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Abstract

Given a conformal superalgebra A over an algebraically closed field k of charac-

teristic zero, a twisted loop conformal superalgebra L based on A has a differen-

tial conformal superalgebra structure over the differential Laurent polynomial ring

D = (k[t±1], d
dt

). In this context, L is a Dm/D–form of A ⊗k D with respect to

an étale extension of differential rings D → Dm = (k[t±
1
m ], d

dt
), and hence is a

D̂/D–form of A ⊗k D for D̂ = lim
−→
Dm. Such a perspective reduces the problem

of classifying the twisted loop conformal superalgebras based on A to the compu-

tation of the non-abelian cohomology set of its automorphism group functor.

The primary goal of this dissertation is to classify the twisted loop conformal

superalgebras based on A when A is one of the N = 1, 2, 3 and (small or large)

N = 4 conformal superalgebras. To achieve this, we first explicitly determined

the automorphism group of the D̂–conformal superalgebra A ⊗k D̂ in each case.

We then computed the corresponding non-abelian continuous cohomology set, and

obtained the classification of our objects up to isomorphism over D. Finally, by

applying the so-called “centroid trick”, we deduced from isomorphisms over D to

isomorphisms over k, thus accomplishing the classification over k.

Additionally, in order to understand the representability of the automorphism

group functors of the N = 1, 2, 3 and small N = 4 conformal superalgebras, we

discuss the R–points of these automorphism group functors for an arbitrary dif-

ferential ring R = (R, d). In particular, if R is an integral domain (with certain

additional assumptions in the small N = 4 case), these automorphism groups have

been completely determined.
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Notation
Z the set of integers

Z+ the set of nonnegative integers

Z/mZ the finite cyclic group of order m

k an algebraically closed field of characteristic zero

Q the field of rational numbers

C the field of complex numbers

δij the Kronecker symbol, which is 1 if i = j and is 0 if i 6= j

εijk the sign of a cycle (i, j, k), where i, j, k ∈ {1, 2, 3}
i a square root of −1 in k

ζm the standard m-th primitive root of unity in k, i.e., ζm = e
2πi
m

D the Laurent polynomial ring k[t±1]

Dm the ring k[t±
1
m ] which is an étale extension of D

D̂ the ring lim
−→

Dm

D the k–differential ring (D, d
dt

)

Dm the k–differential ring (Dm,
d
dt

)

D̂ the k–differential ring (D̂, d
dt

)

Spec(R) the spectrum of R

Mat2(R) the set of 2× 2-matrices with coefficients in the ring R



Chapter 1

Introduction
Infinite dimensional Lie (super)algebras emerged in the study of theoretical physics
in the 1960s. They turned out to be one of the most useful mathematical tools to
describe supersymmetric phenomena. Presently, there are (at least) two families of
infinite dimensional Lie (super)algebras of particular interest in physics: one is the
family of affine Kac-Moody algebras and the other is the family of the so-called
superconformal algebras.

Kac-Moody algebras appeared in mathematics as a generalization of finite di-
mensional simple Lie algebras over the field C of complex numbers. In Kac-Moody
theory, the affine Kac-Moody algebras play a very special role. While a general
Kac-Moody algebra is defined by Chevalley-Serre relations (a useful approach, but
one that makes it impossible to see what the objects look like), an affine Kac-Moody
algebra (derived modulo its center) has a beautiful explicit realization as a twisted
loop Lie algebra of the form L(g, σ) for a finite dimensional complex simple Lie
algebra g with respect to an automorphism σ of g of finite order m (cf. Chapters 7
and 8 of [Kac90]). Concretely, one may assign a natural structure of a Lie algebra
on g⊗C C[t±

1
m ] by defining

[a⊗ r, b⊗ s] = [a, b]⊗ rs, a, b ∈ g, r, s ∈ C[t±
1
m ].

The automorphism σ of g is extended to an automorphism σ⊗ψ on the Lie algebra
g⊗C C[t±

1
m ], where

ψ : C[t±
1
m ]→ C[t±

1
m ], t

1
m 7→ ζ−1

m t
1
m ,

and ζm is an m-th primitive root of unity. The twisted loop Lie algebra L(g, σ) is
defined to be the sub-Lie algebra of g ⊗C C[t±

1
m ] consisting of elements fixed by

σ ⊗ ψ.

These twisted loop Lie algebras have been further generalized to twisted multi-
loop Lie algebras by replacing the Laurent polynomial ring C[t±1] with the multi-
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loop ring C[t±1
1 , · · · , t±1

n ]. Such generalizations play an important role in the theory
of extended affine Lie algebras (cf. [ABFP09]).

In recent years, inspired by the twisted loop construction of an affine Kac-
Moody algebra, algebraic-geometric methods, including non-abelian Galois coho-
mology and descent theory, have been brought into the study of affine Kac-Moody
algebras and twisted multiloop Lie algebras. The basic ideas behind these methods,
which are succinctly exposed in [Pia05], are the following observations:

• Every twisted loop Lie algebra L(g, σ) is not only a Lie algebra over the field
C, but also a Lie algebra over the Laurent polynomial ring C[t±1].

• Viewed as a Lie algebra over C[t±1], every twisted loop Lie algebra L(g, σ)

is a twisted form of the untwisted loop Lie algebra g ⊗C C[t±1] which is
“trivialized” by the étale extension of rings C[t±1] → C[t±

1
m ]. Furthermore,

the affine Kac-Moody Lie algebras account for all the twisted forms.

This point of view has prompted two avenues of investigations. One is the
exploration of the structure and representation theory of a twisted (multi)loop Lie
algebra by applying descent theory to the corresponding untwisted (multi)loop Lie
algebra. This idea has been successfully used in the research occurring on the
following topics:

• the central extensions of twisted forms of Lie algebras in [PPS07, Sun09],

• the derivations of twisted forms of Lie algebras in [Pia10],

• the conjugacy theorem of maximal abelian diagonalizable subalgebras (ana-
logues of Cartan subalgebras) of twisted loop Lie algebras and affine Kac-
Moody algebras in [Pia04, CGP11, CEGP12],

• the finite-dimensional irreducible representations of a twisted form of a Lie
algebra in [Lau10, LP13].

The other is the investigation of the automorphism groups of Lie algebras and
the torsors of an affine group scheme over Spec(C[t±1]). In the classical theory
of twisted forms, every isomorphism class of twisted forms of g ⊗C C[t±1] which
are split by an étale extension of C[t±1] corresponds to an element in the non-
abelian étale cohomology set H1

ét(C[t±1],Aut(g)), where Aut(g) is the automor-
phism group functor of g. In the situation where g is a finite dimensional Lie alge-
bra, Aut(g) is representable by an affine group scheme of finite type. In addition,
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the classes in H1
ét(C[t±1],Aut(g)) can also be interpreted in terms of torsors over

Spec(C[t±1]) under Aut(g). This lead to a detailed study of the automorphism
group schemes of Lie algebras or Lie superalgebras (cf. [GP04, GP08b]), and of
the theory of torsors of reductive group schemes over Spec(C[t±1]), or more gener-
ally over Spec(C[t±1

1 , · · · , t±1
n ]) (cf. [CGP12, GP05, GP07, GP08a, Pia05]).

In 2009, V. Kac, M. Lau, and A. Pianzola [KLP09] found that the above strategy
for studying twisted loop Lie algebras by cohomological means can be used to un-
derstand the so-called twisted superconformal algebras in theoretical physics. This
discovery is the main motivation for the work presented in this dissertation. Super-
conformal algebras are infinite dimensional Lie superalgebras used to describe su-
persymmetries in conformal field theory. Many important examples, including the
Neveu-Schwarz algebra, and the Ramond algebra, have been known for decades.

The key feature of such a Lie superalgebra is that its Lie superbracket involves
the operator product expansion of formal distributions. In the 1990s, V. G. Kac in-
troduced the notion of conformal superalgebras to deal with Lie superalgebras with
operator product expansions. In subsequent work of V. G. Kac and his collabora-
tors, finite simple conformal superalgebras over C (the field of complex numbers)
were classified (cf. [Kac98a]).

Along with the usual (untwisted) superconformal algebras, physicists have also
created another family of Lie superalgebras called twisted superconformal algebras
in [SS87] and [STVP88]. The readers are encouraged to look at these papers for
the relevance to the physics of the objects we will study. Based on Kac’s theory of
conformal superalgebras, a twisted superconformal algebra is the Lie superalgebra
induced by a twisted loop conformal superalgebra. Analogous to the classification
of twisted loop Lie algebras in terms of torsors, one of the main observations used in
[KLP09] to study twisted loop conformal algebras is that a twisted loop conformal
algebra based on a given C–conformal superalgebra A has a conformal superalge-
bra structure over the differential Laurent polynomial ring D := (C[t±1], dt), that
is the pair consisting of the ring C[t±1] and the derivation dt := d

dt
. The derivation

dt has been introduced here because the commutative associative algebra structure
on C[t±1] is not sufficient to define the affinization of a conformal superalgebra (or
more generally, is not sufficient to define the change of base rings for conformal
superalgebras).

As a result, conformal superalgebras over the field C were generalized to differ-
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ential conformal superalgebras over a differential ring (that is, a pair consisting of
a commutative associative algebra over the base field k together with a derivation).
With this generalization, one can define the “change of base” over differential rings,
and this turns out to be the correct (and crucial) ingredient needed in the conformal
superalgebra situation to deal with “local triviality” in the étale sense. As expected,
every twisted loop conformal superalgebra is a twisted form of the corresponding
untwisted loop conformal superalgebra with respect to an extension of differential
rings of the form D := (k[t±1], d

dt
)→ Dm := (k[t±

1
m ], d

dt
).

Additionally, the change of base differential rings motives the definition of the
automorphism group functor Aut(A ) of a given conformal superalgebra A over
a base differential ring R. It has been proved in [KLP09] that, for faithfully flat
extension S/R of differential rings, the R–isomorphism classes of S/R–twisted
forms of a conformal superalgebra A over R bijectively correspond to the classes
in the non-abelian cohomology set H1(S/R,Aut(A )).

Unlike the case for a usual finite dimensional algebra, the automorphism group
functor Aut(A ) of a k–conformal superalgebra A fails to be representable in the
usual sense. Nonetheless, since our primary concern is the classification of twisted
loop conformal superalgebras based on A , we may specialize extensions of differ-
ential rings to be the extension D → Dm for some positive integer m. Moreover,
instead of considering the extension D → Dm for each m individually, we may
consider D̂ := lim

−→
Dm and the extension D → D̂. The result is that all twisted loop

conformal superalgebras based on A can be classified by H1(D̂/D,Aut(A )) up
to isomorphism of conformal superalgebras over D.

When A satisfies a certain finiteness condition, the non-abelian cohomology
set H1(D̂/D,Aut(A )) can be further identified with the non-abelian continuous
cohomology set H1

ct(Ẑ,Aut(A )(D̂)), where Ẑ = lim
←−

Z/mZ.

In the context of the differential conformal superalgebra theory developed in
[KLP09], this dissertation will focus on the classification of twisted loop conformal
superalgebras based on A , where A is one of the N = 1, 2, 3 and (small or large)
N = 4 conformal superalgebras.

One of the key ingredients in the classification is to find the automorphism group
Aut(A )(D̂) for each of the conformal superalgebras A listed above. In fact, for
the N = 2 or small N = 4 conformal superalgebra A , Aut(A )(D̂) has been
determined in [KLP09]. We will explicitly compute Aut(A )(D̂), where A is
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one of the N = 1, 2, 3 or large N = 4 conformal superalgebras. Summarizing
our results and the automorphism group of the small N = 4 algebra obtained in
[KLP09], we have the following Table 1.1:

Table 1.1: automorphism groups

A N = 1, 2, 3 small N = 4 large N = 4

Aut(A )(D̂) ON(D̂) SL2(D̂)×SL2(k)
〈(−I2,−I2)〉

(
SL2(D̂)×SL2(D̂)
〈(−I2,−I2)〉 ×Ga(D̂)

)
o Z/2Z

where D̂ = lim
−→

k[t±
1
m ], and ON ,SL2,Ga are the group scheme of N×N orthogo-

nal matrices, special linear group scheme, and additive group scheme, respectively.

These results seem to suggest that the automorphism groups Aut(A )(D̂) are
closely related to the D̂–points of certain affine group schemes. With this as a mo-
tivation, we further study the relationships between the automorphism group func-
tor Aut(A ) and affine group schemes whose R–points yield the abstract group
Aut(A )(R) for an arbitrary k–differential ring R. For one of the N = 1, 2, 3

or small N = 4 conformal superalgebras A , we found that the automorphism
group functor Aut(A ) has a subgroup functor GrAut(A ), which coincides with
Aut(A ) when evaluated on a k–differential ring whose underlying ring is an
integral domain. Moreover, GrAut(A ) can be obtained as a lift of an affine
group scheme (viewed as functors from the category of commutative associative
k-algebras to the category of groups) by composing certain functors from the cate-
gory of k–differential rings to the category of commutative associative k-algebras.

After determining the automorphism group Aut(A )(D̂), we move on to com-
pute the non-abelian continuous cohomology set H1

ct(Ẑ,Aut(A )(D̂)). In the case
where Aut(A )(D̂) coincides with the D̂-points G(D̂) of a reductive group scheme
G, the non-abelian cohomology set H1

ct(Ẑ,G(D̂)) can be further identified with the
non-abelian étale cohomology set Hét(D,G) (cf. [GP08a]). Such an identification
allows us to connect our problem to the theory of torsors over the punched affine
line Spec(D) under G.

Once we determined H1
ct(Ẑ,Aut(A )(D̂)), we obtained the classification of all

twisted loop conformal superalgebras based on A up to isomorphism over D. The
passage from isomorphism over D to isomorphism over k can be done by using
the so-called “centroid trick”, which was developed in [KLP09]. We will discuss
them in Section 2.5 where we will provide a new explicit description of the cen-
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troid of the twisted loop conformal superalgebras under certain assumptions (cf.
Propositon 2.12). These assumptions are fulfilled by any twisted loop conformal
superalgebra based on each of the k–conformal superalgebra A listed in Table 1.1.

The structure of this dissertation is as follows. In Chapter 2, we will provide
a review of the general theory of differential conformal superalgebras and their
twisted forms, which is part of the preliminaries required for our subsequent dis-
cussions. In Chapter 3, we will review basic terminology and facts from non-abelian
Galois cohomology theory. Chapters 4,5, and 6 comprise the main body of this dis-
sertation. In Chapter 4, we will focus on the N = 1, 2, 3 conformal superalgebras
KN : we will deduce the structure of the automorphism group functor Aut(KN),
complete the classification of twisted loop conformal superalgebras based on KN ,
and discuss the Lie superalgebras determined by these non-isomorphic twisted loop
conformal superalgebras. In Chapter 5, we will concentrate on the properties of the
automorphism functor Aut(W ) of the small N = 4 conformal superalgebra W ,
and provide a review of the classification of twisted loop conformal superalgebras
based on W obtained in [KLP09]. A similar classification for the large N = 4

conformal superalgebra M will be completed in Chapter 6 based on an explicit
computation of the automorphism group Aut(M )(D̂) and the non-abelian coho-
mology set H1

ct(Ẑ,Aut(M )(D̂)).
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Chapter 2

Differential Conformal Superalgebras
This chapter is a review of the general theory of differential conformal superalge-
bras developed in [KLP09].

2.1 Conformal superalgebras

Before going into a discussion on differential conformal superalgebras, we first re-
view some facts about conformal superalgebras over the base field k, and identify
the relations between conformal superalgebras and formal distribution Lie superal-
gebras. The terminologies and notions presented in this section were introduced by
V. Kac in [Kac98b].

Let g be a Lie superalgebra1 (usually infinite dimensional) over k. A g–valued

formal distribution is a formal series a(w) of the form

a(w) =
∑
n∈Z

anw
−n−1, an ∈ g. (2.1.1)

Two g-valued formal distributions a(w) and b(w) are called mutually local if there
is a positive integer N such that

(z − w)N [a(z), b(w)] = 0, (2.1.2)

where
[a(z), b(w)] =

∑
m,n∈Z

[am, bn]z−m−1w−n−1, (2.1.3)

if a(w) =
∑

n∈Z anw
−n−1 and b(w) =

∑
n∈Z bnw

−n−1.

It has been shown in Corollary 2.2 of [Kac98b] that two g–valued formal distri-
butions a(w) and b(w) are mutually local if and only if [a(z), b(w)] can be written

1I will not restate the definition of a Lie superalgebra here since it can be easily found in many
literatures such as the long paper [Kac77] by V. G. Kac, and the book [CW12] by S. Cheng and W.
Wang.
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as a finite sum
[a(z), b(w)] =

∑
j∈Z+

cj(w)∂(j)
w δ(z − w), (2.1.4)

where ∂w is the formal derivative with respect to w, ∂(j)
w := ∂jw/j!, and

δ(z − w) =
∑
n∈Z

wnz−n−1. (2.1.5)

The expansion (2.1.4) is called the operator product expansion (OPE) of [a(z), b(w)],
and the cj(w), j ∈ Z+ are called the OPE coefficients.

A formal distribution Lie superalgebra over k is a pair (g,F) consisting of a Lie
superalgebra g over k and a set F of mutually local g–valued formal distributions
such that g is spanned (as a k–vector space) by coefficients of elements in F .

Given a formal distribution Lie superalgebra (g,F), one strategy to investigate
the properties of the Lie superalgebra g is to consider the operator product expan-
sion of formal distributions in F .

To illustrate, we consider the centreless Virasoro algebra v = ⊕n∈ZkLn with
the Lie bracket defined by

[Lm,Ln] = (m− n)Lm+n, m, n ∈ Z. (2.1.6)

Then v (as a k–vector space) is spanned by the coefficients of the formal distribution

L(z) =
∑
n∈Z

Lnz
−n−2, (2.1.7)

i.e., if we take F = {L(z)}, then (v,F) is a formal distribution Lie algebra. By
considering the operator product expansion, we have

[L(z),L(w)] = (∂wL(w))δ(z − w) + 2L(w)∂wδ(z − w). (2.1.8)

Let F = spank{∂jwL(w)|j ∈ Z+}. Then all OPE coefficients of [a(z), b(w)] for
a(z), b(z) ∈ F are contained in F , i.e., F is closed under taking OPE coefficients.
Hence, the OPE yields an algebraic structure on F , which motivates the definition
of a conformal superalgebra.

In a Z/2Z–graded k–vector space V = V0̄⊕V1̄, we always use p(a, b) to denote
the sign (−1)p(a)p(b) for two homogeneous elements a and b in V , where p(a) and
p(b) are the parity of a and b, respectively.
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Definition 2.1 (Definition 2.7 of [Kac98b]). A (Lie) conformal superalgebra over
k is a Z/2Z–graded k[∂]–module A = A0̄ ⊕ A1̄, on which there is a k–bilinear
product −(n)− for each n ∈ Z+ satisfying:

(C0) a(n)b = 0 for n� 0,

(C1) (∂A a)(n)b = −na(n−1)b,

(C2) a(n)b = −p(a, b)
∞∑
j=0

(−1)j+n∂(j)(b(n+j)a),

(C3) a(m)(b(n)c) =
m∑
j=0

(
m
j

)
(a(j)b)(m+n−j)c+ p(a, b)b(n)(a(m)c),

where ∂(j) = ∂j/j!, a, b, c ∈ A , and m,n ∈ Z+.

One can also define an associative conformal superalgebra by modifying axioms
(C2) and (C3) above (cf. Section 2.10 of [Kac98b]). Since all conformal superal-
gebras considered in this thesis are Lie conformal superalgebras, we simply say a
conformal superalgebra instead of a Lie conformal superalgebra.

For convenience, we also use the λ–bracket notation for all n–th products of a
conformal superalgebra A :

[aλb] =
∞∑
n=0

λ(n)(a(n)b), (2.1.9)

for a, b ∈ A , where λ is an indeterminate and λ(n) := λn/n!. Adopting this nota-
tion, the axiom (C0) is equivalent to that [aλb] is a polynomial in λ with coefficients
in A . The axioms (C1)-(C3) can be rewritten as

(C1)λ [(∂A a)λb] = −λ[aλb].

(C2)λ [aλb] = −p(a, b)[b−λ−∂A
a].

(C3)λ [aλ[bµc]] = [[aλb]λ+µc] + p(a, b)[bµ[aλc]].

As an example, the set of formal distributions F associated to the centreless
Virasoro algebra v form a conformal superalgebra V , on which the n-th product
a(w)(n)b(w) is defined to be the n-th OPE coefficient in the OPE of [a(z), b(w)] for
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a(w), b(w) ∈ F . The conformal superalgebra V is called the centreless Virasoro

conformal algebra. More precisely,

V = k[∂]L (2.1.10)

is a free k[∂]–module of rank 1, on which the λ–bracket is given by

[LλL] = (∂ + 2λ)L. (2.1.11)

Another example is a current conformal superalgebra. Let g be a finite dimen-
sional Lie superalgebra over k. Then

Cur(g) = k[∂]⊗k g (2.1.12)

is a conformal superalgebra under the n-th product defined by

a(n)b = δn,0[a, b], (2.1.13)

where a, b ∈ g, n ∈ Z+.

The passage from the centreless Virasoro algebra v to the centreless Virasoro
conformal algebra V can be generalized to all formal distribution Lie superalgebras
as follows. For a formal distribution Lie superalgebra (g,F), the closure F (the
minimal set of formal distributions which is closed under OPE and contains F) is
equipped with a structure of a conformal superalgebra through OPE. This conformal
superalgebra is denoted by A (g,F) (cf. Section 2.7 of [Kac98b] for an explicit
description of this passage).

Conversely, a conformal superalgebra A over k also realizes a Lie superal-
gebra. Such a realization requires us to consider the affinization of a conformal

superalgebra.

Throughout this dissertation, D always denotes the Laurent polynomial ring
k[t±1]. Given a conformal superalgebra A , there is a conformal superalgebra struc-
ture on the k–vector space A ⊗k D given by

∂̂(a⊗ r) = ∂A (a)⊗ r + a⊗ dt(r), (2.1.14)
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for a ∈ A , r ∈ D, and the n-th product

(a⊗ r)(n)(b⊗ s) =
∑
j∈Z+

(a(n+j)b)⊗ d
(j)
t (r)s, (2.1.15)

for a, b ∈ A , r, s ∈ D, where dt = d
dt

is the derivative with respect to t and
d

(j)
t := djt/j!. The resulting conformal superalgebra is denoted by AD := A ⊗k D,

where D = (D, dt).

The conformal superalgebra AD determines a Lie superalgebra

Alg(A ) := (A ⊗k D)/∂̂(A ⊗k D) (2.1.16)

with Lie superbracket induced by the 0-th product of A ⊗k D. Furthermore, if
A = A (g,F) is the conformal superalgebra associated to a formal distribution
Lie superalgebra (g,F), then Alg(A ) ∼= g as Lie superalgebras over k (cf. Theo-
rem 2.7 of [Kac98b]).

Analogous to the twisted loop construction for Lie algebras, we may define
twisted loop conformal superalgebras. Starting with a conformal superalgebra A

and an automorphism σ of A of order m, we define the conformal superalgebra
A ⊗k Dm using (2.1.14) and (2.1.15), where Dm = k[t±

1
m ] and Dm = (Dm, dt).

We then extend σ to an automorphism σ ⊗ ψ of A ⊗k Dm, where

ψ : Dm → Dm, t
1
m 7→ ζ−1

m t
1
m

and ζm is an m-th primitive root of unity. Let Γ be the group generated by σ ⊗ ψ.
Then the set of fixed points of A ⊗k Dm under Γ

L(A , σ) := (A ⊗k Dm)Γ = {η ∈ A ⊗k Dm|(σ ⊗ ψ)(η) = η} (2.1.17)

is a sub conformal superalgebra of A ⊗k Dm, called the twisted loop conformal

superalgebra based on A with respect to σ. In particular, when σ is the identity
map, L(A , id) ∼= A ⊗k D.

More explicitly, since σ is of finite order m, A is decomposed into a direct sum
with respect to σ, i.e., A = ⊕m−1

i=0 Ai, where Ai = {a ∈ A |σ(a) = ζ ima} for i ∈ Z.
In particular Ai = Ai+m and hence

L(A , σ) =
⊕
i∈Z

(Ai ⊗ kt
i
m ). (2.1.18)
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Similar to (2.1.16), the conformal superalgebra L(A , σ) also yields a Lie su-
peralgebra

Alg(A , σ) := L(A , σ)/∂̂L(A , σ), (2.1.19)

with Lie superbracket induced by the 0-th product of L(A , σ). The Lie super-
algebra Alg(A , σ) is not necessary a formal distribution Lie superalgebra in the
usual sense, but rather is interpreted as a Γ–twisted formal distribution Lie super-
algebra (cf. [KLP09]). Moreover, the central extensions of these Lie superalge-
bras realize the so-called twisted superconformal algebras in physics literatures (cf.
[SS87, STVP88]).

2.2 Differential conformal superalgebras

Recall that a twisted loop Lie algebra is not only a Lie algebra over the base field
k but also a Lie algebra over the ring k[t±1]. Differential conformal superalgebras
arose from the efforts to adapt the concept of a twisted loop conformal superal-
gebra to a structure over k[t±1]. The critical obstacle is that the ring structure of
k[t±1] is not sufficient to define a concept of conformal algebra over k[t±1]: one
requires a differential structure, i.e., to consider the derivation d

dt
on k[t±1]. In other

words, one can define differential conformal superalgebras over (k[t±1], d
dt

) and,
more generally, over a differential ring R = (R, d). In this section, we will re-
view the definition of a differential conformal superalgebra, which was originally
introduced by V. Kac, M. Lau, and A. Pianzola in [KLP09].

Let k-rng denote the category of unital commutative associative algebras over
k. A k–differential ring is a pair R = (R, dR) consisting of an object R in k-rng
and a k–linear derivation dR : R → R. For example, 0 is a derivation on every
object R in k-rng, i.e., (R, 0) is a k–differential ring. In particular, k (viewed as a
k-differential ring) refers to the k–differential ring (k, 0). The Laurent polynomial
ring D = k[t±1] paired with the derivation dt = d

dt
(the derivative with respect to t)

gives a k–differential ring D = (D, dt).

A morphism f : R = (R, dR) → S = (S, dS) of k–differential rings is a
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morphism f : R→ S in k-rng such that the diagram

R
f
//

dR
��

S

dS
��

R
f
// S

commutes. The collection of all k–differential rings together with the morphisms
given above form a category, which is denoted by k-drng.

Definition 2.2 (Definition 1.3 of [KLP09]). LetR = (R, d) be an object in k-drng.
A differential (Lie) conformal superalgebra overR is a triple (A , ∂A , (−(n)−)n∈Z+)

consisting of

(i) a Z/2Z-graded R–module A = A0̄ ⊕A1̄,

(ii) a k–linear map ∂A : A → A preserving the Z/2Z–grading of A ,

(iii) a k-bilinear product (a, b) 7→ a(n)b, a, b ∈ A for each n ∈ Z+,

satisfying the following axioms for r ∈ R, a, b, c ∈ A , and m,n ∈ Z+:

(DC0) a(n)b = 0 for n� 0,

(DC1) ∂A (a)(n)b = −na(n−1)b and a(n)∂A (b) = ∂A (a(n)b) + na(n−1)b,

(DC2) ∂A (ra) = r∂A (a) + d(r)a,

(DC3) a(n)(rb) = r(a(n)b) and (ra)(n)b =
∑

j∈Z+
d(j)(r)(a(n+j)b),

(DC4) a(n)b = −p(a, b)
∑

j∈Z+
(−1)j+n∂

(j)
A (b(n+j)a), and

(DC5) a(m)(b(n)c) =
∑m

j=0

(
m
j

)
(a(j)b)(m+n−j)c+ p(a, b)b(n)(a(m)c),

where d(j) = dj/j! and ∂(j)
A = ∂jA /j! for j ∈ Z+.

The axioms (DC4) and (DC5) are the analogues of the supersymmetry axiom
and Jacobi identity that hold for a Lie superalgebra. One can also define a differ-
ential associative conformal superalgebra over R by replacing (DC4) and (DC5)
with an appropriate conformal associativity axiom (cf. Section 2.10 of [Kac98b]).
In this thesis, all differential conformal superalgebras over R are assumed to be
differential Lie conformal superalgebras. Hence, for the remainder of this thesis,
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we will say an R–conformal superalgebra instead of a differential Lie conformal
superalgebra overR.

TheR–conformal superalgebras are natural generalizations of conformal super-
algebras over the field k, since every conformal superalgebra over k described by
Definition 2.1 is a k–conformal superalgebra (i.e., a differential conformal superal-
gebra over (k, 0)).

Let A be a k–conformal superalgebra and σ an automorphism of A of finite
order. As is also the case for a twisted loop Lie algebra, the twisted loop con-
formal superalgebra L(A , σ) is not only a k–conformal superalgebra but also a
D–conformal superalgebra, where D = (k[t±1], dt).

Let A and B be two R–conformal superalgebras. A homomorphism of R–

conformal superalgebras is a map φ : A → B satisfying:

(i) φ is R–linear and preserves the Z/2Z–gradings,

(ii) φ(a(n)b) = φ(a)(n)φ(b), for all a, b ∈ A and n ∈ Z+.

(iii) ∂B ◦ φ = φ ◦ ∂A .

A homomorphism of R–conformal superalgebras φ : A → B is called an iso-
morphism if it is bijective. In particular, an isomorphism of R–conformal algebras
φ : A → A is called anR–automorphism of A . The set of allR–automorphisms
of A is a group under composition, and is denoted by AutR-conf(A ).

2.3 The automorphism group functor of a conformal
superalgebra

Analogous to the affinization of a conformal superalgebra, one can define the change
of base differential rings for differential conformal superalgebras.

Let A be an R–conformal superalgebra and R = (R, dR) → S = (S, dS) a
morphism in k-drng. We define AS := A ⊗R S to be the S–conformal superalge-
bra with underlying Z/2Z–graded S–module A ⊗R S, on which the derivation is
given by

∂A⊗RS(a⊗ s) := ∂A (a)⊗ s+ a⊗ dS(s), (2.3.1)
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for a ∈ A , s ∈ S, and the n-th product is defined by

(a⊗ r)(n)(b⊗ s) =
∑
j∈Z+

(a(n+j)b)⊗ d
(j)
S (r)s (2.3.2)

for a, b ∈ A , r, s ∈ S, where d
(j)
S = djS/j!.

The above change of base differential rings defines a functor from the category
of R–conformal superalgebras to the category of S–conformal superalgebras. Ev-
ery homomorphism of R–conformal superalgebras φ : A1 → A2 determines a
homomorphism of S–conformal superalgebras φ⊗ id : A1 ⊗R S → A2 ⊗R S.

The change of base differential rings is associative. Concretely, let fi : Ri =

(Ri, dRi) → S = (S, dS), i = 1, 2 be morphisms in k-drng such that S is an R1–
R2–bimodule, and let h : R2 → S ′ = (S ′, dS′) be a morphism in k-drng. For an
R1–conformal superalgebra A , we have

(A ⊗R1 S)⊗R2 S ′ ∼= A ⊗R1 (S ⊗R2 S ′), (2.3.3)

where S ⊗R2 S ′ = (S ⊗R2 S
′, dS ⊗ id + id⊗ dS′).

Given an object R in k-drng, we consider the category R-ext, in which an
object is a morphism f : R → S in k-drng and a morphism from f1 : R → S1 to
f2 : R → S2 is a morphism h : S1 → S2 such that the diagram

S1
h // S2

R
f1

``

f2

>>

commutes. We simply use S to represent an object f : R → S in R-ext since f is
determined by the R–module structure on S.

Let A be anR–conformal superalgebra and h : S1 → S2 a morphism inR-ext.
Then h induces a group homomorphism

AutS1-conf(AS1)→ AutS2-conf(AS2), φ 7→ h∗(φ), (2.3.4)

where h∗(φ) : AS2 → AS2 is the homomorphism of S2–modules defined by

h∗(φ)(a⊗ 1) =
∑

ai ⊗ h(si), (2.3.5)

if φ(a⊗1) =
∑
ai⊗si for a ∈ A . This leads to the definition of the automorphism
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group functor of anR–conformal superalgebra A :

Aut(A ) : R-ext→ grp, S 7→ AutS-conf(AS). (2.3.6)

In fact, the category k-ext is equivalent to the category k-drng, and the auto-
morphism group functor of a k–conformal superalgebra A is a functor from the
category k-drng to the category of groups.

Additionally, since a homomorphism f : R1 → R2 naturally induces a functor
R2-ext→ R1-ext, the automorphism group functor Aut(A ⊗R1R2) is nothing but
the restriction of Aut(A ) to the categoryR2-ext, i.e., Aut(AR2) = Aut(A )R2 .

For the remainder of this thesis, we will be particularly concerned with the auto-
morphism group functor Aut(A ) of a k–conformal superalgebra A . The follow-
ing technical lemma will be repeatedly used in the computations of automorphism
groups AutR-conf(AR) when A is one of the N = 1, 2, 3, (small or large) N = 4

conformal superalgebras.

Lemma 2.3. Let A = k[∂] ⊗k V be a k–conformal superalgebra which is a free

k[∂]–module such that V has a Z/2Z–grading V = V0̄ ⊕ V1̄. Let R = (R, dR)

be an arbitrary object in k-drng and B an arbitrary R–conformal superalgebra.

Then:

(i) Every homomorphism of R–conformal superalgebras φ : A ⊗k R → B is

completely determined by its restriction to V ∼= (k⊗ V )⊗ k ⊆ A ⊗k R.

(ii) Let φ : V ⊗k R → B be a parity-preserving R–linear map, then φ can be

uniquely extended to φ̂ : A ⊗k R → B such that φ̂ ◦ ∂A⊗kR = ∂B ◦ φ̂. In

addition, if φ̂([(v ⊗ 1)λ(w ⊗ 1)]) = [φ(v ⊗ 1)λφ(w ⊗ 1)] for all v, w ∈ V ,

then φ̂ is a homomorphism ofR–conformal superalgebras.

The above lemma is a restatement of Lemma 3.1 of [KLP09], which gives the
same result in the special case that B = A ⊗k R and φ is an automorphism.

Automorphisms of the centreless Virasora conformal superalgebra and the cur-
rent conformal algebras were studied as examples in [KLP09].

Proposition 2.4. Let V be the centreless Virasoro conformal algebra over k and

R = (R, d) an object in k-drng such that R is an integral domain. Then

AutR-conf(V ⊗k R) = 1. (2.3.7)
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This was proved in Proposition 3.19 of [KLP09] for the case in which R = D̂.
The general case easily follows by repeating the proof in [KLP09].

Proposition 2.5 (Corollary 3.17 of [KLP09]). Let g be a finite dimensional Lie

superalgebra over k and R = (R, dR) an object in k-drng. If g ⊗k R is a semi-

simple Lie superalgebra over R (i.e., g⊗k R has no nontrivial abelian ideal), then

AutR-conf(Cur(g)⊗k R) = AutR-Lie(g⊗k R). (2.3.8)

Remark 2.6. If g is a finite dimensional semi-simple Lie algebra over k, then g =

g1⊕ · · · ⊕ gn, where gi is a simple Lie algebra over k for i = 1, · · · , n (cf. [Bou75,
I,§6.2]). Further, every ideal of the Lie algebra g⊗k R is of the form

a = (g1 ⊗k I1)⊕ · · · ⊕ (gn ⊗k In), (2.3.9)

where Ii is an ideal of R, i = 1, · · · , n. Hence, a is abelian if and only if I2
i = 0 for

all i = 1, · · · , n. In particular, if g is a finite dimensional semi-simple Lie algebra
over k and R is an integral domain, then (2.3.8) holds.

Similarly, if g is a finite dimensional simple Lie superalgebra over k and R is an
integral domain, (2.3.8) holds as well. However, if g is a finite dimensional semi-
simple Lie superalgebra, (2.3.8) is not necessarily true since a finite dimensional
semi-simple Lie superalgebra can not be decomposed as a direct sum of simple Lie
superalgebras in general (cf. Section 5.1 of [Kac77]).

2.4 Twisted forms of conformal superalgebras

We will discuss the theory of twisted forms of differential conformal superalgebras
in this section. The theory of twisted forms of a usual (associative or Lie) algebra
can be found in Section II.8 of [KO74].

Definition 2.7 (Definition 2.1 of [KLP09]). Let A be an R–conformal superalge-
bra andR → S a morphism in k-drng. AnR–conformal superalgebra B is called
an S/R–form of A if

B ⊗R S ∼= A ⊗R S, (2.4.1)

as S–conformal superalgebras.
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In particular, the twisted loop conformal superalgebras can be understood as
twisted forms, i.e., we have the following:

Proposition 2.8 (Proposition 2.4 of [KLP09]). Let A be a k–conformal superal-

gebra and σ an automorphism of A of order m. Then the twisted loop conformal

superalgebra L(A , σ) is a Dm/D–form of A ⊗k D, i.e.,

L(A , σ)⊗D Dm ∼= (A ⊗k D)⊗D Dm ∼= A ⊗k Dm, (2.4.2)

as Dm–conformal superalgebras, where D = (k[t±1], dt) and Dm = (k[t±
1
m ], dt).

Recall from (2.1.17) that the twisted loop conformal superalgebra L(A , σ) is a
sub conformal superalgebra of A ⊗Dm. Thus the isomorphism in Proposition 2.8
can be given as follows:

ϕ : L(A , σ)⊗D Dm → A ⊗k Dm,

(
∑
ai ⊗ ri)⊗ s 7→

∑
ai ⊗ ris. (2.4.3)

Since every twisted loop conformal superalgebra L(A , σ) of a k–conformal
superalgebra A is a Dm/D–form of A ⊗k D, the first step in the classification of
the twisted loop conformal algebras of A is to classify theDm/D–forms of A ⊗kD.

In order to interpret how the twisted forms of a differential conformal super-
algebra are classified in terms of non-abelian cohomology, we recall some basic
concepts from the theory of commutative rings. Let R → S be a homomorphism
of unital commutative rings. The scalar extension − ⊗R S is a functor from the
category of R–modules to the category of S–modules. The homomorphism R→ S

is called flat (resp. faithfully flat) if the functor − ⊗R S is exact (resp. exact and
faithful)2.

Let A be an R–conformal superalgebra and R = (R, dR) → S = (S, dS)

a faithfully flat morphism in k-drng (that is, a morphism in k-drng such that the
morphism of underlying rings is faithfully flat). We will introduce the notion of
the first non-abelian cohomology set H1(S/R,Aut(A )) as an analog of the Čech
cohomology for a sheaf of groups over the fppf topology (cf. [Mil80, III,§3]). Since

2More properties of a faithfully flat ring extension can be found in [Bou72, I,§3]
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Aut(A ) is a functor, the following morphisms inR-ext,

ρ1 : S → S ⊗R S, s 7→ s⊗ 1,

ρ2 : S → S ⊗R S, s 7→ 1⊗ s,

ρ12 : S ⊗R S → S ⊗R S ⊗R S, r ⊗ s 7→ r ⊗ s⊗ 1,

ρ23 : S ⊗R S → S ⊗R S ⊗R S, r ⊗ s 7→ 1⊗ r ⊗ s,

ρ13 : S ⊗R S → S ⊗R S ⊗R S, r ⊗ s 7→ r ⊗ 1⊗ s,

induce group homomorphisms

ρ̃i : Aut(A )(S)→ Aut(A )(S ⊗R S), i = 1, 2,

and

ρ̃ij : Aut(A )(S ⊗R S)→ Aut(A )(S ⊗R S ⊗R S), 1 6 i < j 6 3.

We say that an element z ∈ Aut(A )(S ⊗R S) is a 1–cocycle if

ρ̃13(z) = ρ̃23(z)ρ̃12(z). (2.4.4)

The set of 1–cocycles is denoted by Z1(S/R,Aut(A )). Two 1–cocycles z and z′

are called cohomologous, notation z ∼ z′, if there is an element z0 ∈ Aut(A )(S)

such that
z′ = ρ̃2(z0) · z · ρ̃1(z0)−1. (2.4.5)

The cohomologous relation on Z1(S/R,Aut(A )) is an equivalence relation.
The non-abelian cohomology set is defined to be the set of equivalent classes

H1(S/R,Aut(A )) =
Z1(S/R,Aut(A ))

∼
. (2.4.6)

Theorem 2.9 (Theorem 2.16 of [KLP09]). Let A be anR–conformal superalgebra

and R → S a faithfully flat morphism in k-drng. Then the set of isomorphism

classes of S/R–forms of A bijectively corresponds to H1(S/R,Aut(A )).

To understand the correspondence in the theorem, we briefly explain how the
correspondence is established. Let B be an S/R–form of A , i.e., there is an iso-
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morphism of S–conformal superalgebras

φ : A ⊗R S → B ⊗R S. (2.4.7)

Applying the change of base differential rings:

ρ1 : S → S ⊗R S, s 7→ s⊗ 1 and ρ2 : S → S ⊗R S, s 7→ 1⊗ s,

we obtain two isomorphisms of S ⊗R S–conformal superalgebras:

φi : A ⊗R S ⊗R S → B ⊗R S ⊗R S, i = 1, 2.

Let
z := φ−1

2 ◦ φ1 : A ⊗R S ⊗R S → A ⊗R S ⊗R S. (2.4.8)

Then it can be verified that z ∈ Z1(S/R,Aut(A )) ⊆ Aut(A )(S ⊗ S), i.e., the
S/R–form B defines a 1–cocycle z.

Conversely, given a 1–cocycle z, one can define

Bz := {
∑
ai ⊗ si ∈ A ⊗R S|z(

∑
ai ⊗ si ⊗ 1) =

∑
ai ⊗ 1⊗ si} . (2.4.9)

It can be verified that Bz is anR–conformal superalgebra and an S/R–form of A .
Indeed, the map

Bz ⊗R S → A ⊗R S, (ai ⊗ si)⊗ s 7→
∑
ai ⊗ sis

is an isomorphism of S–conformal superalgebras.

In addition, for two 1-cocycles z, z′ ∈ Z1(S/R,Aut(A )), Bz is isomorphic to
Bz′ asR–conformal superalgebras if and only if z is cohomologous to z′.

Given a k–conformal superalgebra A , a key step towards classifying the twisted
loop conformal superalgebras L(A , σ) is to classify the Dm/D–forms of A ⊗k D.
As a result of Theorem 2.9, the classification problem is reduced to computing
H1(Dm/D,Aut(A )). The methods for computing this non-abelian cohomology
set will be reviewed in Chapter 3.

To conclude this section, we determine a 1-cocycle z ∈ Z1(Dm/D,Aut(A ))

that represents the class in H1(Dm/D,Aut(A )) corresponding to L(A , σ). Recall
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that A has the decomposition

A =
m−1⊕
`=0

A`, A` = {a ∈ A |σ(a) = ζ`ma}. (2.4.10)

Let ϕ : L(A , σ) ⊗D Dm → A ⊗k Dm be the isomorphism of Dm–conformal
superalgebras given by (2.4.3). We have ϕ−1 : A ⊗k Dm → L(A , σ) ⊗D Dm. In
fact,

ϕ−1(a⊗ r) = (a⊗ t
`
m )⊗ t−

`
m r,

if a ∈ A` for ` = 0, · · · ,m − 1 and r ∈ Dm. Applying the changes of base
differential rings ρi : S → S ⊗R S, i = 1, 2 to ϕ−1 and ϕ respectively, we obtain

ϕ−1
1 : A ⊗k Dm ⊗D Dm → L(A , σ)⊗D Dm ⊗D Dm,

a⊗ r ⊗ s 7→ (a⊗ t
`
m )⊗ t−

`
m r ⊗ s, if a ∈ A`,

ϕ2 : L(A , σ)⊗D Dm ⊗D Dm → A ⊗k Dm ⊗D Dm,

(
∑
ai ⊗ si)⊗ r ⊗ s 7→

∑
ai ⊗ r ⊗ sis.

Hence, we obtain a 1–cocycle associated to L(A , σ):

z := ϕ2 ◦ ϕ−1
1 : A ⊗k Dm ⊗D Dm → A ⊗k Dm ⊗D Dm,

a⊗ r ⊗ s 7→ a⊗ t−
`
m r ⊗ t

`
m s, if a ∈ A`. (2.4.11)

In Section 3.1, we will provide an alternative description of z as a continuous
1-cocycle of Z/mZ in Aut(A )(Dm).

2.5 The centroid of conformal superalgebras

Given a k–conformal superalgebra A , the classification of the twisted forms of
A ⊗kD yields the classification of the twisted loop conformal superalgebras based
on A up to isomorphism of D–conformal superalgebras. To complete the clas-
sification up to isomorphism of k–conformal superalgebras, one needs to deduce
from isomorphisms overD to isomorphisms over k. An essential tool to realize this
passage is the centroid trick introduced in [KLP09].

The centroid trick has been used to deduce from D–linear isomorphisms to k–
linear isomorphisms in the case of twisted loop Lie algebras in [ABP04]. A more
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general discussion on the centroid of extended affine Lie algebras can be found in
[BN06]. In this section, we will focus on the centroid of conformal superalgebras.

Let A be an R–conformal superalgebra, the centroid of A is defined to be the
set CtdR(A ) consisting of R–module endomorphisms χ : A → A such that χ
preserves the Z/2Z–grading on A and

χ(a(n)b) = a(n)χ(b), (2.5.1)

for all a, b ∈ A . By axiom (DC3), CtdR(A ) is an R–module. Furthermore, there
is a canonical map

R→ CtdR(A ), r 7→ rA , (2.5.2)

where rA : A → A , a 7→ ra.

TheR–conformal superalgebra A can also be viewed as a k–conformal super-
algebra via the restriction of scalars. Thus

CtdR(A ) ⊆ Ctdk(A ), (2.5.3)

and we obtain a canonical map R→ Ctdk(A ).

Proposition 2.10 (Proposition 2.35 of [KLP09]). Let A1 and A2 be twoR–conformal

superalgebras. If

(i) Autk(R) = 1, and

(ii) the canonical mapsR→ Ctdk(Ai) are k–algebra isomorphisms for i = 1, 2,

then A1 and A2 are isomorphic as k–conformal superalgebras if and only if A1

and A2 are isomorphic asR–conformal superalgebras.

Every twisted loop conformal superalgebra is a D–conformal superalgebra for
D = (k[t±1], d

dt
). We immediately see that the automorphism group Autk(D) is

trivial since the only automorphism of the k–algebra k[t±1] commuting with the
derivation d

dt
is the identity map. For each of the N = 1, 2, 3 and (small or large)

N = 4 conformal superalgebras A , it has been shown that the centroid of each
twisted loop conformal superalgebra L(A , σ) is isomorphic to k[t±1] (cf. [CP11],
[KLP09], and [CP13], respectively). In the rest of this section, we will prove a
general proposition which covers all of these results.
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Lemma 2.11. Let A be a k–conformal superalgebra and L ∈ A0̄. If A is gener-

ated by {a1, · · · , an} as a k[∂]–module and [Lλai] = (∂ + ∆iλ)ai with ∆i 6= 0 for

i = 1, · · · , n, then, for an arbitrary objectR = (R, d) in k-drng,

AR = spank{(ai ⊗ ri)(j)(∂
(`)L⊗ 1)|j = 0, 1, ri ∈ R, i = 1, · · · , n, ` > 0}

= spank{η(j)(∂
(`)L⊗ 1)|η ∈ AR, j = 0, 1, ` > 0}.

Proof. Since A is generated by {a1, · · · , an} as a k[∂]–module, every element of
AR is a k–linear combination of elements of the form (∂`ai) ⊗ si with si ∈ R.
Hence, it suffices to show (∂`ai) ⊗ si can be written as a k–linear combination of
elements of the form (ai ⊗ ri)(j)(∂

(`′)L⊗ 1) with ri ∈ R and `′ > 0.

Since [Lλai] = (∂ + ∆iλ)ai, from (C2), we deduce that

(ai)(j)∂
(`−1)L = −

∞∑
k=0

(−1)j+k∂(k)((∂(`−1)L)(k+j)ai)

= −
∞∑
k=0

(−1)j+k+`−1

(
k + j

`− 1

)
∂(k)(L(k+j−`+1)ai)

=

(`(∆i − 1) + j)∂(`−j)ai, if ` > j,

0, if ` < j,

for j > 0 and ` > 1.

If ∆i 6= 1, we have

(ai ⊗ si)(1)(L⊗ 1) = ∆iai ⊗ si,

(ai ⊗ si)(0)(∂
(`)L⊗ 1) =

∑
j>0

((ai)(j)∂
(`)L)⊗ d(j)(si)

= (∆i − 1)(`+ 1)∂(`+1)ai ⊗ si

+
`+1∑
j=1

((∆i − 1)(`+ 1) + j)∂(`+1−j)ai ⊗ d(j)(si),

for all ` > 0. Since ∆i 6= 0, 1, using induction on `, we obtain every ∂(`)ai⊗ si is a
k–linear combination of elements of the form (ai ⊗ ri)(j)(∂

(`′)L⊗ 1) with `′ > 0.
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Similarly, if ∆i = 1, we deduce that

(ai ⊗ si)(1)(L⊗ 1) = ai ⊗ si,

(ai ⊗ si)(1)(∂
(`)L⊗ 1) =

∑
j>0

((ai)(j+1)∂
(`)L)⊗ d(j)(si)

=
∑̀
j=0

(j + 1)∂(`−j)ai ⊗ d(j)(si)

= ∂(`)ai ⊗ si +
∑̀
j=1

(j + 1)∂(`−j)a⊗ d(j)(si).

for ` > 1. Again, by induction on `, every ∂(`)ai ⊗ si is a k–linear combination of
elements of the form (ai ⊗ ri)(j)(∂

(`′)L⊗ 1) with `′ > 0.

In a k–conformal superalgebra A , an element L ∈ A0̄ is called a Virasoro

element if [LλL] = (∂ + 2λ)L. An element a ∈ A is called a primary eigenvector

with respect to L of conformal weight ∆ if [Lλa] = (∂ + ∆λ)a.

Proposition 2.12. Let A be a k–conformal superalgebra and σ an automorphism

of A of order m. Suppose A and σ satisfy all of the following conditions:

(i) A has a Virasoro element L ∈ A0̄ fixed by σ, i.e., σ(L) = L.

(ii) A0̄ is a free k[∂]–module of finite rank that has a basis {a1 = L, a2, · · · , an0}
such that [Lλai] = (∂ + λ)ai, for i = 2, · · · , n0.

(iii) There are b1, · · · , bn1 ∈ A1̄ generating A1̄ as a k[∂]–module such that [Lλbi]

= (∂ + ∆′iλ)bi with ∆′i 6= 0 for i = 1, · · · , n1.

Then Ctdk(L(A , σ)) = D.

Proof. We denote L(A , σ) by B. For r ∈ D, there is an element rB ∈ Ctdk(B)

given by v 7→ rv, and hence D ⊆ Ctdk(B). Conversely, let χ ∈ Ctdk(B). We
will show that χ is of the form rB for some r ∈ D.

We consider the k–linear map3

π : ADm → ADm , η 7→ 1

m

m−1∑
i=0

(σ ⊗ ψ)i(η),

3The k–linear map π is neither a homomorphism of k–conformal superalgebras in general, nor
a homomorphism of D–conformal superalgebras.
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where ψ : Dm → Dm, t
1
m 7→ ζ−1

m t
1
m . Then B = π(ADm).

Observing that σ(L) = L, we obtain that π(L⊗ 1) = L⊗ 1 ∈ B. We first claim
that χ(L⊗ 1) = L⊗ r for some r ∈ D.

We write
χ(L⊗ 1) =

∑
i=1,··· ,n0

`>0

∂(`)ai ⊗ sil,

where sil ∈ Dm and all but finitely many sil = 0.

Since χ is an element in the centroid, we have

(L⊗ 1)(1)χ(L⊗ 1) = 2χ(L⊗ 1), (2.5.4)

(L⊗ 1)(2)χ(L⊗ 1) = 0. (2.5.5)

From (2.5.4),

2
∑

i=1,··· ,n0
`>0

∂(`)ai ⊗ sil =
∑

i=1,··· ,n0
`>0

(L⊗ 1)(1)(∂
(`)ai ⊗ sil)

=
∑
`>0

(`+ 2)∂(`)a1 ⊗ s1l +
∑

i=2,··· ,n0
`>0

(`+ 1)∂(`)ai ⊗ sil.

We conclude that s1` = 0 for ` 6= 0 and si` = 0 for i 6= 2, · · · , n0 and ` 6= 1. Hence,

χ(L⊗ 1) = L⊗ s00 +

n0∑
i=2

∂ai ⊗ si1.

Further, we deduce from (2.5.5) that

0 = (L⊗ 1)(2)

(
L⊗ s00 +

n0∑
i=2

∂ai ⊗ si1

)
= 2

n0∑
i=2

ai ⊗ si1.

This yields si1 = 0 for i = 2, · · · , n0, and hence, χ(L⊗ 1) = L⊗ r where r = s00.
Note that since L⊗ 1 ∈ B, we obtain that r ∈ D.

Next, we will show that χ = rB. We first observe that

` · χ(∂(`)L⊗ 1) = χ((L⊗ 1)(0)(∂
(`−1)L⊗ 1)) = (L⊗ 1)(0)χ(∂(`−1)L⊗ 1),

for all ` > 1. By induction, we obtain

χ(∂(`)L⊗ 1) = ∂(`)L⊗ r, ` > 0.
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Recall that B = π(ADm). Since σ(L) = L, by assumption (i) we have

π(η(k)(∂
(`)L⊗ 1)) =

1

m

m−1∑
i=0

(σ ⊗ ψ)i(η(k)(∂
(`)L⊗ 1))

=
1

m

m−1∑
i=0

((σ ⊗ ψ)i(η))(k)(σ ⊗ ψ)i(∂(`)L⊗ 1)

=
1

m

m−1∑
i=0

((σ ⊗ ψ)i(η))(k)(∂
(`)L⊗ 1)

= π(η)(k)(∂
(`)L⊗ 1),

for η ∈ ADm and k = 0, 1, ` > 0. Since A satisfies (ii) and (iii), by Lemma 2.11,
we deduce that

B = π(ADm) = spank{π(η)(k)(∂
(`)L⊗ 1)|η ∈ ADm , k = 0, 1, ` > 0},

= spank{η′(k)(∂
(`)L⊗ 1)|η′ ∈ B, k = 0, 1, ` > 0}.

We also deduce that

χ(η(k)(∂
(`)L⊗ 1)) = η(k)χ(∂(`)L⊗ 1) = η(k)(∂

(`)L⊗ r) = r(η(k)(∂
(`)L⊗ 1)),

for η ∈ B and k = 0, 1 and ` > 0. Hence, χ = rB.

Although the conditions in Proposition 2.12 seem complicated, they can easily
be verified if the concrete descriptions of a k–conformal superalgebra A and the
automorphism σ are known. We will use this proposition to determine the centroid
of all twisted loop conformal superalgebras based on each of the N = 1, 2, 3 and
(small or large) N = 4 conformal superalgebras in Propositions 4.13, 5.12, and 6.8,
respectively. It is also obvious that these conditions are satisfied by the centreless
Virasoro conformal superalgebra paired with any of its automorphisms of finite or-
der. However, it can not be applied to a twisted loop conformal superalgebra based
on a current conformal algebra Cur(g) due to the absence of a Virasoro element in
Cur(g).
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Chapter 3

Non-Abelian Galois Cohomology
Following the general theory of twisted forms of differential conformal superal-
gebras as described in Chapter 2, one of the key steps in the classification of the
twisted loop conformal superalgebras based on a k–conformal superalgebra A is
to determine H1(Dm/D,Aut(AD)), where D = (k[t±1], dt),Dm = (k[t±

1
m ], dt)

and m is a positive integer. In this chapter, we will review the methods for com-
puting this “differential” type of H1, which were used in the case where A is the
N = 2 or small N = 4 conformal superalgebras in [KLP09].

Let us briefly outline these methods. First, since Dm/D is a Galois extension,
the non-abelian cohomology set H1(Dm/D,Aut(AD)) can be identified with the
non-ableian continuous cohomology set H1

ct(Z/mZ,AutDm-conf(ADm)). Further, to
classify all twisted loop conformal superalgebras based on A , we have to deal with
extensionsDm/D for all m. Instead of working on the extensionDm/D for each m
individually, we take D̂ := lim

−→
Dm and consider D̂/D. Consequently, our problem

is reduced to computing H1
ct(Ẑ,AutD̂-conf(AD̂)).

In concrete examples, AutD̂-conf(AD̂) is related to the D̂–points of certain affine
group schemes, which suggests that we should compute H1

ct(Ẑ,G(D̂)) for an affine
group scheme G. When G is a reductive group scheme over D, this set can be
further identified with the non-abelian étale cohomology set H1

ét(D,G) .

3.1 Non-abelian continuous cohomology

We will explain in this section how non-abelian continuous cohomology emerges
into the study of conformal superalgebras. Let Γ be a profinite group, that is, a topo-
logical group isomorphic to the inverse limit of a projective system of finite discrete
groups. A topological group G is said to be a Γ-group if there is a continuous action
Γ×G→ G, (γ, g) 7→ γg such that γ(g1g2) = γg1

γg2.

Given a profinite group Γ and a Γ-group G, one may define the non-abelian
continuous cohomology of Γ with coefficients in G as follows: a 1-cocycle is a
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continuous map z : Γ→ G, γ 7→ zγ such that

zγ1γ2 = zγ1 · γ1(zγ2), ∀γ1, γ2 ∈ Γ. (3.1.1)

We usually write z as (zγ)γ∈Γ, and the set of 1-cocycles is denoted by Z1
ct(Γ,G).

Two 1-cocycles z, z′ are cohomologous (denoted by z ∼ z′) if there exists an element
g ∈ G such that

zγ = g−1 · z′γ · γg,∀γ ∈ Γ. (3.1.2)

It can be verified that the cohomologous relation is an equivalence relation on
Z1

ct(Γ,G). The set of equivalent classes

H1
ct(Γ,G) = Z1

ct(Γ,G)/ ∼ (3.1.3)

is called the non-abelian cohomology set of Γ with coefficients in G. For z ∈
Z1

ct(Γ,G), we use [z] to denote the cohomology class in H1
ct(Γ,G) containing z.

Remark 3.1. H1(Γ,G) does not have a group structure in general (unless G is
commutative). However, we observe that Γ→ G, γ 7→ 1 is a 1-cocycle, where 1 is
the identity element in G. This 1-cocycle is denoted by 1 and its cohomology class
[1] in H1

ct(Γ,G) is called the distinguished element of H1
ct(Γ,G).

Before moving on to a discussion on conformal superalgebras, we state several
basic properties of H1

ct(Γ,G) below. The proofs can be found in the book [Ser02].

Proposition 3.2. Let Γ be a profinite group.

(i) If G1 and G2 are two Γ–groups, then G1 × G2 is also a Γ–group with the

piecewise Γ–action. Moreover,

H1
ct(Γ,G1 ×G2) = H1

ct(Γ,G1)× H1
ct(Γ,G2). (3.1.4)

(ii) For a Γ–group G,

H1
ct(Γ,G) = lim

−→
H1

ct(Γ/Γ
′,GΓ′), (3.1.5)

where Γ′ runs over all open normal subgroups of Γ and GΓ′ is the set of points

in G fixed by Γ′, i.e. GΓ′ = {g ∈ G| gγ = g,∀γ ∈ Γ′}. ([Ser02, I.5.1])

28



(iii) Let 1→ G1 → G2 → G3 → 1 be a short exact sequence of Γ–groups. Then

the sequence of pointed sets

0→ GΓ
1 → GΓ

2 → GΓ
3 → H1

ct(Γ,G1)→ H1
ct(Γ,G2)→ H1

ct(Γ,G3) (3.1.6)

is exact. ([Ser02, I. Proposition 38])

(iv) With the same assumption as in (iii), if in addition G1 is central in G2, then

the sequence of pointed sets

0→GΓ
1 → GΓ

2 → GΓ
3

→ H1
ct(Γ,G1)→ H1

ct(Γ,G2)→ H1
ct(Γ,G3)→ H2

ct(Γ,G1) (3.1.7)

is exact. ([Ser02, I. Proposition 43])

Now, we move on to the discussion on conformal superalgebras. Let A be
a k–conformal superalgebra. In order to compute H1(Dm/D,Aut(A )), we first
observe that Dm/D is a Galois extension of rings with Galois group Z/mZ in the
following sense:

Definition 3.3 (Proposition 5.6 of [KO74]). Let R be a ring and S/R a ring exten-
sion. Let Γ be a finite group of R–automorphisms of S. Then S/R is said to be a
Galois extension with Galois group Γ if S is a faithfully flat R–module and the map

S ⊗R S →
|Γ| copies︷ ︸︸ ︷

S × · · · × S, s1 ⊗ s2 7→ (γ(s1)s2)γ∈Γ, (3.1.8)

is an isomorphism of S–algebras.

For the Galois extension Dm/D, the action of Z/mZ = 〈1̄〉 on Dm = k[t±
1
m ]

is given by 1̄t
1
m = ζ−1

m t
1
m , and which is compatible with the derivation dt. Hence,

there is an isomorphism of k–differential rings

Dm ⊗D Dm →
m copies︷ ︸︸ ︷

Dm × · · · × Dm . (3.1.9)

Under this identification,

Aut(A )(Dm ⊗D Dm) ∼= Aut(A )(Dm × · · · × Dm)

∼= AutDm-conf(ADm)× · · · × AutDm-conf(ADm).
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Hence, a 1-cocyle z ∈ Z1(Dm/D,Aut(A )) ⊆ Aut(A )(Dm ⊗D Dm), as defined
in (2.4.4), yields an m-tuple (zγ)γ∈Z/mZ under the above isomorphism. In fact,
(zγ)γ∈Z/mZ defines an element in Z1

ct(Z/mZ,AutDm-conf(ADm)). It has been proved
in [KLP09] that this indeed yields an isomorphism

H1(Dm/D,Aut(A )) ∼= H1
ct(Z/mZ,AutDm-conf(ADm)). (3.1.10)

Given an automorphism σ of A of order m, the twisted loop conformal super-
algebra L(A , σ) corresponds to the cohomology class [z] ∈ H1(Dm/D,Aut(A )),
where z ∈ Aut(A )(Dm ⊗D Dm) is given by

z : A ⊗k Dm ⊗D Dm → A ⊗k Dm ⊗D Dm,

a⊗ r ⊗ s 7→ a⊗ t−
`
m r ⊗ t

`
m s,

if a ∈ A` = {a ∈ A |σ(a) = ζ`ma}.
By applying the isomorphism in (3.1.10), the cohomology class [z] can be iden-

tified with the cohomology class [z′] ∈ H1
ct(Z/mZ,AutDm-conf(ADm)), where z′ =

(z′ī)ī∈Z/mZ is determined1 by z′1̄ = σ ⊗ idDm ∈ AutDm-conf(ADm).

Conversely, given a 1-cocycle z′ = (z′ī)ī∈Z/mZ ∈ Z1
ct(Z/mZ,AutDm-conf(ADm)),

the Dm/D–form of AD associated to [z′] can be written as

Bz′ =
{
η ∈ A ⊗k Dm

∣∣∣z′ī( ηī ) = η,∀ī ∈ Z/mZ
}
.

To classify all twisted loop conformal superalgebras based on A , we will com-
pare L(A , σ) and L(A , σ′). If σ is of orderm and σ′ is of orderm′, L(A , σ) (resp.
L(A , σ′)) is a Dm/D–form (resp. a Dm′/D–form) of AD. Considering the canon-
ical inclusions Dm ↪→ Dmm′ and Dm′ ↪→ Dmm′ , both L(A , σ) and L(A , σ′) are
Dmm′/D–forms of AD. In order to deal with all twisted loop conformal superalge-
bras based on A at once, we let D̂ = lim

−→
Dm. Then every L(A , σ) is a D̂/D–form

of AD. Thus it is natural for us to compute H1(D̂/D,Aut(A )).

On one hand, the inclusion Dm ↪→ D̂ naturally induces a map

H1(Dm/D,Aut(A ))→ H1(D̂/D,Aut(A )),

1The 1–cocycle z′ is determined by z′1̄ since Z/mZ is a cyclic group.

30



for each m. This equation in combination with the isomorphism (3.1.10) yields a
map

lim
−→

H1
ct(Z/mZ,AutDm-conf(ADm))→ H1(D̂/D,Aut(A )). (3.1.11)

On the other hand, since Z/mZ acts continuously on Dm, the profinite group Ẑ =

lim
←−

Z/mZ acts continuously on D̂ = lim
−→

Dm. This action is compatible with the

derivation dt, so Ẑ acts on AutD̂-conf(AD̂) continuously. From Proposition 3.2 (ii),
we have

lim
−→

H1
ct(Z/mZ,AutDm-conf(ADm)) ∼= H1

ct(Ẑ,AutD̂-conf(AD̂)) (3.1.12)

Moreover, the following proposition ensures that the map (3.1.11) is indeed a
bijection when A satisfies a certain finiteness condition.

Proposition 3.4 (Proposition 2.29 of [KLP09]). Let A be a k–conformal superal-

gebra which is a finitely generated k[∂]–module. Then

H1
(
D̂/D,Aut(AD)

)
∼= H1

ct

(
Ẑ,AutD̂-conf(AD̂)

)
. (3.1.13)

This proposition reduces the difficulties in classifying twisted loop conformal
superalgebras based on A to two key computations: the automorphism group
AutD̂-conf(AD̂) and the corresponding non-abelian continuous cohomology set. We
will concretely address these issues for the N = 1, 2, 3 and (small or large) N = 4

conformal superalgebras in subsequent chapters.

3.2 Affine group schemes

According to our computations from concrete examples in the chapters to follow,
the automorphism group AutD̂-conf(AD̂) often turns out to be the D̂–points of certain
affine group schemes. In this section, we will review the basic definition of an
affine group scheme and state some known results on the non-abelian continuous
cohomology set H1

ct(Ẑ,G(D̂)) for an affine group scheme G.

Let R be a ring. An affine group scheme G over R is a representable functor

G : R-rng→ grp, (3.2.1)
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where R-rng is the category of commutative associative unital R–algebras and grp

is the category of groups. The functor G is called representable if

G = HomR-rng(R[G],−), (3.2.2)

for some R[G] in R-rng, which is called the coordinate ring of G. By Yoneda’s
Lemma, the group structure on G is translated to the coassociative Hopf algebra
structure on R[G] (cf. [Wat79]). For an object S in R-rng, we call the elements of
G(S) the S–points of G.

Example 3.5. Let R be a ring and S an object in R-rng. We present several affine
group schemes by describing their S–points and their coordinate rings.

(i) The multiplicative group scheme Gm:
Gm(S) = S× is the group of multiplicative units in S.
R[Gm] = R[t±1].

(ii) The additive group scheme Ga:
Ga(S) = S is viewed as a group under addition.
R[Ga] = R[t].

(iii) The general linear group GLn for n > 1:
GLn(S) is the group of invertible n× n–matrices with entries in S.
R[GLn] = R[xij, det(xij)

−1]16i,j6n.

(iv) The special linear group SLn for n > 1:
SLn(S) is the group of n× n–matrices with entries in S and determinant 1.
R[SLn] = R[xij]16i,j6n/〈det(xij)− 1〉.

(v) The orthogonal group On for n > 1:
On(S) = {A ∈ Matn(S)|AAT = In}, where AT is the transpose of A and
In is the n× n identity matrix.
R[On] = R[xij]16i,j6n/〈

∑n
l=1 xilxjl − δij|1 6 i, j 6 n〉.

(vi) The special orthogonal group SOn for n > 1:
SOn(S) = {A ∈ Matn(S)| detA = 1, AAT = In},
R[SOn] = R[On]/〈det(xij)− 1〉.

(vii) The group scheme µn of the n-th roots of unity for n > 1:
µn(S) = {a ∈ S|an = 1}.
R[µn] = R[t]/〈tn − 1〉.
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These group schemes will be used in our description of the automorphism group
functors of certain concrete conformal superalgebras. Now consider the automor-
phism group functor of an algebra A over R, where A is a projective R–module of
finite rank. More precisely, for each S in R-rng,

Aut(A)(S) := AutS-alg(A⊗R S),

where AutS-alg(A⊗R S) is the group of automorphisms of the S–algebra A⊗R S.
It is known that Aut(A) is an affine group scheme over R (cf. [DG70a, II §1.2.6]).

For a concrete example, let A be the Lie algebra sl2(k) over a field k of charac-
teristic 0. Its automorphism group functor Aut(sl2(k)) is an affine group scheme.
To understand Aut(sl2(k)), we consider the natural action of GL2(S) by conju-
gation on sl2(S) := sl2(k) ⊗k S for S in k-rng. This action yields a morphism of
group scheme

GL2 → Aut(sl2(k)). (3.2.3)

It is known that this is a quotient map2 with respect to the étale topology, i.e., for
every R in k-rng and every φ ∈ Aut(sl2(k))(R), there exists an étale cover3 S/R

such that φS is of the form

φS(x) = AxA−1, ∀x ∈ sl2(S), (3.2.4)

for some A ∈ GL2(S). Furthermore, since k is of characteristic 0 and det(A)

is a unit in S, there is an étale extension S ′/S and an element s ∈ S ′ such that
s2 = det(A). Let B = s−1A ∈ SL2(S ′), then

φS′(x) = AxA−1 = BxB−1, ∀x ∈ sl2(S ′).

Hence, we may assume in (3.2.4) that A ∈ SL2(S).

We now return to our discussion of non-abelian continuous cohomology. Let R
be a ring and G an affine group scheme overR. Suppose S/R is a faithfully flat ring
extension and Γ is a profinite group acting continuously on S by automorphisms of
S which fix R. From the functoriality of G, the action of Γ on S induces an action

2The definition of quotient requires sheafification which depends on a topology, see Expose V,
of [DG70b] for more details.

3The definition and basic properties of étale morphisms and étale covers of schemes can be
found in many books. We refer to [Mil80].
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of Γ on G(S). This leads us to consider H1
ct(Γ,G(S)). In order to classify twisted

loop conformal superalgebras, we restrict our attention to the special case where
R = D = k[t±1], S = D̂ = k[tq|q ∈ Q], and Γ = Ẑ = lim

←−
Z/mZ, which acts on

D̂ by
t
n
m

1̄
= ζ−nm t

n
m , ∀m,n ∈ Z,m 6= 0.

The fact that k is an algebraically closed field means the Laurent polynomial
ring D has the following advantageous properties:

Proposition 3.6 (Corollary 2.10 of [GP08a]).

(i) Every finite connected étale cover of D is isomorphic to Dm = k[t±
1
m ] for

some positive integer m.

(ii) Spec(D̂) is simply connected, i.e., D̂ has no non-trivial finite étale cover.

(iii) Let a = Spec(k(t)) be the geometric point of Spec(D), where k(t) is an

algebraic closure of k(t). Then the algebraic fundamental group4

π1(Spec(D), a) ∼= lim
←−

Z/mZ = Ẑ.

The above results have been generalized to the case of the Laurent polynomial
ring in n variables k[t±1

1 , · · · , t±1
n ] over a field k of characteristic zero, which is

not necessarily algebraically closed (cf. Lemma 2.8 of [GP13]). For an affine
group scheme G over D, the above proposition provides us with the possibility of
connecting the non-abelian cohomology H1

ct(Ẑ,G(D̂)) with the non-abelian étale
cohomology H1

ét(D,G), a set which parameterizes étale G–torsors over D up to
isomorphism. More explicitly, we have

Proposition 3.7. Let D = k[t±1] and let a = Spec(k(t)) be the geometric point of

X := Spec(D) as in Proposition 3.6.

(i) If G is an extension of a twisted finite constant group by a reductive group5,

then

H1
ct(π1(X, a),G(D̂)) ∼= H1

ét(D,G). (3.2.5)

(cf. Corollary 2.16(3) of [GP08a])
4The theory of algebraic fundamental groups of a connected scheme was developed in [GR71],

while a brief introduction to these objects is available in Chapter I, §5 of [Mil80].
5In this thesis, all reductive group schemes are assumed to be connected.
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(ii) For every reductive group scheme G over D,

H1
ét(D,G) = 1. (3.2.6)

(cf. Theorem 3.1 of [Pia05])

The above results will be repeatedly used in our concrete computations.

3.3 Twisting

In the section, we briefly review the twisting techniques from the theory of non-
abelian continuous cohomology.

Let G be a Γ–group. The group Aut(G) of automorphisms of the abstract group
G is also a Γ–group, where the action of Γ on Aut(G) is given by

( fγ )(g) = (f( gγ−1
))

γ
, γ ∈ Γ, f ∈ Aut(G), g ∈ G.

Let z = (zγ)γ∈Γ ∈ Z1
ct(Γ,Aut(G)). We define a new Γ–group Gz as follows:

the underlying group of Gz is G and the new Γ–action is given by

gγ·z = zγ( g
γ ), γ ∈ Γ, g ∈ G.

We say that Gz is the Γ–group obtained by twisting G using z.

It is easy to verify that for z, z′ ∈ Z1
ct(Γ,Aut(G)), z is cohomologous to z′ if and

only if Gz is isomorphic to Gz′ as Γ–groups. However, since the isomorphism of
Γ–groups is not canonical, we can not define G[z] for [z] ∈ H1

ct(Γ,Aut(G)). More
precisely, the action of Γ on Gz does depend on the 1–cocycle z.

Now every g ∈ G defines an automorphism Int(g) of G which is given by con-
jugation, i.e., Int(g)(g′) = gg′g−1 for g′ ∈ G. Hence, a 1–cocycle z = (zγ)γ∈Γ ∈
Z1(Γ,G) yields a 1–cocycle (Int(zγ))γ∈Γ in Z1

ct(Γ,Aut(G)). The Γ–group ob-
tained by twisting G using (Int(zγ))γ∈Γ is also denoted by Gz . In this situation,

gγ·z = zγ · gγ · z−1
γ , γ ∈ Γ, g ∈ G.

Proposition 3.8 ([KMRT98, 28.8]). Let G be a Γ–group and z ∈ Z1(Γ,G). Then

the map

θz : H1
ct(Γ, Gz )→ H1

ct(Γ,G), [z′] 7→ [(z′γzγ)γ∈Γ] (3.3.1)
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is a well-defined bijection, which takes [1] in H1
ct(Γ, Gz ) to [z] in H1

ct(Γ,G).

Moreover, the map θz is functorial in G. In fact, if we are given a homomor-
phism of Γ–groups f : G1 → G2, it naturally induces a map

f∗ : Z1
ct(Γ,G1)→ Z1

ct(Γ,G2)

and a map
f∗ : H1

ct(Γ,G1)→ H1
ct(Γ,G2).

If we twist G2 by f∗(z), then f : G1z → G2f∗(z) is also Γ–equivariant as can be
easily verified. In addition, the following diagram commutes:

H1
ct(Γ, G1z )

f∗
//

θz
��

H1
ct(Γ, G2f∗(z) )

θf∗(z)
��

H1
ct(Γ,G1)

f∗
// H1

ct(Γ,G2)

Since both θz and θf∗(z) are bijective, the fiber of H1
ct(Γ,G1) → H1

ct(Γ,G2) over
[f∗(z)] bijectively corresponds to

ker
(
H1

ct(Γ, G1z )→ H1
ct(Γ, G2f∗(z) )

)
.

We now move on to discussing the compatibility of twisting and exact sequences
of Γ–groups. Let

1→ G1
i−→ G2

j−→ G3 → 1, (3.3.2)

be a short exact sequence of Γ–groups and let z := (zγ)γ∈Γ ∈ Z1
ct(Γ,G2). Then

z′′ = (j(zγ))γ∈Γ ∈ Z1
ct(Γ,G3). On the other hand, we may identify G1 with a

normal subgroup of G2, thus every zγ induces an automorphism of G1 given by
conjugation, i.e.,

z′γ : G1 → G1, g 7→ zγgz
−1
γ .

It is known that z′ = (z′γ)γ∈Γ ∈ Z1
ct(Γ,Aut(G1)). The exact sequence (3.3.2)

remains exact after twisting G1,G2 and G3 by z′, z and z′′, respectively, i.e., the
following sequence of Γ–groups is exact:

1→ G1z′
i−→ G2z

j−→ G3z′′ → 1.

Applying Proposition 3.2 (iv) and Proposition 3.8 to this sequence, we obtain
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Proposition 3.9 ([KMRT98, 28.11]). Let 1 → G1 → G2 → G3 → 1 be a short

exact sequence of Γ–groups and z ∈ H1
ct(Γ,G2), then the diagram

· · · // ( G3z′′ )Γ // H1
ct(Γ, G1z′ ) // H1

ct(Γ, G2z ) //

θz
��

H1
ct(Γ, G3z′′ )

θz′′

��

· · · // G3
// H1

ct(Γ,G1) // H1
ct(Γ,G2) // H1

ct(Γ,G3)

is a commutative diagram with exact rows. Consequently, the fiber of H1
ct(Γ,G2)→

H1
ct(Γ,G3) over [z′′] bijectively corresponds to the image of the map

H1
ct(Γ, G1z′ )→ H1

ct(Γ, G2z ).

The above proposition will play important role in our computation of the non-
abelian continuous cohomology sets. In particular, we consider the situation where

1→ G1 → G2
p−→ G3 → 1

is a split exact sequence of Γ–groups, i.e., the morphism p has a section s : G3 →
G2. From Proposition 3.2 (iii), we have an exact sequence of pointed sets

1→ GΓ
1 → GΓ

2 → GΓ
3 → H1

ct(Γ,G1)→ H1
ct(Γ,G2)

p∗−→ H1
ct(Γ,G3). (3.3.3)

Since the section s of p induces a section s∗ : H1
ct(Γ,G3) → H1

ct(Γ,G2), it follows
that p∗ is surjective. If G2 is an abelian group, then both G1 and G3 are abelian
groups and hence H1

ct(Γ,Gi) is a group for i = 1, 2, 3. The exactness of (3.3.3)
implies that the fiber p−1

∗ ([z]) over each [z] is a coset of the subgroup ker(p∗) in
H1

ct(Γ,G2). Unfortunately, G2 is not an abelian group in general and H1
ct(Γ,G2)

is not a group. The exactness of (3.3.3) only tells us that the fiber of p∗ over the
trivial class is measured by H1

ct(Γ,G1). The above twisting technique is useful for
characterizing the fibers p−1

∗ ([z]) over a non-trivial class [z] ∈ H1
ct(Γ,G3).

Remark 3.10. For a short exact sequence of Γ–groups

1→ G1 → G2 → G3 → 1

with G1 central, one can use the twisting trick to characterize the fiber of H1
ct(Γ,G3)→

H2
ct(Γ,G1) over some [z] ∈ H2

ct(Γ,G1) (cf. Corollary 28.13 of [KMRT98]).

Next we describe how twisting looks like in the case of affine group schemes.
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We focus on the following situation: let R be a ring, S/R be a faithfully flat ring
extension, G = HomR-rng(R[G],−) be an affine group scheme over R, Γ be a
profinite group, which acts continuously on S by the ring automorphisms which
fix R. Then the functoriality of G induces an action of Γ on G(S). Indeed, for
g : R[G]→ S ∈ G(S) and γ : S → S ∈ Γ, the action of Γ on G(S) is given by

gγ = γ ◦ g.

If we further identify G(S) = HomR-rng(R[G], S) with HomS-rng(R[G] ⊗R S, S),
then the action of Γ on G(S) can be rewritten as

gγ = γ ◦ g ◦ (id⊗ γ−1). (3.3.4)

for g : R[G]⊗R S → S ∈ G(S) and γ ∈ Γ. In the rest of this section, an element
g ∈ G(S) is understood as a homomorphism of S–algebras g : R[G]⊗R S → S.

Now, G(S) (viewed as an abstract group) with the Γ–action is a Γ–group. We
will reinterpret the twisting trick in terms of the twisted forms of an affine group
scheme. Recall that Γ acts on Autgrp(G(S)) (the automorphism group of the ab-
stract group G(S)) by

( σγ )(g) = (σ( gγ−1
))

γ
,

for γ ∈ Γ, σ ∈ Autgrp(G(S)), g ∈ G(S).

On the other hand, for the affine group scheme G, one can define its automor-
phism group functor6

Aut(G)(S ′) = AutS′-Hopf(R[G]⊗R S ′)op,

for S ′ in R-rng, where AutS′-Hopf(R[G] ⊗R S ′)op is the opposite group of the
automorphism group of the S ′–Hopf algebra R[G] ⊗R S ′. In particular, for the
given faithfully flat extension S/R with Γ–action, we define an action of Γ on
Aut(G)(S) by

ϕγ = (id⊗ γ) ◦ ϕ ◦ (id⊗ γ−1),

for γ ∈ Γ and ϕ : R[G]⊗R S → R[G]⊗R S ∈ Aut(G)(S).

Since every ϕ ∈ Aut(G)(S) induces an automorphism σϕ of the abstract group
G(S), namely, σϕ(g) = g ◦ ϕ, for g ∈ G(S), we have a canonical homomorphism

6Note that Aut(G) is a sheaf of groups, but not necessarily a scheme.
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of groups
Aut(G)(S)→ Autgrp(G(S)), ϕ 7→ σϕ. (3.3.5)

This map is Γ–equivariant:

(σϕ)γ (g) = (σϕ( gγ−1
))

γ
= (σϕ(γ−1 ◦ g ◦ (id⊗ γ)))

γ

= (γ−1 ◦ g ◦ (id⊗ γ) ◦ ϕ)
γ

= γ ◦ γ−1 ◦ g ◦ (id⊗ γ) ◦ ϕ ◦ (id⊗ γ−1)

= g ◦ ϕγ

= σ ϕγ (g),

for g ∈ G(S), ϕ ∈ Aut(G)(S), and γ ∈ Γ.

Let z = (zγ)γ∈Γ ∈ Z1
ct(Γ,Aut(G)(S)). Applying (3.3.5) to z, we obtain a 1–

cocyle (σzγ )γ∈Γ of Γ in Autgrp(G(S)). Let (G(S))z denote the Γ–group obtained
by twisting G(S) by (σzγ )γ∈Γ. Then the action of Γ on (G(S))z is given by

gγ·z = σzγ ( g
γ ) = γ ◦ g ◦ (id⊗ γ−1) ◦ zγ,

for γ ∈ Γ, g ∈ G(S).

Since Aut(G)(S) = AutS-Hopf(R[G]⊗RS)op, the 1–cocycle z defines a twisted
form of the R–Hopf algebra R[G], namely,

A := {x ∈ R[G]⊗R S|zγ( xγ ) = x,∀γ ∈ Γ} .

By faithfully flat descent, A is a Hopf algebra over R and the map

π : A⊗R S → R[G]⊗R S, (
∑
ai ⊗ si)⊗ s 7→

∑
ai ⊗ sis, (3.3.6)

is an isomorphism of S–Hopf algebras.

Now, we define a new affine group scheme

Gz = HomR-rng(A,−),

which is a functor from the category R-rng to the category of groups. We also
conveniently identify ( Gz )(S) with HomS-rng(A⊗RS, S). Analogous to the action
in (3.3.4), the action of Γ on S induces an action of Γ on ( Gz )(S):

hγ = γ ◦ h ◦ (id⊗ γ−1),
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for h ∈ ( Gz )(S), and γ ∈ Γ. Moreover, we have the following commutative
diagram

HomS-rng(R[G]⊗R S, S) π∗ //

γ·z
��

HomS-rng(A⊗R S, S)

γ

��

HomS-rng(R[G]⊗R S, S)
π∗
// HomS-rng(A⊗R S, S)

where π∗ is the group isomorphism induced by π from (3.3.6). Equivalently,

(G(S))z
π∗ //

γ·z
��

( Gz )(S)

γ

��

(G(S))z π∗
// ( Gz )(S)

is commutative, i.e., π∗ is Γ–equivariant. Therefore, (G(S))z (the abstract group
G(S) with the twisted Γ–action defined by z) and ( Gz )(S) (the set of S–points of
the twisted form of G associated to z with the natural Γ–action) are isomorphic as
Γ–groups. We will not distinguish them and denote this Γ–group by Gz (S).
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Chapter 4

The N = 1, 2, 3 conformal
superalgebras1

In this chapter, we will focus on the automorphisms and the twisted loop conformal
superalgebras based on each of the N = 1, 2, 3 conformal superalgebras KN .

A brief description of KN using Grassmannian superalgebras will be reviewed
in Section 4.1. We then concentrate on the descriptions of the automorphism groups
of KN,R := KN ⊗kR for an arbitrary objectR = (R, d) in k-drng in Section 4.2.
In particular, when R is an integral domain, all automorphisms of theR–conformal
superalgebra KN,R will be explicitly constructed for N = 1, 2, 3.

In Section 4.3, we will deduce the group AutD̂-conf(KN,D̂), N = 1, 2, 3 by spe-
cializing the k–differential ring R to D̂ = (lim

−→
k[t±

1
m ], d

dt
), and complete the clas-

sification of twisted loop conformal superalgebras based on KN by computing the
corresponding non-abelian cohomology set and applying the centroid trick.

As a supplement, we will deal with the passage from twisted loop conformal
superalgebras L(KN , σ) to the Lie superalgebra Alg(KN , σ) in Section 4.4. We
will show that non-isomorphic twisted loop conformal superalgebras L(KN , σ) ob-
tained in Section 4.3 induce non-isomorphic Lie superalgebras Alg(KN , σ).

4.1 The N = 1, 2, 3 conformal superalgebras

Physicists usually define a superconformal algebra by generators (also called fields
by physicists) and relations. Such definitions for the N = 1, 2, 3 superconformal
algebras are given in [ABD+76], while the twisted N = 1, 2, 3 superconformal al-
gebras are described in [SS87] based on an observation of the global automorphism.
As stated in Section 2.1, these Lie superalgebras are the Lie superalgebras induced
by twisted loop conformal superalgebras. Realizations of the N = 1, 2, 3 confor-

1A version of this chapter has been published. Zhihua Chang and Arturo Pianzola 2011. Com-
munications in Number Theory and Physics. 5:751-778.
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mal superalgebras were obtained by V. Kac in [Kac98b], using the Grassmannian
superalgebras Λ(N) in N variables ξ1, . . . , ξN .

Note that Λ(N) is generated by ξ1, · · · , ξN as an associative algebra. It has both
a Z/2Z-grading given by setting each ξi, i = 1, . . . , N to be odd and a Z-grading in
which each ξi, i = 1, . . . , N has degree 1. For a homogeneous element f ∈ Λ(N)

with respect to the Z-grading, we use |f | to denote the degree of f .
Consider the k–vector space

KN := k[∂]⊗k Λ(N), (4.1.1)

where k[∂] is the polynomial ring in one indeterminate ∂. Then KN is a Z/2Z–
graded vector space and a k[∂]–module. Further, there is a conformal superalgebra
structure on KN with the n-th product defined as follows:

f(0)g =

(
1

2
|f | − 1

)
∂ ⊗ fg +

1

2
(−1)|f |

N∑
i=1

(∂if)(∂ig), (4.1.2)

f(1)g =

(
1

2
(|f |+ |g|)− 2

)
fg, (4.1.3)

f(n)g = 0, n > 2, (4.1.4)

where f, g ∈ Λ(N) are homogenous with respect to the Z-grading, and ∂i is
the derivative with respect to ξi, i = 1, . . . , N . The k–conformal superalgebras
K1,K2,K3 are called the N = 1, 2, 3 conformal superalgebras2, respectively.

In the rest of this chapter, we will use KN,R to denote the R–conformal super-
algebra KN ⊗k R for an objectR in k-drng.

4.2 The automorphism group functor

In this section, we will compute the automorphism groups AutR-conf(KN,R) for
N = 1, 2, 3 and R = (R, d) in k-drng, and discuss the representability of the
group functor Aut(KN).

We observe that KN = k[∂]⊗k Λ(N) is a free k[∂]–module. The Z/2Z–graded
k–vector space Λ(N) = Λ(N)0̄ ⊕ Λ(N)1̄ can be naturally identified with the sub-

2These terminologies come from physics. In particular, K4 is also a conformal superalgebra,
but it is neither isomorphic to the small N = 4, nor isomorphic to the large N = 4 conformal
superalgebra considered in the following two chapters.
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space k ⊗k Λ(N) of KN . Similarly, we identify Λ(N) ⊗k R with the subspace
k⊗kΛ(N)⊗kR of KN,R. Instead of considering the whole group AutR-conf(KN,R),
we first concentrate on the subset

GrAut(KN,R)

:= {φ ∈ AutR-conf(KN,R)|φ (Λ(N)⊗k R) ⊆ Λ(N)⊗k R} . (4.2.1)

It is obvious that GrAut(KN,R) is closed under the composition of automorphisms.
Indeed, it is a subgroup of AutR-conf(KN,R). To prove this, it suffices to show that
GrAut(KN,R) is closed under taking inverse, which follows from the lemma below.

Lemma 4.1. Let V be a finite dimensional k–vector space and R = (R, d) a k–

differential ring. Suppose

φ : k[∂]⊗k V ⊗k R→ k[∂]⊗k V ⊗k R

is an invertibleR–linear map satisfying φ◦∂̂ = ∂̂◦φ, where ∂̂ = ∂⊗1⊗1+1⊗1⊗d.

If φ(V ⊗k R) ⊆ V ⊗k R, then φ−1(V ⊗k R) ⊆ V ⊗k R.

Proof. Let {v1, · · · , vn} be a basis of V . Since φ is R–linear and satisfies φ ◦ ∂̂ =

∂̂◦φ, φ is completely determined by φ(1⊗vi⊗1). Similarly, φ−1 is also completely
determined by φ−1(1⊗ vi ⊗ 1). Note that φ(V ⊗k R) ⊆ V ⊗k R, we may write

φ(1⊗ vi ⊗ 1) =
n∑
j=1

1⊗ vj ⊗ rij,

φ−1(1⊗ vi ⊗ 1) =
∑
`>0

j=1,··· ,n

∂` ⊗ vj ⊗ sij,`,

for rij, sij,` ∈ R. Hence,

1⊗ vi ⊗ 1 = φ−1φ(1⊗ vi ⊗ 1) =
∑
`>0

j,k=1,··· ,n

∂` ⊗ vk ⊗ rijsjk,`.

Let A = (rij)16i,j6n, B` = (sij,`)16i,j6n. Then

AB0 = In, and AB` = 0, ` > 1.

It follows that A is invertible and B` = 0 for ` > 1. We conclude that φ−1(V ⊗k

R) ⊆ V ⊗k R.
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We have seen that GrAut(KN,R) is a subgroup of AutR-conf(KN,R). More-
over, the construction of GrAut(KN,R) is functorial in R. We thus obtain a sub-
group functor GrAut(KN) : R 7→ GrAut(KN,R). The computation of the auto-
morphism group AutR-conf(KN,R) can be completed in two steps: first computing
GrAut(KN,R) and second describing the relationships between GrAut(KN,R) and
AutR-conf(KN,R).

To simplify the notation, for a given R = (R, d) in k-drng, we set ∂̂ := ∂ ⊗
id + id ⊗ d on KN,R. And for convenience we identify f ∈ Λ(N) with its image
(1⊗ f)⊗ 1 in KN,R.

Proposition 4.2. Let R = (R, d) be an arbitrary object in k-drng. There is an

isomorphism of groups

ι1,R : O1(R)
∼→ GrAut(K1,R), a 7→ φa, (4.2.2)

where φa ∈ GrAut(K1,R) is given by:

φa(1) = 1 and φa(ξ1) = ξ1 ⊗ a. (4.2.3)

Proof. For a ∈ O1(R), we first show that the formulas in (4.2.3) define a homo-
morphism ofR–conformal superalgebras. Since Λ(1) = k1⊕kξ1, formulas (4.2.3)
define anR-module homomorphism Λ(1)⊗kR→ Λ(1)⊗kR. It can be uniquely ex-
tended to an R-module homomorphism φa : KN,R → KN,R, which is also denoted
by φa, such that ∂̂ ◦ φa = φa ◦ ∂̂. To show φa is a homomorphism ofR–conformal
superalgebras, by Lemma 2.3 (ii), it suffices to verify that

φa([(η1 ⊗ 1)λ(η2 ⊗ 1)]) = [φa(η1 ⊗ 1)λφa(η2 ⊗ 1)], (4.2.4)

where η1, η2 ∈ Λ(1) run over a basis of Λ(1). This follows immediately from a
direct computation. Hence, φa is a homomorphism ofR–conformal superalgebras.

For a, b ∈ O1(R), we also have

φa ◦ φb(η ⊗ 1) = φab(η ⊗ 1),

and
φ1(η ⊗ 1) = η ⊗ 1,

for η ∈ Λ(1). By Lemma 2.3 (i), it follows that φa ◦ φb = φab and φ1 = id.
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Hence, φa is an automorphism of the R–conformal superalgebra K1,R since it has
the inverse φa−1 and ι1,R : a 7→ φa is a group homomorphism.

Moreover, φa = φb for a, b ∈ O1(R) implies

ξ1 ⊗ a = φa(ξ1 ⊗ 1) = φb(ξ1 ⊗ 1) = ξ1 ⊗ b,

which yields a = b, i.e., ι1,R is injective.

It remains to show that ι1,R is surjective, namely that given an automorphism
φ ∈ GrAut(K1,R) there exists a ∈ O1(R) such that φ = φa.

Since φ ∈ GrAut(K1,R) and (K1,R)1̄ = k[∂]ξ1 ⊗k R, the restriction of φ

φ| : kξ1 ⊗R→ kξ1 ⊗R

is an isomorphism of R–modules. Hence, there is a unit a ∈ R such that

φ(ξ1 ⊗ 1) = ξ1 ⊗ a.

We thus deduce that

φ(1) = −2φ(ξ1)(0)φ(ξ1) = 1⊗ a2.

Finally, φ(1)(1)φ(1) = −2φ(1) implies that a4 = a2, which yields a2 = 1 since a is
a unit in R. Therefore, we obtain a ∈ O1(R) and φ = φa.

Proposition 4.3. Let R = (R, d) be an object in k-drng such that R is an integral

domain. Then the inclusion

GrAut(K1,R) ⊆ AutR-conf(K1,R)

is an equality.

Proof. Let φ ∈ AutR-conf(K1,R). It suffices to show

φ(Λ(1)⊗k R) ⊆ Λ(1)⊗k R.

Since (K1,R)1̄ = k[∂]ξ1 ⊗k R and φ preserves the Z/2Z-grading of K1,R, we may
assume that

φ(ξ1) =
M∑
n=0

∂̂n(ξ1 ⊗ sn),
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where sn ∈ R, n = 0, . . . ,M and sM 6= 0. Then

[φ(ξ1)λφ(ξ1)] = −1

2

M∑
m=0

M∑
n=0

(−λ)m(∂̂ + λ)n(1⊗ smsn), while

φ([ξ1λξ1]) = φ

((
−1

2

)
1

)
= −1

2
φ(1).

The leading term (i.e., the term with highest degree with respect to λ) in the right-
hand sides of above two equations are 1

2
(−1)M+1λ2M(1 ⊗ s2

M) and −1
2
φ(1), re-

spectively. Since R is an integral domain, sM 6= 0 implies s2
M 6= 0. Therefore,

[φ(ξ1)λφ(ξ1)] = φ([ξ1λξ1]) yields M = 0, i.e.,

φ(ξ1) = ξ1 ⊗ s0, 0 6= s0 ∈ R,

and φ(1) = −2[φ(ξ1)λφ(ξ1)] = 1⊗ s2
0. Hence,

φ (Λ(1)⊗k R) ⊆ Λ(1)⊗k R.

This completes the proof.

Remark 4.4. The integral assumption in the Proposition 4.3 is not superflous. Con-
sider R = (R, d), where R = k ⊕ kτ, τ 2 = 0 (the algebra of dual numbers) and
d = 0. For theR–conformal superalgebra

K1,R = k[∂]⊗k (k⊕ kξ1)⊗k R,

it is easy to verify that

φ(∂`1⊗ s) = ∂`1⊗ s+ ∂`+11⊗ τs, ` > 0, s ∈ R,

φ(∂`ξ1 ⊗ s) = ∂`ξ1 ⊗ s+ ∂`+1ξ1 ⊗ τs, ` > 0, s ∈ R,

define an element φ ∈ AutR-conf(K1,R), which is not contained in GrAut(K1,R).

Proposition 4.5. Let R = (R, d) be an arbitrary object in k-drng. There is an

isomorphism of groups

ι2,R : O2(R)
∼→ GrAut(K2,R), A = (aij)2×2 7→ φA, (4.2.5)
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where φA ∈ GrAut(K2,R) is given by:

φA(1) = 1 + ξ1ξ2 ⊗ r, φA(ξ1) = ξ1 ⊗ a11 + ξ2 ⊗ a21,

φA(ξ1ξ2) = ξ1ξ2 ⊗ det(A), φA(ξ2) = ξ1 ⊗ a12 + ξ2 ⊗ a22,
(4.2.6)

and (
0 r

−r 0

)
= 2d(A)AT. (4.2.7)

Proof. Using similar arguments as in Proposition 4.2, the formulas (4.2.6) define
an automorphism φA ∈ GrAut(K2,R) for A ∈ O2(R). It is easy to show that

ι2,R : O2(R)→ GrAut(K2,R), A 7→ φA

is an injective group homomorphism. We next show that ι2,R is surjective, i.e.,
every φ ∈ GrAut(K2,R) is of the form φA for some A ∈ O2(R).

Since φ(Λ(2)⊗k R) ⊆ Λ(2) ⊗k R and φ preserves the Z/2Z-grading of K2,R,
we may write

φ(ξ1) = ξ1 ⊗ a11 + ξ2 ⊗ a21, and φ(ξ2) = ξ1 ⊗ a12 + ξ2 ⊗ a22,

where aij ∈ R, i, j = 1, 2.

Let A = (aij)2×2. Since φ has an inverse in GrAut(K2,R), the matrix A is
necessarily invertible. Now

φ(ξ1ξ2) = −φ(ξ1)(1)φ(ξ2) = ξ1ξ2 ⊗ (a11a22 − a21a12) = ξ1ξ2 ⊗ det(A).

Choose c, r ∈ R such that φ(1) = 1⊗c+ξ1ξ2⊗r. From φ(1)(1)φ(ξ1ξ2) = −φ(ξ1ξ2)

we deduce that c · det(A) = det(A). Since A is invertible, det(A) is a unit in R
and therefore c = 1.

Since φ(ξj)(0)φ(ξj) = −1
2
φ(1), we have

a2
1j + a2

2j = 1, and r = 2
(
d(a1j)a2j − a1jd(a2j)

)
, j = 1, 2,

while φ(ξ1)(0)φ(ξ2) = −1
2
∂̂φ(ξ1ξ2) implies that a11a12 + a21a22 = 0. Thus

A = (aij) ∈ O2(R) and

r =
(
d(a11)a21 − a11d(a21)

)
+
(
d(a12)a22 − a12d(a22)

)
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=
(
d(a11)a21 − a11d(a21)

)
+
(
d(a12)a22 − a12d(a22)

)
+ d(a11a21 + a12a22)

= 2
(
d(a11)a21 + d(a12)a22

)
,

i.e., (
0 r

−r 0

)
= 2d(A)AT .

It follows that φ(η ⊗ 1) = φA(η ⊗ 1) for all η ∈ Λ(2). Hence, φ = φA.

Proposition 4.6. Let R = (R, d) be an object in k-drng such that R is an integral

domain. Then the inclusion

GrAut(K2,R) ⊆ AutR-conf(K2,R)

is an equality.

Proof. Similar to the proof of Proposition 4.3, it suffices to show that

φ(Λ(2)⊗k R) ⊆ Λ(2)⊗k R,

for every φ ∈ AutR-conf(K2,R). We firstly write

φ(ξ1ξ2) =
M∑
m=0

∂̂m(1⊗ sm) + η,

where η ∈ k[∂]ξ1ξ2 ⊗k R, sm ∈ R,m = 0, . . . ,M, sM 6= 0.

Then

0 = [φ(ξ1ξ2)λφ(ξ1ξ2)]

=
M∑

m,n=0

(−λ)m(∂̂ + λ)n(−∂1⊗ smsn − 2⊗ d(sm)sn − λ2⊗ smsn)

+

[
M∑
m=0

∂̂m(1⊗ sm)λη

]
+

[
ηλ

M∑
m=0

∂̂m(1⊗ sm)

]
+ [ηλη].

Since (K2,R)0̄ = (k[∂]1 ⊗k R) ⊕ (k[∂]ξ1ξ2 ⊗k R) and all terms in the last row of
the equation above are contained in k[λ]⊗k k[∂]ξ1ξ2 ⊗k R, it follows that

0 =
M∑

m,n=0

(−λ)m(∂̂ + λ)n(∂1⊗ smsn + 2⊗ d(sm)sn + λ2⊗ smsn).
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By comparing the coefficients of λ, we conclude that s2
M = 0, and hence sM = 0

since R is an integral domain. This contradicts our assumption that sM 6= 0. Thus

φ(ξ1ξ2) = η =
M ′∑
m=0

∂̂m(ξ1ξ2 ⊗ cm),

where cm ∈ R,m = 0, . . . ,M ′, cM ′ 6= 0.

Similarly, we may assume that

φ(1) =
M̃ ′∑
m′=0

∂̂m
′
(1⊗ r′m′) +

M̃∑
m=0

∂̂m(ξ1ξ2 ⊗ rm),

where r′m′ , rm ∈ R,m′ = 0, . . . , M̃ ′,m = 0, . . . , M̃ . Then

[φ(1)λφ(ξ1ξ2)]

=
M̃ ′∑
m=0

M ′∑
n=0

(−λ)m(∂̂ + λ)n((∂ + λ)ξ1ξ2 ⊗ r′mcn + ξ1ξ2 ⊗ d(r′m)cn).

From
[φ(1)λφ(ξ1ξ2)] = −(∂̂ + λ)φ(ξ1ξ2),

we deduce that r′
M̃ ′
cM ′ = 0 if M̃ ′ + M ′ > 0. Since cM ′ 6= 0 and R is an integral

domain, r′
M̃ ′

= 0 if M̃ ′ +M ′ > 0. Thus, M̃ ′ = M ′ = 0, i.e.,

φ(ξ1ξ2) = ξ1ξ2 ⊗ c,

φ(1) = 1⊗ r′ +
M̃∑
m=0

∂̂m(ξ1ξ2 ⊗ rm),

where 0 6= c ∈ R, 0 6= r′ ∈ R and rm ∈ R,m = 0, . . . , M̃ .

Now we consider the odd part (K2,R)1̄ = (k[∂]ξ1 ⊕ k[∂]ξ2)⊗k R. Write

φ(ξj) =

M1j∑
m=0

∂̂m(ξ1 ⊗ a1j,m) +

M2j∑
n=0

∂̂n(ξ2 ⊗ a2j,n),

where aij,m ∈ R, i, j = 1, 2, and m = 0, . . . ,Mij . A similar consideration on

[φ(ξ1)λφ(ξ1ξ2)] = −1

2
φ(ξ2) and [φ(ξ2)λφ(ξ1ξ2)] =

1

2
φ(ξ1),
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yields

φ(ξ1) = ξ1 ⊗ a11 + ξ2 ⊗ a21, and φ(ξ2) = ξ1 ⊗ a12 + ξ2 ⊗ a22,

where aij ∈ R, i, j = 1, 2.

Next, we consider φ(1). We deduce from

[φ(1)λφ(ξi)] = −(∂̂ +
3

2
λ)φ(ξi), i = 1, 2

that φ(1) = 1⊗ r′ + ξ1ξ2 ⊗ r0, where r′, r0 ∈ R. It follows that

φ (Λ(2)⊗k R) ⊆ Λ(2)⊗k R.

i.e., φ ∈ GrAut(K2,R).

Proposition 4.7. Let R = (R, d) be an arbitrary object in k-drng. There is an

isomorphism of groups

ι3,R : O3(R)
∼→ GrAut(K3,R), A = (aij)3×3 7→ φA, (4.2.8)

where φA ∈ GrAut(K3,R) is given by:

φA(1) = 1 +
3∑
l=1

εmnlξmξn ⊗ rl, (4.2.9)

φA(ξj) =
3∑
l=1

ξl ⊗ alj + ξ1ξ2ξ3 ⊗ sj, (4.2.10)

φA(ξiξj) = εijl

3∑
l′=1

εmnl′ξmξn ⊗ Al′l, (4.2.11)

φA(ξ1ξ2ξ3) = ξ1ξ2ξ3 ⊗ det(A), (4.2.12)

i, j = 1, 2, 3, i 6= j, Al′l is the cofactor of al′l in A and 0 r3 −r2

−r3 0 r1

r2 −r1 0

 = 2d(A)AT,

 0 s3 −s2

−s3 0 s1

s2 −s1 0

 = 2(detA)ATd(A).

(4.2.13)
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Proof. Analogous to the proof of Proposition 4.2, the formulas (4.2.9)-(4.2.13) de-
fine an automorphism φA ∈ GrAut(K3,R), and it can be shown by a direct compu-
tation that ι3,R : A 7→ φA is an injective group homomorphism. It remains to show
that every φ ∈ GrAut(K3,R) is of the form φA for some A ∈ O3(R).

Observing that (K3,R)1̄ = k[∂] ⊗k Λ(3)1̄ ⊗k R, where Λ(3)1̄ is the k–vector
space spanned by {ξ1, ξ2, ξ3, ξ1ξ2ξ3}, and φ(Λ(3)1̄ ⊗k R) ⊆ Λ(3)1̄ ⊗k R, we may
assume that

φ(ξj) = ξ1 ⊗ a1j + ξ2 ⊗ a2j + ξ3 ⊗ a3j + ξ1ξ2ξ3 ⊗ sj, (4.2.14)

where aij, sj ∈ R, i, j = 1, 2, 3. Let A = (aij)3×3. It follows that

φ(ξiξj) = −φ(ξi)(1)φ(ξj)

= ξ1ξ2 ⊗ (a1ia2j − a2ia1j) + ξ2ξ3 ⊗ (a2ia3j − a3ia2j)

+ ξ3ξ2 ⊗ (a3ia2j − a2ia3j)

= εijk(ξ1ξ2 ⊗ A3k + ξ2ξ3 ⊗ A1k + ξ3ξ1 ⊗ A2k), (4.2.15)

for i 6= j, where Aij is the cofactor of aij in A. Similarly,

φ(ξ1ξ2ξ3) = −2φ(ξ1ξ2)(1)φ(ξ3)

= ξ1ξ2ξ3 ⊗ (A13a13 + A23a23 + A33a33)

= ξ1ξ2ξ3 ⊗ det(A). (4.2.16)

In particular, det(A) is a unit in R, and hence A is invertible.

Note that Λ(3)0̄ is the k–vector space spanned by {1, ξ1ξ2, ξ2ξ3, ξ3ξ1} and

φ(Λ(3)0̄ ⊗k R) ⊆ Λ(3)0̄ ⊗k R.

We may write

φ(1) = 1⊗ c+ ξ1ξ2 ⊗ r3 + ξ2ξ3 ⊗ r2 + ξ3ξ1 ⊗ r1, (4.2.17)

where c, rj ∈ R, j = 1, 2, 3.

First, we show that c = 1. In fact, from

φ(1)(1)φ(ξ1ξ2ξ3) = −1

2
φ(ξ1ξ2ξ3),

51



we deduce that c · det(A) = det(A). Hence, c = 1 since det(A) is a unit in R.

Second, we show that A ∈ O3(R), i.e.,

a1ia1j + a2ia2j + a3ia3j = δij,

for i, j = 1, 2, 3. These equalities follow from

φ(ξj)(0)φ(ξj) = −1

2
φ(1)

when i = j and from

φ(ξi)(0)φ(ξj) = −1

2
∂̂φ(ξiξj)

when i 6= j.

Finally, we determine rj, sj, j = 1, 2, 3. Since

φ(1)(1)φ(ξj) = −3

2
φ(ξj), j = 1, 2, 3,

we obtain
1

2
εlmn(amjrn − anjrm) = d(alj), (4.2.18)

and
r1a1j + r2a2j + r3a3j = sj, (4.2.19)

for l, j = 1, 2, 3. Writing the (4.2.18) in matrix form, we obtain

1

2

 0 r3 −r2

−r3 0 r1

r2 −r1 0

A = d(A).

Since A ∈ O3(R), the first equality in (4.2.13) follows.

A direct computation shows that

2ATd(A) = 2ATd(A)ATA

= AT

 0 r3 −r2

−r3 0 r1

r2 −r1 0

A
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=


0

3∑
l=1

rlAl3 −
3∑
l=1

rlAl2

−
3∑
l=1

rlAl3 0
3∑
l=1

rlAl1

3∑
l=1

rlAl2 −
3∑
l=1

rlAl1 0

 .

Since A ∈ O3(R), Aij = det(A)aij, i, j = 1, 2, 3. So

3∑
l=1

rlAlj = det(A)
3∑
l=1

rlalj = det(A)sj.

Hence, the second equality in (4.2.13) follows. Summarizing (4.2.14)–(4.2.17), we
obtain φ(η) = φA(η), for all η ∈ Λ(3). Hence, φ = φA.

Proposition 4.8. Let R = (R, d) be an object in k-drng such that R is an integral

domain. Then the inclusion

GrAut(K3,R) ⊆ AutR-conf(K3,R)

is an equality.

Proof. Let φ ∈ AutR-conf(K3,R). We have to show

φ(Λ(3)⊗k R) ⊆ Λ(3)⊗k R.

We first consider the action of φ on the even part of K3,R. Let

B = k[∂]⊗k (kξ1ξ2 ⊕ kξ2ξ3 ⊕ kξ3ξ1),

which is isomorphic to Cur(so3(k)) as k–conformal superalgebras and,

(K3,R)0̄ = (k[∂]1⊗k R)⊕BR.

We may assume

φ(ξiξj) =
M∑
m=0

∂̂m(1⊗ sm) + ηij, i 6= j,

where sm ∈ R and ηij ∈ BR. Since BR is an ideal of (K3,R)0̄ and

[φ(ξiξj)λφ(ξiξj)] = 0,
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we deduce that s2
M = 0. Then sM = 0 since R is an integral domain. It follows that

φ(ξiξj) = ηij ∈ BR.

Hence, φ|BR is an automorphism of the R-conformal superalgebra BR. Since
B ' Cur(so3(k)) and so3(k) is a finite dimensional simple Lie algebra, by Propo-
sition 2.5, we obtain

φ(ξiξj) = εijl(ξ1ξ2 ⊗ b3l + ξ2ξ3 ⊗ b1l + ξ3ξ1 ⊗ b2l), i 6= j, (4.2.20)

where (bl′l)3×3 ∈ GL3(R).

Next we consider φ(1). We claim that

φ(1) = 1 + ξ1ξ2 ⊗ r3 + ξ2ξ3 ⊗ r1 + ξ3ξ1 ⊗ r2, (4.2.21)

where r1, r2, r3 ∈ R.

Indeed, we can write

φ(1) =
M∑
m=0

∂̂m(1⊗ sm) + η

with si ∈ R, i = 0, . . . ,M, η ∈ BR. We may assume sM 6= 0 since φ is an
isomorphism. Then

[φ(1)λφ(1)] =
M∑

m,n=0

(−λ)m(∂̂ + λ)n(−∂1⊗ smsn − 2⊗ d(sm)sn − λ2⊗ smsn)

+

[
M∑
m=0

∂̂m(1⊗ sm)λη

]
+

[
ηλ

M∑
n=0

∂̂n(1⊗ sn)

]
+ [ηλη].

Note that all terms in the second row of the above equation are contained in k[λ]⊗k

BR. If M > 0, we deduce that s2
M = 0 by comparing the coefficients of λ2M+1

in [φ(1)λφ(1)] = −(∂̂ + 2λ)φ(1). Since R is an integral domain, sM = 0. This
contradicts sM 6= 0. Hence, M = 0, i.e., φ(1) = 1 ⊗ s0 + η with η ∈ BR.
Simplifying the computation for [φ(1)λφ(1)] above, we have

[φ(1)λφ(1)] = −∂1⊗ s2
0 − 2⊗ d(s0)s0 − λ2⊗ s2

0

+ [(1⊗ s0)λη] + [ηλ(1⊗ s0)] + [ηλη],
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−(∂̂ + 2λ)φ(1) = −∂1⊗ s0 − 1⊗ d(s0)− λ2⊗ s0 − (∂̂ + 2λ)η.

It follows that s2
0 = s0, and hence s0 = 1 since s0 6= 0 and R is an integral domain.

Therefore, φ(1) = 1 + η with η ∈ BR.

We further write

η =
∑
l>0

∂̂l(ξ1ξ2 ⊗ r3l + ξ2ξ3 ⊗ r1l + ξ3ξ1 ⊗ r2l),

where ril ∈ R, i = 1, 2, 3 and all but finitely many ril are zero. Combining with
(4.2.20), we obtain

[φ(1)λφ(ξiξj)] =

− εijk(∂ + λ)(ξ1ξ2 ⊗ b3k + ξ2ξ3 ⊗ b1k + ξ3ξ1 ⊗ b2k)

+ εijk
∑
l>0

3∑
k′=1

(−λ)lεi′j′k′ξi′ξj′ ⊗ (ri′lbj′k − rj′lbi′k).

Then the equalities [φ(1)λφ(ξiξj)] = −(∂̂ + λ)φ(ξiξj), i, j = 1, 2, 3, i 6= j imply
that

εijk(rilbjk − rjlbik) = 0,

for all i, j, k = 1, 2, 3, i 6= j, l > 1. In the matrix form, these are equivalent to 0 −r3l r2l

r3l 0 −r1l

−r2l r1l 0


b11 b12 b13

b21 b22 b23

b31 b32 b33

 = 0, ∀l > 1.

Hence, r1l = r2l = r3l = 0 for all l > 1 since (bij)3×3 ∈ GL3(R), i.e.,

φ(1) = 1 + ξ1ξ2 ⊗ r30 + ξ2ξ3 ⊗ r10 + ξ3ξ1 ⊗ r20,

where r10, r20, r30 ∈ R. This completes the proof of the claim.

Next, we consider the action of φ on the odd part (K3,R)1̄. First, the equalities

[φ(ξiξj)λφ(ξ1ξ2ξ3)] = 0
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for all i 6= j yield that

φ(ξ1ξ2ξ3) =
M∑
m=0

∂̂m(ξ1ξ2ξ3 ⊗ cm),

where cm ∈ R. Considering

[φ(1)λφ(ξ1ξ2ξ3)] = −(∂̂ +
1

2
λ)φ(ξ1ξ2ξ3),

we deduce that
φ(ξ1ξ2ξ3) = ξ1ξ2ξ3 ⊗ c, (4.2.22)

where 0 6= c ∈ R.

Finally, we apply a similar argument to φ(ξj). From

[φ(ξj)λφ(ξ1ξ2ξ3)] = εjmnφ(ξmξn)

and
[φ(1)λφ(ξj)] = −(∂̂ +

3

2
λ)φ(ξj),

we obtain

φ(ξj) = ξ1 ⊗ a1j + ξ2 ⊗ a2j + ξ3 ⊗ a3j + ξ1ξ2ξ3 ⊗ sj, (4.2.23)

where aij, sj ∈ R.

Summarizing (4.2.18) to (4.2.23), we obtain

φ (Λ(3)⊗k R) ⊆ Λ(3)⊗k R.

This completes the proof.

To sum up the results in this section, we have the following theorem:

Theorem 4.9. For the k–conformal superalgebra KN with N = 1, 2, 3, the follow-

ing statements hold:

(i) For every objectR in k-drng, there is an isomorphism of groups

ιN,R : ON(R)→ GrAut(KN,R). (4.2.24)
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(ii) The isomorphism ιN,R is functorial inR, i.e.,

ON ◦ f ∼= GrAut(KN), (4.2.25)

as functors from k-drng to grp, where

f : k-drng→ k-rng, R = (R, d) 7→ R. (4.2.26)

is the forgetful functor.

(iii) For an objectR = (R, d) in k-drng such that R is an integral domain,

GrAut(KN,R) = AutR-conf(KN,R). (4.2.27)

Proof. (i) and (iii) are merely summaries of Propositions 4.2-4.8.

For (ii), let h : R = (R, dR) → S = (S, dS) be a morphism in k-drng.
It induces a homomorphism of groups GrAut(KN,R) → GrAut(KN,S). From
(2.3.5) and Lemma 2.3, the image of φA under this map is φh(A) for A ∈ ON(R),
i.e., the diagram

ON(R)
ιN,R

//

ON (h)

��

GrAut(KN,R)

Aut(KN )(h)

��

ON(S) ιN,S
// GrAut(KN,R)

is commutative. Hence, (ii) follows.

Remark 4.10. From Theorem 4.9, the subgroup functor GrAut(KN) for N =

1, 2, 3 has two nice properties:

(i) GrAut(KN) = ON ◦ f is a lift of ON (viewed as a functor from k-rng to
the category of groups) by composing the forgetful functor f from k-drng to
k-rng. In particular, ON is an affine group scheme of finite type.

(ii) GrAut(KN) gives the whole automorphism group Aut(KN)(R) when eval-
uating at anR = (R, d) with R an integral domain.

In general, for a k–conformal superalgebra A whose underlying k[∂]–module
is free and of finite rank, there is a finite dimensional Z/2Z–graded vector space
V = V0̄ ⊕ V1̄ such that A = k[∂] ⊗k V as a k–vector space. Choose such a
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k–vector space V , we can define

GrAutV (AR) = {φ ∈ AutR-conf(AR)|φ(V ⊗k R) ⊆ V ⊗k R}, (4.2.28)

for each R in k-drng. It is a subgroup (see Lemma 4.1), and is functorial in R. In
other words, GrAutV (A ) is a subgroup functor of Aut(A ), which assigns each
R in k-drng the group GrAutV (AR).

However, the definition of GrAutV (A ) depends on the choice of V . Neither
the assertion (i) nor (ii) in Remark 4.10 is necessarily true for GrAutV (A ). It
is also not known, for a given k–conformal superalgebra A , whether there exists
a suitable k–vector space V such that GrAutV (A ) satisfies at least one of these
properties. As we have seen, for V := Λ(N), these properties are both fulfilled
by GrAutΛ(N)(KN) in the situation of the N = 1, 2, 3 conformal superalgebras.
The small N = 4 conformal superalgebra W also has a subspace V , for which
GrAutV (W ) has nice properties similar to (i) and (ii). This will be discussed in
Section 5.2.

The following example shows that GrAutV (AR) may not satisfy property (ii)
in Remark 4.10 for a “bad” choice of V .

Example 4.11. Consider the N = 2 conformal superalgebra K2. Besides the real-
ization described in Section 4.1 by using the Grassmannian superalgebra Λ(2), K2

can also be realized as follows (see [Kac98b, section 5.10]):

K2 = k[∂]⊗k (Der(Λ(1))⊕ Λ(1)),

where Λ(1) = k⊕ kξ and Der(Λ(1)) is the superalgebra of all derivations of Λ(1).
The n-th product for n ∈ Z+ on K2 is given as follows:

a(n)b = δn0[a, b], a(0)f = a(f), a(n)f = −δn1p(a, f)fa, if n > 1,

f(0)g = −∂(fg), f(n)g = −2δn1fg, if n > 1,

where a, b ∈ Der(Λ(1)), f, g ∈ Λ(1).

Let

V := Der(Λ(1))⊕ Λ(1) =

(
k
d

dξ
⊕ kξ

d

dξ

)
⊕ (k⊕ kξ).

Then K2 = k[∂] ⊗k V . We define φ : K2 → K2 to be the unique homomorphism
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of k[∂]–modules satisfying

φ(1) = 1− ∂ξ d
dξ
, φ(ξ) =

d

dξ
, φ

(
d

dξ

)
= ξ, φ

(
ξ
d

dξ

)
= −ξ d

dξ
.

It is easy to verify that φ is a homomorphism of k–conformal superalgebras and
φ2 = idK2 .

Although k is an integral domain, we have

GrAutV (K2) ( Autk-conf(K2),

since φ ∈ Autk-conf(K2), but φ 6∈ GrAutV (K2).

4.3 Twisted loop conformal superalgebras

In this section, we classify the twisted loop conformal superalgebras based on KN

for N = 1, 2, 3. Recall that every twisted loop conformal superalgebra L(KN , σ)

based on KN is a D̂/D–form of KN,D, where D̂ = (k[tq, q ∈ Q], dt) and D =

(k[t±1], dt). We first classify the D̂/D–forms of KN,D up to isomorphism of D–
conformal superalgebras.

Theorem 4.12. Let N = 1, 2, 3. There are exactly two D̂/D-forms (up to isomor-

phism of D-conformal superalgebras) of KN,D := KN ⊗kD. These are L(KN , id)

and L(KN , ωN), where ωN : KN → KN is the automorphism of the k–conformal

superalgebra KN given by

ω1 : 1 7→ 1, ξ1 7→ −ξ1,

ω2 : 1 7→ 1, ξ1 7→ −ξ1,

ξ2 7→ ξ2, ξ1ξ2 7→ −ξ1ξ2,

ω3 : 1 7→ 1, ξj 7→ −ξj, j = 1, 2, 3,

ξiξj 7→ ξiξj, i 6= j, ξ1ξ2ξ3 7→ −ξ1ξ2ξ3.

Proof. By Theorem 2.9, the D̂/D-forms of KN,D are parametrized by the non-
abelian cohomology set H1

(
D̂/D,Aut(KN)

)
. Since KN is a free k[∂]–module of

finite rank 2N , Proposition 3.4 allows the following identification

H1
(
D̂/D,Aut(KN)

) ∼= H1
ct

(
Ẑ,AutD̂-conf(KN,D̂)

)
.
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Our problem is thus reduced to compute H1
ct

(
Ẑ,AutD̂-conf(KN,D̂)

)
.

The twisted loop conformal superalgebras L(KN , id) and L(KN , ωN) corre-
spond to the classes [z] and [z′] in H1

ct

(
Ẑ,AutD̂-conf(KN,D̂)

)
given by the 1–cocycles

z, z′ : Ẑ→ AutD̂-conf(KN,D̂) determined by 1̄ 7→ id and 1̄ 7→ ωN , respectively.
Since the isomorphism ιN,D̂ : ON(D̂) → AutD̂-conf(KN,D̂) of Theorem 4.9 is

equivariant under the action of Ẑ, we are reduced to determine H1
ct

(
Ẑ,ON(D̂)

)
.

The classes in H1
ct

(
Ẑ,ON(D̂)

)
corresponding to [z] and [z′] will be still denoted in

the same way.
Consider the split exact sequence of Ẑ-groups

1 −→ SON(D̂) −→ ON(D̂)
det−→ Z/2Z→ 1, (4.3.1)

where Ẑ acts on Z/2Z trivially and “det” is the determinant map. It yields the exact
sequence of pointed sets

H1
ct

(
Ẑ,SON(D̂)

)
−→ H1

ct

(
Ẑ,ON(D̂)

) ψ−→ H1
ct(Ẑ,Z/2Z). (4.3.2)

Since Ẑ acts on Z/2Z trivially, we have H1
ct(Ẑ,Z/2Z) ' Z/2Z. Since the short

exact sequence (4.3.1) is split, ψ admits a section, and hence is surjective by general
considerations. This is also explicitly clear in our situation since ψ visibly maps [z]

and [z′] to the two distinct classes in H1
ct(Ẑ,Z/2Z). It remains to show that ψ is

injective.
From the exactness of sequence (4.3.2), the fiber of ψ over the trivial class of

H1
ct(Ẑ,Z/2Z) is measured by H1

ct

(
Ẑ,SON(D̂)

)
, while the fiber over the non-trivial

class is measured by H1
ct

(
Ẑ, z′SON(D̂)

)
where z′SON is the group scheme over D

obtained from SON by twisting by z′. By Proposition 3.7 (ii), H1
ét(D,G) vanishes

for every reductive group scheme G over R, in particular for SON and z′SON . On
the other hand by the Proposition 3.7 (i), we have

H1
ét(D,G) ∼= H1

ct

(
Ẑ,G(D̂)

)
. (4.3.3)

This finishes the proof of injectivity.

Proposition 4.13. Let N = 1, 2, 3 and B = L(KN , σ) be a twisted loop confor-

mal superalgebra of KN with respect to an automorphism σ of finite order. Then

Ctdk(B) ∼= D.

Proof. As a k[∂]–module, KN = k[∂]⊗k Λ(N) is free of rank 2N . It has Virasoro
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element L = −1 ∈ Λ(N) and the monomials in Λ(N) form a set of generators
of KN as a k[∂]–module satisfying all the assumptions of (ii) and (iii) of Proposi-
tion 2.12. From Theorem 4.9, and the explicit construction of automorphisms of
KN in Propositions 4.2,4.5, and 4.7 in the case of N = 1, 2, 3, respectively, we
know σ(L) = L. By Proposition 2.12, Ctdk(B) ∼= D.

Theorem 4.14. There are exactly two twisted loop conformal superalgebras (up

to isomorphism of k–conformal superalgebras) based on each KN , N = 1, 2, 3,

namely, L(KN , id) and L(KN , ωN).

Proof. Each twisted loop conformal superalgebra based on KN is an D̂/D–form
of KN,D. It follows from Theorem 4.12 that there exist exactly two of them up to
isomorphism of D–conformal superalgebras, namely L(KN , id) and L(KN , ωN).
By Propositions 2.12 and 4.13, we conclude thatL(KN , id) andL(KN , ωN) remain
non-isomorphic when viewed as k–conformal superalgebras.

4.4 The corresponding twisted Lie superalgebras

In the previous section, we have shown that, for each N = 1, 2, 3, there are only
two twisted loop conformal superalgebras based on KN up to isomorphism of k–
conformal superalgebras, namely L(KN , id) and L(KN , ωN). Recall from (2.1.19)
that every twisted loop conformal superalgebra L(KN , σ) determines a Lie super-
algebra

Alg(KN , σ) = L(KN , σ)/∂̂L(KN , σ),

with Lie superbracket induced by the 0-th product of L(KN , σ). Hence, the two
non-isomorphic twisted loop conformal superalgebras L(KN , id) and L(KN , ωN)

determine two Lie superalgebras Alg(KN , id) and Alg(KN , ωN), respectively. As
claimed in [CP11], the two Lie superalgebras Alg(KN , id) and Alg(KN , ωN) are
not isomorphic for N = 1, 2, 3. However, the proof in [CP11] is inaccurate. We
will provide amended proofs in this section.

We first prove some basic properties of the centreless Virasoro algebra v. Recall
from (2.1.6) that v has a k–basis {Ln|n ∈ Z} satisfying [Lm,Ln] = (m − n)Lm+n

for m,n ∈ Z.

Lemma 4.15. Let v be the centreless Virasoro algebra. Then the following hold:
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(i) Every abelian Lie subalgebra of v has dimension at most one.

(ii) Let φ : v→ v be an endomorphism of v. Then either φ = 0 or φ is injective.

In particular, every injective endomorphism φ is of the form

φ(Lm) =
1

`
amL`m, ∀m ∈ Z,

for some non-zero integer ` and some nonzero a ∈ k.

(iii) Every automorphism φ : v→ v is of the form

φ(Lm) = ±amL±m, ∀m ∈ Z,

for some nonzero a ∈ k.

Proof. (i) It suffices to show that for 0 6= x, y ∈ v, [x, y] = 0 implies that x and y
are proportional. Write

x = aLM + x′, and y = bLN + y′,

such that a, b 6= 0, x′ ∈ v<M := ⊕m<MkLm, and y′ ∈ v<N . Then

0 = [x, y] = [aLM+x′, bLN+y′] = ab(M−N)LM+N+a[LM , y
′]+b[x′,LN ]+[x′, y′].

Note that [LM , y
′], [x′,LN ], [x′, y′] ∈ v<M+N . Hence, ab(M−N) = 0, i.e.,M = N .

Now, we know that [x, bx−ay] = 0 and bx−ay ∈ v<M . We thus conclude that
bx− ay = 0, i.e., x and y are proportional.

(ii) Since v is a simple Lie algebra and kerφ is an ideal of v, we know that either
φ = 0 or φ is injective.

Now we assume that φ is injective. We first claim that φ(L0) = 1
`
L0 for some

nonzero integer `. It has been shown in [Su02] that every three dimensional subal-
gebra of v is of the form kL−n ⊕ kL0 ⊕ kLn for some nonzero n ∈ Z. Since φ is
injective, φ(kL−n ⊕ kL0 ⊕ kLn) is a three dimensional subalgebra of v for every
0 6= n ∈ Z. Hence, there is 0 6= mn ∈ Z such that

φ(kL−n ⊕ kL0 ⊕ kLn) = kL−mn ⊕ kL0 ⊕ kLmn .

The injectivity of φ also implies that there are n 6= n′ ∈ Z such that mn 6= mn′ .
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Hence,

φ(L0) ∈ φ(kL−n ⊕ kL0 ⊕ kLn) ∩ φ(kL−n′ ⊕ kL0 ⊕ kLn′) = kL0,

i.e., φ(L0) = bL0 for some 0 6= b ∈ k. Furthermore, we deduce from

−φ(L1) = [φ(L0), φ(L1)] = b[L0, φ(L1)]

that φ(L1) is an eigenvector of ad(L0) with eigenvalue −1
b
, which is an integer.

Hence, b = 1
`

for some nonzero integer `. This proves the claim.

Note that φ(Ln) is an eigenvector of ad(L0) with eigenvalue −n
b

= −`n. It
follows that φ(Ln) = 1

`
anL`n for some 0 6= an ∈ k. We put a = a1. Then

2φ(L0) = [φ(L1), φ(L−1)]

implies that a−1 = a−1. Similarly, we deduce that an = an for all n ∈ Z. Therefore,
φ is of the form

φ(Lm) =
1

`
amL`m, ∀m ∈ Z,

for some nonzero integer ` and nonzero a ∈ k.

(iii) Let φ be an automorphism of v. By (ii), φ is of the form φ(Lm) = 1
`
amL`m

for some nonzero integer ` and nonzero a ∈ k. We deduce that

φ(v) =
⊕
m∈Z

kL`m,

which is equal to v only if ` = ±1. Since φ is an automorphism, we conclude that
` = ±1. This completes the proof.

Remark 4.16. The assertion (iii) in the lemma above is a special case of the auto-
morphisms of generalized Virasoro algebras, which has been determined in [Su02].
We give the proof of this lemma here since part (ii) was not established in [Su02].

In fact, the assertion (ii) was stated in [Zha92]. However, the proof for (ii) in
[Zha92] is invalid since the Lemma 10 of [Zha92] is inaccurate. For the Virasoro
algebra v̂ = v ⊕ kc (a central extension of v), Lemma 10 of [Zha92] states that
for x ∈ v̂, if adx has infinitely many linearly independent eigenvectors, then x ∈
kL0⊕kc. A counterexample to this is the following: we consider x = L0+L−1 ∈ v,

63



then

ym =
m∑
i=0

(
m+ 1

i+ 1

)
Li + L−1,

is an eigenvector of x with eigenvalue −m for each positive integer m.

Next we will describe the Lie superalgebras Alg(KN , id) and Alg(KN , ωN),
and prove these two Lie superalgebras are not isomorphic for each N = 1, 2, 3.
We always use a to denote the image of a ∈ L(KN , σ) under the canonical map
L(KN , σ)→ Alg(KN , σ) = L(KN , σ)/∂̂L(KN , σ), where σ = id or ωN .

Case N = 1:
In Alg(K1, id), we let Lm := −1⊗ tm+1 for m ∈ Z and Gm′ := 2ξ1 ⊗ tm

′+ 1
2

for m′ ∈ 1
2

+ Z. Then Alg(K1, id) has a basis {Lm,Gm′ |m ∈ Z,m′ ∈ 1
2

+ Z},
satisfying

[Lm,Ln] = (m− n)Lm+n, [Lm,Gn′ ] = (1
2
m− n′)Gm+n′ , [Gm′ ,Gn′ ] = 2Lm′+n′ ,

for m,n ∈ Z, and m′, n′ ∈ 1
2

+ Z.

For Alg(K1, ω1), we know that ω1(1) = 1 and ω1(ξ1) = −ξ1. Hence,

L(K1, ω1) = (k[∂]1⊗k k[t±1])⊕ (k[∂]ξ1 ⊗k t
1
2k[t±1]).

Set Lm = −1⊗ tm+1 and Gm = 2ξ1 ⊗ tm+ 1
2 for m ∈ Z. Then {Lm,Gm|m ∈ Z} is

a basis of Alg(K1, ω1), satisfying

[Lm,Ln] = (m− n)Lm+n, [Lm,Gn] = (1
2
m− n)Gm+n, [Gm,Gn] = 2Lm+n,

for m,n ∈ Z.

Proposition 4.17. The two Lie superalgebras Alg(K1, id) and Alg(K1, ω1) are not

isomorphic.

Proof. Suppose that φ : Alg(K1, id) → Alg(K1, ω1) is an isomorphism. We first
observe that the even parts Alg(K1, id)0̄ and Alg(K1, ω1)0̄ are both isomorphic
to the centreless Virasoro algebra v. Then φ induces an automorphism of v. By
Lemma 4.15 (iii), φ(L0) = ±L0.

Note that
Alg(K1, ω1)1̄ =

⊕
n∈Z

kGn
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and [L0,Gn] = −nGn for all n ∈ Z. It follows that if x ∈ Alg(K1, ω1)1̄ such
that [L0, x] = ax for some a ∈ k, then a is an integer. We consider φ(G 1

2
) ∈

Alg(K1, ω1)1̄. It satisfies

[±L0, φ(G 1
2
)] = [φ(L0), φ(G 1

2
)] = −1

2
φ(G 1

2
),

which yields a contradiction since 1
2

is not an integer. Hence, Alg(K1, id) and
Alg(K1, ω1) are not isomorphic.

Case N = 2:
The Lie superalgebra Alg(K2, id) has a basis consisting of

Lm = −1⊗ tm+1, Um = 2iξ1ξ2 ⊗ tm, G±m′ = (ξ1 ± iξ2)⊗ tm′+ 1
2 ,

where m ∈ Z and m′ ∈ 1
2

+ Z. The Lie superbracket is written as follows:

[Lm,Ln] = (m− n)Lm+n, [Lm,Un] = −nUm+n,

[Lm,G
±
n′ ] = (1

2
m− n′)G±m+n′ , [Um,G

±
n′ ] = ±G±m+n′

[Um,Un] = 0, [G+
m′ ,G

+
n′ ] = [G−m′ ,G

−
n′ ] = 0,

[G+
m′ ,G

−
n′ ] = Lm′+n′ +

1
2
(m′ − n′)Um′+n′

for m,n ∈ Z and m′, n′ ∈ 1
2

+ Z. The Lie superalgebra Alg(K2, id) is indeed
isomorphic to the N = 2 Neveu-Schwarz algebra (modulo the center), which is
also isomorphic to the N = 2 Ramond algebra (modulo the center) as claimed in
[SS87].

In a parallel manner, we recall from Theorem 4.12 that

ω2(1) = 1, ω2(ξ1) = ξ1, ω2(ξ2) = −ξ2, and ω2(ξ1ξ2) = −ξ1ξ2.

Hence,

L(K2, ω2)0̄ = (k[∂]1⊗k k[t±1])⊕ (k[∂]ξ1ξ2 ⊗k t
1
2k[t±1]),

L(K2, ω2)1̄ = (k[∂]ξ1 ⊗k k[t±1])⊕ (k[∂]ξ2 ⊗k t
1
2k[t±1]).

In Alg(K2, ω2), we set

Lm = −1⊗ tm+1, Um′ = 2ξ1ξ2 ⊗ tm′ , G1
m′ = 2ξ1 ⊗ tm

′+ 1
2 , G2

m = 2ξ2 ⊗ tm+ 1
2 ,
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for m ∈ Z and m′ ∈ 1
2

+ Z. Then {Lm,Um′ ,G
1
m′ ,G

2
m|m ∈ Z,m′ ∈ Z} is a basis

of Alg(K2, ω2), satisfying the following relations:

[Lm,Ln] = (m− n)Lm+n, [Lm,Un′ ] = −n′Um+n′ , [Um′ ,Un′ ] = 0,

[Lm,G
1
n′ ] = (1

2
m− n′)G1

m+n′ , [Um′ ,G
1
n′ ] = G2

m′+n′ , [G1
m′ ,G

1
n′ ] = 2Lm′+n′ ,

[Lm,G
2
n] = (1

2
m− n)G2

m+n, [Um′ ,G
2
n] = −G1

m′+n, [G2
m,G

2
n] = 2Lm+n,

[G1
m′ ,G

2
n] = (n−m′)Um′+n,

for m,n ∈ Z and m′, n′ ∈ 1
2

+ Z.

Proposition 4.18. The two Lie superalgebras Alg(K2, id) and Alg(K2, ω2) are not

isomorphic.

Proof. We will show that the two Lie superalgebras Alg(K2, id) and Alg(K2, ω2)

indeed have non-isomorphic even parts.

Let σ be one of the automorphisms id and ω2. Note that Alg(K2, σ)0̄ is iso-
morphic to the semidirect product3 s(σ) o v, where v = spank{Lm|m ∈ Z} is iso-
morphic to the centreless Virasoro algebra and s(σ) = spank{Um|m ∈ ε + Z} ⊆
Alg(K2, σ)0̄ is an abelian ideal of Alg(K2, σ)0̄, where ε = 0 if σ = id and ε = 1

2
if

σ = ω2.

Suppose that φ : Alg(K2, id)0̄ → Alg(K2, ω2)0̄ is an isomorphism of Lie alge-
bras. Then the composition

φ̃ : Alg(K2, id)0̄
φ−→ Alg(K2, ω2)0̄ � Alg(K2, ω2)0̄/s(ω2) ∼= v,

is a surjective homomorphism. It follows that φ̃(s(id)) is an abelian ideal of v. Since
v is a simple Lie algebra, we conclude that φ̃(s(id)) = 0, i.e., φ(s(id)) ⊆ s(ω2).
Indeed, φ(s(id)) = s(ω2) since the same argument shows φ−1(s(ω2)) ⊆ s(id).

Hence, the surjective homomorphism φ̃ induces a surjective homomorphism

φ̄ : v ∼= Alg(K2, id)0̄/s(id)→ Alg(K2, ω2)/s(ω2) ∼= v,

which is indeed an automorphism since v is a simple Lie algebra. By Lemma 4.15
(iii), we know φ̄(L0) = ±L0, i.e., φ(L0) = ±L0 + x for some x ∈ s(ω2).

3Given two Lie algebras g, g′, and a Lie algebra homomorphism g′ → Derk(g) (the Lie algebra
of derivations of g), one can define the semidirect product Lie algebra go g′ (cf. [Bou75, I,§1.8]).
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Since φ is an isomorphism,

Alg(K2, ω2)0̄ = φ(Alg(K2, id)0̄) =
⊕
m∈Z

(kφ(Lm)⊕ kφ(Um)),

satisfying [φ(L0), φ(Lm)] = −mφ(Lm) and [φ(L0), φ(Um)] = −mφ(Um) for all
m ∈ Z. We deduce that if y ∈ Alg(K2, ω2)0̄ such that [φ(L0), y] = ay for some
a ∈ k, then a is an integer. However, U 1

2
∈ Alg(K2, ω2)0̄ satisfies

[φ(L0),U 1
2
] = [±L0 + x,U 1

2
] = ∓1

2
U 1

2
,

in which 1
2

is not an integer. This is a contradiction.

Case N = 3:
The Lie superalgebra Alg(K3, id) has a basis consisting of

Lm = −1⊗ tm+1, Gi
m′ = 2ξi ⊗ tm

′+ 1
2 ,

Ti
m = 2iεijlξjξl ⊗ tm, Ψm′ = −2iξ1ξ2ξ3 ⊗ tm

′− 1
2 ,

where i = 1, 2, 3,m ∈ Z,m′ ∈ 1
2

+ Z. The Lie superbracket on Alg(K3, id) is
given by:

[Lm,Ln] = (m− n)Lm+n, [Lm,T
i
n] = −nTi

m+n, [Ti
m,T

j
n] = iεijkT

k
m+n,

[Lm,Ψn′ ] = −(1
2
m+ n′)Ψm+n′ , [Ti

m,Ψn′ ] = 0, [Ψm′ ,Ψn′ ] = 0,

[Lm,G
i
n′ ] = (1

2
m− n′)Gi

m+n′ , [Ti
m,G

j
n′ ] = iεijkG

k
m+n′ + δijmΨm+n′ ,

[Gi
m′ ,Ψn′ ] = Ti

m′+n′ , [Gi
m′ ,G

j
n′ ] = 2δijLm′+n′ + iεijl(m

′ − n′)Tk
m′+n′ ,

for m,n ∈ Z,m′, n′ ∈ 1
2

+ Z, i, j = 1, 2, 3.

For Alg(K3, ω3), we know that ω3 acts on the even part (K3)0̄ as the identity
and acts on the odd part (K3)1̄ as −id. Hence

L(K3, ω3) = ((K3)0̄ ⊗k k[t, t−1])⊕ ((K3)1̄ ⊗k t
1
2k[t, t−1]). (4.4.1)

In Alg(K3, ω3), let

Lm = −1⊗ tm+1, Gi
m = 2ξi ⊗ tm+ 1

2 ,

Ti
m = 2iεijlξjξl ⊗ tm, Ψm = −2iξ1ξ2ξ3 ⊗ tm−

1
2 ,
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for i = 1, 2, 3,m ∈ Z. Then {Lm,Ti
m,G

i
m,Ψm|i = 1, 2, 3,m ∈ Z} is a basis of

Alg(K3, ω3), satisfying

[Lm,Ln] = (m− n)Lm+n, [Lm,T
i
n] = −nTi

m+n, [Ti
m,T

j
n] = iεijkT

k
m+n,

[Lm,Ψn] = −(1
2
m+ n)Ψm+n, [Ti

m,Ψn] = 0, [Ψm,Ψn] = 0,

[Lm,G
i
n] =

(
1
2
m− n

)
Gi
m+n, [Ti

m,G
j
n] = iεijkG

k
m+n + δijmΨm+n,

[Gi
m,Ψn] = Ti

m+n, [Gi
m,G

j
n] = 2δijLm+n + iεijk(m− n)Tk

m+n,

for i, j = 1, 2, 3 and m,n ∈ Z.
To prove the two Lie superalgebras Alg(K3, id) and Alg(K3, ω3) are not iso-

morphic, we first observe that both the two Lie superalgebras have the isomor-
phic even part g, which is isomorphic to the semidirect product of Lie algebras
g = so v, where s := sl2(k)⊗k k[t±1] is the loop Lie algebra based on sl2(k) and
v = spank{Lm|m ∈ Z} is the centreless Virasoro algebra, which acts on s via

[Lm, x⊗ tn] = −nx⊗ tm+n,

for m,n ∈ Z and x ∈ sl2(k).

Lemma 4.19. Let g = s o v as above and φ : g → g an automorphism of the Lie

algebra g. Then

(i) φ(s) = s. Hence, the restriction of φ to s yields an automorphism of s;

(ii) φ(L0) = ±L0 + x for some x ∈ s.

Proof. (i) Since φ is an automorphism, the composition

φ̃ : g
φ−→ g� g/s ∼= v,

is a surjective homomorphism of Lie algebras.
Note that s = s1 ⊕ s2 ⊕ s3, where si = spank{Ti

m|m ∈ Z} is an abelian
subalgebra of g for i = 1, 2, 3. From Lemma 4.15 (i), we deduce that φ̃(s) ⊆
φ̃(s1) + φ̃(s2) + φ̃(s3) is an ideal of v of dimension at most three. Hence, φ̃(s) = 0,
i.e., φ(s) ⊆ s. Applying the same argument to the automorphism φ−1, we know
that φ−1(s) ⊆ s. Hence, φ(s) = s.

(ii) By (i), the surjective homomorphism φ̃ induces a surjective homomorphism

φ̄ : v ∼= g/s→ g/s ∼= v,
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which is indeed an automorphism of v since v is simple. By Lemma 4.15 (iii), we
know that φ̄(L0) = ±L0, i.e., φ(L0) = ±L0 + x for some x ∈ s.

Next we consider the odd parts Alg(K3, id)1̄ and Alg(K3, ω3)1̄. We will show
that for σ = id or σ, the k–subspace of Alg(K3, σ)1̄ consisting of elements annihi-
lated by all ad(y), y ∈ s is exactly equal to the vector space spanned by {Ψn|n ∈
ε+ Z}, where ε = 1

2
if σ = id and ε = 0 if σ = ω3, i.e., we have the following

Lemma 4.20. Let σ be one of the automorphisms id and ω3. Let s = spank{Ti
m|i =

1, 2, 3,m ∈ Z} ⊆ Alg(K3, σ)0̄. Then the k–subspace

C(s,Alg(K3, σ)1̄) := {u ∈ Alg(K3, σ)1̄|[y, u] = 0,∀y ∈ s}

is spanned by {Ψn|n ∈ ε+ Z}, where ε = 1
2

if σ = id and ε = 0 if σ = ω3.

Proof. It is obvious that any k–linear combination of {Ψn|n ∈ ε+ Z} is contained
in C(s,Alg(K3, σ)1̄). It suffices to show that every u ∈ C(s,Alg(K3, σ)1̄) is a
k–linear combination of {Ψn|n ∈ ε+ Z}.

Since u ∈ Alg(K3, σ)1̄, we write

u = α1G1
m1

+ · · ·+ αpG
1
mp + β1G2

n1
+ · · ·+ βqG

2
nq + γ1G3

k1
+ · · ·+ γrG

3
kr + u′,

where α1, · · · , αp, β1, · · · , βq, γ1, · · · , γr ∈ k are all nonzero, m1 < · · · < mp,
n1 < · · · < nq, k1 < · · · < kr and u′ is a k–linear combination of {Ψn|n ∈ ε+ Z}.

Suppose that one of p, q, r > 0. Without loss of generality, we assume p > 0.
Then

[T1
1, u] = α1Ψm1+1 + · · ·+ αpΨmp+1 + u′′ 6= 0,

where u′′ ∈ spank{Gi
m′|i = 1, 2, 3,m′ ∈ 1

2
+ Z}. This contradicts the assumption

that [y, u] = 0 for all y ∈ s. Hence, p = q = r = 0, i.e., u = u′ is a k–linear
combination of {Ψn|n ∈ ε+ Z}.

Proposition 4.21. The two Lie superalgebras Alg(K3, id) and Alg(K3, ω3) are not

isomorphic.

Proof. Suppose that φ : Alg(K3, id) → Alg(K3, ω3) is an isomorphism of Lie
superalgebras. Then it induces an automorphism on g = sov, which is isomorphic
to both of the even parts Alg(K3, id)0̄ and Alg(K3, ω)0̄. By Lemma 4.19, φ(s) = s.
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Let u ∈ C(s,Alg(K3, id)1̄). Then

[φ(y), φ(u)] = φ([y, u]) = 0, ∀y ∈ s.

It follows that φ(u) ∈ C(s,Alg(K3, ω3)1̄) since φ(s) = s.
We know from Lemma 4.20 that C(s,Alg(K3, ω3)1̄) = spank{Ψn|n ∈ Z}, in

which [L0,Ψn] = −nΨn for all n ∈ Z. It follows that if u′ ∈ C(s,Alg(K3, ω3)1̄)

such that [L0, u
′] = au′ for some a ∈ k, then a is an integer. By Lemma 4.19 (i),

φ(L0) = ±L0 + x for some x ∈ s. Considering Ψ 1
2
∈ C(s,Alg(K3, id)1̄), we have

φ(Ψ 1
2
) ∈ C(s,Alg(K3, ω3)1̄) satisfying

−1

2
φ(Ψ 1

2
) = [φ(L0), φ(Ψ 1

2
)] = [±L0 + x, φ(Ψ 1

2
)] = ±[L0, φ(Ψ 1

2
)],

which yields a contradiction since 1
2

is not an integer.

Remark 4.22. It was inaccurately stated in Lemma 5.1 of [CP11] that, for the
Lie algebra g = s o v, every automorphism φ of g satisfies φ(L0) = ±L0. A
counterexample to this is the following: we consider the standard basis {h, e, f} of
sl2(k) satisfying

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Then we can verify that for a fixed ` ∈ Z, the linear transformation ad(e ⊗ t`) is
locally nilpotent on g. It follows that σ = exp(ad(e ⊗ t`)) is an automorphism of
g. More explicitly,

σ(Lm) = Lm + `e⊗ tm+`,

σ(h⊗ tm) = h⊗ tm − 2e⊗ tm+`,

σ(e⊗ tm) = e⊗ tm,

σ(f ⊗ tm) = f ⊗ tm + h⊗ tm+` − e⊗ tm+2`.

for m ∈ Z. If ` 6= 0, we know σ(L0) = L0 + `e⊗ t` 6= ±L0.
We also observe that such an automorphism σ does not come from an auto-

morphism of the conformal superalgebra A associated to g. In other words, given
a conformal superalgebra A , the automorphism group of its associated Lie su-
peralgebra Alg(A , id) is not necessarily equal to the automorphism group of the
conformal superalgebra A .
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Chapter 5

The small N = 4 conformal
superalgebra1

In this chapter, we will concentrate on the small N = 4 conformal superalgebra W ,
which is simply called theN = 4 conformal superalgebra in general. We emphasize
the small N = 4 conformal superalgebra here to distinguish it with the large N = 4

conformal superalgebra that will be discussed in the next chapter.

Indeed, the twisted loop conformal superalgebras based on W have been clas-
sified in [KLP09] by computing the automorphism group AutD̂-conf(WD̂), where
WD̂ := W ⊗k D̂ is the D̂–conformal superalgebra obtained by the change of base
differential ring k→ D̂.

The key ingredient of this chapter is to characterize the automorphism group
functor Aut(W ). We will consider the group AutR-conf(WR) for an arbitrary R =

(R, d) in k-drng and prove that Aut(W ) has a subgroup functor GrAut(W )

which has nice properties similar to (i) and (ii) in Remark 4.10.

5.1 The small N = 4 conformal superalgebra

The (small) N = 4 superconformal algebra was described in [SS87]. The corre-
sponding conformal superalgebra W , which is called the small N = 4 conformal
superalgebra, can be defined as follows:

As a Z/2Z–graded k[∂]–module, W = W0̄ ⊕W1̄, where

W0̄ = k[∂]L⊕ k[∂]T1 ⊕ k[∂]T2 ⊕ k[∂]T3,

W1̄ = k[∂]G1 ⊕ k[∂]G2 ⊕ k[∂]G
1 ⊕ k[∂]G

2
.

The λ–bracket on W is given by

1A version of the first two sections of this chapter has been submitted for publication. A preprint
version [Cha13] is available on Arxiv.
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[LλL] = (∂ + 2λ)L, [LλT
i] = (∂ + λ)Ti,

[LλG
p] =

(
∂ + 3

2
λ
)

Gp,
[
LλG

p]
=
(
∂ + 3

2
λ
)

G
p
,

[Ti
λT

j] = iεijlT
l, [Gp

λG
q] =

[
G
p
λG

q]
= 0,

[Ti
λG

p] = −1
2

∑2
q=1 σ

i
pqG

q,
[
Ti

λG
p]

= 1
2

∑2
q=1 σ

i
qpG

q
,[

Gp
λG

q]
= 2δpqL− 2(∂ + 2λ)

∑3
i=1 σ

i
pqT

i,

where i, j = 1, 2, 3, p, q = 1, 2, and σi, i = 1, 2, 3 are the Pauli spin matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (5.1.1)

Before computing the automorphism group AutR-conf(WR) for an object R =

(R, d) in k-drng, we first introduce some notations to simplify the relations above.
These notations will be used to explicitly write down the automorphisms of the
R–conformal superalgebra WR in a nice matrix form.

For x = (xij)2×2 ∈ sl2(k) and u = (uij)2×2 ∈ Mat2(k), we set

T(x) := (x12 + x21)T1 + i(x12 − x21)T2 + 2x11T3,

G(u) := u22G1 + u11G
1 − u12G2 + u21G

2
.

Then W is a k[∂]–module generated by L,T(x),G(u),x ∈ sl2(k),u ∈ Mat2(k).
The λ–bracket on W can be rewritten as follows:

[LλL] = (∂ + 2λ)L,

[LλT(x)] = (∂ + λ)T(x), [T(x)λT(y)] = T([x,y]),

[LλG(u)] =
(
∂ + 3

2
λ
)

G(u), [T(x)λG(u)] = G(xu),

[G(u)λG(v)] = 2tr(uv†)L + (∂ + 2λ)T(uv† − vu†),

where x,y ∈ sl2(k),u,v ∈ Mat2(k), tr : Mat2(k)→ k is the trace map and

† : Mat2(k)→ Mat2(k), u = (uij) 7→ u† =

(
u22 −u12

−u21 u11

)
(5.1.2)

is the standard sympletic involution on Mat2(k) (cf. [Row80, 2.5]).
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5.2 The automorphism group functor

This section encompasses a detailed discussion of the automorphism group functor
Aut(W ) of the small N = 4 conformal superalgebra W .

As for the N = 1, 2, 3 conformal superalgebra KN , we fix the k–vector space
V spanned by {L,T(x),G(u)|x ∈ sl2(k),u ∈ Mat2(k)}. Then W = k[∂]⊗k V is
a free k[∂]–module of rank 8. We identify V with the subspace k⊗V in W . For an
objectR = (R, d) in k-drng, we define

GrAut(WR) = {φ ∈ AutR-conf(WR)|φ(V ⊗k R) ⊆ V ⊗k R}. (5.2.1)

Then GrAut(WR) is a subgroup of AutR-conf(WR) and the construction is functorial
inR, i.e., we have defined a subgroup functor GrAut(W ) : R 7→ GrAut(WR).

We first concentrate on determining GrAut(WR) for an given R = (R, d) in
k-drng. In WR, we use ∂̂ to denote ∂ ⊗ id + id ⊗ d. We also conveniently write
T(rx) := T(x)⊗ r and G(ru) := G(u)⊗ r for r ∈ R,x ∈ sl2(k),u ∈ Mat2(k).

Lemma 5.1. For an arbitrary objectR = (R, d) in k-drng, there is a group homo-

morphism

ιR : SL2(R)× SL2(R0)→ GrAut(WR), (A,B) 7→ θA,B, (5.2.2)

where R0 = ker d, and θA,B ∈ GrAut(WR) is defined by

θA,B(L) = L + T(d(A)A−1), (5.2.3)

θA,B(T(x)) = T(AxA−1), (5.2.4)

θA,B(G(u)) = G(AuB−1), (5.2.5)

for x ∈ sl2(k),u ∈ Mat2(k). In addition, the homomorphism ιR is functorial inR.

Proof. The formulas in (5.2.3)-(5.2.5) define a homomorphism θA,B of R–modules
V ⊗k R → V ⊗k R. It determines a homomorphism of R–modules WR → WR

which preserves the Z/2Z–gradings and satisfies ∂̂ ◦ θA,B = θA,B ◦ ∂̂. This map is
also denoted by θA,B.

To show θA,B is a homomorphism of conformal superalgebras, by Lemma 2.3,

73



it suffices to show

θA,B([(η1 ⊗ 1)λ(η2 ⊗ 1)]) = [θA,B(η1 ⊗ 1)λθA,B(η2 ⊗ 1)] (5.2.6)

for all η1, η2 ∈ V . This can be accomplished by a direct computation.

For instance, let u,v ∈ Mat2(k), then

θA,B([G(u)λG(v)])

= θA,B
(
2tr(uv†)L + (∂ + 2λ)T(uv† − vu†)

)
= 2tr(uv†)L + 2T(tr(uv†)d(A)A−1)

+ (∂̂ + 2λ)T(A(uv† − vu†)A−1),

[θA,B(G(u))λθA,B(G(v))]

= [G(AuB−1)λG(AvB−1)]

= 2tr(AuB−1(AvB−1)†)L

+ (∂ + 2λ)T(AuB−1(AvB−1)† − AvB−1(AuB−1)†)

+ 2T(d(AuB−1)(AvB−1)† − AvB−1d(AuB−1)†).

A straightforward computation shows that

• (uv)† = v†u† for u,v ∈ Mat2(R).

• uv† + vu† = tr(uv†)I for u,v ∈ Mat2(R), where I is the identity matrix.

• A−1 = A† if A ∈ SL2(R).

Hence, AuB−1(AvB−1)† = AuB−1Bv†A−1 = Auv†A−1. Note that d(B) = 0

and d(A−1) = −A−1d(A)A−1, we obtain

2(d(AuB−1)(AvB−1)† − AvB−1d(AuB−1)†)

= 2(d(A)uB−1Bv†A−1 − AvB−1Bu†d(A−1))

= d(A)(uv† − vu†)A−1 + A(uv† − vu†)d(A−1)

+ d(A)(uv† + vu†)A−1 − A(uv† + vu†)d(A−1)

= d(A(uv† − vu†)A−1) + tr(uv†)(d(A)A−1 − Ad(A−1))

= d(A(uv† − vu†)A−1) + 2tr(uv†)d(A)A−1.
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It follows that

θA,B([G(u)λG(v)]) = [θA,B(G(u))λθA,B(G(v))].

Similarly, it is easy to verify that equation (5.2.6) holds for all η1, η2 ∈ V .
Hence, θA,B is a homomorphism ofR–conformal superalgebras.

It can also be directly verified that

θA1A2,B1B2(η ⊗ 1) = θA1,B1 ◦ θA2,B2(η ⊗ 1),

θI,I(η ⊗ 1) = η ⊗ 1,

for all η ∈ V . It follows from Lemma 2.3 that θA1A2,B1B2 = θA1,B1 ◦ θA2,B2 and
θI,I = id. Hence, θA,B has the inverse θA−1,B−1 , which implies θA,B ∈ GrAut(WR).
It also follows that ιR : SL2(R) × SL2(R0) → GrAut(WR) is a group homomor-
phism. From the definition of θA,B, we know that ιR is functorial inR.

Lemma 5.2. For every objectR = (R, d) in k-drng,

ker(ιR) ∼= µ2(R0), (5.2.7)

where R0 = ker d. Additionally, the isomorphism is functorial inR.

Proof. Let (A,B) ∈ ker(ιR), where A ∈ SL2(R) and B ∈ SL2(R0). Since
θA,B = id,

T(x) = θA,B(T(x)) = T(AxA−1),

for all x ∈ sl2(k). Hence, Ax = xA for all x ∈ sl2(k). It follows that A = aI for
some a ∈ µ2(R).

Then
G(u) = θA,B(G(u)) = G(AuB−1),

for all u ∈ Mat2(k), so that au = Au = uB for all u ∈ Mat2(k), and so B = aI

and a ∈ R0 as B ∈ SL2(R0). Therefore, (A,B) = (aI, aI) for a ∈ µ2(R0).

Conversely, for a ∈ µ2(R0), it is obvious that (aI, aI) ∈ ker(ιR). Hence,
ker(ιR) ∼= µ2(R0).

By Lemmas 5.1 and 5.2, we obtain the following theorem:

75



Theorem 5.3. For every object R = (R, d) in k-drng, there is an exact sequence

of groups

1→ µ2(R0)→ SL2(R)× SL2(R0)
ιR−→ GrAut(WR), (5.2.8)

where R0 = ker d. Furthermore, the exact sequence is functorial inR.

In general, ιR fails to be surjective. However, it has properties analogous to
the surjectivity of the quotient morphisms of k–group schemes. More precisely, we
have the following Propositions 5.4 and 5.5. We say a morphism R = (R, dR) →
S = (S, dS) in k-drng is étale if the homomorphism R→ S of rings is étale.

Proposition 5.4. LetR = (R, dR) be an object in k-drng such thatR is an integral

domain, and φ ∈ GrAut(WR). Then there is an étale extension S = (S, dS) of R,

an element A ∈ SL2(S), and an element B ∈ SL2(S0) such that

φS = θA,B = ιS(A,B), (5.2.9)

where S0 = ker dS , and φS is the image of φ under GrAut(WR)→ GrAut(WS).

Proof. We first write φ(L) = L⊗ r + T(x0), where r ∈ R,x0 ∈ sl2(R). Then

φ([LλL]) = (∂̂ + 2λ)(L⊗ r + T(x0)),

[φ(L)λφ(L)] = (∂̂ + 2λ)(L⊗ r2 + T(rx0)).

We deduce from φ([LλL]) = [φ(L)λφ(L)] that r2 = r and rx0 = x0. Since R is an
integral domain, r = 0 or 1. If r = 0, we obtain x0 = rx0 = 0, and so φ(L) = 0.
This contradicts the injectivity of φ. Hence, r = 1, i.e.,

φ(L) = L + T(x0). (5.2.10)

Recall that {σi, i = 1, 2, 3} is a k–basis of sl2(k). Let B be the k[∂]–submodule
of W generated by T(σi), i = 1, 2, 3. Then B is isomorphic to Cur(sl2(k)). We
write φ(T(σi)) = L⊗ ri + T(xi) for ri ∈ R,xi ∈ sl2(R), i = 1, 2, 3. Thus,

φ([LλT(σi)]) = (∂̂ + λ)(L⊗ ri + T(xi)),
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[φ(L)λφ(T(σi))] = (∂ + 2λ)L⊗ ri + (∂ + λ)T(xi)

+ λT(rix0) + T(rid(x0)) + T([x0,xi]).

We deduce from φ([LλT(σi)]) = [φ(L)λφ(T(σi))], i = 1, 2, 3 that ri = 0 and
d(xi) = [x0,xi], i = 1, 2, 3. It follows that φ(T(σi)) = T(xi), i = 1, 2, 3. Hence,
φ(BR) ⊆ BR and φ|BR is an automorphism of BR.

By Proposition 2.5, there is an R-linear automorphism φ of the Lie algebra
sl2(k)⊗k R = sl2(R) such that φ(T(x)) = T(φ(x)) for all x ∈ sl2(R).

It is known that SL2(R) acts on sl2(k)⊗kR functorially via conjugation, which
yields a morphism π : SL2 → Aut(sl2(k)) of k-group schemes. From (3.2.4),
there exists an étale extension S of R and A ∈ SL2(S) such that

φS(x) = AxA−1, x ∈ sl2(S). (5.2.11)

Since R→ S is an étale ring homomorphism, there is a unique k–derivation dS

of S extending dR. Hence, S = (S, dS) is an étale extension of R (cf. Chapter 0,
Corollary 20.5.8 of [Gro64], or Lemma 1.16 of [Gil02]).

Now we consider the image φS of φ in GrAut(WS). From (5.2.10) and (5.2.11),
we obtain

φS(L) = L + T(x0), and φS(T(σi)) = T(AσiA−1), i = 1, 2, 3.

Then we deduce from [φS(L)λφS(T(σi))] = (∂̂ + λ)φS(T(σi)) that

dS(AσiA−1) = [x0, Aσ
iA−1], i = 1, 2, 3.

Hence, a direct computation shows that x0 = dS(A)A−1.

Let ψ = φS ◦ θ−1
A,I . Then ψ ∈ GrAut(WS) and ψ|(WS)0̄

= id. Next we consider
ψ|(WS)1̄

. Suppose

ψ(G(u)) = G(ν(u)), u ∈ Mat2(S),

where ν : Mat2(S)→ Mat2(S) is a bijective S–linear map. Now we deduce from

ψ([T(x)λG(u)]) = [ψ(T(x))λψ(G(u))]

that x · ν(u) = ν(xu) for all x ∈ sl2(S) and u ∈ Mat2(S). Then a straightforward
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computation shows that there is an element B ∈ GL2(S) such that ν(u) = uB−1

for all u ∈ Mat2(S).
Next we show B ∈ SL2(S0). Let u,v ∈ Mat2(k), then

ψ([G(u)(1)G(v)]) = 2T(uv† − vu†),

[ψ(G(u))(1)ψ(G(v))] = 2T(uB−1(vB−1)† − vB−1(uB−1)†)

= 2T(det(B−1)(uv† − vu†)).

It follows that det(B−1) = 1, so B ∈ SL2(S).
For u ∈ Mat2(k), we consider

ψ([G(u)λL]) =

(
1

2
∂̂ +

3

2
λ

)
G(uB−1),

[ψ(G(u))λψ(L)] =

(
1

2
∂ +

3

2
λ

)
G(uB−1) +

3

2
G(ud(B−1)).

These yield that d(B−1) = 0, and hence B ∈ SL2(S0). Therefore, ψ = φS ◦ θ−1
A,I =

θI,B, i.e., φS = θI,B ◦ θA,I = θA,B.

Proposition 5.5. LetR = (R, d) be an object in k-drng. IfR is an integral domain

and the étale cohomology set H1
ét(R,µ2) is trivial, then ιR is surjective.

Proof. Given φ ∈ GrAut(WR), as in Proposition 5.4, its restriction to BR yields
an R–linear automorphism φ of the Lie algebra sl2(k)⊗k R, where B = k[∂]T1 ⊕
k[∂]T2 ⊕ k[∂]T3 ∼= Cur(sl2(k)). It is known that there is an short exact sequence
of k–group schemes

1→ µ2 → SL2 → Aut(sl2(k))→ 1,

which yields a long exact sequences:

1→ µ2(R)→ SL2(R)→ Aut(sl2(k))(R)→ H1
ét(R,µ2)→ · · ·

Hence, the triviality of H1
ét(R,µ2) yields that φ is the image of an element A ∈

SL2(R). i.e.,
φ(T(x)) = AxA−1,x ∈ sl2(R).

Then the proof of this proposition can be completed by similar arguments as in
Proposition 5.4.
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Proposition 5.6. LetR = (R, d) be an object in k-drng. Then

µ2(R) = µ2(R0), (5.2.12)

where R0 = ker d.

Proof. It is obvious that µ2(R0) ⊆ µ2(R). Conversely, let r ∈ µ2(R), then r2 = 1.
Thus 2rd(r) = 0, and so rd(r) = 0, from which we obtain d(r) = rrd(r) = 0, i.e.,
r ∈ R0. This yields that r ∈ µ2(R0). Therefore, µ2(R) = µ2(R0).

Theorem 5.7. Let R = (R, d) be an object in k-drng with R an integral domain.

Then

GrAut(WR) = AutR-conf(WR). (5.2.13)

Proof. Let φ ∈ AutR-conf(WR). It suffices to show φ(V ⊗k R) ⊆ V ⊗k R.

Recall that B = k[∂]T(σ1)⊕ k[∂]T(σ2)⊕ k[∂]T(σ3). If we write

φ(T(σi)) =

Mi∑
m=0

∂̂m(L⊗ rim) + ηi,

rim ∈ R, ηi ∈ BR, i = 1, 2, 3, then

φ([T(σi)λT(σi)]) = 0,

[φ(T(σi))λφ(T(σi))]

=

Mi∑
m,n=0

(−λ)m(∂̂ + λ)n((∂ + 2λ)(L⊗ rimrin) + L⊗ d(rim)rin) + η′i,

where η′i ∈ k[λ]⊗k BR. By comparing the degree and coefficients of λ in

φ([T(σi)λT(σi)]) = [φ(T(σi))λφ(T(σi))], i = 1, 2, 3,

we obtainMi = 0 and r2
iMi

= 0, i = 1, 2, 3. Thus riMi
= 0, i = 1, 2, 3, sinceR is an

integral domain, i.e., φ(T(σi)) ∈ BR. Since B ∼= Cur(sl2(k)), by Proposition 2.5,

φ(T(σi)) ⊆ (kT(σ1)⊕ kT(σ2)⊕ kT(σ3))⊗k R ⊆ V ⊗k R.

More precisely, there is an R–linear automorphism of the Lie algebra sl2(R)

ϕ : sl2(R)→ sl2(R), σi 7→ xi, i = 1, 2, 3 (5.2.14)
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such that φ(T(σi)) = T(xi), i = 1, 2, 3.

A similar argument using φ([LλL]) = [φ(L)λφ(L)] yields that

φ(L) = L +
M∑
m=0

∂̂mT(ym),

for ym ∈ sl2(R). Then φ([LλT(σi)]) = [φ(L)λφ(T(σi))] implies

[ym,xi] = 0, for i = 1, 2, 3,m > 0.

Applying the inverse ϕ−1 of the automorphism ϕ given by (5.2.14), we obtain

[ϕ−1(ym), σi] = 0, for i = 1, 2, 3,m > 0.

Since {σi, i = 1, 2, 3} is a basis of sl2(k) and ϕ−1(ym) ∈ sl2(R), we deduce that
ϕ−1(ym) = 0 for m > 0, and so ym = 0,m > 0. Hence,

φ(L) = L + T(y0),

i.e., φ(L) ∈ V ⊗k R.

Next we consider the odd part. By considering

φ([LλG(u)]) = [φ(L)λφ(G(u))],

for u ∈ Mat2(k), we obtain φ(G(u)) ∈ V ⊗k R. Hence, φ ∈ GrAut(WR).

Corollary 5.8. Let R = (R, d) be an object in k-drng. If R is an integral domain

and H1
ét(R,µ2) is trivial, then

AutR-conf(WR) ∼=
SL2(R)× SL2(R0)

µ2(R0)
, (5.2.15)

where R0 = ker d.

Remark 5.9.

• Since k is an algebraically closed field of characteristic zero, H1
ét(k,µ2) is

trivial. Hence,

Autk-conf(W ) ∼=
SL2(k)× SL2(k)

〈(−I2,−I2)〉
. (5.2.16)
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• For D̂ = (k[tq|q ∈ Q], d
dt

), the étale cohomology set H1
ét(D̂,µ2) is trivial

([GP08a, Theorem 2.9]) and D̂0 = ker( d
dt

) = k. Hence,

AutD̂-conf(WD̂) ∼=
SL2(D̂)× SL2(k)

〈(−I2,−I2)〉
, (5.2.17)

which is the result of Proposition 3.69 in [KLP09].

Recall that, for one of the N = 1, 2, 3 conformal superalgebras KN , the au-
tomorphism group functor Aut(KN) has a subgroup functor GrAut(KN) satis-
fying nice properties (i) and (ii) of Remark 4.10. For the small N = 4 confor-
mal superalgebra W , Aut(W ) also has a subgroup functor GrAut(W ) defined
by (5.2.1). Analogous to property (ii) of Remark 4.10 in the N = 1, 2, 3 cases,
Theorem 5.7 shows that GrAut(W ) coincides with Aut(W ) when evaluating at
R = (R, d) with R an integral domain.

Next we will discuss the properties of Aut(W ) analogous to (i) of Remark 4.10,
which states that GrAut(KN) ∼= ON ◦ f, where

f : k-drng→ k-rng, R = (R, d) 7→ R (5.2.18)

is the forgetful functor, and ON is the group functor ofN×N–orthogonal matrices.
In particular, ON is representable by an affine group scheme of finite type. Base on
the result:

AutD̂-conf(WD̂) ∼= (SL2(D̂)× SL2(k))/〈(−I2,−I2)〉

obtained in [KLP09], it was conjectured in [CP11] that GrAut(W ) = G◦f, where
G = (SL2 × SL2(k))/µ2, and SL2(k) is understood as the affine constant group
scheme defined by the abstract group SL2(k). Theorem 5.3 shows this conjecture
fails to be true.

Besides the forgetful functor f defined by (5.2.18), there is another funtor

t : k-drng→ k-rng, R = (R, d) 7→ R0 := ker(d), (5.2.19)

involved in our discussion on GrAut(W ). For R = (R, d) in k-drng, it is easy
to show that R0 = ker(d) is a commutative associative ring over k. R0 is usually
called the ring of constants ofR ([Gil02]).

Now the functor GrAut(W ) can be described by using the language of group
functors as follows:
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Proposition 5.10. The group functor GrAut(W ) fits into the exact sequence2 of

group functors

1→ µ2 ◦ f→ (SL2 ◦ f)× (SL2 ◦ t)
ι→ GrAut(W ). (5.2.20)

Moreover, ι satisfies properties in Proposition 5.4.

Proposition 5.10 is an analogy of the property (i) of Remark 4.10. Combining
with Theorem 5.7, we observe that the automorphism group functor Aut(W ) is
closely related to affine group scheme of finite type. These relations can be under-
stood as the “weak representability” of Aut(W ).

5.3 Twisted loop conformal superalgebras

Analogous to the N = 1, 2, 3 conformal superalgebras, once the automorphism
group AutD̂-conf(WD̂) is known, we can classify the twisted loop conformal superal-
gebras based on W . This classification has been completed by V. G. Kac, M. Lau,
and A. Pianzola in [KLP09]. For the sake of completeness, we state their results in
this section without repeating the proof.

Theorem 5.11 (Theorem 3.71 of [KLP09]). The k–isomorphism classes of twisted

loop conformal superalgebras based on W bijectively correspond to conjugacy

classes of elements of finite order in PGL2(k). In particular, there are infinitely

many non-isomorphic twisted loop conformal superalgebras based on W .

Recall that AutD̂-conf(WD̂) ∼= SL2(D̂)×SL2(k)
〈(−I2,−I2)〉 and the group Ẑ acts on SL2(k) triv-

ially, it has been proved in [KLP09] that the pointed set H1
ct

(
Ẑ, SL2(D̂)×SL2(k)

〈(−I2,−I2)〉

)
is

identified with the set of conjugacy classes of elements of finite order in PGL2(k).
This gives the classification of twisted loop conformal superalgebras based on W

up to isomorphism of D–conformal superalgebras.
To deduce from isomorphisms of D–conformal superalgebras to isomorphisms

of k–conformal superalgebras, the centroid of each twisted loop conformal super-
algebra L(W , σ) has been explicitly computed in [KLP09]. This result can also be
obtained by applying our Proposition 2.12.

2A sequence of functors from the category k-drng to the category of groups is called exact if it
is an exact sequence of abstract groups when evaluating at eachR in k-drng.

For two functors F and H from k-drng to the category of groups, their direct product F ×H is
defined to be the functor assigning eachR to the direct product of abstract groups F(R)×H(R).

82



Proposition 5.12. For every σ ∈ Autk-conf(W ) of finite order, the canonical homo-

morphism D → Ctdk(L(W , σ)) is an isomorphism.

Proof. From Remark 5.9 and the explicit construction in Lemma 5.1, every k–
automorphism σ fixes L, i.e., σ(L) = L. In addition, W0̄ is a free k[∂]-module gener-
ated by L and Ti, i = 1, 2, 3, where each Ti satisfies [LλT

i] = (∂+λ)Ti, i = 1, 2, 3.
On the other hand, W1̄ is a free k[∂]–module generated by G1,G2,G

1
,G

2
, and they

have the same conformal weight 3
2

with respect to L. Applying Proposition 2.12,
the assertion follows.
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Chapter 6

The large N = 4 conformal
superalgebra1

In this chapter, we will focus on the large N = 4 conformal superalgebra M . The
central extensions of the Lie superalgebra induced by the untwisted loop conformal
algebra L(M , id) are called the large (or big, or maximal) N = 4 superconformal
algebras in physics literatures. They were discovered in [STVP88] and have in-
spired subsequent work such as [DST88], [Van91], and [Ras02]. In particular, the
global and local automorphisms of the large N = 4 superconformal algebras have
been studied in [DST88], based on which a twisted large N = 4 superconformal
algebra has been created in [Van91].

The purpose of this chapter is to complete the classification of twisted loop
conformal superalgebras based on M . Since M is a free k[∂]–module of rank 16.
The computation of the automorphisms of the large N = 4 conformal superalgebra
is more complicated than the computation for the N = 1, 2, 3 and small N = 4

conformal superalgebras. Nonetheless, the automorphism group AutD̂-conf(MD̂)

will also be explicitly determined, where MD̂ will always denote M ⊗k D̂ in this
chapter. It is relevant to point out that our work shows that the automorphism group
Autk-conf(M ) is in fact larger then the one described in the physics literature.

The main results of this chapter are Theorem 6.5, which characterizes the au-
tomorphism group AutD̂-conf(MD̂), and Theorem 6.9, in which the classification
of the twisted loop conformal superalgebras based on M have been completed.
We will also pass to the two Lie superalgebras induced by the two non-isomorphic
twisted loop conformal superalgebras based on M and show that there is no col-
lapse occurring to the isomorphism classes of Lie superalgebras.

1A version of this chapter has been submitted for publication. A preprint version [CP13] is
available on Arxiv
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6.1 The large N = 4 conformal superalgebras

In this section, we will review the definition of the large N = 4 conformal super-
algebra M , and re-formulate the generators and relations of M . With new gener-
ators, all automorphisms of the D̂–conformal superalgebra MD̂ will be explicitly
written down in a nice matrix form.

We start with the definition of the large N = 4 superconformal algebras, which
are a family of Lie superalgebras g(γ) parameterized by one parameter γ 6= 0, 1.
More precisely, g(γ) = g(γ)0̄ ⊕ g(γ)1̄, where

g(γ)0̄ = spank

{
c̃, L̃m, T̃

±i
m , Ũm

∣∣∣i = 1, 2, 3,m ∈ Z
}
,

g(γ)1̄ = spank

{
G̃p
m′ , Q̃

p
m′

∣∣∣p = 1, 2, 3, 4,m′ ∈ 1
2

+ Z
}
,

c̃ is a central element of g(γ) and the superbracket on g(γ) is defined in [STVP88]
as follows:

[L̃m, L̃n] = (m− n)L̃m+n + m3−m
12

δm,−nc̃, [T̃+i
m , T̃

−j
n ] = 0

[L̃m, Ũn] = −nŨm+n, [L̃m, T̃
±i
n ] = −nT̃±im+n,

[T̃+i
m , T̃

+j
n ] = εijkT̃

+k
m+n − m

12γ
δijδm,−nc̃, [T̃±im , Ũn] = 0,

[T̃−im , T̃
−j
n ] = εijkT̃

−k
m+n − m

12(1−γ)
δijδm,−nc̃, [Ũm, Ũn] = − mδm,−n

12γ(1−γ)
c̃,

[L̃m, Q̃
p
n′ ] = −

(
1
2
m+ n′

)
Q̃p
m+n′ , [Ũm, Q̃

p
n′ ] = 0,

[L̃m, G̃
p
n′ ] =

(
1
2
m− n′

)
G̃p
m+n′ , [Ũm, G̃

p
n′ ] = mQ̃p

m+n′ ,

[Q̃p
m′ , Q̃

q
n′ ] = − δpqδm′,−n′

12γ(1−γ)
c̃, [T̃±im , Q̃

p
n′ ] =

∑4
q=1 α

±i
pq Q̃q

m+n′ ,

[T̃+i
m , G̃

p
n′ ] =

∑4
q=1 α

+i
pq (G̃q

m+n′ − 2(1− γ)mQ̃q
m+n′),

[T̃−im , G̃
p
n′ ] =

∑4
q=1 α

−i
pq (G̃q

m+n′ + 2γmQ̃q
m+n′),

[Q̃p
m′ , G̃

q
n′ ] = δpqŨm′+n′ + 2

∑3
i=1(α+i

pq T̃+i
m′+n′ − α−ipq T̃−im′+n′),

[G̃p
m′ , G̃

q
n′ ] = 2δpqL̃m′+n′ +

1
3
δpqδm′,−n′(m

′2 − 1/4)c̃

+4(n′ −m′)
∑3

i=1(γα+i
pq T̃+i

m′+n′ + (1− γ)α−ipq T̃−im′+n′),

for i, j = 1, 2, 3, p, q = 1, 2, 3, 4, m,n ∈ Z, m′, n′ ∈ 1
2

+ Z, and α±i are 4 × 4–
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matrices given by

α±ipq = ±1

2
(δipδ4q − δiqδ4p) +

1

2
εipq.

By setting

Ln = L̃n + (γ − 1
2
)(n+ 1)Ũn, T±in = T̃±in , Un = Ũn,

Gp
n′ = G̃p

n′ + 2(γ − 1
2
)(n′ + 1

2
)Q̃p

n′ , Qp
n′ = Q̃p

n′ , c = 1
4γ(1−γ)

c̃,

for n ∈ Z, n′ ∈ 1
2

+ Z, the Lie superbracket on g(γ) is written as

[Lm,Ln] = (m− n)Lm+n + m3−m
12

δm,−nc, [T+i
m ,T

−j
n ] = 0,

[Lm,Un] = −nUm+n − m2+m
6

δm,−n(2γ − 1)c, [Lm,T
±i
n ] = −nT±im+n,

[T+i
m ,T

+j
n ] = εijkT

+k
m+n − m

3
δm,−nδij(1− γ)c, [T±im ,Un] = 0,

[T−im ,T
−j
n ] = εijkT

−k
m+n − m

3
δm,−nδijγc, [Um,Un] = −m

3
δm,−nc,

[Lm,Q
p
n′ ] = −

(
1
2
m+ n′

)
Qp
m+n′ , [Um,Q

p
n′ ] = 0,

[Lm,G
p
n′ ] =

(
1
2
m− n′

)
Gp
m+n′ , [Um,G

p
n′ ] = mQp

m+n′ ,

[Qp
m′ ,Q

q
n′ ] = −1

3
δpqδm′,−n′c, [T±im ,Q

p
n′ ] =

∑4
q=1 α

±i
pqQq

m+n′ ,

[T+i
m ,G

p
n′ ] =

∑4
q=1 α

+i
pq (Gq

m+n′ −mQq
m+n′),

[T−im ,G
p
n′ ] =

∑4
q=1 α

−i
pq (Gq

m+n′ +mQq
m+n′),

[Qp
m′ ,G

q
n′ ] = δpqUm′+n′ + 2

∑3
i=1(α+i

pqT+i
m′+n′ − α−ipqT−im′+n′)

−2n′+1
3
δm′,−n′δpq(γ − 1

2
)c,

[Gp
m′ ,G

q
n′ ] = 2δpqLm′+n′ +

(2m′)2−1
12

δm′,−n′δpqc

+2(n′ −m′)
∑3

i=1(α+i
pqT+i

m′+n′ + α−ipqT−im′+n′),

for i, j = 1, 2, 3, p, q = 1, 2, 3, 4, m,n ∈ Z, and m′, n′ ∈ 1
2

+ Z.

The Lie superalgebra g(γ)/kc is called the centreless core of g(γ). We observe
that all the g(γ)/kc’s for γ 6= 0, 1 are isomorphic. We denote this common Lie
superalgebra by g. In other words, every g(γ) is a central extension of g.

To the Lie superalgebra g, one associates the conformal superalgebra M , whose
underlying Z/2Z–graded k[∂]–module is

M = (k[∂]⊗ V0̄)⊕ (k[∂]⊗ V1̄),
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where V0̄ = kL ⊕
⊕3

i=1(kTi ⊕ kT−i) ⊕ kU and V1̄ =
⊕4

p=1(kGp ⊕ kQp). The
λ–bracket on M is given by:

[LλL] = (∂ + 2λ)L, [T+i
λT
−j] = 0,

[LλU] = (∂ + λ)U, [LλT
±i] = (∂ + λ)T±i,

[T±iλT
±j] = εijkT

±k, [T±iλU] = [UλU] = 0,

[LλQ
p] =

(
∂ + 1

2
λ
)

Qp, [UλQ
p] = 0,

[LλG
p] =

(
∂ + 3

2
λ
)

Gp, [UλG
p] = λQp,

[Qp
λQ

q] = 0, [T±iλQ
p] =

∑4
q=1 α

±i
pqQq,

[T+i
λG

p] =
∑4

q=1 α
+i
pq (Gq − λQq), [T−iλG

p] =
∑4

q=1 α
−i
pq (Gq + λQq),

[Qp
λG

q] = δpqU + 2
∑3

i=1(α+i
pqT+i − α−ipqT−i).

[Gp
λG

q] = 2δpqL− 2(∂ + 2λ)
∑3

i=1(α+i
pqT+i + α−ipqT−i),

for i, j = 1, 2, 3, and p, q = 1, 2, 3, 4.

To simplify computations, we introduce the following notation:

T+(x) := −i(x12 + x21)T+1 + (x12 − x21)T+2 + 2ix11T+3

T−(x) := −i(x12 + x21)T−1 + (x12 − x21)T−2 + 2ix11T−3

G(u) := i(u12 + u21)G1 − (u12 − u21)G2 − i(u11 − u22)G3 + (u11 + u22)G4

Q(u) := i(u12 + u21)Q1 − (u12 − u21)Q2 − i(u11 − u22)Q3 + (u11 + u22)Q4

for x = (xij) ∈ sl2(k),u = (uij) ∈ Mat2(k). With this new notation, the λ-bracket
on M is rewritten as:

[LλL] = (∂ + 2λ)L, [T+(x)λT
−(y)] = 0,

[LλU] = (∂ + λ)U, [LλT
±(x)] = (∂ + λ)T±(x),

[T±(x)λT
±(y)] = T±([x,y]), [T±(x)λU] = [UλU] = 0,

[LλQ(u)] =
(
∂ + 1

2
λ
)

Q(u), [UλQ(u)] = [Q(u)λQ(v)] = 0,

[LλG(u)] =
(
∂ + 3

2
λ
)

G(u), [UλG(u)] = λQ(u),

[T+(x)λG(u)] = G(xu)− λQ(xu), [T+(x)λQ(u)] = Q(xu),

[T−(x)λG(u)] = −G(ux)− λQ(ux), [T−(x)λQ(u)] = −Q(ux),
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[Q(u)λG(v)] = 2tr(uv†)U− T+(uv† − vu†) + T−(u†v − v†u),

[G(u)λG(v)] = 4tr(uv†)L + (∂ + 2λ)
(
T+(uv† − vu†) + T−(u†v − v†u)

)
,

where x,y ∈ sl2(k),u,v ∈ Mat2(k), and † : Mat2(k) → Mat2(k) is the standard
sympletic involution defined by (5.1.2) in Section 5.1.

6.2 The automorphism group

We will determine the automorphism group AutD̂-conf(MD̂) in this section by ex-
plicitly constructing all automorphisms of the D̂–conformal superalgebra MD̂.

To simplify notations, we write ∂̂ := ∂ ⊗ id + id ⊗ dt for short. We always
use V to denote the k–vector space spanned by {L,T±i,U,Gp,Qp|i = 1, 2, 3, p =

1, 2, 3, 4}. Note that MD̂ = k[∂]⊗kV ⊗k D̂ as k–vector spaces. V can be identified
with the subspace k ⊗ V ⊗ k in MD̂. Hence, we also identify an element η ∈ V
with its image 1⊗ η ⊗ 1 in MD̂.

Lemma 6.1. There is a group homomorphism

ι1 : SL2(D̂)× SL2(D̂)→ AutD̂-conf(MD̂), (A,B) 7→ θA,B, (6.2.1)

where θA,B is the automorphism of the D̂–conformal superalgebra MD̂ given by

θA,B(L) = L + T+(dt(A)A−1) + T−(dt(B)B−1),

θA,B(T+(x)) = T+(AxA−1), θA,B(T−(x)) = T−(BxB−1),

θA,B(U) = U, θA,B(Q(u)) = Q(AuB−1),

θA,B(G(u)) = G(AuB−1)−Q(dt(A)uB−1 − Audt(B−1)),

for x ∈ sl2(k),u ∈ Mat2(k).

Proof. Recall that the underlying D̂–module of MD̂ is k[∂] ⊗k V ⊗k D̂. The for-
mulas define a D̂–module homomorphism V ⊗k D̂ → V ⊗k D̂, which is uniquely
extended to a D̂–module homomorphism θA,B : MD̂ →MD̂ satisfying ∂̂ ◦ θA,B =

θA,B ◦ ∂̂.
Based on Lemma 2.3, it can be proved that θA,B is a homomorphism of D̂–

conformal superalgebras by verifying

θA,B([(η1 ⊗ 1)λ(η2 ⊗ 1)]) = [θA,B(η1 ⊗ 1)λθA,B(η2 ⊗ 1)]
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for all η1, η2 ∈ V . This can be accomplished through a direct computation. As an
example, we show the proof for η1 = Q(u) and η2 = G(v) with u,v ∈ Mat2(k).

θA,B([Q(u)λG(v)])

= 2tr(uv†)θA,B(U)− θA,B(T+(uv† − vu†)) + θA,B(T−(u†v − v†u))

= 2tr(uv†)U− T+(A(uv† − vu†)A−1) + T−(B(u†v − v†u)B−1),

[θA,B(Q(u))λθA,B(G(v))]

= [Q(AuB−1)λ(G(AvB−1)−Q(dt(A)uB−1 − Avdt(B−1)))]

= 2tr(AuB−1(AvB−1)†)U

− T+(AuB−1(AvB−1)† − AvB−1(AuB−1)†)

+ T−((AuB−1)†AvB−1 − (AvB−1)†AuB−1)

= 2tr(uv†)U− T+(A(uv† − vu†)A−1) + T−(B(u†v − v†u)B−1),

A similar computation also shows that

θA1,B1 ◦ θA2,B2(η ⊗ 1) = θA1A2,B1B2(η ⊗ 1),

for A1, A2, B1, B2 ∈ SL2(D̂) and all η ∈ V . We thus deduce by Lemma 2.3 that

θA1,B1 ◦ θA2,B2 = θA1A2,B1B2 .

We also observe that θI2,I2 = id, where I2 is the identity matrix. Hence, the above
equality implies that θA,B is invertible and

ι1 : SL2(D̂)× SL2(D̂)→ AutD̂-conf(MD̂), (A,B) 7→ θA,B

is a group homomorphism.

Lemma 6.2. There is a group homomorphism

ι2 : Ga(D̂)→ AutD̂-conf(MD̂), s 7→ τs, (6.2.2)

where τs is the automorphism of the D̂–conformal superalgebra MD̂ defined by

τs(L) = L + U⊗ s, τs(T
+(x)) = T+(x), τs(T

−(x)) = T−(x),

τs(U) = U, τs(G(u)) = G(u) + Q(su), τs(Q(u)) = Q(u),
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for x ∈ sl2(k) and u ∈ Mat2(k).

Proof. An analogous argument as in Lemma 6.1 shows that the formulas define a
homomorphism of D̂–conformal superalgebras τs : MD̂ → MD̂ for every s ∈ D̂
and τs1 ◦ τs2 = τs1+s2 for s1, s2 ∈ D̂. Observing that τ0 = id, we obtain that τs has
an inverse τ−s and ι2 is a group homomorphism.

Lemma 6.3. There is an automorphism ω of the D̂–conformal superalgebra MD̂

such that

ω(L) = L, ω(T+(x)) = T−(x), ω(T−(x)) = T+(x),

ω(U) = −U, ω(G(u)) = G(u†), ω(Q(u)) = −Q(u†),

for x ∈ sl2(k) and u ∈ Mat2(k). In addition, ω2 = id.

Proof. The proof is similar to that of Lemma 6.1.

Lemma 6.4.

(i) For A,B ∈ SL2(D̂) and s ∈ Ga(D̂), τs ◦ θA,B = θA,B ◦ τs.

(ii) For A,B ∈ SL2(D̂), ω ◦ θA,B ◦ ω = θB,A.

(iii) For s ∈ Ga(D̂), ω ◦ τs ◦ ω = τ−s.

Proof. (i) From Lemma 2.3, it suffices to show

τs ◦ θA,B(η ⊗ 1) = θA,B ◦ τs(η ⊗ 1),

for all η ∈ V . This can be verified by a direct computation. The proofs for (ii) and
(iii) are similar.

Theorem 6.5. There is a group isomorphism:

AutD̂-conf(MD̂) ∼=

(
SL2(D̂)× SL2(D̂)

〈(−I2,−I2)〉
×Ga(D̂)

)
o Z/2Z. (6.2.3)

Proof. From Lemmas 6.1-6.4, there is a group homomorphism:

ι :
(
SL2(D̂)× SL2(D̂)×Ga(D̂)

)
o Z/2Z→ AutD̂-conf(MD̂),

(A,B, s, ε) 7→ θA,B ◦ τs ◦ ωε.
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We claim that ι is surjective, i.e., every φ ∈ AutD̂-conf(MD̂) is of the form
θA,B ◦ τs ◦ ωε for some A,B ∈ SL2(D̂), s ∈ D̂, and ε ∈ {0, 1}.

To prove the claim, we first consider the action of φ on the even part (MD̂)0̄.
We observe

M0̄ = k[∂]L⊕ C ⊕ k[∂]U,

where C = ⊕3
i=1(k[∂]T+i⊕k[∂]T−i). Moreover, B := C⊕k[∂]U is an ideal of M0̄

and B is isomorphic to the current Lie conformal algebra Cur(sl2(k)⊕sl2(k)⊕k).

Next we show that φ(BD̂) ⊆ BD̂. Let η = T±i, i = 1, 2, 3 or U. Write

φ(η) =
M∑
m=0

∂̂m(L⊗ rm) + η′,

where rm ∈ D̂ and η′ ∈ BD̂. Then

0 = φ([ηλη]) = [φ(η)λφ(η)]

=
M∑

m,n=0

(−λ)m(∂̂ + λ)n((∂ + 2λ)L⊗ rmrn + 2L⊗ dt(rm)rn)

+
M∑
m=0

(−λ)m[(L⊗ rm)λη
′] +

M∑
n=0

(∂̂ + λ)n[η′λ(L⊗ rn)] + [η′λη
′]

Since [(L⊗ rm)λη
′], [η′λ(L⊗ rn)], [η′λη

′] ∈ k[λ]⊗k BD̂, we deduce that

0 =
M∑

m,n=0

(−λ)m(∂̂ + λ)n((∂ + 2λ)L⊗ rmrn + 2L⊗ dt(rm)rn).

Comparing the coefficients of λ and noting that D̂ is an integral domain, we obtain
M = 0 and r0 = 0, i.e., φ(η) = η′ ∈ BD̂. Since T±i, i = 1, 2, 3 and U generate B

as a k[∂]–module and φ is a D̂–module homomorphism satisfying φ ◦ ∂̂ = ∂̂ ◦ φ,
we conclude that φ(BD̂) ⊆ BD̂.

Furthermore, we deduce from T±i(0)T
±j = εijkT

±k that

εijkφ(T±k) = φ(T±i)(0)φ(T±j) ∈ (BD̂)(0)(BD̂) ⊆ CD̂,

for k = 1, 2, 3. It yields that φ(CD̂) ⊆ CD̂.
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Therefore, the restriction φ|CD̂ is an automorphism of CD̂. It is known that

CD̂
∼= Cur(sl2(k)⊕ sl2(k))D̂.

Given that sl2(k) ⊕ sl2(k) is a semisimple Lie algebra over k, by Proposition 2.5,
there are two elements A,B ∈ GL2(D̂) such that either of the two following con-
ditions is satisfied

φ(T+(x)) = T+(AxA−1), and φ(T−(x)) = T−(BxB−1), (6.2.4)

φ(T+(x)) = T−(AxA−1), and φ(T−(x)) = T+(BxB−1). (6.2.5)

Since any unit of D̂ is a square, there is no loss of generality in assuming that
A,B ∈ SL2(D̂). We take ψ := φ◦θ−1

A,B if φ satisfies (6.2.4), or ψ := φ◦ω◦θ−1
A,B if φ

satisfies (6.2.5). Then ψ is also an automorphism of the D̂–conformal superalgebra
MD̂ and always satisfies

ψ(T+(x)) = T+(x), and ψ(T−(x)) = T−(x), (6.2.6)

for all x ∈ sl2(k).

To determine ψ(U), we observe that k[∂]U ⊗k D̂ is the center of BD̂, which
is preserved under ψ. Hence, ψ(U) = P (∂)U, where P (∂) is a polynomial in
the indeterminate ∂ with coefficients in D̂. Then the bijectivity of ψ yields that
P (∂) = r is a unit element in D̂, i.e., ψ(U) = U⊗ r for a unit element r ∈ D̂.

Next we consider the action of ψ on the odd part (MD̂)1̄. Suppose

ψ(G(u)) =

M1∑
m=0

∂̂mG(νm(u)) +

M2∑
n=0

∂̂nQ(ν ′n(u)),

where νm, ν ′n : Mat2(k)→ Mat2(D̂) are k–linear maps. Then

ψ([UλG(u)]) = [ψ(U)λψ(G(u))]

yields

λψ(Q(u)) =

M1∑
m=0

(∂̂ + λ)m(λQ(rνm(u)) + Q(dt(r)νm(u))).
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Comparing the coefficients of λ, we obtain M1 = 0, i.e.,

ψ(G(u)) = G(ν0(u)) +

M2∑
n=0

∂̂nQ(ν ′n(u)),

ψ(Q(u)) = Q(rν0(u)).

Similarly, we deduce from

ψ([T+(x)λG(u)]) = [ψ(T+(x))λψ(G(u))]

that M2 = 0 and

ν0(xu) = xν0(u), ν ′0(xu) = xν ′0(u), rν0(xu) = xν0(u), (6.2.7)

for x ∈ sl2(k),u ∈ Mat2(k). Furthermore,

ψ([T−(x)λG(u)]) = [ψ(T−(x))λψ(G(u))]

yields that

ν0(ux) = ν0(u)x, ν ′0(ux) = ν ′0(u)x, rν0(ux) = ν0(u)x, (6.2.8)

for x ∈ sl2(k),u ∈ Mat2(k).

From (6.2.7) and (6.2.8), we conclude that r = 1, and there are s1, s2 ∈ D̂ such
that ν0(u) = s1u and ν ′0(u) = s2u, i.e.,

ψ(G(u)) = G(s1u) + Q(s2u), ψ(Q(u)) = Q(s1u), ψ(U) = U.

Finally, the equality

ψ(Q(u))(0)ψ(G(v)) = ψ(Q(u)(0)G(v))

implies that s1 = ±1; while the equality

ψ(G(u))(0)ψ(G(v)) = ψ(G(u)(0)G(v))
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yields ψ(L) = L + U⊗ s1s2. Let s = s1s2, we obtain

ψ(L) = L + U⊗ s, ψ(G(u)) = G(s1u) + Q(s1su), (6.2.9)

ψ(U) = U, ψ(Q(u)) = Q(s1u). (6.2.10)

Summarizing (6.2.6) and (6.2.9)-(6.2.10), we conclude that ψ = τs ◦ θI,s1I . Hence,

φ = τs ◦ θA,sB = θA,s1B ◦ τs, or φ = τs ◦ θA,s1B ◦ ω = θA,s1B ◦ τs ◦ ω.

We complete the proof of the surjectivity of ι.

Next we will determine the kernel of ι. On one hand, it is obvious that

(−I2,−I2, 0, 0) ∈ ker ι.

On the other hand, we will show that (A,B, s, ε) ∈ ker ι will lead to A = B =

±I2, s = 0 and ε = 0. In fact, (A,B, s, ε) ∈ ker ι is equivalent to θA,B◦τs◦ωε = id.
Hence,

U = θA,B ◦ τs ◦ ωε(U) = (−1)εU,

where ε = 0 or 1. It follows that ε = 0.

Similarly, θA,B ◦ τs(L) = L yields that s = 0, and hence

θA,B(T+(x)) = T+(AxA−1) = T+(x),

θA,B(T−(x)) = T−(BxB−1) = T−(x),

θA,B(Q(u)) = Q(AuB−1) = Q(u),

for all x ∈ sl2(k) and all u ∈ Mat2(k), i.e.,

Ax = xA,Bx = xB, and Au = uB,

for all x ∈ sl2(k) and all u ∈ Mat2(k). This yields that A = B = ±I2. Hence,
ker ι = 〈(−I2,−I2, 0, 0)〉. Therefore, ι induces a group isomorphism

AutD̂-conf(MD̂) ∼=

(
SL2(D̂)× SL2(D̂)×Ga(D̂)

)
o Z/2Z

〈(−I2,−I2, 0, 0)〉

∼=

(
SL2(D̂)× SL2(D̂)

〈(−I2,−I2)〉
×Ga(D̂)

)
o Z/2Z.
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Remark 6.6. The above theorem gives an explicit description of the automorphism
group of the D̂–conformal superalgebra MD̂. Using the same arguments, we also
can obtain the automorphism group of the k–conformal superalgebra M . In fact,

Autk-conf(M ) ∼=
(
SL2(k)× SL2(k)

〈(−I2,−I2)〉
×Ga(k)

)
o Z/2Z. (6.2.11)

6.3 Twisted loop conformal superalgebras

The classification of the twisted loop conformal superalgebras based on M will be
completed in this section. We will first compute the non-abelian cohomology set
H1

ct

(
Ẑ,AutD̂-conf(MD̂)

)
, which yields the classification of the twisted loop confor-

mal superalgebras based on M up to isomorphism of D–conformal superalgebras.
Then we will derive the classification up to isomorphism of k–conformal superal-
gebras using the centroid trick (see Section 2.5).

Proposition 6.7. Every D̂/D–form of MD is isomorphic to either L(M , id) or

L(M , ω) as D–conformal superalgebras, where ω is the automorphism of the k–

conformal superalgebra M defined in Lemma 6.3.

Proof. Based on Theorem 2.9 and Proposition 3.4, D̂/D–forms of MD are param-
eterized by the continuous non-abelian cohomology set H1

ct

(
Ẑ,AutD̂-conf(MD̂)

)
,

where Ẑ := lim
←−

Z/mZ and the continuous action of Ẑ on AutD̂-conf(MD̂) is induced

by the continuous action of Ẑ on D̂ given by 1̄tp/q = ζ−pq tp/q. Hence, the crucial

point of the proof is to compute the cohomology set H1
ct

(
Ẑ,AutD̂-conf(MD̂)

)
.

By Theorem 6.5, there is a split short exact sequence of groups

1→ G→ AutD̂-conf(MD̂)→ Z/2Z→ 1, (6.3.1)

where

G := G1 ×Ga(D̂), and G1 :=
SL2(D̂)× SL2(D̂)

〈(−I2,−I2)〉
.

We observe that Ẑ continuously acts on G through the action on D̂ and Ẑ acts
on Z/2Z trivially. With these Ẑ–actions, the homomorphisms in (6.3.1) are all

95



Ẑ–equivariant. Hence, the exact sequence (6.3.1) induces an exact sequence of
non-abelian continuous cohomology sets

H1
ct(Ẑ,G) −→ H1

ct

(
Ẑ,AutD̂-conf(MD̂)

)
ρ−→ H1

ct(Ẑ,Z/2Z). (6.3.2)

Since the exact sequence (6.3.1) is split, ρ has a section, and hence ρ is sur-
jective. Recall that Ẑ acts on Z/2Z trivially, we have H1

ct(Ẑ,Z/2Z) ∼= Z/2Z =

{[0], [1]}. Since (6.3.2) is exact, the fiber of ρ over [0] is measured by H1
ct(Ẑ,G).

To compute H1
ct(Ẑ,G), we observe that Ẑ piecewise acts on G = G1 ×Ga(D̂). It

follows that
H1

ct(Ẑ,G) = H1
ct(Ẑ,G1)× H1

ct(Ẑ,Ga(D̂)). (6.3.3)

The group G1 fits into an exact sequence of groups

1→ Z/2Z→ SL2(D̂)× SL2(D̂)→ G1 → 1.

Since Z/2Z = 〈(−I2,−I2)〉 is central in SL2(D̂) × SL2(D̂), it yields an exact
sequence of pointed sets

H1
ct(Ẑ,Z/2Z)→ H1

ct(Ẑ,SL2(D̂)× SL2(D̂))→ H1
ct(Ẑ,G1)→ H2

ct(Ẑ,Z/2Z).

Since SL2 × SL2 is a semi-simple group scheme, by Proposition 3.7 (i), the
non-abelian continuous cohomology set H1

ct

(
Ẑ,SL2(D̂)× SL2(D̂)

)
can be iden-

tified with the non-abelian étale cohomology H1
ét(D,SL2 × SL2), which vanishes

according to Proposition 3.7 (ii). Hence,

H1
ct

(
Ẑ,SL2(D̂)× SL2(D̂)

)
= 0.

H2
ct(Ẑ,Z/2Z) also vanishes since it can be identified with H2

ét(D,µ2), which is the
2-torsion of the Brauer group H2

ét(D,Gm) = 0. Therefore,

H1
ct(Ẑ,G1) = 0. (6.3.4)

From [Ser02, I.2.2, Proposition 8], we deduce that

H1
ct(Ẑ,Ga(D̂)) = lim

−→
H1

ct(Z/mZ,Ga(Dm)).

SinceDm/D is a Galois extension with Galois group Z/mZ, H1
ct(Z/mZ,Ga(Dm)) =
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H1
ét(Dm/D,Ga,D) (see [KLP09, Remark 2.27] for details). Now, H1

ét(Dm/D,Ga,D)

can be viewed as a subset of H1
ét(D,Ga), which vanishes because our base scheme,

namely Spec(D), is affine (see [DG70a] III.4.6.6). Hence,

H1
ct(Ẑ,Ga(D̂)) = 0. (6.3.5)

Summarizing (6.3.3), (6.3.4), and (6.3.5), we obtain H1
ct(Ẑ,G) = 0, i.e., the fiber

of ρ over [0] contains exactly one element.

Next we consider the fiber of ρ over [1]. Twisting the Ẑ–groups in (6.3.1) with
respect to the cocycle z : Ẑ 7→ AutD̂-conf(MD̂), 1̄ 7→ ω, we deduce that the fiber of
ρ over [1] is measured by H1

ct(Ẑ, zG). As Ẑ–groups, zG = zG1 × zGa(D̂). Hence,
we also have

H1
ct(Ẑ, zG) = H1

ct(Ẑ, zG1)× H1
ct(Ẑ, zGa(D̂)). (6.3.6)

To compute H1
ct(Ẑ, zG1), we also have an exact sequence

1→ zZ/2Z→ z(SL2(D̂)× SL2(D̂))→ zG1 → 1.

Since ω trivially acts on the subgroup 〈(−I2,−I2)〉 of SL2(D̂)×SL2(D̂), it follows
that (Z/2Z)z = Z/2Z. Hence, there is a long exact sequence

H1
ct(Ẑ,Z/2Z)→ H1

ct(Ẑ, z(SL2(D̂)× SL2(D̂)))→ H1
ct(Ẑ, zG1)→ H2

ct(Ẑ,Z/2Z).

We have seen that H2
ct(Ẑ,Z/2Z) = 0. Further, by the same reasons given above

H1
ct(Ẑ, z(SL2(D̂)×SL2(D̂))) can be identified with the non-abelian étale cohomol-

ogy H1
ét(D, z(SL2 × SL2)), which vanishes since z(SL2 × SL2) is also a reductive

group scheme over D. Hence,

H1
ct(Ẑ, zG1) = 0. (6.3.7)

To understand H1
ct(Ẑ, zGa(D̂)), we first observe that zGa is a twisted form of

Ga (more precisely of the D-group Ga,D) associated to the cocycle z′ : Ẑ →
Aut(Ga(D̂)), 1̄ 7→ −id, viewed in a natural way as an element of H1

ét

(
D ,Aut(Ga)

)
.

The natural D-group homomorphism Gm → Aut(Ga) yields a map

φ : H1
ét

(
D ,Gm

)
→ H1

ét

(
D ,Aut(Ga)

)
.

Since the class [z′] of z′ is visible in the image of φ and H1
ét(D,Gm) = Pic(D) = 0,
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we deduce that zGa is isomorphic to Ga (or rather Ga,D to be precise). This yields
that

H1
ct(Ẑ, zGa(D̂)) ⊂ H1

ét(D, zGa) = H1
ét(D,Ga) = 0. (6.3.8)

From (6.3.6), (6.3.7), and (6.3.8), we deduce that H1
ct(Ẑ, zG) = 0, i.e., the fiber

of ρ over [1] also contains exactly one element.

Consequently, H1
ct

(
Ẑ,AutD̂-conf(MD̂)

)
contains exactly two elements, which

correspond to L(M , id) and L(M , ω).

Proposition 6.8. Let B := L(M , σ) be the twisted loop conformal superalgebra

based on M with respect to an automorphism σ of order m. Then Ctdk(B) ∼= D.

Proof. From Remark 6.6, and the explicit constructions of automorphisms of M

in Lemmas 6.1-6.3, we observe that σ satisfies either one of the following two
conditions:

Condition I: σ(L) = L and σ(U) = U.

Condition II: σ(L) = L + αU for some α ∈ k and σ(U) = −U.

If σ satisfies Condition I, then L is a Virasoro element in M which is fixed by σ.
Moreover, M0̄ is a free k[∂]–module on the basis {L,T±i,U|i = 1, 2, 3}, and each
of T±i or U has primary weight 1 with respect to L. M1̄ is also a free k[∂]–module
with the basis {Gp,Qp|p = 1, 2, 3, 4}. Each Gp has primary weight 3

2
6= 0, and each

Qp has primary weight 1
2
6= 0. By Proposition 2.12, Ctdk(B) ∼= D.

If σ satisfies Condition II, we replace L by Lσ := L + α
2
U and replace Gp by

Gp
σ := Gp + α

2
Qp for p = 1, 2, 3, 4. Then M is also a k[∂]–module generated by

Lσ,T
±i,U,Gp

σ,Q
p, i = 1, 2, 3, p = 1, 2, 3, 4, and in M , we have

[LσλLσ] = (∂ + 2λ)Lσ, [LσλT
±i] = (∂ + λ)T±i, [LσλU] = (∂ + λ)U,

[LσλG
p
σ] = (∂ +

3

2
λ)Gp

σ, [LσλQ
p] = (∂ +

1

2
λ)Qp.

Then Lσ,T
±i, i = 1, 2, 3,U,Gp

σ,Q
p, p = 1, 2, 3, 4 also give a set of generators of

M as k[∂]–module and they satisfy all assumptions in Proposition 2.12. Hence,
Ctdk(B) = D.

Theorem 6.9. Every twisted loop conformal superalgebra based on the large N =

4 conformal superalgebra M is isomorphic to either L(M , id) or L(M , ω) as

conformal superalgebras over k.
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Proof. As pointed out in Section 2.2 that every twisted loop conformal superalge-
bra L(M , σ) based on M is a D̂/D–form of L(M , id) = MD (Proposition 2.8).
By Proposition 6.7, there are only two D̂/D–forms of MD up to isomorphisms of
differential conformal superalgebras over D. They are L(M , id) and L(M , ω).

From Proposition 2.10 and 6.8, we deduce that every twisted loop conformal su-
peralgebra based on M is isomorphic to either L(M , id) or L(M , ω) as conformal
superalgebras over k.

6.4 The corresponding twisted Lie superalgebras

As we have seen in Section 2.1, every twisted loop conformal superalgebraL(M , σ)

based on M determines an infinite dimensional Lie superalgebra Alg(M , σ). In
particular, the untwisted loop conformal superalgebra L(M , id) yields the Lie su-
peralgebra g described in Section 6.1, which is the centreless core of the large
N = 4 superconformal algebras created in [STVP88].

There is another twisted loop conformal superalgebra L(M , ω) not isomorphic
to L(M , id). L(M , ω) gives rise to another Lie superalgebra Alg(M , ω). In this
section, we will explicitly state the generators and relations of Alg(M , ω), and
prove that it is not isomorphic to Alg(M , id) as Lie superalgebras over k.

Recall that
L(M , ω) =

⊕
`∈Z

M` ⊗ kt
`
2 ,

where M` = {a ∈M |ω(a) = (−1)`a}. It can be directly computed that

M` =

k[∂]⊗k spank{L,T+i + T−i,Gi,Q4|i = 1, 2, 3}, if ` is even,

k[∂]⊗k spank{U,T+i − T−i,G4,Qi|i = 1, 2, 3}, if ` is odd.

As a vector space, Alg(M , ω) = L(M , ω)/∂̂L(M , ω). We use η̄ to denote the
image of an element η ∈ L(M , ω) in Alg(M , ω). Then the following elements,

Lm = L⊗ tm+1, Um′ = U⊗ tm′ ,

Ti
m = (T+i + T−i)⊗ tm, Jim′ = (T+i − T−i)⊗ tm′ ,

Gi
m′ = Gi ⊗ tm′+ 1

2 , Φm = G4 ⊗ tm+ 1
2 ,

Qi
m = Qi ⊗ tm− 1

2 , Ψm′ = Q4 ⊗ tm′− 1
2 ,
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for i = 1, 2, 3,m ∈ Z andm′ ∈ 1
2
+Z, form a basis of Alg(M , σ). The superbracket

on Alg(M , ω) can be written as:

[Lm,Ln] = (m− n)Lm+n, [Lm,Un′ ] = −n′Um+n′ ,

[Lm,T
i
n] = −nTi

n, [Lm, J
i
n′ ] = −n′Jim+n′ ,

[Lm,G
i
n′ ] = (1

2
m− n′)Gi

m+n′ , [Lm,Φn] = (1
2
m− n)Φm+n,

[Lm,Q
i
n] = −(1

2
m+ n)Gi

m+n, [Lm,Ψn′ ] = −(1
2
m+ n′)Ψm+n′ ,

[Um′ ,Un′ ] = 0, [Um′ ,T
i
n] = [Um′ , J

i
n′ ] = 0,

[Um′ ,G
i
n′ ] = m′Qi

m′+n′ , [Um′ ,Φn] = m′Ψm′+n,

[Um′ ,Q
i
n] = 0, [Um′ ,Ψn′ ] = 0,

[Ti
m,T

j
n] = εijkT

k
m+n, [Ti

m, J
j
n′ ] = εijkJ

k
m+n′ ,

[Ti
m,G

j
n′ ] = εijkG

k
m+n′ −mδijΨm+n′ , [Ti

m,Φn] = mQi
m+n,

[Ti
m,Q

j
n] = εijkQ

k
m+n, [Ti

m,Ψn′ ] = 0,

[Jim′ , J
j
n′ ] = εijkT

k
m′+n′ , [Jim′ ,Q

j
n] = δijΨm′+n,

[Jim′ ,Ψn′ ] = −Qi
m′+n′ , [Jim′ ,Φn] = −Gi

m′+n,

[Jim′ ,G
j
n′ ] = δijΦm′+n′ −m′εijkQk

m′+n′ , [Qi
m,Q

j
n] = 0

[Qi
m,Ψn′ ] = 0 [Ψm′ ,Ψn′ ] = 0,

[Qi
m,G

j
n′ ] = δijUm+n′ + εijkJ

k
m+n′ , [Qi

m,Φn] = Ti
m+n,

[Ψm′ ,G
i
n′ ] = −Ti

m′+n′ , [Ψm′ ,Φn] = Um′+n,

[Gi
m′ ,Φn] = (n−m′)Jim′+n, [Φm,Φn] = 2Lm+n,

[Gi
m′ ,G

j
n′ ] = 2δijLm′+n′ − εijk(m′ − n′)Tk

m′+n′ ,

for i, j = 1, 2, 3, m,n ∈ Z and m′, n′ ∈ 1
2

+ Z.
In fact, the twisted large N = 4 superconformal algebra described in [Van91] is

isomorphic to a central extension of the Lie superalgebra Alg(M , ω).
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Proposition 6.10. The two Lie superalgebras Alg(M , id) and Alg(M , ω) are not

isomorphic.

Proof. We will show that the two Lie superalgebras Alg(M , id) and Alg(M , ω)

indeed have non-isomorphic even parts Alg(M , id)0̄ and Alg(M , ω)0̄.

Recall from Section 6.1 that

Alg(M , id)0̄ = spank{Lm,T±im ,Um|i = 1, 2, 3,m ∈ Z},

in which v := spank{Lm|m ∈ Z} is isomorphic to the centreless Virasoro algebra,

si := spank{T+i
m ,T

−i
m |m ∈ Z}, i = 1, 2, 3, and s0 := spank{Um|m ∈ Z},

are all abelian Lie subalgebras. They satisfy

Alg(M , id)0̄ = v⊕ s0 ⊕ s1 ⊕ s2 ⊕ s3.

Similarly, we know that

Alg(M , ω)0̄ = spank{Lm,Ti
m, J

i
m′ ,Um′ |i = 1, 2, 3,m ∈ Z,m′ ∈ 1

2
+ Z},

in which b := spank{Ti
m, J

i
m′ ,Um′|i = 1, 2, 3,m ∈ Z,m′ ∈ 1

2
+ Z} is an ideal.

Suppose φ : Alg(M , id)0̄ → Alg(M , ω)0̄ is an isomorphism of Lie algebras.
We consider the composition

φ̄ : v ↪→ Alg(M , id)0̄
φ−→ Alg(M , ω)0̄ � Alg(M , ω)0̄/b ∼= v,

which is an endomorphism of the centreless Virasoro algebra. By Lemma 4.15 (ii),
either φ̄ = 0 or φ̄ is injective.

If φ̄ = 0, φ(v) ⊆ b. For each i = 0, 1, 2, 3, we consider

φi : si ↪→ Alg(M , id)
φ−→ Alg(M , ω)� Alg(M , ω)0̄/b ∼= v,

which is a homomorphism from an abelian Lie algebra into the centreless Virasoro
algebra. By Lemma 4.15 (i), the image of φi has dimension at most one, i.e.,

φ(si) ⊆ kxi + b
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for some xi ∈ Alg(M , ω)0̄. It follows that

φ(Alg(M , id)0̄) ⊆ φ(v)+φ(s0)+φ(s1)+φ(s2)+φ(s3) ⊆ kx0+kx1+kx2+kx3+b,

which contradicts the fact that φ is an isomorphism.

Hence, we conclude that φ̄ is injective. It follows from Lemma 4.15 that φ̄(L0) =
1
`
L0 for some nonzero integer `, i.e., φ(L0) = 1

`
L0 + x for some x ∈ b. Note that

Alg(M , id)0̄ has a k–basis {Lm,T±im ,Um|i = 1, 2, 3,m ∈ Z}, and

[L0,Lm] = −mLm, [L0,T
±i
m ] = −mT±im , [L0,Um] = −mUm.

We deduce that if z ∈ Alg(M , ω)0̄ = φ(Alg(M , id)0̄) such that [φ(L0), z] = az

for some a ∈ k, then a is an integer. However, for U 1
2
∈ Alg(M , ω)0̄, we have

[φ(L0),U 1
2
] = [1

`
L0 + x,U 1

2
] = − 1

2`
U 1

2
,

which yields a contradiction. Hence, Alg(M , id)0̄ is not isomorphic to Alg(M , ω)0̄.

Remark 6.11. Let M (γ) be the conformal superalgebra associated to g(γ). From
the relations

[LλL] = (∂ + 2λ)L +
1

12
λ3c, and [LλU] = (∂ + λ)U− 1

3

(
γ − 1

2

)
λ2c,

in M (γ), we observe that the automorphisms τs with s ∈ k as defined in Lemma 6.2
and ω of M created in Lemma 6.3 can not be lifted to an automorphism of M (γ)

if γ 6= 1
2
. This would seem to justify the absence of one-dimensional central exten-

sions of Alg(M , ω) in [STVP88] when γ 6= 1
2
.

In contrast, both the automorphism τs and ω of M can be lifted to automor-
phisms τ̂s and ω̂ of M (1

2
). The action of τ̂s and ω̂ on M (1

2
) is explicitly given

by:

τ̂s(L) = L + sU− s2

6
c, τ̂f (U) = U− s

3
c, τ̂s(T

±i) = T±i,

τ̂f (G(u)) = G(u) + Q(su), τ̂s(Q(u)) = Q(u), τ̂s(c) = c

ω̂(L) = L, ω̂(U) = −U, ω̂(T±i) = T∓i,

ω̂(G(u)) = G(u†), ω̂(Q) = −Q(u†), ω̂(c) = c,
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for i = 1, 2, 3,u ∈ Mat2(k).
There is a natural (injective) group homomorphism from Autk-conf

(
M (γ)

)
→

Aut
(
g(γ)

)
. The above considerations applied to the case γ = 1

2
show that the group

of automorphisms of g(1
2
) is indeed larger than the one described in the physics

literature.
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Chapter 7

Conclusion
The main ingredients of this dissertation are the automorphism group functors and
the classification of the twisted loop conformal superalgebras based on each of the
N = 1, 2, 3 and (small or large) N = 4 conformal superalgebras over k, which are
the conformal superalgebras of particular interest in theoretical physics.

For the N = 1, 2, 3 conformal superalgebra KN over k, we have completely
determined the automorphism group of the R–conformal superalgebra KN ⊗k R
for an arbitrary k–differential ring R = (R, d) with R an integral domain (see
Theorem 4.9). We did the same for the small N = 4 conformal superalgebra
W with the additional assumption that H2

ét(R,µ2) is trivial (see Corollary 5.8).
On the one hand, these results allow us to observe relationships between the au-
tomorphism group functor Aut(A ) and certain affine group schemes (see Theo-
rem 4.9, 5.7, and Proposition 5.10) for A = KN with N = 1, 2, 3 or W . Such
relations are analogies of the representability of the automorphism group functors
of usual finite dimensional algebras and motivate us to further investigate such re-
lations in a general setting, such as for an arbitrary finite simple conformal su-
peralgebra. On the other hand, specializing these results to the situation where
R = D̂ = (k[tq|q ∈ Q], d

dt
), we obtain the automorphism group AutD̂-conf(A ⊗kD̂),

which is used in the classification of twisted loop conformal superalgebras. With
the intent of classifying twisted loop conformal superalgebras, we also derived the
automorphism group AutD̂-conf(M ⊗k D̂) for the large N = 4 conformal superal-
gebra M (see Theorem 6.5).

All of the above results concerning automorphism groups were obtained by ex-
plicitly constructing all of the automorphisms. In order to write down these au-
tomorphisms, we made an appropriate choice of generators which simplified the
defining relations for the small N = 4 and large N = 4 conformal superalgebras.
In the small N = 4 case, such a choice simplifies the description of automorphisms
of W ⊗k D̂ given in [KLP09] and enables us to consider the automorphisms of
W ⊗k R for an arbitrary k–differential ringR in Chapter 5.
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Using the results on automorphism groups, we completed the classification of
the twisted loop conformal superalgebras based on A up to k–linear isomorphism
for each of the N = 1, 2, 3 and (small or large) N = 4 conformal superalgebras
A in Theorems 4.14, 5.11, and 6.9, respectively. The main idea behind the clas-
sification comes from the general theory of twisted forms of differential conformal
superalgebras developed in [KLP09]: each twisted loop conformal superalgebra
based on A is viewed as a D̂/D–twisted form based on A ⊗k D and then they
are classified (up to isomorphism of D–conformal superalgebras) in terms of the
non-abelian cohomology sets H1

ct

(
Ẑ,AutD̂-conf(A ⊗k D̂)

)
.

Finally, we deduce the classification up to isomorphism over D to the clas-
sification up to isomorphism over k using the so-called “centroid trick”, which in-
volves justifying that the canonical mapD → Ctdk(L(A , σ)) is a bijection for each
twisted loop conformal superalgebra L(A , σ). In order to prove this, we obtained
a more general result about the centroid of a twisted loop conformal superalgebra
satisfying certain properties (cf. Proposition 2.12).

The research presented in this dissertation is part of the increasingly active in-
vestigation of infinite dimensional Lie theory which makes use of non-abelian Ga-
lois cohomology and descent theory. Such methods are based on the viewpoint that
a twisted affine Kac-Moody algebra (derived modulo its center) is a D̂/D–twisted
form of g ⊗k D, for a finite dimensional split simple Lie algebra g over k. This
viewpoint allows one to investigate twisted affine Kac-Moody algebras using de-
scent theory. In the conformal setting, we also hope to use descent theory for the
investigation of twisted loop conformal superalgebras in the near future.
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morphismes de schémas, première partie. Publications mathématiques
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