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Abstract 

 
Methods to quantify Gross Primary Production (GPP) are classified into two categories: Eddy 

Covariance techniques (EC) and satellite data-driven. EC techniques can measure carbon 

fluxes directly, albeit with spatial constraints. Satellite data-driven methods are promising 

because they overcome spatial constraints associated with EC techniques. However, satellite- 

driven products have potentially greater uncertainty than EC methods for GPP estimation 

such as mixed pixels, cloud cover, and the ability of the sensor to retrieve vegetation under sat- 

uration conditions in high biomass environments. Therefore, an effort to analyze and quantify 

the uncertainty of GPP products derived from satellite platforms is needed. This study quan- 

tifies the uncertainty of commonly used satellite vegetation indices such as Normalized Dif- 

ference Vegetation Index (NDVI), Enhance Vegetation Index (EVI), Chlorophyll/Carotenoid 

Index (CCI), and Near-Infrared Reflectance Index (NIRv) for GPP estimation compared with 

direct methods such as EC measurements. We conduct this study on three different sites: the 

University of Michigan Biological Station (USA), the Borden Forest Research Station flux-site 

(Canada), and Bartlett Experimental Forest (USA) using traditional regression methods and 

ML approaches. 
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Dedication 

 
If you can keep your leaves when all about you, are losing theirs and blaming it on drought; 

If you can photosynthesize when others shut their stomates and stop transpiring; yours will 

be the canopy and all beneath it and -which is more-you’ll be a tree, my seed. 

 

- Jennifer L. Funk digression from Rudyard Kipling "If" poem 

 

“No one gets anywhere without the help of someone else.” 

 

- Franklin Chang Díaz 
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1. Introduction 

 
The study and assessment of ecosystem dynamics has greatly benefited from the development 

and advances of the remote sensing field (Running et al. 2004; Baldocchi 2020a) coupled with 

the growing freely available remote sensing data (Xiao et al. 2019). Elements on the Earth’s 

surface exhibit distinctive spectral signatures arising from their physical and chemical prop- 

erties and interactions with electromagnetic radiation (Montero et al. 2023). Environmental 

factors (fires, floods, drought, etc) can affect these interactions modifying the spectral signa- 

tures which can provide insights about surface processes when measured by remote sensing 

instruments (Montero et al. 2023). 

The launch in the 1970s of the Earth Resources Technology Satellite (ERTS), later known 

as Landsat-1 (Donato 1997), initiated a new era in the remote sensing field of the terrestrial 

biosphere, with a special focus on vegetation monitoring (Montero et al. 2023). With informa- 

tion available about spectral bands, studies about their relations to biophysical characteristics 

became an object of study to estimate biomass and photosynthetic activity (Myneni et al. 

1997). 

In fact, one application of remote sensing has been the development of vegetation indices (VI) 

to study the characteristics of vegetation canopies and their functioning (Houborg, Fisher, 

and Skidmore 2015). VIs are a function of two or more spectral bands, typically derived 

from satellite images (Zeng et al. 2022) that can contain information about the status of the 

vegetation, biochemical characteristics, and structural characteristics such as Leaf Area Index 

(LAI), among others (Huete et al. 2002). 

Early studies about spectral bands relations, led to the development of the Normalized Dif- 

ference Vegetation Index (NDVI), which showed how the Near Infrared (NIR) and Red ratio 

had advantages over other bands ratios for monitoring vegetation biomass and structure given 

surface reflectance measurements in the shortwave spectrum (Tucker 1979; A. J. Richardson 

and Wiegand 1977). The basis of NDVI rests in the fact that chlorophyll absorption leads to 
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a decrease in red reflectance with increasing green vegetation relative to the NIR reflectance, 

that is minimally impacted by chlorophyll absorption (Huete et al. 2010). 

The use of a relative indicator serves to reduce the effect of factors such as canopy spatial 

structure and non-photosynthetic vegetation on relationships between NDVI and biophysical 

variables such as biomass or absorbed photosynthetically active radiation variances (Sellers 

1987; Huete et al. 2010). Nonetheless, NDVI is sensitive to soil background and saturation at 

high biomass (Huete et al. 2002). To overcome this problem, the Enhance Vegetation Index 

(EVI) was designed to improve vegetation characterizations such as canopy greenness without 

soil background sensitivity and aerosol variations by combining the blue, red, and NIR bands 

(Huete 1988). EVI is also less prone to saturate at high biomass instances (Gao 2000). 

The ability to combine reflectance from multiple spectral bands, coupled with advancements 

and the development of new sensor technologies introducing additional bands or different spec- 

tral characteristics, has created opportunities to develop multiple VIs and the total number of 

indices has grown steadily (Zeng et al. 2022). These equations can function as proxies for var- 

ious vegetation canopy properties or enhance existing estimations across different ecosystems 

(Huete et al. 2010). 

According to the Awesome Spectral Indices open community catalogue (version 4.0.0), there 

are 127 spectral indices designed to monitor vegetation. The aim behind the ongoing develop- 

ment of new VIs is to achieve a more accurate mapping of ecosystem variables such as GPP 

(Montero et al. 2023). These indices can be classified into 3 main categories: biophysical, 

biochemical and physiological properties (Zeng et al. 2022). 

One important variable in understanding ecosystem processes is GPP. At present, VIs derived 

from satellites cannot directly estimate GPP (Gensheimer et al. 2022) and instead, instru- 

ments like eddy covariance have been the traditional method to estimate GPP more directly 

(Baldocchi 2020a). 

GPP represents the total amount of carbon compounds produced by plant photosynthesis in 

a given period (Ashton et al. 2012). GPP plays a crucial role in the carbon cycle since it 

quantifies the ability of vegetation to fix carbon from the atmosphere using only solar energy 

and nutrients (Xiao et al. 2019). GPP is responsive to a range of factors, including abiotic 

elements such as radiation, temperature, and precipitation (Beer et al. 2010), as well as 

biotic factors like vegetation type, leaf chemical traits, and species composition (Musavi et al. 

2017). 
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Some of the carbon taken in by GPP is released back to the atmosphere through plant 

respiration (autotrophic respiration), and the difference between GPP and plant respiration 

is called Net Primary Productivity (NPP) (Lieth 1975; Xiao et al. 2019). GPP, along with 

Ecosystem Respiration (ER), which includes both autotrophic and heterotrophic respiration, 

together determines Net Ecosystem Exchange (NEE) (Xiao et al. 2019). NEE is fundamental 

to the planetary carbon cycle as it represents the net accumulation or loss of carbon by 

the ecosystem. Measurement of GPP and NEE is critical to understanding the role of the 

biosphere in the carbon cycle as well as the status and trends of vegetation productivity 

(Schimel 1995). 

Eddy Covariance (EC) is a method used to measure the exchange of energy and materials 

between ecosystems and the atmosphere within an area that can range from a few hundred 

meters to a few kilometers (Pabon-Moreno et al. 2022). Specifically, EC methods can esti- 

mate GPP in-situ at a temporal resolution of seconds, by subtracting estimates of respiration 

from chamber measurements or models from direct measurements of NEE (Reichstein et al. 

2005). However, EC estimates are both, costly and limited in spatial coverage (Baldocchi 

2020a). Also, uncertainties from this method lie in the typical increase in spatial and tempo- 

ral variability in GPP over heterogeneous landscapes such as forest boundaries (Reinmann and 

Hutyra 2017). The prevalent practice of taking measurements primarily from intact forests 

introduces the risk of potentially misleading estimations for the broader forest being quan- 

tified, given the potential differences in dynamics between edge and interior environments 

(Smith et al. 2018). 

Since direct GPP measurements from satellites are not presently available, one of the primary 

objectives of remote sensing is to enhance the spatial coverage of EC GPP estimates (Xiao et 

al. 2019). In this context, EC values prove invaluable as information for calibrating VIs values 

with GPP inferred from flux towers (Huete et al. 2010). The utilization of EC measurements 

bridges the gap in GPP assessment, providing a practical means to evaluate and refine the 

reliability of remotely sensed data against ground-based observations (Xiao et al. 2019). 

Various methods exist for estimating GPP through satellite measurements. Satellite-derived 

VIs serve as commonly employed proxies for GPP, whereas quantifying GPP more directly 

often involves the use of Light Use Efficiency (LUE) models, and process-based models (Xiao 

et al. 2019). These diverse methodologies cater to different aspects of GPP estimation, 

with satellite-derived VIs offering a convenient indirect assessment, while LUE models, and 
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process-based models provide more detailed and direct quantification (Lin et al. 2021). 

The concept of a more detailed and direct quantification of GPP achieved through LUE and 

process-based models can be attributed to the incorporation of a constant maximal light use 

efficiency, which is a plant functional type dependent parameter that is downregulated by 

stress factors such as temperature and vapor pressure deficit (Pabon-Moreno et al. 2022). 

This approach is then integrated with APAR derived from remote sensing data to estimate 

GPP in the case of LUE models (Running et al. 2004). In contrast, process-based models dis- 

tinguish themselves by prioritizing a mechanistic description of the photosynthetic biochem- 

ical processes at both leaf and canopy scales, incorporating the comprehensive theoretical 

underpinnings of photosynthesis (Ryu et al. 2011). This methodology not only refines GPP 

quantification but also offers a more in-depth understanding of the underlying physiological 

processes governing vegetation productivity. 

However, both Light Use Efficiency (LUE) models and process-based models demand a mul- 

titude of inputs, some of which may not be readily available for all sites. In such cases, a 

data-driven approach becomes particularly advantageous, and VIs serve as effective proxies 

for GPP estimation. Notably, emerging VIs like the Near-Infrared Reflectance Index (NIRv) 

demonstrate a capability to account for 68% of the monthly variability in GPP across 105 

fluxnet sites (Badgley et al. 2019). Additionally, indices like CCI, a pigment-based index 

designed to capture carotenoid/chlorophyll ratios during seasonal photosynthetic activity in 

evergreen leaves (Gamon et al. 2016), have demonstrated proficiency as estimators of GPP 

in certain forest types. These indices offer valuable insights into the dynamics of vegetation 

productivity. 

Despite the notable progress in VIs development and their user-friendly applications there is 

a consensus that no single VI can be universally applied to address every GPP estimation 

across species and periods, even for a single biome (Zeng et al. 2022). VI measurement 

error poses additional challenges to remote sensing applications, with diverse sources affecting 

satellite-derived data, including atmospheric effects, retrieval errors, cloud contamination, and 

sensor degradation (Van Leeuwen et al. 2006; Fang et al. 2012). Thus, a quantitative and 

rigorous understanding of the specific context and characteristics of multiple sites is essential 

to understanding the potential and limits of VIs for GPP estimation over large extents of 

space and time (Zeng et al. 2022). 

Together with the advancement of new VIs, there has been an upsurge in data analysis meth- 
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ods, specifically Machine Learning (ML) approaches, has garnered significance in recent years. 

The capability of ML methods to navigate non-linear relationships proves crucial, particularly 

when predicting GPP from various predictors (Meyer et al. 2019). However, despite their 

simplicity and effectiveness, ML approaches encounter challenges, and the resulting fluxes 

estimates bear various sources of uncertainty. The distribution and quantity of EC sites play 

a pivotal role in influencing the accuracy and variability of regional flux estimates derived 

from machine learning methods (Papale et al. 2015). 

The goal of this study is to assess the advantages and constraints associated with the uti- 

lization of 4 widely employed VIs for estimating GPP. The study is limited to temperate 

broadleaf forests of the Eastern United States of America and Canada as it required consis- 

tent multi-annual EC GPP measurements over multiple sites to quantify uncertainty related 

to the spatial location of calibration data. The VIs are derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS), which has long-standing temporal records and accept- 

able spatial resolution to study extended forest areas. The analysis employs both traditional 

regression methods and ML techniques to evaluate the performance of these indices in es- 

timating GPP. This methodological approach seeks to provide a nuanced understanding of 

the efficacy and limitations of the selected indices in capturing the complexities of ecosystem 

processes, particularly in the context of temperate broadleaf forests. 
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2. Assessing uncertainties related to satellite 

remote sensing indices to estimate Gross 

Primary Production 

 
2.1. Introduction 

 
Vegetation Gross Primary Production (GPP) is the total amount of carbon fixation by plants 

through photosynthesis (Badgley et al. 2019). Quantifying GPP is essential for understanding 

land-atmosphere carbon exchange (Köhler et al. 2018), ecosystem function, and ecosystem 

responses to climate change (Guan et al. 2022; Brown et al. 2021; Myneni and Williams 1994). 

However, terrestrial GPP cannot be directly measured due to the contribution of respiration 

to land carbon fluxes (Anav et al. 2015). Instead, GPP can be inferred in a non-destructive 

manner by the net carbon exchange measurements at the ecosystem level, or at broader scales 

using models that incorporate various assumptions and limitations (Reichstein et al. 2005; 

M. Jung, Reichstein, and Bondeau 2009). 

GPP estimations can be grouped into two broad categories: Eddy Covariance (EC) techniques, 

and satellite data-driven methods (Guan et al. 2022; Xie et al. 2020). EC is the primary in- 

situ non-destructive method for measuring terrestrial fluxes, and specifically for quantifying 

the exchange of CO2 between land and the atmosphere, using advanced field instrumentation 

(Baldocchi 2020b; Badgley et al. 2019; Ryu, Berry, and Baldocchi 2019; Tramontana et al. 

2016). However, EC measurements come with certain limitations, such as their relatively low 

spatial resolution, typically less than < 1km2 , which constrains the accuracy of estimating 

ecosystem carbon and water fluxes at regional and global scales. (Badgley, Field, and Berry 

2017). 
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Additionally, it’s important to note that EC techniques directly measure Net Ecosystem Ex- 

change (NEE), not GPP. Subsequently, GPP must be estimated by both subtracting respira- 

tion using models and ancillary measurements while accounting for the removal or deposition 

of carbon stocks due to natural or anthropogenic transport processes such as water flow, fires, 

or harvest (Beer et al. 2010; Reichstein et al. 2005). 

The satellite data-driven models constitute the second category of methods to estimate GPP. 

Because of their dependency on earth observation platforms, they are not spatially constrained 

but can have greater uncertainties than the EC techniques (Ryu, Berry, and Baldocchi 2019; 

Wang et al. 2011). Satellite data-driven models can be classified into process-based models, 

Light Use Efficiency models (LUE), and Vegetation Index models (Xie et al. 2020). 

Process-based models integrate climate, canopy, and soil information derived from multiple 

sources, including satellite EO, into biophysical models of carbon, water, energy, and nutrient 

cycles with varying levels of detail (Running and Coughlan 1988; Harris et al. 2021). While 

these models can be scaled globally (Beer et al. 2010; M. Jung, Reichstein, and Bondeau 

2009) they require many parameters that may not be readily available in changing landscapes 

or for fine-scale studies. 

LUE models are based on the concept of radiation conversion efficiency and take into consid- 

eration ecological processes (Liu et al. 1997; Heinsch et al. 2006). This efficiency signifies the 

amount of carbon a specific vegetation type can fix per unit of solar radiation (J. L. Mon- 

teith 1972). Initially used for NPP estimation (Prince 1991), LUE models were subsequently 

adapted for GPP and respiration calculations (Goetz et al. 1999). These models explicitly ac- 

count for the impact of environmental stress on plant physiological responses. The imposition 

of environmental stressors may lead to a reduction in the rates of daily carbon assimilation, 

thereby diminishing overall efficiency. (Prince 1991; Running and Coughlan 1988). 

The GPP product from the Moderate Resolution Imaging Spectroradiometer (MODIS) em- 

ploys an algorithm based on the radiation conversion efficiency concept. This algorithm 

establishes a connection between absorbed photosynthetically active radiation (APAR) and 

the LUE term (Heinsch et al. 2006) as shown in Equation 2.1. 

 

𝐺𝑃 𝑃 = 𝑃 𝐴𝑅 × 𝑓𝐴𝑃 𝐴𝑅 × 𝐿𝑈𝐸 (2.1) 

Where PAR is the incident photosynthetically active radiation (John Lennox Monteith and 
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Unsworth 2013) and fAPAR is the fraction of the PAR that is effectively absorbed by plants 

(GCOS 2016). The LUE term depends on vegetation type but also physiological conditions 

are driven by water availability, temperature stress, and vapour pressure deficit (Goetz et 

al. 1999; Running and Coughlan 1988). Obtaining these variables for every vegetation type 

on Earth can be challenging, introducing assumptions that amplify uncertainties (Goetz et 

al. 1999). Nevertheless, under unstressed conditions, LUE remains constant for a given 

vegetation type, requiring only PAR and fAPAR to assess primary productivity (Running et 

al. 2004). 

VIs are the Satellite data-driven models’ third approach. VIs are a summary of non-linear 

functions of surface bi-directional reflectance spectra (Myneni and Williams 1994) derived 

from optical sensors that are combined with climate variables to calculate GPP (C. Wu, Chen, 

and Huang 2011). This is usually done with some form of regression and physical methods 

that associate interactions between vegetation and incoming radiation (Fernández-Martínez 

et al. 2019). 

VIs have been used to provide inputs to Equation 2.1 related to fAPAR from regional to 

global extents or to estimate GPP (Sellers et al. 1994; Running et al. 2004). Some of the 

most common VIs to estimate GPP are the Normalized Difference Vegetation Index (NDVI), 

the Enhanced Vegetation Index (EVI), the Near-Infrared Reflectance Index (NIRv), or the 

Chlorophyll/Carotenoid Index (CCI) among others. (Balzarolo, Peñuelas, and Veroustraete 

2019; Rahman et al. 2005, 2005; Xie et al. 2020; Badgley et al. 2019; Zhang et al. 2020; 

Sellers et al. 1994). These VIs are based on a spectral reflectance ratio between the red 

and near-infrared regions of the electromagnetic spectrum (Glenn et al. 2008) which tracks 

an integrated impact of fraction of photosynthetically active radiation (fAPAR) and LUE on 

productivity (Myneni and Williams 1994). 

An index such as NDVI is good for detecting structural vegetation changes in seasonal vari- 

ability, but it becomes saturated with high biomass conditions (Badgley, Field, and Berry 

2017). Other indices such as EVI can overcome the soil and atmospheric effects by adding the 

blue band (Huete 1988) and may be better suited for predicting GPP in large biomass forests 

(Badgley, Field, and Berry 2017). Nonetheless, it has been evaluated in a narrow range of 

ecosystems and needs inputs of start and end dates of the growing seasons which can increase 

uncertainties (Shi et al. 2017). For specific types of ecosystems such as evergreen conifers, 

CCI can track the seasonality of daily GPP due to its sensibility to the chlorophyll/carotenoid 
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pigment ratios (Gamon et al. 2016). 

Other indices such as the near-infrared reflectance index (NIRv) have been formulated to 

address the mixed-pixel effect (pixel with vegetated and non-vegetated features) and to de- 

termine the vegetation photosyntetic capacity (Badgley et al. 2019). NIRv is defined as the 

fraction of reflected NIR light that originates from vegetation. NIRv was originally proposed 

as a replacement for fPAR in LUE models in that the NIR and PAR reflectance of vegetation 

are correlated and the scaling by NDVI corrects for soil contributions in the signal (Badgley 

et al. 2019). NIRv has been shown to have a stronger correlation to GPP at flux towers 

and on a regional basis than fAPAR notwithstanding the fact that GPP is directly related 

to fAPAR. NIRv has been extended to include weighting with PAR (Dechant et al. 2022) 

and replacing the NIR reflectance with NIRv radiance (G. Wu et al. 2020). Both of these 

approaches have been shown to have even stronger correlations with GPP than NIRv as could 

be expected since they either directly or indirectly weight the NIRv with PAR. 

The stronger correlation between the NIRv index to GPP in comparison to the correlation 

between VIs related to fAPAR and GPP seemingly contradicts the hypotheses in the LUE 

model that GPP should be linearly related to fAPAR. There are two explanations: i. Many 

of the reported comparative studies use fAPAR based on VIs and not APAR. We hypothesize 

that the NIR indices are simply better estimators of APAR than these VI approximations due 

to lower measurement error for the NIR indices or a stronger physical relationship between 

them and APAR versus the historical VIs. ii. The strength of the correlation between APAR 

and GPP depends on LUE having a linear relationship to observed APAR. While this may 

hold in some circumstances (e.g. early seasonal measurements for vegetation such as crops 

where leaf chlorophyll concentration increases during the growth phase) it is not the case in 

general and definitely during stress conditions (J. L. Monteith 1972). 

Despite these efforts, relying solely on remote satellite VIs presents a challenge. The assump- 

tions accompanying VI models suggest the importance of systematically quantifying their 

predictive capacity for GPP to validate and improve their accuracy (Anav et al. 2015; Brown 

et al. 2021) across various growing seasons and locations. This is particularly crucial be- 

cause photosynthesis regulation can occur with no major changes in canopy structure or leaf 

pigments that can undergo without being detected with reflectance data (Pabon-Moreno et 

al. 2022; Pierrat et al. 2022), implying that temporal aggregation may be critical for VI 

models. In-situ eddy-covariance flux measurements coupled with locally calibrated models for 
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respiration (Baldocchi 2020b) represent a suitable reference GPP for validation solution given 

that they represent site-level observations (Chu et al. 2021). 

As such, the main objective of this M.Sc. thesis chapter is to quantify and compare the 

uncertainty associated with the VI/LUE models to estimate GPP. To control for variability 

in environmental conditions (E), sites are selected that share the same land cover, climate, 

and biome characteristics. VIs models are evaluated by comparison to EC based estimates of 

GPP for multiple growing seasons from the Bartlett Experimental Forest (USA), the Borden 

Forest Research Station flux-site (Canada), and the University of Michigan Biological Station 

(USA). Considering the reviewed studies, we hypothesize that the uncertainty of this approach 

will depend on the nature of the VI and the spatial and temporal aggregation of application. 

Specifically, we expect that i. the NIRv and CCI indices will consistently demonstrate a 

stronger correlation and lower prediction uncertainty for GPP compared to NDVI and EVI 

across the tested sites. ii. larger temporal aggregations will result in improved predictions 

due to the reduction in observation variability. 
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2.2. Methods 

 

2.2.1. Eddy Covariance sites 

 

We used three deciduous broadleaf forest sites located in the northern hemisphere (see Fig- 

ure 2.1) with eddy covariance (EC) data collected by Ameriflux. For each site, we used the 

daily, weekly, and monthly GPP values (GPP_DT_VUT_REF variable) estimated using 

the ONEFlux workflow (Pastorello et al. 2020). The ONEFlux processing does the estima- 

tion of the CO2 fluxes into GPP and Ecosystem Respiration (RECO) from Net Ecosystem 

Exchange (NEE) through two methods known as daytime and nighttime. Here we selected 

the daytime method (DT) which uses daytime and nighttime to parameterize a model with 

two components: one based on light response curve and vapour pressure deficit and a second 

one using a respiration-temperature relationship to estimate RECO which in turn is used to 

obtain the difference with NEE and provide GPP (Pastorello et al. 2020). 
 

Figure 2.1.: Sites locations 

 

Figure 2.2 displays the GPP trends for the University of Michigan Biological Station, Bartlett 

Experimental Forest, and the Borden Forest Research Station. Additional details regarding 

the characteristics of these datasets can be found in Table Table 2.1. 
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Table 2.1.: ONEFlux sites datasets description 

Site Data range available Dataset name Reference 
 

Bartlett Jan 2015 to Dec 2017 US-Bar: Barlett 

Experimental Forest 

(version: beta-3) 

Borden Jan 2015 to Jan 2022 CA-Cbo: Ontario - 

Mixed Deciduous, 

Borden Forest Site 

Michigan Jan 2015 to Jan 2018 US-UMB: Univ. of 

Mich. Biological 

Station (version: 

beta-4) 

(Staebler 2019) 

 

 

 

(A. Richardson and 

Hollinger 2016) 

 

(C. Gough, Bohrer, 

and Curtis 2016) 

 

 

The Bartlett experimental forest is located in New Hampshire, USA (44°06 N, 71°3 W). This 

site is characterized by a forest with an average canopy height ranging from 20 to 22 meters 

with a mean annual temperature of 6°C. Despite events such as a hurricane in 1938 and small 

scale forest management, the forest’s mean stand age is around 120-125 years (Ouimette et 

al. 2018). 

The second flux site is Borden Forest Research Station located in Ontario (44°19 N, 79°56 W), 

Canada. This is one of the largest patches of forest in Southern Ontario which has been 

collecting EC data since 1996 (Rogers et al. 2020). This site has a forest cover of over 60% 

with a height of approximately 22 m. It’s a deciduous broadleaf natural re-growth forest since 

1916 dominated by woody vegetation (Lee et al. 1999). 

The third site is the University of Michigan Biological Station which is located in northern 

Michigan, USA (45°350 N 84°430 W). The site has a forest with different succesional stages, 

with an average stand age of 90 years (C. M. Gough et al. 2010), and a mean height of 22m. 

The mean annual temperature is around 5.5°C (C. M. Gough et al. 2021). 

The three sites exhibit similar characteristics, indicating their representation of a specific 

ecosystem type. This uniformity enables meaningful comparisons and offers valuable insights 

into the relationship between GPP and VIs. A tabular summary of site characteristics, guided 

by insights detailed in Teets (2022), is presented in Table 2.2. 
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Table 2.2.: ONEFlux Site characteristics overview 

 
Site 

  

Variable Bartlett Michigan Borden 

Mean annual temperature (°C) 6 5.5 7.4 
 

Mean annual precipitation (mm) 1246 803 784  

Elevation (m) 272 234 209  

Dominant genera 

Climate Koeppen1
 

Acer, Fagus, Betula 

Dfb 

Populus, Quercus, Pinus 

Dfb 

Acer, Pinus, Populus 

Dfb 

 

1D stands for the warm-summer continental or hemiboreal climate. f indicates that this 

climate has significant precipitation in all seasons. b indicates that the warmest month has 

an average temperature between 22°C and 28°C. 

 

2.2.2. Satellite imagery 

 

We used data from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), 

specifically the collection MOD09GA Version 6.1 product (MODIS/Terra Surface Reflectance 

Daily L2G Global 1 km and 500 m SIN Grid) chosen for its daily sampling and broad temporal 

coverage. Data retrieval was performed using Google Earth Engine (GEE). For each site, a 

square polygon with an area of 3 km surrounding the EC tower was defined, and the pixel 

values within this polygon were extracted for comprehensive analysis. 

The MODIS contains the surface spectral reflectance from bands 1 through 7 with a spatial 

resolution of 500m, with corrections for atmospheric conditions such as aerosols, gasses, and 

Rayleigh scattering (Vermote 2021), and validation of cloud-free pixels as well. Bands used 

to derive the vegetation indices are shown in Table 2.3 

 

Table 2.3.: MODIS (MOD09GA.061 product) bands used to calculate the VIs 

Name Description Resolution Wavelength 

sur_refl_01 Red 500 meters 620-670nm 

sur_refl_02 NIR 500 meters 841-876nm 

sur_refl_03 Blue 500 meters 459-479nm 

sur_refl_04 Green 500 meters 545-565nm 
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The data processing involved three main steps: selecting high-quality pixels, scaling band 

values, and calculating vegetation indices. MODIS product data have 4 bit-encoded variables 

which provide information about the observation quality. From those variables, only the 1km 

Reflectance Data State QA (state_1km) and Surface Reflectance 500m Quality Assurance 

(qc_500m) variables were used along with each of the band’s bits quality indicators, as 250m 

scan value information (q_scan) was not informative and Geolocation flags (g_flags) had the 

same value for all observations. The bit-encoded variables were transformed into categorical 

strings, and only the categories indicating the best quality were selected to filter the pixels 

(Figure 2.3). The specific bit strings selected for state_1km are shown in Table A.1 and 

for qc_500m in Table A.2. Subsequently, the surface reflectance for each filtered pixel was 

determined by scaling the digital number recorded by 0.0001. 
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Figure 2.3.: Total number of observations (pixels) from MODIS classified as high quality (used 

in the analysis) or other quality (filtered out from the analysis) per site. 

 

Following the MODIS Collection 6.1 (C61) LSR Product User Guide (Vermote 2021), any 

scaled value that fell outside the range of 0 to 1 was considered a fill value or uncorrected 

Level 1B data and was subsequently discarded. These values were deemed unreliable or lack- 

ing meaningful information for the analysis. The number of high-quality surface reflectance 

observations was summarized on a monthly basis for each site (Figure 2.4) 

The VIs NDVI (Equation 2.2), NIRv (Equation 2.3), EVI (Equation 2.4), and CCI (Equation 2.5) 

were calculated and then matched with the corresponding date in the flux datasets (Green, 
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Figure 2.4.: Total number of observations (pixels) from MODIS classified as high quality (used 

in the analysis) or other quality (filtered out from the analysis) 

 

Red, and NIR correspond to the bands defined in Table 2.3). 

 

𝑁𝐷𝑉 𝐼 = 
𝑁 𝐼𝑅 − 𝑅𝑒𝑑 

 
 

𝑁 𝐼𝑅 + 𝑅𝑒𝑑 
(2.2) 

 

𝑁 𝐼𝑅𝑣 = 𝑁 𝐼𝑅 × 
𝑁𝐼𝑅 − 𝑅𝑒𝑑 

 
 

𝑁𝐼𝑅 + 𝑅𝑒𝑑 
(2.3) 

 

 
𝐸𝑉 𝐼 = 2.5 × 

NIR − Red 
 

 

(NIR + 6 × Red − 7.5 × Blue + 1) 

 

(2.4) 

 

𝐶𝐶𝐼 = 
𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑 

 
 

𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑 
(2.5) 

 

2.2.3. Data Preparation 

 

Three datasets were prepared for each site: a daily, a weekly, and a monthly dataset. These 

datasets were generated from the satellite imagery data with the selected high-quality pixels 

and the ONEFluxprocess data in order to capture variations in vegetation indices (VI), band 

values, and GPP over different time scales. 
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The daily dataset included the VI values, band values only from the high-quality pixels, and 

GPP measurements derived from the ONEFlux process collected on a daily basis for the 

time period of available GPP at each site Table 2.1. This dataset provided a high-resolution 

representation of the variables, allowing for a detailed analysis of their daily fluctuations. 

The weekly and monthly datasets were derived from the corresponding daily dataset. These 

datasets contained summarized values of the VIs and band values, aggregated over the weekly 

and monthly time frames, respectively. The aggregation process involved calculating an av- 

erage for the VIs and band values within each week or month. 

For the GPP values in the weekly and monthly datasets, rather than summarizing the daily 

GPP values, the GPP measurements for the weekly and monthly time frames were obtained 

directly from the ONEFlux process, which provided a reliable estimation of GPP for these 

longer time intervals. 

By creating these three datasets (daily, weekly, and monthly), the study allowed for a com- 

prehensive analysis of the VIs, band values, and GPP at different temporal resolutions. This 

approach provided insights into the temporal dynamics and patterns of the variables, enabling 

a more thorough understanding of the processes and relationships under investigation. 

For each site and across all time scales (daily, weekly, and monthly), GPP values below 1 gC 

m-2 d-1 were excluded. These values were deemed either below the detection limit or insuf- 

ficient to make a significant contribution to the overall analysis, particularly in representing 

meaningful vegetation productivity. This process aimed to refine the dataset and focus on 

values within a range considered more pertinent to the growing season. The final number of 

observations per site after selecting the high-quality pixels and GPP observations are shown 

in Figure 2.5. 

 

2.2.4. Data Analysis 

 

To address the potential non-linearity of the lowest uncertainty data-driven model across 

different temporal aggregation scales or for specific VIs, we employed two distinct modeling 

approaches: a Linear Model (LM) and a Generalized Additive Model (GAM). GAM models 

allow a better fit for those cases where the distribution and variability observed in the data is 

greater, due to the varying temporal scales. We aimed to evaluate whether this variance could 

be better explained by this type of model, which might not be optimal to capture with a linear 
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Figure 2.5.: Monthly high-quality MODIS observations after joining with flux observations 

containing Gross Primary Productivity (GPP) values higher than 1. 

 

relationship, potentially leading to greater residuals. Both models’ approaches were applied 

individually to test our hypothesis regarding VI predictive uncertainty. Additionally, a single 

model was applied to assess whether a combination of VIs could improve GPP estimation 

uncertainty. 

This facilitated a comparative analysis of how each individual index independently explains 

the variation in GPP per site. Additionally, the performance of each VI was also evaluated 

using models calibrated using all sites to assess their robustness to spatial variability within 

the selected temperate broadleaf biome across various temporal scales. Another step of the 

analysis was the examination of the relationship between GPP and all indices functioning as 

covariates, both on an individual site basis and without site distinction. 

In total, per each site plus the category of all-sites we created 5 linear models and 5 GAM 

models for every timescale (daily, weekly, and monthly): one per each index (NDVI, CCI, EVI, 

NIRv) and one with all the indices as covariates (NDVI + CCI + EVI + NIRv), resulting 

in a total of 120 models. To assess and compare the models’ performance, we calculated the 

coefficient of determination (R²) to measure the correlation between the actual observations 

and predictions. Additionally, we used the Root Mean Squared Error (RMSE) and the Mean 

Absolute Error (MAE) as indicators of the model estimation error. 

T
o
ta

l o
b
s
e
rv

a
ti
o
n
s
 



23  

2.3. Results 

 

2.3.1. Analysis of GPP-Vegetation Index Relationships Using Linear Models 

 

The Table 2.4 provides a summary of linear models used for GPP estimation at each site, 

employing the vegetation indices as predictors. For each site and predictor, the table includes 

the relevant model summary statistics, such as R², MAE, and RMSE as indicators of the 

statistical significance of the model fit. All models add p-values < 0.05 More metrics such 

as the p-value, adjusted r-squared, the Akaike Information Criterion (AIC), and Bayesian 

Information Criterion (BIC) are displayed in the Table A.3 for monthly results, Table A.4 for 

weekly results, and the Table A.5 for daily outputs. A residuals distribution for each of the 

models is in Figure A.1 

Our findings show that when using all the indices as covariates within the linear model, 

the model’s performance demonstrates better outcomes compared to using any single index 

alone across all scenarios. In the assessment of individual VI performance on a monthly 

basis, CCI tend to perform better than EVI, NDVI, and NIRv. Although all models were 

statistically significant (p < 0.05), it is important to note that for the Bartlett and Michigan 

sites, while CCI shows favourable predictive accuracy, its advantage over the NIRv and EVI is 

slightly better and mostly due to the MAE (0.86 gC m−2 d−1 for Bartlett and 1.02 gC m−2 d−1 

for Michigan) and RMSE (1.05 gC m−2 d−1 for Bartlett and 1.29 gC m−2 d−1 for Michigan) 

results. 

The NDVI displays relatively diminished performance, indicating a 9% and 15% reduction 

in the R² compared to CCI in the Bartlett and Michigan sites, respectively. In contrast, 

EVI exhibits less favourable predictive results (R² = 0.75, MAE = 1.92 gC m−2 d−1, RMSE = 

2.54 gC m−2 d−1) for the Borden site and the aggregated sites category, although in the specific 

context of the Borden site, its performance aligns closely with NDVI and NIRv. Among the 

individual sites, Bartlett has the most favourable predictive outcomes in terms of R², MAE, 

and RMSE for every individual VI model, while the aggregated sites category yields the least 

favourable predictive results in the same scenarios. 

In the case of the weekly models, NDVI records the least favourable results in terms of R², 

MAE, and RMSE when assessed at the three individual sites, while EVI demonstrated its 

weakest predictive capabilities when all sites were treated as a single entity. However, for this 

case, EVI shows marginal differences for individual indices such as NDVI and NIRv (R² = 
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0.01 variance explained and no more than 0.02 gC m−2 d−1 in RMSE). The best performant 

individual indices were CCI in terms of R², MAE, and RMSE for Borden and the aggregated 

sites, NIRv for Michigan and EVI for Bartlett. Nonetheless, those superior performances are 

subtle when compared with the other individual indices. On a weekly basis, differences in 

variability explained between the best and least performing models range from R² = 0.11 to R² 

= 0.2. Bartlett and Michigan sites consistently yield the most accurate predictive models. 

On a daily basis, CCI outperforms the rest of the individual indices in 3 cases: for Bartlett by 

R² = 0.02 in variance explanation compared with EVI, for Borden by R² = 0.01 compared with 

EVI, and for the combined sites dataset by R² = 0.1. Nonetheless is worth mentioning that 

the variance explained in any of the models by individual indices in Borden or the combined 

site is less than R² = 0.5 in most of the cases and the error scores are the highest. In the 

case of Michigan, the best performing individual index was EVI which outperformed the next 

best-performing individual index NIRv by R² = 0.03. Generally, the Bartlett and Michigan 

sites consistently yielded the most accurate predictive models across various configurations. 

Conversely, the Borden site consistently exhibited the poorest model performance across all 

scenarios. 

Overall, when comparing individual indices, CCI consistently performed better across dif- 

ferent timeframes in terms of variance explainability and error metrics. Nonetheless, those 

differences are subtle compared to EVI and NIRv. In contrast, NDVI consistently performs 

less mentioning across all evaluated timeframes. Notably, models based on monthly values 

consistently exhibit better performance than those based on weekly or daily values as ilus- 

trated in Figure 2.6. 

 

2.3.2. Analysis of GPP-Vegetation Index Relationships Using GAM Models 

 

In Table 2.5, we present a summary of the results obtained from the GAM models used for 

GPP estimation at each site, employing the vegetation indices as predictors. To compare 

between the models, we include in the table relevant model summary statistics, such as R², 

MAE, and RMSE. Furthermore, additional metrics such as the p-value, the F statistic (f), 

effective degrees of freedom (edf), and the Akaike Information Criterion (AIC), are displayed 

in Table A.10, and Table A.11 for daily models, Table A.8, and Table A.9 for weekly outputs, 

and for monthly results the Table A.6, and Table A.7. A residuals distribution for each of the 

models is in Figure A.2 
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Table 2.4.: Summary of Linear models for GPP estimation using the vegetation indices on a 

monthly (a), weekly (b), and daily (c) basis. MAE and RMSE metrics units are 
gC m- ² d- ¹ 

 

(a) 

 

 EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE 

Bartlett 0.89 0.92 1.08  0.80 1.23 1.44  0.89 0.89 1.08  0.89 0.86 1.05  0.92 0.72 0.93  

Michigan 0.86 1.05 1.35  0.72 1.62 1.92  0.86 1.05 1.33  0.87 1.02 1.29  0.94 0.72 0.90  

Borden 0.75 1.92 2.54  0.76 1.95 2.46  0.75 1.90 2.50  0.79 1.82 2.32  0.80 1.72 2.24  

All 0.57 2.21 2.87  0.64 1.95 2.62  0.59 2.18 2.81  0.74 1.69 2.26  0.78 1.63 2.04  

         
(b) 

           

  EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  

Bartlett 0.79 1.16 1.54  0.64 1.62 2.03  0.77 1.21 1.61  0.79 1.23 1.56  0.82 1.06 1.43  

Michigan 0.78 1.50 1.79  0.61 1.99 2.39  0.78 1.50 1.78  0.71 1.72 2.09  0.81 1.43 1.67  

Borden 0.57 2.62 3.54  0.50 2.91 3.83  0.57 2.64 3.58  0.58 2.62 3.52  0.61 2.53 3.39  

All 0.45 2.65 3.53  0.46 2.64 3.50  0.46 2.61 3.51  0.56 2.35 3.16  0.56 2.34 3.15  

         
(c) 

           

  EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  

Bartlett 0.81 1.42 1.98  0.66 2.01 2.68  0.80 1.44 2.05  0.83 1.42 1.88  0.87 1.20 1.67  

Michigan 0.70 1.87 2.33  0.52 2.31 2.96  0.67 1.92 2.48  0.61 2.06 2.67  0.72 1.81 2.27  

Borden 0.43 3.42 4.48  0.28 3.88 5.04  0.38 3.57 4.66  0.44 3.31 4.42  0.53 3.07 4.08  

All 0.49 3.07 4.12  0.45 3.22 4.30  0.48 3.14 4.19  0.59 2.71 3.70  0.61 2.65 3.63  
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Figure 2.6.: Summary of Linear models for GPP estimation using the vegetation indices on a 

monthly (a), weekly (b), and daily (c) basis. MAE and RMSE metrics units are 
gC m ² d ¹ 
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When using GAM models on a monthly basis, no single VI demonstrates consistent superiority 

over the others. For the all sites category, CCI has an R² = 0.03 better variance explanation 

than NDVI, which is the second best model with an R² = 0.75. In the case of Michigan EVI and 

NIRv were the best individual indices with an R² = 0.96 of the variance in GPP, but EVI had 

slightly lower error metrics values in MAE (0.01 gC m−2 d−1) and RMSE (0.02 gC m−2 d−1). 

Bartlett had a better model performance when using CCI with an R² = 0.91 of variance 

explained with the lowest error metrics among all the GAM monthly models. It’s important 

to highlight that for Michigan and Bartlett, implementing a GAM model using all the VIs 

as covariates posed challenges due to limited observations for the model parameters, raising 

concerns of potential overfitting. 

Finally, it’s noteworthy that NDVI on a monthly basis displayed suboptimal performance in 

two of the sites (Michigan and Bartlett) with a difference of R² = 0.1 and R² = 0.13 with the 

best performing models respectively, while EVI exhibited less favourable results in just the 

Borden site with MAE 1.92 gC m−2 d−1) and RMSE 2.54 gC m−2 d−1). 

On a weekly basis, models incorporating all VIs as covariates consistently obtained better 

performance compared to any individual VI, irrespective of the site. Specifically when eval- 

uating the all sites category, the inclusion of all indices as covariates yielded an R² = 0.07 

increase in variance explanation compared with the best individual VI result CCI. Further, for 

Michigan, this improvement amounted to R² = 0.02 compared to EVI, R² = 0.01 for Bartlett 

in contrast to EVI, and an R² = 0.02 enhancement for Borden when compared with EVI. 

Conversely, NDVI showed a diminished performance as an individual index when compared 

with all the other individual VIs. In the context of all sites, NDVI yielded R² = 0.07 less 

variance explanation than CCI. Notably, for Michigan, NDVI’s performance lagged by R² = 

0.17 compared to EVI, Bartlett an R² = 0.18 reduction relative to EVI, and Borden exhibited 

an R² = 0.09 deficit when contrasted with EVI. 

On a daily basis, when considering the all sites category, the model with all the VIs as 

covariates explained R² = 0.04 more variance in GPP when compared with the best performing 

individual VI CCI. In the case of Bartlett, the increase was also R² = 0.04 but in this case, the 

best individual performing VI was EVI. For Michigan, the model using all VIs as covariates 

outperformed EVI by R² = 0.05 in GPP prediction, and for Borden, it was an R² = 0.09 

improvement when compared with NIRv. 
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Table 2.5.: Summary of GAM models for GPP estimation using the vegetation indices on a 
monthly (a), weekly (b), and daily (c) basis. MAE and RMSE metrics units are 
gC m- ² d- ¹ 

 
 (a)  

  EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  

All 0.66 1.91 2.50  0.72 1.72 2.27  0.67 1.89 2.47  0.75 1.60 2.16  0.79 1.47 1.91  

Michigan 0.96 0.55 0.64  0.86 0.91 1.23  0.96 0.56 0.66  0.91 0.79 0.97  NA NA NA  

Bartlett 0.88 0.92 1.08  0.78 1.23 1.44  0.88 0.89 1.08  0.91 0.67 0.87  NA NA NA  

Borden 0.74 1.92 2.54  0.77 1.83 2.37  0.75 1.90 2.50  0.78 1.80 2.30  0.78 1.72 2.24  

         
(b) 

           

  EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  

All 0.53 2.35 3.25  0.51 2.40 3.34  0.52 2.37 3.29  0.58 2.17 3.06  0.59 2.17 3.02  

Michigan 0.84 1.20 1.49  0.67 1.61 2.16  0.82 1.30 1.61  0.75 1.46 1.88  0.86 1.05 1.33  

Bartlett 0.81 1.03 1.45  0.63 1.62 2.03  0.79 1.10 1.51  0.79 1.13 1.50  0.82 0.98 1.39  

Borden 0.59 2.51 3.41  0.50 2.90 3.82  0.58 2.57 3.49  0.58 2.62 3.52  0.61 2.47 3.35  

         
(c) 

           

  EVI    NDVI    NIRv    CCI    All   

Site R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  R2 MAE RMSE  

All 0.58 2.70 3.73  0.55 2.79 3.87  0.56 2.74 3.83  0.61 2.55 3.60  0.65 2.39 3.37  

Bartlett 0.85 1.22 1.79  0.74 1.63 2.30  0.83 1.25 1.85  0.85 1.26 1.76  0.89 1.04 1.51  

Michigan 0.74 1.67 2.13  0.58 2.01 2.73  0.67 1.84 2.43  0.64 1.92 2.55  0.79 1.45 1.92  

Borden 0.50 3.22 4.17  0.42 3.41 4.47  0.46 3.33 4.33  0.45 3.27 4.36  0.55 2.94 3.92  

 

Among the individual VIs, NDVI consistently demonstrated the poorest performance across 

all four cases. As an individual VI, EVI performed better in Bartlett, Michigan, and Borden. 

However is worth noting that for Borden the variance explained was limited to R² = 0.5. 

In summary, among the three individual sites, Bartlett consistently produced the most 

favourable results in terms of models explaining variance and yielding lower residuals, 

followed by Michigan. In the case of Borden, when employing individual indices, the models 

struggled to achieve a variance explanation exceeding R² = 0.5. 
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Figure 2.7.: Summary of GAM models for GPP (gC m-² d-¹) estimation using the vegetation 

indices. Column A represents the metrics for the monthly models, B the weekly, 
and C the daily metrics. MAE and RMSE metrics units are gC m ² d ¹ 
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2.3.3. LM vs GAM 

 

Monthly GAM applied in the context of Michigan exhibited a better performance when em- 

ploying EVI and NIRv in comparison to LMs with all vegetation indices as covariates. Regard- 

ing weekly GAM models, they demonstrated improved performance compared to LM across 

all sites, except for Borden, where both models yielded equivalent R² values. Notably, despite 

similar R² values, the GAM model consistently displayed lower error metrics, suggesting its 

capacity to better accommodate potential nonlinear relationships and produce more accurate 

predictions. This adaptability was particularly evident when addressing the daily, weekly, 

or monthly variations in GPP. Furthermore, it is crucial to highlight that monthly models, 

both in LM and GAM frameworks, consistently exhibited superior metrics compared to their 

weekly and daily counterparts, as illustrated in Figure 2.6 and Figure 2.7. This can be an 

effect of reducing variance when summarizing values as it is shown in the daily Figure 2.8, 

weekly Figure 2.9, and monthly Figure 2.10 
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Figure 2.8.: Scatterplot of MODIS 500m derived VIs and GPP with daily values. Every 
observation corresponds to the observed GPP from a flux tower site. Total ob- 
servations corresponds to the number of observations used to obtain the mean 
of the vegetation index (NDVI, NIRv, CCI and EVI). The red line indicates the 
GAM fit. 
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Figure 2.9.: Scatterplot of MODIS 500m derived VIs and GPP with weekly values. Every 
observation corresponds to the observed GPP from a flux tower site. Total ob- 
servations corresponds to the number of observations used to obtain the mean 
of the vegetation index (NDVI, NIRv, CCI and EVI). The red line indicates the 
GAM fit. 
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Figure 2.10.: Scatterplot of MODIS 500m derived VIs and GPP with monthly values. Every 
observation corresponds to the observed GPP from a flux tower site. Total 
observations corresponds to the number of observations used to obtain the mean 
of the vegetation index (NDVI, NIRv, CCI and EVI). The red line indicates the 
GAM fit. 
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2.4. Discussion 

 
In summary, our LM results demonstrate that incorporating all VIs as covariates in the model 

enhances predictive accuracy for GPP compared to models using single VIs. This holds true 

across the three temporal scales and for each of the sites individually or when considered 

as part of the same biotype. This observation suggests that the relationship is really non- 

linear, and combining different VIs allows to use of an LM to capture non-linear patterns 

throughout the entire study duration, contrasting with the predictive power of any individual 

VI. Additionally, VIs exhibit different noise sensitivities (Zeng et al. 2022), which explains 

why using a single VI is insufficient to capture nuanced variations in GPP. 

Conversely, when aggregating all study sites indiscriminately to represent a unified ecosystem 

type, model metrics exhibit diminished performance compared to employing distinct models 

for each individual site. This decline in performance may be attributed to the introduction of 

variability inherent in the Borden site. The Borden site presents larger ranges of GPP values 

(see Figure Figure 2.2) than the Bartlett and Michigan sites. Incorporating the Borden values 

together with those from the Bartlett and Michigan sites to represent a single ecosystem type 

in a model introduces higher GPP values that contribute to variability. This variability cannot 

be accurately tracked by the vegetation indices, resulting in a reduction in RMSE and R2. 

If such discrepancies arise when constructing models with identical specifications for various 

sites categorized under the same biotype ecosystem, it may indicate that, for global GPP 

models, exploring the use of diverse VIs is crucial. An approach like this one could open the 

possibility for a more accurate estimation of GPP by leveraging specific indices that might 

yield superior results for each distinct type of ecosystem potentially contributing to more 

robust and accurate global GPP estimations. For example, the study by (Lin et al. 2019) 

showed that Chlorophyll Index Red (CRI) had a betterThis hypothesis could be further 

elucidated through standardized processes for calculating GPP with in-situ data across all 

sites with flux towers available; a task currently in development by FLUXNET (Pastorello 

et al. 2020). Standardized GPP values obtained through this process could then be used to 

train models and assess which VIs have the lowest errors when predicting GPP. 

Considering the availability of data with daily, weekly, and monthly values, a pertinent ques- 

tion arises about the temporal scale’s impact on GPP estimation. Our results indicate that 

models based on monthly data demonstrated better model fit for each model and smaller resid- 
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uals metrics. This superiority may be attributed to reduced data variation, as daily values are 

aggregated into monthly summaries, leading to values more centralized around a mean which 

can reduce the measurement noise and concurrently mitigate the saturation effect of VIs for 

daily peaks. The performance of model fits and residuals metrics declined when transitioning 

from monthly to weekly and, subsequently, to daily values (See Figure A.1 for LM residuals 

and Figure A.2 for GAM residuals). Although the decrease in model fit was not substantial, 

the increase in residuals metrics suggests a potential for larger errors in predictions. 

While NDVI is one of the most used VIs in EO (Pabon-Moreno et al. 2022), its performance, 

as measured by the GPP RMSE, was comparatively less favorable on two out of the three 

sites when compared to other indices. However, the performance variation among the sites 

was not significant, with the Bartlett experimental forest showing slightly better results in all 

GPP ~ VIs relationships compared to the other sites. These findings suggest that, although 

NDVI may not be the most optimal vegetation index for GPP estimation at these specific 

sites, variations in performance across different locations are still noteworthy. 

When examining the data trends for GPP at each site and its relationship with VIs, it be- 

comes evident that at higher GPP values, the dispersion of the data is more pronounced. This 

observed pattern may be ascribed to the inherent limitation of these indices, which predom- 

inantly track the presence of green leaves. It is important to note, however, that the mere 

presence of green leaves does not consistently signify active photosynthesis. This discrepancy 

can arise for two reasons. Firstly, the photosynthetic process may undergo temporary suspen- 

sion without any manifest changes in chlorophyll content or leaf abscission (Camps-Valls et al. 

2021) Secondly, VIs relying on the NIR band face challenges in detecting photosynthesis in 

instances when a higher amount of healthy plant biomass is present. The increased biomass 

leads to greater scattering and reflection of NIR radiation, resulting in a saturation effect 

(Camps-Valls et al. 2021). 

This observation holds significance as, despite VIs serving as indicators of vegetation capacity 

rather than vegetation physiology, historical data records are predominantly derived from 

sensors equipped with bands for generating these VIs. Conversely, newer sensors capable of 

capturing additional bands to derive indices such as Solar-Induced Fluorescence (SIF) lack 

comprehensive historical records, hindering the feasibility of long-term studies that extend 

back to years preceding the 2000s. 

The application of both LM and GAM models to the dataset revealed some differences in 
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model performance. The GAM model exhibited a slightly superior performance in capturing 

the underlying patterns within the weekly and daily data compared to the LM counterpart, 

but not in the monthly data. This was evident from assessments of model fit and residuals 

metrics. The GAM model’s ability to flexibly capture non-linear relationships allowed for a 

more accurate representation of the complex structure inherent in the data. Consequently, 

the results suggest that the GAM framework may be more suitable for capturing the nuances 

present in the dataset, emphasizing the importance of considering model flexibility when 

analyzing non-linear relationships. 

It is worth noticing that using a GAM model with only CCI as a predictor, performs almost 

as well as the GAM model with all the VIs as covariates. This could imply that the limitation 

in using a single VI with a LM arises from its inability to capture the non-linear nature of the 

relationship. A selection of a proficient VI with a non-linear model could better estimate GPP 

without the need to create models with multiple predictors. In this scenario, the GAM model 

with CCI to estimate GPP emerges as a potentially adequate choice among generalized linear 

fits. However, this assessment does not address the question of whether combining diverse 

models could offer more robustness, as such an approach might implicitly incorporate spatial 

variability to a certain degree. 

 

2.5. Conclusions 

 
In conclusion, our analysis demonstrates that incorporating all VIs as covariates in our models 

yields a substantial improvement in predictive accuracy for GPP compared to using any 

single VI. Additionally, our research highlights the impact of time aggregation on prediction 

accuracy across different models. Monthly LM models exhibit the best performance metrics, 

while weekly and daily LM models present lower metrics, attributable to higher variability in 

observations that makes tracking GPP challenging. A similar pattern is observed when using 

GAM; however, weekly and daily GAM models outperform LM models. 

Notably, no single VI emerges as the universal best predictor for every site or time aggrega- 

tion, but CCI with a GAM model emerges as a potentially adequate choice among generalized 

linear fits. Moreover, the impact of large variations in GPP ranges within a site is evident in 

the quality of predictions. These variations introduce complexities and uncertainties, empha- 

sizing the necessity of accounting for local site characteristics and inherent heterogeneity when 
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aiming for accurate predictions of GPP. Growing seasons exhibit the most pronounced vari- 

ability, posing challenges for vegetation indices that saturate at high biomass concentrations, 

making it more difficult to track changes in GPP. 
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3. A data driven approach to predict GPP 

from VIs through machine learning methods 

 
3.1. Introduction 

 
The field of Earth Science has witnessed a transformative shift with the integration of Machine 

Learning (ML) methods, which has led to a deeper understanding of our planet’s complex 

ecosystems and processes (Reichstein et al. 2019). ML methods are now well established 

in environmental sciences (Lary et al. 2016), including their use within studies aimed at 

mapping and quantifying vegetation characteristics and ecological processes such as vegetation 

cover, structure, and disturbances, among others (Lehnert et al. 2015; Jochem Verrelst et al. 

2012). 

The increasing number of EC sites (Tramontana et al. 2016) coupled with the continuously 

growing amount of Earth system data surpassing dozens of petabytes (Reichstein et al. 2019), 

has led to an emergence of purely data-driven methodologies for quantifying ecosystem status 

and fluxes. These approaches have shown promise for the quantification of global terrestrial 

photosynthesis (Martin Jung et al. 2011; Tramontana et al. 2016) and have resulted in good 

progress in the estimation of biogeo-physical parameters using remotely sensed reflectance 

data, both at local and global scales (Coops et al. 2003; J. Verrelst et al. 2012). 

Furthermore, these data-driven approaches have contributed significantly to the scientific 

community by providing spatial, seasonal, and interannual variations in predicted fluxes. 

These predictions, generated through machine learning methodologies, are now serving as 

important benchmarks for evaluating the performance of physical land-surface and climate 

models (Martin Jung et al. 2010; Bonan et al. 2011; Anav et al. 2015). 

Some of the differences between data driven models and process-based methods are the in- 

herent observational character of data driven models and that functional relationships emerge 
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from the patterns found in the data, rather than being stated before (Tramontana et al. 2016). 

So functional relationships between in-situ measured fluxes with the explanatory variables can 

emerge (Tramontana et al. 2016). This paradigm shift toward data-driven modeling to ex- 

tract patterns represents an opportunity to come up with new ideas and question established 

theories in earth system models. 

In contrast to process based models, data driven models inherently possess an observational 

nature where functional relationships emerge from the patterns found in the data, rather than 

being predefined, such as the relationships between in-situ measured fluxes and the explana- 

tory variables. (Tramontana et al. 2016). For example, the application of spatially explicit 

global data driven methods, has unveiled discrepancies in the estimation of photosynthesis 

within tropical rainforests when compared to climate models (Beer et al. 2010). This overes- 

timation, has led to the creation of hypothesis for a better understanding of radiative transfer 

in vegetation canopies (Bonan et al. 2011) which can result in better photosynthesis esti- 

mates. This paradigm shift toward data-driven modeling to extract patterns, represents an 

opportunity to explore novel ideas and question established theories in earth system models 

(Reichstein et al. 2019). 

Predicting dynamics in the biosphere is challenging due to biologically mediated processes 

(Reichstein et al. 2019). The term “prediction” should not be confused with forecasting, as 

most models are not aiming at predicting into the future. Instead, the focus of these data- 

driven models is to improve historical estimates or enable the use of reflectance values to 

predict GPP when no in-situ data is available in the present times (Meyer et al. 2018). 

These predictions can include many forms of uncertainty (Reichstein et al. 2019). One form 

is that individual ML methods can have different responses, especially when these models 

are applied beyond the conditions presented in the training dataset. (M. Jung, Reichstein, 

and Bondeau 2009; Papale et al. 2015). Another form is related to the explanatory variables 

used in ML methods derived from satellite remote sensing, which are partial in providing 

information about the vegetation state (Tramontana et al. 2016). Consequently, they lack the 

information required to explain the complete variability in fluxes (Tramontana et al. 2015). 

For instance, if a model is created using only reflectance data to estimate GPP without 

meteorological data, phenomena such as drought could lead to predicted values with large 

errors, given that stomata closure during water deficit have an immediate effect on the fluxes 

that can not be detected by the reflectance values only until later when the stress conditions 
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persist (Tramontana et al. 2015). 

This chapter evaluates data drive approaches for estimating GPP given MODIS surface re- 

flectance data for temperate broadleaf forests in North America. Two state-of-the-art ap- 

proaches previously used for GPP estimation are tested: regression random forests (James 

et al. 2022) and AutoML (LeDell and Poirier 2020) to understand how the ML algorithm 

impacts prediction uncertainty. Both approaches were tested locally and using pooled data 

from three sites to quantify their ability to be applied over larger spatial extents. 
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3.2. Methods 

 

3.2.1. Eddy Covariance sites 

 

For this study, we selected three deciduous broadleaf forest forests sites: University of Michi- 

gan Biological Station located in northern Michigan, USA (45°350 N 84°430 W), Bartlett 

experimental forest in New Hampshire, USA (44°06 N, 71°3 W), and the Borden Forest Re- 

search Station (44°19 N, 79°56 W) in Ontario, Canada. These sites were selected to ensure 

they represented a single ecosystem type, characterized by shared environmental features. 

This approach allowed us to treat the dataset as a representation of a specific vegetation type 

terrestrial ecosystem. 

In-situ data such as GPP was obtained utilizing the ONEFlux estimation processing by Amer- 

iflux. Here, we selected GPP estimation done by the daytime method (Pastorello et al. 2020) 

on a daily, weekly, and monthly basis. 

To capture seasonal variations and long-term trends, GPP data was collected over a minimum 

of 2 years. Specifically, University of Michigan Biological Station collected data spanned from 

January 2015 to January 2018, Bartlett experimental forest data ranges from January 2015 to 

December 2018, and Borden Forest Research Station from January 2015 to January 2022. 

 

3.2.2. Satellite imagery 

 

We used Google Earth Engine (GEE) to retrieve the Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS), specifically the collection MOD09GA Version 6.1 daily 500m 

resolution surface reflectance products (MODIS/Terra Surface Reflectance Daily L2G Global 

1 km and 500 m SIN Grid). A square polygon with an area of 3km surrounding the EC tower 

was defined for each of the study sites, and all daily data pixel values within this polygon 

were extracted for analysis. 

MOD09GA contains the surface spectral reflectance from bands 1 through 7 (Table 3.1) with 

a spatial resolution of 500m, with corrections for atmospheric conditions such as aerosols, 

gasses, and Rayleigh scattering (Vermote 2021). 

We selected the highest quality pixels according to the 1km Reflectance Data State QA 

(state_1km) (Table A.1) and Surface Reflectance 500m Quality Assurance (qc_500m) (Ta- 

ble A.2) variables. Once we had just the highest quality pixels, all the band values were scaled 
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by a factor of 0.0001. If any value fell outside the range of 0 to 1 after the scaling, it was 

discarded. 

Once all the band values were scaled, we calculated 4 Vegetation Indices: NDVI (Equation 2.2), 

NIRv (Equation 2.3), EVI (Equation 2.4), and CCI (Equation 2.5). Then all the MODIS bands 

values and VIs were summarized on a daily, weekly, and monthly basis to be merged with the 

GPP values from ONEFlux. 

 

Table 3.1.: MODIS (MOD09GA.061 product) bands used for ML methods 

Name Description Resolution Wavelength 

sur_refl_01 Red 500 meters 620-670nm 

sur_refl_02 NIR 500 meters 841-876nm 

sur_refl_03 Blue 500 meters 459-479nm 

sur_refl_04 Green 500 meters 545-565nm 

sur_refl_05 Red Edge 500 meters 1230-1250nm 

sur_refl_06 SWIR 1 500 meters 1628-1652nm 

sur_refl_07 SWIR 2 500 meters 2105-2155nm 

 

3.2.3. Random Forests 

 

A random forest is an ensemble learning technique that leverages the power of multiple decision 

trees to improve predictive accuracy and robustness. It combines regression and classification 

trees, constructing each tree from random subsets of both trained data and features (James 

et al. 2022). The final prediction is obtained by aggregating individual tree predictions, 

which are then averaged to produce the ultimate estimate. Additionally, at each split, the 

best predictor from the random subset is selected to effectively partition the data and in the 

case of the regression random forest, the process is adapted to predict a continuous numeric 

outcome(James et al. 2022; Meyer et al. 2018). 

Regression random forests were used as an approach to predict GPP as a function of all 

available MOD09GA bands values (from B01 to B07) and the calculated VIs. Three distinct 

models were developed, each one tailored for a specific time scale (daily, weekly, and monthly). 

This approach allowed us to assess the prediction performance of GPP at different time 

scales. 
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Each model was calibrated using a random data splitting procedure, dividing the data into 

a training set with 70% of the observations and a test set with the remaining 30%. Due to 

the varying number of observations for each site, to avoid an imbalanced training dataset, we 

employed a stratified data split to ensure a proportional representation of each site category 

in both sets. To ensure reproducibility, we used a consistent random number generator state 

throughout the process. 

To implement the RF models, we use the ranger package in R (Wright and Ziegler 2017), 

utilizing 1000 trees within the forest ensemble. The models were trained using the bootstrap 

resampling technique with 100 folds, which helps to improve the robustness and accuracy of 

the predictions. 

We calculated the variable of importance (VIP) to understand which MODIS bands or VIs 

are driving the predictions in each of the regression random forest models. To measure the 

influence of each feature on the overall model’s predictive performance, we quantify how 

this performance deteriorates when a particular variable is permuted while keeping others 

constant. 

To understand which features contributed the most on average to a particular GPP prediction 

in different coalitions (Molnar 2020), we calculated the Shapley values (Lundberg and Lee 

2017). These values were computed with the DALEX package in R (Biecek 2018) for both 

low GPP and high GPP scenarios within each of the temporally aggregated models. 

 

3.2.4. AutoML 

 

The AutoML approach is designed to identify the most optimal ML pipeline for a specific 

problem and available training data by evaluating different combinations of data processing 

steps, ML models, and hyperparameters settings (Gaber et al. 2023). To create a stacked 

ensemble of models and evaluate the performance, we utilized the H2O AutoML framework 

(LeDell and Poirier 2020). 

For the data training and evaluation, we randomly split the dataset into a training and a 

test set, allocating 80% and 20% of the observations, respectively. We excluded the total 

observations and site variables from both datasets, while the remaining features (bands 

and VIs), were considered predictors. The response variable for prediction was GPP. We 

transformed the data into an H2O frame to ensure compatibility with the AutoML process. 
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After generating machine learning models and hyperparameter configurations, we imposed a 

time constraint of a maximum of 2 minutes for model training. The best performing models 

were then selected in terms of lower predictions erros and used to form an ensemble. This 

trained ensemble model was used to generate predictions on the test set. Model performance 

was evaluated using metrics such as the coefficient of determination and the RMSE. 

To asses the variable importance, we determined the influence of each variable on the model’s 

predictions. The results of this analysis were visually represented as heatmaps for each of the 

models within the ensemble. 
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R2: 0.81 

RMSE: 2.03 

3.3. Results 

 

3.3.1. Data-Driven GPP Prediction: A Regression Random Forest Approach 

 

The best performing model, based on R² and RMSE was the monthly aggregated model, 

achieving a R² of 0.81 and an RMSE of 2.03 gC m−2 d−1 (see Figure 3.1). The daily model 

exhibited the second best performance model with a RMSE of 3.20 gC m−2 d−1 and a R² of 

0.69 (see Figure 3.2). However, the weekly model displayed comparatively lower performance, 

with an R² of 0.56 and an RMSE of 3.23 gC m−2 d−1 (see Figure 3.3) 
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Figure 3.1.: GPP observed and predicted values from the Random Forest for all the sites at 
a monthly basis. The red line represents a 1:1 relation. Metrics units are gC m ² 
d ¹ 

 

Moreover, in assessing the importance of predictor variables within each model, VIs variables 

held top positions across all models, surpassing the importance of any other spectral bands 

alone. Specifically, the CCI contributed most significantly to the predictive performance in 

two of the models, the monthly and weekly models (Figure 3.4 and Figure 3.5). In the case 

of the daily model, CCI emerged as the second most influential predictor variable (as shown 

in Figure 3.6). 

Despite NDVI being ranked as the second variable in importance for the monthly model, it 
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RMSE: 3.16 

R2: 0.7 
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Figure 3.2.: GPP observed and predicted values from the Random Forest model for all the 
sites at a daily basis. The red line represents a 1:1 relation. Metrics units are gC 
m ² d ¹ 
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Figure 3.3.: GPP observed and predicted values from the Random Forest for all the sites at a 
weekly basis. The red line represents a 1:1 relation. Metrics units are gC m ² d ¹ 
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Figure 3.4.: Variable of importance derived from the Random forest model for the monthly 

values at 500 m spatial resolution model. 
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Figure 3.5.: Variable of importance derived from the Random forest model for the weekly 

values at 500 m spatial resolution model. 
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Figure 3.6.: Variable of importance derived from the Random forest model for the daily values 

at 500 m spatial resolution model. 

 

was the fifth variable in importance for the daily model and the fourth one for the weekly 

model. Meanwhile, the NIRv consistently held the third most influential position across all 

models. EVI was found to be most important for the daily model, the second most important 

variable in the weekly model, but fourth in the monthly model. 

To evaluate how the predictor variables had an impact on the model’s predictions, we employed 

the Shapley values. For each of the models created, we calculated the contributions to each 

variable in predicting GPP for two cases: for a known high GPP value and a known low GPP 

value from the test data set. 

In the case of the daily model, we chose a low GPP value from the test dataset, specifically 

0.01 gC m−2 d−1and obtained a model prediction of 0.60 gC m−2 d−1. Our Shapley value anal- 

ysis showed that EVI, CCI and NIRv were the most influential attributes affecting the model 

prediction (See Figure 3.7 A). These VIs contribute negatively to the prediction, reducing 

the predicted GPP. 

Conversely, the high GPP value selected (16.21 gC m−2 d−1) from the test dataset, had a model 

prediction of 12.70 gC m−2 d−1. In this case the Shapley values analysis indicated that the 

most influential variables were CCI and NIRv (See Figure 3.7 B). These variables contributed 

positively to the prediction. 
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Figure 3.7.: Shapley values derived from the Random forest model for the daily values at 500 

m spatial resolution model. Predicted value for the low GPP value is 0.59 (A) 
and 12.7 for the selected high GPP value (B). 

 

For the weekly model, we selected high and low GPP values of 1.21 gC m−2 d−1 

and 13.17 gC m−2 d−1,  respectively,  resulting  in  predictions  of  1.60 gC m−2 d−1  and 

11.0 gC m−2 d−1.  For the low GPP value, the most influential variables were CCI, 

EVI, NIRv, and NDVI, all contributing negatively to the prediction (see Figure 3.8 A). 

Conversely, for the high GPP value, CCI, EVI, NIRv, B02 and NDVI had the most influence 

on the prediction positively (refer to Figure 3.8 B). 

In the case of the monthly model, the low GPP value selected was 1.86 gC m−2 d−1 and the 

high GPP value was 11.87 gC m−2 d−1, leading to predictions of 3.31 gC m−2 d−1 and 

10.60 gC m−2 d−1 respectively. In both scenarios, CCI, NDVI, and NIRv emerged as the most 

influential variables, albeit contributing negatively to the low GPP value prediction (See 

Figure 3.9 A) and positively to the high GPP value prediction (See Figure 3.9 B). 
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Figure 3.8.: Shapley values derived from the Random forest model for the weekly values at 

500 m spatial resolution model. Predicted value for the low GPP value is 1.59 

(A) and 11.0 for the selected high GPP value (B). 
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Figure 3.9.: Shapley values derived from the Random forest model for the monthly values at 

500 m spatial resolution model. Predicted value for the low GPP value is 3.31 

(A) and 10.6 for the selected high GPP value (B). 
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3.3.2. The potential of AutoML approaches for GPP predictions 

 

The AutoML approach yielded varying performance outcomes across different temporal scales 

as measured by R² and RMSE. The monthly prediction model (Figure 3.10) emerged as the 

top performer, with an R² of 0.76 and a low RMSE of 1.84 gC m−2 d−1. Following this, the 

weekly model (Figure 3.11) demonstrated the second-highest explanatory power, capturing 

R² = 0.72 of the GPP variability, albeit with a slightly elevated RMSE of 3.08 gC m−2 d−1. 

Conversely, the daily model (Figure 3.12) exhibited comparatively diminished performance, 

explaining 0.67 of the variability with the highest RMSE of 3.11 gC m−2 d−1
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Figure 3.10.: GPP observed and predicted values from the autoML for all the sites at a 

monthly basis. The red line represents a 1:1 relation. Metrics units are gC 
m ² d ¹ 

 

An examination of variable importance in the AutoML model revealed distinctive patterns 

in significant contributors to GPP prediction across temporal scales. In the daily prediction 

model, EVI and CCI emerged as the most important (Figure 3.13). Moving to a weekly 

time frame, the importance of EVI and CCI persisted, with the addition of Band 02 (NIR 

band) (Figure 3.14). In the monthly prediction model, EVI once again took precedence, 

accompanied by Band 02 and NIRv (Figure 3.15), highlighting the enduring importance of 

these variables. 

Additionally, a comparative assessment between the regression random forest model and the 
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Figure 3.11.: GPP observed and predicted values from the autoML for all the sites at a weekly 

basis. The red line represents a 1:1 relation. Metrics units are gC m ² d ¹ 
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Figure 3.12.: GPP observed and predicted values from the autoML for all the sites at a daily 

basis. The red line represents a 1:1 relation. Metrics units are gC m ² d ¹ 
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Figure 3.13.: Variable of importance derived from the autoML model for the daily values at 
500 m spatial resolution model. 
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Figure 3.14.: Variable of importance derived from the autoML model for the weekly values at 
500 m spatial resolution model. 
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Figure 3.15.: Variable of importance derived from the autoML model for the monthly values 
at 500 m spatial resolution model. 
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AutoML model, both applied to the same datasets, revealed nuanced differences in their pre- 

dictive performance Table 3.2. While the regression random forest model exhibited superior 

R² values in daily and monthly predictions, indicating a better overall fit to the data, the 

AutoML model demonstrated lower RMSE. Conversely, for weekly predictions, the AutoML 

model outperformed in both metrics. These findings underscore the importance of consid- 

ering multiple metrics and temporal scales when evaluating and selecting models for GPP 

predictions. 

 

Table 3.2.: Summary ML metrics in gC m-2 d-1
 

Variable RF R2 RF RMSE automl R2 automl RMSE 

Daily 0.70 3.17 0.67 3.11 

Weekly 0.55 3.23 0.72 3.08 

Monthly 0.81 2.03 0.76 1.84 
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3.4. Discussion 

 
These results underscore the temporal variations in model performance, with the monthly 

models having the best performance metrics for both, the regression random forest and the 

autoML. The lower RMSE of the AutoML model indicates it can potentially result in lower 

uncertainty for monthly predictions than RF. Given the higher R², regression RF captures a 

larger proportion of the variance in the dependent variable than the autoML. This discrep- 

ancy underscores the importance of considering multiple evaluation metrics when assessing 

model performance. The choice between these models may depend on the specific goals of 

the analysis, weighing the trade-off between explaining variability and achieving precision in 

predictions. 

Upon examining the six specific predictions analyzed through Shapley values for the Random 

Forest models across all timeframes, it became evident that high-predicted values of Gross 

Primary Productivity (GPP) were consistently underestimated, while low GPP values were 

overestimated. It is crucial to clarify that these particular predictions and Shapley values are 

specific to each instance and do not represent the entirety of potential predictions. However, 

when scrutinizing the graphs of predicted GPP values against observed GPP values, especially 

in the case of the daily model, it is noteworthy that the maximum predicted values hover 

around 16 gC m−2 d−1, whereas observed values can reach up to 24 gC m−2 d−1 (See Figure 3.2). 

Importantly, these values all belong to the Borden site, where the range of observed GPP is 

notably higher compared to the other two sites. 

The discrepancy between the observed values and the predicted values may arise from a 

potential lag between the change in photosynthetic rate and the concentration of photosyn- 

thetic pigments, particularly the change in chlorophyll. Since the predicted GPP values for 

the constructed models are solely based on reflectance values, the primary changes related 

to GPP that they can capture are APAR and, to some extent, chlorophyll concentration 

(Pabon-Moreno et al. 2022). Given that photosynthesis can change rapidly without signif- 

icant alterations in pigment concentrations, there might be an overestimation of predicted 

values compared to observed and estimated GPP values at the site mediating EC. In situa- 

tions of stress, the dynamics of GPP could shift unnoticed solely based on satellite reflectance 

values. 

Conversely, underestimation may be attributed to the well-known phenomenon of satura- 
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tion. When using indices created with the NIR band for GPP estimation, challenges arise in 

scenarios where there is a substantial increase in vegetation biomass, which happens during 

summers in the study sites. In such situations, the dense biomass leads to increased scattering 

and reflection of radiation. While the NIR band is sensitive to changes in vegetation structure 

and density, it encounters limitations as the amount of biomass intensifies. This results in a 

phenomenon known as saturation, where the sensor reaches its maximum capacity to detect 

changes in reflectance values. 

Saturation occurs because the dense vegetation causes a greater proportion of the incoming 

radiation to be scattered or reflected, particularly in the NIR spectrum (Camps-Valls et 

al. 2021). As a consequence, the sensor becomes saturated, meaning that further increases 

in biomass or productivity do not translate proportionally into higher measured reflectance 

values. This limits the sensor’s ability to capture and differentiate changes in the productivity 

of vegetation beyond a certain threshold. 

While, for the monthly model, AutoML demonstrates an acceptable percentage of explained 

variability, with Random Forest surpassing it by 0.05, for the weekly and daily models, it 

appears that capturing the inherent variability in the data is challenging solely with the 

utilized indices and the entirety of MODIS bands. There seems to be a necessity to incorporate 

additional variables that possibly could further enhance predictive capabilities. 

Regarding the question of whether it is preferable to employ a Random Forest (RF) model 

or an AutoML model, the advantages revealed by the results of this study do not exhibit 

marked distinctions. The performances are comparable, with the only instance of a notable 

increase, a R² = 0.17 improvement in explaining variance, observed in the weekly model by the 

AutoML model. In the monthly model, Random Forest demonstrates a R² = 0.05 superiority 

in terms of explained variance compared to AutoML, although AutoML achieves a marginal 

improvement in error reduction by 0.198. These nuanced differences suggest that the choice 

between RF and AutoML may depend on specific considerations, emphasizing the importance 

of assessing both explanatory power and error metrics for comprehensive model evaluation. 
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3.5. Conclusions 

 
In summary, the monthly models generated using both methods (RF and autoML) exhib- 

ited superior performance based on various metrics, surpassing the outcomes from weekly or 

daily temporal aggregations. Specifically, in the context of monthly modelling, although RF 

demonstrated a slightly higher variance explanation compared to autoML (by 0.05), autoML 

showcased a lower RMSE, signifying more accurate predictions with minimal error. When 

incorporating VIs alongside all bands into the GPP prediction models (both RF and autoML), 

the VIs consistently demonstrated their significance as the most influential variables in the 

predictions, with CCI and EVI consistently having pivotal roles. Notably, among the bands, 

B02 (NIR) emerged as the most crucial for predictions, surpassing the importance of the 

remaining bands. 

Analyzing the RF model revealed interesting insights through Shapley values, indicating a 

tendency to underestimate high GPP values and overestimate low GPP values. This obser- 

vation was consistent across scatterplots depicting predicted versus actual values for diverse 

temporal aggregations. When comparing both methods (RF and autoML), no definitive su- 

periority emerges, as both exhibit nuanced distinctions, except for the weekly models where 

autoML outperforms with a 0.17 better variance explanation and a lower RMSE. 
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4. Conclusions and Future Work 

 
4.1. Synthesis 

 
This research evaluated the advantages and limitations associated with estimating GPP using 

traditional VIs like NDVI, EVI, and recent ones like CCI and NIRv. Specifically, the study 

focused on VIs derived from MODIS, chosen for its extensive time records. To assess GPP 

estimates through the VIs, we employed traditional methods such as linear regression and 

GAM, as well as ML techniques. 

Traditional methods, such as LM and GAM, offer the advantage of being more straightforward 

to interpret in relation to their predictions and associated errors. In contrast, ML techniques 

like regression RF and autoML pursue predictions through methods that are harder to eluci- 

date, a phenomenon referred to as “black model boxes.” Despite their complexity, these ML 

methods have the potential to achieve superior accuracy in their predictions. 

To evaluate the capacity of VIs to estimate GPP,Productivity (GPP), our analysis spanned 

three temporal aggregations: daily, weekly, and monthly. This assessment considered the 

utilization of VIs individually or collectively as covariates in the model. For ML methods, the 

same temporal aggregations were employed, with an assessment involving all indices and the 

entire set of MODIS bands as predictors. 

The results indicate that, across all models, monthly temporal aggregation consistently yields 

better outcomes in comparison to weekly and daily aggregations. This superiority can be 

attributed to the reduced variation present in monthly aggregated data, resulting in lower 

errors in the models. According to LM and GAM, incorporating all indices as covariates in 

the models enhances predictive capability, suggesting that a single VI in isolation may fall 

short of capturing the entire variation in the data. 
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Examining the outcomes of models utilizing individual VIs reveals minimal differences. 

Nonetheless, VIs consistently displaying a slightly superior performance in terms of explained 

variation and lower error are typically EVI and CCI, whereas NDVI tends to exhibit lower 

performance. This trend is also evident in ML models, with EVI and CCI frequently 

occupying top positions in variable of importance rankings. In ML models, the inclusion of 

all bands as predictors highlights that B02 (NIR) often ranks among the top variables in 

importance over other bands. 

In comparing the various models and their configurations (LM and GAM with VIs as co- 

variates; RF and autoML with VIs and complete bands as predictors), it becomes evident 

that ML methods exhibit a better performance across different time aggregations. For daily 

models, assessed by R² and RMSE metrics, RF surpassed autoML, GAM, and LM, in that 

sequence. For the weekly models, autoML led, followed by GAM, LM, and RF. Regarding 

the monthly models, RF had better performance, followed by LM, autoML, and GAM. 

 

4.2. Limitations 

 
The uncertainties in VIs, in this case, for GPP estimation, may be due to their inability 

to capture variations in GPP or inherent limitations falling into two categories: artifacts or 

external factors. Artifacts originate from the sensors used for deriving VIs, encompassing 

calibration, quality control, or sensor degradation (Zeng et al. 2022). In this study, we 

addressed these effects by excluding pixels with suboptimal quality using data from quality 

assurance (QA) and quality control (QC). These variables offer insights into the quality of 

each pixel, aiding in the selection of pixels potentially harboring erroneous values. However, 

the accuracy of these data may be compromised by the presence of pixels with poor quality 

not identified as such by postprocessing algorithms, or influenced by external factors such 

as clouds, cloud shadows, inaccuracies in snow detection, atmospheric pollution, or technical 

issues in image acquisition (Pesquer, Domingo-Marimon, and Pons 2019). 

Another potential source of uncertainty in GPP estimates is related to the representation of 

the flux tower footprint within the pixel area. EC towers exhibit a flux footprint that can 

vary over time. The footprint is defined as the extent to which measurements taken at a 

specific time and location accurately reflect the actual flows in time and specific area. The 

monthly climatologies of the footprint can exhibit variations, usually falling within the range 
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of 100 m to 450 m. (Chu et al. 2021). The heterogeneity of the landscape beyond this 

footprint may affect flow conditions differently than those measured within the footprint. In 

our methodology, we established a square area of 3 km² around the EC tower to ensure that 

the flux footprint climatology aligns with this region, considering the homogeneity in land 

cover type. However, the resolution of MODIS might not be adequate for capturing nuanced 

fine-scale spatial variations (Robinson et al. 2018). 

The limitations of the study include the unavailability of data from a sensor like Sentinel-2, 

which offers better spatial resolution compared to the MODIS product employed. This data 

could have allowed us to explore whether, despite estimating in areas with homogeneous land 

cover, it is feasible to capture nuanced fine-scale spatial variations. Such an exploration could 

potentially lead to improved GPP estimates, thereby reducing uncertainty. The restriction 

in using Sentinel-2 data stems from the fact that calibrated data is accessible only from 2017 

onward. However, the GPP data processed by ONEFlux for each site commenced in 2015, 

concluding for Bartlett and Michigan in 2017 and 2018, respectively, thus resulting in the 

exclusion of a significant portion of the data. 

Finally, it is important to acknowledge that the sites selection can constitute a potential 

limitation in this study. The focus on deciduous broadleaf forest sites in the northern hemi- 

sphere, encompassing only three locations, restricts the generalization of the findings to this 

specific ecosystem type. Expanding the scope to include more sites representing other various 

ecosystem types could further contribute to understanding which indices have limitations or 

can perform better in estimating GPP across a broader range of scenarios. 

 

4.3. Future work 

 
As uncertainties persist in GPP estimation models relying on VIs as predictors, the potential 

for improvement lies in models that can consider critical stress factors influencing photosyn- 

thesis (Rogers et al. 2020; Ryu, Berry, and Baldocchi 2019; Xiao et al. 2019). While incorpo- 

rating meteorological data can address this, it poses challenges in various regions around the 

globe. In such circumstances, a more advantageous approach involves the utilization and val- 

idation of VIs that demonstrate sensitivity to stress factors affecting photosynthetic activity, 

not just photosynthetic capacity. Remote sensing provides a means to achieve this by inte- 

grating data products such as thermal information, which can indirectly address water deficit 



73  

in ecosystems, for example (Pabon-Moreno et al. 2022). Despite potential uncertainties as- 

sociated with these products, there is a prospect for enhanced estimations by incorporating 

considerations beyond traditional reflectance values. 

Addressing the inherent variability across ecosystems, it is essential to recognize that no 

single VI will be the best, and their representation of vegetation functioning has limitations 

(Zeng et al. 2022). Nonetheless, the continual introduction of new VIs derived from both 

traditional and advanced sensors (Montero et al. 2023) presents an opportunity to enhance the 

estimation of GPP on a global level. A potentially effective strategy would involve establishing 

a standardized guide of VIs or combinations tailored to different ecosystem types, providing 

researchers with a reliable foundation for accurate assessments. Furthermore, the field could 

benefit from adopting a qualitative rating of model performance, such as the one used by for 

the FAO model AquaCrop (Raes et al. 2022). This practice involves standardizing model 

evaluations based on their performance within specific research domains. Such standardized 

benchmarks can provide valuable guidance for researchers seeking optimal model selection 

and interpretation within their respective contexts. 

Given the growing reliance on ML methods to enhance GPP predictions in recent years, a 

notable challenge arises from their tendency to obscure the understanding of the underly- 

ing mechanisms explaining the relationship between VIs and GPP (Molnar 2020). Hence, it 

becomes crucial for new studies to articulate their research objectives with clarity and con- 

sistency. Specifically, researchers should explicitly state whether their primary focus is to 

explore mechanistic relationships between VIs or if their aim is to improve GPP predictions. 

This distinction is vital, whether the goal is to predict GPP in sites lacking validation data 

(flux towers) or to advance forecasting capabilities (Meyer et al. 2019). 

The implementation of explainable ML methods could enhance our understanding of the vari- 

ables influencing predictions (Molnar 2020). Additionally, it is well-known that a prediction 

model’s ability to generalize the rules it has learned from the training data set to a new 

(unseen) data set is poor. Diverse scenarios, such as droughts, intense rainfall, and vege- 

tation mortality, among others, can affect predictive capacity. Therefore, consistent model 

predictive power assessment over time and retraining as necessary are crucial (Kuhn and Silge 

2022). This underscores the significance of having flux towers and extending their presence to 

underrepresented sites to acquire validation data. These efforts contribute to refining future 

global GPP estimation models on a broader scale (Meyer et al. 2019). 
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A. Appendices 

 
A.1. Bitstrings tables 

 

A.1.1. MODIS State 1km 

 

Table A.1.: state_1km bit strings 

Bit State 

Cloud State 
 

00 clear 

01 cloudy 

10 mixed 

11 not set, assumed clear 
 

Cloud Shadow 
 

1 yes 

0 no 
 

Land Water 
 

000 shallow ocean 

001 land 

010 ocean coastlines and lake shorelines 

011 shallow inland water 

100 ephemeral water 

101 deep inland water 

110 continental/moderate ocean 

111 deep ocean 
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Aerosol Quantity 
 

00 climatology 

01 low 

10 average 

11 high 
 

Cirrus Detected 
 

00 none 

01 small 

10 average 

11 high 
 

Cloud Flag 
 

1 cloud 

0 no cloud 
 

Fire Flag 
 

1 fire 

0 no fire 
 

Snow Ice Flag 
 

1 yes 

0 no 
 

Pixel adjacent Cloud 
 

1 yes 

0 no 
 

Salt Pan Cloud 
 

1 yes 

0 no 
 

Snow Mask 
 

1 yes 

0 no 
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A.1.2. MODIS QC Scan 

 

Table A.2.: qc_scan bit strings 

Bits State 

Modland 
 

00 ideal quality - all bands 

01 less than ideal quality - some or all bands 

10 product not produced due to cloud effects 

11 product not produced for other reasons 
 

Band quality (apply for all bands) 
 

0000 highest_quality 

0111 noisy detector 

1000 dead detector, data interpolated in L1B 

1001 solar zenith >= 86 degrees 

1010 solar zenith >= 85 and < 86 degrees 

1011 missing input 

1100 internal constant used 

1101 correction out of bounds 

1110 L1B data faulty 

1111 not processed due to deep ocean or clouds 

Atmospheric Correction 
 

0 no 

1 yes 
 

Adjacency Correction 
 

0 no 

1 yes 
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All 

CCI 

EVI 

NIRv 

NDVI 

0.889 34.995 60.577 65.920 

0.887 133.808 58.692 61.363 

0.880  59.691 62.363 

0.878 

0.784 

123.297 

62.655 

60.001 

70.289 

62.672 

72.960 

7.627 × 10−7 

3.495 × 10−9 

5.466 × 10−9 

6.280 × 10−9 

6.363 × 10−7 

CCI 

All 

NDVI 

NIRv 

EVI 

0.782 133.796 177.703  

0.778 33.452 181.071 190.897 

0.755  182.191  

0.746 

0.738 

 

 

 

 

188.447 

 

1.107 × 10−13 

3.485 × 10−11 

9.428 × 10−13 

1.790 × 10−12 

3.086 × 10−12 

All 

CCI 

NDVI 

NIRv 

 

0.771 62.572 327.544  

0.732  336.514  

0.638 129.875 358.619  

0.583 

0.566 

103.147 

96.172 

 

 

 

 

3.117 × 10−22 

1.766 × 10−22 

8.818 × 10−18 

1.528 × 10−15 

6.694 × 10−15 

A.2. Complete LM metrics 

 

A.2.1. Monthly LM metrics 

 

Table A.3.: Summary of Linear models for GPP estimation using the vegetation indices on a 
monthly basis (per site). 

adj.r.squared statistic AIC BIC p.value 

Michigan 

 

 

 

 

 

 

 

Bartlett 
 

Borden 
 

All 
 

All 

CCI 

NIRv 

EVI 

NDVI 

0.918 48.285 59.460 64.802 

0.864 109.210 66.171 68.842 

0.856  67.214 69.885 

0.850 

0.699 

97.219 

40.436 

67.983 

80.515 

70.654 

83.186 

1.120 × 10−7 

1.483 × 10−8 

2.366 × 10−8 

3.341 × 10−8 

9.481 × 10−6 
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All 

EVI 

CCI 

NIRv 

NDVI 

0.809 77.188   

0.787 

0.783 

0.770 

 

 

241.637 

 

 

 

 

 

 

0.633    

1.513 × 10−24 

8.712 × 10−26 

1.795 × 10−25 

1.495 × 10−24 

2.444 × 10−17 

All 

NIRv 

EVI 

CCI 

NDVI 

0.799 64.530   

0.782 

0.780 

0.701 

 

 

151.227 

 

 

 

 

 

 

0.609    

4.684 × 10−21 

1.060 × 10−22 

1.275 × 10−22 

2.138 × 10−18 

1.116 × 10−14 

All 

CCI 

EVI 

NIRv 

NDVI 

0.600 53.920   

0.577   775.174 

0.572 

0.563 

 

 

768.107 

 

776.974 

779.732 

0.499    

3.178 × 10−27 

3.589 × 10−28 

8.756 × 10−28 

3.434 × 10−27 

5.537 × 10−23 

CCI 

All 

NDVI 

NIRv 

EVI 

0.560 356.273 1, 445.058 1, 455.963 

0.558 89.013 1, 449.447 1, 471.255 

0.461 

0.459 

 

 

1, 501.991 

1, 502.954 

1, 512.895 

1, 513.858 

0.452  1, 506.838 1, 517.743 

1.022 × 10−51 

1.971 × 10−48 

2.115 × 10−39 

3.417 × 10−39 

2.370 × 10−38 

A.2.2. Weekly LM metrics 

 

Table A.4.: Summary of Linear models for GPP estimation using the vegetation indices on a 
weekly basis (per site). 

adj.r.squared statistic AIC BIC p.value 
 

Bartlett 
 

Michigan 
 

Borden 
 

All 
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All 

CCI 

EVI 

NIRv 

NDVI 

0.866 485.890 1, 178.271 1, 200.533 

0.832 

0.813 

0.800 

1, 489.205 

1, 310.145 

1, 201.359 

1, 243.242 

1, 275.087 

1, 296.213 

1, 254.374 

1, 286.219 

1, 307.345 

0.657  1, 458.698 1, 469.830 

6.162 × 10−129 

2.354 × 10−118 

1.762 × 10−111 

6.406 × 10−107 

7.912 × 10−72 

All 

EVI 

NIRv 

CCI 

NDVI 

0.713 91.565   

0.702 

0.664 

0.610 

 

 

 

 

689.807 

 

 

 

 

0.521    

2.499 × 10−38 

3.248 × 10−40 

2.366 × 10−36 

1.121 × 10−31 

3.569 × 10−25 

All 

CCI 

EVI 

NIRv 

NDVI 

0.606 320.497 4, 522.636 4, 550.986 

0.591 1, 201.855 4, 550.671 4, 564.846 

0.494 

0.475 

 

 

4, 727.696 

4, 757.393 

4, 741.871 

4, 771.569 

0.447  4, 801.777 4, 815.952 

1.640 × 10−166 

1.355 × 10−163 

3.301 × 10−125 

9.120 × 10−119 

3.873 × 10−109 

All 

CCI 

EVI 

NIRv 

NDVI 

0.521 104.996 2, 181.484 2, 205.188 

0.441  2, 237.254 2, 249.106 

0.428 

0.380 

 

 

2, 246.624 

2, 277.328 

2, 258.475 

2, 289.180 

0.273  2, 338.369 2, 350.221 

4.203 × 10−60 

1.838 × 10−50 

1.973 × 10−48 

8.977 × 10−42 

1.617 × 10−28 

A.2.3. Daily LM metrics 

 

Table A.5.: Summary of Linear models for GPP estimation using the vegetation indices on a 
daily basis (per site). 

adj.r.squared statistic AIC BIC p.value 
 

Bartlett 
 

Michigan 
 

All 
 

Borden 
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A.3. Complete GAM metrics 

 

A.3.1. Monthly GAM metrics 

 

Table A.6.: Summary of the GAM models output for monthly GPP estimation using the every 
VI as an individual non-linear term 

site index edf f p_value AIC 

Michigan evi_mean 3.817030 87.35043 0.000000e+00 46.78342 

Michigan nirv_mean 4.044975 75.37774 0.000000e+00 48.41677 

Bartlett cci_mean 2.239036 66.85647 0.000000e+00 54.60874 

Michigan cci_mean 2.602984 57.48746 0.000000e+00 59.36252 

Bartlett evi_mean 1.000019 125.71069 0.000000e+00 59.69151 

Bartlett nirv_mean 1.000030 123.28934 0.000000e+00 60.00142 

Michigan ndvi_mean 2.806127 31.20277 5.690552e-06 68.06940 

Bartlett ndvi_mean 1.000069 62.64577 -3.515872e-07 70.28904 

Borden cci_mean 1.190879 96.46348 0.000000e+00 177.64856 

Borden ndvi_mean 1.809503 53.64331 0.000000e+00 181.16487 

Borden nirv_mean 1.000106 109.62110 0.000000e+00 183.53397 

Borden evi_mean 1.000118 105.31638 0.000000e+00 184.67361 

All cci_mean 2.404895 72.32912 0.000000e+00 333.05822 

All ndvi_mean 2.954201 51.51928 0.000000e+00 341.40009 

All nirv_mean 3.770256 31.19524 0.000000e+00 355.55683 

All evi_mean 3.789326 29.98655 0.000000e+00 357.45536 
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Table A.7.: Summary of the GAM models output for monthly GPP estimation using the all 
VIs per site category as non-linear terms covariates 

site index term edf f p_value AIC 

Borden All s(evi_mean) 1.000007 1.561538 0.2202315969 181.0712 

Borden All s(nirv_mean) 1.000006 1.832159 0.1850688800 181.0712 

Borden All s(cci_mean) 1.000100 2.667602 0.1118925771 181.0712 

All All s(evi_mean) 5.154191 4.079875 0.0004261942 4411.7779 

All All s(nirv_mean) 4.545057 2.844737 0.0125690226 4411.7779 

All All s(cci_mean) 6.218002 13.246895 0.0000000000 4411.7779 
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A.3.2. Weekly GAM metrics 

 

Table A.8.: Summary of the GAM models output for weekly GPP estimation using the every 
VI as an individual non-linear term 

site index edf f p_value AIC 

Michigan evi_mean 3.663726 75.39276 0 247.2844 

Michigan nirv_mean 3.209376 71.49144 0 256.7204 

Bartlett evi_mean 3.336909 71.86998 0 272.0930 

Bartlett cci_mean 2.583077 86.30588 0 275.5742 

Michigan cci_mean 3.520166 43.76791 0 277.5737 

Bartlett nirv_mean 3.272579 65.98375 0 278.0024 

Michigan ndvi_mean 2.675203 39.90565 0 293.9057 

Bartlett ndvi_mean 1.000087 125.30174 0 316.3173 

Borden evi_mean 3.560463 46.50232 0 762.7106 

Borden cci_mean 1.000274 193.41184 0 766.3073 

Borden nirv_mean 2.853504 54.04690 0 767.5482 

Borden ndvi_mean 1.406799 80.37055 0 790.2338 

All cci_mean 4.538741 69.58626 0 1433.6512 

All evi_mean 4.748375 53.58396 0 1468.9599 

All nirv_mean 4.334480 55.98519 0 1473.8814 

All ndvi_mean 3.223579 71.73012 0 1480.0666 
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Table A.9.: Summary of the GAM models output for weekly GPP estimation using the all 
VIs per site category as non-linear terms covariates 

site index term edf f p_value AIC 

Michigan All s(evi_mean) 4.488458 5.8177458 0.0001315731 240.5091 

Michigan All s(nirv_mean) 1.000195 9.7009559 0.0028789998 240.5091 

Michigan All s(cci_mean) 1.000043 0.0175387 0.8952502747 240.5091 

Bartlett All s(evi_mean) 1.000051 3.1454363 0.0806776572 269.6656 

Bartlett All s(nirv_mean) 1.000129 0.5997498 0.4413933495 269.6656 

Bartlett All s(cci_mean) 2.128825 4.2538207 0.0095109230 269.6656 

Borden All s(evi_mean) 1.001795 3.0976955 0.0804966509 760.4175 

Borden All s(nirv_mean) 1.976616 0.6214367 0.5421077236 760.4175 

Borden All s(cci_mean) 1.000123 2.6980022 0.1027452161 760.4175 

All All s(evi_mean) 5.154191 4.0798752 0.0004261942 4411.7779 

All All s(nirv_mean) 4.545057 2.8447368 0.0125690226 4411.7779 

All All s(cci_mean) 6.218002 13.2468950 0.0000000000 4411.7779 
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A.3.3. Daily GAM metrics 

 

Table A.10.: Summary of the GAM models output for daily GPP estimation using the every 
VI as an individual non-linear term 

site index edf f p_value AIC 

Michigan evi_mean 4.457179 77.72707 0 652.5681 

Michigan nirv_mean 2.807163 86.23596 0 687.8352 

Michigan cci_mean 4.218361 48.29421 0 704.7992 

Michigan ndvi_mean 2.980300 55.52978 0 722.8092 

Bartlett cci_mean 5.975808 236.42420 0 1215.1703 

Bartlett evi_mean 5.365946 250.56443 0 1222.4305 

Bartlett nirv_mean 5.461424 226.11564 0 1244.9206 

Bartlett ndvi_mean 5.198974 137.44546 0 1374.8503 

Borden evi_mean 5.569955 55.49361 0 2202.2988 

Borden nirv_mean 5.804760 46.01083 0 2230.5977 

Borden cci_mean 3.191225 78.29535 0 2231.2904 

Borden ndvi_mean 4.912790 45.99191 0 2235.6639 

All cci_mean 6.266321 173.70000 0 4515.9138 

All evi_mean 6.642583 148.32392 0 4574.2505 

All ndvi_mean 5.308406 155.72087 0 4615.5740 

All nirv_mean 6.317347 140.36124 0 4618.3302 
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Table A.11.: Summary of the GAM models output for daily GPP estimation using the all VIs 
per site category as non-linear terms covariates 

site index term edf f p_value AIC 

Michigan All s(evi_mean) 3.012297 15.313284 0.000000e+00 630.891 

Michigan All s(nirv_mean) 1.953289 11.098293 1.465150e-05 630.891 

Michigan All s(cci_mean) 3.316744 2.334852 5.228136e-02 630.891 

Bartlett All s(evi_mean) 5.075549 6.261981 3.136046e-06 1139.659 

Bartlett All s(nirv_mean) 3.933390 2.321316 5.093414e-02 1139.659 

Bartlett All s(cci_mean) 5.523614 9.113037 0.000000e+00 1139.659 

Borden All s(evi_mean) 1.001559 22.542139 3.092503e-06 2147.143 

Borden All s(nirv_mean) 4.720920 4.428707 2.739846e-04 2147.143 

Borden All s(cci_mean) 3.652172 2.062896 9.147704e-02 2147.143 

All All s(evi_mean) 5.154191 4.079875 4.261942e-04 4411.778 

All All s(nirv_mean) 4.545057 2.844737 1.256902e-02 4411.778 

All All s(cci_mean) 6.218002 13.246895 0.000000e+00 4411.778 
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A.4. Residuals distributions 
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Figure A.1.: Residuals distributions for each of the LMs for GPP estimation using the vege- 

tation indices on a monthly (a), weekly (b), and daily (c) basis. 
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Figure A.2.: Residuals distributions for each of the GAMs for GPP estimation using the veg- 

etation indices on a monthly (a), weekly (b), and daily (c) basis.
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