COMP.LINE = 80;
ESTIMATE.SCREEN.POS = 0 ;

% Screen calibration pattern offset and size 
N.CP.SQ.SIZE = 100;
N.X.OFFSET = 50;
N.Y.OFFSET = 50;

% screen size
SCR.SIZE.MM = [337 269);
SCR.SIZE.PIX = [1280 1024];

% Region of interest 
roi;

% Model position 
t.model;

B.4.2 real-bunny/roi.m
ROI.top = 36
ROI.bottom = 1457
ROI.left = 628
ROI.right = 2318
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