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ABSTRACT

I have reviewed the physics of the semiconductor relating to photoluminescence and
with particular reference to the compound semiconductor GaAs. I have described
the energy levels of GaAs; these energies determine the spectral lines of photolu-
minescence. I have also described the various models of energy transfer since the
transfer processes determine the time-dependence of the luminescence decay. En-
ergy transfer, either between different energy levels or different ion sites, proceeds
by radiative or radiationless transitions. I have described these transition processes
and compared the theory with the observations for both luminescence spectra and
luminescence time-decay of GaAs. The first part concludes with a study of donor-

acceptor pair recombination.

I have studied the luminescence decay curves obtained from a model of de-
trapping of energy from a distribution of discrete trap levels. The model is based on
equations fcr carrier dynamics which I derived from general thermodynamic argu-
ments using a statistical description of the occupation of states and the Arrhenius
form for the de-trapping rate. Computer simulations show that power-law decays
are ubiquitous whenever there is a broad distributica of traps. I verified the critical
parameter introduced by Hornyak and Chen to determine whether a distribution
is wide enough to give power-law behaviour. I further introduced a parameter to
define the minimum energy separation between discrete traps that still gives power-
law behaviour. I have compared the results of simulation to the experimental results
of Teh. The results show good agreement if an exponential density distribution of
traps is used for the simulation. Both the linear temperature dependence of the

exponent of the power law and the initial exponential time-decay are verified.
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CHAPTER ONE
INTRODUCTION

Eilhardt Wiedemann defined “luminescenz” in 1888 as “all those phenomena of
light which are not solely conditioned by the rise in temperature.”

Ancient man knew of mysterious luminescence phenomena: the aurora borealis,
glow-worms and luminous wood. |

Modern man has classified many different forms of luminescence according to the
method of excitation: photoluminescence, thermoluminescence, electroluminescence,
crystalloluminescence, triboluminescence, and chemiluminescence.
Photoluminescence is luminescence that is excited by light itself; it is subdivided
into fluorescence and phosphorescence. Fluorescence is the emission of light irom
substances only during the time that they are exposed to radiation; phosphorescence

is that which persists after the exciting radiation is cut off.

Wiedemann used the above definition of luminescence to carefully distin-
guish it from incandescence— the phenomena whereby objects emit light according
to their temperature (“black body” radiation). The distinction is important: lumi-
nescence acts to restore equilibrium after excitation has created a non-equilibrium

energy distribution while incandescence is itself a thermal equilibrium phenomena.

This thesis is about photoluminescence of semiconductors, in particular about pho-
toluminescence of gallium arsenide (GaAs). The motivation behind writing it has
been to understand and possibly to explain the unusual time decays of photolur:i-
nescence that were observed by Teh [98] in this laboratory. Teh’s measurements

were made on GaAs grown by the liquid encapsulated Czochralski (LEC) tech-



nique.

Photoluminescence has become an important industrial technique for the precise
characterization of impurities in semiconductors. Additionally, photoluminescence
meansurements give data that is rich enough to challenge a detailed understanding

of the solid state.

When a semiconductor absorbs light, electron-hole pairs are created. These
carry both energy and charge. The distribution of carriers that is set up after exci-
tation is both non-equilibrium— many more electron-hole pairs exist than do under
thermal equilibrium conditions— ond inhomogeneous— the greatest excitation is
near the surface of the crystal. Energy transfer processes act to restore both: ra-
diative and non-radiative recombination restores the equilibrium population and

carrier diffusion restores the homogeneity.

The photoluminescence we observe is the product of the radiative recombina-
tion of electrons with holes. Measuring the energy spectrum of photoluminescence
reveals the energy released from each recombining electron-hole pair— the spectrum
is thus totally dependent on the energy level structure of the solid. Measuring the
time decay of the photoluminescence reveals nothing directly but, when combined
with knowledge from theory or from different observations, does offer insight into

the recombination processes.

This thesis is written in two parts. Part I is a review of the physics of the semicon-
ductor which relates to photoluminescence in GaAs. The basic physics is expounded
using GaAs as a material example. It is only for certain phonomena, notably donor-

acceptor pair recombination, that examples of other materials are needed in order



to illustrate the general principles.

Chapter 2 is a description of the energy levels of GaAs. The basic scheme is
the band structure but additional electronic energy levels also arise from excitons,

impurities and defects. We also consider the lattice vibration (phonon) energies.

Chapter 3 is a description of various models that have been proposed for
energy transfer in crystals. The contimiity equation describes the diffusion and
recombination of carriers and the Schockley-Read theory is a statistical method of
describing carrier populations. The more detailed excitation transfer theories take
the microscopic structure into account for transfer of energy between localized sites.
De-trapping of energy is neglected by some models of fluorescence because it occurs
on a timescale much longer than that of interest. It is recognized, however, as being
important for phosphorescence. All of the models show that different mechanisms

of energy transfer are associated with different decay forms of luminescence.

Chapter 4 is a description of the radiative and non-radiative transition pro-
cesses that lead to energy decay. The theory of the transitions is based upon Fermi’s

golden rule and various approximations are used to make solutions.

Chapter 5 is a comparison of the observed spectral energy dependence of
luminescence with the theory of Chapter 4 and is also a summary of the data from
photoluminescence spectra for GaAs. For GaAs, different conditions of growth give

noticeable differences in spectra.

Chapter 6 begins with a discussion of how measurements of luminescent
time decay allow one to infer (using the theory of Chapter 4) knowledge about
the non-radiative transitions. Some of the further ideas proposed to explain non-
exponential time decays are also described and a summary is made of the time-decay

measurements of photoluminescence of GaAs.
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Chapter 7 is a description of the photoluminescence from donor-acceptor
pairs. This is of particular importance to this theses because the prominent long-
lived line observed by Teh (~ 1.49¢V line) is associated with donor-acceptor pair
photoluminescence. The recombination spectrum can be exn'sined from the struc-
ture of energy levels expected for donor-acceptor pairs of different separation. Addi-
tionally, the distribution of pairs with separation determines the relative intensities
of the different pair lines. The time-decay results from the decay of pairs having a

range of different lifetimes.

Part II is a detailed study of one of the physical processes identified in Part I—
energy de-trapping. De-trapping is the process by which an electronic carrier re-
ceives enough energy through thermal activation to free itself from a trap. The
subsequent participation of this carrier in radiative recombination leads to lumines-
cence. De-trapping is important in determining the long-time luminescence because

it occurs on a relatively long timescale.

Chapter 8 opens with a discussion of thermodynamics and its importance
for describing the semiconductor system. From thermodynamics is derived the
statistical description of the semiconductor and the Arrhenius rate of reaction of
a thermal process. These are applied to the semiconductor and the equations for

carrier dynamics are obtained.

Chapter 9 contains details of the computer simulation which I performed t~
model the time decay of photoluminescence when thermal de-trapping is taken as
the rate-limiting process. The results of Chapter 9 give various trap distributions

which can be used to explain the observed time decays.

Chapter 10 is a cunsideration of the relevance of these trap destributions to
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photoluminescence decays in GaAs. The number of carriers existing in GaAs under
thermal equilibrium conditions is compared to the number of carriers excited into
the bands under photo-excitation. The experimental evidence of Teh for certain
time decays is analyzed and an explanation is given of these decays on the basis of

the de-trapping model. Suggestions are made for the source of the traps in GaAs.



Part I

Photoluminescence of GaAs



CHAPTER TWO
ENERGY LEVELS OF GAAS

2.1 Band structure

Gallium arsenide is a III - V compound semiconductor. Its crystal structure is that
of the “Zincblende” lattice type and consists of two inter-penetrating face-centered
cubic lattices—one containing the Ga atoms, and the other the As atoms. Figure
2.1 shows the basic unit cell of GaAs and Table 2.1 contains basic information about
the lattice.

As a starting point for the understanding of the energy band structure, we
may calculate the free electron energy bands for this face-centered cubic crystal
with a two-atom basis. The energy bands are shown on an E - k diagram. kis
the wave-vector that characterizes each electron state. The domain of the k-vector
is termed the Brillouin Zone. The shape of the Brillouin Zone is determined by
the point symmetry of the atom: eigensolutions of the Schrodinger equation for the
crystal must have a functional form that is periodic with the crystal structure—
solutions are only allowed to vary in phase between different unit cells.

The lattice basis vectors are
a, = af2(o11)
a; = a/2(101)
a3 = a/2(110)
and the reciprocal vectors are

~ by = 7/2a(T11)
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Figure 2.1: Conventional unit cube for GaAs. (From [114].)

Table 2.1: Unit cell size, atomic density and crystal density at T=300K, for stoi-
chiometric GaAs. (From [114].)
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Figure 2.2: Brillouin zone for fcc crystal. (From [10].)

by = 7/2a(111)
b, = n/2a(111)

The shape of the Brillouin Zone for a face-centered cubic crystal is shown in Figure
2.2. Individual points of the zone are marked with their symmetry representations.

Many advanced techniques have been developed to tackle the problem of
finding band structure. Most are based on a “single electron” approximation in
which, instead of solving the Schrédinger equation for all of the elecirons in the
crystal, solve it for a single electron existing within a certain crystal potential.
The methods are very successful, as agreement with optical absorption experiments
shows. Techniques range from “free electron” models to “nearly free electron”
models; to “tight binding” models (particularly the semi-empirical formulation of
Harrison [31]); to Green’s function methods; and to Pseudopotential calculations

[1].

The most elementary approach to band structure calculation is the “free
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electron model”. This model solves the Schrédinger equativa without a potential
but does consider the symettry of the Brillouin zone,

~52 2
HY = %V ¥ =E¥ (2.1)
which gives solutions as plane waves
¥p(r) = kT _ K7 ik (2.2)

where K is a reciprocal lattice vector. The energy levels of the free electron model

are constructed from the solution,
Ex x= 5 lk - K| (2.3)

The energy bands for a face-centred cubic crystal are shown in Figure £.3. The
bands are surprisingly complex; they reveal the basic form of the band structure of
GaAs. Most of the curves are highly degenerate; the addition of a weak periodic
potential lifts some of this degeneracy. The effect of a potential is also to cause
energy gaps to appear at Bragg planes.

The £ -hrodinger equation,

-k,
HY = (%V + V(r)) U =FE¥ (2.4)
has soi.. - -1 are the Bloch functions,
¥ L (r) = eRTU L (r) (2.5)

U, 1(r) is periodic with the lattice and ¢'*" is a plane wave.
Still more complicated band structure calculations use a sum of plane wave type

solutions in an attempt to solve for the rapidly changing crystal potential near to
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Figure 2.3: Free electron energy levels for fec cystal. (Adapted from [1}.)

the atomic cores. Chelikowsky and Cohen [12,15] used a non-local EPM (elaborated
to non-local pseudopotential) approach and calculated the band structure for GaAs
shown in Figure 2.4. The same band structure is shown in Figure 2.5 for the top of
the valence band and bottom of the conduction band near to the critical point I'.

The similarity of the GaAs band structure to that of the free-electron model, in-
dicates the fundamental role that the symmetry properties, quite apart from the
details of the potential, play in determining the energy bands. Knowledge of the
symmetry properties is also fundamental to the understanding of the structure of
the optical matrix elements which determine the probability of optical transitions

between states.

a) Basic Properties of GaAs

The most important material properties of GaAs can be understood from the energy

diagram, Figure 2.5. It shows that an energy gap exists between the top of the
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Figure 2.4: Band structure of GaAs. The valence band maximum is taken to be
the zero of energy. (From [15].)
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Figure 2.5: Band structure of GaAs near I'. (Adapted from [15].)

13
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valence band and the bottom of the conduction band. In GaAs, this gap is ~1.5eV
at 0K. A characteristic property of semiconductors is that, at absolute zero, the
valence band is full and the conduction band is empty. The material then acts
as an insulator. As the temperature is raised, electrons can cross the energy gap.
Electrons in the conduction band and holes in the valence band both contribute to

the conductivity,
_nélr,  pelry

- ™
m; my

(2.6)
where n and p are the numbers of electrons 211 holes respectively. 7. and 7, are
the relaxation times for electrons and holes respectively. On a simple model of
conductivity the relaxation time is the average time between lattice collisions for a
carrier. Lattice collisions occur because the ions of the crystal do not form a perfect,
stationary lattice but contain defects and impurities and also vibrate thermally.

This perturbation from a perfect lattice causes the electron waves to scatter.

The numbers of n and p may be derived from simple statistics. The number
of electrons excited from the valence band to the conduction band is given from the
Boltzmann probability,

n = N,e AE/T 2.7

where AE is the energy gap and N, is the number of states in the valence band.
For every electron excited a hole is created. Thus in intrinsic material n = p and
np = n? where n; is the intrinsic number of carriers.

The conductivity also depends on mass, actually the effective masses of holes and
electrons. In the free electron model the energy bands are described by parabolae
which are characterized by the electron mass, my. A simple way to describe more
complicated baﬁd structure is to approximate the band structure near to critical
points as parabolae and then to characterize each parabola with a single parameter,

the effective mass. The effective mass is written in fuil as a tensor and may be
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TS

Table 2.2: Effective masses for the zone-centre extrema of GaAs. (Adapted from

[114].)

derived as the second derivative, that is the curvature, of the E — k structure,

1 O’E

[m'(k)].-,-‘*ak.-ak,- (28)
where the + or — are used to describe band maxima (holes) or band minima (elec-
trons) respectively. GaAs is extremely useful as a semiconductor device material
because its small effective mass gives its carriers a very high mobility. Thus the
material responds quickly and can be used in fast electronic circuits. Values of m*

are shown in Table 2.2 for GaAs at 0K and 300K.

2.2 Excitons

J

In the single-electron model the energy gap is a fundamental limitation: no pho-
ton of energy less than the band gap can create an electron-hole pair, neither can
photoluminescence occur at energy less than the band gap. However, such energy
transitions are very common— in GaAs it is extremely difficult to observe anything
other than below-gap recombination. The reason, of course, is that energy levels do

exist within the bandgap. The derivation of the band structure has neglected the
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Figure 2.6: Two types of exciton: a) Frenkel b) Wannier

possibility of electron-electron interactions. We assumed that excitation creates a
pair of a free electron and a free hole. This is not exactly true. Many-body theory
can show with considerable rigour that the lowest allowed electronic excitation is
not a free electron-hole pair but rather a bound electron-hole complex, called an

exciton.

Two basic types of exciton exist. They are shown in Figure 2.6. The first is
the “Frenkel” exciton and is the case for a bound electron-hole pair of zero radius.
The electron and hole are tightly bound together but can move in the form of an
excitation wave due to the overlap between neighbouring site wavefunctions. The
second case is that of the “Wannier” exciton. This involves an excited electron
which is spatially separated from its ion. Wannier excitons have been found to exist

in covalent crystals with large dielectric constants. They are important for GaAs.

A simple physical picture shows the expected features of the Wannier exciton
spectrum remarkably well:
For the electron and hole sufficiently far apart that the medium in between may

be treated as homogeneous, the Coulomb interaction between electron and hole is
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given by \

V(r)= _";f- (2.9)

that is, an interaction between a charge e and a screened charge —efe.

The effect of the band structure is introduced through the effective mass and, for

simple spherical bands,
_ i
E[(k.) = E/(0)+ E’:‘E (2.10)
Ey(ky) = E(0)+£2-’fz‘- (2.11)
v\*h - v 2m; *

Then the Schrodinger equation for the two-particle system becomes,
RV2 RWVE e? ) .
(— 2171; bt 2m‘{ bt CTeh) ¥ = (E - EG)‘I’ (2.12)
where :
Eg = E.(0)— E,(0) (2.13)

k does not represent a good quantum number for excitons. Instead, the exciton
is properly characterized by the exciton radius, R, and the difference between the
wave-vectors of electron and hole, K. The effective mass appproximation restricts
the solution to a small region of K space around K = 0 but this is really a minor
restriction since the large spatial extent of the exciton necessarily confines it to a

narrow portion of K-space because of the uncertainty relationship,
AKAR ~1

Solving the Schrédinger equation it is easy to find the exciton energy levels [52],
pet R2K?

E.(K) = ~siaa T3 (e + md) + Eg (2.14)
where,
1 1 1
- +—
p m: mp
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Figure 2.7: Exciton energies.

The solution consists of a hydrogenic type spectra plus a kinetic energy term. Figure
2.7 shows the expected spectrum of exciton levels below the band gap.

Excitons also bind to impurities in the crystal. Transitions involving bound
excitons tend to dominate the optical emission spectra at low temperatures. From
Haynes’ rule [33] the exciton binding energy is roughly 10% of the impurity ion-
- ization energy. The linewidth of the bound exciton is very small since binding
prevents the exciton from keeping its kinetic energy component. This makes pos-
sible an identification of impurity content from the bound exciton lines. Thewalt

[94] has reviewed recent progress in exciton photoluminescence.

2.3 Simple Substitutional Impurities

Simple substitutional impurities are of most importance for the properties of semi-

conductors. They occupy the site of an original lattice atom and attempt to bind
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in the same way. However, if the valence of the impurity atom is different from the
criginal atom then the binding of electrons is not complete. An impurity is char-
acterized as either a donor or acceptor depending on whether it contributes to or
depletes the electron carrier density. Simple donors have an extra electron which is
not needed for binding to nearby impurities. This electron is easily ionized from its
jon and jumps to the conduction band of the crystal, thereby increasing the density
of charge carriers. An estimate of this energy for the extra electron to jump to the

conduction band can be obtained within the effective mass approximation [89)]

B =Es—(™)38 v (2.15)
mo/ €3

Thus the value of (m*/mo) determines the ionization energy of the impurity. For
GaAs the effective mass is very small and so the impurity state is very close to
the band and the ionization energy is very small. For donors, the effective mass
theory gives an energy of 5.2meV. The same calculation holds for simple acceptor
impurities and the ionization energy of the extra hole is found to be 34meV [5].
In GaAs the same impurity may act as either a donor or an acceptor depending
on whether it occupies a Ga or an As site. Tables 2.3 and 2.4 list the simple
centres in GaAs together with the values of the ionization energy. Differences from
the effective mass (hydrogenic) theory arise because this simple theory does not

account for the rapid fluctuations in potential near to the atoms.

Impurities are localized in the crystal and thus so are the impurity energy
states at low concentrations. If, however, the impurity concentration is high enough,
interactions between neighbouring impurities form impurity bands. The threshold
concentration for a Mott transition to a metallic conduction of the donor electrons
is

n'/%a = 0.25 (2.16)
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Table 2.3: Simple acceptor centres in GaAs. (Adapted from [110].)

Table 2.4: Simple donor centres in GaAs. (Adapted from [110].)

20
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where a is the Bohr radius of the donor [17]. For GaAs, a = aqe¢ (,—"‘uf) ~ 1054
and 8o 1 ~ 1.3 x 10%cm=3. This concentration would be roughly equivalent to one
impuriy ion for every four lattice ions. The purest form of GaAs currently available
is SI LEC-grown. Residual concentrations of electrically active impurities have
been determined as low as 1 x 101%m=3 and concentrations of shaliow acceptors of

-

1 X 15%em3,

The control and characterization of impurity properties in semiconductors
is crucial to their practical application. Because the ionization energy of donors
and acceptors is small, the probability of their excitation into a band at room tem-
perature is high. Conduction is greatly enhanced in materials with high impurity
content. The conduction may proceed by electrons or by holes in different mate-
rials, dependent on whether donors or acceptors predominate. The materials are
called “a-type” and “p-type” respectively. The Fermi level of the material actually
determines whether a material is n or p-type. If the Fermi level lies midway between

conduction and valence bands then the material is said to be “compensated”.

2.4 Deep levels

The simple substitutional impurities are termed “shallow centres” because their
energies are near to the band energies. “Deep levels” are those that exist far from
the band edges, and are thus associated with very large binding energies. Large
binding energies can exist for certain substitutional impurities, and also for crystal
defects.

Very simple models of defects can be built up from a “tight-binding” theoretical
approach. The defect states have eigenfunctions which decrease exponentially away

from the defect and have very small extension . Lannoo has shown simple models
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for a vacancy, interstitial, and substitutional impurity [59]. One conclusion from the
simple theory of deep substitutional impurities is that if the potentials are strong
enough all impurity levels become pinned to energies corresponding to the energy

of a vacancy.

In LEC-grown GaAs, understanding of the deep levels is particularly im-
portant because it is one of the deep levels, identified as “EL2", that controls the
electrical and optical properties of the crystal to a great extent. EL2 provides the
electrical compensation of the whole crystal by acting as compensation centres for
residual shallow acceptor impurities [97]. It is important to obtain compensated
GaAs for the production of thermally stable semi-insulating crystals—the key ma-
terial for integrated circuits technology. It is becoming accepted that EL2 is a
complex involving an As-on-Ga-site antisite defect, Asg, as one of its constituents

although its exact atomic identity is still controversial {104].

Burd and Braunstein [9] performed photo-induced transient spectroscopy on

LEC-grown Cz-GaAs and observed seven deep levels, see Figure 2.8.
2.5 Phonons

Phonon co-operation is an important interaction in the semiconductor. Phonon
exchange leads to “thermalization”— the process by which non-equilibrium distri-
butions of electrons and holes in the bands acquire the same temperatu:e as the
lattice. Phonons also co-operate in photoluminescence when a change of crystal

momentum is required to effect an energy transition.

The phonon spectrum for GaAs can be measured by the inelatic scattering

of slow neutrons. Figure 2.9 shows the w — k phonon dispersion curves at room
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Figure 2.8: Plots of log(T2t) vs. reciprocal temperature for all deep levels seen by
PITS. (From [9].)

temperature obtained in this way by Waugh and Dolling [106]. Also shown are the

theoretical attempts to fit data with a dipole approximation force constant model.
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Figure 2.9: Dispersion curves for acoustic and optical branch phonons in GaAs.

(From [106).)



CHAPTER THREE
ENERGY TRANSFER AND DECAY

3.1 Models of Energy Transfer

Photoluminescence experiments typically excite the crystal with radiation of energy
greater than the band gap. Electron-hole pairs are created and these recombine
to give a spectrum of energies lower than the excitation energy. Luminescence
does not always occur as an immediate decay of excitation but can be delayed.
In phosphoresceni materials the luminescence lifetime can be as long as several
hours and is strongly temperature dependent. For GaAs, luminescence lifetimes
vary between 1ns and 1000ns [69] with the slower decays corresponding to very
pure samples for which the quick decay through intermediary impurity states is not
possible. The decay of the band-band recombination, however, is seen to be much
faster— 100-1200ps [107]. This indicates that excited carriers are transferred away
from their initial states before decaying.

When the crystal is excited, electrons and holes are created in the bands. The
energy at which they are created depends on the energy of the incident excitation.
Generally, the distribution of excitation energy is highly non-equilibrium. Curve b)
of Figure 3.1 shows a typical distribution immediately after excitation.

What happens after excitation? We presume that the excess population decays,
but how?
There are several different processes that transfer the excitation energy to different
states. Each process is associated with a particular mechanism and has a different

rate of decay of carriers.

25
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s T

Figure 3.1: Two possible forms of electron distribution function for the same

quasi-Fermi level. (From [113].)

The immediate effect following excitation is for thermalization to take place
within each band. Carrier energy is re-distributed through interaction with the
lattice: phonons are exchanged. After thermalization the carrier distributions in
the bands are described by the Fermi probability distribution. However, there is still
an over-population of carriers compared to the thermal equilibrium population so a
“quasi-Fermi” energy-level is used to characterize each band rather than the single
Fermi level of the crystal. Figure 3.1, curve a), shows the thermalized distribution

of carriers.

Most electron-hole pairs do not recombine directly from the energy bag-s,
Instead, one or both of the carriers is usually captured by an energy level within
the band gap. It is very easy for carriers to jump to shallow impurity levels through
the emission of a phonon or two. An ionized donor, for example, has a very large
capture cross-section for the capture of an electron. Exciton states and drep levels

also capture carriers.
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Transfer of excitation takes place between the crystal’s energy states until the ther-
mal equilibrium distribution is re-established.

3.2 Continuity Equation

The continuity equation provides an important way of describing the behaviour of
a carrier population. It includes the effects of carrier generation, recombination
and diffusion. Several authors have solved the continuity equation in detail in order
to investigate the time dependence of luminescence decay under specific excitation
conditions [48,101,67]. Others use the equation to interpret experimentally observed
carrier decays [69,107).

The continuity equation :is
gy o]y a1

where n(z) represents a carrier distribution and the current, J, is due to diffusion
of carriers,

= ~DV [gn(x)] | (3.2)

Weiner and Yu [107] modelled their experimental conditions by assuming that the
medium was semi-infinite with the sample surface located at the z = 0 plane. The
carrier concentration was assumed to depend only on time, ¢, and depth, 2. Then

from 3.1, the concentration of electron-hole pairs N(z,t) obeys,

oN #N N
o G(z,t) + D_a?’_ -7 (3.3)

where G(z,t) is the generation rate due to an incident laser, D the diffusion co-
efficient and 7 the bulk recombination time due to carrier capture at impurities and

defects.
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This equation has to be solved subject to the boundary conditions that

oN
D B o= N(0,t)S
and
N(co,t) =0

where S is the surface recombination velocity. It is assumed that the incident laser

pulse is a delta function in time so that G(z,t) is given by
G(z,t) = Nob(t)e™** (3.4)

where a; is the absorption co-efficient of GaAs at the incident laser frequency.

The sclution for the time-dependent emission intensity is [102],

I(t) «x e~"[A, W (a; VDY) +A2W(%¢E) + AW (a. VD)) (3.5)

where
e ()5 (3"
A = p _2*_0“_ - (A1 + 4,)

and

W(z) = ) erfec(z)

a. is the absorption co-efficient at the emission frequency and er fc is the compli-
mentary error function.

In 3.5 the term outside the bracket is a simple exponential decay with decay time
7. The terms inside the bracket are significant only when S and D are both large.
Since these terms lead to non-exponential decays, the surface recombination and

diffusion terms can be readily distinguished from the bulk recombination term.
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Figure 3.2: Four fundamental processes involved in recombination through traps
a) the capture of a conduction electron by an empty trap b) the emission of an
electron from the trap to the conduction band c) the capture of a hole from the
valence band by a trap containing an electron d) the promotion of a valence electron

into an initially empty trap. (From [66].)
Typically quoted values of D and S are [37]

D
S

10cm?/s
10%cm/s

Weiner and Yu [107], however, found that the best fits to their observations of

band-band luminescence came from assuming S = D = 0.

3.3 Shockley-Read Theory

Shockley and Read [88] analyzed the statistics of recombination of holes and elec-
trons for a model in which the recombination occurs through the mechanism of
trapping. Figure 3.2 shows the four basic processes of carrier capture and emission
that they considered [66]. Shockley and Read derived statistical rates for capture
and emission of electrons and holes by traps. These can be used to find the time-

decay of the carrier population. For a population n of electrons, the capture and
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emission rates by traps are R, and R,

Re = CualNyl- f(E))m (3.6)
Ren = E.N.f(E) 3.7)

where C,, and E, are constants representing capture and emission probabilities for
electrons, N; represents the total concentration of trapping centres and E, is the
trap energy. In equilibrium, the detailed balance condition R,, = R, gives,
1- f o(Et))
E,=n,Cph | ——=+— 3.8
(e 38
with f, being the equilibrium distribution, the Fermi function.

Off-equilibrium, consider the net recombination rate

Ry, =Re, — Ren (3.9)
Define
E,=mnC, (3.10)
where
ny = N.e~(Be-E/T (3.11)
and get a net rate,
Ry, = CulNy[n(1 = f(Er)) - naf(E)] (3.12)

n, is the electron concentration which would be present in the conduction band if
the Fermi level were to coincide with the trap level E,.

Similarly for holes, obtain

Ry = CoNilpf(Ee) — m(1 - f(E))] (3.13)

where

p1 = N,e~(Er=E)/T (3.14)
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We may set R, == R, since every recombination requires an electron and a hole.

Then solving for f{E:),

Cop1 + Cun
E) = pPL T n 3.15
f(Ey) Cu(n +m1) + Cp(p+ p1) (3-15)
and substituting back into 3.12 and 3.13,
N, ¢C,.C',(np - nl?l)
=R, = 3.16
Bn =B = Gulnt m) + G+ P @19
If we define a common lifetime 7 for the recombination
_p __%p) o
Rn = RP - dt - T (3'17)

then substituting n = ng + 6p, p = po + 6p and nypy = nopo, assuming that the

number of excited carriers &p is very small compared to ng or po.

- Nt(po +n,+ 6?)
I/Cp(no +nm + 6?) + I/Cu(Po +n, + 6?)

% (3.18)

The lifetime depends on the position of the Fermi level, since this determines the

carrier populations n, ny, p, p1. The lifetime varies from

1
T="Tpo= ., (3.19)
in strongly extrinsic n-type material to
1
TETe =g W, (3.20)

in p-type material. A maximum occurs between the two extremes. Figure 3.3 shows

the lifetime as a function of the Fermi level.

The Shockley-Read theory contains a number of unknown parameters whose
value must be adjusted to fit experimental data. This makes it difficult to make

precise comparisons between the theory and experiment.
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Figure 3.3: ‘Dependence of lifetime upon Fermi energy. (From [66]

3.4 Excitation Transfer Theories

The continuity equation and the Schockley-Read statistical description consider
energy transfer on a large scale—their descriptions are for the total numbers of
carriers. In contrast, the more detailed excitation transfer theories are based upon
microscopic models. Their approach is to solve sets of coupled rate equations for

the probability of carriers existing on certain sites.

A very simple model of energy transfer between two monomolecular cen-
tres was considered by Chimzak [14]. A first type of centre is excited and decays
according to,

dNy

—a-t— = —a1N1 (321)

Assuming that all of the excitation is transferred to emitting centres, N,, then the

decay of the second centres is,

dN, _ _dMy
dt = - dt azNz (3.22)

Equations 3.21 and 3.22 can be solved by Laplace transforr {3ece Appendix A).
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Figure 3.4: Luminescence excited by short pulse in the case of energy transfer.

(From [14].)

Following the excitation the luminescence decays as

I= _ng _ N, [e-t/n _ Be—t/n] (3.23)

T dt  m-m n
where N;(0) is the initial number of excited transferring centres and 7, and 7, are
the lifetimes of transfer and emission centres, respectively. This describes the curve
of Figure 3.4. The transfer process actually causes the luminescence to increase

after the excitation has ended. There is a delay time of

172 T2
Tmaz = ———2In =
T2—T b

(3.24)

before the luminescence begins to decrease. This simple model demonstrates a very

interesting luminescence profile.

Huber et. al. [44] proposed a mode! for energy transfer which relates the luminescent

decay curves to the microscopic transfer processes. The starting point is a set of
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coupled rate equations for the luminescence centres,

h) __ [»,R+z;wm.n] Pot) + 3 W Pu(t) (3.25)

P,(t) is the probability that the n’th ion is excited at time t. The parameter yr
denotes the radiative decay term and W, is the transfer rate from ion n to ion
n’. The second term on the right hand side characterizes the transfer away from
excited ions and the third term descibes a “back transfer” process where energy is

transferred from neighbouring ions.

The luminescent intensity is identified with the function Py(t) which is the
solution to 3.25 with the initial conditions Py(0) = 1, P,(0) = 0 and n # 0. The

radiative decay term can be factored out of P,(t),

P,(t) = e "' Pi(t) (3.26)
so 3.25 becomes,
/
-d._%,t(_tl = - ZWM‘"P,"(t) + Z W,;I,.P,":(t) (3.27)

Considering the short-time behaviour for n = 0, the back tranzfer term may be

neglected. Then the solution is
5(t) = e= LnWont (3.28)

Including the back transfer, equation 3.27 may be solved with the initial conditions
%(0) = 1 and P.(0) = 0 for n # 0 and for a spatially ordered array of optically

active ions. Introduce the Fourier transform of P.(t),
P(k,t) = Y e ®Tpys) (3.29)

Plt) = %;e‘k"ﬁ(k,t) (3.30)
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where the sum on 7 is over the N ions located at sites R, while sum on kis

over Brillouin Zone associated with ionic lattice. Pj(t) is then expressed as

e—rot
Pi(t) = 3 e+ (3.31)
N 5
where
n
Ty = Y cos(k-r,0)Won (3.33)

in which #,0 = P, — 7o and the lattice has inversion symmetry.
The solution 3.31 is exact for a lattice with all sites occupied. The short-time

behaviour of 3.31 is

t2

Pi(t) = eTot (1 + 57 z:,rz +-- ) (3.34)

so that the correction for back-transfer is of the form 1 + at? for small ¢.
The long time behaviour of 3.31 is

Pit) ~ 732 (3.35)

which is indicative of diffusive decay at long times, in contrast to near-exponential

decay at short times.

The time evolution of P/(t) is determined by the symmetry of the ionic
lattice, and the functional dependence of Wan on the inter-ionic separation. A

frequently used appraximation is to take Wyn to be of the form [46]

Wi = (R"“")'W, (3.25)

Tan’
This relationship includes the symmetry Wyns = Warn. Rnw is the distance between

the sites n and n’. R, is the distance between nearest-neighbours and W, and



3.5 Thermal De-Trapping 36

s are parameters. s in particular characterizes the decrease in transition rate with
increasing separation and thus reflects the interaction mechanism involved in the
transfer— for instance, dipole-dipole or quadrupole-quadrupole interactions. Other
physical transfer mechanisms may be modelled with different forms of W,,~— hop-

ping or tunneling transitions.

Finding a general solution to this transfer model without the special initial
conditions and with a set of luminescent centres that does not fill every site of the
lattice is considerably difficult. Huber et. al. [44] put forward several approximate

solutions, especially for the short-term behaviour to model fluorescence.

3.5 Thermal De-Trapping

The microscopic transfer theories of Huber are complete in the sense that they
allow for all possible microscopic processes between atoms or states. If we were
only able to solve the set of coupled equations 3.25 for every atom in the crystal
then we would not need to worry about the details of the transfer rate W+, which
_determines that some atoms transfer excitation quickly, others slowly, and some
have a certain temperature dependence, others do not. In order to be able to solve
the Huber equations it is necessary to make certain approximations. The nature of

these approximations is determined by what is known about the physical system.

Huber’s approximate solutions ignored the possibility of “trapping” of exci-
tation. Trapping occurs if energy becomes caught at a site from which it escapes
only very slowly, as an equilibrium restoring process. This can occur, for example,
if the matrix element determining optical transitions is zero and the de-trapping

process is a slow thermal excitation.
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Trapping is considered to be an important process in luminescence. Randall
and Wilkins [78] proposed that excitation from traps could account for the time de-
cays and temperature variations that were observed for phosphorescence. Theories
of thermo-luminescence (luminescence that is excited by thermal effects) are based
upon the thermal release of trapped carriers into a band [13] and consideration is

given to the detailed distributions of traps that lead to particular time decays.

Huber did extend his transfer theories to include the effects of traps [42,43]
but in a very limited way: in modelling the short-time fluo~ 2scence behaviour he
assumed that the rate of energy transfer from traps was time-independent and he
did not consider the effects of temperature on the de-trapping rate.

Teh [98], in experiments with LEC-grown SI GaAs doped with carbon im-
purities, discovered a temperature dependence in the time decay of luminescence.
The luminescence of ~1.49ev was observed to decay as a power law in time and
the exponent of the power law varied linearly with temperature. This led Teh to

propose as a possible explanation the thermal de-trapping of carriers from traps.

The excitation transfer process of thermal de-trapping thus has an important
effect on the luminescent time decay. The effect is investigated in detail in the second
part of this thesis, where the results of computer simulations of luminescence decay

from various distributions of traps are presented.



CHAPTER FOUR
RADIATIVE AND NON-RADIATIVE TRANSITIONS

4.1 Radiative Recombination

Energy decay processes involving the emission of light result from the recombination

of an electron with a hole. The processes are readily observable as luminescence.

In order to use Fermi’s golden rule to describe the transitions we must know
~ome details of the quantum system. The interaction energy between the radiation

field and the atomic system is,

Hpme =3 — (m—e-c) A;-p+ ( 2:;,) 42 (4.1)

J
where A is the vector potential, p is the momentum and the sum is over all the

electrons of the system.

The one-electron approximation is assumed in order to find approximate
wavefunctions and the contribution from the A? term is neglected. Once the vector
potential is expanded, the interaction Hamiltonian can be split into two terms—

one for photon absorption the other for photon emission.

Fermi’s golden rule for the total emission rate, W.,,, due to transition be-

tween an upper |u > and lower |l > state gives,
2
m == S| < Gl > *6(E - By + hun) (4.2)
A ul

where the sums are over all radiation modes, A, and all states, u and I. The

momentum matrix element |P{™| may be separated out of the above expression and

38
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the transition rate written as,

= % 3 IHE (N + 1)8(Ery — Fiw) (4.3)
A ul
where .
2xh’e
part = (20 ) e (@4)

and the momentum matrix element is,
|Pem| = | < lle™**"&x - plu > | (4.5)

This emission rate 4.3 includes the effects of both stimulated and spontaneous emis-
sion. The portion due to spontaneous emission does not depend on the occupation
pumbers of the radiation modes, Ny, and we may replace the sum over radiation

modes ) by a sum over photon frequencies, w, by introducing a spectral density of
states G(fw),

Wep Y IHEP6(Ery — hws)

2r
22
2% v \
y ;zl H |‘u\hw)5(E,u - hw) (4.6)
This formula for the transition rate is valid if every initial state is occupied and
every final state is empty. In most cases some of the initial states will be empty and
some of the final states filled. We introduce probabilities P; and P} that the state

|j > is filled or empty, respectively. The emission rate involving photons within a

narrow spectral region is then,

Ry(tw)dhw = —dW,P,P;

27 <~
= ST PG(hw)PuPIB(EL, = hs)dhs

i Z | < HE™ > |2,G(hw)n(Eu)n' (ENS(Er — fw)dhiw(4.7)
Eanl
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where the sum over states has been replaced by a sum over energies and the degen-

erate components have been included in | < H{™ > |2, and n.

Fer cach distinct line in the photoluminescence spectrum— whether band-
impurity, exciton-band, impurity-impurity or band-band— we can now work out
the characteristics of the emission profile. The recombination of an electron and a
hole is proportional to the occupation number of electrons in the upper state, to
the number of empty electron sites (holes) in the lower state, and to the square of

the optical matrix element.

The definition 4.7 is valid for both discrete and continuous states. Three

situations are of particular interest:

e the upper and lower energy levels are both discrete
¢ one level is discrete and the other is continuous

¢ both levels are continuous

a) Number of States

For discrete-discrete transitions (see Figure 4.1c), the number of states at energies

other than E, and Ej is zero. Hence,

n(E,) = n,(E, - E,) (4.8)
n(E) = mb(E - Ey) (4.9)

and the sums over energies in 4.7 are reduced to a single term,

Rip(tw) = 2| < T > [, G(w)uni8(Bru — ) (4.10)
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Figure 4.1: Radiative transitions: a) band-band b) band-impurity ¢) impu-
rity-impurity
If the number of states n, and r} refers to N, and N; impurity atoms with degen-

eracies of g, and g; then n, = g N, P, and nj = g/NP;. Then the total spontaneous

emission rate 1s,
Ry = [Ry(hw)d(tw)

= Tl <y > BG(w)gaNNPF (411)

In general, even discrete lines possess a finite width so that all of the photons
are not emitted at Aw = Ej,. Let A(E), — fiw) represent the line shape normalized
to unity, |

/0 " A(Bp—tw) =1 (4.12)

then
Rup(ts) = RypA(Ei — ) (4.13)
The line-shape function A(E;, — fiw) is often adequately approximated by a Loren-

tian or Gaussian curve.
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Consider discrete-continuum transitions from a continuous set of upper levels to a
discrete lower level, Figure 4.1b). The number of occupied states in the continuum
is given by the density of energy states p(E,) times the probability that they are
ocrupied P(E,),

n(E.) = p(E.)P(E.) (4.14)
where P(E,) is the Fermi-Dirac distribution for a thermalized non-equilibrium pop-

ulation. The number of states in the lower level (as before) is,
ny(Ey) = mié(E; - Ei)

For a parabolic band the energy surface is defined by

12k?
E(k) = (———2m ) + e (4.15)
where ¢g is the band gap energy. So the density of states is
. 1 [/2m.\%?
p(E) = B = s (F52) Bl (4.16)

Then the recombination rate is,

Ro(h) = 2| <HT > (G Bu)nib(Biu ~ )

2 .
= | <HD > BC(w)p(B)gNP(E)P(E)S(Ery - hu) (4.17)
The principal spectral variation of R,,(Aw) is contained in the product p(E)P(E).
Since for parabolic bands, p(E) ~ EV/? and normally P(E) ~ e~E/¥T,
R, (hw) ~ EM?e-E/¥T (4.18)

where F = hw — €g — ¢; and ¢; is the impurity binding energy.

The energy dependence of H{™ can be neglected to a good level of approximation.
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The case of continuuiu-continuum transitions (Figure 4.1a)) is somewhat mor: in-
volved than the previous two cases because of the apppearance of k selection rules.

Conservation of momentum in optical transitions requires that
k, =k (4.19)

since the photon wave vector is negligible. If the relation between E(k) and k is
known for each band then 4.7 becomes

Ryp(hw) = %EEZJ; | < H™ > B, G(hw)n(By)n'(E)6(Er, ~ Fiw)dhiw
- x T 1< HID > B GOwna (i) s 8 Eu(ke) = Eil) = )

2
= S| <HT > BG(hw)prea( B)Pu( B P{(E)bt, 4 8(Eu — Ey ~ 1u.20)

The reduced density of states is given by,

1 K
272 (d/dk)[E,(ky) — Ei(k))|E,=E 480

and E = hw — eg. For parabolic bands p(E) ~ EY? and P(E) ~ e~E/¥T, Again

assuming that H{™ is independent of energy,

Pred(E) =

(4.21)

R, (hw) ~ EY%e~E/T (4.22)

b) Matriz Element

The momentum matrix element determines the value of R,,(Aw) which in turn
determines the strength of the luminescent intensity. We mentioned in connection

with continuum-continuum transitions that the wave-vectors of the recombining
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electron and hole need to be practically the same in order for the transition to be
momentum-conserving. This is an example of a selection rule that arises from a
calculation of the matrix element 4.5. Just as in atomic physics, when the matrix

element becomes zero the iransitions are forbidden.

The vanishing matrix elements can be determined if the symmetry properties
of the initial and final states are known.
Each type of point impurity or defect is associated with a particular symmetry
arrangement, as is every point in the Brillouin zone and so can be represented
by an irreducible symmetry representation. In general, when calculating matrix
elemeants,

< ¢m/Vi/¥n > (4.23)

each component may be represented by its irreducible symmetry representation, so

for instance write the above as,

< ¢a/V/Yn > (4.24)

where the u,o and v are indicative of the representations. Now, if the representation
D*# does not appear in the decomposition of the product representation D* x DY
then the matrix elements are zero because of the orthogonality theorem in group

theory.

For band-band transitions (k) vanishes at k = 0 if the periodic portions
of the Bloch functions Uy, x(r) possess similar symmetries for both the conduction
and valence bands. If the symettry at k = 0 is s-like then away from k = 0 the
symmetry is usually lowered by admixture with p-like symmetry; then M, (k) for
k # 0 is non-vanishing.
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¢) Lifetime

It is useful to be able to calculate a radiative lifetime and to understand the form
of the time-decay predicted by R,,(fiw) even though the radiative decay is not nec-
essarily the only process affecting the carrier lifetime. In the discussion of energy
transfer we showed that thermalization, radiative recombination and non-radiative
transfer between ions were all important to the total decay. An independent esti-
mate of the radiative lifetime is obtainable from the theory. In the simplest case,
the spontaneous emission rate can be written

dn RO
=—— = | —2
Rep di (nopo) np

= Bnp (4.25)

where nq, po, Rj, are the equilibrium values of n, p and R,;,, respectively.

In intrinsic materials, np = n?, and integration of 4.25 gives

n(t) = H’%%?@-t- '(4.26)

This shows non-exponential recombination behaviour.

For strongly extrinsic materials, say p-type, there exist py holes before excitation.
Excitation creates equal numbers of electrons and holes, §p, and the total popula-
tions are:

for electrons,

n=6p (4.27)

and for holes,

p=po+bp (4.28)

Assuming §p << pp the solution to 4.25 is now

n(t) = n(0)e~*/" (4.29)
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where
1 1\ dn
T (Z) at = (+.30)

This is familiar exponential behaviour. The radiative lifetime is not determined
by the optical transition rate alone but also depends on the equilibrium carrier

densities.

4.2 Non-Radiative Transitions

Non-radiative transitions are extremely important to the energy decay process. A
rough idea of their importance can be obtained from the internal quantum effeciency

of a material,

n= Tnr
Tar + Tr

where 7,,, and 7,, are the decay times for non-radiative and radiative processes re-

(4.31)

spectively. A good efficiency is achieved when radiationless transitions are minimized—
Tar i8 large and 7,, small. However, even for the best semiconductor materials used

for light-emitting diodes, n ~ 0.3% [71].

It is further apparent that radiationless processes are of utmost importance
for a material such as GaAs because of the effect of quenching of luminescence as

the temperature is raised.

A theoretical understanding of non-radiative transitions should enable us
to calculate the probability of occurence of the various types of transition. If the
probability sufficiently exceeds that of the corresponding radiative processes then
the transition is radiationless and not radiative. Theory will need to explain why the
non-radiative rate grows faster than the radiative rate with temperature, and with

carrier concentration. Such a comprehensive understanding has not been achieved.
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In the remainder of this chapter I describe the main transition processses that result

in non-radiative transitions and also outline the theoretical developments.

a) Transition Processes

Landsberg [57] has reviewed the non-radiative transition processes in semironduc-
tors. The only known non-radiative capture processes are the Auger effect, lattice-
relaxation multi-phonon emission and, under certain circumstances, phonon cascade

capture:

o The band-band Auger effect is illustrated in Figure 4.2. Electrons in states
1’ and 2’ collide and the first electron loses energy while the second gains. A
recombination is achieved because one electron and a heavy hole both disap-
pear. Competing with this is the collision between an electron in state 1’ and

an electron in the light hole band in state 3’. Again a recombination ensues.

The laws governing these Auger effects can be understood in terms of classical
colisions. Once an electron has been noticeably deflected by the Coulomb
s due to another electron, the collision can be said to have started. The
effective potential is just the electron-electron interaction. Just as in classical
theory, both energy and momentum have to be conserved, this leads to a
threshold energy which state 1’ must have before the process can proceed at
all.

Impact ionization is a process in which an electron-hole pair is created due
to a collision between electrons. It may be considered as identical to Auger

recombination in Figure 4.2 if the arrows are reversed.
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Figure 4.3: Trap Auger effects. (From [57].)

Auger transitions can take place through intermediary traps— one carrier is
trapped at a centre and the energy released or absorbed by another carrier,
see Figure 4.3.

A variety of more complicated Auger processes involving recombination
centres can also be conceived. For instance, a centre can lose two elecﬁrons
with the result that a hole is replaced by an electron, see Figure 4.4a).
Electrons may recombine with a centre and the energy may be used up to
create a hole by promoting an electron to a neighbouring centre. This has

the effect of changing the electron into a hole, see Figure 4.4b). The reverse



4.2 Non-Radiative Transitions 49

Figure 4.4: Other Auger processes. (From [57].)
process changes a hole into an electron, see Figure 4.4c).

¢ Lattice-relaxation multi-phonon emission is a proces: whereby large amounts

of energy can be efficiently dissipated by emission of many single phonons.

o Cascade capture occurs when an electron loses energy by dropping through
a series of closely spaced levels, emitting one phonon during each transition.
Lax [60] devised the theory for this process. However, it is only applicable to

relatively shallow centres with closely spaced excited states.

b) Theoretical Developments

There is general agreement in recent literature that multi-phonon capture and emis-

sion processes are consistent with observed material behaviour [63].

The theory of many-quantum processes is very much more complicated than
that of Section 4.1 for radiative recombination. Instead of considering the tran-
sitions of the electronic states caused by the effect of the radiation field, we now
have to consider the quantum system consisting of interacting electron and lattice

particles. Haug [32] writes the eigenfunctions for the unperturbed problem of an
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uncoupled system of electron and lattice particles as,

v, a(r, Q) = ¢r(r)Xr J(QT) (4'32)

Q is the lattice co-ordinate, ¢,(r) is the electronic function (r is its quantum number)
and X,,(Q,) is the lattice function (r and s are its quantum numbers). the lattice
states have the suffix r because they also depend on the electron state when dealing
with transition processes of the order of magnitude of many vibrational quanta.

The electron-lattice interaction energy is,

ov
Hint = ;Ui (-67.)

where the sum is over the lattice particles i and U is a potential energy representing

=0 (4.33)
v
the interaction term. Fermi’s golden rule gives as the transition rate of an electron

from state r to 1/,
2
Wer = 51 < B sl MG, > Ppub(Bur s = Br) (4.34)
ss

A sum is taken over all initial and final states of the lattice since all possible lattice
transitions must be’ permitted. Also the probability of the occupation of the initial

lattice states is taken imto account by the factor p,.

The multi-phonom decay rate was first calculated by Huang and Rhys [41];
their theory was restricted to interaction with longitudinal-optical phonons of con-
stant frequency. It vras later extended to take into account the interaction with
phonons having an irbitrary frequency distribution {30,55,81]. All of the calcula-
tions were simplififed by making the “Condon” approximation in which the elec-
tronic matilk element is taken to be independent of the lattice co-ordinate. The
resillting non-radiative recombination rate was found to increase exponentially with

temperature but to decrease exponentially with transition energy. In comparison,
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the radiative rate is independent of temperature and depends only weakly on the
transition & s This basically explains why the radiationless processes dominate
at high temp  ures. Detailed calculations of the absolute values of the two rates,
however, showed that radiationless processes at room temperature can only dom-
inate when the energy difference of the electron states amounts to nothing more
than a few vibrational quanta (~ 0.05eV’) [32]. This does not explain the observed
predominance of radiationless processes in a material such as GaAs with an energy

gap of 1.5eV.

Kovarskii and Sinyavskii [53,54] attempted a calculation without the Condon
approximation. Their non-radiative rates were two to three orders of magnitude

larger than those calculated in the Condon approximation.

Henry and Lang [36,58] developed a theory of capture at deep levels by
multi-phonon emission without the Condon apppraximation. The capture takes
place because the energy of the deep level depends on the positions of the atoms
comprising the defect and on the position of the iattice and, as the lattice vibrates,
the level moves up and down in the energy gap. The configuration co-ordinate
model can be applied to the behuviour of the deep levels to describe the capture
process. Figure 4.5 illustrates a simple model of the eleciron-lattice interaction
in which the lattice is represented by a single co-crdinate. The figure shows that
the vibrations of the single lattice co-ordinaie linearly modulate the depth of the
potential well binding the carrier. For sufficiently large vibrations the level can
cross into the <onduction band and capture an electron. Prior to capture, the
equilibrium. position of the level is in the upper half of the gap. After capture of the
electron th= lattice near the defect relaxes in such a way as to lower the equilibrium
position of the level in the energy gap. It is clear from Figure 4.5 that immediately
after capture of the electron the lattice is displaced far from the new equilibrium
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Figure 4.5: Non-radiative capture of an electron due to variation of trap depth with
lattice vibration. (Adapted from [36,58}.)

position and there will be a violent lattice vibration at the defect. The vibration
will rapidly damp down to the amplitude of thermal vibrations after a small number
of vibrational periods. During the damping, the localized energy propagates away
from the defect as lattice phonons. This justifies ~alling the process nonradiative

capture by multi-phonon emission.

Lang and Henry [36,58] found the limiting semi-classical behaviour of the

theory at high temperatures to give a capture cross-section,
0 — O~ E=/FT (4.35)

where o, = (0.5 — 4) x 10~'%cm? for a neutral centre. Considering the fuct that
Coulomb enhancement tends to decrease with temperature they predicted that the

cross-sections should extrapolate to 0, = 10~ - 10~%c¢cm? at T — co. The values
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Figure 4.6: Electron and hole capture cross-sections. (From [36].)

of 0 calculated from experiment show excellent agreement with this prediction,

see Figure 4.6.

Ridley [82] made a quantum-mechanical calculation of the multi-phonon
emission using infinite order perturbation theory. His capture cross-section agreed
exactly with the result of Lang and Henry for the high temperature limit but addi-

tionally he was able to obtain a low-temperature limit.

Passler [74] developed a semi-empirical theory of Schockley and Read pro-
cesses in semiconductors and was successful in deriving explicit expressions for the
non-radiative capture and emission in semiconductors. However, the static Condon
approximation he used has been shown to breakdown near the crossing point of the

trap state and respective lattice band edge potential curves.

Mandelis [63] provided a self-consistent semi-classical dynamic theory of non-

radiative capture. He claims that it bridges the gap between rigourous but complex
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quantum-mechanical theories and rough but experimentally useful semi-classical
calculations. The theory takes into account the dynamic response of the lattice

after optical excitation.



CHAPTER FIVE
PHOTOLUMINESCENCE SPECTRA

5.1 Comparison with Thsory

Lucovsky, Varga and Schwarz [62] were among the first to make extensive mea-
surements of edge absorption and photoluminescence in Zn-doped GaAs. The two
effects couid be correlated using the relationship which was derived theoretically by
Van-Roosebroeck and Schockley [83] from a consideration of the detailed balance

between absorption and recombination at thermal equilibrium,
S(hv)  (hv)*a(hv) for nv >>ET

or,
S(hv)
(hv)2e-mkT

Photoluminescence measurements were thus able to be used as complimentary to

a(hv) (5.1)

absorption measurements for photon energies at which absorption was either very
strong or very weak. They also correlated the behaviour of absorption and photo-

luminescence with the level of doping of their samples.

Direct comparison between the theory of Section 4.1 and observations could
only be made as the quality of GaAs samples improved significantly to be able to

resolve the fine spectral structure.

Weiner and Yu [107] observed the band-band recombination. This decays ex-
tremely rapidly. Figure 5.1 shows the lineshape they observed and may be compared
with that predicted from 4.22.
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Figure 5.1: Band-band recombination. (From [107].)

Eagles [48] was the first to make a direct calculation of the spectral line-
shape for conduction to simple acceptor recombination. He assumed that the im-
purity wave functions were adequately described by the hydrogenic envelope func-
tions and that only the ground state of the impurity is significantly involved in
the band-impurity transition. Comparison of the theory 4.18 and the experimental
measurements of Williams and Bebb [109] is shown in Figure 5.2. The results are
in excellent agreement with experiment for the peak and higher energy portion of
the spectral line for temperatures in the range 15-80K. At low temperatures other

broadening mechanisms dominate.

Discrete-discrete transitions between donors and acceptors will be treated
in-depth in Chapter 7. For now, it is clear from Figure 7.2 that the sharp form of
the spectral shape 4.13 can be observed in practice.
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e

Figure 5.2: Band-acceptor recombination: comparison of theory and experiment.
(From [110}.)

The agreement between theory and experiment for the actual energy of the
luminescence transition has already been discussed (Chapter 2) for exciton states,

substitutional impurities and deep levels.

5.2 Spectral Lines of GaAs

In this section I consider all of the photoluminescent transitions that may be present
in the crystal. Of course, a single photoluminescent spectrum taken from a localized
area of material will only show the lines characteristic of that particular locality in
that particular crystal. However, many measurements over different crystal growth
types and doping levels reveals the full structure of photoluminescent lines.

Comprehensive reviews of photoluminescent lines have been provided by

Williams and Bebb [110] and ir the EMIS Datareview series [47]. The precise
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classification of lines in the spectrum can be difficult, especially when comparing
spectra from crystals grown in different ways. Thewalt [94] has reviewed various
techniques for characterising the photoluminescent lines.

Of the different crystal growth types, i LEC GaAs is becoming the most
technologicaily important. Its impurity coacentratior has already been described in
Section 2.3 and, in Section 2.4, its semi-insulating property was described as arising
from the deep levels.

There are other important growth methods of GaAs crystals:

¢ liquid phase epitaxy (LPE) layers of GaAs have been important for the iden-
tification of impurities and defect levels [35,92];

o vapour phase epitaxy (VPE), which may be sub-divided into hydride and
chloride VPE depending on the starting materials (both methods involve the
same reactants at the growth surface, though the hydride process offers more
flexibility of the As/Ga ratio [47] [35];)

¢ metalorganic chemical vapour deposition (MOCVD) is a useful technique for
producing thin layers and abrupt interfaces; [96,86]

e molecular beam epitaxy (MBE) is a technologically important growth tech-
nique, enabling thin films of very high quality to be grown [34].
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Figure 5.3: Free exciton transitions for upper and lower polariton branches. (From

[90].)

These are the lines that are identified in the photoluminescence spectrum of GaAs:

¢ Free Exciton Lines. Sell et. al. [90] detected the luminescence resulting from
free excitons. These excitons interact with photons to form polaritons. Two

lines are visible, corresponding to the upper and lower polariton branches.
See Figure 5.3, [90].

o Bound Exciton Lines. Reasonable agreement is found with theory. Exci-
tons bind to donors or acceptors, but the binding energy is too small to make

a chemical identification of the impurity possible [94]. See Figure 5.4.

o Two-Electron Transitions. A partial Auger recombination leads to dulpli-
cation of bound-exciton lines, separated by the electron znergy. See Figure
5.5.
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Figure 5.4: Excitow 1 usitions. (From [92].)

Figure 5.5: Two-electron partial Auger recombinations. (From [84].)
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Figure 5.6: KP lines. (From (80].)

¢ KP Lines. These were a source of controversy when first seen by Kunzel
and Ploog [56]. Reynolds et. al. [80] thought that they were observing a
discrete donor-acceptor pair structure. However, this interpretation has been
discredited. Recent papers [2,23] indicate that they can be split into two
groups. One peak is suggested to arise due to an exciton bound to a neutral
acceptor complex defect. The set of lines at lower energies is due to exciton
recombinations at axially orientated complex defects. Generally, KP lines are
not visible in non-MBE samples, although lines in the same spectral region
emitted by MOCVD layers may be related. See [11] for a recent study. See
Figure 5.6.

¢ Free-Bound Recombination. The peak position of this line may vary by
0.5meV, dependent on the impurity concentration. Figure 5.7 shows typical

band-acceptor transitions.
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Figure 5.7: Band-acceptor transitions. (From [92].)

e Donor-Acceptor Complexes. The donor-acceptor recombination energy is
given by 7.1. The peak position of the donor-acceptor pair spectré, is given
by the most probable pair separation, which is a function of impurity concen-
tration. The recombination band is wide, its actual width also being related
to concentration. Thus, the positions of the peaks are not exact and may
vary by up to 1lmeV. Knowledge of the residual impurity concentration allows
identification of the peaks.

e Complex Centres. The 1.49¢V and 1.47eV bands seen in MBE samples were
first measured by Briones and Collins {7]. They are attributed to complex
centres involving carbon and a vacancy, of the type C-V(Ga) and C-Va(As).

e Deep Centres. The broad-band photoluminescence seen by Tajima is shown

in Figure 5.8.
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Figure 5.8: Deep levels. (Adapted from [97].)

¢ Phonon Replicas. These occur of lines for which it is prcbable that a phonon
transition can take place [110]. The strength of the phonon coupling is greater
for increased binding energy of hole or electron. Coupling is most probable
with the LO phonon because of the polarization field. The LO phonon energy
is 36.5meV and that of the TA phonon,the next likely to couple, is 10meV. In
VPE samples replicas of the Mn and Cd deep impurities [110] are seen, see
Figure 5.9.

Table 5.1 lists the energy positions of the photoluminescent lines [35,92,96,34,84).
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Figure 5.9: Phonon replicas of luminescence lines. (From [110].)
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Table 5.1: Energies of photoluminescence transitions.
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CHAPTER SIX
TIME-DECAY OF PHOTOLUMINESCENCE

6.1 Evidence for Non-Radiative Processes

Luminescence has been a powerful tool for the study of impurities in GaAs and
GaP. Luminescent lifetime studies have shown definitively that non-radiative re-

combination occurs.

Nelson et. al. [68] studied excitons bound to donors in GaP and Si. They
measured the lifetime of the so-called C line in the luminescent spectrum of GaP
and found it to be 21 +4ns. This was about 500 times shorter than the theoretically
predicted value of 11us. They concluded that the decay of the bound exciten had
to proceed manly by a non-radiative process— the Auger effect. From the simi-
larity between the theories of non-radiative recombination and internal coaversion
in nuclei, thay were able to determine a value of 1200 =s being the ratio between
non-radiative and radiative processes. This figure is in good agreemeat with the

absorption-emission discrepancy of the lifetimes.

6.2 Non-Exponential Behaviour

In Chapter 3 we saw that the processes of energy transfer in the crystal can lead to
non-exponential decays. This was apparent from the continuity equation— the dif-
fusion and surface recombination terms cause departure from exponential behaviour.
In the simple excitation transfer model of Chimzak, the decay did certainly not fol-

low a regular exponential— this w-.. because of the transfer term that actually

67



6.2 Non-Ezponential Behaviour 68

caused the luminescence to increase for a short time after excitation had ceased. In
the more complicated transfer theories, the presence of a discrete crystal lattice and

a distance-dependent transfer interaction term also lead to non-exponential decays.

In Chapter 4 we saw that radiative decay itself does not always give expo-
nential behaviour. It is clear that many different processes can lead to deviations
from an ideal exponential decay and thus it is not possible solely on the basis of ob-
servation of non-exponential decay to determine which process or processes affected

the decay.

Jonscher and de Polignac [49] point out that it has become accepted that
the prevailing form of time dependence on response to excitation of duration short

in comparison with the time of measurement is a power law of the form
Loxt™ (6.1)

with the exponent s in the range 0.5 to 2. They showed evidence that a wide variety
of materials exhibit power-law relaxation of their luminescence, often re-analyzing

original data to show a better fit with power-law type behaviour.

Jonscher and de Polignac believed that the predominance of power-law de-
cays amongst many different materials is a result of cormmon general principles and
suggested that many-body in!:eractions may provide such principles. For the time-
decay that is limited by de-trapping the de-trapping rate depends on the charge
state of the trap aund, following the release of a carrier, many charges re-distribute.
The de-trapping rate is a complicated function resulting from many-body interac-
tions. Jonscher and de Polignac argued that the long-term behaviour is proportional

to t—k-1

where k depends critically on the degree of correlation between centres—
strongly correlated centres have k& — 1, weakly correlated ones &k — 0. It was con-

cluded that for experimentally observed cases of a single power law valid over time
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that this corresponds with a single set of traps, while for cases in which two or more

power law regions are observed in time, then there are multiple sets of traps.

Sakai et. al. [87] were able to break-up their non-exponential fluorescence
decays into a sum of exponential terms. They found that a rising exponent was
necded to explain the total decay. This term was found to be due to re-absorption
of emitted light.

a) Decay in GaAs

Dingle [19] was one of the first to measure radiative lifetimes in GaAs and observe
the time-resolved spectra. He noticed that the decay of the ~1.49 ¢V band was con-
siderably slower than other emission lines. For lightly doped samples it was slowest
while for heavily doped samples it was much faster. Dingle was able to compare
experimental resnlts with the predictions of a theory by Thomas, Hopfield, and Au-
gustynialk [100]. The decay at heavy doping seemed more likely due to a sort of free
to bound recombination (this is the result of the heavy doping— an acceptor im-
purity band forms rather than localized impurity levels) while lower doped samples
show behaviour that is consistent with discrete donor-acceptor pair recombination.
At long times the decay behaves as ¢! in the light doped sample and ¢~ in the
heavy doped sample. This compares with the results from theory: ¢! for lightly
doped samples and t~2 for heavily doped compensated crystals. The ¢~% behaviour
is appropriate as it represents the limit where the decay rate is dominated by the

rate of hopping rather than by the optical decay rate.

Charbonneau, Thewalt and Steiner [11] used time-resolved photolumines-
cence measurements as a means of characterizing the discrete line structure that is

seen in MBE samples, the so-called KP lines. Their measurements of lifetime allow
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certain of the discrete lines to be distinctly grouped or characterized. A set of lines
has lifetimes extendirg to around 100ns and is associated with excitons bound to
acceptor pairs of varying separation.

Recent experimentors have been able to refine the techniques of time-resolved
spectroscopy. Block, Shah and Gossard [4] (see Figure 6.1) have been able to
obtain femtosecond time resolution on their measurements. With such resolution
they are able to study the initial relaxation, or thermalization, of carriers in bands.
This provide's insight into carrier-carrier interactions. The data seen is consistent
with a model of rapid thermalization of the electron-hole plasma by carrier-carrier
scattering and subsequent cooling of the thermalized distribution of electrons and
holes by phonon emission. Such a model would predict an increasing rise time with
decreasing photon energy and decay times which can be substantially longer than
rise times due to the radiative recombination process being much slower than the

thermalization.

Teh’s experimental work [98] showed luminescent decays decaying as power

laws in time. The exponent of the power law, s, was found to obey a relationship,
s=-14pT (6.2)

where 3 depends on the concentration of carbon impurities (acceptors substituting
at the As lattice site). This power law behaviour was seen at long times, while ini-
tially a Jouble expcnential decay was observed. The two components of exponential

decay are attribut=d to band-acceptor and donor-acceptor recombinations.
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Figure 6.1: Immediate time-decay of luminescence from bands. (From [4].)
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CHAPTER SEVEN
DONOR-ACCEPTOR PAIR PHOTOLUMINESCENCE

7.1 Recombination Spectra

The recombination of an eleciron trapped on a donor with a hole trapped on an
acceptor constitutes an important mechanism of radiative recombination. The re-
sulting recombination energy spectrum consists of a scries of sharp lines, each cor-
responding to a particular electron-hole pair separation, and a broad band at low
energies, where individual lines can no longer be resolved. The band cuts off at the

energy of a non-interacting donor-acceptor pair.

The first treatments of donor-acceptor pair interaction [76,38] were concerned
with associated pairs, that is, pairs occupying nearest neighbour sites. Prener and
Williams [76] estimated the energy level structure by considering the electron and
hole individually bound in a dipole field created by the other particle. Subsequently,
Williams [111] refined the model to account for the overlap of electron and hole
wavefunctions. It is found that up to a modest degree of overlap the interaction can
be represented by an isotropic van der Waals’ polarization interaction term, which

arises from the secondary dipole-dipole interaction be<ween the donor-acceptor pair

fields.
The principal energy level structure for donor-acceptor pair recombination is then
given by, PR

E(hv) = Eg — (Es + Ep) + predl (;) (7.1)

Eg is the energy gap of the crystal, F4 and Ep are the acceptor and donor binding

energies respectively, and the remaining two terms are the Coulomb and van der
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Waals’ interaction. r is the separation between the donor and acceptor.
For some materials, however, further fine structure is visible. For example, in III -

V compounds there is a strong accumulation of electrons on the tetrahedral bonds

[105]. ‘Thisle: ~ “~ - Jirectional dependence in the interaction energy terms and so
pairs of identicw ..., ~ztion but in different directions recombine at slightly differing
energies.

Further effects un the donor-acceptor interaction energy have recently been calculated—
Breitenstein [6] calculated the broadenine of donor-acceptor - ‘v.es due to the
Coulomb potentials of ionized impurities and Inglis and Williay.. - {45] have included

the effect of lattice polarization into a calculation of pair energies.

The spatial distribution of donor-acceptor pairs is something that is deter-
mined during crystal growtk. At the high temperatures «f growth, the impurities
are ionized. If the donors and acceptors are allowed to migrate together under the
influence of Coulomb attraction then associated near-neighbour pairs are formed.
Usually, however, the crystal is rapidly cooled from high temperature and the im-
purities are not significantly izAuenced by the Coulomb interaction. The spatial

distribution of donors and acceptors is then random.

In order to make a calculation of the intensity profile expected for radiative
recombination of donor-acceptor pairs, we need to know the statistical distribution
of pairs of different radii. Lannoo and Bourgoin [§9] show that for associated pairs
the distribution of pairs at distance r is e/*T, Dunstan [20] has considered the
distributions when the impurites are randomly spread. For a continuous space of
donors and acceptors, the probability of forming a donor-acceptor pair of separation
r is proportional to the probability of a donor existing in a volume element at a

distance r from an acceptor multiplied by the probability that no other donor exists
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nearer to the acceptor than distance r,

P(r) = 4xr*pdR / ” P(u)du (7.2)
which is easily solved to give,
Pyn(r) = 41rr2pe"u=ﬁ’ (7.3)

"This is the distribution of nearest neighbour pairs, it is a type of Poisson dis-
tribution. This distribution cannot be used to characterize donor-acceptor pairs,
however, since it is a distribucion of nearest-neighbours and not nearest-available-
neighbours. The distinction is important since in a random population exactly one
half of the carriers are not the nearest-neighbour of their own nearest-neighbour
[20). Also, there is a certain probability that another acceptor may exist nearer to
the acceptor than the donor does. Taking account of these considerations, Dunstan

[21] derives
4mrip
T+ vy

as the distribution of “nearest available neighbours” in exactly compensated sam-

PNAN(T) = (7.4)

ples.

In order to translate this continuous distribution into the discrete distribution
that is expected to arise in the solid, we need to consider some details of the crystal
lattice. Prener {77] wrote down the equation for associated ion pairs distributed on

a lattice as

e? X exp(—e?/pr;kT)N
a; = Aziexp ( Dr: kT) [1 ~ ,-Z_-;% Ny (7.5)

where «; is the fraction of ion pairs with separation r; and z; is the number of

equivalent sites available to a positi+-ly charged impurity at a distance r; from a
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negative impurity. Equation 7.5 was written in direct analogy to the Reiss’ distri-

bution function for ion pairs under Coulomb interaction [79],

G(r) = Adnr?ezp (-5%) [1 ~ [ Gla)esr ( D;';:T) lif-] % (7.6)

Onton and Lorenz [71] expressed the result 7.5 in the form

G(r;) = Az;Cezp (erjlch) i —1(1 - zjc) (7.7)

j=1

where z; is the number of equivalent sites available to an impurity at a distance r;
from its pair partner. To perform any calculations with 7.5 or 7.7 it is necessary
to calculate the z;’s associated with the r;’s . The pair separation distance is a
property of the crystal. For a simple cubic lattice the separation can be expressed

as
m = Vmao (7.8)

where m is an integer, the shell index number, and g, is the lattice constant. The
degeneracy of each shell may easily be calculated.

For the common Zincblende crystal structure, two types of donor-acceptor pair spec-
tra can be distinguished— Type I and Type II— depending on whether the donors
and acceptors occupy the same or opposite face-centered-cubic sublattices respec-
tively. Each pair spectrum can be identified from equation 7.7 once the number of
available sites at a particular separation, z;, is known. Dean [17] has tabulated the
radii and occupation numbers for Type I and Type II donor-acceptor pair spectra
on the zincblende lattice. A complete account for other crystal types has been given

by Wiley and Siman [108].

The intensity of the pair lines of particular separation is proportional to
the fraction that are ionized. Additional considerations than the calculated distri-

butions, however, need to be taken because under experimental conditions not all
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close pairs capture electrons and holes. It is often only the distant pairs that become
completely ionized due to their longer recombination times. Capture cross-section
variations with pair separation, therefore, also play a role in determining the final

intensity profile.
7.2 Decay Characteristics

Thomas, Hopfield and Augustyniak [100] formulated a theory for the decay kinetics
of donor-acceptor pair recombination. Assuming that the decay proceeds as isolated
pairs recombine, they determined the decay rate as a function of pair separaration.
To do this they first derived a matrix element for the optical transition betweer
the state of the crystal with the electron and hole present and the state with them
absent.

In GaAs the binding energy of acceptors is about 30meV while that of donors is
about 6meV. Because of this tight binding of the acceptor, the acceptor wavefunc-
tioa is rigid and the hole sees no perturbation due to the neutrai donor except in
a small volume of space relative to the extent of the hole wavefunction. A product

wavefunction can then be used and the matrix element is,

M(r)= [ G(ra)P(Re(re))]6(re ~ ru) dr (7.9)

¥}, is the hole wavefunction and ¥, is the electron wavefunction. P represents the
interaction term. Under a further approximation that the hole wavefunction in the
absence of the donor does not vary appreciably over the region of the donor and
that the central bracket is only large in the small volume occupied by the donor
wavefunction we write,

M(r) = const. x Ui(r) (7.10)
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For large r the hole wavefunction is expressible 2s & hydrogenic acceptor wavefunc-

tion,
Wu(r) o e~/ (7.11)

where a is the Bohr radius of the acceptor. Then the transition rate
Wig(r) o< [M(r)? (7.12)

becomes

W(r) = Winage™ /29 (7.13)

Thus the transition rate is an intimate function of separation. This is why a crystal
which contains a distribution of pairs is not characterized by a single decay time.
The long and variable lifetimes of the distant pairs account for the long and non-
exponential decay curves of the photoluminescence after excitation.

Having derived a transition rate, Thomas et. al. [100] attempted to calculate the
decay of excitation between donors and acceptors when the donor and acceptor
concentrations are equal (the case for a compensated crystal). >

The equations they derived could only be solved numerically under a so-called
Hartree approximation which neglects correlations in the occupations of lattice sites.
Their solution predicts a t~2 time dependence for heavily doped, compensated sam-
ples at long times and a ¢~ dependence for lightly doped samples. However, the
nature of the approximation makes the iong time and low concentration predictions

particularly dubious.

Compensation introduces the possibility of a new physical effect— the hop-
ping of electrons and/or holes from one impurity to another when the sample has
partially decayed. Provided that sites are within kT of energy of each other then
for long times, Thomas et. al. [100] claim that when hopping is rapid in comparison

to optical processes, the consequent averaging out of the electron concentration in
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the crystal ensures the correctness of the ¢~? approximate solution. This decay is
characteristic of bimolecular recombination and is a high temperature limit due to

the energy requirement.

Dunstan [20,21] took a different approach to the recombination decay of donor-
acceptor pairs. He showed that to a very good approximation the recombination
may be treated analytically as the decé.y of independent centres. These independent
centres are the donor-acceptor pairs and the distribution 7.4 for Pysn is used to
describe the decay.

The total ensemble decays as

“P =/} 7.14
n= /r=0 Nan(r)e r (7.14)

where the recombination time is obtained from 7.13,
T =T1e"® (7.15)

and the possibility that recombination may occur with other than mutually nearest

neighbours has been neglected. The resultant luminescent intensity is then

I(t) = /; Pyan(r)r~te t"0)dr (7.16)

Eggert [24,25] has performed Monte Carlo calculations of the donor-acceptor
distributions and recombination kinetics. His work improved upon the pair distribu-
tion used by Dunstan but at the expense of a computationally intensive technique.
At Iow excitation densities, the photolumincscent decay curves of Dunstan and Eg-
gerd are practically identical [22] (see Figure 7.1) while at higher carrier densities
the theoretical predictions differ only at very long times [26].
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Figure 7.1: Dispersion of the Dunstan and Eggert solutions; a) Dunstan b) Eggert
and c) the decay of a near-neighbour distribution (Pyy). (From [22].)
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Paasch [73] used a distribution of pairs on discrete sites in his calculation of
time decay. This lead to the effect of suppressing high powers of time in comparison

with the continuous distribution.

When the donor and acceptor populations are unequal the luminescent time
decay is much easier to determine than in the compensated case. The exact solution

is more given by [100]

I(t) = 4np /:; r2r Y (r)e~""dr x expidmp /:o(e“’ ) ~ 1)r?dr) (7.17)
Onsager and Stewart [70] have shown that this expression reduces, at long times,
to

I(t) 1"%%—“«« t? (7.18)
This expression becomes accurate as soon as the closest pairs have decayed com-
pletely. For shorter times a power series may be used to calculate the initial decay,
but Onsager and Stewart point out that preferential pairing effects need to be con-
sidered and thus theories for capture cross-section as well as tunnelling and emission

probabilities are needed.

Capture cross-section effects do play an important role in the excitation and
recombination processes. When a pair decays, the donor and acceptor are left
ionized. The capture cross-sectior for this ionized donor-acceptor pair is a strong
function of separation. For large separations the capture cross-section is that of an
isolated ionized acceptor (or donor) and is very large. For small separations the
pair appears neutral and has a much smaller cross-section. Therefore, the donor-
acceptor emission is more efficient at low excitations, when a large proportion of

incident energy can be absorbed.

Golka [27,28] considered the effects on the recombination rate if it is no longer

assumed that donor-acceptor pairs are isolated. He considered the interaction of
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pairs with additionui donor ions. In a material such as n-type GaAs where the
wavefunction of shallow hydrogenic donors has an extremely large spatial extent,
he found that the recombination time depends very sensitively on the presence of
an additional donor ion. Even if an additional donor ion is separated by as much as
10ay from the donor of a donor-acceptor pair, its presence can increase the transition

rate by one or two orders of magnitude.

A specific theory of the hopping effect of electrons and holes was formulated
by Kostadinov [51]. He considered that diffusionis*~ slowest process in the distant
electron-hole pair recombination and thus it determines the tail of the luminescence
decay. He used a hopping transport thzory which was based on “percolation” meth-
ods of statistical mechanics. His considerations of pair recombination predicted a
power law decay of the luminescence with the exponent of the power showing a
weak temperature dependence.

3\* 3T/
a = 1+(Z) [1-—2— (7.19)

a0) = 1.316

Comparison of this result with that of published work by Dean [18] lead Kostadinov

to conclude that a variable activation energy is present in the hopying process.
7.3 Observations

Agreement between the theoretical predictions of equation 7.1 and experimental
findings was striking. Observations were made [29,103] of amazingly complicated
spectra with at least 100 sharp lines near the band gap energy in the flourescence
spectra of GaP. Hopfield, Thomas and Gershenzon {39,99] published papers report-

ing the comparison of their experimental luminescent lines with the simple theory.
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Figure 7.2: Photoluminescence spectrum of GaP. (From [17}.)

They distinguished Type I and Type II spectra and noticed a splitting of many
experimental lines. They proved the existence of the donor-acceptor pair recom-
bination mechanism beyond doubt. Figure 7.2 shows the spectrum of Dean et. al.
[17] on GaP lightly doped with P-site donor S and Ga-site acceptor Mg. Figure
7.3 shows the fit of the observed energy to that predicted from theory. Chemical
identification of impusities is possible with a knowledge of the activation energies

of donors and accepiors.

The decay kinetics of green pair luminescence in GaP were studied by Thomas

et. al. [99]. They discovered & non-exponential power law form of the decay.

Certainly, the early energy expended into the analysis of pair spectra in GaP
proved to be worthwhile with the subsequent recognition of properties characteristic
of pair recombination in cther crystals. It is now clear that donor-acceptor pair

recombination is a prominent general feature of the low temperature luminescence
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Figure 7.3: Energy vs. separation relationship for donor-acceptor pair recombina-

tion. (From [17].)
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of dilutely doped, compensated semiconductors [17].

Gads is a direct gap semiconductor. For hydrogenic donors and acceptors,

we find that E(r — o0) of equation 7.1 is 39meV. Using,
2

Eiiw) = Eg — (Ea+ Ep) + =
it is clear that the energy transitions for r < 350A will not be visible because the
transition energy is greater than the band gap energy. Those lines that are visible
merge into a continuum due to the finite width of each line and the close energy

spacing at further separations.

In photoluminescence studies of GaAs, the broad band at ~ 1.49 eV was first
suggested to be associated with donor-scceptor pair recombination by Lucovsky et.
al. [62] and thorough subsequent investigation by Leite and DiGiovanni confirmed
this [61]. They observed characteristics of the ~ 1.49 eV line which they considered
to be evidence for donor-acceptor emission: a shift of line to higher energies as
excitation intensity increases; a narrowing of the band as intensity increses; a shift
of the band towards higher energies as doping increases; and a dramatic decrease
in intensity of luminescence as the temperature is increased from 25K to 35K.
The first two observations arise from the effect of saturation of distant pairs; the
shift with increasing doping is due to a reduced average denor-acceptor separation;
the intensity drops off with temperature because of competitive non-radiative pro-
cesses but the temperature dependence indicates other mechanisms influencing the
spectrum— exciton recombinations, band-acceptor transitions, transitions involving

excited states of impurities and phonon replica transitions.

Compelling evidence for donor-acceptor pair bands in GaAs came from mea-
surements of the radiative lifetime by Dingle [19]. He was able to measure power

law time decays for differently doped crystals. His research indicated a decay ™2
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for heavily doped <rystals and ¢! for lightly doped ones. The ¢~ behaviour seems
to agree with the limit of the Hartree approximation of theory [100].

The band at ~ 1.49 eV, as well as shifting its peak with temperature, also
shows the emergence of a second band. Shah et. al. [91] thought that this was an
effect of donor-acceptor recombination but involving the excited state of the donor.
Subsequent evidence proved this hypothesis to be false— the high energy band
exhibited a large linear magnetic shift rate which is indicative of a free to bound
transition [85].

More recently, however, Skromme and Stillman [93] identified a small third peak
between the donor-acceptor and band-acceptor transitions. They considered this as
an excited state donor-acceptor transition. They found excellent agreement with

theory for its lineshape.

Paget [72] has recently shown evidence of donor-acceptor pair bands over-
lapping one another. He argues that this arises from a continuous distribution of

traps.
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CHAPTER EIGHT
ENERGY DE-TRAPPING

8.1 Semiconductor Thermoaodynamics

This is a study of one physical process in the semiconductor. The process, energy
de-trapping, is important in determining the long-time behaviour of luminescence.
De-trappping occurs on a relatively long timescale, much longer than for the physical
processes of thermalization or radiative recombination. Usually, on a timescale
long enough that the rest of the crystal can be considered to have reached thermal
equilibrium following the initial photo-excitation.

The study of thermodynamics involves the study of heat energy. Thermody-
namics provides remarkable insight into the properties of the thermal equilibrium
state of a system once something is known about the constraints on the system. Us-
ing mathematical relations derived from thermodynamics it is possible to describe
the equilibrium distribution of energy-carrying particles among the energy states of

a system and to determine the equilibrium, “detailed balance”, rate of a reaction.

In order to study the de-trapping of energy in the semiconductor crystal we
need to understand several things:
a) the various particle reactions that take the system to thermal equilibrium
b) the equilibrium distribution of energy-carrying particles among the
energy states of the system after thermalization and radiative recombination.
c) the rate of thermal de-trapping of energy from the traps.
Thermodynamics can help us with these problems. We consider the semiconductor

as an isolated system made up of four subsystems. These four subsystems represent
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the four independent types of particle— electrons, holes, phonons and photons.
They are enclosed in a cavity with perfectly reflecting walls.

a) Particle Reactions and Equilibrium Conditions

Among the four independent types of particle, four reactions occur to bring the
semiconductor system to thermal equilibrium [121]. They are:

e+h = v (8.1)
e+h = vl (8.2)
etvl = e (8.3)
h4+vl = h (8.4)

¢ is an electron, h a hole, v a photon and I a phonon. v is the number of pkonons
created.

8.1 represents radiative recombination of an e — h pair

8.2 represents non-radiative recombination of an e—h pair, either Auger or phonon-
cascade process

8.3 represents energy exchange between an electron and v phonons

8.4 represents energy exchange between a hole and v phonons

The reactions are illustrated in Figure 8.1 for a simple two-band model system.
Several other reactions have been ignored. Firstly, phonon-photon interaction is
neglected because of their unequal momenta. Secondly, there is no process which
transforms an electron into a hole. The numbers of electrons and holes is determined
by the position of the Fermi level *» equilibrium. Off-equilibrium, these number are
supplemented equally by electrons or holes according to the number of photons ab-

sorbed. Thirdly, electron-photon and hole-photon reactions are ignored— photons
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Figure 8.1: The particle reactions in a semiconductor; a) vadiative recombination
of an electron-hole pair b) non-radiative recombination of an electron-hole pair c)
energy exchange between an electron and v phonons d) energy exchange between a

hole and v phonons.

are most likely to create e — h pairs with radiation of energy greater than the band
gap.

We assume that the phonon system acts as a heat bath to the electrons and holes:
phonons may be freely given to or taken from the heat bath without affecting its

temperature.

According to thermodynamics, a change of the energy E of a system is related
to a change of its extensive variables by

dE = TdS - pdV + z:p.'dN.‘ (8.5)

The extensive variables are the entropy S, the volume V and the number of particles
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Figure 8.2: Energy diagram of electron-hole system: right-side shows the
off-equilibrium state—electrons and holes are associated with separate quasi-Fermi

levels and the left-side is at equilibrium—there is a common Fermi level.

N; of kind i. The intensive variables are the temperature T, the pressure P, and
the chemical potentials y;, see Figure 8.2.

For the particle reactions the extensive variables S and V are held constant.

In equilibrium energy is a minimum. Therefore,
dE =) pdN; =0 (8.6)
where the sum over i is a sum over the electrons, holes, phonons and photons.

Now consider the conditions imposed by equilibrium for the different reac-
tions. For 8.1
dN, = dN; = —dN,, (8.7)

and thus from 8.6 equilibrium is achieved when

be+ ph = poy (8.8)
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For 8.2
dN. = dN), = —v.dNr (8.9)
and thus from 8.6 equilibrium is achieved when
He + ph = v.pr (8.10)

For 8.3
dN. =0,dNr = £1 (8.11)

ana - won: 8.6, equilibrium is achieved when
pr=0 (8.12)
Reaction 8.4 gives the same condition as 8.12.

In full thermal equilibrium, of course, all three conditions must be satisfied.
Therefore,

pr = 0 (8.13)
He = =pn (8.14)
py = 0 (8.15)

the chemical potentials coincide (see Figure 8.2) and the chemical potential of the

photons is zero.

Full thermal equilibrium is not the only equilibrium between the particles
in the semiconductor. Each of the reactions 8.1-8.4 can reach equilibrium without
a full thermal equilibrium of the system. This has important consequences for the

semi-conductor.

o Reactions 8.3 and 8.4 represent the interaction of the electronic particles with

the heat bath of phonons; the reactions act to bring the electrons and holes
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into equilibrium with it. This equilibrium is established very quickly. Suppose
that a characteristic time Ty can be used to describe the process. Then the
temperature of electrons and beles is the same as the phonon temperature,
T, and we may use the Fermi-Dirac distribution of fermions to describe the
electrons and holes [113]. This equilibrium-creating reaction between electrons
or holes and phonons is known as “thermalization”.

The thermalization process, however, applies to the equilibrium of 8.1 only
as far as v = 1, that is, it occurs through the exchange of single phonons. It
must therefore be separated from the more general reaction for v # 1. The
latter process is the important one for de-trapping electrons or holes. Use a

characteristic time 7, to describe the de-trapping rate.

¢ Equilibrium between photons and electron-hole pairs (zeaction 8.1) is estab-
lished on a timescale much longer than that for thermalizution. Use a char-

acteristic time 7,.

e Equilibrium between phonons and electron-hole pairs (reaction 8.2) is of little
importance to the semiconductor equilibrium. The coadition g, = — 4, from
8.2, is usually quickly reached anyway as the electron-hole pairs recombine
after photo-excitation and the photon density returns to its black body spec-
trum (4, = 0). During the time when this equilibrium does not exist the

luminescence spectrum is associated with a boson distribution for py #£0.

We can use the individual reaction times 74, 7¢ and 7, to describe the return
of the whole system to thermal equilibrium. This will be done in the next section

and used to set up dynamical equations for the semiconductor.
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b) Fermi-Dirac Distribution

Electrons, and their counterpart holes, are fermions. According to quantum statis-
tics, no two fermions may exist with the same quantum numbers. This means that

a fermion state has occupation either 0 or 1 and energy either 0 or e.

The equilibrium energy distribution of a system of weakly interacting fermions
in equilibrium with a reservoir can be derived from the Gibbs distribution [119), it
is

= L 8.16
fi= e-(&-n)/FT ] (8.16)

This is the Fermi-Dirac distribution. It descibes the occupation probability of any

electron state in equilibrium.

¢) Arrhenius Relation

The Arrhenius relation is the basic relation that we use tc describe the. rate of
thermal de-trapping. Thermal de-trapping constitutes a non-radiative transition
process which acts to restore a non-equilibrium population of carriers from the traps.
The rate cannot be derived from thermodynamics but it can be given considerable

justification.

The problem of determining the rate of thermal de-trapping is analogous to
the problem in physical chemistry of determining a general theory of reaction rates.
Thermodynamics and statistical mechanics alone cannot provide a solution, and so

additional assumptions need to be introduced.

Eyring’s theory of absolute reaction rates [115] took an approach based on

the law of mass action. This law is very simply derived from thermodynamics, from
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the equilibrium condition for a system of uncondensed particles. It states,
N
TEN5?

where N, and N, are the equilibrium populations of reactants and products respec-

= K(T,V) (8.17)

tively. R, is the reagent number and ig the number of molecules of the r’th species
disappearing; similarly, P, is the product number. The products are taken over the

different reagent and product species.

K is the equilibrium constant and is defined in terms of the molecular par-

tition functions, f, derived from the Gibbs distribution.

I1f \
K =2==L .
T (8.18)

The additonal assumption introduced by Eyring is that the reactants are always in
equilibrium with activated complexes, see Figure 8.3.

For a simple reaction the equilibrium is written
A+B=M"

and the equilibrium constant from the law of mass action is

_N, aNB
K= Nope (8.19)
Therefore the number of activated complexes is
_ N4Np
Npe = % (8.20)

Now we neeed to find the rate of the reaction
M?* — Products

For the thermal activation that we are considering, the activated complex may be

thought of as having one special vibration with respect to which it is unstable. This
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Figure 8.3: Energy diagram for reaction.

vibration leads to disassociation of the complex into products. If the frequency of

this vibration is v, then the rate at which products are formed is
rate = v N

then using 8.19 this becomes
vN, AN B
K

However, the elementary reaction, A + B — Products has the rate,

rate = (8.21)

rate = kNsNp (8.22)
Thus, comparing 8.21 and 8.22 we find the rate constant k to be

k= (8.23)

v
K
This is correct for any elementary reaction.

The values of v and K can be calculated from writing the equilibrium con-

stant in terms of the partition functions 8.18,

K= (—’f‘-'—f-"—') (8.24)

fM"
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Castellin [115] derives

1 _ kT (fme \ ~aEpm)
A (fAfB) € (8.25)

by factoring out of f15 the vibrational partition function. AE is the difference in

zero point energies between the activated complex and the reactants. Hence,

_ kT ( fme \ ~aEnT)
k= T ( A fB) e ; (8.26)

This is the Eyring equation for the rate constant of a reaction.

This derivation of the reaction rate, based as it is on the assumptions and conditions
of the theory of absolute reaction rates provides justification for the form of the

Arrhenius relation commonly observed experimentally for chemical reactions,
k = Ae~(AE/kT) (8.27)

or for the lifetime,
T = 1oeSE/*T) (8.28)

8.2 Dynamical Equations

Immediately following photo-excitation a non-equilibrium distribution of electrons
and holes is set up in the bands. Subsequently, the carriers thermalize in their
respective bands and radiatively recombine. Some carriers jump to impurity levels,

trapping levels or deep levels but the majority recombine radiatively.

In the previous section we identified three characteristic recombination times:

7., the radiative recombination time, 7 the thermalization time, and 7, the de-
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trapping time. T, is only relevant to certain trap energy levels. The three char-
acteristic times are very different from one another— thermalization is a very fast
process while de-trapping is a very slow process. Therefore, consider the dynamics

of the three processes separately.

a) Thermalization

Consider the effzct of the 7y process on the electron and hole populations of each

energy level. Assume that 7y, is independent of phonon or photon energies.

Thermalization cccurs so as to establish equilibrium between the carriers
and phonons. The rate of change of an electron level due to a non-equilibrium

distribution of carriers is

dn, (nc — ncen)
—_—t] =l < 8.29
[ dt ]th Tth ( )

neen is the thermalized distribution and is given by ncw = gc f. where g. is the
density of states and f, is the occupancy, the Fermi-Dirac function, determined by
pt, the “quasi-Fermi” level for the number of electrons present.

The solution of this equation is
e = nge= ™ 4 ngy(1 — e~t/™h) (8.30)
where n., is the electron population immediately after excitation.

Holes also thermalize in the valence band. The hole population of a valence
level p, will obey

= p,,,e"/‘"" + Pulh(l - e-tlﬂh) (8.31)

For a whole band consider the total population

N.=Y n. (8.32)
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and

P,=Yp (8.33)

b) Radiative Recombination

Radiative recombination requires the presence of an electron and a hole. Assume

that r, is independent of energy. The recombination rate is given by
[dnc] (ncp ncoPo) (8.34)

p is the total number of holes, nco and po are the thermal equilibrium populations.

In the case that p ~ po, then this may be solved.
e = nee=t™ + ng(l — e~t™) (8.35)

This case applies only when photo-ercitation creates relatively few carriers com-

pared to the thermal equilibrium population of holes.

Again, for the whole band consider

N. = ch (8.36)

¢) De-Trapping

Energy becomes trapped in certain levels following photo-excitation of carriers into
the bands and the subsequent decay from the bands. Trapped energy constitutes a
departure from thermal equilibrium. The rate of decay of an electron trap level is
equal to the recombination rate ;%; multiplied by the above equilibrium population

of electrons in the trap and the equilibrium number of available states of the upper
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level, (N! = ny).

& )T 0) (8.37)

where 1, = roe%g and N! is the total number of states in the conduction energy

band. The solution is

ne= ne et Nemneo)/me o nee(l — e~ t(Ne=na)/ ) (8.38)
Similarly for a hole trap,
p‘ - pt'e’t(P:—P'O)/ﬂr + p‘ e(l - e"(P:"'"O)/ftr) (8.39)

Assume that n;. < n:, and pre < Prs, that is that the equilibrium occupation
of the trap is very small compared to the initial excitation. This is reasonable
since the traps are localized energy levels of the crystal and near the surface, where
absorption takes place, almost all of the traps will become occupied. We therefore
" neglect the second term of 8.38 and 8.39.

For a distribution of trap levels de-trapping into a single level, we take a sum

over states

Ny=Y ngem (8.40)
and '

P.=Y piet/™ (8.41)
The equilibrium occupation of the up;er level (N! — ng) or (P, — pywo) has been

incorporated into the constant of 7.

The total above-equilibrium electron population in conduction band and traps is
given by
N=N.+ N, (8.42)
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Now, Ter 3P Ty > Tus the decay of the traps dominates the long time behaviour of

the crystal.

N = N¢+Ng
= Niast— o0 (8.43)

After de-trapping of excitation, radiative recombination is most likely to

occur. Thus the luminescence is limited by the de-trapping process

_dN,
dt

_2"7 (z‘: n,,e—'/m) (8.45)

= Rt (8.46)
t Ter

70 (8.4)

In deriving 8.46 the assumption of first order kinetic processes allowed a sum
of exponential functions to be used to represent the decay between energy levels.
The assumption is valid on the grounds that the occupation of the upper level is
sufficiently close to equilibrium that it does not affect the kinetics. De-trapping
occurs on a timescale much longer than radiative recombination which brings the
system to equilibrium. Further, once a carrier is released from a trap it recombines
very quickly to give luminescence. Thus the occupation of the upper level or levels

is fairly constant following the fast initial processes.



CHAPTER NINE
COMPUTER SIMULATION AND RESULTS

9.1 Background

The form of the luminescence decay 8.46

19 = 52 Do

is exactly the same as was considered for the decay of phosphorescence in crystals
(78,118,116,13].

Randall and Wilkins [78] were the first to give a theoretical account of the phe-
nomena of phosphorescence. They studied isothermal decay behaviour assuming
continuous trap distributions. They used uniform and exponential distributions of
trap density and assumed the simple form. for the activation kinetics which leads
to exponential decays. For a uniform distribution of traps extending from 0 fo oo

they showed that the time dependence of phosphorescence behaved as
L(t) x t™! (9.1)
When the trap distribution was exponential,
n(Er) = Ae™ET (9.2)
they showed that a time decay
L(t) o t~(o¥T+1) (9.3)

was obeyed.

Medlin [118] investigated the phosphorescence behaviour associated with trap dis-

101
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tributions obeying a Gaussian form,
n,(Er) = Ae~*Er B} (9.4)
He showed that the decay behaved as
L(it)=(1 +6t)™ (9.5)

where b and m are constants. Medlin was not able to furnish a relation between

the exponent m and the parameters in 9.4.

Hornyak and Chen [116] investigated numerically the phosphorescence from
continuous distributions of traps with uniform and Gaussian distributions. They
showed that broad distributions quite generally result in t~! phosphorescence be-
haviour, while narrow distributions result in exponential decay. They found that
for both Gaussian and truncated uniform distribution of trap energies the critical
parameter controlling the change from exponential to inverse time dependence is the
quantity y = kT+/a for the Gaussian case and y = kT/AE for the truncated uni-
form case, where AE is the width of the distribution. The power law ¢~! behaviour

was seen for values of the parameter satisfying y <~ 0.15

9.2 Simulation

I investigated the luminescence decay form 8.46 with various discrete trap distribu-
tions. I considered the dependence of the final decay forms on the parameters of

n.(E) such as the width of the distribution and the number of trapping states.

I made computations on an IBM-PC compatible machine having written the
routines in BASIC using double precision numbers (15 decimal places). Appendix B
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lists the computer program I wrote to generate the luminescence data from Equation
8.46. A file needs to be specified for n,(E). Data for luminescence response was
obtained by summing individual exponential decays over the distribution specified
by n,(E). The luminescence response, L(t), could then be analyzed by re-i)lotting

the data in any of the following forms,

L(t) vs. ¢

Ln L(t) vs. ¢t

Ln L(t) vs. Lnt
L) vs. Lnt

(9.6)

If the decay follows a classical exponential decay, then a plot of Ln L(t) vs. t is
linear whereas if it follows a power-law decay then Ln L(t) vs. Ln t is linear. A
straight line fit could be determined for any portion of the decay and the closeness
of fit could be determined by plotting the difference between the decay and the best
fit line.

a) Parameters and Range

In modelling 8.46, I chose values of the parameters 7o, AE and T suitable to fit
the luminescence decays observed in GaAs [98]. Observing the ~ 1.49¢V line, Teh
measured two exponential decays immediately after excitation. At 32K they corre-
sponded to decay times of approximately 31ns and 115ns and activation energies

6meV and 15meV respectively. Using these values with the Arrhenius relation

T = ToCAE/ kT
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two values of 7o are obtained, 7o = 3.5ns for the 31ns and 7, = 0.5ns for the 115ns

decay.

We are concerned about observing decay times over as many orders of magni-
tude of time as possible in order to accurately determine the shape of the decay. We
are limited by the numerical ability of the computer. The magnitude of double pre-
cision numbers can extend from 1x 102 to 1x 10~2%. This range of magnitudes can
be used for the decaying luminescent intensity, L(t). If the decay is non-exponential
then this range of L(t) typically covers many tens of orders of magnitude of time.
If, however, the decay is exponential, then the range of the time variable cannot be
nearly as great. For a typical 7 of 50-100ns, 2 change of 500 orders of magnitude

for L(t) occurs over 4-5 orders of magnitude of time.

9.3 De-Trapping Scenarios

Once the carrier has been released from its trap it can recombine with another
carrier and luminescence results. We consider two scenarios for the de-trapping of
the carrier, see Figure 9.1:

a) de-trapping from a group of traps to a single energy level

b) de-trapping from a single trap to an energy band.

a) De-trapping from a group of traps to a single energy level

This is the primary scenario for the modelling of de-trapping. ¢ shows decay be-
haviour which is in good agreement with that observed experiznentally. We consider

the time-decays from various trap distributions:



9.8 De-Trapping Scenarios 105

- |

o) b)

Figure 9.1: De-trapping scenarios: a) de-trapping from a group of traps to a single
energy level b) de-trapping from a single trap to an energy band. The trap depth is
very small (~ 10 — 50meV’) compared to the band-gap energy of the semiconductor
(~ 1.5ev).
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Figure 9.2: Trap Distribution

Uniform trap distribution

A power-law deczy is typically observed from a uniform distribution of traps de-
trapping into a six{gle upper level. The exponent of the power law is 1. The
power law cau exist over many orders of magnitude of ¢, dependent on the width
of the uniform distribution. Significantly, the power-law decay is preceded by an
exponential decay whose time constant is in accord with the initial decay being
dominated by activation from the shallowest traps. At very long times, the decay is
again exponential. This is due to the fact that the distribution is finite in width—
the decay becomes dominated by the deepest, slowly activated traps. Reducing the
width of the distribution leads to the sooner onset of the final exponential decay.

I modelled the luminescence using 7o = 0.5ns, appropriate to the 115ns decay
in GaAs. Figure 9.2 shows the uniform distribution of 100 traps, each separated by
1meV. Their activation energies from 1 to 100meV represent the situation of a set
of traps (hole or electron) immediately jumping into the band. A power law decay
is observed with the exponent p = 1, Figure 9.3. The power law behaviour extends

over 15 orders of magnitude of time.
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More interesting is Figure 9.5 which simulates the decay from a distribution
of traps separated from the band by an energy gap of 15meV (Figure 9.4). The trap
distribution shown has half the width but the same energy spacing as the distribu-
tion of Figure 9.2. The power law now extends over only 7 orders of magnitude. The
initial decay is exponential, see Figure 9.6. It has a decay time of 7 = 201ns even
though the decay time of the first trap is only 7 = 115ns. The decay 7 = 201ns
represents excitation from a trap of depth 16.5meV, still very close to the band-gap

energy.

Ezponential trap distribution

The results of this type of distribution are qualitatively exactly the same as that of
the uniform distribution . From equation 8.46, when a sum is made over a uniform
distribution, the 7 in the denominator introduces an exponentially varying factor.

This may be seent as follows: for a fully occupied initial distibution

Ns(E) = Ae~(Er=Fo) (9.7)
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then
Ds'E & ge-teriiinEs (9.8)
i
which compares to
————NS(E) o Ae~(Er/FT) (9.9)
-

for a uniform distribution.

The only change to the luminescence intensity 8.46
Lt)=Y, "—"‘st_E) e~t"

results from the different exponential value of E’-,(,El We thus still expect to see

power-law behaviour. We indeed find a time-decay ¢~? where,
p=1+akT (9.10)

This is shown in Figure 9.8 for the trap distribution of Figure 9.7. The slope of the
line equals @. The seemingly reduced ‘width’ of a distribution with large a does
not affect the condition on y. The important width is actually the extent of the
trap distribution.
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Two-sided exponential trap distribution

Consider a trap distribution as shown in Figure 9.9, characterized by
Ns(E) = Ae~olE~Edl (9.11)

The behaviour of each side of the distribution of Figure 9.9 can be considered
separately. The right-hand side has already been considered—it gives power-law
decay. Considering separately the luminescence from the distribution of Figure 9.10
we see that the final luminescence does not decay— its amplitude is maintained over
time. However, due to the finite width of the distribution, the constant luminescence

persists only up to a certain point and then decays exponentially, see Figure 9.11.

Gaussian trap distribution

The decay from a Gaussian distribution is of considerable interest because if traps

are randomly distributed around a mean energy then we would expect to observe a
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Figure 9.10: Trap Distribution

Gaussian density distribution. For the function,
Ns(E) = Aemo(E-B) (9.12)

the observed decay of 8.46 does not appesr simple. As [11¢] showed, broad distri-
butions lead to t~! behaviour. For a = 0.001 see Figures 9.12 and 9.13.

b) De-trapping from a single trap to an energy band

Equation 8.46 applies equally well to describe the luminescence from a single trap
level to a group of higher energy levels, a band. The decays of the previous sec-
tion for various trap distributions will therefore be the same as these decays if an
equivalence is made between the previous trap distributions and the energy band
distributions. However, in modelling an energy band we need to consider distribu-

tions which are physically reasonable.
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Parabolic band

For a simple band,
R2k?
E=E.++—
2m,

and the density of states is,

9(E) =4r ('2'111":)3/2 (E - E)/?

h2

116

(9.13)

(9.14)

This is a weakly increasing function of energy. It is therefore different from the

previous trap distributions which were either uniform, decreasing exponentially with

energy, or decreasing in a Gaussian manner.

The results of the decay from a single level (at E = 0) to a parabolic band

distribution (Figure 9.14) are shown in Figure 9.15. The decay follows a power-

law with the exponent p = 1. This is not altogether surprising since the decay to a

weakly increasing density of states is still dominated by the exponential denominator

7 of Equation 9.9 and thus leads to the t-1 form of decay.
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0.4 Critical Parameters

One general conclusion that can be drawn from the de-trapping scenarios is that
power-law decays can result from many different trap and energy distributions—
basically, whenever the form of the decay is dominated by the exponential depen-
dence of T (s¢e equation 9.9) or the distribution is exponentially varying.

My results from computer simulation are in substantial agreement with the pre-
vious investigations of phosphorescence. What is new about these investigations,

however, is that discrete distributions of traps have been considered.

Power law behaviour results quite generally from summing a set of exponen-
tial functions when the close, quicker-decaying functions have a higher magnitude,
so that the would-be exponential decay is slowed by the presence of very shallow

exponentials and power-law decay results.

Hornyak and Chen defined critical parameters for the onset of power-law
decay from a continuous distribution of trrps. I have been able to confirm their

values with the computer simulations I made. Additionally, I determined a new
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critical parameter that could be used to determine when the discrete distributions

begin to behave like continuous distributions.

@) The critical parameter for power-law decay

It is relatively easy to verify the dependence of power-law behaviour on the pa-
rameter identified by Hornyak and Chen [116], y = kT/AE. AE is the width
of the distribution. For Figure 9.4, AE = 50meV and kT = 2.76meV therefore
y = 0.0552, well below the critical value of 0.15. If the same distribution is used
but the temperature changed, the final decay form changes with the value of y.
Figure 9.16 shows that at 100K (kT = 8.63meV) the power-law behaviour has dis-
appeared. The critical value of T' is around 60K, indicating a value of y of 0.104.
Similarly, at 32K the minimum energy width of the distribution that leads to power
law behaviour is 40meV, indicating y <~ 0.07.

For the Gaussian distribution, the critical value of a at 32K was 0.002 giving
y <~ 0.12, in agreement with [116]. The more detailed decay form derived by
Medlin (Equation 9.5) does not show simple power-law behaviour, except in the

“wide-distribution” limit above.

b) A critical parameter for discrete disiributions

A power-law decay can be obtained from making a sum of exponential functions.
The fast-decaying exponentials must have high initial magnitude so that the fast
decaying component is maintained together with a slowly-decaying component from
slow exponentials of smaller magnitude.

I found from computer simulations that the individual levels could not be spaced
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too far apart in energy because then the time constants of their decays would be
very different and the overall decay would resemble an exponential rather than a
power-law. For power law decay, the levels must be closely enough spaced so that
successive exponentials can help to sustain the decay from the previous ones. I
considered the difference in decay times A between traps. The critical parameter
for seeing power law decay from a discrete distribution seems to be A7/r. Call this

parameter m and from 8.28 this is
m=— = —== (9.15)

The distribution of Figure 9.4 has AE = 1meV, kT = 2.76meV and m = 0.36.
We observe the power for AE ~ 15meV and kT' ~ 32K indicating that the critical

value for m is m <~ 5.5.



CHAPTER TEN
DE-TRAPPING IN GAAS

10.1 Trap Population in GaAs

Immediately after excitation, huge numbers of non-equilibrium carriers exist in the
bands, spatially localized near to the excitation surface. An order of magnitude
calculation can give an approximate rate of creation of carriers. Imagine an incident
intensity of 1.7¢V and 10mW/cm™2 focused to a 2mm spot of light that excites
photons across the band gap. Then

Intensity = Power/Area
_ Energy of Photon x No. of photons/sec
- Area
1.7x16x10"¥x N
-3
10 x 1€ (0.2)?
= N = 4.6 x 10'°photons/sec (10.1)

Weiner and Yu [107] have shown that the band-band energy decays in 100-200ps.
Nelson and Sobers [69] found radiative lifetime of near band-edge luminescence to
be 1-1000ns. From these figures we can estimate the number of above-equilibrium

electrons or holes existing during the excitation period:

1. In the conduction band, spatially localized near the excitation suzface

No. = 4.6 x 10'°s1.500ps
= 2.3x10° (10.2)

2. In the near band-edge region, spatially localized near the excitation surface

No. = 4.6 x 10'%s71.500ns

123
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= 2.3x10° (10.3)

Excitation from the laser is absorbed by the crystal near to the surface. The ab-
sorbed radiation creates a ‘waire—pa.cket’ of excitons which subsequently diffuses

through the crystal or dissolves through the process of recombination.

The estimate of the maximum number of above-equilibrium electrons and
holes in the bands under conditions of continuous (>~ 500ns duration) excitation
assumes that all electrons created in the band decay into the near-band region
(presumably through the thermalization process) and then decay radiatively. The
first stage is probabily correct because of the extreme difficulty of observing band-
band recombination. However, not all carriers decay radiatively from the near-
edge region. The rate of loss of near-band electrons attributed to non-radiative
transitions can be estimated from the difference between the observed decay time

and the theoretically expected radiative decay time.

We expect that the number of electrons recombining non-radiatively is rel-
atively small. If the total recombination rate is greater than the radiative rate
by 10% for example, then 10% of the carriers will dissipate through non-radiative
processes. So, for the previous 500ns pulse, 2.3 x 10° is the stationary number in
the near band-edge region under excitation. Then 2.6 X 10%s~! are dissipated from
the near band-edge region by non-radiative processes. We assume that this number

become trapped just below the near band-edge region.
10.2 De-Trapping in GaAs

Teh [98] obtained experimental evidence of the time decays of LEC-grown SI GaAs

in which carbon forms an acceptor level, C,,, which is responsible for the ~ 1.49¢V
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donor-acceptor pair radiative recombination at low temperatures. She measured the
decay and the line shape of the photoluminescence signals at and near the donor-
acceptor emission peak for temperatures ranging from 4.1K to 34K for several
samples of LEC SI GaAs with different carbon concentrations.

The photoluminescence decay was found to follow a double exponential law at the
early stage of the decay but followed a power-law of the form L(t) o 77 at a later
stage. Analysis of the temperature dependence of the exponential components gave
two activation energies of ~ 5.7TmeV and ~ 15meV. The exponent, p, of the power
law decay was found to be both temperature and concentration dependent. For the

undoped sample, Teh found the decay to be of the form
p=-12+024 6T (10.4)

where 3 is proportional to the concentration of the acceptors, C4,, in the tempera-
ture range 18 < T < 30K. The value of p = 1.4 at 4.1K agreed with Dingle’s result
(19].

Figure 10.1 shows the lineshape of the ~ 1.49¢V luminescence obseved by Teh. It
clearly shows the luminescence to be made up of two components- identified as a
donor-acceptor component on the low energy side and a band-acceptor component
on the high energy side. Figure 10.2 shows the observed dependence of the exponent

of the power-law, p, on temperature for samples of different carbon concentration.

Is the observed time decay consistent with a model of de-trapping from a discrete
set of energy levels?

One immediate problem is that experiment shows

p=-14pT (10.5)
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Figure 10.1: Luminescence spectrum of ~1.49eV region at different temperatures.

The donor-acceptor and band-acceptor transitions are indicated. (From [98}.)
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Figure 10.2: Temperature dependence of the exponent, p, for different carbon con-
centrations N. (From [98].)
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whereas theory of decay from an exponential trap distribution predicts
p=1+akT (10.6)
and from the flat and Gaussian distributions,

p=1 (10.7)

Apart from this discrepancy, the model of de-trapping from a set of levels
does predict an initial exponential decay followed by a power law whose exponent
increases with temperature and a, the steepness of the exponential trap distribution.
A comparison between the theoretical prediction of 10.6 and the experimental data
is shown in Figure 10.3 using & = 1.29meV ™" to model the results from the samples

with concentration N = 11.6 x 10'%cm 3.

Experimentally we observe two decays in the ~ 1.49eV region— the band-
acceptor and donor-acceptor contributions. We see two initial decays and one final
power law decay. This is consistent with a model of de-trapping from two sets of
traps. The trap distributions would have to be of the same form so that a is the

same for both and the final power law is identical.

Experimentally, p increases with § and T. If we equate a with 8 then
we are led to the conclusion that the steepness of the exponential distribution is
proportional to the carbon concentration, that is, the distribution is more sharply

peaked at higher §, see Figure 10.4.

The possibility of traps existing in material is something that is, by nature, difficult
to verify. Martin, Mitonneau, and Mircea did classify trap states in GaAs from
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DLTS experiments [64] but none of their observed activation energies are as small
as the 6meV or 15meV seen by Teh.

Walukiewicz et. al. [120] have reported the presence of a new shallow donor
level 20-30meV bolow the conduction band with concentrations similar to those
of the EL2 defect. The shallow donor could act as an electron trap from which

electrons are excited into the conduction band or donor level.

Paget and Klein [72] have evidence from photoluminescence experiments for
the presence of a continuous set of shallow donor levels. They say that the effect
most probably results from the Coulomb interaction between the electron bound
to the donor and charged impurities which arise as a result of the compensation

process in SI GaAs.

Although no evidence so far points to the discrete distribution of traps that we
have postulated, it may be hoped that more accurate experiments will be able to
determine whether the possibility exists for two sets of trapping levels leading to

donor-acceptor and band-acceptor luminescence in GaAs.
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APPENDIX A

SIMPLE ENERGY TRANSFER MODEL

CLuuzak [14] derived the equations

dN,

_Et.!. = —a Ny

dN. dN.

_Z;?. = —et — N,

Taking the Laplace transform of each

le - N](O) = "alLl
pLs — N3(0) = —agLy + anly

(A1)

(A.2)

(A.3)
(A4)

where L, and L are the Laplace transforms of N; and Ny, respectively. N{0) =0

since this centre is not initially excited.

Solving the above equations,

Ll = N1(0)
pt+aor

L2 = Nl(o)al
(p+ a1)(p+ a3)

Taking the inverse Laplace transforms,

N1 = Nl(O)e"'“
-t _ ,—azt
Nz = Nl(O)a, [e e ]

Qs —
The second centre is the emitting centre, so the luminescence is
dN,
dt
_Nl(O)ozl

Qg — @

I =

[_ale—axt + aze-azt]

140

(A.5)

(A.6)

(A7)
(A.8)

(A.9)

(A.10)
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using 1/7 = aq, 1/ = ag

1 = O [t Ize-s/n] (A.11)
T2—T T
This luminescence peaks when
dI
5= 0 (A.12)
Therefore,
Ni(0) [_—_le-t/n + I“;_e-t/n] =0 (A.13)
T—N | T2 T
tmaz = N7 _om2 (A.14)

T2—T T
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COMPUTER PROGRAM

start:

SCREEN 3

VIEW PRINT

CLS .

PRINT °Trap Decay"®

PRINT

ds s ®\mark\bas\data2\ .

PRINT " 1) Generate Trep Data 2) Observe Time Data®
PRINT

b = VAL(INPUTS(1))

IF b <> 2 THEN GOTO tr

INPUT "Enter ’'TINE’ file name®; r$

NIDs(ds, 17) = r$

GOTO 1:

trs

INPUT "Enter Trap Distribution File®; rie@
r28 = de: MIDS(r2s, 17) = ris

OPEN r2s FOR INPUT AS #2

INPUT #2, ntX

ativme:

PRINTY

de = "\mark\bas\data2\ ®
* INPUT "Enter °'TIME’ file nawme"; r$
HIDs(ds, 17) = r®

INPUT "Starting Time®: tié

INPUT °Finishing Time®; tf#

INPUT *Humber of Points"; n%

*¢44 = 1: tf# = 1d9: n% = 11

PRINT

PRINT USING "Calculation Time #.# mins."; ntX » nX ¢ (.00108333334)
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’ ..l....IO...CQ....QO....Q........

rvesssee Set Parameters YT 2]
PYYvypprrerrt TYTYTIY T LT LLA LA A0 Al

sc# = O#: kT# = (328 ¢ .0863#): taud = .S¢: Ecod = 08
+i# = LOB(tiN): tL# = LOG(tL#)

a® = (tf¢ - ti#) / (nX - 1)

DIN b#(nX - 1)

DEF fny# (t#, scd, Eod, Ec#, tau#, KT#) = EXP(scé - (t# / (teu# « EXP((Ec# - Eo#
Yy /7 kT2)))) @« EXP(-(Ec# - Eo#) / kT#) / taud

‘Generate Data
FOR PX = 1 TO ntX

INPUT #2, Eo#, Wé
FOR aX = 0 TO n% - 1

t# = EXPl(m% o s#) ¢ ti#)

be(mE) = HP(mX) + W ¢ fny#(t#, scé®, Eof, Ec#, taud, kT#}
NEXT w2

NEXT
‘write to file

OPEN de¢ FOR OUTPUT AS #1
WRITE #1, n%
FOR m% = O TO nX - 2
t# = EXP((mX * s8) + ti#)
WRITE #1, t#, bé#(aX)
NEXT

CLOSE
SOUND 1000, 10

b S
CLS

VIEW PRINT 24 TO 25
rat = 3

2:
*load data into srray
GOSUB load

3

'pPlot a#(#) for ns,npXk
CLS

GOSUB findrange

GOSUB defvindow

GOSUB plot



GOTO wenu

dp% s O: eX = O
OPEN d¢ FOR INPUT AS &1
€1, nX

INPUT

ne% = 1: apX = n%: nfX = 2 e nX ~ 1
IF rn% = 1 THEN DIN a#(nf% ¢+ 1): rnX = O

FOR PX = L TO nX
INPUT 9,

af#(2 » P% - 1) = x#: a#(2 » PX) = y#

NEXT

CLOSE
RETURN

findrang®:

da¥ = 2 e ne¥% - 13 dfX = 2 ¢ (ne¥ + np% - 1) - 1}

x#: INPUT #1, y#

Appendiz B

xmid = af(de¥): xwa# = mif: ymid = ad(dsX + 1): ywma# = ywmid
FOR PX = doX TO dfX
x® = ad(PX): y# =
IF x# > xmaé THEN

IF x#

xwi# THEN

<
IF y# > yma# THEN
<

IF y#

NEXT

VIEW PRINT
LOCATE 1, 1

PRINT
PRINT

re

ymi# THEN

SELECT CASE eX
CASE O
PRINT *Y - X
CASE 1
PRINT °Y - 1n X
CASE 2
PRINT "ln Y - X
CASE 3
PRINT “1n

END SELECT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

USING
USING
USING
USING

“Data
naX;

Y ~-ln X

STEY 2
s#(PX% + 1)

xma#
xoié
ywma#
ynis

&
x#
y&
ye

"xmin 8§, 8HPAAANY;
"xwas §, FRE 0NN
"ymis 8. 8384000,
‘yma= #, #88°4000

Points®

®" of *; n%

*Dp “; dpix
LOCATE 16,
LOCATE 16,

1t

PRINT : PRINT

"to "; nsX + np% -

xmid
b3 114
ywmi#
yma#
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PRINT USING "s= #.880+rn72; g4
PRINT USING "i= #.8#2844%4%; jip
VIEW PRINT 23 TO 24

RETURN

' defwindow:

WINDOW

VIEW

LINE (138, 0)-(719, 292), , B
VIEW (140, 2)-(717, 290)

WINDOW (xmi#, ymi#)-(xmad, yua#)
RETURN

plot:
FOR PX = daX TO dfX% STEP 2
x# = a#(PX): y# = a#(PX + 1)
PSET (x#, y#)
NEXT

RETURN

best:

12 : PRINT * 1) Vvhole Screen 2) Portion®
b = VAL(INPUTS(1))
IF b = { THEN
GOTG 13
ELSEIF b = 2 THEN
PRINT * Set Point Range *
GOSUB selct
GATO 13
ELSE GOTO wmenu
END IF

13 3 u# = 0: v# = 0: We = O: x2# = O y2¢ = 0
FOR P% = dsX TO dfX STEP 2
X& = a#(PX): y# a a#(PX + 1)
U s uf + x# ¢ yi#: ve = y@ o y&: We = WE + x@: %20 = %28 + x# ~ 2: y2¢ = y2
9 e yp 22
NEXT
8% = (npXk « ud - WE + vp) / (npX & %28 - Y# » 2)
18 = (v# - m# » W8) / np%
d# = SQR(ABS(npX © (y2# - 18 © v# - g8 o uf) / (npX » %28 - W# » 2) / (np% - 2
) .
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‘plot best line

GOSUB findrange

FOR %x# = xnié# TO xma# STEP (xmad - xmi#) / 580
PSET (%9, s# o x& + i#)

NEXT

PRINT : PRINT °® 1) Plot Difference Data-Line 2) Main Menu'
b = VAL(INPUTS(1))
IF b = 2 THEN
FCR PX = dsi TO dfX STEP 2
af(PX « 1) = a@(PX + 1) - (2#(PX) » s# + 1i8)
NEXT
CLS
GOSUB findrange
IF yni# = O AND yma# = O THEN
PRINT %"ece EXACT NATCH eoe
a® = INPUTS(1)
GOTO wenu
ELSE
GOSUB daofwvindow
GOSUB plot
GOTO menu
END IF

ELSE GOTO menu
END IF

selct:

11

fo

s  PRINT : PRINT
INPUT "Enter : Ns, starting point *: ns%
INPUT * Np, # of points *; np%
IF npX < 3 THEN GOTO i1
dafi = 2 s.n@X - 1: dfX = 2 « (nsX + np% - 1) ~ i
RETURN

rmat:

IF eX <> 0 THEN GOSUB load
PRINT * 1) Y - 1ln X 2) InY - X 3) inY - 1ln X*
dp% = 0
b = VAL(INPUTS(1))
FOR PX = § TO nfX STEP 2
xf = a#(PX): y# = a#(P% + 1)

SELECT CASE b
CASE 1

IF x# < 1D-200 THEN dp% = dp% + 1: x# = 1: y# = O
CASE 2

IF y# < 1D~-200 THEN dpX = dpX + 1: y# = 1: x# = 0
CASE 3
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IF x# < 1D-200 OR y# < 1D-200 THEN dp% = dp¥% +« 1: y# = 1: x# = 1

END SELECT
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SELECT CASE b
CASE 1
%x# = LOG(x#): @% = }
CASE 2
y® = LOG(y#): eX = 2
CASE 3
x# = LOG(x#): y# = LOB(y#): ¢4 = 3
CASE ELSE
GOTO wenu
END SELECT
a®(P%) = x#: a#(PX% + 1) = y@
NEXT
PRINT * 1) Continue 2) Save Nev Data®
b = VAL(IRPUTS(1))
IF b = 1 THEN CLS 1: GOTO 3
IF b <> 2 THEK GOTO menu
INPUT ° Enter File Name to Save '; s
d8 = *\MARK\bas\DATA2\
MIDs(ds, 17) = s
QOPEN d¢ FOR OUTPUT AS #1
WRITE #1, nX%
FOR PX = 1 TO nfX STEP 2
WRITE #1, s#(PX%), a#(P% + 1)
NEXT P%
CLOSE
GOTC menu

rd:

SCREEN 3: VIEW PRINT: CLS

PRINT "Data frowm file "; rs

OPEN de¢ FOR INPUT AS #1

INPUT #1, a

FOR P% = 1 TO n%
INPUT #), x#: INPUT 01. y#
PRINT , , x#, y#
IF P% /7 20 = INT(P% / 20) THEN

PRINT
INPUT "Press <ENTER> to continuo': cos
PRINT
END IF
NEXT
CLOSE
VIEW PRINT 23 TO 24
nenu:
PRINT * 1) Re-Plot Date 2) Best-Fit 3) Read Deata 4) End .
PRINT ®* S) Nev Format 6) Originsl Data 8) Re-Start "3

b = VAL(INPUTS(}1))
SELECT CASE b

CASE )
GSUB selct
GbTO 3



CASE 2
GOTO best

CASE 3
GOTO rd

CASE 4
END

CASE 3
GOTO formst

CASE 6
GOTO 2

CASE 7
GOTO menu

CASE 8

CLEAR

GOTO stert
END SELECT

GOTO menu
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