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ABSTRACT

A truncated procedure for selecting the better of
two binomial populations is formulated. The procedure
uses play the winner rule and the selection is based on
the difference in the proportion of successes at termina-
tion. The trials are terminated whenever either population
is sampled completely or when the difference in the
proportion of successes exceeds a critical value, based
on the failures on both populations. It is shown that,
when the average of the two population probabilities of
success is less than 0.5, the expected number of observa-
tions on the poorer treatment is smaller for this proce-

dure than for any procedure currently known.
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INTRODUCTION

The theory of clinical trials is of considerable
interest to theoretical and applied statisticians. The
idea behind most of the newer techniques is the ethical
one of not prolonging a trial longer than necessary, for
a trial which is unduly prolonged may result in an exces-
sive number of patients being given the less beneficial
treatment. The doctor treating a batient in a clinical
trial is not only obliged to derive information about
the best treatment, but is also obliged to treat each
patient in the best way possible. This ethical considera-
tion has motivated the development of several statistical
techniques for selecting the best treatment, or equiva-
lently the selection of the best of several binomials.

The past work in selecting the better of two
binomial populations falls into three categories:

(a) aspects of the allocation problem, (b) two-armed-
bandit problem and (c) alternate ways of conducting
clinical trials by adopting the sampling technique.

In the two-armed-bandit problem, we deal with a

slot machine. When the left arm is pulled, the machine



pays one unit with probability p, while a pull on

the right arm pays one unit with probability p'.

The problem with a two-armed bandit is which arm to
pull. Assuming the probabilities of pay-off of the
two arms are constant, a strategy which will maximize
the expected winnings for a sequence of pulls is
desired.

In the allocation problem, the total number of
patients waiting for the treatment is known. Each
patient is to be treated with one of the two treatments.
The first n patients are used to select the better
drug and the remaining patients are treated with the one
selected as being better.

In practice, no knowledge about the number of
patients is available. Zelen[11] modified the allocation
model by assuming that (a) two (or more) similar groups
are to be observed where the groups differ only in the
treatments received; (b) the construction of the groups
is by random allocation; (c) the response is dichotomous
and the results are observed without delay. He suggested
the use of sampling techniques to reduce the number of
patients put on the poorer treatment. Zelen applied
Play-the-Winner(PW) rule to the clinical trials; it
prescribes that a success with a given treatment generates
a further trial on the same treatment while a failure

generates a trial on the alternative treatment.This is



a very simple rule to use that introduces bias in
favor of testing the better treatment.

Sobel and Weiss[9] compared different procedures
for selecting the better treatment. A procedure is
specified by the sampling and termination rule. A
comparison of PW rule was made with Vector-at-a-time(VT)
rule; VT consists of taking two observations at each
stage, one from each population and one does not consider
stopping between these two trials, The situation where
a physician wishes to compare two or more treatments
using the patients he ordinarily enéounters, and the
problem of selecting the most effective dose of a
particular drug are two among the several practical
situations where these simple methods can be applied.
Most of the investigations are done by formulating the
selection of the better of two binomial populations
(i.e. the one with the highest probability of success
pon a single trial) as follows: for preassigned constants
p¥ and 4+ with 0.5¢ P e 1 and g ¢ pxe] , it is
required that the probability of correct selection(CS)
be at least P*when the true difference in p-values
(denoted by, ) is at leastax . i.e. we want a procedure
R such that

P{CS/R) > P* whenever 4 2 A%,
Among the procedures satisfying this requirement, the one

with the smallest expected number of patients on the less




beneficial treatment is declared to be the better
treatment.

In chapter II, a review of the recent work done
on the binomial selection problem is made. In chapter III,
we discuss a procedure R(DPPW) using PW sampling where the
rule 1is based on the difference in the proportion
of successes. The performance of this procedure is

evaluated in chapter IV.



CHAPTER I

A REVIEW OF THE RECENT RESULTS ON

BINOMIAL SELECTION PROBLEM

In this chapter, we will briefly review the recent
work on selecting the better of two binomial populations.
The results mentioned in this chapter will be used for
comparison with the results of the next chapter. Let us

denote by

S(i), F(i), and N(i) the number of successes, failures
and trials respectively on the 1th population for i = A,B .

N = N(A) + N(B), the total number of observations on
both populations.

A =p -p' where p and p' are the probabilities of
success on a single trial on population A and B respec-
tively; let p=2p'.

q=1-p; ¢ =1-p".

CS - correct selection, namely identifying population
A as the better one.

(2.1)
( P*, a* ) - preassigned constants such that

0.5 <Pl and  0<a*<l.



We need a procedure R for selecting the population with
the larger probability of success on a single trial such

that

(2.2) P[ CS/R ] = p* whenever 4 > A%,

Sobel and Weiss [9] considered procedures R[DPW]
and R[DVT] with the termination rule based on the difference
in successes at each stage. The procedure R[DPW] uses play-
the-winner ( PW ) sampling and declares treatment i as the
better one when S(i) - S{j) = r, where j is the other treat-
ment, while R[DVT] uses vector-at-a-time { VT ) sampling
and makes the same decision when S{i) - S{j) = s, The
integers r and s are chosen to be the smallest such that
(2.2) is satisfied for preassigned constants (P*, A% )
satisfying (2.1).

The probability of correct selection under R[DPU]

is calculated by defining

P(n) = P[ CS/ S(A) - S(B)
(2.3)

Q(n) = P[CS/ S(A) - S(B) = n, NT

n, NT = A ]

B ]
where NT = A (NT = B) denotes the next treatment is on A(B).
Since the first treatment is chosen at random,

the P(CS) at termination is given by

(2.4) P(CS/R[DPW]) = [ P(0) +Q(0) ]

Under R[DOPW], letting q =1 - p, and q' =1 - p', we obtain

| —
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p P(n+1) + q Q(n)
(2.5)

Q(n) = p'Q(n-1) + q'P(n)
With the boundary conditions P(r) = 1, Q(«r) = 0.

The solution to (2.5) satisfying the boundary conditions

is given by
q' (12" g -
(2°6) Q(n) = "—"—"—Z‘Y‘.— s P(n) = | 7
q'-g) q'-qx

where A= (p'/p)< 1. Setting P(CS)=P*, we obtain from (2.6)
and (2.4)

*
(27) 9 F (e hT s (g )
as the equation determining r. Thus given any p and p',
(2.7) determines r such that P(CS)=P*. Since it is desired
that (2.2) be satisfied when pand p' are unknown, it
is necessary to find the Least Favourable ( LF) configura-
tion of p and p' which satisfies (2.2). By LF we mean p
and p' which minimizes P(CS) subject to the restriction
P-p'2 a*. It is shown in [9] that, when Pt 1, the value
of r under LF can be approximated by
*
Tog{2(1-P )}
o | —————] + 1
lTog(1-a%)
where [.] denotes 'the largest integer contained in'.
Under the procedure R[DVT], using VT sampling, we

stop when S{i)-S(j)=s and choose the treatment i as the

better. We Tat  P(n) = P(CS/S(A)-S(B)=n); thus



P(CS/R[DVT]) = P(0); and it is obtained by solving
the difference equation
(2.8) P(n) = pq'P(n+1)+qp'P(n-1)+(pp'+qq")P(n)

with the boundary conditions P(s)= 1 and P(-s)=0 .

The solution to {2.8) is given by

P(n) = 7 where 6 = — < 1.

It is shown that minP(CS/R[DVI) for & > a* is attained
by setting a4 = a* and p = (1+a*)/2. The required s

is the solution of

*
It is shown in [9] that, when P+ 1, fhe value of s under-

LF can be approximated Qyu

G '1og(1-P*)
(2.10) mo= + 01

2109 (1-1%)
(144%)

The procedures R[DPW] and R[DVT] are compared by the expect-

ed number of trials on the poorer treatment. Defining

R(n) = E( N(B)/ S(A)-S(B)=n, NT=A)
(2.11)

S{n) = E{ N(B)/ S(A)-S(B)=n, NT=B)
then E(N(B)/R[DPU]) = %{ R(0)45(0))




Under R[DPW] we obtain

R(n) = pR{n+1) + qS(n)

n

(2.12)
S(n) = p'S(n-1) + q'R(n) +1

with the boundary conditions R(r) = S(-r) = 0 .

Solving (2. 12) we obtain

Lo(lp#2ar) (197) (gt )
E(N(B)/ Py) = 3 {

2 (q'-q27")

where % = p'/p . Under R[DVT], we define

(2.13) G(n) = E(N(B)/ S(A)-S(B) =n )

we obtain therefore

(2.14) G(n) = pq'G(nt1) + qp'G(n-1) + (pp'+qq')G(n)+]
with the boundary conditions G(s) ® G(~-s) = 0 . Solving
(2.14) we obtain

C(1e68
E(N(B)/R[DVT]) = % %_S( i %

1443

where 6 = p'q/ pq' . Further it was shown in [9] that for

p* close to 1 and &* small, R[DPW] is preferable to

RIDVT] when p > ( % . %i } ; otherwise R[DVT] is

preferred. Numerical results of E(N(B)) for different

(P*,A*) combinations are given in Tables 6, 7, 8 and 9.
Sobel and Weiss [8] considered an inverse stop-

ping rule which terminates the. trials.when any one popu-

lation has r successes. The procedure R[ISPH] uses




PW sampling with inverse sampling as the termination 4

rule. It was shown in [8] that

]
P(CS/RLISPH]) = 7 E {Iq.(x,r)+1q.(x+1,r)}

where

g
L(3r) = ) S 71 (1)1 g
r(3)r(r)d

and E[f(X)] is the expectation of f(X) where X is a
(negative binomial) random variable denoting the number
of failures before the rth success, A normal approximation

to minimum of P(CS/R[ISPW]) when r + » is given by

(2.15) Min P(CS/R[ISPW]) =§{‘A§?ZE b for axa*
8

where o(x) is the standard normal c.d.f, We solve for r by
putting 4=4* in (2.15) and setting the result equal to
P, If )= A(P*) denotes the solution of ¢(x) = P*,

then we obtain

A

(2.16) R STEL

An asymptotic ( r+ « ) normal approximation to E[N(B)]
under R[ISPW] is given by

E(N(B)/R[ISPH]) = g. { % o(y) +
(2.17)

. .
“
\ -



where y =Aj_§._, D = q(p')2 ' q'(p)2 . As seenin
tables 6,758 and 9, the inverse sampling rule requires a

large number of observations on the poorer treatment
when the success probabilities are small. Another
procedure R[IFPW] resulting in smaller E(N(B)) when the
success probabilities are small, is obtained by changing
the termination rule so that the experimenter will wait
for a fixed number of failures instead of successes.
Under R[IFPH], one waits for r failures from each popu-
lation and selects the one with most successes as being
best, using randomization when there is a tie. It was
shown that P(CS/R[IFRH) = P(CS/R[ISPW]) and the critical
values r are given by (2.16). It was further shown, when
r+w, E(N(B)/R[IFPH]) = r/q' . Tables 6, 7, 8 and 9
give E(N(B)) for different (P*,A*) combinations.

Hoel [3] modified R[ISPW] to obtain a truncated

test, R[H], that uses PW sampling. Defining

R(1)
R(3)

S()+F(J)
S(3)+F(H)

(2.18)

R[H] terminates the trials as soon as R(i) or R(j) is

equal to r, where r is chosen such that (2.2) is satisfied.

If R(1) equals r, then population i is declared to be the

better one. The LF configuration was found to be

N
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R A\ I
Pr2 e s Mg g
Under LF, the P(CS) is given by
P(CS/R[H]) = Er-i[ Iq.(X+T, r-X) 1

where Er(X) denotes the expectation of the binomial
random variable X with parameters r and q and Ia(b,c) is
the incomplete beta function. We find E(N(B)/R[H]) by

defining
T = (r-R(A), r-R(B)),

R(A), R(B) as in (2.18)
R(m,n) = E[N(B)/ T=(m,n), NT=A]
S(m,n) = E(N(B)/ T=(m,n), NT=8]

Under R[H] we obtain

R(m,n) = p R(m-1,n) + q S(m,n-1)

(2.19)

S(myn) = p'Sm,n-1) + q'R(m-1,n) + I

with boundary conditions R(0,n) = S(n,0) = 0 for n >0,
Then E[N(B)/RTHI T = [ R(r,r) + S(r,r) 1/ 2.

An explicit solution to (2.19) is found in [3].
Tables 6, 7, 8 and 9 show that R[H] has a larger expected
sample size on population B thap R[ISPW] whenever

[p4p’ ] '
‘\272_) > 7 5 while when (R%R ) < 0.5, R[H] 1s

preferable to R[ISPW].
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Another truncated procedure in which the maximum
number of tests was specified was discussed by Kiefer
and Weiss [6]. This procedure uses VT sampling. After
each pair of populations is sampled, one calculates
A0S = S(1)-S(j) . If at any test t < N ( the maximum
number of tests) we have aS = s, then we terminate,
calling the population with the greater number of suc-
cesses the better population. If no decision is made
within the N test pairs, the populations are held to
be essentially of equal value. In this truncated version
the experimenter can use the parameter N as follows:

(a) Fix N and determine s so that P(CS) is maximum.

(b) Choose the smallest N consistent with (2.2).

(c) Require, in addition to (2.2), that the proba-

bility of a decision of equality be 2 P; when
p=p
The authors were not successful in deriving an exact
expression for the expected number of trials to reach a
decision. Values of s that maximize P(CS) for fixed a*
and N are given in [6].

Hoel, Sobel and Weiss [4] discussed a two-stage
sampling procedure. In the first stage N tests are con-
ducted on each population. The type of sampling to be
used in the second stage was based on a critical parameter
k 5 PW sampling was used in the second stage if the
maximum of the number of successes in the first stage

was 2 k 5 otherwise vector-at-a-time sampling (VT)



was used. The terminal decision rule was based on the

difference in the successes on both populations. Expected

*
sample sizes on the poorer population for different (P J0%)

combinations are given in chapter IV.

It was shown that

the two-stage procedure resulted in substantial savings

on the expected samples on the poorer population compared

to R[DVT] whenever

R[DTS].

p> 0.6.

We denote this procedure by

Nebenzahl and Sobel [7] investigated the selection

problem for fixed sample size case. The procedure R[FSPW]

uses PW sampling while R[FSVT] uses VT sampling. R[FSVT]

forces the sample size to be an even number, The same

Table 1.

Comparison of R[FSPH] and R[FSVT] for the pair

(p,p') = ( 0.5+ 0.5 4% , 0.5 - 0.5 4% )

2% = 0.1 2% = 0.2
P* e
N [LE(N(B)/ | {E(N(B)/ N [{E(N(B)/ {{E(N(B)/
RIFSVTIY | R[FSPUT) RIFSVT]}| RLFSPH]
3292 540 1 270 213.0 138 7 53.6
0'9;0 384 | 192 172.8 | 96| 48 38.4
9307 270 1 135 1215 | 68 34 27.2




terminal decision rule is used for both procedures,namely
to select the population with most successes and to rando-
mise when we get equality in the number of successes. The
fixed sample size N for both procedures is determined so
that (2.2) is satisfied. Table 1 gives N needed under
RIFSPW] and E[N(B)] under R[FSPW] and R[FSVT] for differ-
ent (P*, b*) combinations.

Another procedure R[IT] due to Berry and Sobel [2]
modifies the inverse sampling procedure R[ISPH] by termi-
nating the trials either after ¢ failures on each population
or when there are r successes on any population, whichever
occurs sooner. In either case the population with the
larger number of successes is selected. The E[N(B)] when

r = ¢ is given in tables 6, 7 and 8.



CHAPTER TIII

A TRUNCATED PROCEDURE FOR CHOOSING THE

BETTER OF TWO BINOMIAL POPULATIONS

The different procedures discussed earlier are
distinguished by the sampling and termination rules.
The termination rule was specified by a decision
function, defined by the current number of successes
and/or failures on either or both populations, and a
critical value r, a preassigned constant chosen to
satisfy (2.2). In this chapter we analyse a truncated
procedure using PW sampling, in which a maximum number
of tests on each population is specified.

Consider two bernoulli populations, one having
probability of success p on a single trial and probability
of failure q =1- p; denote it by A; the other is B
With parameters p' (p>p) and g =1-p .The parameters
p and p'are both unknown and our sampling and termination
rute will not depend on the knowledge of which population
is A. At the outset one of the two populations is chosen
at random. Procedure R[DPPW] uses the PW sampling with
the selection based on the difference in the proportion
of successes at termination. Before the trials are

started, the maximum number of tests, N, on each population
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and c, the critical parameter are specified. Using

the notation in chapter II, the procedure R[DPPW] has
the following stopping rule: sampling is terminated
whenever either population has been sampled completely

or when

(31) S{A) S(B) c

N(A) N(B) F(A)+F(B)

whichever is earlier, where the constants (N,c) are
chosen to be the smallest integers satisfying the
condition

*

(3.2) P(CS/R[DPPW]) 2 P whenever  »
for preassigned constants (f , 0¥ satisfying (2.2).

The population with the Targer proportion of successes

at termination is declared as the better. This procedure
is truncated, since at most 2N-1 trials will be required.
The results of the total sample size required for the
fixed sample size binomial selection procedure R[FSPW]
given in Table 2 were used as follows to specify (N,c).
For any specified (ﬁ , A%) combination, N was taken to

be s1ightly greater than half the total samnle in the

fixed sample procedure with

(3.3) P(CS/RIDPPH]) > P when & = 0¥
Then, for this N, the smallest integer ¢ satisfying

(3.3) was found; then,for this value of ¢, the smallest
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N satisfying (3.3) was found. The combination (N,c) found

thus was taken to be the final choice of (N,c).

Table 2

Total Samples N required under R[FSPW]

*
p
99 975 .95 90 .85 .80 .75
A*
A Isag 388 970 166 108 71 46
2 [138 96 68 1 27 18 12|i

The expected sample sizes on the poorer population, when
the population probability of successes are small, are
considerably reduced by this procedure.

To calculate P(CS/R[DPPU]), Tet

NT=A(NT=B) denote the next trial is on population A(B).

T = (myn,a,b) where

m=N-NA)

n="N- NB)

@ = number of failures on A
(3.4)

b = number of failures on B
Define

U(m,n,a,b) = P(CS/ T=(m,n,a,b), NT=A)
(3.5)

V(m,n,a,b) = P(C°/ T=(m,n,a,b), NT=B)

Using PY sampling and using [ (3.4),(3.5)] we obtain



for the procedure

U{m,n,a,b) =
(3.6)
V(m,n,a,b) =
and the boundary conditi
(a) U(0,0,a,b) =0
V(0,0,a,b) = 0
(b) E=1
U(0,n,a,b) E =]
(70
(c) (=
V(0,n,a,b) % .
(.

(d) U(m,0,a,b) =0
V(m,0,a,b) =0

(e} U(m,N,a,b) =0
V(N,n,a,b) =0
(f) U(m,n,a,b) =1
V(m,n,a,b) =1

for a

RLDPPW],

p U(m-T,n,a,b) + q V(m-1,n,a+1,b)

p'V(m,n-1,a,b) + q'U(m,n-1,a,b+1)

ons are

for a,b> 0

if b= aoratl, n# N,b#0
if b= 0, a =0, n =N
if b> N-n

if b=aora-1, n¢ N, b#0
if b= 0, a= 1, n=N
if b> N-n

for m,a,b >0

for b0

for a0
g S(A) s(8)|
) when | — - —| 5 —

11 myn,a,b m#0, n#d



(g) O<a < N, 0 sb <A, !a-blg 1

The first treatment at the outset is chosen at

random and hence P(CS) at termination is given by

(3.8) p(cs/rropeu]) = & Cuin,,0,00+0(n,0,0,0 |

An analytical solution to (3.6) with the boundary
conditions(3.7) is quite complicated. We used the IBM 360
computer to numerically evaluate the P(CS/R[DPPW])
when N and c are specified. Several computations using
program A (appendix) were made to find the value of ¢
and LF configuration for preassigned (N, Atﬁ*) and -

the results are summarized below.

Table 3.
The Least Value of ¢ for R[DPPW] satisfying

(P*, K) probability requirement for specified N

(", &) N c LF(p,p')

(.90,.2) 24 4 (.57,.37)
(.95,.2) 39 5 (.55,.35)
(.99,.2) 72 8 (.55,.35)
(.90,.1) 89 8 (.50,.40)

The performance of R[DPPW] was evaluated by comparing

the expected number of observations on the population B

20
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with other procedures mentioned in chapter .[I, For

this we define

R(m,n,a,b) = E(N[B]/ T=(m,n.a.b), NT=A)

E(N[B]/ T=(m,n,a,b). NT=B)

(3.9)
S(m,n,a,b)

Using PW for R[DPPW] we obtain

R(m,n,a,b)= p R(m-1,n,a,b)* q S(m-1,n,at+l,b)
(3.10)

S(m,n,a,b)= p'S{m,n-1,a,b)+ q'R(m,n-1,a,b+1) +1
and the boundary conditions are

(a) R(0,0,a,b) =0
${0,0,a,b) =0  for a,b20

=0 if b=a or a+1,n#N,b#0

(
(

R(0,n,3,b) E = 0 if b=0, a=0, n=N
(=04f b> Nen

(c) S(0,n,a,b) = 0 if bea or a-1,n#N,b#0

(
(
% = 0 if b=0, a=1, n=N
(. 0 if b> N-n
(d) R{(m,0,a,b)= 0
S{m,0,a,b)= 0 for m,a,b>0
(e) R(m,N,a,b)= 0  for b> 0
S{m,N,a,b)=0  for a >0
(f) R{m,n,a,b)= 0

| IS(A) s(8)
)

> C
ath

S{m,n,a,b)= 0
(3.11)
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(g) 0<a<h, 0sb <N labls 1
Solving (3.10) subject to (3.11), we obtain

{R(N,N,0,0)+S(N,N,0,0)}

I\)‘—'

E(N(B)/R[DPPW]) =

Program B (appendix) was used to evaluate
*
E(N(B)/R[DPPU]) for different (P, a*) combinations and

the results are summarized below:

Table 4

Expected Number of observations under R[DPPW]
E[N(B)] : Expected number of observations
on population B.

E[Nﬂ : Expected total number of observations.

RN SRS e R |

o) | (o0, 207 | (s, 20 | (e, 28 (.90, 1)

\\\A 2 0 2 0 2 0 N
9%3' | ELN(B)T ECN]|EIN(B)] ECN] |ECN(B)] ELN] ELN(B)]
0.1 12.1  40.2[ 14.3 62,0 | 22.1 123.0 '43.5
0.2 1.5 34.2|15.2  54.0 | 24.9 109.8] 43.6
0.3 1.6 32.8|15.7  51.4 | 26.1 107,00 44.8
0.4 12.0 33.6(16.8 53.4 | 28.8 111.2| 48.2
0.5 12.6  35.4]18.3  57.6 | 32.2 118.8] 53.4
0.6 12.8  37.4[19.5 62.4 | 35.4 125.20 58.9
0.7 11.9  38.4|18.8  65.2 | 34.8 128.6] 60.9
0.8 9.0 38.0( 14.1  64.8 | 25.2 126.2 54.]
0.9 2.5 35.2| 2.5 60.6| 2.5 119.2| 32.5
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a. (N,c)=(24,4) required for P*=.90 and A*=.2
* *
b. (Nyc)=(39,5) required for P =.95 ang ® =2
¢. (N,c)=(72,8) required for P*=.99 and A*=.2
* *
d. (N,c)=(89,8) required for p =.90 and 4 =.]

Consider the procedure R[MDPPW] obtained by
modifying the stopping rule of R[DPPW]. The:procedure
RCMDPPH] uses PW rute and sampling is terminated

whenever either population is sampled completely or

when

S(A)  S(B) , ¢ S(A)+S(B)
N(A)  N(B) F(A)+F(B)[ N J

where [ .] denotes " largest integer contained in",

It was verified numerically when c=5, N=38, the
P{CS/RLMDPPH]) to be at least .95 whenever p - p's .2,
The LF configuration is given by (p,p') = (..52, .32)
and the expected sample size on the poorer population
(B) is summarised in Table 5. The computations were

made using program A and program B listed in the

appendix.

It should be noted that R[MDPPW] attains 0.95

probability of correct selection With a smaller N and



Table 5.

Comparison of E(N(B) for the procedures

R[DPPU] and R[MDPPH] for (P*,0") =(.95,.2)

A:A*=2 [

hey E(N(B)/RIDPPH] | E(N(B)/R[MDPPH]
N = 39 n = 38

0.1 14.3 14.3

0.2 15.2 15.2

0.3 15.7 15.7

0.4 16.8 16.7

0.5 18.3 18.0

0.6 19.5 18.2

0.7 18.8 16.2

0.8 14,1 12.0

0.9 2.5 2.5

performs uniformly better than R[DPPW]. The procedure
R[MDPPW] has not been investigated thoroughly. In the
next chapter, we discuss the unsolved problems |

regarding R[DPPW]. The performance of R[DPPW] with R[ISPW],

RLCIFPW],R[DPW],R[DVT],R[H],R[DTS] and REDT]discussed earlier.

24



COMPARISON OF R[DPPW] WITH OTHER PROCEDURES

Procedure R is said to be uniformly better
than procedure R' if E[N(B)/R] < E[N(B)/R'] . In
this chapter we use this criterion to compare the
different procedures described in the previous
chapters. Later we state some open questions concem-
ing the procedure R[DPPW] and some open problems

in selecting better of two binomial populations.

R[DPPW] is a truncated sampling procedure with
the selection based on the difference in the proportion
of successes at termination. Tables 6, 7, 8 and 9
give the expected number of observations on the poorer

population for various procedures. Let p = (p+p')/2 .




Table 6.

Expected number of observations on the
poorer population,

Pz 95 4 = a*= )

N N

< st [l ™ = <

=0 =z0 — - < [P = N

o ¢ o . 2 > [ [T 4 o r=

no Lo o — Qi T M [ » o oW o

-t Q\ - N al Lt ™M ow omMmil|=N

|a Ll i s o4 & |l -l [N (W

x s o o4 $ ez mzuo:lcl)

<
0.1180.7| 20.0{ 44.5 20.0 | 26.8(20.4 [14.3 {20.2
0.2 52,5 22.3| 39,3 19.8 ¢ 26.1121.0 |15.2122.5
0.3(38.1] 25.1] 34.0 19.2 1 256.2121.5 15,7 |24.9
0.4 129.11 28.6] 28.6 18.9 ? 24.1121.2 16,8 25.7
0.5122.8] 33.41(23.1 18.4 | 22.6 19.5118.3 22,7
0.6 117.81 40.1]17.6 18.9 y 20.5116.5(19.5]18.0
0.7 [13.41 50.111.9 19.2 | 17.5; 13.0118.8] 13.6
0.8 8.80 66.8, 7.1 | 19.8| 12.5' 9.4 [14.1] 8.9

|
0.9 2.5(100.2 i 2.3 20.9 2.5 5,71 2.5 2.5
i




Table 7.

Expected number of observations on the

poorer population.

P='99 A =A* :.2
. i |

n
— — e o
= = (] ™ r~Mm =1 .
ao no =20 - N~ Hwma ov | Mmoo
|la n< o o.r— >0 o X a ol <
=l -l [ali ol Il ‘o - N -l
[ | I — s LJd e LJIn [V et Q
@ o a4 o 2 2} '] [l
= e “
0.1 1160.5| 40.0)72.5030.0 | 53.70 - |22.1140.0
0.2 [104.3| 44.4|63.8(30.0 | 52.3/31.2|24.1 44,5
0.3 | 75.6| 50.0|55.0|29.8 | 50.1/33.1|26.150.0
0.4 | 57.8| 57.1|46.3|29.¢ 1 48.2{35.2|28.852.4
0.5 | 45.2| 66.7|37.5|29.5 | 45.1/35.4132.245.3
0.6 | 35.2| 80.0|28.7]29.6 | 40.9{32.6 |35.4|35.2
0.7 | 26.2|100.0|19.8|29.8 : 34.5/27.1 [34.826.2
0.8 | 16.41133.3|11.1130.0 | 23.9/20.2 25.2|16.5

|
0.9 | 2.51200.0] 2.530.0 { 2.513.1 | 2.5 2.5

27




Table 8.

Expected number of observations on the
poorer population.

*

P=.90 = A* =

]

\ ™~

~ ~ ;o
o o P | . l

= =~ — = ™ N

o ¢ AR = — o - e

N Lo oo N o< >m !l—u

la - - al T oONS | Ol i +=U
ey T s S A I T R T
o s s fd o Xz | ¢ s |
I !
‘J%

0.1 | 48.5 | 12,2} 32.5 | 16.9 | 12.1| 15.0{12.5
0.2 1317 | 13.5| 28.8 | 16.4 | 11.5 | 14.4'13.8
0.3 1 23.0 15.2 24.8 15. 11.6 ]3.6115.1
0.4 {17.5 17.4 20.6 15, 12.0 ]2.8?]5.3
0.5 | 13.7 20.3 16.4 14, 12,6 1 12.5113.7
0.6 | 10.7 24.3 12.3 12. 12,8 1 12,81 11.1
0.7 8.2 30.4 8.6 1. 11.9 1 13.6| 8.5
0.8 5.6 40.6 5.2 8. 9.0 | 14.4| 5.8
0.9 2.3 60.8 2.1 2. 2.5 | 15,0 2.3
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Table 9,

Expected number of observations on the
poorer population.

5 5 - - 3
oo oo 20 [ N o.OY
n (T o >0 0 o000
1% il ) al al T anu
—s s s wn L —Z U
N4 o o 4 4 (4
0.1 292.8 51.6 [136.8 | 59.9 73.4] 43.5
0.2 ] 1741 57.7 | 121.2 ! 57.4 72.31 43.6
0.3 | 124.0 65.3 1104.8 ! 53.6 71.0( 44,9
0.4 95.7 75.4 | 87.3 | 51.0 69.2| 48.2
0.5 76.8 89.1: 69.5 ' 50,1 67.01 53.4
0.6 62.6 108.9 | 52.4 | 51.0 63.8] 58.9
0.7 51.4 140.0 | 36.7 | 53.6 59.0/ 60.9
0.8 39.1 196.0 ! 22.7 | 57.4 50.3( 54.1
0.9 22,2 326.7( 10.1 { 59,9 30.3] 32.6




Table 10.

Expected number of observations on the

poorer population: (P*,A* ) = (.95,.2)

> A%
- - 5
- = a o

by o > oM
™ ay! ol aun
la. < (] s —wn —Z v

o 4 o~ 4
0.25 | 0.3 22.9 22.7 13.3 10.6
0.50 1 0.3 18.8 13.9 13.1 13.1
0.75 1 0.3 9.6 5.1 13.3 10.4
0.30 | 0.4 19.2 14.4 10.0 8.0
0.50 | 0.4 15.1 9.1 10.0 9.6
0.70 1 0.4 1.7 3.9 10.0 8.0

30
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The following conclusions are made from the numerical
results in Tables 6,7,8 and 9.
(a) We observe that whenever p < 0.5, the procedure
R[DPPU] is uniformly better than any other pro-
cedure currently known; R[DPPU] results in a
substantial ( more than 259 ) savings in the
expected number of observations on the poorer
population.
(b) We conclude that for p> 0.7, R[DPH] is uniformly
better than any other procedure.
(c) When 0.5 < p < 0.7, none of the procedures is
uniformly better. However, if the experimenter
knows apriori that P = 0.6 then for p*= 0.90,

A = a*= 0.2, R[DTS] is recommended.

Table 10 gives the expected number of observations
on the poorer population when & » A*. The performance of
R[DPPN] is compared with R[H], R[DPH] and R[OVT]. As
expected for p < 0.5, the performance of R[DPPW] is
better than any other procedure.

The better performance of R[DPPW], when p is small,
can be intutively justified for the following reasons.
Since the maximum sample size, N, is specified in advance
R[DPPH] prevents unduly long continuation of trials. The

.y s C .
critical value, , s based on the critical

F(A)+F(B)
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parameter,c, and the total number of failures at each
stage. The critical value decreases whenever a failure
occurs, which is contrary to the constant critical value
specified by the other procedures. If p < 0.5, the result
is frequent occurence of failures, and termination will
occur when the difference in the sample proportion of
successes exceeds the gradually decreasing critical value
when N is Targe. However if N is small, we terminate the
trials by sampling either population completely. In either
case, we expect R[DPPW] to terminate the trials quicker
than other procedures, due to the decreasing characteristic
of the critical value. Consequently, we expect R[DPPW] to
discontinue sampling with a smaller total number of fail-
ures. The procedure is specified such that fewer failures
are needed to distinguish a large difference in the sample
proportion of successes.For example when P*=0.95, c=5 and
b= 4%2.0.2, R[DPPN] requires only 13(26) failures to
terminate the trials when the difference in the sample
proportion of successes is 0.2(0.1). Further the critical
parameter prevents us from terminating trials at a very
early stage, thereby reducing the probability of making a
wrong selection by chance at a very early stage. If p> 0.5
the result is frequent occurence of successes and the criti-

cal value does not decrease quickly and hence we terminate

the trials by sampling either population completely.



Consequently, in this situation the performance of R[DPPY]
is not better than some procedures.

The principal shortcomings of the procedures described
above are the assumptions of dichotomous and instantaneous
response to treatment. So far, no analogue has been pro-
posed for the continuous case in which the response is
continuous - a very important consideration in testing
anti-cancer treatments for which a natural measure of
effectiveness is 1ife time. Further this problem has not
been analysed when the response is at some random time
after the administration of the treatment. The selection
problem under the present formulation has not been studied
when several patients are assigned to any treatment at each
stage. In fact, any enumeration of practical difficulties
associated with clinical trials is a good source for
future investigation. Most of the stopping rules excepting

the inverse sampling lead to mathematical difficulties.
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Appendix
Progran A

DIMENSION U (66,66,3),01(66,66,3),V(66,66,3) ,V1(66,66,3)
THIS PROGRAY CALCULATES THE PROBABILITY OF CORRECT
SELECTION. IN THIS PROGRAM
HP 1= (M41)
HP1= (N+1)
IFAP1=A+1 (#¥FAILURES ON POPULATION A + 1}
IFBP1=B+1 (§FAILURES ON POPULATION B + 1)
IPAPFB= TOTAL NUMBER OF FAILURES
WHERE (4,%,A,B) ARE DEFINED BY (3.4). p(P1) IS THE
PROBABILITY OF SUCCESS IN A SINGLE TRIAL ON POPULATION
A(B). DEL IS THE DIFPERENCE IN $UCCESS PROBABILITIES.
IR IS THE MAXIMUM SAMPLE SIZE ON EACH POPULATION,
THE PROBABILITY OF CORRECT SELECTION IS GIVER BY (3.8).
POR THIS E CALCULATE U (¥,N,0,0) AND V{N,¥N,0,0).
FIRST WE FIX MP1; AND THEN ALLOW NP1 T0O VABY. NQHW FOR
FINED ¥P1, WE LET IFAP1 TO VARY; SINCE PW SAMPLING IS
‘IS USED IFAP1 AND IPBP1 DIFFER BY AT HOST 1. IPBP1 IS
DEFINED IN TERNS OF J3 WHERE J3=IFBP1-IFAR+2,
IN THIS PROGRAM EACH U(M,N,2,B) AND V{(N,N,A,8) IS
ASSOCIATED WITH A PARTICULAR VALUE OF MP1 AND
U(NP1,IFAPT,J3) AND v (NP1, IFARPY,J3) RESPECTIVELY;
BY PIXING MPY FIRST, WE NEED TO USE ONLY THREE DIKENSTIONS
IN THE PROGRAM, THEREBY MAKING A SUBSTANTIAL SAVING OF
YIRTUAL MEMORY STORAGE. THE VALUE OF U (¥-1,8,A,B)
NEEDED FOR CALCUATING U(M,N,A,DB) IS STORED BY SETTING
U1(NP1,IFAR1,J3) = U(NP1,IFAPY,d3).
WE FIRST LET U(Y,N,A,B)=0, V(4,8,A,B)=0; LATER WE
CHECK THE BOUNDARY CONDITIONS AND TERMINATION
CRITERION.
IP REQUIRED, U(M,N,A,B) AND V(H,N,A,B)'ARE CALCUALTED
BY USING THE DIFFERENCE EQUATIONS.
READ(5,14) P,DEL,IR
PORMAT (F10.6/F10.6/12)
Q=1.-P
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20
18

21

37

01=1,-P1
IRP1=IR¢1
D0 15 ¥P1=1,IRP1
DO 15 NP1=1,IRP1
NAP1=IR+2,~HP]
D0 15 IFARP1=1,NAP1
NBP1=IR4+2-NP1
WHEN J3=1, A=B#1; WHEN J3=2, A=B; WHEN J3=3, B=hA¢1,
Do 15 d3=1,3 _ '
IPBP1=IFAP14J3-2
U{NP1,IFAP1,J3) =0
V{(NP1,IPAP1,03)=0
WE CHECK THE BOUNDARY CONDITIONS AND TERMINATION
CRITERION
IF(MB1.NE.1) GO TO 4t
MP1=NP1=1 MEANS THAT BOTH THE POPOLATIONS ARE SINULTANEOUSLY
SAMPLED COMPLETELY, WAICH IS NOT POSSIBLE IN PH SANPLING.
IP(NP1.EQ.1)GO TO 16
NUSBER OF FAILURES ON POPULATION B CANNOT EXCEED THE NUMBER
TRIALS ON THAT POPULATION,
IF(IFBP1.GT.NBR1) GO TO 16
J3=1 HEANS A=B+1; THE NUMBER OF FAILURES ON POPULATION B
IS ONE LESS THAN THE NUMBER OF FAILURES ON POPULATION A.
SINCE THE NUMBER OF PAILURES IN PW SAMPLING DIPFER BY
AT MOST 1, THE NEXT TRIAL CANNOT BE ON POPULATION A.
IF (J3.EQ.1) GO TO 18
IF(NP1.EQ.IRP1) GO TO 20
IF(IFBP1.EQ.1) GO TO 18
U(NP1,IPAR1,J3) =1
IF (IFAP1.EQ. 1) GO TO 16
WHEN J3=3, B=A+1; SINCE THE NUMBER OF FAILURES IN PW SAMPLING
DIFFER BY AT MOST 1, THE NEXT TRIAL CANNOT BE O POPULATION B.
IF(J3.£0.3) GO TO 16
IF(NP1,EQ.IRP1) GO TO 21
IF( IFBP1.EQ.,1) GO TO 16
V(NP1,TPAR1,J3) =1
60 70 16
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38

IF (IFBP1.GT. NBP1) GO TO 16
IF(NP1.EQ.1) GO TO 16
TFAPFB DENOTES THE TOTAL NUMBER OF PAILURES.
IFAPFB=IFAP 1+1FBP1-2,
IF (IFAPFB.LE,1) GO TO 24
RULE IS BASED ON THE TOTAL NUNBER OP FAILURES AND THE CRITICAL
PARAMETER C; IT SPECIFIES THE CUTOFF POINT POR THE TERMINATION
CRITERION,
RULE=5./IFAPFB
DIFPRO IS THE DIFFERENCE IN THE PROPORTION OF SUCCESSES.
DIFPRO= ((IFBP1-1.)/ (NBR1=1)) = ((IFAP1=1.) /(NAR1-1))
DIFNEG=-DIFPRO
IF (J3.E0.1) GO TO 23
IF(NP1.EQ.IRP1) GO TO 26
IF(IFAPPB.LE.1) GO TO 26
‘WE TERMINATE AND NAKE THE CORRECT SELECTION IP
THE DIFPERENCE IN THE PROPORTION OF SUCCESSES
IS GREATER THAN OR EQUAL TO THE CRITICAL VALUB
(RULE) ; OTHERWISE P(CS/T=(M,X,A,B) IS CALCULATED
BY USING THE DIFFERENCE ZQUATIONS.
IF (DIFPRO, LT.RULE) GO TO 31
U(NP1,IPAP1,d3)=1
G0 T0 23
WE TERNTNATE AND MAKE A CORRECT SELECTION IF-DIPNEG IS LESS
IS LESS THAN OR EQUAL TO RULE,
IF(DIFNEG.GT.RULE) GO TO 23
CALCULATING P(CS/T=(M,N,8,B) NT=A) BY USING THE DIPFERENCE EQUATION.
0 (NP1,IFAP1,J3) =PXU1(NP1,TPAR1,J3) +Q*V1(NP1,IFAP1+1,J3-1)
IF (U(NP1,IFAP1,J33).LT. 10E-10) U (NP1,IFAP1,J3)=0
IF(J3.EQ.3) GO TO 16
IP(¥P1.EQ.IRP1) GO TO 27
IF (IFAP1.EQ. 1) GO TO 16
IF(IFAPFB.LE.1) 60 T0 27
IF{DIFPRO.LT.RULE) GO TO 33
V(NP1,IFAP1,d3) =1
GO 70 16
CHECKING THE DIFPERENCE OF PROPORTION CONDITION.
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IF(DIFNEG.GT.RULE) GO T0 16
CALCULATING P(CS/T=(K,N,A,B) NT=B) BY [DSING THE DIFFERENCE EQUATION.

V(NP1,IFAP1,J3)=P1*V1(NP1-1,IPAP1,J3)fQ1*U1(NP1-1,IFAP1,JJ+1)
IF(V(NP1,IFAP1,J3) . LT. 10E-10) ¥ (NP1, LIFAP1,J3)=0

VALUE OF U(4-1,8-1,4,B) IS STORED FOR CALCULATING

U(%,H,2,B) BY SETTING U1 (NP1,IFAPY,33)=U (NP1, IFAPY, 03)

U (NP1, IFAPT,J3)=0 (NPT, IFARY, J3)
VI(NP1,IPAR1,J3) =V (NP1,IFAPT,J3)
CONTINUE

CALCULATION OF PROBABILITY OF CORRECT SELECTION.

PCS= (U1(IRR1,1,2) +V1(1IRPY, 1,2)) /2

WRITE(S5,210) IR,U1(IRP1,1,2),V1(TRPT,1,2),PCS
FORHAT (* *, "HAXINUM SAMPLE SIZE',I5,2X,'D =1,P12.56,
62X,7V=',F12.6, "PROBABILILY CORRECT SELECTION',?12. 6)
CONTINUE
STOP

END
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Progras 3
DIMENSTON R(73,73,3),R1(73,73,3),5(73,73,3) ,51(73,73,3)
THIS PROGRAY CALCULATES THE EXPECTED NUMBER OF
PATIENTS ON THE POORER TREATHENT. IR DENOTES THE
WAXTHUK SAMPLE SIZE AND DEL DENOTES THE DIFFERENCE
IN SUCCESS PROBABILITIES.
THE NOTATIONS AND STRUCTURE OF THIS PROGRAM ARE IDENTICAL
T0 PROGRAY A. THE BOUNDARY CONDITIONS ARE GIVEN BY (J.11),
READ (5,14) P,DEL,IR : ,
PORMAT (P10, 6/F 10.6/12)
FORNAT (10! ,T45,' HAXINUN SAMPLE SIZE',T70,I3)
PRINT522,IR
0=1.-P
P1=p-DEL
1=1.-p1
IRP1=IR+1
D0 15 KP1=1,IRP1
DO 15 NP1=1,IRP1
NAP1=TR+2. -HP1
D0 15 IFAP1=1,NAP1
NBP1=IR+2-NP1
D0 15 J3=1,3
IFBP1=IPAP1+J3-2
R(¥P1,IFARP1,J3) =0,
S (NP1, IFAP1,J3) =0,
IF((IFAP1.EQ. 1) LAND. (J3.EQ.1)) GO TO 16
IF(NP1.EQ.1) GO T0 16
IF(NP1.EQ.1) GO 70 16
IF (IFBP1.GT.NBP1) GO TO 16
IF(MP1.EQ.IRP1) GO TO U4
IF(NP1.EQ.IRP1) GO TO 44 .
IF(IFAP1.NE.1) GO TO 44
IF (IFBP1.EQ.IFAPY) GO TO 16
IF(IFBP1.GT.NBP1) GO T0 16 o
IFAPFB=TFAR1+IFRPI-2, -
IP(IFAPFB.LE. ) GO TO 24
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26

23

33
27

210

H

RULE = 8./TFAPPB

DIFPRO=((IFBD1-1.)/ (NBP1-1)) - ((IFAPT=1.)/(NAR1=1))

DIFKEG=-DIFPRO

17 (J3.80.1) 40 70 23

TF(NP1LEQ.IRDT) GO 70 26

IF(IFEPILED. 1) 60 TO 23

IF(IFAPFI.LE. 1) GO TO 26

IF (LIFPRO.LT. RULE) GO TO 31

R (NP1, IFAP1,33) =0,

60 TO 23

IF(DIFNEG.GT.RULE) GO TO 23

R(NP1,1FAPT,J3) =P&R1 (NP1, IPAP1,J3) 4Q#S1 (NP1, IFAR141,03-1)

TF(R (NP1, TFAP1,33) . LT. 10E-10) R(NP1,IFAP1,J3)=0.

IF(J3.EQ.3) GO T0 16

IF (1P1.EQ. IRP1) GO TO 27

IF(IFAP1.EQ.1) GO TO 16

IF (IFAPFB.LE. 1) 60 T0 27

IF(DIFPRO.LT.RULE) GO T0 33

S (NP1,IPAPT,J3) =0,

GO TO 16

IF(DIFNEG.GT. RULE) GO TO 16

S (NP1, IFAP1,J3) =P1#51(N¥P1-1,1FART,J3) +
Q1*R1(NP1-1,IFAP1,J3+1) + 1.

IF(S(NP1,IFAP1,J3).LT. 10E-10) $(NP1,IFAP1,J3)=0.

R1(NP1,IFAR1,J3) =R (NB1,IFAPT,J3)

S1(8p1,IFAP1,J3)=5 (NP1, 1PAP1,J3)

CONTINUE _

ENB GIVES THE EXPECTED NUMBER OF OBSERVATIONS ON THE

POOREK TREATHENT.

ENB= (R1(IRP1,1,2)+ST(IRPY,1,2)) /2.

P3=(P+P1) /2.

WRITE (5,210} P3,END

FORMAT (*0',T52,F8.4,T72,F12.6)

STOP

ERD



