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A B STR A C T

Let F  be a field and G  a group. The group ring, F G ,  admits a natural 

involution, *, which maps each group element to its inverse. Most of this thesis 

is devoted to the study of the set of symmetric elements, (FG )+ . This is the set 

of elements of F G  which are fixed by *.

We first consider the Lie structure of F G .  When the characteristic of F  is 

different from 2, we classify the groups G  such that (F G ) + is Lie nilpotent, or 

Lie n-Engel. In particular, if G  does not contain the quaternion group, Q$, we 

show that if (F G ) + is Lie nilpotent, then so is F G ,  and similarly, if (F G )+ is 

Lie n-Engel, then F G  is Lie m-Engel, for some m. We provide similar results for 

the characteristic 2 case, and for the set of skew elements, (F G ) ~  =  {a €  F G  : 

a* =  — a}, when G  contains no 2-elements.

Next, we examine the set of symmetric units of F G ,  where G  is a torsion 

group. Let us say that the symmetric units are nilpotent if they satisfy the 

group identity ( x i , . . .  ,x n) =  1, for some n >  2 , where (xi,X2) =  x~[l x ^ 1 X \i 2 , 

and ( x i , . . .  ,x n+i) =  ((x i,. - - ,x „ ),x n+i). We determine the conditions under
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which the set of symmetric units is nilpotent, provided char F  ^  2. In particular, 

if G does not contain Q$, we show that the symmetric units axe nilpotent if and 

only if the entire unit group is nilpotent.

Finally, we look at the integral group ring, Z A, of a finite abelian group A. 

It is known that if n < 5, and U is a torsion matrix with identity augmentation 

in GLn(ZA), then U is conjugate in GLn{QA) to a diagonal matrix with group 

elements on the diagonal. It is also known that this will not hold in general when 

n > 6 . We provide a condition on the Sylow subgroups of A which will cause 

this property to hold. In addition, we provide some generalizations to infinite 

abelian groups.
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Chapter 1

IN T R O D U C T IO N

Let G be a group, and R  a ring with identity. The group ring, RG, is an 

important object of study in modern algebra. Our purpose in this thesis is to 

contribute some theorems concerning the structure of the group ring and its unit 

group, with a particular emphasis placed upon the symmetric elements.

If F  is a field, then the symmetric elements of FG  are those which are fixed 

by the natural involution, *, which maps each group element to its inverse. Most 

of our results will explore the extent to which the symmetric elements determine 

the structure of FG.

Chapter 2 contains necessary background material. We discuss some basic 

properties of groups, and some conditions on rings, and present the classical the­

orems which classified the group rings that satisfy the ring-theoretic conditions. 

We also give some basic facts about involutions and polynomial identities.

In Chapter 3, we examine some Lie properties of FG. As with any ring, we 

can define the Lie product via [a, b] =  ab — ba. The group rings which are Lie 

nilpotent or Lie n-Engel were determined in the 1970’s. However, a more recent 

paper by Giambruno and Sehgal showed that if G contains no 2-elements, and 

char F  2, then the set of sym m etric  elements is Lie nilpotent if and only if FG  

is Lie nilpotent.

We extend this result to groups not containing an isomorphic copy of the

1
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quaternion group, Q&. If G  does contain Qg, then F G  will not be Lie nilpotent, 

but we show that the set of symmetric elements will be Lie nilpotent precisely 

when G  ~  Qg x E  x P ,  where E  is an elementary abelian 2-group, and P  is a 

finite p-group, if char F  — p > 2. We also present a similar result concerning 

group rings whose symmetric elements are Lie n-Engel. An element a  € F G  is 

said to be skew if a* =  —a. We provide the conditions under which the skew 

elements are Lie n-Engel, assuming that the group contains no 2-elements, even 

when the characteristic is 2.

Chapter 4 looks at the unit group of a group ring, with an emphasis on the 

symmetric units. Let F  be a field, and G  a torsion group. The group rings whose 

unit groups satisfy a group identity have been classified in a series of papers by 

Giambruno-Jespers-Valenti, Giambruno-Sehgal-Valenti, Passman, Liu, and Liu- 

Passman. Recently, Giambruno-Sehgal-Valenti have established the conditions 

under which the set of symmetric units will satisfy a group identity.

Our interest lies in a particular group identity: that is, nilpotency. The groups 

G  such that the unit group of F G  is nilpotent were classified in the 1970’s. Our 

contribution in this chapter is to classify the torsion groups G  such that the 

symmetric units of F G  are nilpotent. What we mean by this is that the sym­

metric units satisfy the group identity (x i , . . .  ,x„) =  1, for some n > 2. (Here, 

(xi,X2) =  2-i3'2> &nd (^ i>• • • >®n+i) — Indeed, it

turns out that if G  does not contain the quaternions, then the symmetric units 

are nilpotent if and only if the entire unit group is nilpotent. If G  does contain 

the quaternions, we discover that the symmetric units are nilpotent precisely 

when G  ~  Qg x E  x P ,  where E 2 = 1 and P  is a finite p-group. That is, precisely 

when the set of symmetric elements is Lie nilpotent.

Our final chapter explores an entirely different sort of problem. Here, we axe 

examining the integral group ring, ZA, where A is an abelian group. A famous 

conjecture due to Zassenhaus states that if G  is a  finite group, and u is a torsion 

unit in ZG of augmentation one, then u is conjugate in the rational group algebra

2
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to an element of G. This problem has been extended to matrices in the following 

manner. Let A be a  finite abelian group, and suppose U is a torsion matrix in 

GLn(ZA) with identity augmentation. Is U necessarily conjugate in GLn(QA) 

to a diagonal matrix with group elements on the diagonal?

A recent paper by Marciniak-Sehgal has given an affirmative answer for n < 5, 

and all A. However, Cliff-Weiss have given a counterexample for n =  6 , and have 

further shown that we will obtain a positive answer for all n precisely when A 

has at most one non-cyclic Sylow subgroup. We examine the groups with two 

or more non-cyclic Sylow subgroups, and establish a condition under which we 

can obtain an affirmative answer to the question. We then proceed to generalize 

these results to arbitrary abelian groups, using the notion of stable conjugacy.

3
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Chapter 2

PR E L IM IN A R IE S  AND ASSU M ED RESULTS

2.1. G r o u p  r i n g s

The purpose of this chapter is to state some basic definitions and gather 

together some useful properties of groups and rings which we will need later. As 

the results in this chapter will tend to be of the well-known variety, we will, for 

the most part, simply supply references.

Let G be a group and R  a ring with identity. The group ring, RG, is the set 

of all formal sums

g£G

with ctg 6  R  for all g 6  (?, and all but finitely many a g equal to zero. Then RG 

is a ring with addition defined via

]C  a »9 +  £  ^ 9  = +  ^ ) 9
g€G g£G g£G

and multiplication defined via

( E  »i9)(Em  = E < E
g£G  h€G  g€G h£ G

Expressing this last formula another way,

(E««»)(Em  = E E  OtgPhgh.
g€G  k £ G  g€G h£G

4
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We identify R  with the set of elements {r • 1<3 : r  6  i?} and G with the set 

{1r '9  : 9 € G}.

Our main interests in this thesis will be the group ring, FG , where F  is a  field, 

and the integral group ring, ZG. When F  is a field, FG  may also be referred to 

as a group algebra.

The augmentation map on RG  is the function e : RG  —>• R  given by

< '5 2 < * g 9 ) =
g€G  g£G

It is easily seen to be a ring homomorphism, and we write A r (G) for its kernel, 

the augmentation ideal. We have

L em m a 2 .1 .1 . The augmentation ideal A r{G) consists of the terms

r\(gi -  1) H + rk(gk -  1)

with each r,- 6  R, each gi 6  G, and k a positive integer.

Proof. Clearly, if g 6  G, then g — 1 € A r(G ), and since A r{G) is an ideal, 

it contains all of the sums of the form indicated. On the other hand, suppose 

a  =  Z)ff€C aa9 € A r (G). Then

as(9 ~  1) +  Y ,  q 9
g€G  g£G

=  X )  Q s ( 9  -  1)
g€G

since J 2 g € G a 9  =  e(a ) =  °* D

Let IV be a normal subgroup of G. Then the natural homomorphism G —> 

G fN  mapping g to gN  induces a homomorphism ê v '• RG  -> R(G /N). We let 

A r(G , N ) denote the kernel of e/v- Notice that A r(G) =  A r(G , G). In a similar 

manner to the last lemma, we have

5
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Lem m a 2 .1 .2 . The ideal A r (G ,N) consists of the elements of the form

rigi(ni  -  1) +  1- rkgk{nk -  1)

with each ri 6  R, gi € G, n,- 6  N , and k a positive integer.

In particular, suppose that N  =  (z) is a finite normal cyclic subgroup of G. 

Then A r(G , N ) is the ideal of RG  generated by the elements z l — 1, for positive 

integers i. But zx — 1 =  (z — l)(z ,_1 H h z -I-1), hence Ak(G, N) =  RG{z — 1).

2 . 2 .  G r o u p  t h e o r y  

Let us recall some facts from group theory.

Let G be any group. We use round brackets to denote commutators in G;

that is, (g, h )  =  g~lh~1gh for any g,h (E G. Recursively, we define

[go,gi,--- »<7n+l) =  ((00, . . .  ,0n),0n+l).

If A  and B  are subsets of G, then we write (A , B) for the subgroup generated by 

(a, 6), for all a 6  A, 6 6  B, and we let

(̂ 4o, • • • , ̂ 4n+l) ((^!o, • • • , ), ).

Of course, we write G' for the commutator subgroup, (G, G).

The lower central series of G is defined as follows. We let 71(G) =  G, and for

each positive integer n, 7R+i(G) =  (7n(G),G). Thus

G =  71(G) D 72(G) D 73(G) 3  • * *

and, in fact, it it easy to see that each 7 »(G) is normal in G.

6
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Let C(C?) denote the centre of G.  We also have the upper central series of G, 

which is defined by letting Co(G) =  1, and for each n >  0, letting £n+i(G) be the 

unique subgroup of G, containing Cn(G), such that

Cn+l(C?)/C«(G) =  C(G/Cn(G))-

Thus,

1 =  Co(G)CCi(G)CC2(G )C .- .  

and again, each Cn(G) is normal in G.  We recall the following basic fact.

L em m a 2 .2 .1 . Let G  be a group and n a positive integer. Then the following 

are equivalent:

(1) Cn(G) =  G;

(2) 7n+i(G) =  1; and,

(3) {go,9i,--- »9n)  =  1 for all g0, . . .  ,gn € G.

Proof. The equivalence of (1) and (2) is seen in [Rob, 5.1.9]. Clearly, (2) implies

(3), since (#o> • • • , <7n) € 7n+i(G) for all g, € G. Assume that (3) holds, and let us 

prove (1) by induction on n. If n  =  1, then (<7o,£fi) =  1 for all go,g\ € G, hence G 

is abelian, as required. If (go,. . .  ,gn+i) = 1, then (<70, • • • ,9n)  is central, for all 

gi € G. Let G =  G/C(G). Then letting g = gC[G) 6  G for any g 6  G, we have 

(<7o>--> 19n)  = I- Thus, by our inductive hypothesis, Cn(G/C(G)) =  G/C(G). 

But by definition of the upper central series,

C»(G/C(G)) =  Cn+i(G)/C(G), 

hence G  =  Cn+i(G), as required. □

If, for any positive integer n, G satisfies one (hence all) of the properties in 

Lemma 2.2.1, then G is said to be nilpotent. If n is the least integer for which this

7
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is true, then G is nilpotent of class n. (The trivial group is said to be nilpotent 

of class zero.)

We need a few facts about nilpotent groups. Recall that for any prime p, 

g 6  G is said to be a p-element if the order of g, o(g), is a  power of p, and a 

p'-element if o(g) is finite, but not divisible by p. A p-group (resp. pf-group) is a 

group consisting entirely of p-elements (resp. p'-elements).

Lem m a 2 .2 .2 . Let G be a nilpotent group. Then G has the following properties.

(1) Every subgroup and homomorphic image of G is nilpotent.

(2) The elements of finite order form a normal subgroup, T, in G. T  is the 

restricted direct product Hp, where Hp is the subgroup consisting of all 

of the p-elements in G, and the product extends over all primes p.

(3) I f  N  is a nontrivial normal subgroup of G, then N T I £(G) ^  1.

(4) I f G contains a p-element, then it contains one in its centre.

(5) I f a and b are elements with relatively prime, finite orders in G, then 

ab =  ba.

Proof. Parts (1), (2), and (3) axe 5.1.4, 5.2.7, and 5.2.1 in [Rob], respectively.

(4) is an immediate consequence of (2) and (3). Let us prove (5). Since a, 6 6  T, 

we may assume that G =  T  =  \ \H p. Let A  (resp. B) be the product of those 

Hp for which p divides the order of a (resp. b). Then the product A B  is direct, 

and therefore a 6  A, b € B  implies that ab = ba. □

We may extend the upper central series to the ordinals, and obtain 

1 =  Co(G) £  C,(G) C C f.(G ) C C«+,(G) £  ••• ,  

the transfinitely extended upper central series. Here,

G - h  ( G ) /C a ( G )  =  C ( G / G ( G ) )

8
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and if a  is a  limit ordinal, then

U G )  =  U  0(G)-
$<a

This series must eventually stop. That is, there exists an a such that Co(G) =  

Ca+i(G) and therefore, Cp(G) =  Ca(Gr) for all (3 > a. If (a(G) = Ca+i(G), then 

Ca(G) is called the hypercentre of G. We say that G is hypercentral if G is its own 

hypercentre. Evidently, every nilpotent group is hypercentral. However, a count- 

ably infinite direct product of nilpotent groups of increasingly large nilpotency 

classes would be hypercentral, but not nilpotent.

Recall that for any class of groups, C, a group G is said to be locally C if, for 

every finite subset S  of G, S  is contained in a subgroup of G which is in C. Thus, 

a group is locally nilpotent if every finitely generated subgroup of G is nilpotent. 

We have

P roposition  2.2.3. If G is hypercentral, then G is locally nilpotent.

Proof. See [Rob, 12.2.4]. □

Next, the derived series of G is defined by talcing G ^  =  G, and for each 

positive integer n, G^n+1  ̂ =  (G ^ ) '.  A group, G, is said to be solvable if G ^  =  1 

for some n. Clearly, every nilpotent group is solvable. We also have the following 

result.

T heo rem  2.2.4 (Schur). Let G be a solvable group. Suppose, for a fixed prime 

p and positive integer n, we have g?" 6  C(<?) f or every g € G. Then there exists 

a positive integer m  such that hpm =  1 for every h € Gr.

Proof. See [Sehl, Corollary 1.4.3]. □

9
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Recall that a group is said to have bounded exponent if there exists a positive 

integer n such that gn =  1 for all g 6  G. The least such n is called the exponent 

of G. We write Gn =  1. Thus, we could also state Theorem 2.2.4 by saying that 

if G is solvable, and Gp" C £(G), then (G')pm = 1.

Of course, every finite abelian group is a direct product of cyclic groups. In 

fact, this extends to abelian groups of bounded exponent.

T heorem  2.2.5 (P ru fe r-B aer). Let G be an abelian group of bounded expo­

nent. Then G is a direct product of cyclic groups.

Proof. See [Rob, 4.3.5]. □

It is well-known that every finite p-group is nilpotent. The finiteness assump­

tion cannot be dropped, but it can be weakened to an assertion that Gf is finite. 

To see this, we first need the following lemma, which is also going to be useful 

to us.

Lem m a 2.2.6. Let G be a group, and let A be an abelian normal subgroup of 

G. The conjugation action of G on A forms a group of automorphisms, H, of A. 

Suppose that A has exponent pn, for some prime p, and H is a finite p-group. 

Then there exists a positive integer r such that

(A , G, G, . . .  , G) — 1.
    -

r  tim es

Proof. See [Sehl, Lemma V.4.1]. □

T heorem  2.2.7. Let G be a p-group such that G' is finite. Then G is nilpotent.

Proof. Our proof is by induction on |G'|. If G' is trivial, then G is abelian, and 

there is nothing to do. Otherwise, G' is a nontrivial nilpotent group, and we

10
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choose a positive integer i such that the i-th term of the lower central series of 

G', 7 i (G ')  ^  1, but 7 j-+1(G') =  1. Let A  =  7 »(G'). Then A  is central in G', 

and therefore abelian, and it is easily seen to be normal in G. Furthermore, each 

element of G  acts by conjugation as a p-element on A  (since G  is a p-group). Since 

A  is finite (being contained in G'), there are only finitely many automorphisms 

of A .  Thus, by the last lemma,

(A, G, ,G ) =  1

r  times

for some r. But G /A  is a p-group, and (G / A )' =  G 'A /A  =  G '/A ,  hence 

|(G/A)'| < |G'|. By our inductive assumption, G /A  is nilpotent, hence there 

exists a positive integer t > 2 such that

(G ,. . .  ,G )C  A.
'  v  '

t times

Therefore,

(G ,.. . ,G )  =  1
 -------------V-------------'

r-H  tim es

and G is nilpotent. □

Now, let G be any group. We say that g is an FC-element of G if it has 

only finitely many conjugates. (Clearly, any central element is an FC-element.) 

If g and h are FC-elements, then a conjugate of gh is of the form k~lghk =  

(fc- 1pfc)(fc_1hfc), hence gh has only finitely many conjugates. Also, k~lg~*k =  

(k~lgk)~x, hence g~l is an FC-element, and therefore, the FC-elements form a 

(normal) subgroup of G, which is denoted by 4>{G). G  is said to be an FC-group 

if G =  4>{G). Recall that G is said to be torsion if every element of G has finite 

order. The following theorem combines 5.2.18 and 14.5.8 of [Rob].

11
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T heorem  2 .2 .8 . Let G be a torsion group. I f  G is either nilpotent or an FC- 

group, then G is locally finite.

We will also require the following fundamental result about finite groups.

T heorem  2.2.9 (Schur-Zassenhaus). Suppose N  is a normal subgroup of G, 

where G is a finite group. I f  |iV| and \G/N\ are relatively prime, then G contains 

a subgroup H of order |G/iV|.

Proof. See [Rob, 9.1.2]. □

In the notation of the Schur-Zassenhaus Theorem, since H  and N  have rela­

tively prime orders, H  D N  =  1, hence =  \H\ • |iV| =  |G|, and therefore G

is the semidirect product G =  N  x H.

Finally, we recall that a group G is called a Dedekind group if every subgroup 

of G is normal. Certainly every abelian group is Dedekind. A Dedekind group 

which is not abelian is said to be Hamiltonian. These groups are described in 

the following result, which is [Rob, 5.3.7].

T heorem  2.2.10 (D edekind-B aer). The group G is Hamiltonian if  and only 

if G ~  Qs x E  x O, where Qs is the quaternion group of order 8 , E  is an abelian 

group of exponent at most 2, and 0  is an abelian group, where every element of 

0  has finite, odd order.

We will always write Qs for the group

(0 » % 4 =  1, h2 =  g2, h~lgh = g~x).

12
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2 .3 . R in g  t h e o r y

In this section, we will gather some definitions of properties of rings, and some 

results concerning when these properties will hold for group rings.

Let R  be a ring, and I  an ideal of R. We say that /  is nilpotent if there exists 

a natural number n such that I n = (0). That is, if and only if aiQ 2 * • 'On = 0  

for all o j , . . .  , a„  6  I. An ideal I  is said to be nil if, for each a  6  I, there exists 

a positive integer m such that a m = 0. We say that the nil ideal I  is nil of 

bounded exponent if the number m may be chosen independently of a.

The ring, R, is said to be semiprime if it has no nonzero nilpotent ideals. The 

semiprime group algebras have been classified. Indeed, we have

T heorem  2.3.1 (Passm an). Let F  be a field and G a group. I f  char F  =  0, 

then FG is semiprime. I f char F  = p > 0, then the following are equivalent:

(1) FG is semiprime;

(2) G has no finite normal subgroup N  such that p divides |iV|; and,

(3) the FC-subgroup, 4>{G), contains no p-elements.

Proof. See Theorems 4.2.12 and 4.2.13 in [Pasl]. □

We would also like to know some conditions under which the augmentation 

ideal will be nil or nilpotent.

L em m a 2.3.2. Let F  be a field of characteristic p >  0, and let G be a p-group. 

Then

(1) if  G is finite, then A f {G) is nilpotent, and

(2) if  G is abelian and has bounded exponent, then A f(G ) is nil of bounded 

exponent.

13
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Proof. (1) Our proof is by induction on |G|. If |G| =  1, then A F(G) =  (0), 

and there is nothing to do. Otherwise, we let G be nontrivial, and assume 

that the result holds for smaller p-groups. We take z 6  C(^) such that o(z) =  

p. Then letting G =  G /(z), our inductive hypothesis tells us that A F(G) is 

nilpotent. Let us say (AF(G))n =  (0). We claim that (AF(G))pn =  (0). Take 

any o ri,... , ctpn € A F(G). Then the augmentation of each on 6  FG  is zero, 

hence d i , . . .  , a pn 6  A f(G ). Thus, di • • • dn = 0 , which means that a-i • • • a„ is 

in A f (G, (z» ,  the kernel of FG  FG. But A F(G, (z)) =  ( z -  1)FG. Therefore, 

•••Ofpn € ((z — 1 )FG)P =  (z — 1)PFG, since z — 1 is central in FG. But 

(z — l)p =  zp — 1 =  0, hence (AF(G))pn =  (0), as required.

(2) Take a = Yigec a 99 ^ Suppose G has exponent pm. Then, since

FG  is commutative,

TTl _ T 7 |  _  TTl f l l  _ , n i

a ” = E q5 = ( E “») = 0 P  = 0’
ff€G s€G  g£G

hence A f (G) is nil of bounded exponent. □

Let R  be a ring. We say that R  is prime if, for any nonzero ideals I  and J , 

I J  is nonzero. It will be useful to know when FG is prime. We have

T heorem  2.3.3 (Connell). Let G be a group and F  a field. Then the following 

are equivalent:

(1) FG  is prime;

(2) G has no nontrivial finite normal subgroups; and,

(3) <f>(G) is a torsion-free abelian group.

Proof. See [Pasl, Theorem 4.2.10]. □

Now, let R  be a ring with identity, and let M  be a  unitary left F-module. We 

say that M  is semisimple if, for every submodule N \, there exists a submodule

14
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JV2 of M  such that M  is the direct sum Ni ® 1V2. R  is said to be a semisimple 

ring if rR  is a semisimple module. For any ring S , we let M n(S) denote the ring 

o f n x n  matrices with entries in S, where n is a positive integer. We record the 

following celebrated result, which is [Lam, Theorem 3.5].

T heorem  2.3.4 (W edderburn-A rtin ). Let R  be a ring with identity. I f R  is 

semisimple, then

R  — M ni (D \ ) ® • • • ® Mnk {Die)

for some natural numbers n i , . . .  , njt and division rings D \ , . . .  , D*.

This relates to group rings through the following theorem.

T heorem  2.3.5 (M aschke). Let F  be a field, and G a finite group. I f  char F  

does not divide |G|, then FG is semisimple.

Proof. See [Lam, Theorem 6.1]. □

Suppose R  is a semisimple ring. Let us say R  =  Mni{D\ ) ® • • • ® iV/„k(D*), as 

in the Wedderbum-Artin Theorem. Recall that /  6  R  is said to be an idempotent 

if f 2 =  / .  If /  is a  central idempotent in R, then /  =  ( / i , • • • , fk), where each fi 

is a central idempotent in Mni{Di). But then each fi  is a central scalar matrix, 

A € Mni(Di), where In{ is the identity matrix, and Af =  A,-. But D{ is a 

division ring, hence A,- =  0 or 1. Let e* be the identity element of M ni(Di). Then 

the central idempotents of R  are precisely the sums of the subsets of {ei, . . .  , e*}. 

A central idempotent is called a primitive central idempotent if it is not zero, 

and cannot be expressed as the sum of two centred idempotents of R, unless one 

of these is zero. Hence, we see that the primitive central idempotents of R  are 

precisely the identity elements of the Mni{Di).

15
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Furthermore, for each i, it is clear that f2e, =  M n i(D i) .  These matrix rings 

are easily seen to be simple rings (i.e. nonzero, and containing no ideals other 

than (0) or M n i(D i)) .  We call them the simple Wedderburn components of R .

Finally, let R  be any ring. We use square brackets to denote the Lie product 

(also called the Lie bracket or Lie commutator) on R. That is,

[x, y] =  xy -  yx.

We also write

[ x i , . . .  , Xn ,Xn-|-i] =  [ [x j , . . .  , Xn], Xn-(-i]

for each integer n > 2. We will frequently use the following basic fact.

Lem m a 2.3.6. Let Rbe a ring with identity such that R  has prime characteristic 

p. Then for any x , y  €  R, and any integer m > 0,

[z ,y , y , . . .  , y ] =  [x,ypm].

pm tim es

Proof If m =  0, there is nothing to do. Otherwise, let py : R  -¥ R  be given by 

py{a) = ay , for all a  6  R, and define Xy : R  R  via Aj,(a) = ya , for all a  6  R. 

Then [x,y] =  py{x) — Ay(x), and

[z,y , . . .  ,yj =  (py -  Xy)pm(x).
pm tim es

But the actions of Xy and py are easily seen to commute. Thus, since \ y and py 

are in the ring of Z-linear functions from R  to R, and this ring has characteristic 

P»
(Py ~  Ay)pm(x) =  (/>v)pm(x) -  (Ay)pm(x) =  xypm -  ypmx 

and we are done. □

16
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2 .4 . In v o l u t io n s  a n d  p o l y n o m ia l  id e n t it ie s

Let R  be a ring. An involution on R  is a function * : R - t  R  satisfying

(r +  s)* =  r* +  s*,

(rs)* =  s*r*, and 

(r*)* = r

for all r, s 6  R. An element r  of R  is said to be symmetric (with respect to *) if 

r* =  r, and we write i?+ for the set of symmetric elements. On the other hand, 

r  is said to be skew if r* =  —r. We write R~ for the set of skew elements. The 

following lemma is easy.

L em m a 2.4.1. Let R  be a ring with involution. Take any r i , r 2 6  R +, and any 

®ii^2 6  H • Then

(1) [ n , r 2] 6 i 2“ ;

(2) [rx,s x] € it* ; and,

(3) [sx,s2] € f2“ .

Proof. (1) We have

[r i>r2]* =  (rxr2 -  r2r x)* =  r l r \  - r j r j  =  r2r x -  r xr2 =  - [ r x, r 2].

The other parts Eire similar. □

Let F  be a field and G a  group. Then FG  has a natural involution given by

(52aa9)* = Ŷ a8g~1’
j € G  }6G

We will always assume that this is our involution on FG. Clearly, an element of 

FG  is symmetric if and only if the coefficient of g agrees with the coefficient of

17
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g~l , for all g € G. Thus, the symmetric elements are the F-linear combinations 

of g+g~*, for <7 G G, and the elements of order 1 or 2. If char F  ^  2, and g2 =  1, 

then g =  , hence we need only consider the F-linear combinations of the

elements g+ g~x. Similarly, when char F  ^  2, the skew elements are the F-linear 

combinations of g — g~l , for g 6  G. If char F  =  2 , then (FG )+ =  (FG )~ . The 

sets (FG)+ and (FG)~ will be of great interest to us.

Let F  be a field. Then a ring R  (not necessarily with identity) is said to be 

an F-algebra if (R, +) is a unitary left F-module, and /( rs )  =  ( /r)s  =  r(/s) 

for all r ,s  G R, and all /  G F . (For instance, FG  is an F-algebra, for any 

group G.) We let F {x i, 12 , . . .}  denote the free algebra on the countably infinite 

set {xi,X2, . • •}. That is, the elements of F{xj,X2 , . . .  } are polynomials in the

noncommuting indeterminates xi,X2,  Let A be a subset of the F-algebra R.

Then we say that A satisfies a polynomial identity if there exists some nonzero 

polynomial /(x  1, . . .  ,xn) 6  F { x j,X 2 , . . . }  such that / ( A j,... ,An) =  0 for all 

Ai G A. For example, R  is commutative if it satisfies the polynomial identity 

X1X2 — X2X1, and we say that R  is Lie nilpotent if it satisfies the identity

[*1 > • • • > -Til]

for some integer n > 2 . (Of course, we can also consider these last two properties 

for rings which are not F-algebras.)

We record the following facts, the proofs of which are immediate.

L em m a 2.4.2. Let R  be an F-algebra.

(1) I f  A is a subset of R which satisfies the polynomial identity f ,  then any 

subset of A satisfies f .

(2) I f  R  satisfies the polynomial identity f ,  and I  is any ideal of R, then R /I  

satisfies f .

We will be interested in knowing when FG, (FG )+ and (FG)~  satisfy various 

polynomial identities. The earliest results in this direction were the following.

18
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Theorem  2.4.3 (Passm an). Let F  be a field and G a group. I f  FG satisfies a 

polynomial identity, then (G : <f>(G)) < oo and |(<£(G))'| < oo.

Proof. See [Pasl, Theorem 5.2.14]. □

In fact, there is a necessary and sufficient condition. Recall that, for any 

prime p, a group G is said to be p-abelian if G' is a finite p-group. We also take 

0-abelian to mean abelian.

Theorem  2.4.4 (Isaacs-Passm an, Passm an). Let F  be a field of character­

istic p > 0 and G a group. Then FG satisfies a polynomial identity if  and only 

if  G contains a p-abelian subgroup of finite index.

Proof. See Corollaries 5.3.8 and 5.3.10 in [Pasl]. □

We also have this straightforward observation.

Lem m a 2.4.5. Let F  be a field and G a group. Suppose (FG)+ satisfies a 

polynomial identity f .  Then

(1) i f  H  is a subgroup of G, then (F H )+ satisfies f ,  and

(2) i f  N  is a normal subgroup of G, and char F  ^  2, then (F(G /N ))+ 

satisfies f .

Proof. (1) is clear, since F H  C FG. (2) The natural homomorphism 9 : FG  —> 

F{G/N) maps symmetric elements to symmetric elements. Indeed, if a =  

Xs££G a g9-> then

»(<*•) = « ( £  a,*"1) = £  = ( £  ° ,9 N Y  = (9(a))*.
g€G  g£G  g€G
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However, since char F  ^  2, the symmetric elements of F (G /N ) are of the form 

12geGa g(9N  + 9~1N ), with a g €  F. But

+ 0 - 1)) =  Y l a!>(9N  + 9~1N),
g€G g£G

and since YlgeG a g(9 +  9~l ) € (FG)+ , we observe the following. Namely, if 

s i , . . .  , s n 6  (F(G/iV))+ , then Si =  9(ri) for some r* € (FG)+ , and therefore

f{ s u . . .  ,sn) =  / ( 0( r i ) , . . .  , 0(r„)) =  0( / ( r x, . . .  ,r„)) =  0(0) =  0 ,

since (FG)+ satisfies / .  □

Finally, we may define an involution on the free algebra F {x  i , y\ , X2 , t/2 > • • •} 

(again with a countable infinitude of noncommuting indeterminates) by setting 

x* = yi, y* — x,-, and extending this to an involution. We write

F {xj, Xj, X2, X2, . . .}

for the free algebra with involution. An element of this algebra is, of course, 

a polynomial in the x* and the x*, which do not commute. Suppose further 

that R  is an F-algebra with involution. Then R  is said to satisfy a *-poiynomial 

identity if there exists 0 ^  /(x i,x J ,X 2,X2, . . .  ,x „ ,x* ) 6  F { x i,x J ,. . .  } such that 

/ ( r  1, r*, . . .  , r n,r* ) =  0 for all r j , . . .  , rn 6  R. Then we will need the following 

important result.

T heorem  2.4.6 (A m itsu r). Let R  be an F-algebra, and suppose that R  satis­

fies a *-polynomial identity. Then R  satisfies a polynomial identity.

Proof. See [Her, p. 196]. □
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Chapter 3

LIE P R O P E R T IE S  O F G R O U P R IN G S

3 .1 . B a c k g r o u n d  t o  t h e  pr o b l e m

In this chapter, we will consider two Lie properties of a ring, and establish the 

conditions under which the sets of symmetric or skew elements of a group ring 

will have these properties.

First, we recall that for any ring R, and any subset, A, of R, we say that A is 

Lie nilpotent if there exists an integer n > 2  such that

[Aj, A2, .. • , A„] — 0

for all Ai,. . .  , A„ 6  A. The least such n is called the index of nilpotency of A. 

The conditions under which the group ring, FG , is Lie nilpotent were determined 

in the early 1970’s. We record this well-known result.

T heo rem  3.1.1 (Passi-Passm an-Sehgal). Let F  be a field of characteristic 

p > 0, and let G be a group. Then FG  is Lie nilpotent i f  and only if G is nilpotent 

and p-abelian.

A version of this chapter has been published. G. T . Lee, Group rings whose sym m etric  
elem ents are Lie nilpotent, 1999. Proceedings of the American Mathematical Society. 127: 
3153-3159 and G. T. Lee, The Lie n -B n g e l property in  group rings, 2000. Communications in 
Algebra. 28: 867-881.
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Proof. See [Sehl, Theorem V.4.4]. □

For any positive integer n, we say that the subset A of R  is Lie n-Engel 

provided

, p ] =  0
n  tim es

for all A and p. in A. Clearly, if A is Lie nilpotent, then it is Lie n-Engel for 

a suitable n. However, Lie nilpotency is a stronger condition, as we see in the 

following result from the late 1970’s.

T heorem  3.1.2 (Sehgal). Let F be a field and G a group. Then FG is Lie 

n-Engel (for some n) if and only if either

(1) char F  =  p > 0, G is nilpotent, and G contains a normal subgroup A 

such that G /A and A' are both finite p-groups, or

(2) char F  — 0 and G is abelian.

Proof. See [Sehl, Theorem V.6.1]. □

In the early 1990’s, a new question arose. Namely, is it sufficient to assume that 

(FG)+ or {FG)~ is Lie nilpotent in order to establish that FG  is Lie nilpotent? 

This result was shown.

T heorem  3.1.3 (G iam bruno-Sehgal). Let F  be a field of characteristic dif­

ferent from 2. Let G be a group containing no elements of order 2. Then the 

following are equivalent:

(1) {FG)+ is Lie nilpotent;

(2) (FG)~ is Lie nilpotent; and,

(3) FG is Lie nilpotent.
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Proof. This is the main result of [GS]. □

This theorem cannot hold if we simply dispense with the restriction on 2- 

elements. To see this, we simply use

Lem m a 3.1.4. Let F  be a field, and let G =  Qs x E ,  where E  has exponent 1 

or 2. Then every symmetric element in FG is central in FG.

Proof. The symmetric elements axe F-linear combinations of elements of order 2 

in G, and elements of the form x + x-1 , for x 6  G. It is easy to see that elements 

of order 1 or 2 in G are centred, so it suffices to show that i + i -1  is central, for 

all x 6  G. But then x =  yc, with y 6  Qs, c € E. Then yc+(yc)~l =  yc+ y~l c = 

(y +  y~ X)ci since c2 =  1 and c is central. Thus, it remains only to show that 

y + y~ x is central, for all y 6  Qs- But this is easily verified. □

In particular, then, (FQs)+ is commutative, but if char F  ^  2 , then FQ& is 

not even Lie n-Engel, by Theorem 3.1.2. The quaternion group, however, is the 

key to our work. We will show that if G does not contain an isomorphic copy of 

Qs, and (FG)+ is Lie nilpotent, then FG  is Lie nilpotent. We will then classify 

the groups, G, containing Qs, for which (FQs)+ is Lie nilpotent.

In fact, most of the proofs in [Leel], which concerned Lie nilpotency, only 

required (FG)+ to be Lie n-Engel. Therefore, we will establish the conditions 

under which (FG)+ is Lie n-Engel first, and then make the necessary modifica­

tions for Lie nilpotency.

The following interesting result was proved in [GS].

P roposition  3.1.5. Let F  be a field and G a group. I f  C2(G) =  {z2 : z 6  C(^)} 

is infinite, and either (FG)+ or (FG)-  satisfies [x i,. . .  ,xn] =  0 for some n >  2, 

then FG also satisfies [x i,. . .  , xn] =  0.
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This result does not hold for the Lie n-Engel property. However, we can obtain 

a weaker result. We need a bit of terminology.

Let R  be an .F-algebra with involution. Suppose that R  satisfies the *- 

polynomial identity /(x j ,x * ,. . .  ,x r ,x*). We write /  as a sum of terms of the 

form axj* " 'X ^ ,  with a  €  F , each iy 6  {1 ,... ,r}, each e* 6  {1,*}, and k > 0 

(where k =  0 gives a constant term). Each a i | |  • • • x** is called a monomial. 

We say that a monomial is *-linear in x,- if precisely one of {x,-,x*} appears in 

the monomial. The *-polynomial /  is said to be *-linear in x,- provided each 

monomial of /  is *-linear in x,-. Also, /  is said to be *-multilinear if it is *-linear 

in each of the variables that occurs in / .  We need the following straightforward 

lemma.

L em m a 3.1.6. Suppose a  € FG, for any field F  and group G. If, for infinitely 

many different x 6  G, we have (x — l)a  =  0 , then a  =  0 .

Proof. Suppose a  ^  0 . Then a  =  ct\g\ H \-Qk9k, for some nonzero a i , . . .  , a* €.

F , and pairwise distinct group elements gi , . . .  ,gk- Now, (x — 1)q =  0 if and 

only if (x — l ja g f 1 =  0, hence we may as well assume that g\ =  1. Then, for 

any x 6  G, (x -  l)a  =  0 implies

QiX +  0-2X02 H h cikxgk =  « i  +  0202 H h ajfe0jfc.

Thus, x must be one of the group elements on the right side of this expression, 

hence x 6  {1, 02, • • • ,0jt}- But there are only finitely many such x, and we have 

a contradiction. □

Nov/, we make an observation about *-polynomial identities.

L em m a 3.1.7. Let F  be a field and G a group, with ( 2(G) infinite. Suppose FG  

satisfies a *-polynomial identity, f { x i ,x j , . . .  ,x n,x*), which is *-linear in some
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x,-. Then FG  satisfies g, where g is the sum o f all monomials of f  containing xt- 

(and not x*J.

Proof We let h — f  — g. Then x* occurs exactly once in each monomial of h, 

and x,- does not occur at all. Without loss of generality, let us assume i =  1. 

Choose any z € C(G). Then for any O i,. . .  , a n 6  FG ,

0 =  /(za i,(zQ i)* ,a 2, a 2 , . . .

=  g(za \,{zo t\Y , . . .  , a-n, a * ) +  /i(za i,(za i )* ,... ><*»»,a£)

=  g ( z a i ,z ~ 'a \ ,a i ,c t \ , . . .  , a-n,a * ) +  h(za-i, z- 1a ^ ,. . .  , a n,a*)

=  z g (a i ,a \ , . . .  , a n,a£) +  z_1/i(a i>Qi>. . .  ,a„,a-*).

Here, we have made use of the fact that z is central, and xi occurs exactly once 

in each monomial of g, but not at all in h, and x\ occurs exactly once in each 

monomial of h, but not at all in g.

Also,

0 =  z~ l f ( a i , a \ , . . ,  ,ccn,a*n)

=  2- 1<7( a i ,a J , . . .  ,a„,ar*) +  ,q„ ,q*).

Subtracting, we obtain

(z - Z _ 1)^(QX,aJ,... ,C*n,<*n) =  0

and therefore

(z2 -  = 0

for all a i , . . .  ,q „  6  FG, and all z 6  C(G)* Since C2(G) is infinite, Lemma 3.1.6 

tells us that <7(0-1, a j , . . .  , a R, a* ) =  0 for all 0-1, . . .  , <*„ 6  FG , as required. □

Note that we do not say that g is a  ^-polynomial identity for FG, since g 

could be the zero polynomial.
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In particular, if (FG)+ is Lie n-Engel, then FG  satisfies the ^-polynomial 

identity

[xx +  x j ,x2 +  x | , x 2 + x 2, . . .  ,x2 + x | ] .
'    -

n  tim es

Clearly, this is ^-linear in xi,  but not x2 (unless n =  1). Similarly, if (FG)~  is 

Lie n-Engel, then FG  satisfies

[xi Xj , X2 X2, . . . , X2 Xj].
' --------------------------------- V--------------------------------- '

n  tim es

From the last lemma, we immediately deduce

Proposition  3.1.8. Let F  be a field and G a group with |C2(C?)| =  °o- If(F G )+ 

(resp. (FG)~) is Lie n-Engel, then FG satisfies the *-polynomial identity

[xi, x2 +  X2,. . .  , x2 +  X2]
'    '

n tim es

(resp.

[xi, X2 — x | , . .. ,x2 — ^2]).
' ---------------------------------V.----------------------------------

n  tim es

We now have

Proposition  3.1.9. Let F  be a field and G a group, with £2(G) infinite. I f  FG  

satisfies a *-multilinear *-polynomial identity f ,  then FG  satisfies g, where g is 

the sum of all monomials of f  containing no * ’s.

Proof. We apply Lemma 3.1.7 to each variable in turn. □

Finally, we have the

Proof of Proposition S. 1.5. If (FG)+ is Lie nilpotent, then FG  satisfies the *- 

polynomial identity

[xi + x i , . . .  , x n +  x*].
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This is *-multilinear. Hence, by Proposition 3.1.9, FG  satisfies [x j,... ,x„], as 

required.

If (FG)~ is Lie nilpotent, the proof is similar. □

Since the ^-polynomial identity we obtain when (FG )+ or (FG)~ is Lie n- 

Engel is not ^-multilinear, we cannot conclude that FG  is Lie n-Engel, even if 

C2(G) is infinite. Indeed, this will turn out to be false, in general.

3 .2 . So m e  lem m ata

We will prove a few basic properties of group rings, FG, whose symmetric 

elements are Lie n-Engel. Let us begin with

Lem m a 3.2.1. Let F be a field of characteristic different from 2, and let G 

be any group. If  (FG)+ is Lie n-Engel, then every element of order 2 in G is 

central.

Proof. Let us assume that the characteristic of F  is p > 2. Let y be any element 

of order 2 in G, and take any x € G. We wish to show that xy =  yx. Suppose, 

first of all, that o(x) =  2 . Then x and y are symmetric elements of FG, and 

choosing m  such that pm >  n, we have

0 =  [x,y,. . .  ,y] = [x,ypm]
pm times

by Lemma 2.3.6. Since p is odd, y?m =  y, and x commutes with y.

Now, let x have arbitrary order. Then

0 =  [x - b x '^ y , . . .  ,y] =  [x +  x- 1,y,,m]
p m tim es 
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for some m. Once again, this gives us [x + x 1, y] =  0. Therefore,

xy +  x~xy -  yx -  yx~x =  0 ,

and since these are just group elements, xy  =  x~xy, yx, or yx~x. If xy  =  x~xy, 

then xz = 1, and the first case completes the proof. If xy =  yx, there is nothing 

to do. If xy =  yx-1 , then (xy)2 =  xyxy-1  =  1 and by the first case, y and xy 

commute. Therefore, yxy = xy2, and yx =  xy, as required.

Finally, suppose the characteristic of F  is zero. In this case, F  contains a copy 

of the integers, Z, and ZG C FG  in a natural way. Thus, (ZG)+ is Lie n-Engel. 

Now, every symmetric element of (Z/3Z)G is easily seen to be the image of a 

symmetric element of ZG under the standard homomorphism ZG —> (Z/3Z)G. 

Thus, ((Z/3Z)G)+ is Lie n-Engel, and it follows from the characteristic 3 case 

that every element of order 2 in G is central. □

We will frequently encounter situtations in which [a +  a~x,b +  b~x] = 0 for 

some a, b 6  G. Expanding this expression, we axe left with seven possibilities for 

ab. However, we can reduce this number to four. Indeed, we have

Lem m a 3.2.2. Let F  be a field with char F / 2 ,  and let G be a group such that 

[FG)+ is Lie n-Engel. If, for some a,b 6  G, we have [a +  a - 1 ,6  +  6-1] =  0, then 

ab is equal to one of the following: ba, b~xa, ba~x or b~xa~x.

Proof. In the expression

0 =  [a +  a~x ,b + b~x]

=  ab +  ab~x +  a~xb +  a~xb~x — ba — ba~l — b~xa — b~xa~x

the term ab must be cancelled in some manner. But these Eire just group elements, 

so ab can either agree with one of the subtracted terms, or it CEin agree with at 

least two of the added terms (since the cluuracteristic is not 2). If it agrees with a
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subtracted term, then we are done. If ab agrees with two of {a- 16, ah-1 , a- 16-1}, 

then it agrees with at least one of {a-1  6, ab- 1 }. Then either ab =  a - 1 6 (in which 

case a2 =  1) or ab =  ab~l (in which case b2 =  1), or possibly both. By Lemma

3.2.1, either a or & is central, hence ab =  6a. □

We will also need the following lemma, which allows us to conclude that the 

group contains the quaternions, under certain conditions.

Lem m a 3.2.3. Let G — (a, 6), with b~lab =  a-1 , and let F  be a field with 

char F  ^  2. I f  (FG)+ is Lie n-Engel, then either a2 =  1 (and G is abelian) or 

o(a) =  4, o(&) =  4f, for some odd number t, and (a, 6*) ~  Q$.

Proof If a2 =  1, then b~lab =  a, and there is nothing to do, so let us assume 

a2 ^  1. We begin by noting that for any integer i, b~1atb = a ~ \  hence a1 6  C(^) 

if and only if a2‘ =  1. Also, b~2ab2 = 6- I a_16 =  a, hence 62 € C(^)>

6 £ C(G). Assume the characteristic of F  is p > 2. Suppose 6 has finite order. 

Since b2 € C(G), but 6 £  ((G), 6 has order 2k for some positive integer fc. If k 

is odd, then by Lemma 3.2.1, bk is central, and since b2 is central, 6 is central. 

This is impossible. Therefore, 4 divides o(6). Let us write o(&) =  2rf, where t  is 

odd and r  > 2. In the next argument, if o(6) =  oo, then we will simply let t =  1. 

Then choosing m  such that (FG)+ is Lie pm-Engel, we obtain

0 =  [ab1 +  b~ta~1, 6‘ +  . . .  , 6‘ +  6~‘] =  [a6‘ +  b ^ a '1, 6pm‘ +  6"^ * ].
pm tim es

Lemma 3.2.2 gives us four possibilities for a6£6pmt =  ab^1+pm\  These are:

(1) a6t*1+>,m> =  btpmabl . Then abtpm =  btpma. Thus, btpm € C(<?)• Since tpm 

is odd, the fact that btpm 6  ((G) and b2 € ((G) implies that 6 € C(G). 

But this is false.

(2) a6f(1+pm) =  6| tpm-1)a~1. Since 6t p̂m-1  ̂ is central (because pm — 1 is 

even), we obtain abl 1̂+pm̂  =  a~1bi p̂'n~1K Hence a2 =  b~2t.
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(3) a&| (1+Pm) = b tp’nabt. Because

b~tpm ab1 =  b~tpm abtpm 6^1 _pm* =

we get a6<*1+pm) =  a ~ pm). Hence a 2 =  b~2tpm.

(4) a&^1+pm) =  6~^pm+1^a- 1 . Here, a&^1+pm) has o rd e r 2, and  by Lem m a

3.2.1, it is cen tral. Since 1 + pm is even, 6l<1+pTO) (= C(G), and  therefore a 

is cen tral. B u t th is is a  contradiction.

Therefore, a2 =  b~2t or b~2tpm. Either way, a2 is a power of b2, and is therefore 

central. Thus, a4 =  1. Since a2 ^  1, o(a) =  4 . Thus, 64<pm =  a -4  or a-4pm, both 

of which are 1. This contradicts the o(b) =  oo case. Furthemore, since tpm is 

odd, and o(6) =  2rt for some r > 2, o[b) =  4 f .  Thus, o(a) =  o(6‘) =  4 , a2 =  6-2at 

for some odd number s (so a2 =  62t), and b~labl =  a -1 . Therefore, (a, bl) ~  Qg- 

If char F  =  0, then (ZG)+ C (FG)+ , and therefore (ZG)+ is Lie n-Engel. 

Hence ((Z/3Z)G)+ is Lie n-Engel, and the result now follows from the charac­

teristic 3 case. □

3 .3 . T h e  ca se  w it h o u t  q u a t e r n io n s

H aving established Lem m a 3.2.3, we can deal w ith  th e  groups which do not 

con tain  a  copy o f Q$ in  m uch the sam e m anner as th e  g roups w ithout elem ents 

o f o rder 2 were handled  in  [GS].

L e m m a  3 .3 .1 . Let G — (a , 6), and suppose [a +  a - 1 , 6 +  6- 1 ] =  0. I f  Qs % G, 

and char F  2, then (FG)+ is Lie n-Engel if  and only if  G is abelian.

Proof Suppose [a, 6] ^  0. By Lem m a 3.2.2, [a +  a - 1 , b +  6- 1 ] =  0 yields ab = ba, 

6a- 1 , 6- I a  o r 6-1 a -1 . I f  ab =  ba, we have a  con trad ic tion . If  ab = ba~l , then  

6- 1 a6 =  a - 1 , an d  Lem m a 3.2.3 tells us th a t G  contains a  copy o f Qs, which

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is a contradiction. Similarly, if ab =  £>- 1a, then a- 16-1a =  6, and again, we 

get a contradiction from Lemma 3.2.3. In the final case, ab =  6- 1a-1 , hence 

(ab)2 =  1, and therefore ab 6  £(G). Thus, a2b = aba, and therefore ab =  ba. 

This is a contradiction.

The converse is obvious. □

Lem m a 3.3.2. Let F  be a field and G a group not containing Qs. Suppose 

(FG)+ is Lie n-Engel. Then

(1) if char F  = p > 2, then G?m C C(G), for some m; and,

(2) if  char F  =  0, then G is abelian.

Proof. Let us prove (1). Choose m  such that pm > n. Then for any a,b 6  G,

0 =  [a +  a - 1 ,6  +  6-1 , . . .  ,6 -f- 6~1 ] =  [a + a -1 , ^  + b~p ].
pm tim es

By Lemma 3.3.1, abPm =  bp"'a. Therefore 6  C(G).

To obtain (2), we note that for all odd primes q, since (ZG)+ is Lie n-Engel, 

((Z/qZ)G)+ is Lie n-Engel, hence G?m C £(G) for some m. Since this holds for 

different primes q, G is abelian. □

We can now classify the groups G for which Qs % G, and (FG)+ is Lie n- 

Engel. We have

T heorem  3.3.3. Suppose Qs %. G and char F  =  p ^  2 . Then the following are 

equivalent:

(1) (FG)+ is Lie n-Engel, for some n;

(2) FG is Lie m-Engel, for some m; and,

(3) either

(i) p =  0 and G is abelian, or
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(ii) p > 2, G is nilpotent, and there exists a normal subgroup A of G 

such that G /A  and A ' are both finite p-groups.

Proof. Obviously, (2) implies (1). Also, by Theorem 3.1.2, (2) and (3) are equiv­

alent. Therefore, we need only show that (1) implies (3). Assume that (FG)+ is 

Lie n-Engel. If F  has characteristic zero, then by Lemma 3.3.2, G is abelian, as 

required. Let us assume, therefore, that char F  = p > 2. We know that

[xi + xJ,X2 + a?2> • • • »z2 + *2]
' --------------------------------- v --------------------------------- '

n tim es

is a ^-polynomial identity for FG. By Theorem 2.4.6, FG  satisfies a polynomial 

identity. Therefore, by Theorem 2.4.3, (G : 0(G)) < 00 and |(0 (G))'| < 00. By 

Lemma 3.3.2, Gpm C C(G), for some m. Since ((G) C 0(G), G/0(G) is a p-group 

(which we know to be finite).

To show that G is nilpotent, it will suffice to show that H =  G/C(G) is 

nilpotent. Let N  =  0(G)/C(G). Then H pm =  1, and H /N  ~  G/0(G), hence 

H /N  is a finite p-group. Also, since (0(G))' is finite, N ' =  (0(G))'C(G)/C(G) is 

finite.

Now, H /N 1 acts upon N /N ' by conjugation. Since H /N ' is a p-group, H /N ' 

acts as a p-group of automorphisms. Take any h ,k  € H. If hN  =  kN , then 

for any g € IV, (hfc-1 ,# -1 ) 6  JV', hence kh~lghk~lg~l G iV', and therefore 

h~xgh — k~lgk (mod N f). Since there are only finitely many cosets of N  in 

H, we see that H /N r acts as a finite group of automorphisms of N /N '. Since 

N ?m = 1, Lemma 2.2.6 tells us that

(N /N ',H /N ', . . .  ,H /N ')  =  1
' ----------------------- v ----------------------- '

r  tim es

for some r. That is,

(N ,H ,. . .  ,H ) C N '.
r  tim es 
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Since N*/N"  is finite and H  is a p-group, H /N "  acts as a finite p-group of 

automorphisms of N '/N " .  Again, by Lemma 2.2.6,

,H ) C  N "
s  tim es

for some positive integer s. Therefore,

(jV ,fl\... ,H )C N " .
'   '

r + s  tim es

Repeating this argument, we will eventually conclude that

(N ,H , . . . ,H )  = 1
' * '

t tim es

for some t (since N ' is nilpotent, being a finite p-group). But H /N  is also 

nilpotent, so

(H ,... ,H ) C N
u tim es

for some u > 2 , and we conclude that

=  L
i+ u  tim es

Thus, H  is nilpotent.

Now, since G is nilpotent, and G/£(G) is a p-group of bounded exponent by 

Lemma 3.3.2, it follows from Theorem 2.2.4 that G' is a p-group. In particular, 

then, (<j>(G)Y is a p-group, and we already know that it is finite. Since we have 

already established that G/tf>(G) is a finite p-group, the theorem is proved. □

3.4. T h e  c a s e  w i t h  q u a t e r n i o n s

We will now proceed to classify the groups G, containing Qs, for which (FG)+ 

is Lie n-Engel. Recall that the quaternion group is generated by two elements, 

g and h, each of order 4, and we will write Qs =  (g, h). We begin with
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L em m a 3.4.1. Let F  be a field with characteristic p >  2. Let C be a cyclic

group, and suppose that (F(Q& x C))+ is Lie pm-Engel, for some m > 0. Then

C has order pv or 2p° for some 0 < v <  m.

Proof Let us write Qs =  (g , h), and C — (c). Then we obtain 

0 =  [pc+ (0 c)-1 ,/ic + (hc)-1 , . . .  ,hc+  (he)-1]
' ----------------------------------------------- V ------------------------------------------------ '

pm tim es

=  [gc + g - xc - \h * mc>m + h -P mc-Pm],

since g and h commute with c. By Lemma 3.2.2, we have four cases to consider.

(1) ghpmcpm+l =  h?m gcpm+1. Then ghpm =  hpTag. But pm is odd, hence

h?m is not central in Qs, which is a contradiction.

(2) ghpmcpm+1 = hpmg - lcpm- \  Thus c2 =  hT*m g~l h*m g~l 6  Qs n C  =  1. 

Therefore c2 =  1, hence c2?m = 1.

(3) ghpmcpm+1 =  h - pmgcl ~pm. Then c2pm = h~pmg - lh~pmg € Qs n  C =  1, 

and c2pm =  1.

(4) ghpmcpm+1 =  h -pmg - lc -pm-K  Then [ghpm)2 =  c-2(pm+D 6  Qs nC  =  1, 

and therefore (ghpm )2 = 1. By Lemma 3.2.1, ghpm is central in G. But 

pm is odd, and neither gh nor gh-1 is central in Qs.

We are done. □

Next, we show that if an element does not have order 4pk for some k, then it 

must centralize the quaternions.

Lem m a 3.4.2. Suppose Q$ =  (g,h) C G, char F  = p > 2, and (FG)+ is Lie 

n-Engel. I f  b € G and b does not centralize (g,h), then o(b) =  4pm for some 

m > 0 , and each of (bipm ,g) and (bP™ ,h) is either abelian or isomorphic to Qs.

Proof Choosing k  such that (FG)+ is Lie p*-Engel, we obtain 

0 =  [6 +  6-1 ,p  +  p-1 , . . .  ,5  +  y-1] =  [b + b~1,gpk + p -pfc] =  [b + b~l ,g + g~l],
S „ ■ ', ■■ ■■ v . ■■■ ■■. ■ ■ ■ ✓

p* tim es
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since g has order 4. Once again, Lemma 3.2.2 reduces the problem to four cases.

(1) bg =  gb.

(2) bg =  gb~l . Then g~lbg =  6_1. Since o(g) =  4, Lemma 3.2.3 tells us that 

either b2 — 1 and b is central, or o(6) =  4 and (b,g) ~  Qs. This is the 

assertion, for g, with m =  0 .

(3) bg =  g~lb. Then b~lgb = g~l . Since o(g) =  4, Lemma 3.2.3 tells us that 

o(6) =  4f where t is odd, and (g,bl) ~  Q&. Furthermore, b~2gb2 =  g, 

hence b2 commutes with g, and obviously b2 commutes with bl as well. 

Hence, in particular, 64 centralizes (g,b*). Since b4 has order f, which 

is odd, and |(<7,&‘)| =  8 , we have (b4) fl (g,bl) =  1. Thus, (6,5 ) =  

(g,bl) x (64) ~  Qs x Ct, where Ct is the cyclic group of order f. By 

Lemma 3.4.1, t = pm for some m, since t is odd, and the result is proved 

for g.

(4) bg = g~lb~x. Then (bg)2 = 1 and bg is central. Hence b2g = bgb, and 

bg =  gb.

Thus, either bg — gb or 0(6) =  4pm for some m  > 0 and (bPm ,g) is either 

abelian or Qs. The same can be said if we replace g with h, and the proof is 

complete. □

The next two results narrow the possibilities down to H x P, where H  is a 

Hamiltonian 2-group and P  is a p-group.

L em m a 3.4.3. Suppose (FG)+ is Lie n-Engel, where char F  =  p > 2. I f  

Qs Q G, then the 2-elements o fG  form a normal subgroup which is a Hamiltonian 

2-group.

Proof. Take any 2-elements x, y 6  G. Let us say that o(x) = 2r and o(y) =  2‘ 

for some r,t > 0. Choose k such that pk >  n. Then since pk is odd, it is a unit 

modulo 2*. Thus, we may choose s >  0 such that pks = 1 (mod 2£). Let m  =  ks.
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Then

0 =  [x +  x-1 , ypm + y -pm] =  [x +  x_1,y  +  y-1]

by our choice of m. By Lemma 3.2.2, we have four cases.

(1) xy =  yx.

(2) xy =  yx-1 . Here, y_1xy =  x -1  and by Lemma 3.2.3, either x and y 

commute or (x,y) ~  Qs.

(3) xy =  y- 1x. Then x~l yx = y-1 , and either x and y commute or (x,y) ~  

Qs-
(4) xy =  y- 1x_1. In this case, xy has order 2 and is therefore central. We 

get yxy =  xy2, hence yx = xy.

Thus, either x and y commute or the group they generate is isomorphic to Qs • 

We conclude that y-1xy =  x± l. Thus, (x) is normal in (x,y), and by symmetry, 

so is (y). Therefore, (x,y) =  (x)(y), hence (x,y) is a 2-group. That is, the 2- 

elements form a subgroup H whose every cyclic subgroup is normal in H. Since 

H  is not abelian, it is Hamiltonian. Clearly H  is normal in G. □

Lem m a 3.4.4. Suppose F  has characteristic p >2, (FG)+ is Lie n-Engel, and 

Qs =  (g, h) C G. Then G ~  Qs x E  x P, where E 2 = 1 and P is a p-group of 

bounded exponent.

Proof. Suppose there exists an element x of G whose order is either infinity or 

an odd prime different from p. By Lemma 3.4.2, x centralizes (g,h) and by 

comparing orders, we see that (x) 0  (g,h) =  1. Thus (g ,h ,x) =  (g, h) x (x) ~  

Qs * (x ) Q G. By Lemma 3.4.1, we have a contradiction. Thus, G is torsion, 

and its elements have order 2rp£, for some r , t  >  0. By Lemma 3.4.3, the 2- 

elements of G form a normal subgroup, H. If we can show that the p-elements 

form a normal subgroup, P , then we will certainly have G = H  x P . By Lemma

3.4.3, H  is a  Hamiltonian 2-group, hence by Theorem 2.2.10, H  ~  Qs x E, with
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E 2 =  1. Thus all that remains is to show that the p-elements form a subgroup 

P  of bounded exponent. (Normality of P  will follow immediately.)

We know that every element has order 2rp‘ and since the Sylow 2-subgroup 

is Qs x E, r =  0, 1 or 2. Let x and y be p-elements of G, and suppose (x, y) 

contains a 2-element, z. By Lemma 3.4.2, x and y centralize (g ,h ), hence z 

centralizes (g ,h ). But it is easy to verify that no element of order 4 in Qs x E  

centralizes (g ,h ). Thus, o(z) =  1 or 2. In particular, Qs does not lie in (x,y). 

But (F(x, y))+ is Lie n-Engel, hence by Theorem 3.3.3, F (x,y) is Lie n-Engel 

and, in particular, (x, y) is nilpotent. Therefore, since x and y are p-elements, 

(x, y) is a p-group.

Thus, we know that G ~  Qs x E  x P, where E 2 = 1 and P  is a p-group. If x 

is an element of P , then Qs x (x) C G. Therefore, by Lemma 3.4.1, if (FG)+ is 

Lie pm-Engel, then o(x) divides pm. Thus, P  has bounded exponent. □

We will also need to borrow the next lemma.

Lem m a 3.4.5 (Passm an). Let G be a torsion group, and F  a field of charac­

teristic p > 0. Let A be an abelian normal subgroup of finite index in G. Suppose 

I  is an ideal of FA, satisfying g~xag € I  for all a € I , and all g € G. If I  is 

nil of bounded exponent, then I(FG) is an ideal of FG which is nil of bounded 

exponent.

Proof. See [Pas2, Lemma 3.2]. (Although the fields in that paper were assumed 

to be infinite, that fact was not used in the proof of Lemma 3.2.) □

We now present the main result of this section, which completes the classifi­

cation of the groups G for which (FG)+ is Lie n-Engel.
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T heorem  3.4.6. Let F  be a field of characteristic different from 2, and let G 

be a group containing Qs- Then (FG)+ is Lie n-Engel for some n i f  and only if 

either

(1) char F  =  p > 2 and G ex Qs x E  x P, where E 2 =  1 and P  is a nilpotent 

p-group of bounded exponent containing a normal subgroup A of finite 

index such that A' is also finite; or,

(2) char F  =  0 and G ~  Qs x E, where E 2 =  1.

Proof Let us suppose that the characteristic of F  is p > 2. Assume (FG)+ is 

Lie n-Engel. By Lemma 3.4.4, G Oi Qs x E  x P  where E 2 — 1 and P  is a p-group 

of bounded exponent. But (F P )+ is Lie n-Engel as well, and since Qs £  P , we 

deduce from Theorem 3.3.3 that P  is nilpotent and contains a normal subgroup 

A  of finite index, such that Ar is finite.

Conversely, suppose G ~  Qs x E  x P , where E 2 =  1 and P  is a nilpotent 

p-group of bounded exponent, and that P  has a normal subgroup A  such that 

(P  : A) and |A'| are both finite. We claim that (FG)+ is Lie n-Engel, for some 

n. Our proof is by induction on |A'|.

The first step is to establish that (FG)+ is Lie n-Engel when |A'| =  1. Thus, 

we are assuming that A  is abelian. Since the characteristic of our field is not 2, 

each symmetric element is an F-linear combination of terms of the form y + y~l , 

where y € G. That is, it must be a sum of terms of the form A(xc +  x- 1c-1), 

where A 6  F , x € Qs x E, and c 6  P . But

A(xc +  x_ 1c_ I) =  A(x +  x -1) +  Ax(c — 1) +  Ax- I (c-1  — 1).

We observe that A(x-f x -1 ) is a symmetric element in F(Qs x E). But by Lemma

3.1.4, every element of (F(Qg x F ))+ is central in F(Qs x F ), hence in FG. In 

addition, the terms Ax(c — 1) and Ax- 1(c-1  — 1) are in A f(G ,P ). Thus, an 

arbitrary symmetric element of FG  must be of the form p =  p +  a, where p 

is central in FG  and a  € A f (G,P). It follows that for any positive integer r,
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Hpr = fpT +  apT. If we can show that for a fixed r, independent of the choice of 

p , we have apT =  0 ,  then y.pT =  p?r will be central in FG. In particular, for any 

v € (FG)+ , we will have

0 =  [v,y?r] =  , / i ] .
'    '

pr tim es

That is, (FG)+ will be Lie pr-Engel, as required.

Now, we need to show that A p(G ,P) is a  nil ideal of bounded exponent. 

We first note that P /A  is a finite p-group. Thus, by Lemma 2.3.2, it follows 

that A f (P/A) is a nilpotent ideal. Let us say that (Ap(P/A ))pm =  (0 ) .  Take 

any a i , . . .  , arpm €  A F(P). Then looking at the elements d i , . . .  , d pm g  F P  =  

F(P/A ), we see that each has augmentation zero. That is, each d ,  6  A F(P/A), 

hence dx • * • d pm =  0 . Thus, ax - • • a pm 6  Ap(P, A) and therefore, (A p(P))pm C  

Ap(P,A). We recall that A p(G ,P) =  PG A p(P). Hence,

(A p(G ,P))pm = (P G A F(P))pm C F G A f (P,A).

But A f (P, A) =  FPA p(A ), so

FG A f (P, A) =  (FG )(FP)A f (A) =  F G A f {A)

=  (FG)(F(E  x A))Ap(A) =  F G A f (E  x  A, A).

Thus, it remains only to show that F G A f (E  x A, A) is nil of bounded exponent. 

But E  x A is an abelian normal subgroup of G. Also,

(G : E  x A) =  8(P  : A) < oo.

In addition, an element of A F(E  x A, A) is an F-linear combination of terms of 

the form h(a — 1), with h 6  E  x A, and a 6  A. If p 6  G, then

p- 1(h(a -  l))p =  {g~xhg){g~lag -  1) € A p(F  x A, A),

because A and E  x A are normal in G. Thus, by Lemma 3.4.5, if we can show 

that A f (E  x A, A) is a nil ideal of bounded exponent in F (E  x A), then we will
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know that F G A p(E  x A, A) is nil of bounded exponent, as required. However, 

A f ( E  x A, A) =  F (E  x A ) A f (A ) ,  and since F (F  x A) is commutative, it will 

suffice to show that A f(A )  is nil of bounded exponent. But A is an abelian 

p-group of bounded exponent, hence by Lemma 2.3.2, A f (A )  is nil of bounded 

exponent. The case in which |A'| =  1 is complete.

Now, suppose |A'| >  1, and that for all groups G satisfying (1), with smaller 

|A'|, (FG)+ is Lie n-Engel, for some n. Choose any q,/3 G (FG)+ . Also, since P  

is nilpotent and A' is a nontrivial normal subgroup, we may choose an element 

z € C(F)fl A' such that o(z) = p. Let us work in FG , where G = Q& xEx (P /(z )). 

Certainly P j (z) is a nilpotent p-group of bounded exponent. Furthermore, it 

contains a normal subgroup A /(z)  with (P /(z ) : A /{z )) =  (P : A) < oo and

|(A /(z» '| = |A'(z)/(z>| =  \A'/(z}\ < |A'|.

Thus, by our inductive assumption, (FG)+ is Lie n-Engel, for some n. Choose j  

such that p* > n. Then we have

0 =  [ S , / 3 , . . . , / 5 ]  =  [ a , ^ ] .

p3 tim es

That is, [a,/?^] is in A f ( G , ( z ) ) .  But A f ( G , ( z )) =  A f ( G , ( z2 )),  since 0(2) 

is odd, hence A p(G,(z)) =  (z2 — 1 )FG  =  (2 — z~ l )FG. Thus, [a,/?^] = 

(2 — 2_1)u;, with u> € FG. But a,/?1̂  6 (FG)+, so [a,/?pJ] G (FG)~ . Hence, 

((2 —2- 1)a;)* =  — (2 — But 2 — z-1 is both skew and central, and therefore

((2 — z~ l )u)* =  —(2 — z~ l )u*. Thus, (2 — z~l )(jj =  (2 — 2- 1)w* and, in fact, 

(2 — z~ l )u> =  (2 — 2- 1)t/i, where r/i =  ^ u/- is symmetric.

Next,

[a,/?,... ,(3] = [fy - z ~ l )rn,P , . . .  ,0] = (2 - z -1)^!,^ ,... , Ĵ,

2p* tim es p* tim es p3 tim es

since 2 — z~ l is central in FG. But by the same argument,

[7/1, ,jgj = (2 -  2-1)772

F1 tim es
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for some 172 € (FG)+ . That is,

[ a , - ,(3j = ( z - z  1)2772,
Ip3 tim es

for some 172 € (FG)+ . Iterating this procedure, we obtain

[a,/?,.~ ,/?J = -  z_1)%
tim es

for some qp 6  (FG )+ . But (z — z~ l )p =  0, and we conclude that (FG)+ is Lie 

p*+l-Engel. We are done.

If char F  =  0, and (FG)+ is Lie n-Engel, then (ZG)+ is Lie n-Engel. There­

fore, for any odd prime q, ((Z/qZ)G)+ is Lie n-Engel. Then by Lemma 3.4.4, 

G ~  Qs x E  x P , where F 2 =  1, and P  is a q-group, for each odd prime q. Thus, 

G ~  ^ 8  x E. In this case, (FG)+ is commutative by Lemma 3.1.4, hence (FG)+ 

is Lie n-Engel. □

3 .5 . Sk ew  e le m e n t s

The result of Giambruno and Sehgal (Theorem 3.1.3) showed that if (FG )-  is 

Lie nilpotent, and G contains no elements of order 2 , then FG  is Lie nilpotent. 

We cannot extend this to groups not containing the quaternions. For example, 

let G be a dihedral group, say

G =  (<x,r|<rr =  r 2 =  (err)2 =  1),

where r  > 3. If char F ^  2, then the elements of order 1 and 2 do not appear 

in the support of any skew elements of FG. (That is, these elements must have 

coefficient zero.) But for any *, («r‘r )2 =  1, hence (FG)-  =  (F(er))~, which is 

commutative. However, G is not even nilpotent unless it is a 2-group. Thus, by
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Theorem 3.1.2, FG  is not even Lie n-Engel, let alone Lie nilpotent. However, 

we will show that if G contains no 2-elements (excluding the identity, of course), 

and (FG)~ is Lie n-Engel, then FG  is Lie m-Engel, for some m. We begin with

Lem m a 3.5.1. Let G = (a, 6) be a group satisfying a -fc 1 and b~xab = a -1 . If 

G has no 2-elements, and char F ^ 2 , then (FG)~ is not Lie n-Engel, for any 

n.

Proof. Since a2 ^  1, we see that b is not centred, but b2 is. Hence, since there are 

no 2-elements, 6 has infinite order. Also, if a‘ is central for some integer i, then 

a - * =  b~lalb =  a ‘, which means that a2t =  1. Since there are no 2-elements, 

a* =  1. In particular, a2 is not central.

Suppose char F  =  p > 2, and (FG)~ is Lie pm-Engel, for some m > 0. Now, 

b2 € C(G), and b2 has infinite order. Thus, (C(G))2 is infinite. By Proposition 

3.1.8, FG  satisfies

0 =  [ x ,y - y * , . . .  , y - y * \  =  [x,(y -  t/*)pm].
'---------- V---------- -

p m times

Thus,

0 = [ab,bPm -b~Pm}.

Expanding this expression, we obtain

abl+p — abl~pm — bPm ab +  b~?m ab =  0 .

Since these are all group elements, we have three cases to consider.

(1) ab1+p =  a61-pm. Then b2pm = 1, hence b is torsion, which is impossible.

(2 ) abl+p = IP ab. Since 1 +  pm is even, 61+?m is central. Thus, 61+p a =  

hPm ab, and therefore, ba =  ab. But a is not central, and we have a 

contradiction.
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Thus, a2 = b2pm, which is central. Contradiction.

Therefore, (FG)~ is not Lie n-Engel, for any n.

Now, if F  has characteristic zero, and (FG)~ is Lie n-Engel, then so is (ZG)~, 

and therefore, ((Z/3Z )G)~ is Lie n-Engel. But we just saw that this is impossi­

ble. □

L em m a 3.5.2. Suppose G =  (a ,6), and [a — a~l ,b — 6-1 ] =  0. Suppose further 

that G has no 2-elements and F  is a field of characteristic different from 2. If 

(FG)~ is Lie n-Engel, then G is abelian.

Proof. Suppose G is not abelian. Expanding the equality [a — a - 1 , b — ft-1 ] =  0, 

we find that ab must be equal to at least one of the other group elements, namely

ab = a~1b, ab~x, a_ 16_1, 6a, 6a -1 , 6- 1a, o r 6- 1a~ l .

But G is not abelian, hence ab ^  6a. Also, a, 6, and ab are all different from 

1 (lest a and 6 commute). Since there are no 2-elements, a2, 62, and (a6)2 axe 

all different from 1 as well. Thus, ab ^  a - 16, a&-1 , or 6- 1a -1 . If a6 =  6a -1 , 

then 6- 1a6 =  a -1  and by Lemma 3.5.1, (a, 6) is abelian, which is not the case. 

Similarly, if ab =  6- 1a, then a6a -1  =  6-1  and Lemma 3.5.1 gives a contradiction. 

We conclude that a6 =  a - 16_1. That is, a2 — b~2. Certainly then, a2 6  C(^)» 

but a C(G)i and since there are no 2-elements, a has infinite order. Also,

0 =  [a -  a " 1, 6 -  6-1] =  [(1 -  a "2)a ,( l  -  6“2)6] =  (1 -  a~2)(l -  6" 2)[a,6]

since a -2  and 6-2  are central. Thus, for any positive integer k,

( l - a - 2* ) ( l - 6- 2)[a,6] =  ( l+ a - 2+ a"4+ . • •+ a -2(fc- 1)) ( l - a - 2) ( l - 6- 2)[a,6] =  0.
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Since the set {a 2k : k > 1} is infinite, Lemma 3.1.6 implies that (1 — 6 2)[a, 6] =  

0. By the same argument, [a, 6] =  0. We have a  contradiction. □

We may now proceed as we did with the symmetric elements.

L em m a 3.5.3. Let G be a group with no 2-elements. Suppose that char F  ^  2, 

and (FG)~ is Lie n-Engel. Then

(1) if char F  = p > 2, then Gpm C C(G), for some m > 0;

(2) if  char F  =  0, then G is abelian.

Proof. Suppose char F  =  p > 2, and (FG)~ is Lie pm-Engel. Take any a ,6 € G. 

Then

0 =  [a — a -1 , 6 — 6-1 , . . .  ,6 — 6-1] =  [a — a-1 , ^  — b~p ].
p m tim es

By Lemma 3.5.2, (a, 6pm) is abelian. That is, bp"' is central, as required.

If char F  = 0, then (ZG)~ is Lie n-Engel, and so, for any odd prime q, 

((Z/qZ)G)~  is Lie n-Engel. It follows from the first case that G/Q(G) is a q- 

group, for each such q. Thus, G =  C(G). □

This allows us to prove our main result about skew elements. We present

T heorem  3.5.4. Let G be a group with no 2-elements and let F  be a field with 

characteristic p ^  2. Then the following are equivalent:

(1) (FG )-  is Lie n-Engel, for some n;

(2) FG is Lie m-Engel, for some m; and,

(3) either

(i) p = 0 and G is abelian, or

(ii) p > 2, G is nilpotent, and there exists a normal subgroup A of G 

such that G f A and A ' are both finite p-groups.
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Proof. It is obvious that (2) implies (1), and by Theorem 3.1.2, (2) and (3) are 

equivalent. Thus, we assume that (FG)~ is Lie n-Engel and prove (3). If char 

F  = 0, then Lemma 3.5.3 does the job. Otherwise, since (FG)~  is Lie n-Engel, 

FG  satisfies the *-polynomial identity

[x — x*,y — y*, . . .  ,y - y * ] .
'  *  'n  tim es

Now, proceed as in the proof of Theorem 3.3.3. □

3 .6 . L ie  n i l p o t e n t  s y m m e t r ic  e l e m e n t s

Let us now turn our attention to the problem of classifying the groups, G, 

such that (FG)+ is Lie nilpotent. If G contains no 2-elements, then this has 

been handled in [GS]. First, let us broaden this result to groups which do not 

contain a copy of the quaternions.

Theorem  3 .6 .1 . Let F  be a field of characteristic 2, and let G be a group 

which does not contain Qs- Then the following are equivalent:

(1) (FG)+ is Lie nilpotent;

(2) FG is Lie nilpotent; and,

(3) G is nilpotent and p~abelian.

Proof Clearly, (2) implies (1), and by Theorem 3.1.1, (2) and (3) are equivalent. 

Thus, we have only to verify that (1) implies (3).

Since (FG)+ is Lie nilpotent, it is Lie n-Engel, for a suitable n. If char F  =  0, 

then by Lemma 3.3.2, G is abelian, as required. Suppose, therefore, that char 

F  = p > 2. By Theorem 3.3.3, G is nilpotent. In addition, (?/£((?) is a p- 

group of bounded exponent, by Lemma 3.3.2. Thus, by Theorem 2.2.4, G' is
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a p-group. It remains only to show that G' is finite. Suppose G contains an 

element x  of infinite order. By Lemma 3.3.2, xpm € C(G), for some m. Thus, 

(C(G))2 is infinite. By Proposition 3.1.5, FG  is Lie nilpotent, hence G' is finite, 

as required. Thus, we may assume that G is a torsion nilpotent group. Then, 

by Lemma 2.2.2, G is the restricted direct product Pq, where each Pq is the 

unique Sylow q-subgroup of G, and the product extends over all primes q. Thus, 

G' =  n ? Pq- Since G' is a p-group, G' =  Pp. Thus, we need only show that 

Pp is finite. Since (FPp)+ is Lie nilpotent, we may as well assume that G is a 

nilpotent p-group.

Our proof is by induction on the nilpotency class of G. If G is abelian, there 

is nothing to do. Otherwise, G / £ ( G )  has smaller nilpotency class, and by our 

inductive assumption, ( G /C ( G ) ) '  is finite. If C (G ) is infinite, then since G  is a 

p-group, (C ((?))2 =  C (G ), hence | ( C ( G ) ) 2 | = oo. By Proposition 3.1.5, F G  is 

Lie nilpotent, hence Gr is finite. Finally, if |C ((? ) | < o°> then since (G/£{G)Y = 

G 'C (G )/C (C ? ) is finite, we see that |G 'C (G ) | < oo, hence |G ' |  < oo. We are 

done. □

Of course, once we reduced the problem to the p-groups, we could have resolved 

the situation with an appeal to Theorem 3.1.3, but we included the proof here 

for the sake of completeness.

Now, let us consider the groups which contain the quaternions. We have

Lem m a 3.6.2. Let F  be a field of characteristic p 2, and G a group containing 

Qs such that (FG)+ is Lie nilpotent. Then

(1) i f  p  > 2, then G ~  Q& x  E  x P, where E 2 = 1 and P is a finite p-group, 

and

(2) i f  p  =  0, then G ~  Q$ x E , where E 2 = 1.

Proof. Since (FG)+ is Lie nilpotent, it is Lie n-Engel. Part (2) follows from 

Theorem 3.4.6. To prove (1), we use Theorem 3.4.6 to get G ~ Q & x E x P ,  where
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E 2 =  1 and P  is a p-group. Now, (P P )+ is Lie nilpotent, and Qg % P. Hence, 

by Theorem 3.6.1, P ' is finite. If P  is infinite, then P /P 1 is an infinite abelian p- 

group. Thus, (((Qg x £ x ( P / P ') ) )2 is infinite. Since (F(Qg x E x ( P / P ')))+ is Lie 

nilpotent, by Lemma 2.4.5, we see from Proposition 3.1.5 that F(Qg x E x (P /P')) 

is Lie nilpotent. But, since (Qg x  E  x (P /P 1))1 is not a  p-group, this contradicts 

Theorem 3.1.1. We are done. □

In fact, the converse of the last lemma is true as well. In [Leel], we showed 

this via a greatly simplified version of the lifting argument used in the proof of 

Theorem 3.4.6. However, we will reap the benefits later if we prove a slightly 

stronger result now.

Let R  be a ring, and A any subset of R. We define a sequence of (associative) 

ideals of R  as follows. Let A(0) =  R, and for each i > 0, let A(,+1) be the ideal 

generated by all of the Lie products [a,/?], with a  € A(,), (3 € A. We might say 

that A is strongly Lie nilpotent if A(n) =  (0) for some n.

Lem m a 3 .6 .3 . Let R  be a ring, and A any s-ubset of R. Suppose p. is central in 

R, and A(,) C pR, for some i. Then, for any j  > 0, A(;+J-) C pA(j).

Proof Our proof is by induction on j .  If j  =  0, there is nothing to do. Otherwise, 

we assume that A(j+J) C p \ j ) , and prove that A(t+y+1) C pA(J+1). But A(,+J+1) 

is generated by the Lie products [a,/3], where a 6  A(t+J), /? 6  A. However, 

A(i+y) C pA(j), hence a  =  p'y, for some 7  6  A(y). Thus,

[ot,0] =  [p7 ,/?] =  p[7 ,/?] e  pA(i+1), 

as p is centred. Since A(J+1) is an ideal, we axe done. □
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Lem m a 3.6.4. Let F  be a field of characteristic p >  2, and let G =  Qs x E  x P, 

where E 2 =  1 and |P | =  pm. Then ((FG)+ )(pm) = (0).

Proof Our proof is by induction on m. If m =  0, then G =  Qs x E. By Lemma 

3.1.4, {F(Qs x E ))+ is central in F(Qs x E), hence ((F(Qs x F ))+)(X) =  (0), 

as required. Suppose |P | =  pm+1, and the result holds for smaller P . Since 

P  is a finite p-group, we may choose z 6 C(P) sucb that o(z) =  p. Let G = 

@8 x E  x (P/(z)). By our inductive assumption, ((FG)+ )(pm) =  (0). That is,

((FG)+ )(,~ , c  a  p(G,<*)) =  _  i j r e .

Therefore, by Lemma 3.6.3,

((FG )+)(2,~ , C (* -  l)((FG )+ )(,» , C (z -  1)2FG.

Iterating this argument, we see that

((FG)+)(,.+ i)  C (z -  l)r FG  =  (0),

as required. □

Thus, if char F  = p > 2, and G =  Qs x E  x  P , where P 2 =  1 and |P | = pm, 

then for any oro,ai,. . .  , a pm 6 (FG)+ , we have

[a 0>a l> • • • , Ofpm] € ((PG)+ )(pm) =  (0)

and therefore (FG)+ is Lie nilpotent. (Indeed, it is strongly Lie nilpotent.) If 

char F  =  0. and G is a Hamiltonian 2-group, then (FG)+ is commutative, by 

Lemma 3.1.4. Combining this information with Lemma 3.6.2, we have proved 

our second main result on groups G for which (FG)+ is Lie nilpotent, namely
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T heorem  3.6.5. Let F  be a field of characteristic p  ^  2, and let G be a group 

containing the quaternions. Then (FG)+ is Lie nilpotent i f  and only i f  either

(1) p >  2 and G cz Qs x E  x P, where E 2 = 1 and P  is a finite p-group, or

(2) p =  0 and G ~  Qs x E , where E 2 =  1.

3 .7 .  T h e  c h a r a c t e r is t ic  2 c a s e

When the characteristic of F  is 2, there is no distinction between (FG)+ 

and (FG)~ . The papers on the subject of symmetric elements have all avoided 

characteristic 2, but with a small modification to our earlier proofs, we can handle 

the groups containing no 2-elements. Our result is

T heorem  3.7.1. Let F  be a field of characteristic 2, and G a group containing 

no 2-elements. Then the following are equivalent:

(1) (FG)+ is Lie n-Engel, for some n;

(2) FG is Lie m-Engel, for some m;

(3) {FG)+ is Lie nilpotent;

(4) FG is Lie nilpotent; and,

(5) G is abelian.

Since the implications (5) =>■ (4) =}► (3) =>• (1) and (5) =*► (2) => (1) are 

transparent, it will suffice to show that (1) =>■ (5). We start with

Lem m a 3.7.2. Let F  be a field of characteristic 2. Let G =  (a, 6) be a group 

satisfying a  ^  1 and b~*ab =  a -1 . I f G has no 2-elements, then (FG)+ is not 

Lie n-Engel.

Proof. Since a2 ^  1, and b~lab =  a -1 , we have 62 6 C(G), but b £ ((G). 

As there are no 2-elements, b has infinite order. Also, if a* is centred, then
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a * =  6 1atb =  a*, hence a2* = 1 . But G contains no 2-elements, and therefore, 

a*' =  1.

Now, suppose there exists an m >  0 such that (FG)+ is Lie 2m-Engel. Since 

b2 6 C(G), and o(b) =  oo, (£(G))2 is infinite. By Proposition 3.1.8, FG  satisfies

0 = [x,y+ y V . .  , y  + y*] = [x,(y-t-j/’)2”*].
^  ■ ■—V '

2m times
Thus,

0 =  [6, (ai2)2” +  (at2) - 2") = [6, + a ^ b ' 2”*'}.

Therefore,

6a2" V m+1 +6a~2m6-2m+1 + a 2m62m+l+1 + a - 2m61- 2’n+1 = 0 .

We must cancel the first term with another group element. There are three 

cases.

(1) ba2mb2m+1 =  6a-2" V 2m+l. Then a2m&2m+‘ = a -* " V 2m+\  and we ob­

tain a2m+l =  b~2m+2 6 C\G). Therefore, a2m+l =  1, and since there are 

no 2-elements, a =  1. Contradiction.

(2) &a2m&2m+I =  a2'n&2m+t+1. Then 6a2” =  a2” 6, hence a2"* 6 C(^)- ^  

case, a2"* = 1 and therefore, a =  1. Again, a contradiction.

(3) ba2mb2m+l =  a -2m&1-2m+I. However, 6a2™ = a -2"*6, and therefore, 

a- 2m£i+2m+1 =  a -2r"61_2m+1. Thus, &2"1*2 =  1, and b is torsion. This is 

also a contradiction.

Therefore, (FG)+ is not Lie n-Engel. □

Having proved Lemma 3.7.2, the proofs of Lemma 3.5.2 and Lemma 3.5.3 

follow verbatim for the characteristic 2 case. Thus, we have

L em m a 3.7.3. Let G be a group with no 2-elements, and F  a field of character­

istic 2. I f  (FG)+ is Lie n-Engel, then there exists an m such that G2 C £(G).

Finally, we have the
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Proof of Theorem 3.7.1. Suppose (FG)+ is Lie n-Engel. In view of Lemma 3.7.3, 

we use the proof of Theorem 3.3.3 to establish that G is nilpotent. By Lemma 

3.7.3 and Theorem 2.2.4, G' is a 2-group. But G has no 2-elements, and we 

conclude that G is abelian. □
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Chapter 4

SYM M ETR IC  U N IT S IN  G R O U P R IN G S

4.1. Background to the problem

We now turn our attention to the unit group of FG  and, in particular, the 

symmetric units. In any ring, R, with identity, by a unit of R  we mean an element 

with a two-sided multiplicative inverse. We write U{R) for the group of units 

of R. If R  has an involution, *, then we let U+(R) denote the set of symmetric 

units. That is,

U+(R) = {a € U {R ) :a* =  a}.

We wish to know how the symmetric units influence the structure of the unit 

group of the group ring.

Let us begin with some results about U(FG). First of all, let H  be any group. 

We say that H  satisfies a group identity if there exists a nontrivial reduced word 

w(x i , . . .  , x n) in the free group with generators x i , . . .  , x„ (for some n > 1) such 

that

w (hit . . .  ,h n) =  1 

for all h i , . . .  ,h n G H. We see, for instance, that

(1) an abelian group would satisfy the identity x f 1x J 1xjX2;

A version of this chapter has been subm itted for publication. G. T . Lee, Nilpotent sym m etric  
un its in  group rings, subm itted to  Communications in Algebra.
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(2) a group of bounded exponent would satisfy x* for some k > 1; and,

(3) a nilpotent group would satisfy the identity

(x i ,  X 2 , .  . .  ,  X n )

for some n > 2.

On the other hand, a nonabelian free group does not satisfy any group identity.

Let G be a torsion group and F  a field. We might wonder when U(FG) 

satisfies a group identity. The following result was conjectured by Hartley. It 

was established for infinite fields when char F  =  0 or char F  = p >  0 and G is a 

p'-group by Giambruno-Jespers-Valenti [GJV]. It was then extended to arbitrary 

torsion groups by Giambruno-Sehgal-Valenti [GSV1]. The finite field case was 

handled by Liu (in [Liu]).

T heorem  4.1.1. Let G be a torsion group and F  a field. If U{FG) satisfies a 

group identity, then FG satisfies a polynomial identity.

Proof. See [Liu, Theorem 1.1]. □

In fact, Passman [Pas2] and Liu-Passman [LP] have found a necessary and 

sufficient condition forW(FG) to satisfy a group identity. (For the characteristic 

zero case, this had already been done in [GSVl].) These results may be summed 

up as follows.

T heorem  4.1.2. Let G be a torsion group and F  a field of characteristic p > 0. 

I f  p =  0, then U(FG) satisfies a group identity if and only i f  G is abelian. If  

p > 0, then U(FG) satisfies a group identity if and only i f  G has a p-abelian 

normal subgroup of finite index, and either

(1) G' is a p-group of bounded exponent, or

(2) G has bounded exponent and F  is finite.
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Proof. For the characteristic zero case, see [GSV1, Lemma 2.3]. The positive 

characteristic case may be found in Theorems 1.1 and 1.2 of [LP]. □

We are interested in one particular group identity, and that is nilpotency. 

The conditions under which U(FG) is nilpotent were determined long before the 

more general results on group identities were proved. The finite groups were 

handled by Bateman-Coleman, and the general case was dealt with by Khripta 

and Fisher-Parmenter-Sehgal. Their results are summarized in the next two 

theorems.

T heorem  4.1.3. Let F  be a field of characteristic p > 0, and let G be a group 

containing a central element of order p. Then U(FG) is nilpotent if and only if 

G is nilpotent and G' is a finite p-group.

Proof. See [Sehl, Theorem VT.3.1]. □

Now, if U(FG) is nilpotent, then since U(FG) contains G, G is nilpotent. 

Thus, if G contains an element of order p, it must contain such an element in its 

centre. Also, by Lemma 2.2.2, the torsion elements of G form a subgroup, T(G). 

Thus, the remaining case is covered by

T heorem  4.1.4. Let F  be a field of characteristic p > 0, and let G be a group 

containing no p-elements (if p >  Oj. Then U{FG) is nilpotent if and only if G 

is nilpotent and either

(1) T(G) is central in G, or

(2) |F | =  p, a Mersenne prime, T{G) is an abelian group of exponent p2 — 1, 

and for all x  6 G, and all t 6 T{G), x~l tx — i or tp.

Proof. See [Sehl, Theorem VI.3.6]. □
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We recall that a Mersenne prime is a prime of the form 2* — 1 for some positive 

integer k.

Now, if 5  is a subset of a group, we say that S  satisfies the group identity 

w (x i,. . .  ,x„) if

w {s i,...  ,s„) =  1

for all s j , . . .  ,s n € S. Our interest, naturally, lies in the set U+(FG). The first 

results about U+(FG) were the following, which form the main result of [GSV2].

T heorem  4.1.5 (G iam bruno-Sehgal-V alenti). Let F  be an infinite field of 

characteristic different from 2, and G a torsion group not containing Qs. Then 

U+(FG) satisfies a group identity if  and only ifU(FG) satisfies a group identity.

T heorem  4.1.6 (G iam bruno-Sehgal-V alenti). Let F  be an infinite field, and 

G a torsion group containing Qs. I f char F  =  0, then U+(FG) satisfies a group 

identity if and only if G is a Hamiltonian 2-group. I f  char F  =  p > 2, then 

U*{FG) satisfies a group identity if and only if G contains a p-abelian subgroup 

of finite index, and the p-elements of G form a normal subgroup P of G, of 

bounded exponent, such that G /P  is a Hamiltonian 2-group.

Our contribution in this chapter will be to classify the torsion groups, G, for 

which U+(FG) is nilpotent, when char F  ^  2. Since U+(FG) is not, in general, 

a group, we had better explain what this means.

D efinition 4.1.7. Let H  be a group, and S  a subset of H. Then we say that S  

is nilpotent provided S  satisfies the group identity

(xi,X 2 , . . .  ,x n)

for some n > 2.
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We shall see later that it is easy to verify that this definition, is equivalent to 

saying that the subgroup of H  generated by S  is nilpotent.

The results in [GSV2] were for infinite fields. Clearly, this restriction was 

necessary, since if \F\ < oo, and |G| < oo, then Li(FG) is a finite group, hence it 

certainly satisfies a group identity, and therefore U+(FG) satisfies a group iden­

tity, irrespective of the structure of G. However, under the stronger hypothesis 

that U+(FG) is nilpotent, we will be able to accommodate finite fields. Thus, 

we will not be able to use the results from [GSV2] directly, although we can do 

so if char F  =  0. Let us dispense with that case now.

P roposition  4.1.8. Let F  be a field of characteristic zero, and G a torsion 

group. Then U+{FG) is nilpotent if and only if G is abelian or a Hamiltonian 

2-group.

Proof. Since |F | =  oo and U+(FG) satisfies a group identity, Theorems 4.1.2, 

4.1.5 and 4.1.6 tell us that G is abelian or a Hamiltonian 2-group. Conversely, if 

G is abelian or a Hamiltonian 2-group, then by Lemma 3.1.4, (FG)+ is commu­

tative, hence W+ (FG) is commutative, and we are done. □

Thus, we need only consider fields of odd characteristic p. Our plan of attack 

is the following. We want to deal with finite groups first, and then generalize our 

results to locally finite groups. One problem we shall have to overcome will be 

the groups which have no finite normal subgroups at all; that is, the groups G for 

which FG  is a prime ring. Therefore, we will tackle that problem immediately. 

After we have handled the locally finite groups, we will show that if U+(FG) is 

nilpotent, then G is hypercentral, which will complete our work in this chapter.
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4 .2 .  P r im e  r in g s

In this section, we will eliminate the prime group rings from consideration. 

Our result is

P roposition  4.2.1. Let F  be a field of characteristic different from 2, and G 

a torsion group, such that FG is a prime ring. I f U+(FG) satisfies a group 

identity, then G is the trivial group.

In order to prove this, we are going to need some generalizations of polynomial 

identities. Our discussion here will be slightly informal, and we refer the reader 

to [Row] for the more formal definitions.

Let R  be an F-algebra with identity. Then a generalized polynomial identity 

(GPI) for R  is a function

m

/ ( z j , . .  . , Z „ )  —  ^  '  h i ( x  i , . .  .  ,  I n ) ,

«=1

where each hi is an expression of the form

aox^aiX n •■■Qk-iXjkak,

where the z,- are noncommuting indeterminates, with each a t 6 R, each jt  6 

{1 ,... ,n}, and such that

/ ( r i j • • • ,r„ ) =  0

for all r i , . . .  , r„ € R. The terms h{ are called the monomials of / .  The GPI /  

is said to be multilinear if, for each indeterminate z,- appearing in / ,  z t- appears 

exactly once in each monomial of / .  Thus, the multilinear GPI’s Eire precisely 

the functions of the form

f{ ^  1»*-- »■£»») =  f
0-6 S„
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where Sn is the symmetric group on n letters, and

a,,
/  (^ 1 )  i^ n )  =  ^  ] a 0,<r,jx a ( l ) Ocl,ir ,jx a(2) a n —l,<r,jXo{n )Ctn,tr,ji

J = 1

with each ar,->OV7- € R, each a„ and n a positive integer, such that

/ (n , - . .  ,r„) = 0

for all 7*1, . . .  , r n € R. This GPI is said to be nondegenerate (or proper) if, for 

some <r € Sn, f a(x \ , . . .  ,r „ )  is not itself a GPI for R. Otherwise, /  is said to be 

degenerate.

This is useful to us because of

T heorem  4.2.2 (P assm an). Let F  be a field and G a group. Then FG satisfies 

a nondegenerate multilinear GPI if and only if (G : 4>{G)) < oo and (<j>(G))' is 

finite.

Proof. See [Pasl, Theorem 5.3.15]. □

Now, suppose R  has an involution, *. Then a ^-generalized polynomial identity 

(*-GPI) for R  is a function
m 

«=i

where each h{ is an expression of the form

Q°zi iQlXi2 " ' a * -ix}*a fc» 

with each a t 6  R , each j t € {1, . .  - ,n}, each et € {1, *}, and such that

,r„ ,r* ) =  0

for all r j , . . .  , r n € R. We say that /  is multilinear if, for each indeterminate x,- 

such that either x* or x* appears in / ,  we have exactly one of {xt-,x*} appearing
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in each monomial of f .  (Thus, for instance, x\Xz +  x*X2  is multilinear, but x ix j 

is not.) In general, then, the multilinear *-GPI’s are the functions of the form

 »..*;)= E  E  E  f 1" '  '-'(x..*!,.

such that if we let r  =  (<x, , . . .  , e„), then

Hr
f T(x , Xn ,X*) =  ^ a o ^ x ^ r j x ^  ■ *' Zr1n)<Xn,r,j

}=l

with each Qi,r,j 6 R, each aT and n a positive integer, and such that

/ ( r i , r * , . . .  ,r „ ,r* ) =  0

for all r i , . . .  , r n € R.

Suppose /  is the above multilinear *-GPI. For each <r 6 Sn, and each

e i , . . .  , e „  € { 1,*},

let

be the expression obtained by replacing x* with xn+j, for 1 < i < n, in

/ (<r’ei.... - W i , . . .  ,a:n,x;).

Then we say that /  is nondegenerate if, for some a ,e i , . . .  ,en, we find that 
g ( < r , e i , . . . , e n ) js no{. a Q pj for f t  (Otherwise, /  is degenerate.)

Amitsur’s result, that if R  satisfies a *-polynomial identity, then it satisfies a 

polynomial identity, does not generalize to *-GPI’s. However, for prime rings, 

everything works out.
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T heorem  4.2.3 (Rowen). Let R  be an F-algebra with identity, such that R  

satisfies a nondegenerate multilinear *-GPI. I f  R  is a prime ring, then R  satisfies 

a nondegenerate multilinear GPI.

Proof. See [Row, Theorem 9]. □

Therefore, we have

C orollary 4.2.4. Let F  be a field and G a torsion group such that FG is prime. 

I f  FG satisfies a nondegenerate, multilinear *-GPI, then G is the trivial group.

Proof. Combining the last two theorems, we see that (G : <£((?)) < oo. Since 

FG  is prime, Theorem 2.3.3 tells us that 4>(G) is torsion-free. But G is torsion, 

hence <f>{G) =  1. Thus G is finite, hence G = <j>(G) =  1, as required. □

In [Row], Rowen describes a standard multilinearization process; that is, a 

means of obtaining a multilinear GPI from any GPI, or a multilinear *-GPI from 

any *-GPI. As we are interested in the form of the resulting multilinear identity, 

and not just its existence, we will discuss the multilinearization process. Since 

GPI’s are a special case of *-GPI’s, we will only discuss *-GPI’s.

Suppose we have a *-GPI, f [ x \ , x \ , . .. ,x„,x*), for R. First, we want to 

obtain a *-GPI such that if either x,- or x* occurs in it, then at least one of 

{x,-, x*} occurs in each monomial, for every i. Suppose, without loss of generality, 

that either x\ or xj occurs in / ,  but there exists a monomial h of /  in which 

neither of these occurs. Let

f  (^2 j ̂ 21 • • * > ®n> 3Tn) =  / (0 ,0, X2, )*

Certainly, / '  is a *-GPI for R, and the monomial h remains in / ' .  Furthermore, 

there are fewer indeterminates in f  than in / ,  so this process must stop, lest we
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run out of variables. Thus, we may assume that our GPI is / ( x j , x*,. . .  , xn, x*), 

and for each i, 1 < z <  n, either x,- or x* (or both) will occur in each monomial 

o f f .

In any monomial of / ,  the degree of the i-th indeterminate will be the sum of 

the degrees of x,- and x*. The degree of the monomial is the sum of the degrees 

of all of the indeterminates, and the degree of /  is the maximum of the degrees 

of all of the monomials. Let t be the degree of / ,  less n. If t =  0, then it is easy 

to see that /  is multilinear (since all n indeterminates occur in each monomial). 

Otherwise, choose an i such that for some monomial, h, of / ,  h is not linear in 

the i-th indeterminate. That is, either x; or x* occurs twice, or both of them 

occur. Without loss of generality, let us say * =  1. Then, let

f  ( • * - 1 » » *  - - » x  j»» x n i  x n + l  j ® n + l ) =  f i x 1 "1” ^ n + 1 »*^i "I" -^n-H ’ ^ 2  j x 2 > • * * x n )

~ f { x l ■> x li x2i x2i • • • 

f ( . x n + l i x n + l i x 2 y x 2 i ’ "

Clearly f "  is a *-GPI for f?, and f "  has degree less than or equal to the degree 

of / .  Also, we see that for each j ,  1 < j  < n + 1, at least one of {x; , x*} occurs 

in every monomial of f " .  Thus, the value t is smaller for f n and, by induction, 

we may use this process to obtain a multilinear *-GPI for R.

As we mentioned earlier, we want to know how this process applies to partic­

ular *-GPI’s. Suppose / (x i ,x j )  is a *-GPI for R  of degree n. Then

/" (x 1,x j ,x 2,x ;)  =  /(X! + x 2,x j -fXj) - / ( x i , x j )  -  / ( x 2,X2).

For each monomial of /  of degree m, /(x i + x 2,Xj +X2) gives us 2m monomials, 

obtained by replacing each xj*’ with either x*‘ or x^’, in every possible way, where 

e,- is a fixed element of {I,*}. Subtracting / ( x i , x*) and / (x 2 ,x |) ,  we remove 

those monomials containing only Xj*, or only xe2‘. Thus, the degree of the first 

indeterminate of each monomial is reduced by at least one from the original 

/ .  We are going to perform this step n — 1 times. Thus, we may ignore any
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monomials of degree less than n, as well as any monomials for which the degree 

of the first indeterminate drops by more than 1 at any given step. Therefore, we 

shall assume that / ( x i , xj) only consisted of monomials of degree n. Thus, in / " ,  

each such monomial was replaced by n monomials, in each of which exactly one 

xi (or Xj) was replaced by x-i (or x£, respectively), plus some irrelevant terms. 

Performing this step again, each of the monomials of / "  will be replaced with 

n — 1 monomials obtained by replacing exactly one x\ (or x*) with 13 (or X3, 

respectively). Iterating this, we obtain

Lem m a 4.2.5. Let f ( x i ,x \ )  be a *-GPI of degree n for R. Suppose h i , . . .  ,hk 

are the monomials of f  of degree n. Then R satisfies the multilinear *-GPI 

which is the sum of the (n\)k monomials we get by replacing each hi with the 

n! monomials obtained by substituting each permutation of { x j,. . .  ,x n} for the 

various occurrences of x i, leaving any and all * ’s in place.

For instance, if

/(x ! ,x i)  = x 1x jx 1 Xj,

then the only monomial of degree 3 is x ix jx t, and we obtain the multilinear 

*-GPI

T .  X <r(l)X <r(2)X <r(3)'
<t€S3

Of course, it remains to be seen whether any of the multilinear *-GPI’s so pro­

duced will turn out to be nondegenerate.

We will use these *-GPI’s repeatedly, beginning with

Lem m a 4.2.6. Let F  be a field and G a torsion group such that FG is prime. 

Suppose we have a  6 F, a 6 FG, and a positive integer n such that

(ar(a — a)r*)n =  0 
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for all r  € FG . Then a =  0 or a.

Proof. We see that FG  satisfies the *-GPI

(axi(a — a)xj)n.

Multilinearizing this expression, Lemma 4.2.5 tells us that FG  satisfies the mul­

tilinear *-GPI

~  a )X a( 2) a x <r(2n—\){.a  ~  a ) X o ( 2 n ) '

If this is nondegenerate, then by Corollary 4.2.4, G =  1, in which case the result 

is trivial. Thus, we may assume that this *-GPI is degenerate. Letting X2n+i = 

x j , . . .  , X4„ =  x 2 n, we see that the term in which precisely the indeterminates

7 * ^ 2 n + 2 ?  *^3  ? ^ - 2 n + 4  7 -  * - ? 2 T 2 n —

occur, in that order, must vanish on FG. That is,

ax 1 (a -  a)x2n+2 • • ■ ax2n- i  (a  -  a)x4„ =  0

for all X,- 6  FG. But then, for any xo 6  FG , we have

xoaxi (a — a)x2n+2 • * * a^2n -i (a — a)z4n =  0 .

However, letting Ii be the ideal generated by a, and I2 the ideal generated by 

a — a, we note that an arbitrary element of (I\ I2)n is a stun of terms of this form. 

Thus, (I\I2)n =  (0). Since FG  is prime, I\ =  (0) or I2 — (0). That is, a =  0 or 

a — a =  0. □

As an immediate consequence, we have

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lem m a 4.2.7. I f  G is torsion, FG is prime, a € (FG)+, and for some n > 1, 

we have (as)” =  0 for all s 6 (FG)+, then a = 0.

Proof. If r  6 FG, then rar* 6 (FG)+, and therefore (arar*)” =  0. Apply 

Lemma 4.2.6 with a  =  0. □

Now, let us see what a group identity can do for us. First, let us restrict the 

form of the group identity.

L em m a 4.2.8. Let R  be an F-algebra with involution, and suppose that U*{R) 

satisfies a group identity. Then U+(R) satisfies a group identity of the form

. . . x 'kyiH

with k > 1, and each exponent different from zero.

Proof. Suppose U +(R) satisfies ti;( r j,... ,x„). For any a ,(3 € U+(R), and any 

positive integer i, fi'a fi' 6 U+(R). Thus, substituting x lyx l for x,- in w, we get 

a group identity, v , in two variables. Clearly, none of the y's will be cancelled, 

since w is reduced, hence v is nontrivial. Also,

u(x, y) = x*1 yJ1 • • • x,fc t/Jfc x ,fc+t,

where A: > 1, and all of the exponents are nonzero. Then conjugating by x“ ,fc+1, 

U+(R) satisfies

x ‘l yJ* x ‘3 — x*fc y*h.

If t’i +  ik+1 i=- 0, then we axe done. Otherwise, U+(R) satisfies

y j l  y J 2  y J k  ?

hence it also satisfies
y h + h x i * y h  ...x 'k  
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Interchanging x and y, U + (R) satisfies

£ Jl + Jfc yil £.72 . . . y*fc

which is of the correct form unless j \  +  jk  =  0. This process must eventually 

stop, since the identity v is nontrivial, and we are left with an identity which is 

either of the proper form, or of the form xl for some f ^  0. (Substituting x-1 for 

x  if necessary, we may assume t > 0.) In the latter case, substituting xyx  for x, 

we see that U+(R) satisfies x(yx2)t~1yx, hence it also satisfies x2(yx2)t~i y, and 

we are done. □

We can now place a restriction upon the square-zero elements of FG.

L em m a 4.2.9. Suppose G is torsion, char F  ^  2, FG is prime and U+{FG) 

satisfies a group identity. Then there exists a positive integer n such that for all 

a 6 FG with a2 =  0, we have (a*a)n =  0.

Proof. By Lemma 4.2.8, we may assume that U+{FG) satisfies the group identity 

w(x,y) =  xu yJ1 • • •x tky3k, where A: > 1 and all of the exponents are nonzero. 

Replacing x with x-1 or y with y~l if necessary, we may also assume that i\ > 0 

and j k < 0.

Take a 6 FG  such that a2 = 0 . Then ( l+ a )( l+ a * ) ,( l+ a * )( l+ a )  6 U+(FG), 

hence

1 =  u;((l +  a)(l + a * ),( l + a* )(l + a ))

=  ((1 +  a)(l +  a*))il - • • ((1 +  a*)(l +  a))>'*.

Expanding this expression, and noting that (1 -I- a)-1 =  1 — a and (1 +  a*)-1 =  

1 — a*, we obtain a product of terms of the form 1 ±  a and 1 ±  a*, with no more 

than 2 consecutive 1 ±  a terms and no more them 2 consecutive 1 ±  a* terms.
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Also, 1 +  a and 1 — a are never consecutive, and neither are 1 -f a* and 1 — a*. 

That is, we have an expression of the form

1 =  (1 +  a)(l +  Aja*)(l +  A2<j)(1 +  A3a*) — (1 +  Ama)(l — a*)

where each A; € {±1,±2}, and the first and last terms are correct, since ii >  0, 

j k  <  0 .

Now, expanding this expression, and discarding all terms containing a2 or 

(a*)2, we get a sum of terms of the form ±2&(a*)#*1 {aa*)qa>i'2, where q > 0 ,b > 0 ,  

and each m  € {0,1}. Multiplying on the left by a*, the terms in which =  1 

yield (a*)2 on the left, and we discard these terms. Then, multiplying on the 

right by a, the terms in which p i =  1 give a2 on the right, and we discard these 

terms as well. Thus, we are left with a polynomial in a* a. Furthermore, in 

the expression (1 +  a)(l + Aja*) • • • (1 — a*), the only term of highest degree is 

—Ai • • • Amaa* • • • aa*. Since each A,- is ±1 or ±2, and the characteristic is not 2, 

this is not the zero monomial, and since p.i =  /j2 =  0 for this monomial, we did 

not discard it when we multiplied by a* on the left and a on the right, so this 

polynomial is not trivial.

Thus, there exists a nonzero polynomial f(x )  = £ f =1 ptr ‘, d > 0, pi € F, 

Pi =  1, such that f{a*a) = 0 for all a € FG  such that a2 =  0. (Since the case 

a =  0 must be considered, there is no constant term.) In particular, if y € FG, 

then (aya)2 =  0, and therefore

d
0 =  f{a*y*a*aya) =  pi{a*y*a*aya)'.

i=i

Multilinearizing this expression, Lemma 4.2.5 reveals that FG  satisfies the mul­

tilinear *-GPI

a*y*<T(\)a*ayoW)a ' ■ ‘ a*ya(2 d-l)a*ay<r(2 d)a-

If this is nondegenerate, then by Corollary 4.2.4, (7 = 1 , and there is nothing to 

do. Let us assume, therefore, that the expression is degenerate for all a € FG
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with a2 =  0. Substituting y2d+i =  y*» • • • > V*d =  we ^now tha.t FG  must 

satisfy the term in which the indeterminates

y2d+i,y2 ,y2 d+s, 1/4 , •• • ,  y4d-i, y2d

occur, in that order. That is,

a* y2d+1a* ay2aa* y2d+3 a* • • • ay2da = 0

for all yi 6 FG. Letting y2d+i = V2 d+ 3  = ••■ = a, and y2 = yA =  • • • =  a*, we 

get (a*a)3d =  0, as required. □

Lem m a 4.2.10. Suppose G is torsion, char F  ^  2, FG is prime and U+(FG) 

satisfies a group identity. Then there exists a positive integer n such that if  

s, t € (FG)+ and s2 =  f2 =  0, then (stsd)n =  0 for all d 6 (FG)+.

Proof. By Lemma 4.2.8, we may assume that U+(FG) satisfies the group identity 

w(x,y) =  x^t/-71 • • • x ,k y*k, where k  > 1 and all of the exponents are nonzero. 

Take any s ,t  € (FG)+ , such that s2 =  t2 = 0. Then (1 +  s)(l + i)(l + s) and 

(1 +  t)(l +  s)(l +  t) are symmetric units. Indeed, ((1 +  s)(l + t)( 1 +  s))-1 = 

(1—s)( l—t ) ( l—s). Thenweobtain 1 =  to ( ( l+ f ) ( l+ s ) ( l+ f ) ,( l+ s ) ( l+ 0 ( l+ s))> 

which is a product of terms of the form 1 ±  s and 1 ± t ,  with no more than two 

consecutive identical terms. Also, 1 +  s and 1 — s do not occur together, nor 

do 1 + 1 and 1 — t. Just as we did in the proof of Lemma 4.2.9, we obtain a 

nontrivial polynomial f(x) =  Yli=i P&'i where Pi € F  for all i, and pc = 1, such 

that f(s t)  =  0 if s ,t  6 (FG)+ , s2 = t 2 = 0. This polynomial depends only upon 

the group identity.

In particular, if y 6 FG, then s(y +  y*)s,t(y + y*)t 6 (FG)+ , and

(s(y + y*)s)2 =  (%  +  y*)t)2 =  0.
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Thus,
C

o =  f(s (y  + y*)st(y + y*)t) =  Pi(s(y +  y*)st{y +  y*)t)'.
i=1

Multilineaxizing this expression, we discover that FG  satisfies the multilinear 

*-GPI

o'GSae «;€{I,*}

If this is nondegenerate, then by Corollary 4.2.4, G =  1, and the result holds. 

Thus, we may assume that this *-GPI is degenerate for all s, t € (FG)+ satisfying 

s2 =  t2 =  0. Substituting t/2c+i =  J/i, • • • ,J/4c =  y |c> we that the term in 

which the indeterminates y i, ?/2 > • • • , y2c occur, in that order, must vanish on FG. 

That is, FG  satisfies syisty 2 tsy3 s • • • ty2 Ct- Let y\ = yz =  • • • =  j/2c-i =  t, and 

y2 =  y4 =  • • • =  y2c =  5. Then we obtain (st)3c =  0.

Finally, take any d 6 (FG)+. Then (sds)2 = 0, and sds € (FG)+ , hence 

by the result we have just seen, (tsds)3c =  0. Therefore, (stsd)3c+l =  0, as 

required. □

Now, let us restrict the nilpotent elements of (FG)+ . (Here, of course, we 

mean an element t such that tk =  0, for some A:.)

Lem m a 4.2.11. Suppose char F  2, G is torsion, FG is prime and U+(FG) 

satisfies a group identity. Let s 6 (FG)+ satisfy s2 = 0, and let t be a nilpotent 

element of (FG)+ . Then sts =  0.

Proof. Let m be the smallest positive integer such that tm = 0. Our proof is 

by induction on m. If m  =  1, there is nothing to do. If m =  2, then t2 =  0, 

hence by Lemma 4.2.10, (stsd)n = 0 for all d 6 (FG)+ . Therefore, by Lemma 

4.2.7, sts =  0, as required. Now, suppose m > 2. Then 2(m — 1) > m, hence 

(f2)m—1 =  0. Thus, by our inductive hypothesis, st2s =  0. For any d 6 (FG)+ , 

tsdst 6  (FG)+ , and (tsdst)2 =  tsd(st2s)dst = 0. By the m = 2 case, stsdsts = 0.
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Thus, (stsd)2 = 0 for all d € (FG)+ , and by Lemma 4.2.7, sts =  0. We are 

done. □

Next, we show that the symmetric idempotents of FG  must be trivial.

L em m a 4.2.12. Suppose G is torsion and char F  2. I f  FG is prime and 

U+(FG) satisfies a group identity, then the only symmetric idempotents of FG 

are 0 and 1.

Proof. Let /  € (FG)+ be an idempotent. Then since ( /  — 1)/ =  0, for any 

r  6 FG, we have ( / r ( /  — l))2 =  0. Of course, ({ f r ( f  — l))*)2 =  0, and therefore 

Lemma 4.2.9 implies that there exists an n such that { f r ( f — l ) ( / r ( / — 1))* )n =  0. 

That is,

o = ( M f  -  1 ) V / ) n = ( f r ( i  -  f ) r ' f ) n ,

since /  is a symmetric idempotent. Again, since f 2 = f ,  it follows that

( / r ( l - / ) r - ) ”+ l = 0  

for all r  € FG. By Lemma 4.2.6, /  =  0 or 1. □

This allows us to eliminate the prime case entirely. We close the section with 

the

Proof of Proposition 4.2.1. If char F  =  0, then by Theorems 4.1.2, 4.1.5 and 

4.1.6, G is abelian or a Hamiltonian 2-group. Any such torsion group certainly 

has a nontrivial finite normal subgroup, unless G = l, hence by Theorem 2.3.3, 

FG  is not prime unless G =  1. Thus, we may assume char F  =  p >  2. Suppose 

G has a p'-element, z. Letting z =  ^,i=i x i we see that ^ y z  is a symmetric 

idempotent of FG. Thus, by Lemma 4.2.12, z =  1, and therefore G is a p-group.
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If G ^  1, take g € C? such that o(p) =  p. Also, take any h 6 G, say o(h) =  p*. 

Then (p)2 =  0, and (h + h -1 — 2)p* =  0. Clearly, g and h+ h~ x — 2 are symmetric. 

Thus, by Lemma 4.2.11,

g(h +  h_1 -  2)p =  0 

and expanding this, we obtain

ghg + gh~xg =  0,

since (p)2 =  0. Write this as a sum of group elements. If the elements appearing 

in ghg are pairwise distinct, and so are the elements appearing in gh~lg, then 

each group element appears at most twice. But char F  > 2, so we do not get 

zero, and this is a contradiction. Suppose, then, that two elements appearing in 

ghg agree. Let us say

gahgb =  gchgd,

where a, 6, c, d are integers, with 0 < a, 6, c, d < p, and either a ^  c or 6 ^  d. 

Then

(S' / i ) - y f c = j V ) - 1,

hence

h - 1ga- ch = g d- b.

If a = c, then =  1, hence b =  d as well, and we have a contradiction. Thus, 

o - c ^ 0 .  Since —p <  a — c < p and a — c ^  0, and since p has prime order p, we 

have (p°-c ) =  (p). Thus, p =  (p°-c )m for some m, and therefore, h normalizes 

(p). If two elements appearing in gh~lg agree, then h~x normalizes (p), hence 

h normalizes (p). But h was arbitrary, and therefore, G has a nontrivial finite 

normal subgroup, (p). This contradicts Theorem 2.3.3, since FG  is prime. □
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4 .3 .  F i n i t e  g r o u p  r i n g s

Our goal here is to classify the finite groups G such that U+(FG) is nilpotent. 

We will, in fact, prove a slightly stronger result, namely

Proposition  4.3.1. Let G be a locally finite group, and F  a field of characteristic 

p > 2. Suppose l l+(FG) is nilpotent. Then G cz P  x A, where P  is a p-group, 

and A is a p'-group, such that A  is abelian or a Hamiltonian 2-group.

In fact, for finite groups G of the form P  x A  described in the proposition, we 

will see in §4.5 that U+(FG) is nilpotent. We mentioned earlier that if a subset 

of a group is nilpotent, then the subgroup generated by that subset is a nilpotent 

group. Let us prove this fact now.

Lem m a 4.3.2. Let H  be a group and X  a subset of H which generates H. If, for 

some n > 2 ,  (xj,X2,. . .  ,x„) =  1 for all x  i , . . .  ,x n 6  X , then (h \ ,h z , . . .  ,h n) = 

1 for all h \ , . . .  ,h n € H.

Proof. Our proof is by induction on n. If n =  2, then the X{ 6 X  commute and 

since they generate H, H  is abelian. Suppose our result holds for n, and that 

(x i, . . .  , xn+i) =  1 for all Xj € X .  Then for every x \ , . . .  , xn € X ,  (x i, . . .  , x„) 

commutes with every xn+i € X ,  hence with {X) =  H. Thus, (x j, . . .  , x„) 6 

C(H). Let H = H/C(H). Then (xx, . . .  ,x n) =  I, for all x, 6 X .  But {X) = H, 

and our inductive assumption guarantees that (h i , . . .  ,h n) =  1 for all hi € H. 

That is, j * *» j ^n) G , hence ^hi, . . .  , hj ,̂ h,i^ i) “  I for all hi € H. □

We also need the following result. If 5  is a subset of a ring R, then its (left) 

annihilator is the set

,4(S) =  {r 6  R  : rs =  0 for all s € 5}.
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If H  is any finite subgroup of G, then we write H  =  YlheH  ^ *= ^G .

Lem m a 4.3.3. Let N  be a normal subgroup of G, and F  a field. I f  |iV| =  oo, 

then the annihilator of A F(G,iV) is {0}. I f  \N\ < oo, then the annihilator of 

A f (G,N) is (F G )N , and the annihilator of N  is A f {G,N).

Proof. See [Sehl, Proposition III.4.18]. □

In [Pas2, Lemma 2.1], it was shown that if U(FG) satisfies a group identity w, 

then for any normal subgroup N  of G, U(F(G/N)) satisfies w as well. In [GSV2, 

Remark 4], it was observed that a similar proof works for U+(FG). But these 

proofs depended upon knowing some properties of G which were deduced from the 

fact that U(FG) or U+(FG) satisfies a group identity. In particular, in [GSV2], 

they implicitly used the infinitude of field elements. We will eventually see that 

if U+(FG) satisfies (r  j , . . .  , r„ ) for some n > 2, then so does U+(F(G/N)) (for 

torsion groups G and fields F  of characteristic different from 2). For now, we 

have

Lem m a 4.3.4. Let G be a group, and F  a field of characteristic p > 2 such that 

l i+(FG) satisfies the group identity (x i , . . .  ,xn), for a fixed n > 2 . Let N  be a 

finite normal subgroup of G. If N  is a p-group or a p'-group, then U+(F(G/N)) 

satisfies ( x i , . . .  ,xn) as well.

Proof. Suppose N  is a p-group. Let es : FG  —► F (G /N )  be the natural 

homomorphism. Of course, e^((FG)+) =  (F(G/N))+ , hence for any /? 6  

U^(F(G/N)), we may choose a 6  (FG)+ such that ejv(a) =  j3. Now, (3 is a 

unit, hence there exists v € F(G/N)  such that (3v =  1. Choosing p 6 FG  such 

that ert(n) =  i/, we have e^(o:p — 1) =  0, hence ap  — 1 6  A f (G, N). By Lemma

2.3.2, A f (N) is a nilpotent ideal. Let us say that (Af(W ))p =  (0). Then

(AF(G, N ) f  = (FGA f ( N ) /  =  (0).
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Thus, we have

0 =  (ap -  l)p‘ =  (ap)p‘ -  1,

and therefore, (a/i)p* =  1. Similarly, (ficc)pt =  1, hence a 6  U(FG). Thus, 

for any 0 i , . . .  ,0n € U+(F(G/N)), there exist a-i, . . .  , arn € U+(FG) such that 

ejv(oci) = Pi, for ail t. That is,

( A , - - -  ,Pn)  =  e/v((ai , . - -  ,Ofn)) =  1,

as required.

Now, suppose N  is a p'-group. Let 77 =  j^ j. Clearly, 77 is a symmetric central 

idempotent of FG. Let us define a function 0 : F(G /N)  —► FG  as follows. 

Letting FG  =  F(G/N), we define 0(a) =  077 +  1 — 77, for all a  E FG. First, let us 

see that this is well-defined. If d = 0, then a — 0  6 A f(G , N), hence by Lemma

4.3.3, (a -  /?)77 =  0. Thus, 0(d) =  9{0). We also note that 0((F(G/1V))+ ) C 

(FG)+ . Indeed, if a  € (FG)+ , then we may assume o 6 (FG)+ , and therefore 

0(d) =  or/ +  1 -  77 € (FG)+ . Next, we claim that 6(U{F{G/N))) C U{FG). If 

a0  =  I =  /3d, then a0  — 1 € A p(G,N)  hence, by Lemma 4.3.3, (a0 — 1)77 =  0. 

Thus

0(d)0(/3) =  (077 +  1 -  r))(0T) +  1 -  77) =  apt) +  1 -  77 =  77 +  1 -  7 7 = 1  =  0(/?)0(d),

hence 0(d) is a unit. Also, 0 is a group homomorphism on U(F(G/N)). Indeed, 

if a ,0  eU {F{G /N)),  then

6{a0) =  ol0 77 +  1 -  77 =  (077 +  1 -  T])(0rj +  1 -  77) =  0(d)0(/3).

Now, we observe that 0 is injective on U(F(G/N)). Indeed, if 0(d) =  1, then 

077 +  1 — 77 =  1, hence (o — 1)77 =  0. By Lemma 4.3.3, a  — 1 6  Ap(G,N), 

hence 0  =  I, as required. Thus, 0 is a monomorphism mapping U(F(G/N)) 

isomorphically onto a subgroup of U(FG). Since 0 maps symmetric elements to 

symmetric elements, if d i , . .. ,d„  € U+(F(G/N)), then

1 =  (0(d j) , . . .  , 0(dn)) =  0( d j , . . .  ,d n),
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hence ( a i , . . .  ,a „ ) =  1, since 9 is injective. We are done. □

Now, we need some results about matrices. If R  is a ring with identity and n 

is a  positive integer, then Mn(R) denotes the ring o f n x n  matrices over R, and 

GLn(R) denotes the group of invertible n x n matrices over R. The next result 

will be useful later as well.

Lem m a 4.3.5. Let R  be a commutative ring with identity. If a, b,c,d, a 6 R, 

and ad — be = 1, then

( ( a  b \  ( I  b2a \
d ) ' \ a  1) )  \U72 u>3 )

for some Wi,u)2 ,wz 6 R. It follows that for any positive integer n,

(; ;)■(: ?) c :)''-------------- v-------------- '
\  n times /

for some v\,vz,vz  € R.

Proof. The first part is an easy computation, and the second part follows from 

the first by induction. □

In particular, if a  =  1, then we are never going to get the identity matrix 

in the right side of the expression above, and therefore the subgroup of GL^iR) 

generated by

( o 0  0  “)
will not be nilpotent.

Let n be a positive integer, and suppose that * is an involution on M n(F), for 

any field, F. If a  is central in Mn(F), and 0  € Mn(F ), then

a*/? =  (/Ta)* =(«/?*)* =0**,
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hence a*  is central. Thus, * leaves the centre, which we identify with F ,  invariant. 

We say that * is an involution of the first kind if a* =  a for all a 6 F .  Otherwise, 

* induces a nontrivial involution of F ,  and we say that * is an involution of the 

second kind. We will let T  denote the transpose involution, given by (afj)T =  

(ciji). If n =  2m, then M n (F)  also has the canonical symplectic involution given 

by
( A  B \ *  _  (  D t  - B t \
\ C  D j  ~  { - C T  A T  J

for all A,  B , C , D  € M m (F).  In fact, the involutions of M n {F)  have been studied,

and we will need the following results.

Lem m a 4.3.6. Let * be an involution of the first kind on M n(F), where n is a 

positive integer, and char F  ^  2. Then there exists a matrix U 6 GLn(F) such 

that UT = ±U, and for all X  6 Mn(F), X * =  U~lX TU.

Proof. See [KMRT, Proposition 2.19]. □

Lem m a 4.3.7. Let * be an involution of the second kind on M n{F), where char 

F  ^  2 and n is a positive integer. Let A be the restriction of * to the centre, 

F. Then we can define an involution o on Mn(F) via (a,y)° =  (X(aij))T. Also, 

there exists a matrix U € GLn(F) such that U° =  U, and X* =  U~lX°U for 

all X  e  M n{F).

Proof. See [KMRT, Proposition 2.20]. □

We want to look at semisimple group rings, FG. We will have

F G - © Mn.(i?i)
i

and we will be interested in the symmetric elements of M ni(Fi).  We have
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Lemma 4.3.8. Let F  be a field of characteristic p > 2. Let n be a positive

integer, and * an involution on M n{F). I f  n = 1 or n — 2 and * is the canonical 

symplectic involution, then the symmetric elements (with respect to *) commute. 

Otherwise, the subgroup ofG Ln{F) generated by the symmetric units is not nilpo­

tent.

Proof. The case n =  1 requires no comment, so we will assume n > 2.  If n =  2 

and * is the canonical symplectic involution, then the symmetric elements are

which commute.

Let H  be the subgroup of GLn(F) generated by the symmetric units, and 

suppose * is of the first kind. By Lemma 4.3.6, there exists a matrix U € GLn(F)

such that UT = ±.U and Y* = U  1Y TU for all Y  € Mn(F). First, let us assume 

that UT =  17. If X  6 GLn{F) satisfies X T = X ,  then {XU)* = U~xUTX TU =

Thus, H  contains X U  and U, and therefore H  contains (XU)U  1 =  X ,  for all

simply

XU .  Since the identity matrix /„ satisfies / J  =  we get U* = U as well.

X  € GLn{F) satisfying X T = X .  Such matrices would include

where In - 2  may be omitted if n =  2. Thus, H  contains

and

But we observed earlier that the group generated by
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is not nilpotent.

Now, suppose UT = —U. If n =  2, then

U =

for some a (E F * . In this case, it is easy to verify that * is the canonical symplectic 

involution, and we have already dealt with this case. Since

det(CT) =  det {UT) =  det(-Cf) =  ( - l ) ndet (U),

and U is invertible, n must be even, say n =  2m, m > 2. Suppose X  € GLn(F) 

satisfies X T =  —X .  Then

{xuy  =  u~1uTx Tu = u~\-uy-x)u  =  xu.

If Z 6 GLn(F) and Z T =  - Z ,  then (Z ' l )T =  - Z ~ \  so (Z ~ l U)* = Z ~ lU. 

Thus, H  contains X U  and Z ~ lU, and therefore it contains X U (Z ~ l U)~1 ~  X Z .  

For any A  € GLm(F), let

for Jill A  6 GLm(F). If H  is nilpotent, then clearly GLm{F) is nilpotent, so 

GL2 (F) is nilpotent, which we have seen to be false.

Finally, suppose * is an involution of the second kind. Let A be the restriction

By Lemma 4.3.7, there is a matrix U 6 GLn(F) satisfying U° =  U, and such that 

7* =  U~l Y°U  for all Y  € M „(F). Take any X  6 GLn{F) such that X °  =  X .  

Then (XU)* =  U~l {XU)aU = XU. Clearly, J “ =  hence U* = U. Thus, 

H  contains X U  and U, and therefore {XU)U~l — X , for all X  € GL„(F) such 

that X °  =  X .  But an automorphism A of F  must fix its prime subfield, Fp,

Then H  contains

of * to the centre, F. We define an involution o on M n(F) via (a,j)° =  (A(a,J))r .
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elementwise. Thus, o acts as T  on Mn(Fp), so H  contains the units of M n (Fp) 

which are symmetric with respect to T .  We have already seen that in this case, 

H  is not nilpotent. We are done. □

We are now ready to deal with the semisimple case.

L em m a 4.3.9. Let F  be a field of characteristic p > 2 and let G be a finite 

p'-group. I f l t +(FG) is nilpotent, then G is abelian or a Hamiltonian 2-group.

Proof. Let BTP be the prime subfield of F. If U+(FG) is nilpotent, then surely 

U+(FpG) is nilpotent, so we will assume that F  has order p. Now, by Maschke’s 

Theorem, FG  is semisimple, and we will let e \ , . . .  , e* be the primitive central 

idempotents of FG. Thus, FGe,- =  M ni(Di)  for all i, where D, = F, is a finite 

division ring, hence, by Wedderbum’s Little Theorem, a field. Let 7rt- : FG  —► 

M ni(Fi)  be the projection.

Clearly, if e* is a primitive central idempotent, then so is e*. Suppose that 

ei ej =  e-i. Let a 6  FG  be such that aei € GLni{F\), say (aei)(7 ei) =  ei = 

(7 ei)(aei). Then

(«*el)(7*el) = (ei7eiar)* = (7 ^ 1)* = ej = (7*eI)(a*eH,

hence a*ej € GLmfFi). Let (3 =  aei + a*ej +  e»- Clearly, /?* =  (3, and for

each *, 7Tj(/?) is one of aei > “ *£1 > or some e,-. That is, the projection of (3 onto each 

Wedderbum component is a unit, hence (3 € U+(FG). But 717(/?) =  aei, hence 

7Ti(U+(FG)) =  GLni{Fi). But we saw above that GLni{F\) is not nilpotent 

unless rii =  1. Thus, if rij > 1, then e* =  e,-.

In this case, FGei is invariant under *. Let ae t- be a symmetric unit in FGe,-. 

Then letting (3 =  aej+53^,- ej , we see that (3 6  £/+(FG), and 7r,-(/?) =  ae,. Thus, 

the symmetric units of FGe, =  M ni (F{) are all in the homomorphic image of the 

symmetric units of FG. Since U+(FG) is nilpotent, the set of symmetric units in
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each M n{(Fi)  generates a nilpotent group. By Lemma 4.3.8, this can only occur 

when the symmetric elements in M ni{Fi) commute. Now, if p € (FG )+ , then pe,- 

is symmetric in Thus, the projections of the elements of (FG)+ into

each Wedderbum component commute. We are excluding the n t- =  1 case, but 

here, all projections commute. Hence, (FG)+ is commutative. In particular, it 

is Lie nilpotent, and so by Theorems 3.6.1 and 3.6.5, since G is a p'-group, G is 

abelian or a Hamiltonian 2-group. □

Now, let us look more generally at finite groups. First, we shall examine the 

2-elements.

Lem m a 4.3.10. Let F  be a field of characteristic greater than 2, and G a finite 

group. I fU +(FG) is nilpotent, then the 2-elements of G form a normal subgroup 

which is either abelian or Hamiltonian.

Proof. If the 2-elements form a subgroup H, then it is certainly normal. In this 

case, U+(FH) is nilpotent, and therefore Lemma 4.3.9 tells us that H  is abelian 

or Hamiltonian. Let us show that the 2-elements do indeed form a subgroup.

If G has odd order there is nothing to do. Otherwise, let N\ be the subgroup of 

G generated by the elements of order 2. The elements of order 2 are symmetric 

units, and therefore form a nilpotent subset of G. By Lemma 4.3.2, N\ is a 

nilpotent group, and since it is generated by 2-elements, it is a 2-group. It is 

certainly normal as well. Now, let us work in G /N i. Since U+{F(G/Ni)) is 

nilpotent by Lemma 4.3.4, our previous argument gives us a normal subgroup 

N2/IV1 of G/Ni such that N 2 /N 1 is a 2-group containing all of the elements of 

order 2 in G/Ni.  That is, Ni is a 2-group containing every element of G whose 

order divides 4. Proceeding in this fashion, we will eventually obtain all of the 

2-elements, since G is finite. □

If x € G, we write C g ( x )  for the centralizer of x in G. Similarly, Cc{S) is the
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centralizer of the subset S. The next few results give us some facts about the 

p-elements and p'-elements of G.

L em m a 4.3.11. Let F  be a field of characteristic p > 2, and G a torsion group. 

Suppose l l+(FG) is nilpotent. Let x  be a p-element of G. I f y  is a p'-element of 

G whose order is either 2 or odd, then x and y commute.

Proof. By Lemma 4.3.2, the subgroup (U+(FG)) oiU{FG) is nilpotent. Now, 

if x 6 G, o(x) = pm, then (x +  x_1 )?m =  2, hence ■1 is a p-element of 

(U+(FG)). Suppose y has order 2. Then y € U+(FG) and, indeed, £±f —- and 

y are elements with relatively prime orders in the nilpotent group (U+(FG)), 

which means they commute. Thus,

0 =  [x +  x " x,y] =  xy +  x~ ly -  yx -  yx-1 .

Now, the term xy must cancel with something, and since char F  > 2, either xy = 

yx (as desired), or xy = yx~l . But in the latter case, (x, y) is the dihedral group 

of order 2pm. However, the 2-elements of this group do not form a subgroup, 

contradicting Lemma 4.3.10. This case is complete.

On the other hand, if y  is an odd p'-element of G , then choosing k > 0 such
£. k k

that p =  1 (mod o(y)), we have yp =  y, and therefore (y + y-1 )p =  y +  y-1 . 

However,

(1 +  y2)(l -  y2 +  y4 -  . • • +  y2(o(j,)-l)) =  x +  y2o(y) =  2

since o(y) is odd, and therefore y +  y~l =  y-1(l +  y2) is in U+[FG). Thus, 

(y + y~1)pk~1 = 1, and y +  y~l is a p'-element of (U+(FG)). Therefore, -

and y +  y-1 commute. That is, [x +  x -1 , y +  y-1] =  0. Hence,

xy +  xy-1 +  x~l y  +  x -1y-1 — yx — yx-1 — y-1x — y~lx~ l =  0.

We claim that xy =  yx. Indeed, xy must be cancelled in this expression. 

It can agree with a subtracted term, or at least two added terms (since the
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characteristic is not 2). If xy  =  x- 1y, then x2 =  1. Since x is a  p-element, x =  1 

and therefore xy =  yx. Similarly if xy =  xy-1 . Thus, we may assume that xy 

agrees with a  subtracted term. If xy =  yx-1 , then y~l xy  =  x-1 . Therefore, 

y~2xy2 =  x. Thus, y2 €  C g ( x ) ,  hence y €  C ' g ( x ) ,  since y has odd order. 

Similarly if xy =  y- 1x. If xy =  y- 1x-1 , then (xy)2 =  1, and by the first part of 

this proof, x and xy commute. Thus x2y =  xyx, and xy =  yx, as required. □

L em m a 4.3.12. Let G be a finite group, and F  a field of characteristic p > 2. 

I fU +(FG) is nilpotent then the p'-elements of G form a normal subgroup which 

is either abelian or a Hamiltonian 2-group.

Proof. Once we prove that the p'-elements form a subgroup, the rest will follow 

from Lemma 4.3.9. If G is a p'-group, there is nothing to do. Otherwise, let 

P  be the set of p-elements of G, and K  = Cg(P)- Clearly, the p-elements of 

K  axe central in K, hence they form a central p-subgroup P i. Then K /  Pi is a 

p'-group, and by the Schur-Zassenhaus Theorem (Theorem 2.2.9), there exists 

a p'-subgroup L of K  such that we have a semidirect product K  = Pi x L. 

But Pi is central, hence K  =  Pi x L, and L is the set of all p'-elements in K . 

However, by Lemma 4.3.11, every odd p'-element of G centralizes P , and hence 

lies in K. Thus, we have a p'-subgroup L of G which contains all of the odd 

p'-elements. By Lemma 4.3.10, the 2-elements of G form a normal subgroup M. 

Thus, L M  is a p'-subgroup of G containing all of the 2-elements and all of the 

odd p'-elements. If x is a p'-element of F, then x is the product of a 2-element 

and an odd p'-element, hence L M  is the subgroup we are seeking. □

L em m a 4.3.13. Let F  be a field of characteristic p > 2, and G a finite group. 

I fU +(FG) is nilpotent, then the p-elements of G form a normal subgroup.

Proof. By Lemma 4.3.10, the 2-elements of G form a normal subgroup H. Our 

proof is by induction on \H\. If \H\ =  1, then applying Lemma 4.3.12, we see
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that the p'-elements form a normal subgroup K .  Thus, by Schur-Zassenhaus, 

there exists a p-subgroup P  such that G — K  x  P. But by Lemma 4.3.11, the 

p-elements commute with the odd p'-elements. Thus, G =  K  x P , and P  is the 

set of all p-elements, which completes this case.

Now, suppose \H\ >  1, and our result holds for smaller H. By Lemma 4.3.12, 

the p'-elements form a subgroup which is either abelian or a Hamiltonian 2- 

group. In either an abelian group or a Hamiltonian 2-group, the elements of 

order 2 axe central. That is, the elements of order 2 in G commute with all 

p'-elements. Furthermore, by Lemma 4.3.11, the elements of order 2 com m u te  

with all of the p-elements. Thus, letting N  = {g € G : g2 =  1}, we know that N  

is a central subgroup. Furthermore, by Lemma 4.3.4, l i+(F(G/N)) is nilpotent, 

and the Sylow 2-subgroup of G /N  is smaller than that of G. By our inductive 

assumption, the p-elements of G /N  form a normal subgroup N i/N .  That is, 

Ni = {g € G : g2p = 1 for some m} is a subgroup of G. Once again, the 

elements of order 2 in Ni form a central subgroup Ki, and N \/K \  is a p-group. 

By yet another application of Schur-Zassenhaus, N\ =  K\ x Pi, and since K\ 

is central in N\, N\ — K\  x ? i ,  where Pi is the group of all p-elements in N\. 

By definition of N \ , the p-elements of G all lie in N \ , hence the p-elements of G 

form a subgroup, as required. □

We can now give the

Proof of Proposition 4-3.1. To see that the p-elements of G form a group, we 

need only consider the finitely generated case. Since G is locally finite, we may 

assume that G is finite and, by Lemma 4.3.13, the p-elements do indeed form 

a subgroup. Similarly for the p'-elements, using Lemma 4.3.12. Clearly these 

subgroups are normal in G and intersect trivially, hence G = P  x A, where P  

is a p-group and A is a p'-group. Suppose x, y 6  A, and xy  ^  yx. Then for 

any 2 6  A, (x ,y ,z)  is a Hamiltonian 2-group, by Lemma 4.3.12. Thus, either A
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is abelian, or A is a 2-group, and y l xy  =  x±x for all x ,y  6  A. That is, A is 

abelian or a Hamiltonian 2-group. □

4 .4 . G r o u p  ring s  o f  locally  f in it e  g r o u ps

In this section, we will strengthen Proposition 4.3.1, and obtain our final 

results for locally finite groups. In the next section, we will show that if U+(FG) 

is nilpotent, then G must be locally finite. First, let us suppose that Q$ % G. 

Our result is

P roposition  4.4.1. Let G be a locally finite group not containing Q$. Let F  

be a field of characteristic p > 2. Then U+(FG) is nilpotent if and only if  G is 

nilpotent and p-abelian.

By Proposition 4.3.1, we may assume that G ~  P  x A, where P  is a p-group 

and A is abelian. If we can show that P  is nilpotent and p-abelian, then G will 

enjoy these properties as well. Thus, we may assume that G is a p-group. Let 

us strengthen Lemma 4.3.4.

L em m a 4.4.2. Let G be a torsion group, and F  a field of characteristic p > 2 

such that U+(FG) satisfies the group identity (x i , . . .  ,x n), for a fixed n  > 2. Let 

N  be a finite normal subgroup ofG. Then U+(F(G/N)) satisfies (x j , . . .  ,x„).

Proof. Since U+(FN)  satisfies (x i , . . .  ,x„), Lemma 4.3.13 reveals that the p- 

elements of N  form a normal subgroup, P. Clearly, P  is normal in G as well. 

By Lemma 4.3.4, U+(F(G/P))  satisfies (x i,. . .  , x„), and so does U+(F(N/P)). 

Since N /P  is a  p'-group, Lemma 4.3.4 also tells us that l f+(F((G /P)/(N /P)))  

satisfies ( x j , . . .  ,x„). But (G /P ) /(N /P ) ~  G /N , and we are done. □
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L em m a 4.4.3. Let G be a locally finite group and char F  = p > 2. Suppose 

U+{FG) satisfies (x i , . . .  ,x n), for a fixed n >  2. Let N  be any normal subgroup 

of G. Then U+(F(G/N)) satisfies (x i , . . .  ,x„).

Proof Let FG = F(G/N). Choose any a x ,. . .  ,a „  6 l(+(FG). Let /?,- =  a* 1, 

for each i. Then a,-/?j — 1 and /9,-a,- — 1 lie in A p(G ,N ).  Thus, each

for some A' 6  F, <7' 6  G, and n ' 6  N.  Let H  be the subgroup of G generated 

by the support of each a,- and each together with all of the gj, nj, g'j, and 

n'j. Then H  is finitely generated, hence finite. Also, each a*,/?* € FH,  and 

each ctifii — 1 and each fta,- — 1 lies in Af{H ,  H  fl N).  That is, fii = d ” 1 in 

F H  = F(H/ (H  D N)).  Now, H  fl N  is a finite normal subgroup of H.  Thus, 

since U+(FH)  satisfies (x i, . . .  , x„), Lemma 4.4.2 shows us that U+{FH)  satis­

fies (x i , . . .  ,x n). Therefore, (d x ,... ,d n) =  1. But d | , . . .  ,d n were arbitrarily 

chosen in U+(F(G/N)),  hence U+(F(G/N))  satisfies (x i , . . .  ,x„). □

Let us get back to the task of proving Proposition 4.4.1. Suppose G = 

H  x K. If a  =  Y^h^Ha ^  ^ F H ’ P ~  H2keK0kk € F K ,  then afi =  

YlheH YlkeK <*kPkhk. These group elements hk  are pairwise distinct, hence 

a/9 =  0 if and only if a  =  0 or 0  =  0. The next lemma is borrowed from 

[Sehl, Section VI.3].

L em m a 4.4.4. Suppose char F  — p > 0, and let G be a group containing an 

infinite central subgroup A  suck that A is a p-group of bounded exponent. Then
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for any 0 ^  5 6 FG, and any positive integer t, there exist central elements 

p i , . . .  ,p* 6 (FG)+ such that each p f =  0, but p i • * • fitS ^  0.

Proof By Theorem 2.2.5, A is a direct product of cyclic groups. Since shrinking 

A does not harm our conclusion, let us say that A =  A,-, where each A,- is

a nontrivial p-group. Write 5 =  X)i=i giOi, where each 0 /  a ; € FA, and the 

gi lie in distinct cosets of A in G. Each a,- has finite support, so there exists an 

m such that the support of all of the a , ’s is contained in n£Li For each i, 

1 < i < t, let fii =  Am+j. Clearly, m  € (FG )+ , pf =  0, and p,- is central in FG, 

since A, is central in G, for all i. But, as we saw above, pi • • • pta* ^  0, for all i, 

and then k
pi . . . p t<S =  ^ p i ( p !  •••p ta i). 

i=l
But the elements of G appearing in the support of gm\ • • • ptou are surely in g,A, 

for each i, hence pi • • • ptS ^  0. □

Lem m a 4.4.5. Let F  be a field of characteristic p >  0, and suppose G contains 

an infinite central subgroup A, such that A is a p-group of bounded exponent. If 

U+{FG) is nilpotent, then (FG)+ is Lie nilpotent.

Proof. Take any positive integer t > 2, and any Q i,. . .  , a t € (FG)+ . If

[ a i , . . .  , a t] ^  0,

then let £ =  [ari, . . .  , a*], and choose p i , . . .  , pt as in Lemma 4.4.4 such that each 

pf =  0 but p ip 2 • • -p t[ a i , . .. , a t] ^  0. Now, for each i, 1 +pia,- is a unit with 

inverse 1 — p ,a ,, and so it is clearly in U+(FG). Thus,

(1 + P 1 CI1 , 1 +  P2C*2) =  1 + PiP2[cti,ct2)

and then, by induction, we can see that

(1 + p x Q i,... ,1+ptQ t)  =  1 +  p i •••pt[ a j , . . .  ,art].
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We are assuming that fii • • • fit[cti, . . .  , a<] ^  0, hence (1+^iari, . . .  , 1 +fitcct) ^  1. 

But U+(FG) is nilpotent, so there exists a t  such that

( 1  +  f l l O t l , . . .  , 1 +  fit< *t) =  1

and therefore, [a>i,. . .  , a t] =  0 for all a i , . . .  , a< € (FG)+ , as required. □

Let us now consider some special cases.

L em m a 4.4.6. Suppose char F  =  p > 2, G is a nilpotent p-group, and G‘ has 

bounded exponent. I fU +(FG) is nilpotent, then G' is actually finite.

Proof. Assume G' is infinite. Then we may choose an r  such that 7r(G), the 

r-th term of the lower central series, is infinite, but 7 r+i(G) is finite. (This 

r  must exist, since G is nilpotent.) By Lemma 4.3.4, U+(F(G/-yr+i(G))) is 

nilpotent, and if we can show that (G / j r+i(G)Y is finite, then we will know that 

G '/7 r+i(G) is finite, and since 7 r+ i(G) is finite, we will have a contradiction. 

But G /7r+i(G) has an infinite central subgroup 7 r(G )/7 r+i(G) contained in 

(G //yr+i{G)Y =  G '/7 r+i(G). Since G' has bounded exponent, by Lemma 4.4.5 

we see that (F(G /7 r+i(G)))+ is Lie nilpotent. Since G is a p-group, Theorem

3.6.1 tells us that (G /7 r+i(G))' is finite, and we axe done. □

We will eventually reduce the problem to a p-group G of bounded exponent. 

If we can show that FG  satisfies a polynomial identity, then we will be done, 

because of

L em m a 4.4.7. Let F  be a field of characteristic p > 2. Suppose G is a p-group 

of bounded exponent, with (G : <f>(G)) < 00 and |(<£(G))'| < 00. I f  U+(FG) is 

nilpotent, then G is nilpotent and p-abelian.

Proof. We will follow quite closely part of the proof of Theorem 3.3.3, and there­

fore omit some of the details. We have Gpm =  1 for some m. Also, since
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(G : 0(G)) < oo and |(0(G))'| < oo, G/(0(G))' acts as a finite p-group of auto­

morphisms of 0(G)/(0(G))', which is an abelian p-group of bounded exponent. 

From Lemma 2.2.6, we get

, g w g )Y) =  *•

Thus, (0(G), G ,.. .  ,G) C (0(G))'. Since (0(G))'/(0(G))" is finite, G/(0(G))" 

acts as a finite p-group of automorphisms of (0(G))'/(0(G))". By Lemma 2.2.6,

mG)Yi(mr,G/(4>(G)y' , . . .  , g / ( 0(g ) d  =  1,

hence

((0(G))', G , . . . ,G ) C  (0(G))".

Thus, (0(G ),G ,. . .  ,G) C (0(G))". Since (0(G))' is a finite p-group, it is 

nilpotent, and repeating this argument, we must obtain (0(G ),G ,. . .  ,G) = 

1. But G/0(G) is nilpotent as well, hence (G ,. . .  ,G) C 0(G), and therefore 

(G ,. . .  , G) = 1, and G is nilpotent. Since G has bounded exponent, so does G', 

and Lemma 4.4.6 reveals that G is p-abelian as well. □

We also need this computational lemma.

Lem m a 4.4.8. Let R  be a ring with identity. Let rj be a central element of R  

satisfying r/2 =  0. I f  a  6 R, and j3 6 U{R), then 1 +rja  € U{R), and for all 

n > 1,

(1 + = 1 + r, (El"1)* j .
n  times

Proof. Clearly, 1 +  rja is a unit with inverse 1 — rja. We check the formula by 

induction. When n =  1, we have

(1 +T7Q,/?) =  (1 -  rja)P X(1 +ria)P =  1 +r}(/3 l a / 3 - a )
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as required. Assuming the formula works for n, to check the n + 1  case, we simply 

apply the n =  1 case, and we find that the coefficient of a  will be (—l)n, the 

coefficient of /?_(n+1)a:/?n+1 will be 1, and if 0 <  i <  n +  1, the coefficient of 
p-(n+i-i)Qpn+i-i ^  be (_!)*((«) +  ( . - J )  =  (_l)«(«+i), as required. □

Let us now present the

Proof of Proposition 4-4-1- Suppose U+ (FG) is nilpotent. By Proposition 4.3.1, 

G cz P  x A, where P  is a p-group and A  is abelian. Thus, it will suffice to 

show that P is nilpotent and P' is finite. That is, we will assume that G is 

a locally finite p-group. If FG  is prime, then Proposition 4.2.1 shows us that 

G =  1. Therefore, by Theorem 2.3.3, we may assume that G has a nontrivial 

finite normal subgroup N. If we can show that (G /N )f is finite, then since 

(G/N)' = G 'N /N , and N  is finite, we will know that |G'1V| < oo, and therefore 

G‘ is finite. By Theorem 2.2.7, G will be nilpotent as well, and we will be done.

Let t) =  N. Then tj is central in FG, and rj2 — 0. We know that there exists 

an m such that (ari,. . .  ,a pm+1) =  1 for all Q i,. . .  , a pm+i g U+{FG). Take any 

a 6 (FG)+, (3 € U+(FG). Clearly, 1 +  rja is a  symmetric unit. Thus,

(1 ,/?) =  1. 
p m times

But Lemma 4.4.8 gives a formula for the left side of this expression. Indeed, 

since p divides (pt- ) whenever 0 < i < pm, we obtain 1 -f r}(/3~pmaf3pm — a) =  1. 

Therefore, fi~pma(3pm — a  annihilates rf = N. By Lemma 4.3.3, the annihilator 

of r} is A f {G,N). Hence, working in FG = F(G/N), we obtain [a,/3pm] =  0.

Now, G is a  locally finite p-group, and therefore an element of FG  is a unit if 

and only if it does not have augmentation zero. (Indeed, suppose p 6 FG, and 

e =  e(p), where e : FG  -* F  is the augmentation map. We may assume that G 

is generated by the support of p, and is therefore finite. Then by Lemma 2.3.2, 

there exists a positive integer t such that (p—e)pt =  0. But then ppt — ep*, which
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is a unit of F, provided e ^  0.) Thus, for any 7  6  (FG)+, either 7  € U+(FG) or 

I +  7 6  U+(FG). In the latter case, if a S (FG)+, then

o =  [ d , ( r R ) pTO] =  [ d , i + 7 pm]-

Therefore, in either case, [d,7 ?m] =  0. Since every element of (FG)+ is an image 

under FG ->■ F(G /N)  of an element of (FG)+, we see that (FG )+ satisfies the 

polynomial identity [A, ppm] = 0. Substituting A +  A* for A, and /i +  p* for p, we 

see that FG  satisfies a *-polynomial identity. Therefore, by Theorem 2.4.6, FG 

satisfies a polynomial identity.

Next, if x ,y 6  G, then

0 =  [x +  x _1, ( y +  y- 1 )pm] =  [x +  x - 1 ,ypm +y~pm].

Expanding this expression, xypm must agree either with a subtracted term or 

at least two added terms. We claim that, in fact, xypm = ypm x. If xyp — 

x~ lijpm, then x2 =  1, hence x =  1, since G is a p-group. Thus, x commutes 

with . Similarly if xypm =  xy~pm. Thus, we may assume that xypm agrees 

with a subtracted term. If xypm =  ypmx-1 , then y~pm xypm =  x-1 , hence 

y2pTn 6 Cq(x). Since G is a p-group, y?m commutes with x. Similarly if xyp"* =  

y~pmx. If xypm =  y~?mx ~l , then (xypm)2 =  I, hence xy?m =  1, and therefore 

x and y?m commute. The final case is xy?m =  ypmx, and the claim is proved. 

Since x and y were arbitrary, (G)p C C(^)* That is, G/C(G) is a p-group 

of bounded exponent. Furthermore, since U+(FG) is nilpotent, Lemma 4.4.3 

tells us that U+{FG) is nilpotent, and therefore W+(F(G/C(G))) is nilpotent. 

Since FG  satisfies a polynomial identity, so does F(G/C(G)), and therefore, by 

Theorem 2.4.3, (G/C(G) : <f>(G/((G))) <  00 and K^G/CC^)))'! <  00. By Lemma 

4.4.7, G/C(G) is nilpotent, hence G is nilpotent, and furthermore, by Theorem

2.2.4, (G)' is a p-group of bounded exponent. By Lemma 4.4.6, it follows that 

(G)' is finite, which is what we were trying to prove.

Conversely, if G is nilpotent and p-abelian, then by Theorem 4.1.3, if G con­

tains a central element of order p, we know that U(FG) is nilpotent, hence
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U+(FG) is nilpotent. If G contains no central element of order p, then G con­

tains no p-element at all, since it is nilpotent, and since Gf is a p-group, G is 

abelian. Surely, U+(FG) is nilpotent in this case. □

Now, let us consider the case in which Q$ Q G. In view of Proposition 4.3.1, 

we may assume that G ~  Qs x E  x P , where E 2 = 1 and P  is a p-group. We will 

show that P  must be finite. First, we shall consider the group G = Qg x (x), with 

x a p-element. We will borrow the following construction from [GSV2, Lemma 

6]. Write

Qs = (:g,h\g4 =  1,52 =  h2,h ~ lgh = g~l ).

Let F  be the field of p elements, where p is a prime greater than 2. Clearly, 

|{ /2 : /  € F}| =  |{—1 — f 2 : f  6 F}| =  hence there exist c and d in F  such 

that c2 + cP = — 1. Then we define 6 : FG  —> Ma(F(x)) via

* ) - ( ;  _rfc ) . w = ( _ 0! j ) , » d « » ) - ( ;  “ ) .

This is easily seen to be a ring homomorphism. Let

Q =  (x + x ~ 1g2)(dg - h  + cgh){ 1 - g2)

and

0 = (x + x~ lg2)(dg + h + cgh)( 1 -  g2).

The key properties of a and 0  are that a ,0  € (FG )+ , a 2 =  02 = 0, and

* < “ > =  ( o  4( l ' o J O -
(These facts can be easily verified.) We will use these definitions in the proof of 

the next lemma.
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Lem m a 4.4.9. Let F  be a field of characteristic p >  2, and G =  Qs x (x), where 

x is a p-element. I f  for a particular n > 2, U+(FG) satisfies ( ui , . . .  ,un) =  1, 

then o(x) < 2n+1 — 2.

Proof. Since U+(FG) satisfies ( ui , . . .  ,u„), so does U+(¥PG), hence we may 

assume that F  =  Fp. In the above notation, 1 +  j  is a sym m etric  unit with 

inverse 1 — f  • Similarly, 1 +  ^ is a symmetric unit, and

*(1

Since the symmetric units satisfy (u i , . . .  , un) =  1, their homomorphic images 

must satisfy this identity as well, hence

/  \
(1  0 \  _  f l  x ~ l - x \  (  1 0 \  f  1 0 \
\ 0  1)  \ 0  1 J ' \ x - l - x  l )  ’ V x"1 - x  l )

'---------------------- V-----------------------'
\  n —1 times

_  /  Wi (x 1 — x)2" 1 \  
~  \ W 2 U >3 J

for some wi,w2,W3 6 F{x), by Lemma 4.3.5.

Thus, (x-1 —x)2”-1 =  0, ctnd therefore 0 =  x2"-1^ -1 —x)2"-1 =  (1— x2)2"-1 . 

Expanding this out, we see that the coefficient of x2̂ 2"-1  ̂ is —1, and therefore 

this must cancel with one of the lower terms. That is, x2"+I-2 =  xJ for some 

0 < j  < 2n+1 — 2, and we see that o(x) < 2n+1 — 2, as required. □

Lem m a 4.4.10. Suppose char F  =  p > 2, and G = Q$ x P, where P is a locally 

finite p-group. I fU +(FG) is nilpotent, then P is finite.

Proof. Take x € P. I fU+(FG) satisfies (ui , . . .  ,un) =  1, then U+(F(Q$ x (x))) 

satisfies (« i , . . .  , un) =  1, and then Lemma 4.4.9 puts a bound on the order of 

x. Thus, P  has bounded exponent. Furthermore, U+(FP)  is nilpotent, and so 

by Proposition 4.4.1, P r is finite. Suppose P  is infinite. Then P /P 1 is an infinite
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abelian p-group of bounded exponent, which is central in Qg x (P /P ') . Also, 

U+(F(G /P1)) =  l4+(F(Qs x (P /P '))) is nilpotent, by Lemma 4.4.3. Thus, by 

Lemma 4.4.5, {F(Qa x (P /P ')))+ is Lie nilpotent. But this contradicts Theorem

3.6.5. □

This gives us our second main result for this section, namely

P roposition  4.4.11. Let F  be a field of characteristic p > 2. Suppose G is 

locally finite and U+(FG) is nilpotent. I f  Q$ C G, then G ~  Qa x E  x P , where 

E 2 =  1 and P is a finite p-group.

Proof. By Proposition 4.3.1, G ~  A x P, where A is a Hamiltonian 2-group 

and P  is a p-group. By Theorem 2.2.10, A ~  Q$ x E, where E 2 =  1. Thus, 

G ~  Qa x E  x P, and therefore U+(F{Qa x P)) is nilpotent. By Lemma 4.4.10, 

P  is finite, and we are done. □

If G = Qa x E  x P, where E 2 =  1 and P  is a finite p-group, then U+(FG) is 

nilpotent, but we will postpone the proof of this until the end of the chapter.

4 .5 . T h e  g e n e r a l  ca se

We will now demonstrate that if U+(FG) is nilpotent, then G is locally finite. 

This, combined with our results from the last section, will give us our main 

theorems for this chapter.

To begin with, let H  be a group. We say that H  satisfies a semigroup identity 

if there exist two distinct words of the form xtl • • • x,-n and xy, • • • xJm in the free 

group with generators x \ , . . .  , x* such that
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for all hr 6 H. Thus, if H  satisfies a semigroup identity, then it satisfies a  group 

identity. In [Okn, Theorem 7.2J, it is shown that the nilpotency of H  is equivalent 

to H  satisfying one of a series of semigroup identities. As a consequence, we have

L em m a 4.5.1. Let H  be a nilpotent group. Then H satisfies a semigroup iden­

tity of the form

X *l  '  '  * X irt =  X j l  X j n

for some n  > 1.

This allows us to prove

Lem m a 4.5.2. Let F  be any field and G any group. Suppose U+(FG) is nilpo­

tent. I f S  is a nil ideal of FG with S* = S, then S  satisfies a polynomial identity.

Proof. By Lemma 4.3.2, (U+(FG)) is nilpotent. Therefore, by Lemma 4.5.1, 

(,U+(FG)) satisfies a nontrivial semigroup identity of the form

X i l X ‘2  X i n  =  X j l  ' ' ' X ] n  >

where n > 1. Take tiny Si € S +. Then each 1 +  s, is a unit with inverse 

1 — Si +  s f  , since s f  =  0, for some k. Thus,

( 1  + S i l ) - - -  ( 1  + S i n )  =  ( 1  +  f j t  ) • * • ( !  + s j n ) -

Expanding this expression, we obtain a polynomial in the s,-, where the only 

terms of highest degree are s,t • • • Sin and s7l • • •Sjn. Since the sem igroup  iden­

tity is nontrivial, these axe not the same monomial, so S + satisfies a nontrivial 

polynomial identity. Of course, 5  is an F-algebra. Thus, by Theorem 2.4.6, S  

satisfies a polynomial identity. □

We wish to show that if U+(FG) is nilpotent and G has trivial centre, then 

G = 1. Let us handle the semiprime case first. We recall from Theorem 2.3.1
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that FG  is semiprime if and only if G has no finite normal subgroup H  such that 

p divides [H\, where char F  =  p  > 0. Or, equivalently, if and only if <f>p(G) is 

trivial. Here, <f>P(G) is the subgroup of 4>(G) generated by its p-elements.

L em m a 4.5.3. I f  char F  = p > 2, G is torsion, FG is semiprime, U+(FG) is 

nilpotent, and £(C?) =  1, then G = 1.

Proof. If FG  is prime, then Proposition 4.2.1 completes the proof, hence we may 

assume that G has a nontrivial finite normal subgroup N. Since FG  is semiprime, 

N  is a p'-group. Thus, N  contains an element h ^  1 such that either h has order 

2, or h has odd, p'-order. Take any g € G. Since N  is normal, (N ,g ) =  N(g) 

is finite. But U+(F(N,g)) is nilpotent, and by Propositions 4.4.1 and 4.4.11, 

(N,g) is nilpotent and either (N,g)' is a p-group, or (N ,g } ~  Qz x E  x P, where 

E 2 =  1 and P  is a p-group. Thus, (N,g) is a finite nilpotent group, and therefore 

it is the direct product of its Sylow subgroups. If (N,g)r is a p-group, then all 

of the Sylow subgroups except possibly the Sylow p-subgroup are abelian, hence 

any element of p'-order is central in (N ,g ). If (N,g) ~  Q$ x E  x P, then we see 

immediately that any element of order 2 is central, and there are no elements 

of odd, p'-order. That is, h is central in (N ,g ), hence h and g commute. But 

g was arbitrary, hence h € C(G). This contradicts the assumption that G is 

centreless. □

In any ring R, we let N(R) denote the sum of all of the nilpotent ideals of R. 

We claim that N(R) is a nil ideal. In fact, the sum of any collection of nil ideals 

is nil. Indeed, if r  is in the sum of a collection of nil ideals, then it is in the sum 

of a finite collection of these ideals, hence we have only to prove it for finite sums 

of ideals. Thus, by induction, it suffices to show that the sum of two nil ideals 

is nil. Let I\ and I2  be nil ideals of R. Take a 6  I\ and 6 6 / 2- Suppose that 

ak =  0 . Then in R/Iz , a + b + 1 2  — a + I2 , hence (a +  b -|- h)*  = ak + I2  = I2 ,
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and therefore (a+6)* 6 I2. Thus, since I2 is nil, a + b is a nilpotent element, and 

we are done. However, N(R)  need not be nilpotent. Indeed, if char F  =  p > 0, 

and G is a group, then by a result of Passman [Pasl, Theorem 8.1.12], N(FG) 

is nilpotent if and only if <l>p{G) is finite. We need this in order to prove

L em m a 4.5.4. I f  char F  =  p > 2, G is torsion, U+(FG) is nilpotent and 

C(G) =  1, then G =  1.

Proof. Let N  = N(FG). Suppose, first, that N  is a nilpotent ideal. We observed 

above that in this case, <f>p(G) is finite. Let G = G/<j>p(G). We claim that FG  is 

semiprime. Suppose <7 € G is such that g € 0(G). Then there exist g 1, . . .  ,gn 6 G 

such that y~xgy 6 {<71, . .  - , <7n}5 for all y € G. That is,

y~ l9V 6 (f>P(G)gi U (f>P{G)g2 U • • • U <t>P{G)gn,

which is a finite set. Thus, g 6 0(G). Clearly, then, 0(G) =  0(G )/0p(G), which 

is a p'-group, hence FG  is semiprime. We claim that C(G) =  I. Indeed, suppose 

z 6 G is such that z € C(G). Then z € <f>(G), hence z € <f{G). By Theorem 2.2.8, 

a torsion FC-group is locally finite. Since U+{F{4>{G))) is nilpotent, Propositions

4.4.1 and 4.4.11 show us that <t>[G) is nilpotent. Thus, <f>p(G) is a p-group (since 

it is generated by p-elements), and we may write z =  ziz2, where z\ € 4>P{G) and 

z2 is a p'-element. But then z =  z2, so we will assume, without loss of generality, 

that z is a p'-element of G. Furthermore, since z 6 <f>{G), we have y~l zy 6 0(G), 

for all y  6 G. Then, since z~l y~l zy =  I, we have z~ l y~l zy € 0P(G). But this 

element is the product of two p'-elements, z~l and y~l zy, in a nilpotent group, 

and so it is necessarily p'. Thus, z~l y~l zy  =  1 for all y € G, and z € C(G), hence 

z = 1 and, in particular, z = I. That is, G/<f>p(G) is centreless and F(G/<f>p(G)) 

is semiprime. Since U+(F(G/<f>p(G))) is nilpotent by Lemma 4.3.4, Lemma 4.5.3 

tells us that G/<f>p(G) is trivial. Thus, G is a finite p-group, which can only be 

centreless if it is trivial.
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Now, suppose N  is not nilpotent. As we observed above, N  is still a nil ideal. 

Clearly, if /  is a  nilpotent ideal of FG, then so is I*, and therefore N* = N. 

By Lemma 4.5.2, N  satisfies a polynomial identity. We can apply the multi­

linearization process of §4.2 to this polynomial identity, and thereby obtain a 

(nontrivial) multilinear polynomial identity for N. Renumbering the variables 

and multiplying by a scalar if necessary, we may assume that N  satisfies

^  ] a trx tr{l) ’ ’ ' x tr(t)i 
<r€S,

where each a a 6 F, o i =  1, and t >  1. Since N  is not nilpotent, we may choose 

a i , . . .  ,a t € N  such that ai<i2 • • • at ^  0. For any y \ , . . .  , yt € FG, we see that 

a»y* € iV for all i, hence

^  , 0cffa<r(l)ya(l) ' ' ' a <r(t)J/(r(t)
<r€S,

is a multilinear GPI for FG. If it is degenerate, then FG  vanishes on the <7=1 

term, namely a\y\ • • • atyt . But taking y\ =  • • • =  yt = 1, we see that this is not 

the case. Therefore, FG  satisfies a nondegenerate GPI, and by Theorem 4.2.2, 

(G : <f>(G)) < oo and |(<£(G)y| < oo. Clearly, then, G is locally finite, and it 

follows from Propositions 4.4.1 and 4.4.11 that G is nilpotent. But a centreless 

nilpotent group is trivial. □

In order to show that G is locally finite, we will show that any finitely generated 

subgroup of G must be hypercentral. We have

Lem m a 4.5.5. Let F  be a field of characteristic greater than 2, and let G be 

any group. Suppose U+(FG) satisfies the group identity , un), for some

ri > 2. Further suppose that there is an ascending series of normal subgroups of

G,

N0 C Ni C • • - C Na C N a+1 C - - - 
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indexed by the ordinals, such that for some ordinal /?, Np =  Ua</? Na. If, for 

all a < (3, U+(F(G/Na)) satisfies ,u„), then U+(F(G/Np)) satisfies

( t X j , . . .  ,  t i n ) .

Proof. For any normal subgroup N  of G, we will let e/v : FG  —> F(G/N)  denote 

the natural map. Suppose that U+(F(G/Np)) does not satisfy (ui , . . .  , un). Take 

171*-.- ,rin 6 U+(F(G/Np)) such that (77! , . . .  ,J7„) £  l. Since ejV((FG)+) =  

(F(G/1V))+ for any normal subgroup N, let us choose 7 i E (FG)+ such that 

eN0(7») =  Suppose we can show that for some a < (3, the e/vQ(7 ;) are units, 

for all i. Then since they axe clearly symmetric,

( £ W a ( 7 i ) i - -  • , e t f a ( 7 n ) )  =  1,

by assumption. In this case,

(«at*(7i )»--- 7n)) =  1,

which is a contradiction.

Therefore, it remains to show that there exists an a  < /? such that e/va (7 ,-) is 

a unit, for each t. But each rji is a unit, so there exist p i , . . .  ,pn € U{F(G/Np)) 

such that each p, =  r}~1. Take ,9n € FG  such that €-N0{9i) =  pi. Thus,

tN0{~fiOi) =  HiPi = h  ^  eN0{Oi7«) =  PtHi =  for all *• That is, 7 .#. -  1 and 

0i7i — 1 me in Af(G,  Np). Thus,

li6% ~  1 =  -  1)
j

and

9 m  ~  1 =  ~  !)
i

with each Pij,p\j € FG, and each € 1V̂ . Since there are only finitely

many n tJ- and n'-y, and iV̂  is the union of the Na, with a < /3, there exists an 

a < P such that n,y,n(y 6 Na for all i and j .  Thus, each 7 ,0* — 1,0*7,- — 1 €
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A f(G ,N c), s o  eNa(ji)eNa{di) =  1 and ^Na(di)eNa{li) =  1, for all i, which is 

what we wanted. □

Recall that we let (a (G) denote the a-th  term of the transfinitely extended 

upper central series of G.

Lem m a 4 .5 .6 . Suppose char F  =  p > 2 and G is a countable torsion group. 

Further suppose that l i+(FG) satisfies the identity (u i , . . .  , un), for some n >  2. 

Then for any a, £/+ (F (G /(Q(G))) satisfies (u i , . . .  ,u„).

Proof. Our proof is by transfinite induction. If a  is a limit ordinal, then Lemma 

4.5.5 does the job. Otherwise, we will assume that £7+(F (G /(Q(G))) satisfies the 

identity (t ij , . . .  ,u n) and prove that £/+(F (G /(a+i(G))) satisfies (u i , . . .  ,u n)- 

Now,

G /(a+1(G) ~  (G /(*(G ))/((o+ ,(G )/(.(G )) =  (G /U G )) /« G /U G )) .

Thus, it remains to check that if U+(FG) satisfies (u i,. . .  ,u n) for some count­

able group G , then £/+(F ((?/£((?))) satisfies (u i , . . .  ,u„). Of course, ((G) is 

countable. If it is finite, then Lemma 4.4.2 finishes the proof. Otherwise, let 

((G) =  {<7i ,g2 , . . . }. We will define a series of centred subgroups of G as follows. 

Let No =  1, and for each k > 1, Nk =  {Nk-i,gk)- Since each Nk is a finitely 

generated torsion abelian group, it is finite, and then by Lemma 4.4.2, each 

U+(F(G/Nk)) satisfies (u i, . . .  , un). Also, Nq C Ni C - • • emd ((G) =  Ufc^o 

Therefore, by Lemma 4.5.5, W+ (F(G /((G))) satisfies (u i , . . .  ,u n). □

This gives us what we have been looking for, namely
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Lem m a 4.5 .7 . Let F  be a field of characteristic p > 2 and let G be a torsion 

group. I f l l+(FG) is nilpotent, then G is locally finite.

Proof. Suppose this is not true. Take a finitely generated subgroup H  of G 

which is not finite. Then H  is countable, and U+(FH) is nilpotent. Let K  be 

the hypercentre of H. By Lemma 4.5.6, U+(F (H jK ))  is nilpotent. But H /K  

is centreless, so Lemma 4.5.4 implies that H  =  K . That is, H  is hypercentral. 

By Proposition 2.2.3, H  is locally nilpotent, hence locally finite, and since H  is 

finitely generated, it is finite. We have a contradiction. □

Incidentally, we now have

Proposition 4.5.8. Suppose G is a torsion group, and F  is a field of charac­

teristic different from 2. IfU +(FG) satisfies (x i, . . .  , xn) for a fixed n > 2, then 

for any normal subgroup N  of G, U+{F(G/N)) satisfies (x i , . . .  ,x n).

Proof. Suppose char F  =  0. Then by Proposition 4.1.8, G is abelian or a Hamil­

tonian 2-group. Thus, by Lemma 3.1.4, (FG)+ is commutative, hence U+(FG) 

satisfies (xi,X2), and therefore (x i , . . .  ,x n). If char F  > 2, then combining 

Lemmata 4.5.7 and 4.4.3, we get our result. □

Time to finish up. Our first main result for the chapter is

Theorem  4.5.9. Let F  be a field of characteristic p £  2, and G a torsion group 

not containing Q&. Then the following are equivalent:

(1) U+(FG) is nilpotent;

(2) Lf(FG) is nilpotent; and,

(3) G is nilpotent and p-abelian.
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Proof. Suppose K+(FG) is nilpotent. If char F  =  0, then by Proposition 4.1.8, 

G is abelian, giving (3). If char F  >  2, then combining Lemma 4.5.7 with 

Proposition 4.4.1, we get (3). Thus, (1) implies (3). Clearly, (2) implies (1). 

Assume (3). Thus G is nilpotent and p-abelian. If char F  =  0, there is nothing 

to do, so assume p > 2. If G contains a p-element, then by Theorem 4.1.3, U(FG) 

is nilpotent. If G contains no p-elements, then it is abelian, hence (3) implies 

(2), and we are done. □

Finally, let us complete the case in which Q% C G. We recall that for a ring, R, 

and a subset, A, of R, we define a sequence of associative ideals of R  as follows. 

We let A(0) =  R, and for each i > 0, A(t+1) is the ideal generated by all of the 

Lie commutators [a,/?], where a  € A(*), /? € A. Our second main result is

T heorem  4.5.10. Let F  be a field of characteristic p ^  2, and G a torsion 

group containing Q%. Then U+(FG) is nilpotent if and only if either

(1) p > 2 and G ~  Q& x E  x P, where E 2 = 1 and P is a finite p-group, or

(2) p =  0 and G — Q% x E, where E 2 = 1.

Proof. If char F  = 0, then Proposition 4.1.8 tells us what we need to know. 

Suppose p > 2. If U+(FG) is nilpotent, then by Lemma 4.5.7 and Proposition 

4.4.11, we see that G ~  Qs x E  x P, where E 2 =  1 and P  is a finite p-group. 

Now, let us consider the converse.

Suppose G = Q$ x E  x P, where E 2 =  1 and P  is a group of order pm, for 

some m > 0. We claim that for each positive integer n, and any a , f i x , . . .  ,/?„ 6 

U+(FG), we have

(a, A  ft,) -  1 € ((FG)+ )„).

This will complete the proof, since ((FG)+)(pm) =  (0), by Lemma 3.6.4. Our 

proof is by induction on n. If n =  1, then

( a , f t )  -  1 =  a - ' f t ' a h  -  1 =  o - ’/ J f 'K A ]  e  ((FG)+)(i).
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Then, assuming that ( a , f t , .  .. ,ft,)  -  1 6 ((FG)+ )(n), we obtain

(a,/?!,... ,0n,0n+1) -  1 = (a,/?!,... .ftO ^n+ifoft,-” ,/?„)/?„+! -  1 

=  ( a , f t , . . .  , / ? „ ) _ 1 / 3 " | 1[ ( a , , / ? „ ) , j3n + ij  

= (a, ft,... ,j3n)_li8^|i[(a,ft,... ,/?„)- I,j3„+1]

which is in ((FG )+)(n+1), as required. □

Comparing Theorems 4.5.9 and 4.5.10 with Theorems 3.6.1 and 3.6.5, we 

obtain the following interesting consequence.

C orollary 4.5.11. Let F  be a field of characteristic different from 2, and G a 

torsion group. Then ld+(FG) is nilpotent if and only i f  (FG)+ is Lie nilpotent.

We might also ask when U+(FG) will be nilpotent if G is not torsion. But 

Theorem 4.5.9 will not hold in this case. Indeed, let G be an orderable group 

which is not nilpotent. By [Pasl, Corollary 13.2.8], any nonabelian free group will 

suffice. Of course, U(FG) contains G, hence U{FG) is not nilpotent. However, 

it is well-known (and easy to verify) that

U(FG) = { f g : f e U ( F ) ,g e G } .

Since G is torsion-free, it has no elements of order 2. Thus, U+(FG) = Lf(F), 

which is commutative, hence U+(FG) is certainly nilpotent.
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Chapter 5

TO R SIO N  M ATRICES O VER G RO UP R IN G S

5.1. B a c k g r o u n d  t o  t h e  pr o b le m

Let us now switch gears and consider the integral group ring, ZG. In the 

1960’s, Zassenhaus made a series of conjectures about the units of ZG. The first 

of these, commonly known as (ZCl), is the following.

C onjecture 5.1.1 (Zassenhaus). Let G be a finite group. I f u € Z/(ZG), 

um =  1 for some positive integer m, and e(u) =  1, then there exists a unit a in 

the rational group algebra, QG, such that a~ lua  € G.

Here, we recall that e : ZG —»■ Z is the augmentation map. A good deal of 

work has been done on this conjecture. It has been established for finite nilpotent 

groups (see [Seh2, Theorem 40.4]), and for various other classes of groups, but 

the problem remains open for finite groups in general.

In proving certain cases of this conjecture, it has been possible to translate 

the problem into a question about matrices, which is actually a generalization 

of the problem, and is interesting in its own right. (See, for instance, [MRSW].)

A version of this chapter has been accepted for publication. G. T. Lee, S. K. SehgaJ, Torsion  
m atrices over com m utative integral group rings, Publicacions Matematiques (to appear).
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Let us discuss this problem. We recall that for a ring, R, with identity, and a 

positive integer n, we let GLn(R) denote the group of invertible n x n matrices 

over R. Given any matrix U =  (u,y) € GLn(ZG), we define

e* : GLn(ZG) -)• GLn{Z)

via

e ' ( U )  =  W u i j ) ) .

This is easily seen to be a group homomorphism. We let SG Ln(ZG) be the 

kernel of e*. That is, SG Ln(ZG) is the group of invertible n x n matrices over 

ZG  with identity augmentation. We present

Problem  5 .1 .2 . Let G be a finite group and n a positive integer. Is is true 

that for every torsion matrix U € SG Ln(ZG), U is conjugate in GLn(QG) to a 

diagonal matrix with group elements on the diagonal?

Our interest lies in ZA, where A  is abelian. For abelian groups, this question 

has recently been linked to another interesting problem. We let Tr denote the 

usual trace of a matrix. Also, if a = a 99 ^ ZA, then we write a > 0 if

and only if a g > 0 for all g 6 A.

T heorem  5.1 .3  (M arciniak-Sehgal). Let A be a finite abelian group, and n 

a positive integer. Let U € SG Ln(ZA) be a torsion matrix. Then U is conjugate 

in GL„(QA) to a matrix diag (<7i , -. - ,gn), with each gi 6 A, if  and only if 

Tr{U) > 0.

Proof. See [MS3, Proposition]. □

Theorem 5.1.3 allows us to translate the problem back from the matrix ring 

to the group ring. Let us consider Problem 5.1.2 for finite abelian groups A.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



When n =  1, this amounts to asking if the only torsion units of ZA axe ±A. But 

a positive answer to this question is a classical theorem of Higman (see [Seh2, 

Corollary 1.6]). When n =  2, Luthar and Passi obtained an affirmative answer 

for all finite abelian groups, A, if QA is replaced with CA, the complex group 

algebra. (See [LuP, Theorem 3.1].) Recently, however, the following result was 

obtained.

Theorem  5.1.4 (M arciniak-Sehgal). Let A be a finite abelian group, and 

n < 5. Then every torsion matrix U 6 SG Ln(ZA) is conjugate in GLn(QA) to 

a diagonal matrix with group elements on the diagonal.

Proof. This is the main result of [MS3]. □

In fact, it is also known that this last result cannot be extended beyond n = 5, 

because of the following counterexample.

Example 5.1.5 (Cliff-Weiss). Let A =  Cs xC s, the direct product of two cyclic 

groups of order 6. Then there exists a torsion matrix U € SG L^fcA) such that 

U is not conjugate in GZ<6(QA) to any matrix of the form diag(gi, . . .  ,ge), with 

each gi € A. (See [C1W].)

Cliff and Weiss actually constructed the counterexample explicitly. Of course, 

this gives us a counterexample for n > 6 as well. Indeed, let U be the matrix from 

Example 5.1.5. By Theorem 5.1.3, Tr(l7) 0. Let us say that the coefficient of 

go in Tr(tZ’) is negative. Now,

e(Tr(£0) =  Tr(e*(£0) =  Tr(/6) =  6 >  0,

hence there exists some g\ € A such that the coefficient of g\ in Tr(U’) is positive. 

Let

V  = U@ g iIn -S e G L n(ZA).
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Clearly, V  6 SG Ln(ZA), and V6 =  since U6 =  Is and A  has exponent 6. 

But Tr(V) =Tr(l7) +  (n — 6 )<7i, hence the coefficient of go in Tr(V) is negative 

and therefore, by Theorem 5.1.3, we obtain a negative answer to Problem 5.1.2 

for the group Cs x Cs and all n > 6.

Thus, we will obtain an affirmative answer for all finite abelian groups A  if 

and only if n < 5. The next question would be, for which finite abelian groups 

A  do we obtain a positive answer for all n? The answer is found in

Theorem  5.1 .6  (C liff-W eiss). Let G be a finite nilpotent group. Then the 

following are equivalent:

(1) for every positive integer n, and every torsion matrix U 6 SG Ln(ZG), 

U is conjugate in GLn(QG) to a diagonal matrix with group elements on 

the diagonal, and

(2) G has at most one non-cyclic Sylow subgroup.

Proof. See [C1W, Theorem 6.3]. □

Our question, then, is this. Suppose A  has two or more non-cyclic Sylow 

subgroups. Can we obtain an affirmative answer to Problem 5.1.2 for particular 

values of n > 6? The following result has been known for some time.

Theorem  5 .1 .7  (M arciniak-R itter-Sehgal-W eiss). Let Abe a finite abelian 

group, and n a positive integer, such that n < p for every prime p dividing |A|. 

Then for every torsion matrix U 6 SGLn(ZA), U is conjugate in GLn(QA) to 

a matrix diag (g i , . .. ,gn), with each gi 6 A.

Proof. See [MRSW, Theorem 4.6]. □

However, in view of Theorem 5.1.6, it seems reasonable to believe that we 

could obtain Em affirmative answer just by restricting the Sylow subgroups which 

are not cyclic. Our main result for finite groups is the following.
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Theorem 5.1.8. Let A be a finite abelian group and n >  6. Suppose that either

(1) A has at most one non-cyclic Sylow subgroup, or

(2) i f  q\ and qi are the two smallest (distinct) primes such that the Sylow qx- 

and q2 -subgroups of A are non-cyclic, then qx + <12 > n2+4n~8 •

Then for any torsion matrix U € SG Ln(ZA), U is conjugate in GLn(QA) to a 

diagonal matrix with group elements on the diagonal.

The next section will be devoted to the proof of this result, and the final 

section will examine some generalizations to infinite groups.

5.2. F i n i t e  g r o u p s

Let us prove Theorem 5.1.8. We will follow the same plan of attack as in 

[MS3]. Fix a number n > 6, and suppose the theorem fails for n. Choose an 

abelian group A, of minimal order, which provides us with a counterexample U. 

That is, U € SGLn(ZA), U is torsion, and U is not conjugate in GLn(QA) to 

any diagonal matrix with group elements on the diagonal. By Theorem 5.1.3, 

Tr({7) ^  0. Thus, there exists h 6 A such that the coefficient of h in Tr(l7) is 

negative. Now, h~lU € SGLn(ZA), h~xU is torsion, andTr(/i-1{7) =  h -1Tr(i7). 

Thus, the coefficient of 1 in Tr(h_117) is negative. Replacing U with h~xU, we 

will assume that the coefficient of 1 in Tr(tf) is negative.

Now, let a =  Tr(C/), and let 5+ be the set of elements of A with positive 

coefficients in a , and S_ the set with negative coefficients. Then we may write

a =  a+ — a_

where 5+ is the support of a+ , S_ is the support of a _ , and a+ > 0, a _  > 0. 

Notice also that S+ and S -  are disjoint, and 1 € S  Let us explicitly write

Q+ = <xgg, a -  = as9'
g€S+ g€ S—
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We will need to use the following result from [LuP]. Let G be a finite group,

and let C i,...  ,Cr be the conjugacy classes of G. Write hi =  |C,j. Take any 

matrix V  with entries in CG. We may write V  =  Y^geG Vg9i where each Vg 

has complex entries. Also, for each i, let Ui(V) =  Tr(V'j). The lemma we

require is

Lem m a 5.2.1 (L u thar-P assi). I f  V  is a torsion matrix in GLn(CG), then

with equality holding if and only i fV  is a central matrix. I f  V  € GLn(ZG), then 

equality holds if  and only if V  — ± g ln, for some g 6 G.

Proof. See [LuP, Corollary 2.3]. □

For our purposes, this gives

Lem m a 5.2.2. (a) £«,€s+ <*g -  £ ff€S_ Qg =  n, and (b) J2g€A a 2g < n 2.

Now, let us prove (b). Since A  is abelian, its conjugacy classes have only 1 

element. Thus, each Vi{U) (in the notation of Lemma 5.2.1) is simply Tr(t/j), 

where U = Ugg, and

Proof. To get (a), we note that

£  a ,  -  £  a ,  =  f (Tr(£/)) = T r =  Tr(/„) = n .
g€ S+  g € S —

r,)g = Tr(U) = ' £ ± a!,g.
g € A

Therefore, by Lemma 5.2.1,

g€A

g € A
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with equality if and only if U — ± g ln for some g € A. But U 6 SG Ln(ZA), 

hence U ^  —g ln, and if U =  g ln, then U is not a counterexample to Theorem 

5.1.8, contrary to our assumption. Thus, the inequality is strict, as required. □

Let us restrict the size of S+. We have

Lem m a 5.2.3. |S+| < — 1.

Proof. Suppose this is not the case. Then e(a+) > |S+| > n3*n (since the 

coefficients of ar+ axe positive). By Lemma 5.2.2,

6(a_) =  e(a+ ) - n > ^ p .

Thus, by Lemma 5.2.2, since the cofficients of a+ and q_ are positive integers, 

we have
2 2n \ —> n v—̂ v—> n -f- n n — n ■>n >E»J  ̂ E°<+E ~ 2 ~  + — — = n

g€A 3€S_

which is a contradiction. □

For each prime p, let Ep be the set of all subgroups of order p in A. Let 

E =  Up £p‘ We define cr to be |£|, the number of subgroups of A of prime order. 

If A has at most one non-cyclic Sylow subgroup, then by Theorem 5.1.6, we 

obtain an affirmative answer to Problem 5.1.2 for A, for all positive integers n, 

hence A is not a counterexample to Theorem 5.1.8, contrary to our assumption. 

Thus, A has at least two non-cyclic Sylow subgroups, and q\ and 92 are the two 

smallest primes such that the Sylow q\- and ^-subgroups of A are non-cyclic. 

Clearly, then, A contains a copy of the group Cqi x Cqi x Cn  x C92. It is easy 

to verify that Cqi x Cqt contains q\ + 1 subgroups of prime order, and similarly 

for Cn  x C92, so o’ >  51 +  <72 +  2. By the restriction placed upon <71 and <72 in 

Theorem 5.1.8, this implies that a  > n2*re. For any x € S -  and any H  6 E, we 

let Tx,h  =  C 

Let us prove
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Lemma 5.2.4. No Txj j  is empty.

Proof. We have the usual projection 7r : Z A  —> Z (A /H ). Applying 7r to each 

element in any matrix, we obtain a group homomorphism

7 r *  : GLn{ZA) GLn(Z(A /H )).

Since U is torsion, n*(U) is torsion, and it is easy to verify that x*(U) has 

identity augmentation. That is, x*(U) 6 SG Ln(Z(A /H )). Now, let p be any 

prime, and P  the Sylow p-subgroup of A. Then it is clear that P H /H  is the 

Sylow p-subgroup of A /H . Thus, if the Sylow p-subgroup of A  is cyclic, then 

the Sylow p-subgroup of A /H  is cyclic. It follows that A /H  is a group of the 

type discussed in Theorem 5.1.8. Since A is a group of minimal order which 

provides a counterexample, 7r(a) =  Tr(7r*([/)) > 0. Now, the coefficients of a_  

are positive, hence they do not cancel each other out when we apply x. Thus, 

since x 6 S - , ?r(x) is in the support of 7r(a_). But 7r(a) =  tt(q+ ) — 7r(a_), and 

7t (q ) > 0, hence x(x) must also appear in the support of ?r(a+). That is, there 

exists some group element y such that

y € S+ fl 7r-1(jr(x)) =  5+ n  H x = Tx,h , 

and Tx<h is nonempty. □

We will now examine the intersections between the various sets TXjh -

Lem m a 5.2.5. The sets TXtn  have the following properties.

(1) For any H  € S  and x ,y  € S - , the sets TXtn  and TVtH are either disjoint 

or identical. In fact, they coincide if and only i f  xy~ l € H.

(2) Assume H ,K  6 £, with H  ^  K . For any x ,y  6 S - ,  if  TXtn  is 

nonempty, then xy~ l 6 H K \(H  U K ) and \TXtn  H =  1.
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Proof. (1) It is a basic property of cosets that H x  and Hy axe either disjoint or 

coincide, and the latter occurs if and only if xy-1 € H. Since TXjh =  H x  n  S+, 

there is nothing more to do.

(2) Suppose TI<HnTy>K is not the empty set. Then let us say g 6 HxC\KyC\S+. 

Thus, g 6 H K xD H K y , hence xy-1 € H K , by the same basic property of cosets. 

Suppose xy~l 6 H  U K . Without loss of generality, we will say that xy~x € K. 

Since g 6 H x, gx~x € H. But gx~l =  {gy~l ){yx~1)- Since g € K y, gy~l € K, 

and yx~ l =  (xy-1 )-1 € K , hence gx~x € H  fl K. But H  and K  are distinct 

subgroups of prime order, and therefore H fl K  =  1. Thus, gx~l =  1, and 

therefore g =  x € S - .  But g € S+, and 5+ and S -  are disjoint. This is a 

contradiction, proving the first part of (2). Now, suppose <71,02 6 Tx,h H Ty>x . 

Then y i i -1 and g2 X~l lie in H, hence g ig ^1 € H, and similarly, y iy f1 € K, 

hence g\ = 02- That is, Tx,h H Tv<k  contains only one element. □

Take any x 6 5_, and let Tx =  U tfef Tx<h - If H  and K  axe distinct elements

of S, then since xx-1 =  1 6 H  U K , we see from Lemma 5.2.5 that Tx^u and

Tx,k  are disjoint. Thus, Tx is a subset of S+ which is a union of a pairwise
2 ,

disjoint, and nonempty (by Lemma 5.2.4) sets. Therefore |Tr | > a > Let

us consider the intersections of the various sets Tx.

Lem m a 5.2.6. Let x and y be distinct elements of S - .  I fT x C\Ty is nonempty, 

then either

(i) xy~ l has order pq for distinct primes p and q, and then \TX fl Ty\ <  2; or,

(ii) xy-1 is a p-element for some prime p, and TxC\Ty C (Jw tA'6fp TItH ^Ty<K-

Proof. We know that the sets (Jffef U/cef ŷ<K interesect> hence there

exist H ,K  € € such that Tr>#  and TVik  intersect. Let us say H  € Ep, K  € Sq, 

for (not necessarily distinct) primes p and q. First, suppose p =  q. Lemma 5.2.5 

gives us two possibilities, but in either of them, xy~l 6 H K . Therefore, xy~ l is 

a p-element.
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Now, suppose that q. Then, of course, H  K , hence by part (2) of Lemma

5.2.5, xy-1 € H K \(H  U K ). But the elements of H K , excluding H  and K , all 

have order pq. Thus, the two possiblities for the order of xy~ l are established. 

Continuing with the p ^  q case, we have (xy-1 ) = H K , since o(xy-1 ) =  pq. 

Thus, H  (resp. K ) is the unique Sylow p-subgroup (resp. Sylow q-subgroup) of 

(xy-1 ). In particular, then, if Hi and K\ are any other pair of elements of £, then 

they are not the Sylow subgroups of (xy-1 ), hence Tx>h x H Tv<k x is empty. (If 

Hi and Ki have the same order, then we have already seen that if TXjh x fl Ty<Kx 

is nonempty, then x y -1 is a p-element, which is a contradiction.) Thus,

\TX n  Ty\ =  |(Tx<h n  TVtK) U (Tx,k  H Tytn ) I < 2,

by Lemma 5.2.5.

Let us complete the p =  q case. If TX)h x fl  Tytn x is nonempty, for some 

Hi € £Pl, K i € £p2, where pi ^  p?, then we saw earlier that xy-1 has order 

P 1 P 2 , which is false. If # 2 , K 2 and T x>h 2 C  is not the empty set,

then since xy-1 € H 2 K 2  by Lemma 5.2.5, xy-1 is a qi-element. Since xy-1 is 

a p-element, p =  qi. Therefore, Tx<h can meet Ty^  only if H ,K  6 £p, and 

therefore

C T y  C  ( T x ,h  C T y , K )
H,h’eep

as required. □

Next, let us put a lower bound on e(a+).

Lem m a 5.2.7. e(or+) > a • max{a9 : g € S-} .

Proof. Take any g €  5 — We will show that e(ot+) > <Tag. Take any subgroup 

H  6 £, and let ir : ZA  —> h (A /H )  denote the natural projection. Also, let 

g = 7r(g). Then the coefficient of g in Jr(a_) is /?, where

P =  Q & '

fc€S_nir-l(j)
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But all of these a* values are positive, and g E S -  fl ir 1(g), hence 0  > ag. 

Similarly, the coefficient of g in 7r(a+ ) is 7 , where

7 =  ah = ^ 2  ak = e{ ^2 <*hh).
h£S+nir— l(g) hGTĝ g h£Tgtu

Now, we may apply 7r to each element of a matrix, obtaining a homomor­

phism 7r*, and we get 7r(a) =  Tr(7r*(£/)). Here, 7r*(U) is a torsion matrix in 

SG Ln(Z(A/H )). As we saw in the proof of Lemma 5.2.4, A /H  satisfies the 

conditions of Theorem 5.1.8 hence, by the minimality of A , 7r(a) > 0. That is, 

7r(a+) — 7r(a_) > 0 and therefore, the coefficient of g in 7r(a+ ) — 7t(q_) is greater 

than or equal to zero. Thus, 7  > 0. Therefore,

e( ^ 2  <*hh) > 0 > c tg.
hGTg'H

Recalling that a+ has positive coefficients, we have

e(a+) > e( ^ 2  Qhh)
h€Tg

and since we have already seen that the union Uf/g£ Tg,H *s disjoint, we get

e(a+) >  5 3  SZ  a k h ) -  =  (7Q»’
H££ keTg,B

as required. □

In fact, a_  must have a very simple form.

Lem m a 5.2.8. a_  =  g• In particular, e(ar-) =  |S_|.

Proof. Suppose that not all coefficients of a_  are 1. Then by Lemma 5.2.7,

c(q+ ) > 2 a > n2j~re. By Lemma 5.2.2,

/ \ . n2 -  ne(a_) =  e(a+) -  n > — -— .

As in the proof of Lemma 5.2.3, we obtain a contradiction. □

Next, we need to know that S -  contains at least five elements. We have
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Lemma 5.2.9. |.S_| > "243w.

Proof. By Lemma 5.2.7, e(o:+) > a > n3̂ n. Thus, |5_ | =  e(a_) =  e(a+) — n >

Clearly, since n >  6 , this means |S_| > 4. For any distinct x ,y  6  S~, we say 

that Tx and Ty have a large intersection if xy~ l is a p-element. Otherwise, the 

intersection is said to be small. (By Lemma 5.2.6, the intersection can contain 

at most two elements in this case.)

L em m a 5.2.10. There exist distinct elements x and y in S -  such that Tz and 

Ty have small intersection.

Proof. Suppose all of the intersections TxnTy are large. Then xy~l is a p-element 

for some prime p. It is straightforward to verify that it must be the same prime 

p for ail pairs x and y. Since 1 6  S_, S -  is contained in P , the Sylow p-subgroup 

of A. Suppose g € Tx H Ty, for some distinct x ,y  6  S - .  Then by Lemma 5.2.6, 

9 € Tx>h H TytK for some H ,K  € Ep. Thus, g 6  Hx, so gx~l € H C P, and 

x 6  S_ C P , hence g € P. Thus, Tx fl Ty C P , for ail x 7  ̂y in S -.

Now, fix any x 6  S - ,  and choose a prime q, different from p, which divides |A|. 

(This is possible, since |A| is divisible by at least two primes, by assumption.) 

Take H  € Eq. By Lemma 5.2.4, Tx>h  is not empty, say g 6  Tr.ff- If 9 € P , 

then since x 6  S -  C P , gx~x 6  P . Also, g € Hx, hence gx~l € P  f l f f  =  1. 

Therefore, g — x. But g € S+, and x € S_, which gives us a contradiction. 

Therefore g 6  TX\P .

We know that for any x ^  y € S~, Tx n  Ty C P , hence

|J (T ,nr,)cp ,
y€S_\{x}

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and therefore,

J6T,\PCT,\( (J (T,m,)).
y€S_\{x}

That is, each Tx contains an element which is not in any other Ty. Now, for any 

x,- € S - ,  TXi C S+, and therefore, writing S -  =  {xi,X2, . . .  ,X|s_|}, we have

Tt l UTt J U - U T I|SJ CS+.

But we recall that any TX{ contains at least a elements, and each new set in the 

union adds at least one new element. Therefore, |S+| > a +  |S_| — 1. But then

n =  e{a+) -  \S-\ > |5+| -  |S_| > o- +  |S _ |-  1 -  |S_| =  <r -  1 > _  i > n

for n > 6. This is a contradiction. □

Lem m a 5.2.11. |S+| > 2a — 1.

Proof. We know that each |TU| > a. If ciny two such sets are disjoint, then 

|S+| > 2a, and we axe done. Thus, we will assume that no two Tu’s axe disjoint. 

Suppose that for some pairwise distinct x ,y , z £ S - ,  Tx and Ty have small 

intersection, and Ty and T~ have small intersection. We have two cases. First, if 

Tx and T- have small intersection, then

|Tr UTj,UTz| =  \TX\ + \Ty\(T x n T y)\ + |TZ\((TXUTy)n T z)| >  a + ( a - 2 )  + (a -A )

since each set has order at least a, and any pair has at most two elements in 

common. But then |S+| >  3a — 6 >  2<r — 1, since a > n2+w > 10. Second, if Tx 

and Tz have lcirge intersection, then by Lemma 5.2.6, there exists a prime p such 

that Tx n T z C Utf.Arefp T^ ,n ^ T ZyK Q U/f€fp Choose one of {91, 92} which 

is not p (without loss of generality, say 91). Then TX\(TX ft Tz) 3  (Jifef,, Tx>h, 

since the TXyn  are disjoint, for a  fixed x, by Lemma 5.2.5. Again, we have

|Tr  UTy U T2| =  \Ty\ + 1 TZ\(T Z n  Ty)\ + \TX\(TX n  (Ty U Tz))\.
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Now, |Ty| >  <r, and sinee T z andTy have small intersection, |Tz\(T rnTy)| > a —2. 

Also, |TX\(TX n  Tz) | >  |( J h € ^  Tx,h \ > 9 1  +  1, since the TXiH are nonempty, 

disjoint, and there me at least qi +1  of them by choice of q\. Now, |Tr  DTy| <  2, 

hence \TX\{TX n  (Ty U T,))| > 9i +  1 ~  2 =  9i -  1. Thus,

|Tr  U Ty U Tz\ > a  +  (T -  2 +  qx -  1 >  2a — 1,

since 91, being a prime, is at least 2. This is what we wanted to know, and 

therefore

(*) We may assume that, for any distinct a, b, c € 5_, either Ta and Tt have large 

intersection, or T& and Tc have large intersection.

We know from Lemma 5.2.10 that there exist distinct x  and z in S_ such that 

Tx and Tz have small intersection. Since they cannot be disjoint, Lemma 5.2.6 

tells us that xz~ x has order pq for distinct primes p and q. We know from Lemma 

5.2.9 that |S_| > 5, so let us say that v, w, x, y and z are distinct elements of 

S_. By (*), Tx and Ty cannot have small intersection hence, by Lemma 5.2.6, 

xy_I is an r-element for some prime r. If p ^  r  ^  q, then yz~ l =  (xy~l )~1xz~1 

has order divisible by three primes, contradicting Lemma 5.2.6. Thus, xy-1 is 

a p-element or a y-element. Without loss of generality, it is a p-element. Then 

yz~ l , being the product of an element of order pq and a p-element, must have 

order q or pq (given the choices afforded by Lemma 5.2.6). In the latter case, 

Ty and Tz have small intersection, which is disallowed by (*), hence yz~ l is a 

9-element. Again by (*), Tx and Tw have large intersection, hence xw~l is an 

r-element for some prime r. If p ^  r  ^  q, then zw~l =  (xz-1 )- 1xu’-1 has order 

divisible by p, q, and r, which is impossible. Thus, xw~x is a p-element or a 

y-element. Suppose xw~x is a p-element. Then since xy~x is a p-element, so 

is toy-1 =  (xto- 1)- 1xy- 1 . Now, zw~x =  (xz- 1)- 1xti/- 1 . Since xz~ x has order 

pq and xw~x is a p-element, zw~x must have order q or pq. Once again, (*) 

disallows the latter, hence zw~l is a y-element. But wy~x =  (zti7_ 1)- 1(yz-1 )-1 , 

and both zw~x and yz~x are y-elements. Therefore, wy~x is both a p-element
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and a 9-element, which is impossible. It follows that xu;-1  must be a g-element. 

Thus, wy~x =  (xw~x)~xxy~x, being the product of a 9-element and a p-element, 

has order pq.

Once again, Tx and Tv must have small intersection. Thus, xv~ l is an r- 

element for some prime r, and once again, r  =  p or q. Suppose xv~ l is a 

p-element. Then yv~l =  (xy- 1)- 1xu-1 , being a product of two p-elements, is 

a p-element. However, zv~x =  (xx- 1)- 1xv_1. Since xz~ l has order pq, and 

xv~l is a p-element, we again see that zv~x is a 9-element. But yz~ l is also a 

9-element, hence yv~x — yz~xzv~x is both a p-element and a 9-element, giving us 

a contradiction. Therefore, xv~x is a 9-element. But then yv~x =  (xy- 1)- 1xt/_1 

is the product of a p-element and a 9-element, hence it has order pq. That is, Ty 

and Tv have small intersection, but Tw and Ty also have small intersection, and 

this contradicts (*). The proof is complete. □

And now, the proof of Theorem 5.1.8 is basically done.

Proof of Theorem, 5.1.8. By Lemma 5.2.11, |S+| > 2<x — 1. But we know that 

a > n2̂ ~n , hence |5+| > n2j~re — 1. This contradicts Lemma 5.2.3. □

Of course, the restriction placed upon the group becomes much harsher as n 

increases, but for small values of n, it is fairly mild. For instance, if n =  6 , we 

are assum ing that 91 +  92 > 9. In this case, the theorem reduces to

C orollary 5.2.12. Let A  be a finite abelian group. Suppose that at most one 

of the Sylow p-subgroups, p < 5, is non-cyclic. Then for any torsion matrix 

U £ SGLe(ZA), U is conjugate in GI»6(QA) to a diagonal matrix with group 

elements on the diagonal.
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5.3. I n f i n i t e  g r o u p s

We close this thesis by applying our results from the last section to obtain some 

theorems about ZA, where A is an infinite abelian group. First, let us consider 

group traces. Let If  be a field and R  a If-algebra with identity. Let [12,12] denote 

the If-subspace of R  spanned by the Lie products [a, 6], with a,b £ R. Then for 

any positive integer n, we define the Bass rank map

r  : Mn(R) -+ R/[R,R]

via r{B) =  Tr(£) +  [12,12]. This map is clearly If-linear, and r(BC) =  r(CB) 

for all B, C € Mn(R). Suppose R  = KG, for some group G. Then we say 

that a matrix B  6 Mn(R) has a group trace if there exists a diagonal matrix 

D — diag(<7i , . . .  ,</„), with each gi 6 G , such that r(B k) =  r(D k ) for ail positive 

integers k. When G is abelian, this amounts to saying that Tr(Bk) =  gk 

for all k > 1, for some fixed group elements g\ , . . .  ,gn. (See [BMS] and [ChP] for 

a more extensive discussion of the group trace property.) Clearly, if A is abelian 

and B  € SG Ln{ZA) is conjugate to a diagonal matrix D =  diag(</i,... ,gn), 

then Tr(Bk) =  Tr(Dfc) for all positive integers k, and therefore B  has a group 

trace. In fact, more can be said. Making use of Theorem 5.1.7, the following 

result was proved.

T heorem  5.3.1 (C hadha-Passi). Let A be an abelian group. Let n be a posi­

tive integer such that n < p for every prime p such that A has a p-element. Then 

every torsion matrix U 6 SGLn(ZA) has a group trace.

Proof. See [ChP, Theorem 3.3]. □

We would like to use our Theorem 5.1.8 to obtain another condition under 

which U will have a group trace. We will need to borrow two results. First,
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L em m a 5.3.2 (C hadha-Passi). Let A  be a finitely generated abelian group. 

Let U be a torsion matrix in GLn(CA), for some positive integer n. Then no 

element of infinite order in A  appears in the support of Tr(Uk), for any positive 

integer k.

Proof. See [ChP, pp. 629-630]. □

The next lemma is [BMS, Proposition 15], simplified for abelian groups.

L em m a 5.3.3 (B ovdi-M arciniak-Sehgal). Let G and H  be abelian groups, 

and let (3 : G -¥ H be a group homomorphism. Take any matrix V  € M n(QG), 

where n is a positive integer. Suppose that (3 is injective on the set

OO

U  s u r t T H V * ) ) .
k= 1

Let (3*{V) be the matrix obtained by applying (3 to each group element appearing 

in V . I f (3*(V) has a group trace, then V  has a group trace.

We can now prove

T heorem  5.3.4. Let A be an abelian group and n a positive integer. Suppose 

either that n < 5 or we have

(1) every finite subgroup of A  ha3 at most one non-cyclic Sylow subgroup; or,

(2) if q\ and 42 are the two smallest (distinct) primes such that the Sylow 

qi- and q^-subgroups of some finite subgroup of A  are non-cyclic, then
1 _ ^  n 2+ n —8qi + 9 2  > —^ — •

Then every torsion matrix U € SG Ln(ZA) has a group trace.

Proof. Since the condition on A  is certainly inherited by subgroups, there is no 

harm in assuming that A  is generated by the group elements appearing in the
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support of one or more entries of U. In particular, we may assume that A  is 

finitely generated. In this case, Lemma 5.3.2 says that the elements of infinite 

order in A  do not appear in the support of Tr(l7r) for any r  >  1. Let us write 

A = T  x F, where T  is finite and F  is a firee abelian group. Then the support of 

Tr(C/r ) is contained in T  for all r  >  1. Thus, letting 0  : A  —»• T  be the obvious 

projection, we note that 0  is injective on T, hence we see from Lemma 5.3.3 that 

if 0*{U) € SG Ln(ZT) has a group trace, then U has a group trace. In effect, 

we have reduced the problem to the case in which A  is finite. But by Theorem 

5.1.4 (if n < 5) or Theorem 5.1.8 (if n > 6 ) ,U  is conjugate to a diagonal matrix 

diag(<7i , . . .  ,gn) in this case. It follows immediately that U has a group trace. □

Since we are dealing with abelian groups, the restriction on the Sylow sub­

groups of finite subgroups of A  could be replaced with a restriction on the Sylow 

subgroups of A. However, requiring such subgroups to be cyclic is too strong 

a condition. For example, let p be a prime, and define a group with countably 

many generators x i,x 2, . . .  such that x \  =  1 and xf+1 =  x;, for all i > 1. This 

is easily seen to be an infinite abelian p-group. However, every finite subgroup 

(indeed, every proper subgroup) of this group is cyclic. We call this group the 

quasicyclic p-group, and denote it by Zp<». If p and q are distinct primes, then 

Zp«» x Z ,~ does not have cyclic Sylow subgroups, but it would still satisfy part

(1) of Theorem 5.3.4, no matter what p and q are.

When dealing with infinite groups, it would be rather optimistic to expect our 

matrix U to be conjugate to a diagonal matrix, particularly since even (ZCl) 

fails for infinite nilpotent groups (see [MS2]). Instead, let us introduce the fol­

lowing notion. Let A" be a subfield of the complex numbers and G a group. For 

any positive integer n, we say that two matrices A ,B  6 GLn(KG) are stably 

conjugate if there exist roots of unity f  i , . . .  , f  * € K  such that

A  ® diag(fi, . . .  , £*) and B  © diag(fx, . . .  , &) 

are conjugate in GLn+jt(ivG).
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The Bass rank map r, described above, induces a rank function r  : Ko(R) —>■ 

R/[R,R], For details about this map, see [MSI, p. 572]. We mention it only in 

order to connect the following two results.

T heorem  5.3.5 (M arciniak-Sehgal). Let G be a finitely generated nilpotent 

group, and let K  be a characteristic zero splitting field for T, the (necessarily 

finite) subgroup of G consisting of its torsion elements. Then the rank map r is 

injective on Ko(KG).

Proof. See [MSI, Theorem 4.1]. □

Here, we recall that a field K  of characteristic zero is said to be a splitting 

field for the finite group G if the simple Wedderbum components of KG  are all 

matrix rings over K. We also recall the result of Brauer [CuR, Corollary 15.18] 

which states that if G has exponent n, and £ is a primitive n-th root of unity in 

C, then Q (0  is a splitting field for G.

T heorem  5.3.6 (Bovdi-M arciniak-Sehgal). Let K  =  Q(f)> where £ is a 

primitive d-th root of unity. Let G be a group such that the rank map is injec­

tive on K q ( K G ) .  If U 6 GLn(KG) satisfies Ud = In, then the following are 

equivalent:

(1) U is stably conjugate to a diagonal matrix with group elements on the 

diagonal, and

(2) U has a group trace.

Proof. See [BMS, Proposition 14]. □

Combining these results, we obtain our final theorem. Letting Q denote the 

algebraic closure of Q in C, we have
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T heorem  5.3.7. Let A be an abelian group and n a positive integer. Suppose 

either that n <  5 or else (1) or (2) of Theorem 5.S.4 holds. Then every torsion 

matrix U 6 SG Ln(ZA), regarded as a matrix in GLn(QA), is stably conjugate 

to a diagonal matrix with group elements on the diagonal.

Proof. Once again, we are free to assume that A  is finitely generated. Let us 

write A = T  x F, where T  is finite and F  is a free abelian group. By Theorem

5.3.5, if i f  is a splitting field for T  in C, then the Bass rank map is injective 

on Ko(KA). By Brauer’s Theorem, this only requires K  to contain a primitive 

e-th root of unity, where e is the exponent of T. Let m  =  de, where d is the 

multiplicative order of U. Then, let us take K  =  Q(«f), where £ is a primitive ra­

th. root of unity. By Theorem 5.3.6, U is stably conjugate over K A  to a diagonal 

matrix with group elements on the diagonal if and only if U has a group trace. 

But by Theorem 5.3.4, U does indeed have a group trace. Enlarging the field to 

Q does not harm our conclusion. Therefore, we are done. □

Remark. The definition of stable conjugacy in [BMS] is slightly different from the 

one we have used. In that paper, the scalars £, were not assumed to be roots of 

unity. However, examining the relevant proofs (to wit, the proofs of Propositions 

13 and 14), we can see that only roots of unity were used. In addition, in view 

of Theorem 5.3.1, it will also suffice to assume in Theorem 5.3.7 that n < p for 

every prime p such that A  has a p-element.
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