
FastLSA – A Fast Linear-Space Algorithm for
Sequence Alignment
K. Charter1, A. Driga1, P. Lu1, J. Schaeffer1, D. Szafron1 and I.
Parsons2

1Department of Computing Science University of Alberta, Edmonton, AB,
Canada, T6G 2E8 and 2BioTools Inc., Ironwood Professional Centre,
800, 10050 - 112 Street, Edmonton, AB, Canada T5K 2J1

Abstract

For two DNA or protein sequences of length m and n, dynamic programming alignment
algorithms like Needleman-Wunsch and Smith-Waterman take O(m×n) time and use O(m×n)
space, so we refer to them as full matrix (FM) algorithms. This space requirement means that
large sequences will not completely fit in main memory. It also means that shorter sequences will
not completely reside in cache memory. Hirschberg’s algorithm reduces the space requirements
to O(min(m, n)), but requires approximately twice the number of operations required by the FM
algorithms. This paper presents the FastLSA algorithm that is adaptive to the amount of space
available. It allows a user to trade space for operations. At one extreme, it uses linear space with
approximately 1.5 times the number of operations required by the FM algorithms. At the other
extreme, it uses quadratic space with no extra operations compared to the FM algorithms.
However, our experiments show that in practice, due to memory caching effects, FastLSA and
Hirschberg’s algorithm are often faster than FM. This is true even though the number of
operations is higher and even when there is enough main memory to hold the entire dynamic
programming matrix of the FM algorithm. FastLSA has been incorporated into the newest and
fastest commercialproducts like BioTools’ ChromaTool. This paper also briefly describes how to
parallelize the FastLSA algorithm to further improve its performance.

Introduction

Sequence alignment is one of the fundamental operations in bioinformatics since it is an
essential step in two different molecular biology problems: determining the biological functions
of proteins and determining the evolutionary relationship between organisms. The primary
structure of a protein consists of a sequence of amino acids, each represented by one of 20
different letters of the alphabet. At a lower level, each amino acid is a triplet of three
neucleotides represented by one of the starting letters of the names of the four neucleotides:
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T).

One of the consequences of this representation is that sequence alignment can be done at the
neucleotide level using an alphabet of 4 characters or at the protein level, using an alphabet of 20
with a sequence 1/3 as long. Although there are 43 = 64 different triplets, multiple different
triplets correspond to the same amino acid so there are only 20 valid amino acids. In addition,
one triplet also corresponds to the start codon and 3 triplets correspond to stop codons. The
reduction from 64 different triplets to the 20 naturally occurring triplets is one reason for doing

2

sequence matching at the amino acid level instead of at the neucleotide level. A second reason is
that there are known similarities between the 20 different amino acids. Nevertheless, sequence
alignment can be done either at the neucleotide level or the amino acid level, using the same
sequence alignment algorithms.

To align two protein sequences, say TLDKLLKD and TDVLKAD, the sequences can be
shifted right or left to align as many identical letters as possible. For example, the maximum
number of identical letters (i.e. 3) can be obtained using the shift:

TLDKLLKD
-TDVLKAD

where gaps are denoted by ‘-’. However, by allowing gaps to be inserted into the middle of
sequences, we can often obtain more identical letters (i.e. 5):

TLDKLLK-D TLDKLLK-D
T-DVL-KAD T-D-VLKAD

The insertion of a gap is not an abstract mathematical operation. It corresponds to specific
common biological events: an insertion mutation in which an extra neucleotide is inserted into
one sequence or a deletion mutation in which a neucleotide is deleted. Of course if we are
matching at the protein level, a gap corresponds to the insertion or deletion of 3 neucleotides.
The matching of non-identical letters also corresponds to a biological event: a point mutation in
which a single neucleotide is replaced by another. However, some mutations have a larger
biological effect than others. These effects can be more readily understood be viewing the
changes at the amino acid level instead of at the neucleotide level.

Consider a silent mutation that causes the triplet TCT to change to the triplet TCG. Since
both of these triplets code for the same amino acid (S - serine), these two triplets will have an
identity match during an amino acid sequence alignment. Now consider a neutral mutation that
causes the triplet AAA to change to the triplet AGA. This change is more significant since these
triplets code for the different amino acids, (K – lysine) and (R – arginine) respectively. However,
we know that these two amino acids have similar function so in sequence alignment we would
like to indicate that the letters K and R are a better match than the amino acids (K – lysine) and
(C – cysteine) which have very different functional properties. To accommodate such similarity
matches, we do not simply count the number of identical characters when we are aligning
sequences. Instead, we create a scoring function based on the numeric entries of a similarity
table. For each pair of letters, the table gives a similarity score, where higher values indicate
higher similarity between amino acids. The score of an alignment is obtained by iterating over all
pairs of corresponding letters in the aligned sequences and adding up the entries in the similarity
table that is indexed by each pair. An optimal alignment is an alignment with the highest score
for a given scoring function (it might not be unique).

The similarity table for the scoring function used in this paper is given in Figure 1. This
similarity table is based on the popular Dayhoff scoring matrix (MDM78 Mutation Data Matrix -
1978) [DBH1983]. The Dayoff matrix is the log-odds form of the PAM-250 (Percent Accepted
Mutations) mutation matrix, where 1 PAM means there has been 1 mutation per 100 residues.
250 PAM means there has been 250 mutations per 100 residues or 2.5 mutations per residue. The
PAM concept was developed by M.O. Dayhoff in the 1960's to measure the evolutionary
pressure that had been placed on a protein sequence. The similarity table of Figure 1 is the
default one used in the BioTools’ commercial product PepTool (www.biotools.com). It has been

3

scaled so that each entry is a non-negative integer. The table is symmetric so only the lower half
is shown.

- Name Code A B C D E F G H I K L M N O P Q R S T V W X Y Z
A Alanine GC* (*=any) 16 -
B N or D 0 20 -
C Cysteine TGT TGC 0 0 36 -
D Aspartic acid GAT GAC 0 20 0 20 -
E Glutamic acid GAA GAG 8 10 0 12 20 - - - - - - - - - - - - - - - - - -
F Phenylalanine TTC TTT 0 0 0 0 0 28 - - - - - - - - - - - - - - - - -
G Glycine GG* 0 0 0 0 0 0 16 - - - - - - - - - - - - - - - - -
H Histidine CAT CAC 0 6 0 0 0 0 0 24 - - - - - - - - - - - - - - - -
I Isoleucine ATT ATC ATA 0 0 0 0 0 12 0 0 20 - - - - - - - - - - - - - -
K Lysine AAA AAG 0 12 0 0 0 0 0 0 0 20 - - - - - - - - - - - - - -
L Leucine TTA TTG CT* 0 0 0 0 0 14 0 0 10 0 20 - - - - - - - - - - - -
M Methionine ATG 0 0 0 0 0 6 0 0 8 0 16 24 - - - - - - - - - - - -
N Asparagine AAT AAC 0 20 0 14 10 0 0 6 0 12 0 0 20 - - - - - - - - - - -
O K 0 12 0 0 0 0 0 0 0 20 0 0 12 20 - - - - - - - - - -
P Proline CC* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 - - - - - - - - -
Q Glutamine CAA CAG 0 12 0 6 14 0 0 6 0 6 0 0 12 6 0 20 - - - - - - - -
R Arginine CG* AGA AGG 0 0 0 0 0 0 0 10 0 16 0 0 0 16 0 10 20 - - - - - - -
S Serine TC* AGT AGC 10 8 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 20 - - - - - -
T Threonine AC* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 20 - - - - -
V Valine GT* 0 0 0 0 0 0 0 0 16 0 12 6 0 0 0 0 0 0 0 20 - - - -
W Tryptophane TGG 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 6 0 0 0 36 - - -
X Anything 6 20 - -
Y Tyrosisne TAT TAC 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 6 28 -
Z E or Q 8 12 0 6 20 0 0 6 0 6 0 0 12 6 0 20 10 0 0 0 0 6 0 20

Figure 1. The similarity scoring table for this paper (higher scores denote higher similarity).

If an amino acid in one sequence lines up with a gap in the other sequence, then a negative
value, called a gap penalty is added to the score. Since insertion of multiple gaps into a particular
location is common, it is more realistic to penalize subsequent gaps in the same location by a
lower value. Formula 1 describes this more realistic gap penalty. If the extensionPenalty of
Formula 1 is non-zero, then the gap penalty is said to be affine. In the experiments described in
this paper we use an affine gap penalty given by Formula 1, where the initialPenalty = 20 and
the extensionPenalty =10.

Formula 1: gapPenalty = initialPenalty + extensionPenalty×gapSize

Many algorithms for sequence alignment are based on dynamic programming techniques that
are equivalent to the algorithms proposed by Needleman and Wunsch [NW1970] and Smith and
Waterman [SW1981]. Aligning two sequences of length m and n is equivalent to finding the
maximum cost path through a dynamic program matrix (DPM) of size m+1 by n +1, where an
extra row and column is added to capture leading gaps. Given a DPM of size m by n, it takes
O(m×n) time to compute the DPM cost entries, and then O(m+n) time to identify the maximum-
cost path in the DPM. In this paper, algorithms that are based on storing the complete matrix are
called full matrix algorithms (FM).

Unfortunately, calculations requiring O(m×n) space can be prohibitive. For instance,
aligning two sequences with 10,000 letters each requires 400Mbytes of memory, assuming each
DPM entry is a single 4 byte integer. Given that we now have the capacity to sequence entire
genomes, pairwise sequence comparisons involving up to four million neucleotides at a time are
now desirable. O(m×n) storage of this magnitude would require O(1013) Mbytes of memory
which is beyond the range of current technology. If the storage requirements for sequence

4

alignment could be substantially reduced, then genome-scale comparisons could be made more
feasible.

Hirschberg was the first to report a way of doing the computation using linear space
[Hir1975]. However, not storing the entire DPM means that some of the entries need to be
recomputed to find the optimal path. It is a classic space-time tradeoff: the number of operations
approximately doubles, but the space overhead drops from quadratic to linear in the length of the
sequences. In fact, Hirschberg’s original algorithm was designed to compute the longest common
sub-strings of two strings, but Myers and Miller [MM1988] applied it to sequence alignment.

In summary, there are two extremes for pairwise optimal sequence alignment:

1. full matrix, which minimizes the computational complexity, and

2. linear space, which minimizes the storage requirements.

Neither of these algorithms accommodates the real-world situation where you have more
memory than needed for a linear space algorithm, but not enough to do a full matrix
computation.

This paper introduces the FastLSA (Fast Linear-Space Alignment) algorithm. Linear-space
alignment algorithms, such as Hirschberg’s algorithm, do not take advantage of additional
memory that might be available. Hirschbergs’ algorithm achieves its linear space by recursively
dividing one sequence in half, computing the corresponding optimal division point for the other
sequence, and then aligning each pair of sub-sequences. FastLSA recursively subdivides each
sequence into k ≥ 2 pieces, and uses storage that is bounded by k×(m+n), FastLSA uses the
additional storage to reduce the execution time. Hirschberg’s algorithm re-computes
approximately m×n values, while a FM algorithm has no re-computations. However, FastLSA
with k = 2 re-computes only half as many values as Hirschberg’s algorithm since both sequences
are bisected instead of one. Higher values of k give additional savings. In the limit, where k =
min(m,n), FastLSA does no re-computations and reduces to a FM algorithm. The experimental
results closely mirror the analytical results, showing that FastLSA out-performs Hirschberg’s
algorithm. In practice, FastLSA and Hirschberg’s algorithm are often faster than the FM
algorithms since the reduced space requirements result in more computations being performed in
cache rather than in main memory. In summary, FastLSA achieves its faster running time by
generalizing Hirschberg’s algorithm in two important ways:

1. It subdivides the both sequences instead of only one.

2. It subdivides into k parts instead of just 2 parts.

This paper presents the FastLSA algorithm and analyses its space and time requirements. The
paper then describes the results of some experiments that compare FastLSA to a FM algorithm
and Hirschberg’s algorithm. Next, a parallel version of FastLSA is described. Finally, some
experimental results are provided for an implementation of the parallel version.

Dynamic Programming Algorithms

FastLSA is a dynamic programming algorithm like the FM algorithms and Hirschberg’s
algorithm, and it produces exactly the same optimal alignment for a given scoring function. The
algorithms differ only in the time and space required.

The example sequences from the introduction can be used to illustrate the differences
between these algorithms. The scoring function uses the scoring table of Figure 1 and a gap

5

penalty defined by Formula 1. However, for simplicity of presentation, this section uses
initialPenalty =10 and extensionPenalty = 0, so the gaps are not really affine. In the
experimental results section of this paper, true affine gaps are used, with initialPenalty = 20 and
extensionPenalty = 10, since they produce more biologically accurate alignments. Consider the
sequences:

TLDKLLKD
TDVLKAD

The alignment:

TLDKLLK-D
T-D-VLKAD

Yields an optimal score of: ScoringTable[T,T] + gap + ST[D,D] + gap + ST[L,V] + ST[L,L] +
ST[K,K] + gap + ST[D,D] = 20 + (-10) + 20 + (-10) + 12 + 20 + 20 + (-10) + 20 = 82. How is
this optimal alignment obtained?

One sequence is placed along the top of the matrix and the other sequence is placed along the
left side and a gap is added to the start of each sequence. Each different path from the top left
corner to the bottom right corner of the matrix that goes only right, down or diagonal, represents
a different alignment. Before discussing how to compute the optimal alignment, it is useful to
understand how a path corresponds to an alignment. Figure 2 illustrates an alignment.

- T L D K L L K D
-
T
D
V
L
K
A
D

match or
mismatch

gap on top

gap on left

Legend

Figure 2. An alignment path.

To translate a matrix path to an alignment, follow the path from the top left to the bottom
right. Every diagonal move corresponds to aligning two letters as either a match or a mismatch.
For example, Figure 2 begins with the diagonal move: 1) (-\-) to (T\T). This move corresponds to
the partial alignment:

T
T

A right move corresponds to the insertion of a gap in the vertical sequence. For example the right
move: 2) (T\T) to (T\L) results in the partial alignment:

TL
T-

A down move corresponds to the insertion of a gap in the horizontal sequence. For example,
after the diagonal move: 3) (T\L) to (D\D), the right move: 4) (D\D) to (D\K), and the three

6

diagonal moves: 5) (D\K) to (V\L), 6) (V\L) to (L\L) and 7) (L\L) to (K\K), the down move: 8)
(K\K) to (A\K) results in the partial alignment:

TLDKLLK-
T-D-VLKA

The final diagonal move 9) (A\K) to (D\D), results in the final complete alignment:

TLDKLLK-D
T-D-VLKAD

Note that move 5) (D\K) to (V\L) corresponded to a mismatch, instead of a match. Any path can
be translated to an alignment, but to obtain the optimal alignment for a given scoring function,
we need to identify the corresponding optimal path. To derive the optimal path in the matrix,
each of the three algorithms can be divided into two phases, which we call FindScore and
FindPath. Figure 3 shows the DPM scores for the example sequences that are computed during
the FindScore phase. The entries with numerical subscripts form the optimal path, that is
computed in the FindPath phase.

- T L D K L L K D
- 010 -10 -20 -30 -40 -50 -60 -70 -80
T -10 209 108 0 -10 -20 -30 -40 -50
D -20 10 20 307 206 10 0 -10 -20
V -30 0 22 20 30 325 22 12 2
L -40 -10 20 22 20 50 524 42 32
K -50 -20 10 20 42 40 50 723 62
A -60 -30 0 10 32 42 40 622 72A

D -70 -40 -10 20 22 32 42 52L 821

Figure 3. A dynamic programming matrix using the similarity table from Figure 1 and non-affine
gap penalties from Formula 1 with initialPenalty = 0 and extensionPenalty = 10.

In the FindScore phase, a 0 is placed in the upper-left corner of the matrix. Each algorithm
propagates scores from the upper-left corner of the matrix to the lower-right corner of the matrix.
The score that ends up in the lower-right corner is the optimal alignment score. The score of any
entry is the maximum of the three scores that can be propagated from the entry on its left, the
entry above it and the entry above-left. A diagonal move corresponds to a match or mismatch
alignment and adds the scoring table value for the two letters being considered. A down (right)
move corresponds to inserting a gap in the horizontal (vertical) sequence and adds a gap penalty.
For example, the score of 209 in the (T\T) entry near the top left corner is the maximum of the
scores from its left entry(-10 + -10 = -20), above entry (-10 + -10 = -20) and above-left entry (0
+ Similarity[T, T] = 0 + 20 = 20). The score of 108 in the (T\L) entry is the maximum of the
scores from its left entry (20 + -10 = 10), its above entry (-20 + -10 = -30) and its above-left
entry (-10 + Similarity[T,L] = -10 + 0 = -10).

The FM algorithms, Hirschberg’s algorithm and FastLSA all compute the score of the
alignment in the same way. However, the FM algorithms store all of the matrix entries (m+1)×(n
+1), while the other two algorithms propagate a single row of scores (m entries) as the matrix is
computed, overwriting an old row of scores by a new row of scores.

7

In Figure 2, a path was read from the top left to the bottom right. However, the FindPath
algorithm actually computes the optimal paths backwards. For FM algorithms, the FindPath
phase is straightforward. Since the FM algorithms store all scores in the DPM, they can compute
the path by starting at the lower right corner and computing which of the three entries (left, up
and diagonal) was used to compute its score. For example, the lower right (D\D) entry is 821.
Since its upper-left entry (A\K) has a score of 622 and since (62 + Similarity[D,D] = 62 + 20 =
82), an optimal path goes through its upper-left (A\K) entry. In addition, an optimal path cannot
lead to its above entry (A\D) with value 72A since 72 - 10 = 62 ≠ 82. Similarly, an optimal path
cannot lead to the left entry (D\K) whose value is 52L. Note that in general it is possible for more
than one path to be optimal. However, in our example, there is a single optimal path and it is
denoted by numerical subscripts as shown in Figure 3.

In the FM algorithms, the optimal path is easy to compute since the entire dynamic
programming matrix is stored. However, neither Hirschberg’s algorithm nor FastLSA stores the
entire dynamic scoring matrix so the computation of the path is more complicated. In both cases,
some of the DPM entries must be recomputed to find the path.

Leading, Trailing and Affine Gaps

The scoring function we described in the previous section is useful for understanding the
basic concepts of sequence alignment. However, in practice, changes are necessary to make
sequence alignment algorithms more representative of real biological phenomena.

Sometimes, a short sequence is aligned against a much longer sequence with the intent of
matching a sub-sequence of the longer sequence. In this case, the alignment should consist of a
series of leading gaps, a matching region (which might contain a few gaps) and then a series of
trailing gaps. In order to find the correct match, the leading and trailing gaps should incur no gap
penalties in the alignment. If gap penalties are charged for these leading and trailing gaps, the
wrong alignment will be found. For example, consider the following alignment. For simplicity,
neucleotides are used instead of amino acids and the simple scoring function uses 2 for a
neucleotide match, 0 for a mis-match and -1 for a gap penalty. The desired alignment is:

AGATCTGATCGTAAGTCATTCGCATAATGCGT
----------GTACG-C---------------

Since there are 26 gaps, 5 matches and 1 mismatch, the score for this alignment is: -1×26 + 2×5
+ 0×1 = -16. This is the intuitive “best” alignment in which the second sequence is a
subsequence of the first, with only a “few” gaps. However, the optimal alignment with respect to
the scoring function is:

AGATCTGATCGTAAGTCATTCGCATAATGCGT
----------GTA---C----GC---------

since this alignment has a higher score: -1×26 + 2×6 + 0×0 = -14. The solution to this problem is
to modify the scoring function to assign leading and trailing blanks a score of zero. Now the first
alignment given above has the optimal alignment. The new scoring function counts 25 leading
and trailing gaps, one imbedded gap, 5 matches and 1 mismatch for a score of: 0×25 + -1×1 +
2×5 + 0×1 = 9. The second alignment now has a lower score of: 0×19 + -1×7 + 2×6 + 0×0 = 5.
Note that the goal is not to remove all gaps in the sub-sequence, just to find the most reasonable
gapped sub-sequence.

8

Zero-score leading gap penalties can be implemented by simply initializing the top row and
left column of the DPM to zeros. The simplest way to implement trailing gap penalties of zero, is
to check whether the score that is being updated is in the right column or bottom row and, if so,
to use a zero gap penalty. However, this check should be factored out of the inner double loop to
improve performance.

Finally, for more biologically accurate alignments, affine gaps must be supported as
described in Formula 1. To support affine gaps, each entry in the DPM must be generalized to
include more information than just the score. To see why this is necessary, consider a simple
scoring table that assigns 3 points for a match, 0 points for a mismatch, an initial gap penalty of -
3 and a gap extension penalty of -1. This makes the score for a new gap in any location, –4, and
the score for each subsequent consecutive gap, –1. Figure 4 shows a DPM where four scores are
maintained: a diagonal score that comes from the upper left, a vertical score that comes from
above, a horizontal score that comes from the left and a max score that is the maximum of the
three.

Note that in the lower right square (entry K\L), if only the maximum score was maintained in
each entry then the vertical score would be the maximum entry in the above square (L\L) minus
a new vertical gap penalty, 3 – (3 + 1) = -1. The correct answer should be the (non-maximum)
vertical entry in the above square minus a vertical gap extension penalty, 2 – 1 = 1. Since 1 is a
higher score than –1, we need this score to compute the correct maximum value in the lower
right square.

- T L
- 0 0

0 0
 0 0
 0 0

 0 0
 0 0 Legend

T 0 0
0 0

3 -4
-4 3

 0 –4
-1 0

diagonal
entry

vertical
entry

L 0 0
0 0

 0 –1
-4 0

 6 –4
-4 6

horizontal
entry

maximum
entry

L 0 0
0 0

 0 –2
-4 0

 3 2
-4 3

K 0 0
0 0

 0 –3
-4 0

 0 1
-4 1

Figure 4. Extra information must be maintained to correctly support affine gaps.

Even though the naïve approach is to replace each score by a triple of scores plus a
maximum, this approach is much too expensive. Instead, it can be proven1 that in addition to the
maximum score, only one extra entry per DPM entry is needed. This extra entry contains the
difference between the maximum score and vertical entry. If this difference exceeds the initial
gap penalty, it can be assigned the initial gap penalty since it will never be large enough to be
used in the computation of another entry. For this reason, if the initial gap penalty is smaller than
128, only a single extra byte is needed in each DPM entry. Note that a similar approach can be
used to store the horizontal score, but since the DPM entries are processed row by row, the
horizontal entry is only used to compute the next DPM entry. Therefore, the horizontal entry can

1 The proof is omitted from this paper for the sake of brevity.

9

be kept in a temporary variable instead of stored in the DPM. This means that affine gaps can be
supported by increasing the size of DPM entries from 4 bytes to 5 bytes, instead of from 4 bytes
to 16 bytes.

Hirschberg’s Algorithm

Hirschberg’s algorithm uses a divide-and-conquer approach. It splits one of the two
sequences in half (size n/2) and performs the FindScore computation on each half against the
other original sequence (size m). However, the half-sequences are aligned from opposite ends.

After the two FindScore computations are complete, the dynamic programming matrix looks
like Figure 5. The top half of this matrix is computed from the top row to the middle row, going
left to right on each row. The bottom half of this matrix is computed from the bottom row to the
middle row, going right to left on each row. The algorithm does not store the entire dynamic
programming matrix in memory. Instead only one row in each half matrix is stored and this row
is updated as the computation continues. In essence, we are using a virtual or logical dynamic
programming matrix without storing it.

 After the two half alignments are complete, only the middle two rows of the matrix are
known. This computation determines the optimal split of the full sequence against the two half
sequences. The split point is the location that maximizes the sum of the corresponding pairs of
scores from the two half alignments. In Figure 5, these sums are: (-301 + 201 = -10), (02 + 302 =
30), (223 + 203 = 42), (204 + 304 = 50), (305 + 405 = 70), (326 + 506 = 82), (227 + 207 = 42), (128 +
-108 = 2) and 29 + -409 = -38). The maximum score is 82 so the optimal split point is between 326

and 506 (letters L and L). Therefore, the horizontal sequence has TLDKL as the first partial
sequence and LKD as the second.

- T L D K L L K D -
- 0 -10 -20 -30 -40 -50 -60 -70 -80
T -10 20 10 0 -10 -20 -30 -40 -50
D -20 10 20 30 20 10 0 -10 -20
V -301 02 223 204 305 326 227 128 29

L 201 302 203 304 405 506 207 -108 -409

K -10 0 10 20 10 20 30 0 -30
A -40 -30 -20 -10 0 10 20 10 -20
D -50 -40 -30 -20 -10 0 10 20 -10
- -80 -70 -60 -50 -40 -30 -20 -10 0

Figure 5. Hirschberg’s algorithm dynamic programming matrix.

Since Hirschberg’s algorithm does not store the dynamic programming matrix, no path can
be directly determined. However, the optimal path can be found by solving two simpler
problems, the alignment of:

TLDKL
TDV

and the alignment of:

10

LKD
LKAD

and putting the results together. Hirschberg’s algorithm is called recursively to solve these two
simpler problems. One of the sequences in each simpler problem has size n/2. The other
sequence in each simpler problem is approximately m/2, depending on where the split occurred.
Since the dynamic programming matrix is not stored, parts of it will need to be re-computed.
Figure 6 shows a schematic picture of the recursion and the parts of the matrix that must be
recomputed. The labels represent different calls to Hirschberg’s algorithm. An a denotes a
recursive call on the first portion of a sequence and a b denotes a recursive call on the second
portion. A shaded area represents a region that bounds a portion of the optimal path and a clear
area represents a region that contains no points in the optimal path. The call to a, computes
FindScore for aa, then FindScore for ab, makes a recursive call to aa and then a recursive call to
ab. Since aa makes other recursive calls before returning, this makes the order of the recursive
calls lexicographic: (a, aa, aaa, …, aab, …, ab, …, b, ba, …, bb, …).

a

b

aa

ab

aaa

aab

ba

bb

Figure 6. Recursive re-computations in Hirschberg’s algorithm.

The recursion terminates when the size of the sub-problems is one, although it could be
terminated sooner by using a FM algorithm when the problem size is small enough to solve in
memory or in cache. Approximately m×n re-computations need to be done using Hirschberg’s
algorithm[MM1988].

The FastLSA Algorithm

The basic idea of FastLSA [CSS2000] is to use more available memory to reduce the number
of re-computations that need to be done in Hirschberg’s algorithm. This is accomplished by: 1)
dividing both sequences instead of just one, 2) dividing each sequence into k parts instead of
only two and 3) storing some specific rows and columns of the logical dynamic programming
matrix (DPM) in grid lines to reduce the re-computations later.

We begin with a description of the FastLSA algorithm for k = 2, where the logical DPM is
divided into four quadrants. The FastLSA algorithm is given in Figure 7 and a trace of the
algorithm is shown in Figure 8. As shown in line 1 of Figure 7, FastLSA is a recursive algorithm
that has two arguments. The Grid contains initial scores for the top row and left column of its
logical DPM. The Bounds describes the rectangular region in the logical DPM that should be
computed. FastLSA returns a Path through this target region. Figure 8a shows a Grid, consisting

11

of the top row and left column of the entire logical DPM. The Grid is created and its top row and
left column are filled, before the initial call to FastLSA. The values are based on gap penalties,
such as the top row and left column of the DPM shown in Figure 3. The Bounds that are used for
the initial call to FastLSA represent the entire logical DPM.

1. Path FastLSA(Bounds bounds, Grid grid)
2. if (fitsInBuffer(bounds))
3. return FullMatrix(bounds, grid);
4. newGrid = allocateNewGrid(bounds, grid);
5. FindScore(bounds, grid, newGrid);
6. newBounds = lowerRightQuadrant(bounds);
7. path = FastLSA(newBounds, newGrid);
8. while (!intesectsUpperLeft(bounds, path))
9. {
10. subBounds = pruneBounds(bounds, path);
11. newPath = FastLSA(subBounds, newGrid);
12. path = concatenatePaths(path, newPath);
13. }
14. deallocateGrid(newGrid);
15. return path;
16. END FastLSA;

Figure 7. The FastLSA algorithm.

The FastLSA recursion terminates when the target region of the logical DPM is small enough
to fit in a specific memory buffer in physical memory. In this base case, a FM algorithm is used
to compute the optimal path through the target region as shown in lines 2 and 3 of Figure 7.

In the non-base case, FastLSA allocates a new Grid to store some of the scores that will be
computed during the FindScore phase of the algorithm. It then copies the argument Grid values
into a new Grid as shown in line 4. This situation is illustrated in Figure 8b. The argument Grid
is shown as the shaded top row and left column of the DPM. The new Grid is shown as a non-
shaded middle row and middle column of the DPM. Space has been allocated for the new Grid
and the values have been initialized to the values from the old Grid. However, the proper scores
reflecting the middle row and column of the DPM have not yet been computed.

The FindScore phase of FastLSA is similar to the FindScore phase of the FM and
Hirschberg’s algorithm. As shown in Figure 3, the FindScore phase of the FM algorithm
computes scores and stores them in a physical DPM. In Hirschberg’s algorithm, one row vector
of scores is propagated for each of two target regions, as shown in Figure 6. The FindScore
phase of FastLSA is a compromise between these approaches. As the scores are propagated
through the logical DPM, only scores that lie on the Grid are stored. The other difference is that
FindScore is only applied to three of the four quadrants of the logical DPM. Line 5 shows the
call to FindScore and Figure 8c shows the result. FindScore has been applied to the three
quadrants with dotted texture (1A, 1B and 1C) and the new Grid contains the generated scores
for the middle row and column.

Line 6 constructs a new Bounds which represents the lower right quadrant, 1D of Figure 8c.
The new Grid and new Bounds are used as arguments to the second call of FastLSA on line 7.
Figure 8d shows the situation in this second call to FastLSA, after line 5 has been executed, so
that the call to FindScore has already been completed. The dotted texture in three of the
quadrants (2A, 2B and 2C) shows that scores have been computed once in these quadrants, but
not stored. The shading of the Grid lines denotes scores that have been computed and stored.

12

1 1
1A 1B

1C 1D

a) Filling the initial grid lines b) First call to FastLSA after c) After FindScore fills grid
before the first call to FastLSA. line 4. on line 5.

1

2 2A 2B

2C 2D

1

2
3

2A 2B

2C 2D

1

2
4 3

5

2D

2a

2c

d) The second call to FastLSA e) Base case call uses FM f) Unwinding FastLSA after
line 5 of Figure 7.

2
4

6

3

5

1A

1b

1C

1

2
4

6

3

5

7
8

7A 7B

7C 7D

1

2
4

6

3

5

7
8

910

g) A non-base call to FastLSA h) Final calls to FastLSA i) The FastLSA call graph

Figure 8 Tracing the FastLSA algorithm.

A new Bounds is created on line 6, that represents quadrant 2D. A third call is then made to
FastLSA on line 7. We assume that for this call, the termination condition holds, so a FM
algorithm is called to return a Path. This Path is shown in Figure 8e. The FM algorithm has its
own FindScore phase in which scores are computed for the entire quadrant (2D) and saved as
they are computed. Therefore this region is shaded to show that the scores are both computed
and stored, like the Grid lines.

After the third call to FastLSA returns on line 7, the while loop on lines 8-13 is responsible
for extending the returned Path backwards from quadrant 2D, through quadrants 2A, 2B and 2C
of Figure 8e. There are actually three possibilities, depending on the location of the upper left
endpoint of the Path in 2D. If this endpoint is on the corner of 2D, then the path must only go

13

through 2A. If this endpoint is on the left side of 2D (but not the corner), then the path must go
through 2C and possibly through 2A, but not through 2B. If this endpoint is on the top side of 2D
(but not the corner), then the path must go through 2B and possibly through 2A, but not through
2C. In Figure 8e, the endpoint is on the left side of 2D. Note that we do not have to call FastLSA
with the entire quadrant 2C as the bounds. Instead, we can prune the part of 2C that is below the
y coordinate of the endpoint as shown in Figure 8f. This pruned sub-bounds is computed in line
10. Figure 8f shows the while loop of Figure 7 being executed twice so there are two more calls
to FastLSA, the fourth call on region 2c and the fifth call on region 2a. We have used the
notation 2c for the sub-region of 2C to indicate that it is not the entire quadrant. The while loop
of Figure 7 terminates when a returned Path of a recursive call to FastLSA intersects the Bounds
of the calling copy of FastLSA. In Figure 8f, the fifth call to FastLSA returns a Path that
intersects the bounds of the second FastLSA call, which is its caller so the while loop terminates.

Figure 9 shows the complete call graph for the trace of FastLSA illustrated in Figure 8. For
example, at the stage depicted by Figure 8f, call 1 made call 2 at line 7. Then call 2 made three
more calls that already returned: call 3 (at line 7), call 4 (at line 11) and call 5 (at line 11). The
condition of the while loop at line 8 is now false, so call 2 de-allocated its grid lines and returned
the path shown in Figure 8f. At this point of the trace, quadrant 2D is now shown in dotted
texture, instead of shading. This represents the fact that it is no longer stored in memory. We
assume that call 4 on region 2c and call 5 on region 2a were both base cases that used a FM
algorithm, so they did not make recursive calls to FastLSA. However, these regions are drawn
with a slightly darker dotted texture in Figure 8f to show that they have been re-computed once.
They are the only regions so far that have been computed more than once.

1

2 6 7

3 4 5 8 9 10

Figure 9. A call graph for FastLSA. All leaf nodes call a FM algorithm.

Figure 8g shows the situation where call 1 reaches line 11 and makes a recursive call (call 6)
to FastLSA. We assume that call 6 used the base case and returned a Path. Region 1b is shown in
slightly darker dotted texture to illustrate that its scores have been computed twice, just like
regions 2c and 2a.

Figure 8h shows how call 1 makes another recursive call (call 7) at line 11 of the FastLSA
algorithm, but this time the region is too large to use the base case. Instead, FindScore is called
on three of the quadrants (7A, 7B and 7C) and the slightly darker dotted texture is used to show
that they have been computed a second time. Next, a recursive call (call 8) is made on quadrant
7D that uses the base case of the algorithm.

Figure 8i shows the final two calls to FastLSA (calls 9 and 10). These are made at line 11 of
the algorithm from call 1. Note that regions 9 and 10 use very dark dotted texture. This indicates

14

that these regions have actually been computed three times. In summary, Figure 9 shows that the
leaf nodes: 3, 4, 5, 6, 8, 9, 10 use a FM algorithm. Each non-leaf node (1, 2 and 7) makes
recursive calls to FastLSA.

FastLSA does fewer re-computations than Hirschberg’s algorithm at the cost of extra storage.
This tradeoff can be further exploited by dividing the matrix into k divisions vertically and
horizontally instead of only 2 divisions. Figure 10 shows the recursive nature of FastLSA for k =
4. Call 7 is expanded to show one more level of the recursion. The order of calls that are shown
is 1 to 7, then 7.1 to 7.6. The calls 1-6 and 7.1-7.6 may either use a FM algorithm or make
recursive calls of their own. Only the shaded regions are re-computed. Region 1 is shown with
cross-hatches since it is special. Each of the shaded regions is re-computed exactly once if it uses
a FM algorithm. If a shaded region uses a recursive call to FastLSA, portions of it will not be re-
computed and other portions may be re-computed more than once, as illustrated previously in
Figure 8. If a FM algorithm can be applied to region 1, it is computed only once, with no re-
computations. Otherwise, portions of it are computed once with no re-computations and other
portions have re-computations.

7 6

5

3

1

4

2
7.17.2

7.3
7.4

7.5

7.6
A

BC

Figure 10. The FastLSA algorithm for k = 4.

There is one more generalization that can be made to the FastLSA algorithm. Instead of
dividing each sequence into the same number of parts, k, one sequence can be divided into k
parts and the other sequence can be divided into a different number of parts, l. This approach is
especially important when aligning two sequences of very different lengths.

Space Analysis for FastLSA

The FM algorithms use m×n space. Hirschberg’s algorithm only uses 2×max(m,n) space. For
FastLSA, we will assume that the DPM is divided into k parts on each axis. The row and column
caches for the first invocation occupy (k-1) × (m+n) space since there are (k-1) rows of length n
and (k-1) columns of length m. FastLSA needs additional storage when it is called recursively for
the lower-right block which has size (n/k) × (m/k). Each time a recursive call is made, the extra
storage required is divided by k for both the rows and the columns. After recursing q times,
FastLSA will require (n/kq) × (m/kq) storage which will be less than the amount of memory, L,
allocated for calling a FM algorithm so the recursion will terminate. If we define: u = m/kq, v =
n/kq, then the amount of memory for the last call to FM is: S(u,v) = u×v < L.

15

The total memory required can be expressed by a recurrence relation:

Formula 1: S(m,n,k) = (k-1) × (m+n) + S(m/k,n/k,k)

We can solve this recurrence relation:

S(m,n,k) = (k-1)×(u+v)×kq + S(u×kq-1,v×kq-1,k)

= (k-1)×(u+v)×kq + (k-1)×(u+v)×kq-1 + S(u×kq-2,v×kq-2,k)

= (k-1)×(u+v)× ki

i

q

=1
∑ + S(u×k0,v×k0,k)

= (k-1)×(u+v)× ki

i

q

=1
∑ + u×v

= (k-1)×(u+v)×k× (kq-1)/(k-1) + u×v

= (u+v)×k×(kq-1) + u×v

The memory needed for the recursion (without the call to FM) is:

Formula 2: S(m,n,k) - u×v = (u+v)×k×(kq-1)

For m,n >> 1, we have kq >> 1 so the amount of memory needed for the recursion is:

Formula 3: S(m,n,k) - u×v ≈ (u+v)×k×kq = k×(m+n)

Time Analysis for FastLSA

The FM algorithms, Hirschberg’s algorithm and FastLSA must compute all matrix values at
least once. The difference between the algorithms is in the space required and the cost of finding
the path. The FM algorithms do not have to re-compute any values to find the path since the
dynamic programming scores are all available in memory. They only need to access O(m+n)
values. On average, Hirschberg’s algorithm re-computes the entire matrix once [MM1988].
Hence the cost of using linear storage is the additional work that is done, O(m×n). By using
additional storage, FastLSA falls in between the extremes of the FM algorithms with zero
additional values recomputed, and Hirschberg, with O(m×n)values recomputed.

For a given k, there are k2 regions and FastLSA must first compute boundary information for
all regions except the lower right one. The number of operations to compute these boundaries is:

Formula 4: B(m,n,k) = m×n – m×n/k2 = m×n(k2-1)/k2

Another way to view this expression is that there are (k2-1) regions with m×n/k2 operations on
each region.

FastLSA must then perform re-computations on some regions by making recursive calls on
them. Let r(k) be the number of regions that require recursive calls. At least one call must be
made since the lower right region remains. However, the solution path starts in the lower right
corner and must reach the upper left corner. This means that the minimum number of recursive
calls is actually k, and this situation occurs when the solution path follows the diagonal. For
example, this would be the path [1, 3, 5, 7] in the right side of Figure 10. Although the solution
path can move off the diagonal, it can never go down or to the right. This means that the
maximum number of regions that require recursive calls is 2×k-1. For example, this would

16

correspond to paths: [1, 2, 3, 4, 5, 6, 7] or [1, 2, A, B, C, 6, 7] in the right side of Figure 10.
Therefore, we have bounds on the number of regions that require re-computations:

Formula 5: k ≤ r(k) ≤ 2×k-1

If we let T(m,n,k) be the number of computations required for our initial matrix of size m by n
that is sub-divided into k by k regions then:

Formula 6: T(m,n,k) = m×n(k2-1)/k2 + r(k)×R(m/k,n/k,k)

where R(m/k,n/k,k) is the number of re-computations that must be performed on each of the r(k)
regions that include the solution path. This formula is almost a recurrence relation. However,
there are two important issues. First, r(k) may vary on different recursive calls to FastLSA since
it depends on the solution path. For example, in Figure 10, the first level of recursion on the right
side has r(k) = 7, since the path is 1, 2, 3, 4, 5, 6, 7. However, the second level of recursion on
the left side has r(k) = 6, since the path is 7.1, 7.2, 7.3, 7.4, 7.5, 7.6.

The second issue is more subtle. The number of initial operations at the highest level is
m×n(k2-1)/k2. This expression is based on computing boundary information for all (k2-1) regions
of size m/k by n/k except the lower right region. However, in general, at the next level of
recursion, the size of each region will be less than m/k2 by n/k2, as illustrated on the left side of
Figure 10. To turn Formula 6 into a recurrence relation, we can do two things. Firstly, we can
overestimate the size of each region to be m/k2 by n/k2, so that the number of operations at each
level is: R(m/k,n/k,k) = m×n(k2-1)/k2. Secondly, we must regard r(k) as a recursion-level
independent estimator for the number of regions that must be recomputed. If we do this, we
obtain a recurrence relation that bounds the number of operations that must be performed in
FastLSA:

Formula 7: T(m,n,k) = m×n(k2-1)/k2 + r(k)×T(m/k,n/k,k)

To solve this recurrence relation, we recall that after recursing q times, FastLSA will require
(n/kq)×(m/kq) storage which will be less than the amount of memory, L, allocated for calling an
FM algorithm and the recursion will terminate. If we again define: u = m/kq, v = n/kq, then the
amount of time (number of operations) for the last call to the FM algorithm is: T(u,v,k) = u×v <
L. We can solve the recurrence relation:

T(m,n,k) = m×n(k2-1)/k2 + r(k)×T(m/k,n/k,k)

= [(k2-1)/k2]×u×v×k2q + r(k)×T(u×kq-1,v×kq-1,k)

= [(k2-1)/k2]×u×v×k2q + r(k){[(k2-1)/k2]×u×v×k2q-2+r(k)×T(u×kq-2,v×kq-2,k)}

= [(k2-1)/k2]×u×v× r k kq i i

i

q

() −[]∑ 2

1=

+ T(u×k0,v×k0,k)

= [(k2-1)/k2]×u×v×r(k)q k

r ki

q i2

1 ()

∑
=

 + T(u,v,k)

= [(k2-1)/k2]×u×v×r(k)q[k2/r(k)]{ [k2/r(k)]q-1}/ [k2/r(k)-1] + u×v

= (k2-1)×u×v×[k2q-r(k)q]/[k2-r(k)] + u×v

= m×n× (k2-1)×[1-r(k)q/k2q]/[k2-r(k)] + u×v

17

The solution is:

Formula 8: T(m,n,k) = m×n× (k2-1) × [1-r(k)q/k2q]/[k2-r(k)] + u×v

From Formula 5, in the worst case, r(k)=2k-1, so Formula 8 becomes:

Tw(m,n,k) = m×n× (k2-1) × [1-(2k-1)q/k2q]/[k2-(2k-1)] + u×v

= m×n× (k-1)× (k+1)× [1-(2k-1)q/k2q]/[(k-1)2] + u×v

= m×n× (k+1) × [1-(2k-1)q/k2q]/[(k-1)] + u×v

≈ m×n× (k+1)/(k-1)

since for m,n >> 1, we have kq >> 1, so [(2k-1)q/k2q] << 1 and u×v << m×n . The worst case
number of re-computations, Rw(m,n,k), is:

Formula 10: Rw(m,n,k) = Tw(m,n,k)–m×n = m×n× (k+1)/(k-1)–m×n = 2m×n/(k-1)

Another interesting approximation is the number of computations if only the diagonal regions are
re-computed. In this case, from Formula 5, r(k)=k, so Formula 8 becomes:

TD(m,n,k) = m×n× (k2-1) × [1-kq/k2q]/[k2-k)] + u×v

= m×n× (k-1) × (k+1) × [1-kq/k2q]/[k(k-1)] + u×v

= m×n× (k+1) × [1-kq/k2q]/k + u×v

≈ m×n× (k+1)/k

The diagonal case number of re-computations, RD(m,n,k), is:

Formula 11: RD(m,n,k) = TD(m,n,k)–m×n = m×n× (k+1)/k – m×n = m×n/k

Note that the diagonal case is not the best case. In fact, the best case is illustrated by Figure 11,
where each re-computation consists of only a single partial row or single partial column. Since
the best case is not on the diagonal, it does not result from a minimum value for r(k). Instead, it
results from the case where Formula 4 drastically over-estimates the number of boundary
computations that must be done in each region. This best case number of re-computations,
RB(m,n,k), is:

Formula 12: RB(m,n,k) = m+n-(m+n)/k

7

2

4

3

1

56

Figure 11. The best case re-computations for the FastLSA algorithm with k = 4.

As we will see in the next Section, the empirical number of re-computations is close to the
diagonal value, RD(m,n,k) = m×n/k. For k = 2 this number is m×n/2, which is half the number of

18

re-computations done by Hirschberg’s algorithm. Even if the worst case did occur in practice,
FastLSA can reduce the number of re-computations to the m×n value obtained using
Hirschberg’s algorithm by selecting k=3 in Formula 10. From Formula 3, the space cost of this
choice is only 3×(m+n) which adds little space over the 2×min(m,n) units used by Hirschberg’s
algorithm. In general, a value of k can be selected to use all of the available memory so that
FastLSA reduces the re-computation time to its minimum value at a linear space cost.

Figure 12 shows the number of re-computations for the FM algorithms, Hirschberg’s
algorithm and FastLSA.

Full Matrix Hirschberg FastLSA (worst) FastLSA (expected)
Space m×n 2×min(m,n) k×(m+n) k×(m+n)
Re-computations [0]×(m×n) [1]×(m×n) [2/(k-1)]×(m×n) [1/k]×(m×n)

Figure 12. Space and Time requirements of the FM, Hirschberg’s and FastLSA.

Experimental Results

We compared the empirical performance of the FM algorithm, Hirschberg’s algorithm, and
FastLSA using a common software and hardware base. The commercial ChromaTool sequence
analysis suite developed by BioTools, Inc. (www.biotools.com) uses an implementation of
FastLSA. For completeness, we implemented an FM algorithm and Hirschberg’s algorithm
within the same BioTools framework. All algorithms have been tuned for performance including
the removal of a number of error checking code segments. Also, all algorithms share the same
input/output code, the same scoring table (Figure 1) and an affine gap penalty given by Formula
1 (initialPenalty = 20 and extensionPenalty = 10).

The experiments were performed on a 800 MHz Pentium III (Coppermine) with 16 Kbytes of
Level 1 data cache, 256 Kbytes of Level 2 cache (clocked at 800 MHz), 133 MHz front side bus
(FSB), 512 MB of main memory and Red Hat Linux 6.1 with the Linux 2.2.16 kernel. Although
there are two CPUs, our application is single-threaded. We also performed these experiments on
an SGI Origin 2400 machine with 400MHz processors and obtained similar results. The
configuration of the SGI machine is described further in the Section on parallelizing FastLSA.

We mimic a typical sequence search that takes a new query amino acid or DNA sequence
and pairwise aligns it with each sequence in a database. High alignment scores between the
query sequence and a specific database sequence are flagged for further consideration by the
biologist. Given that these pairwise alignments produce optimal matches for the selected scoring
function, the speed of these pairwise alignments is the most important consideration.

For our experiments, we use the well-known Swiss-Prot protein database[ABH994]. We
randomly selected 5 sequences of lengths 100, 200, 500, 800, 1000, and 2000 amino acids, plus
or minus 5% in length, from the Swiss-Prot database to serve as our query sequences. The results
of our first experiment are shown in Figure 13 and Figure 14. The X-axis represents the nominal
length of the query sequences. There are three data points for each nominal length: the leftmost
data point always represents the FM algorithm, the middle data point is for Hirschberg’s
algorithm, and the rightmost data point is for FastLSA. Since the Y-axis measures time, lower
data points represent higher performance.

19

Figure 13. Searching the SwissPort database with FM, Hirschberg and FastLSA.

Figure 14. Searching the SwissPort database with FM, Hirschberg and FastLSA.

Since 5 sequences, each of the same nominal length, are used as the query sequences for the
experiment, there are a total of 30 query sequences from 6 categories based on length. The
diamond represents the average time for 5 query sequences of similar length. The bars closest to
the diamond represent one standard deviation of the 5 data points and the bars farthest from the
diamond represent the minimum and maximum times. Even though no other users were using
the CPU during the experiments, background tasks sometimes cause fluctuations in timings. To
mitigate these effects, each query sequence was aligned against the entire Swiss-Prot database
(which includes the original query sequence) 3 times and the average of the times was taken.
However, the times obtained did not show significant variations across the 3 runs. All of the
algorithms used the same query sequences and the same version of the Swiss-Prot database. We
used Formula 13 to pick a value of k, based on the lengths of the two sequences. This formula
has been empirically determined to obtain good results.

Formula 13: k = truncate(log10(m)) +truncate(log10(n)) + 3

20

We used a heuristic function from the ChromaTool code for picking the buffer size of the
recursion-terminating call to our FM code. Figure 15 shows the results of the experiment as a
table. For example, for the 5 query sequences of nominal length 100, it took an average of
307 seconds to align a query sequence against the entire Swiss-Prot database using FM. For the
5 query sequences of nominal length 100, the shortest time was 303 seconds, the longest time
was 317 seconds, and the standard deviation for the 5 query sequences was 3 seconds. Similarly,
for Hirschberg’s algorithm, the average time to align a query sequence of nominal length 100
was 389 seconds with a standard deviation of 7 seconds. Finally, for FastLSA, the average time
to align a query sequences of nominal length 100 was 262 seconds with a standard deviation of 4
seconds.

query length FM (sec×103) Hirschberg (sec×103) FastLSA (sec×103)

100 0.307 ± 0.003 0.389 ± 0.007 0.262 ± 0.004

200 0.621 ± 0.008 0.885 ± 0.014 0.595 ± 0.009

500 1.594 ± 0.016 2.551 ± 0.042 1.713 ± 0.028

800 2.594 ± 0.049 3.853 ± 0.129 2.580 ± 0.081

1000 3.216 ± 0.026 4.305 ± 0.048 2.882 ± 0.030

2000 6.531 ± 0.091 9.418 ± 0.642 6.136 ± 0.415

Figure 15. Searching the SwissPort database with FM, Hirschberg and FastLSA.

Based on the complexity analysis, one would expect FM to be the fastest algorithm in all
cases. After all, as indicated in Figure 12, FM does not require any re-computation to recover
the path of the optimal alignment. In contrast, both Hirschberg’s algorithm and the FastLSA
reduce their storage costs at the expense of re-computation. In fact, from Figure 12, FM does 0
re-compuations, Hirschberg's algorithm does m×n recompuations and FastLSA does (m×n)/8 re-
computations (for k = 8). For example, if the query sequence has size 100 and the database
sequences range in size from 100 to 5,000, FM does 0 re-computations, FastLSA does 1250 to
62,500 re-computations, and Hirschberg's algorithms does 10,000 to 500,000 re-computations.
Since FastLSA makes fewer re-computations than Hirschberg's algorithm, it is not surprising that
it is consistently faster. However, why is FastLSA faster than FM for query sequences of length
100 and 200, slower than FM for sequences of size 500 and then faster again for longer
sequences?

It is an inescapable fact of contemporary computer systems is that in practice, the cache
behavior of an algorithm can have a substantial impact on its performance. Each query sequence
of size 100 was aligned against the entire Swiss-Prot database, which contains sequences ranging
from less than 100 amino acids to over 5,000 amino acids as shown in Figure 16. This means that
the DPM ranged in size from 100×100×4 bytes = 40Kbytes to 100×5,000×4 bytes = 2Mbytes.
Since the secondary cache has only 256Kbytes, the FM DPM would not fit in secondary cache
and a large number of main memory accesses were made. In contrast, the memory requirements
for FastLSA are much smaller. From Formula 3, FastLSA with k=8 requires only

21

8×(100+1000)×16bytes2 = 140.8Kbytes for the grid vectors. This easily fits into the 256Kbyte
secondary cache. Since a main memory access is more than 10 times slower than an access to
secondary cache, the fact that the FM DPM did not fit into cache is sufficient to account for the
faster FastLSA performance. Hirschberg's algorithm also fits into the secondary cache. However,
since it does so many more re-computations than FastLSA, it cannot overtake the FM algorithm.

Figure 16. The distribution of sequence lengths in the Swiss-Prot database.

For larger problems, even Hirschberg’s algorithm and FastLSA require more storage than is
available in cache. For example, when the nominal query sequence length reaches 500, the
performance of FastLSA and FM converge since both algorithms must access main memory.
Figure 17 shows the memory required for FastLSA with a query sequence of size 500, as the
target database sequences range from 100 to 5,000 bytes. Formula 13 was used to pick k and
Formula 3 was used to estimate the amount of storage used for the grid vectors. In addition to
this space for the grid vectors, space must also be allocated for the buffer used in the recursion-
ending base case. This space can be reduced as small as necessary to stay in secondary cache, but
eventually even the grid vector space is too large to fit in cache.

For example, when the 500 length query is compared to a database sequence of length 2000,
FastLSA requires: 8×(500+2000)×16bytes = 320Kbytes for the grid vectors. Since this is larger
than the 256Kbyte secondary cache, main memory must be used. This makes re-computations
expensive and FM becomes the fastest algorithm. Note that using 5 bytes per entry for affine
gaps instead of 16 bytes per entry, will allow the FastLSA algorithm to stay in cache for longer
query sequences. However, this will just move the crossing point from sequences of size 500 to
sequences of size 2,000. It will not eliminate this crossing. As the query sequence gets even
longer (800, 1,000 and 2,000), FastLSA and FM have comparable performance. The re-
computations done by FastLSA are offset by the fact that FastLSA has a smaller memory
footprint and therefore has fewer (but still some) cache misses.

2 The version of FastLSA available for these timings used 4 entries of size 4 bytes for a total of 16 bytes for each
score to support affine gaps. As described previously in this paper, this size can be reduced to 5 bytes per entry.

22

Database
sequence length

100 500 1,000 2,000 5,000

Memory used 67Kbytes 112Kbytes 192Kbytes 320Kbytes 704Kbytes

Figure 17. Memory requirements for FastLSA using a 500 length query for different size
database entries.

However, Figures 13 and 14 do not present the whole story. There is a sequence length for
which FM will exhaust main memory and have to use disk. This is a disastrous situation for the
algorithm since disk access time is more than a million times greater than memory access time.
At this point, FastLSA and Hirschberg will again dominate FM and by a significantly larger
margin. For the main memory configuration used in our experiments (512Mbytes) this does not
occur using the Swiss-Prot database, even with a query sequence of size 5,000 since the longest
database target sequences have length 5,000. In this case, a pairwise comparison will only
require 5,000×5,000×4 = 100Mbytes. However, for DNA sequences this bound can easily be
surpassed.

To illustrate the advantages of FastLSA for problems larger than the protein sequences found
in Swiss-Prot, we experimented with longer DNA sequences. From the GeneBank
database[NCBI2001], we selected mouse DNA sequences of nominal lengths 10 kbp, 20 kbp, 30
kbp, and 50 kbp. We randomly selected 21 sequences between 9,950 bp and 10,050 bp, 18
sequences between 19,600 bp and 20,400 bp, 13 sequences between 29,700 bp and 30,300 bp,
and 8 sequences between 49,600 bp and 50,400 bp. For each nominal length, five randomly
chosen query sequences were aligned against the other sequences and then the time was
normalized to the time for a single pairwise alignment. Figure 18 shows the results with
sequence length on the x-axis and pairwise alignment time on the y-axis.

Figure 18. DNA alignment times for FastLSA and Hirschberg.

23

Even for the 10 kbp data point, FM required more main memory storage than is physically
available on our computer. The DPM requires approximately 10,000 × 10,000 × 4 = 400 Mbytes
of memory. With kernel and other system overheads, our experience is that just under 400
Mbytes of main memory is free on an otherwise idle computer with 512Mbytes of main memory.
Consequently, FM caused the operating system to page to disk and the run-times are
prohibitively long for all of the data points in Figure 18. For example, for the smallest 10 kbp
data point, FM required five times longer than FastLSA to align two sequences. Therefore, we
do not consider FM any further.

In contrast to FM, both FastLSA and Hirschberg avoid paging to disk even for pairwise
alignments of sequences of length 50 kbp. In Figure 18, the leftmost data point for a given
nominal length is Hirschberg. The rightmost data point is FastLSA. Once again, lower values are
better. For all data points, FastLSA is faster than Hirschberg. By Formula 13, k = 11 for all the
datapoints in Figure 18, therefore we would expect the performance gap between FastLSA and
Hirschberg to remain constant. In fact, FastLSA's time is consistently about 2/3 of Hirschberg's
time.

From Figure 18, we conclude that FastLSA is the fastest algorithm in practice for pairwise
alignment of sequences longer than 10 kbps. FM is impractical for long sequences that do not fit
in main memory due to paging effects. Hirschberg’s algorithm does not use available memory
effectively and is generally slower than FastLSA

From Figure 13 and Figure 14 we conclude that for shorter sequences, the choice of the best
algorithm depends on various cache effects. However, FastLSA is always better than Hirshberg’s
algorithm. We can explain this result by computing the ratio of computations done by the two
algorithms. Figure 12 gives the number of re-computations for each of the algorithms. Since each
algorithm does m×n initial computations followed by its re-compuations, for k=11, Hirschberg's
algorithm does 2×m×n computations and FastLSA does m×n + (1/11) ×m×n = 1.09×m×n
computations. The expected ratio of pairwise alignment times of FastLSA to Hirschberg's
algorithm should be 1.09 / 2 = .55. In practice, from Figure 15, we obtain an average ratio of
0.67. The difference is due to the overhead of maintaining the grid in the FastLSA algorithm.
However, the bottom line is that FastLSA always outperforms Hirschberg's algorithm.

 In the typical case of comparing query sequences against a database, such as Swiss-Prot,
with sequences of various lengths, FastLSA is usually faster than FM due to good caching for
short sequences and no paging for longer sequences. However, for a very narrow range of
intermediate length sequences when all three algorithms are out of cache, but none of the
algorithms exhibit paging, FM and FastLSA have very similar performance. This is illustrated,
by the 500 and 800 query lengths in Figure 15. For the other data points in Figure 13 and Figure
14, and all of the data points in Figure 18, FastLSA dominates.

Parallelizing FastLSA

Despite the good performance results reported in the previous section, the theoretical time
complexity of FastLSA is still quadratic. Consequently, we have parallelized FastLSA to further
improve performance in practice. Parallel FastLSA has two major components:

(1) a parallel implementation of FullMatrix) (Figure 7, line 3), which is the base case

for the recursion, and

(2) a parallel implementation of FindScore) (Figure 7, line 5), which computes the grid

24

values.

It should be noted that parallel FastLSA still uses linear space. In the parallel FM algorithm, the
dynamic programming matrix is divided into R×C equally sized smaller matrices, called tiles.
The tiles are laid out in a grid-like pattern with R rows and C columns. The parallel processing
starts with one processor computing the entries of the top-left tile (Figure 19, label 1). After this
tile is processed, there is enough information available to start computing the entries in its
neighboring tiles to the right and below (Figure 19, label 2). The tiles are processed in parallel
according to a wavefront data-dependency pattern from top-left to bottom-right. As in the
sequential algorithm, after the scores are computed, one processor builds an optimal path, which
extends from the bottom-right corner of the DPM to its left or upper boundary.

Figure 19. Wavefront parallelism.

In the parallel FindScore, the logical DPM is already split into k2 smaller matrices (sub-
matrices) by the grid itself. To increase the amount of parallel work, each of the k2-1 sub-
matrices in the grid are further sub-divided into R×C equally sized tiles. This new grid has (k2-
1)×R×C tiles which are processed in parallel using a strategy similar to that used in the parallel
version of the FM algorithm. Details about the parallel FastLSA algorithm can be found in
[Dri2001].

We have experimented with parallel FastLSA on an SGI Origin 2400 shared-memory
multiprocessor with 64 processors (400 MHz MIPS R12000), each with 128 KB of primary data
cache and a unified 8 MB secondary cache. We used the sproc thread library under Irix 6.5.

Unlike the previous experiments that used the BioTools code framework, these experiments
used an independent, non-commercial implementation of the algorithms. No degenerate
neucleotides were used so all letters were from the set: {A, C, T, G}. A simple scoring function
was used whose scoring function assigns 2 for a match and –1 for a mis-match. A non-affine gap
penalty of –2 was used.

The data points shown in Figure 20 are a subset of a more extensive set of experiments
[Dri2001]. All times are the averages of 5 runs. For relatively short sequences such as Alfa-
Globin, the parallel algorithm scales well up to 8 processors. As the number of processors
increases, the granularity of the work decreases. This leads to a situation where the processors
spend more time trying to get a tile of work than actually computing. Although parallel FastLSA
computes more than 200 million DPM entries for the alignment of the Alfa-Globin sequences

25

(10kbs), this is not enough computation to ensure sufficient work for 16 processors, since the
real time on 16 processors is only 1.64 seconds. However, as the problem size increases, so does
the speedup. For the largest problem, the TCR (T-cell receptor alpha/delta region), both
sequences are over 300 kbps in length. Since this corresponds to over 90 billion DPM entries, a
reasonable speedup of 17.21 is obtained for 32 processors.

Figure 20. DNA alignment times for FastLSA and Hirschberg.

We believe that Parallel FastLSA can be tuned to obtain even better speedups for the
alignment of medium to large sequences on 16 and 32 processors. However, linear speedups
cannot be reached for a large number of processors because of the wavefront dependency
between the tiles.

Conclusion

In this paper we have described a new algorithm for optimal pairwise alignment of protein or
DNA sequences called FastLSA. LikeHirschberg's algorithm FastLSA is linear in space.
However, unlike Hirschberg's algorithm, FastLSA can be allocated as much space as is available
in your cache for small sequences or in your main memory for large sequences. FastLSA uses
this extra space to reduce the number of computations below the number required for
Hirschberg's algorithm. We have presented a complexity analysis for FastLSA that shows how
many fewer computations are performed. Fewer computations means that in theory, FastLSA
will align sequences faster than Hirschberg's algorithm. We have also provided experimental
results that show that FastLSA always outperforms Hirschberg's algorithm in practice.

If a full matrix algorithm like Needleman-Wunsch is used for large sequences, the large
dynamic programming matrix is too large to fit in main memory. In this case, disk access makes
these algorithms much slower than linear space algorithms. However, even with small sequences

26

that fit in main memory, full matrix algorithms are slower than linear space ones, since the faster
speed of cache memory provides a significant speed advantage. The bottom line is that FastLSA
should be used whenever an optimal pairwise alignment is needed.

Acknowledgements
We would like to acknowledge Scott Fortin at BioTools for several helpful discussions. This
research was partially funded by research grants from the Protein Engineering Network of
Centres of Excellence (PENCE), the National Science and Engineering Research Council
(NSERC) and Alberta Informatics Circle of Research Excellence (ICORE).

References

 [ABH1994] Appel, R.D., Bairoch, A. and Hochstrasser, D.F., A new generation of information
retrieval tools for biologists: the example of the ExPASy WWW server
(http://ca.expasy.org/sprot/), Trends Biochem. Sci. 19:258-260 , 1994.
[CSS2000] Charter, K., Schaeffer, J., Szafron, D., Sequence Alignment using FastLSA,
Proceedings of The 2000 International Conference on Mathematics and Engineering Techniques
in Medicine and Biological Sciences (METMBS'2000), June 2000, Las Vegas, Nevada, pp. 239-
245.
[DBH1983] Dayhoff, MO., Barker, WC., and Hunt, LT., Establishing homologies in protein
sequences. Methods in Enzymology. 91:524-45, 1983.
[Dri2001] Driga, A., Experiences with Sequential and Parallel FastLSA Sequence Alignment,
M.Sc. thesis, University of Alberta, 2001.
[Hir1975] Hirschberg, D., “A linear space algorithm for computing maximal common
subexpressions”, Communications of the ACM, 18(6):341-343, 1975.
[MM1988] Myers, E. and Miller, W., “Optimal alignments in linear space”, CABIOS, Vol. 4, pp.
11-17, 1988.
[NCBI2001] http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
[NW1970] Needleman, S. and Wunsch, C, “A general method applicable to the search for
similarities in the amino acid sequences of two proteins”, Journal of Molecular Biology, Vol. 48,
pp. 443-453, 1970.
[SW1981] Smith, T. and Waterman, M., “Identification of common molecular sequences”,
Journal of Molecular Biology, Vol. 147, pp. 195-197, 1981.

