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Abstract

Dynamic failure in advanced brittle materials is a complex mechanical phenomena, which

is challenging to study in experimental as well as computational works. This work is set out

to model and investigate the crack initiation, growth, propagation, and branching in two-

dimensional single crystalline boron carbide at the nanometer length-scale and picosecond

time-scale. A phase-field approach is used by carefully selected interfacial energy allowing

a monolithic numerical solution method capturing strong coupling between mechanics and

damage. Specifically, transient Ginzburg–Landau equation is coupled with the balance of

momentum including geometric nonlinearities and solved by using the open-source comput-

ing platform FEniCS. The monolithic computation ensures necessary accuracy for dynamic

fracture under pure mode I loading and also demonstrates the capability of crack branching

depending on the loading rate. The effect of crack regularization length and kinetic coeffi-

cient on the crack interface profile and crack tip velocity is also studied. Obtained results are

important for modeling anisotropic fracture in advanced ceramics and designing materials

with desired characteristics.
Keywords: Dynamic failure, Advanced ceramics, Finite strain, Interface propagation,

Phase-field approach;

1. Introduction

Being the most important failure mode in solids and structures, the evolution of cracks

as well as their impact on material designs are of great importance to both scientists and
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engineers equally. According to Cox et al. [1], all fracture is dynamic at some length-

scale and time-scale. Even under quasi-static loading, the crack may propagate at a speed

comparable to that of the mechanical waves [2]. Therefore, the unstable propagation of

cracks under external dynamic loading necessitates the consideration of inertial effects to

analyze the transient behavior of structures or the interactions between stress waves and

cracks [3]. Numerous experimental, analytical, and numerical studies have been considered

to investigate the dynamic failure of brittle materials. Experimentally, the split-Hopkinson

pressure bar systems [4–6], ballistic impact [7], plate impact [8], laser spall [9], laser shock

[10], and coupling of real-time visualization techniques (e.g., ultra high-speed imaging) with

laboratory-based experiments [11] have been employed to probe the fracture behavior of

advanced ceramics during dynamic loading; however, the energy flux to the crack tip and

its connection to the crack velocity, as one of the main difficulty in the theory of high speed

dynamic crack propagation, cannot directly be measured from experimental tests [12].

Atomistic simulations, largely represented by molecular dynamics (MD) simulations and

density functional theory (DFT), are the bridge between continuum and atomic description

of dynamic fracture. Examples are the method of lattice dynamics modeling [13] and tight

binding methods [14]. Despite having successful connection between atomistic approaches

and continuum-scale theory and experimentation [15], these atomistic viewpoints often suf-

fers from limitation of modeling time, which leads to a loading rate much higher than the

rate of practical interest [16], and are forbiddingly expensive if extended to realistic length

scales [17].

Among the theoretical studies for understanding the underlying physics and mechanics

of dynamic fracture [18, 19], the Griffith criterion was one of the earliest description which

was based on an energy balance equation [20]; however, practical engineering examples are

usually too complex to be solved using analytical techniques. Therefore, numerical methods

play a vital role in dynamic failure. For example, discrete crack models, such as the discrete

element method [21, 22], the extended finite element method (XFEM) [23–25], the cohesive

zone method [26], and the cohesive segment method [27], allow the displacement field to be

discontinuous across the fracture surfaces. Regardless of showing much success in modeling

crack propagation [28], the discrete crack models need additional energy-based criteria to

simulate the dynamic fracture problems [29, 30]. In addition, the discrete crack model

requires remeshing algorithms or using the partition of unity method [31], both having
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their own difficulties in tracking the multiple crack fronts in complex three dimensional

morphologies [32, 33]. In the smeared (continuum) crack model, including the gradient

damage model [34, 35] and diffuse interface models [36–40], the displacement is continuous

everywhere and stresses gradually decrease to model the degradation process. The coupling

of discrete and smeared crack approaches (e.g., the element deletion method [41] and the

thick level-set method [42]) have also shown promising results in modeling fracture. However,

there are drawbacks as the dependence of the results on the finite element meshes and the

convergence path of the solutions results in numerical errors [43].

The phase-field model is an alternative approach that has been successfully adopted

in the simulation of martensitic phase transformations [44], melting [45], dislocations [46],

twinning [47], fracture [48–56], and their interactions [57–60]. One of the main advantages

of the phase-field approach to study the failure mechanisms in brittle materials over the

previous methods is predicting the evolution of interfaces (e.g., merging and branching of

multiple cracks) with no additional effort [61–63], making phase-field modeling a powerful

and flexible method for studying the fracture of single-crystalline [64, 65], polycrystalline

[66], and granular materials [67]. In the physics community, the phase-field models are

commonly derived by adapting the phase transition formalism of Landau and Ginzburg

[68] to study the dynamic crack propagation in brittle solids [69, 70]. The advantage of

the Ginzburg–Landau approach over the incremental energy minimization method [64] is

that material parameters associated with time scales for interfacial motion enter the model,

making it a more general model for studying the dynamic failure of highly brittle materials.

Numerically, the coupled nonlinear equilibrium and the Ginzburg–Landau equations are

solved via a staggered or monolithic scheme. The former is based on decoupling balance

equations and the phase-field problem into the system of two equations that are solved in a

subsequent manner [71, 72]. Giving rise to two convex minimization problems, the method

is robust; however, a significant amount of staggered iterations may be required at a fixed

loading step, resulting in a higher computational cost [73]. In the monolithic scheme, all

solution variables are solved simultaneously [74] that is more efficient for strongly coupled

systems of equations as a result of less Newton–Raphson iterations [75].

The current paper extends the Ginzburg–Landau phase-field approach to predict dy-

namic fracture in single crystal boron carbide (B4C) under mode I loading. In addition, the

focus of this work is on derivation of governing equations and solving them monolithically
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in order to increase the accuracy for applications with strong coupling between mechanics

and damage growth. Governing equation for the phase-field method is motivated differently

than balance equations and there is a computational difficulty to implement monolithic

schemes. Hence, the literature lacks studies focused on solving the Ginzburg–Landau based

phase-field problem for predicting the dynamic crack branching of brittle materials by using

a monolithic scheme. By following the works on local stress concentrations in nanoscale

defect-free volumes or by high pressures [76], we develop a highly nonlinear phase-field the-

ory for elasticity along with anisotropic surface energy [77]. In this way, numerical problems

are circumvented owing to governing equations motivated by thermodynamics and we man-

age to solve these nonlinear and coupled differential equations by exploiting the open-source

parallel computing platform FEniCS [78, 79].

The remainder of this paper is outlined as follows. In Section 2, we present contin-

uum mechanics and thermodynamically sound derivation of equations and their variational

formulation for the finite element method. Then in Section 3, results and representative

material properties are reported along with the discussion of phase-field simulations. The

conclusions of the study are drawn in Section 4.

2. Governing equations

We describe a model for a single fracture system in solids based on thermodynamical

derivations. The present approach accounts for the time-evolution of the fracture order (or

damage) parameter toward an equilibrium state for predicting the crack paths in anisotropic

single crystal materials adequately. This allows the study of spatio-temporal fluctuations

of damage variables, as well as the nanoscale dynamics that govern various pattern forming

phenomena [80, 81]. Moreover, the interfaces, their propagation, and interactions, which are

the most important features governing the formation of microstructures in materials [82–85],

is studied via this newly implemented approach.

2.1. Material

As a result of possessing hardness above 30GPa, low mass density (2.52 g/cm3), and high

Hugoniot elastic limit (17 -20GPa), boron carbide (B4C) has received considerable attention

in ballistic applications [86]. Due to its high melting point and thermal stability [87], ex-

treme abrasion resistance [88], and high temperature semiconductivity [89], boron carbide is
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widely used in refractory, nuclear, and novel electronic applications, respectively; however,

its performance is hindered by one or more of a number of inelastic deformation mecha-

nisms, including deformation twinning [90], stress-induced phase transformations [91, 92],

and various anisotropic fracture behaviors [93] when subjected to mechanical stresses ex-

ceeding their elastic limit. In the literature, the key failure mechanisms in boron carbide

(e.g., cleavage fracture and twinning) are commonly studied experimentally using numerous

characterization techniques (e.g., transmission electron microscopy [94] and Raman spec-

troscopy [95]). Fracture in the form of shear failure, cavitation, and cleavage has been

confirmed from atomic simulation results, either via first principles or molecular dynamics

simulations [96, 97]. Finite deformation continuum models, such as cohesive zone models

for fracture [98] and crystal plasticity [99] have also been used to investigate inelastic de-

formation in single and polycrystalline boron carbide. The present time-evolved phase-field

model seeks to engineer the next generation of anisotropic boron carbide-based ceramics

by understanding the important plastic deformation and brittle fracture mechanisms that

govern its high rate performance.

2.2. Order parameter

The main desired feature of the proposed model is to introduce an order parameter ⌘

assigned to each material point X to represent fracture, where ⌘ = 0 indicates undamaged

material, ⌘ = 1 fully damaged material, and ⌘ 2 (0, 1) partially degraded material. This

variable is commonly assumed to be at least C
2-continuous with respect to X according to

the diffuse interface theory [100, 101].

2.3. Kinematics

We use standard continuum mechanics notation and understand a summation over re-

peated indices. The reference, stress-relaxed intermediate, and current configurations are

denoted by B0, Bt, and B, respectively. For the balance of momentum, the computational

domain will be B0 with its closure @B0. On Neumann boundaries, @B0N i , gradient of the

solution is known by the given traction vector and on Dirichlet boundaries, @B0Di , the solu-

tion itself (displacement) is given. The motion from the reference position X to the current

(deformed) position x = X+u is given by the displacement tensor of rank one, u = u(X, t),

as a function in space, X, and time, t. The deformation gradient, F = rx, is a compatible
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(r ⇥ F = 0) non-singular two-point tensor; r is the gradient operator in the undeformed

state. The right Cauchy–Green deformation tensor and the Jacobian determinant read

C = FT
· F , J = det(F ), (1)

respectively. Then the strain measure is nonlinear, called Green–Lagrange strain tensor, as

follows:

E =
1

2
(C � I). (2)

Therefore, we model the geometric nonlinearities accurately. Even if the material model

is elastic, the governing equation is nonlinear. The interpolation function �(⌘) is obtained

from a general representative function '(a, ⌘) as a fourth-degree potential [102] defined as

'(a, ⌘) = a⌘2(1� ⌘)2 + ⌘3(4� 3⌘), (3)

where a is a constant parameter—in order to ensure that '(a, ⌘) is a monotonous function,

a is chosen between 0 and 6. The interpolation function '(a, ⌘) satisfies the conditions

'(a, 0) = 0, '(a, 1) = 1,
@'(a, 0)

@⌘
=
@'(a, 1)

@⌘
= 0. (4)

2.4. Free energy and dissipation inequality

The dissipation inequality is derived by following thermodynamics of irreversible phe-

nomena [103]. Considering the balance of energy and subtracting the balance of kinetic

energy constructed from the balance of momentum, we obtain the balance of internal en-

ergy for each material point as

⇢0U̇ +r ·Q� ⇢0r = P : ḞT. (5)

Here, ⇢0 is the mass density in the initial configuration, U is the specific (per unit mass)

internal energy, Q is the (heat) flux term across the orthogonal direction, r is the (known)

specific volumetric heat supply rate per unit mass, the right-hand side, P : ḞT, is a produc-

tion term, and P is the Piola stress (first Piola–Kirchhoff stress tensor). We begin with a

rather general model and define entropy flux as the heat flux times inverse of temperature,

T , as well as entropy supply term as the internal energy supply term multiplied by 1/T .
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Hence, we obtain the balance of entropy:

⇢0ṡ+r ·
1

T
Q�

1

T
⇢0r = ⇢0⌃, (6)

where specific (per mass) entropy, s, and the entropy production, ⌃, need to be defined.

The second law of thermodynamics asserts that the entropy production is zero for reversible

and positive for irreversible processes. By replacing the supply term in Eq. (5) and using

divergence theorem, we obtain

P : ḞT
� ⇢0U̇ + ⇢0T ṡ�

rT

T
·Q � 0. (7)

If we model the heat flux by the Fourier’s law

Q = �T ·rT, (8)

where T is the positive-definite heat conductivity tensor, entropy production’s last term

is always positive—we emphasize that T is in kelvin. By substituting U with the specific

Helmholtz free energy,  = U�Ts and assuming that the heat conduction and other thermo-

mechanical processes are mutually independent [104], the mechanical dissipation inequality

reads

P : ḞT
� ⇢0 ̇ � ⇢0Ṫ s � 0. (9)

In thermoelasticity, the free energy does depend on strain and temperature. Now we extend

the model for the free energy in such a way that the phase-field approach is acquired. We

prescribe the constitutive relation for  by assuming dependency also on the fracture order

parameter, ⌘, and its first derivative, r⌘. Substituting  ̇ into Eq. (9), using an integration

by parts, and regrouping by means of variables in the energy F , T , ⌘, r⌘, we obtain

✓
P � ⇢0

@ 

@F

◆
: ḞT

� ⇢0

✓
s+

@ 

@T

◆
Ṫ + ⇢0

✓
r ·

@ 

@r⌘
�
@ 

@⌘

◆
⌘̇ � 0. (10)

Since this inequality holds for every process, we conclude to these constitutive equations for

reversible processes generating zero entropy production,

P = ⇢0
@ 

@F
, s = �

@ 

@T
. (11)
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We may write the inequality,

⇢0X ⌘̇ � 0, (12)

with a so-called thremodynamic flux, ⇢0X , conjugate to a so-called thermodynamic force, ⌘̇.

Hence, we model the thermodynamic flux depending on the thermodynamic force in such

a way that their multiplication remains positive. Therefore, this model is for irreversible

processes. The simplest model is a linear one,

⌘̇ =⇢0L
⌘

 
r ·

⇣ @ 

@r⌘

⌘
�
@ 

@⌘

!
, (13)

by choosing a constant (mobility) parameter L
⌘, which is also called the Ginzburg–Landau

(evolution) equation. Indeed, L⌘ is a positive (kinetic) coefficient steering an energy dissi-

pation in the form of heat during the crack propagation [36].

2.5. Governing equations

According to the strength and fracture toughness of B4C being constant from room

temperature to 1500K [105], an isothermal process is assumed. Therefore, we aim for solving

the balance of momentum and evolution equation for the phase-field (order) parameter.

Also, we emphasize that the model of the system accounts for inertial effects, since it is

essential for modeling unstable crack propagation in brittle materials [106]. We neglect the

deformation due to weight and set the gravitational body force to zero. In other words,

for an isothermal, dynamic case, the deformation is caused by the mechanical loading on

boundaries such that the governing equations become

⇢0u
••
i =Pji,j , Pji = ⇢0

@ 

@Fij
,

1

L⌘
⌘• =� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i
,

(14)

where displacement, u, and phase-field, ⌘, are unknowns to be solved. We stress that the

whole formulation is acquired by choosing the Helmholtz free energy adequately. We propose

to use the following free energy:

 (F , ⌘,r⌘) = g(⌘) e(F ) +  r(⌘,r⌘) , (15)
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where g(⌘) is the degradation function,  e and  r are the mechanical energy and interfacial

energy per unit mass, respectively. The degradation function indicates that the mechanical

energy of the structure at each position degrades by the order parameter

g(⌘) = ⇣ + (1� ⇣) (1� ⌘)2 . (16)

The constant ⇣ ensures a minimal residual stiffness for fully fractured materials. The

quadratic degradation of elastic energy has likewise been used in a number of other phase-

field and gradient damage models [34, 107]. For the elastic strain energy density in the initial

configuration, we use a quadratic energy description leading to a linear material model,

⇢0 
e =

1

2
EijCijklEkl. (17)

The fourth-order stiffness tensor, C, depends on the elasticity tensor of the perfect (virgin,

without damage) material C(⌘ = 0) and the fracture order parameter ⌘ as

C = g(⌘)C(⌘ = 0) . (18)

For the interfacial energy density Wr, the following decomposition is used

Wr(⌘,r⌘) = Wr
1 (⌘) +Wr

2 (r⌘). (19)

For cleavage fracture, which is the primary failure mode in boron carbide, we choose the

terms in Eq. (19) as follows:

Wr
1 (⌘) =B⌘2,

Wr
2 (r⌘) =!ij⌘,i⌘,j , !ij = !0

�
�ij + �(�ij �MiMj)

�
,

(20)

where B = ⌥/l is the ratio of fracture surface energy ⌥ and crack thickness or regularization

length l, !0 = ⌥l is a material constant, � is the cleavage anisotropy factor, and M is the

orientation of the cleavage plane, which is known a priori [71, 72]. The cleavage plane can

be a plane of low surface energy or low intrinsic strength in the crystal [108]. The parameter

� penalizes fracture on planes not normal to M so that � = 0 results in isotropic damage.

9
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The regularization length is taken as the cohesive process zone for shear failure [109]

l =
16⇡⌥

µ0 (1� ⌫0)
, (21)

where µ0/2⇡ is the theoretical shear failure strength, and ⌫0 = (3k0 � 2µ0)/(6k0 + 2µ0) [110].

By using the aforementioned material modeling and strain definition in Eq. (17), the

governing equations (14) read for displacement

⇢0u
••
i = Pji,j , Pji = g(⌘)

@ e

@Fij
= g(⌘)

@ e

@Ekl

@Ekl

@Fij
. (22)

with
@ e

@Ekl
=Skl = CklijEij , Skl = Slk ,

@Ekl

@Fij
=
1

2

@

@Fij
(FpkFpl � �kl) =

1

2
(�pi�kjFpl + Fpk�pi�lj) .

(23)

For the phase-field, in the case of a homogeneous material ⇢0 = const.|X , we have

1

L⌘
⌘• =� ⇢0

@ 

@⌘
+ ⇢0

⇣ @ 
@⌘,i

⌘

,i
= �g0(⌘) e

�
@Wr

1

@⌘
+
⇣@Wr

2

@⌘,i

⌘

,i

=�
1

2
g0(⌘)EijCijklEkl � 2B⌘ +

⇣
2!0

�
�ij + �(�ij �MiMj)

�
⌘,j
⌘

,i
.

(24)

To satisfy the antisymmetry condition for the interpolation function �(⌘), we use Eq. (4) by

setting a = 3 and obtain

�(⌘) = '(3, ⌘) = 3⌘2 � 2⌘3 + ⌘4 . (25)

2.6. Variational formulation

Governing equations are replaced by their weak forms and we follow the standard tech-

niques, so-called variational formulation for generating weak forms and then solve them

numerically by means of the finite element method [111]. The space discretization is incor-

porated by approximating fields, u and ⌘, by spanning over nodal values after a triangulation

of the computational domain, ⌦, with its closure, @⌦, into finite elements. For the sake of

a simpler notation, we skip a notational change for approximated fields, since their analyt-

ical and discrete representations never occur in the same formulation. We emphasize that

all unknowns,
�
u, ⌘

 
, are solved in a monolithic manner, therefore, the Hilbertian–Sobolev

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



space, H1, on a triangulation ⌧ , as follows:

V =

(
�
u
 
2 H

1(⌦) :
�
u
 ���

⌧
Pa(⌧) 8⌧ 2 T

^
�
⌘
 
2 H

1(⌦) :
�
⌘
 ���

⌧
Pb(⌧) 8⌧ 2 T

)
.

(26)

We use a discretization using Lagrange elements and generate piecewise continuous poly-

nomials that are adequate for approximation in H
1. This triangulation is denoted T and

consists of non-overlapping triangles, ⌧ . This standard FEM elements are of order a = 2

and b = 1 such that we use linear elements for the phase-field and quadratic elements for

displacement. As is common in the Galerkin approach, the same space from above is used

in defining test functions,

V̄ =

(
�
�u

 
2 H

1(⌦) :
�
�u

 ���
⌧
Pa(⌧) 8⌧ 2 T

^
�
�⌘
 
2 H

1(⌦) :
�
�⌘
 ���

⌧
Pb(⌧) 8⌧ 2 T

)
.

(27)

For the time discretization, we use a Euler backwards scheme for the order parameter and

velocity, for example for the current unknown value, ⌘ = ⌘(t), we utilize the solution from

one time step before, ⌘0 = ⌘(t��t), and hence

⌘• =
⌘ � ⌘0

�t
. (28)

We use a constant time step, �t. Multiplying governing equations by test functions, gener-

ating integral forms, and then integrating by parts where necessary, we obtain

Formu =

Z

⌦

✓
⇢
ui � 2u0i + u00i

�t�t
� Pji�ui,j

◆
dV +

Z

@⌦N

t̂i�ui dA , (29)

where a traction vector, t̂, is given on Neumann boundaries, @⌦N. Analogously, we construct

a weak form for the phase-field governing equation, where we use integration by parts only
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for the second derivative in ⌘ term,

Form⌘ =

Z

⌦

 
⌘ � ⌘0

L⌘�t
�⌘ +

1

2
g0(⌘)EijCijklEkl�⌘ + 2B⌘�⌘

+ 2!0
�
�ij + �(�ij �MiMj)

�
⌘,j�⌘,i

!
dV .

(30)

The implementation solves the nonlinear weak form

F = Formu + Form⌘ . (31)

The solution method is based on a Newton–Raphson solver. In each iteration, the weak form

depending on unknowns, P = {u, ⌘}, and their corresponding test functions, �P = {�u, �⌘},

is linearized by an expansion around the unknowns from the last iteration, P , in order to

calculate P + �P . Indeed, the solution is for the increment, �P , where the problem is

linear by cutting the expansion at second order terms

F (P +�P , �P ) = F (P , �P ) +rPF (P , �P ) ·�P , (32)

where the derivative in unknowns is established by Gateaux (or directional) derivative:

rPF (P , �P ) · P = lim
✏!0

d

d✏
F (P + ✏�P , �P ) . (33)

This standard formulation is beneficial but cumbersome for implementation if the latter

derivative is determined manually. Therefore, on a higher level, we use open-source packages

from SyFi in FEniCS [112, 113] allowing to obtain this part via the symbolic derivative such

that the weak form’s nonlinearity may be as complicated as it gets, yet the implementation

remains the same.

3. Numerical simulations demonstrating the instability of a tensile loaded fast

moving crack in a single crystal boron carbide

The weak forms in Eq. (31) are nonlinear and coupled. We present a monolithic imple-

mentation of this transient, fully coupled system of equations by using open-source packages

from the FEniCS Project [114]. We emphasize that the literature is often suggesting a

12
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staggered scheme, see for example [115–117] for implementations in FEniCS. The staggered

solution solves many smaller problems than one larger, which is faster since the compu-

tational cost increases exponentially [118, 119]. However, in a staggered algorithm, several

iterations are necessary for solving one time step in order to ensure that coupling between un-

knowns is fulfilled with the chosen accuracy. Generally speaking, for highly-coupled systems,

a monolithic approach is more feasible. Herein, the implementation is using a monolithic

approach, where displacement and phase fields are solved at once. As aforementioned, the

linearization is done automatically by means of a symbolic derivation which is proven to be

more reliable [120, 121]. The conjugate gradient method with a Jacobi preconditioner from

PETSc packages has been employed for solving the nonlinear equations. The simulation has

been performed by a computing node using Intel Xeon E7-4850, in total 64 cores each with

the 40 MB cache, equipped with 256 GB Memory in total, running Linux Kernel 5 Ubuntu

20.04. The code is written in Python, although the FEniCS software wraps the formulation

to a C++ code and solves as a compiled program. Therefore, yet efficient in developing the

code, all computation is running in parallel such that large scale problems are possible to

solve.

A popular 2-D example under different loading conditions is demonstrated next in order

to simulate unstable crack propagation observed in ceramic boron carbide. The results are

adequate, qualitatively and quantitatively. The material properties used in the simulations

are shown in Table 1 for B4C.

For the example below, the mesh size, h, is such that 10 elements are considered at the

interface to resolve the sharp variation along the interface width. Experience has shown

that this size provides sufficient accuracy without over resolving the crack. Analysis of the

computational solution of this example improves understanding a rapid failure at length-

and time-scales not feasible to demonstrate experimentally. These extreme conditions are

so challenging to detect experimentally, we must rely on accurate multiphysics simulations.

Hence, we stress the importance of the choice of a monolithic solution strategy.

In this example, we model a pre-notched rectangular plate loaded dynamically in ten-

sion. This phenomena has been extensively studied by experimental approaches [126, 127].

Regarding phase-field models, the Mode I branching problem has been treated in Borden

et al. [40] and Bleyer et al. [128]. Both investigations used the small strain framework for

precisely locating when and where branching occurs; however, the material is exposed to
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Table 1: Material properties and model constants for B4C

Parameters Notation Value Reference

Elastic constants

C11 = 487GPa

[122, 123]
C12 = 117GPa

C13 = 66GPa

C33 = 525GPa

C44 = 133GPa

Initial shear modulus µ0 = 193GPa
[124]

Initial bulk modulus k0 = 237GPa

Density ⇢ = 2520 kg/m3 [124]

Cleavage anisotropy factor � = 0� 100 [124]

Fracture surface energy ⌥ = 3.27 J/m2 [125]

Regularization length l = 1.04 nm Eq. (21)

large strain before and during fracture at the nanoscale [129]. The geometry and loading

conditions are depicted in Figure 1.

Figure 1: The geometry and boundary conditions for the dynamic crack branching example. The specimen

contains a crack and is subjected to a symmetric traction load.

The phase-field (order parameter) distribution along x-axis in Fig. 1 is illustrated in

Fig. 2. Mechanical loading of amplitude �t is established by a traction vector vertical to top

and bottom boundaries, �tn, where n is the surface normal outward the continuum body.

This traction is applied at the initial time step and held constant throughout the simulation.

We investigate three cases with the amplitude chosen as 1.5GPa, 1.7GPa, and 1.9GPa.

The regularization length is l = 0.5 nm, and plane strain is assumed. The highlighted region

14

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



shows that the fracture order parameter’s value is increasing until reaching to the final value

⌘ = 1, where the actual crack tip (where ⌘ = 1) forms at t = 1.3 ps and after that the crack

starts to grow and propagate along the crack length.

Figure 2: The dynamic crack profiles versus the crack notch’s length x at different time steps for regulariza-

tion length of l = 0.5 nm under a uniaxial tension stress of �t = 1.5GPa. The inset shows the highlighted

order parameter’s distribution in yellow for t = 1ps, 1.1 ps, and t = 1.3 ps.

Next, distribution of the phase-field (damage) is analyzed. At different time steps, along

different vertical slices, under the same loading scenario, we plot the damage field, ⌘, in

Fig. 3. The kinetic coefficient parameter used in the phase-field model, which is unknown

for boron carbide, is assumed to be L = 1000Pa�1 s�1 and the crack regularization length

is l = 0.5 nm. Under the loading �t = 1.5GPa, at x = 1nm distance from the notch tip, the

vertical distribution of damage in Fig. 3(a) provides an insight that the crack reaches this

distance between 5 ps and 10 ps. Also, there is a small plateau for the interface profile at

t = 22ps which is related to a small deviation of the crack path. At x = 2nm, the interface

profiles demonstrate the motion of the crack more clearly. By moving through the length of

the specimen, x = 4nm, it is clear that the crack thickness also increases by comparing the

distance between every two points on order parameter profiles at each time step in Fig. 3(d).

In addition, there is a small drop in the peak point of damage variable at t = 22ps which

shows the existence of branching.
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Figure 3: Symmetric damage interfaces under a uniaxial tension stress of 1.5GPa at different time steps

along different vertical slices {(x, y) 2 R | x = i}. (a) i = 1nm; (b) i = 2nm; (c) i = 3nm; (d) i = 4nm.

The magnified simulations results for each case clearly indicates the crack widening before splitting into two

distinct cracks.

Increasing the tensile stress by using another traction of �t = 1.9GPa leads to a com-

pletely different response in Fig. 4. In comparison to the previous case, the crack tip is formed

faster. At x = 2nm in Fig. 4, for the time instant t = 5ps, the peak point of the interface

profile is around three times higher than in Fig. 3(b). In addition, the branching happens

quicker as well since the distance of bifurcation is smaller in the case of �t = 1.5GPa. A

crack branching angle of 45� followed by a straight extension is observed, which is in good

agreement with the literature [126, 130]. In addition, the crack thickness is larger than the

initial regularization length (l = 0.5 nm) for the simulation results, showing that the crack
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tends to grow in its thickness as it propagates towards the right side of the domain. Fur-

thermore, the damage band widening is more visible for this case in comparison with the

loading case of �t = 1.5GPa, which is consistent with experiments and other simulations

[131].

Figure 4: Symmetric damage interfaces under a uniaxial tension stress of 1.9GPa at different time steps

along different vertical slices {(x, y) 2 R | x = i}. (a) i = 1nm; (b) i = 2nm; (c) i = 3nm; (d) i = 4nm.

The magnified simulations results for each case clearly indicates the crack widening before splitting into two

distinct cracks.

In order to better understand the effect of stress magnitude under dynamic loading, the

change of crack tip location with time is presented in Fig. 5. In order to determine the crack

tip position, we consider the position of (top right) node that has reached ⌘ = 0.995 with
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the origin taken at the pre-notch tip (inset of Fig. 5) and by following the upper-branch tip.

For the lower loading of �t = 1.5GPa, the evolution is almost linear and no branching is

observed.

Figure 5: Evolution of crack tip location for different loadings. The inset shows the way of determining the

crack tip location at different time steps through the domain’s central line in the x direction.

It is also seen that crack tip approaches to a limiting point by increasing the loading.

This procedure is quicker up to t = 7.5 ps for higher loading scenarios. The initial plateau

for different values of the imposed uniaxial stress is related to the time the crack tip forms,

which occurs sooner for higher stress values.

4. Conclusion

A robust finite element procedure for solving a coupled system of equilibrium and time-

dependent Ginzburg–Landau equations has been motivated by using thermodynamically-

sound derivation of governing equations. Use of the variational procedure and thermody-

namic consistency of the model ensures that it has a strict relaxational behaviour of the

free energy; hence the models are more than a phenomenological description of an interfa-

cial problem as a contrast to the available literature [132]. The dissipation and time scales

associated with growth kinetics are also derived and addressed in this manuscript as comple-

menting previous works [64]. The model has been used for studying the evolution of fracture
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in anisotropic single crystal boron carbide at finite strains. For the first time, a monolithic

strategy has been employed for solving the coupled mechanical equilibrium and order pa-

rameters evolution equations under extreme conditions. As a challenge in computational

mechanics, nanometer length scale and picosecond time scale have been demonstrated in

simulations.

The computational procedures and numerical algorithms are implemented using the

open-source platform FEniCS. The present nonlinear finite element code has been devel-

oped and used to study the prediction of the dynamic crack path under uniaxial tensile

stress loading in single crystal boron carbide. The numerical results for all the problems

are in agreement with the available experimental data in the literature. The current contri-

bution opens up new possibilities for multi-scale fracture models. In the future, our finite

element based phase-field model can be applied for studies of phase transformations (e.g.,

amorphization) and interaction between plasticity and fracture under high strain-rate load-

ing. As a next step, the current model could be combined with discrete localized plastic

flow (e.g., shear band and dislocation pileups) and thermally-activated mechanisms (e.g.,

melting) to capture the behavior of brittle materials in laser spall experiments.
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