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Abstract

Geometrical lattice equivalences are used to generate over 100 new quadratic

identities involving classical modular forms, Jacobi theta functions, θ2, θ3, θ4,

and the Dedekind eta function η. Generalizations are examined and a seem-

ingly new observation on the nature of η is noted.
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Chapter 1

Introduction

In essence, we use geometrical lattice equivalences to generate identities in-

volving the Jacobi theta function

θ3(τ) :=
�

m∈Z

q
m2

2

and the Dedekind eta function

η(τ) := q
1/24

�

m∈Z

(−1)mq
3m2+m

2 = q
1/24

∞�

n=1

(1− q
n),

where q = e2πiτ .

There are many reasons to be interested in the Jacobi theta functions and

their cousin, the Dedekind eta function, so for motivational reasons we will

mention a few. And of course once we convince ourselves that these functions

are interesting, then it’s almost automatic to find identities amongst them

meaningful and useful.

We know that Ramanujan spent a significant part of his career studying
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these functions and generating identities amongst them. For the most part

he used “only” his insightful genius to generate them, so it is quite exciting

to be able to generate identities in a conceptual framework in an algorithmic

fashion.

Theta functions find applications across mathematics in elliptic functions

(see [12]), the theory of modular and Jacobi forms (see [23],[25]), analytic

number theory (see [24]), the study of Riemann surfaces (see [3]), and the rep-

resentation of affine Lie algebras (see [26]). They arise in physics as partition

functions of strings (see [4]) and two-dimensional conformal field theories (see

[27]).

Perhaps I’m most fascinated by them for the fact that (as you will see

below in chapter 5 conclusions) their definition do not appear to be contrived

and could quite “naturally” follow from some inductive exploration and yet

they have the power to connect seemingly disparate areas of mathematics.

Interestingly enough lots of identities involving modular forms are floating

around in the literature and are claimed to be discovered as new, but it appears

that most of them are equivalent in the sense we describe below, because of

their modular symmetry properties. The authors of [GL1] found hundreds of

quadratic identities involving only θ3, scattered throughout papers and books

published before 1992; all can be derived (in the sense explained below in Sec.

IV) from three identities in [GL1].

The lattice method of [GL1] recovered these three identities, as well as over

20 other independent ones, and is conjectured in [GL1] to give the complete

list of quadratic θ3 identities, up to equivalence.

Here, we extend their lattice method to identities involving both θ3 and η.

We also give a far-reaching generalization. We will focus for concreteness on

2



quadratic identities but our method works for identities of any degree.

One of the particularly interesting findings in this thesis is the observation

we made on the nature of η belonging to the field of fractions of T3. This

is quite unexpected and came out purely from examining some of the newly

generated identities and matching and connecting them in various ways to

older known/historic identities.
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Chapter 2

Modular Forms Background

2.A The intuitive idea

Since the main objects of our study are modular forms, namely the Dedekind

eta and Jacobi theta functions, we provide the necessary background for the

exposition to follow. We will also try to provide an overview of why modular

forms in their own right are a fruitful area of mathematics to study. (Why

are modular forms and functions significant as connecting blocks for the whole

body of mathematics? There are multiple ways to look at this question and

each has its own flavour of benefits.) We will motivate our exploration with an

example, we hope to learn from and generalize. In modern mathematics, still

lots of objects are defined using the “Zermelo-Frankel” (ZF) axioms and hence

need to be describable in terms of some sets and set theoretical language. It

is of course way beyond the scope of this thesis to explore what, if anything

is being sacrificed and what is gained by this assumption, nevertheless it is an

interesting question to pose, for now let’s just say that in some sense categories

provide a broader context. This brings me to my first point.
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Before we study something, we have a context usually in mind for it, or

an approach to it, which affects profoundly the questions and answers our

subsequent theory will generate. These assumption are of course implicit in

the way we define our objects. We should celebrate these different approaches

to a given object, as mathematical objects are very intricate and multifaceted.

Take the unit circle, for example, intuitively relatable by most humans,

however in mathematics we need to ask ourselves how we ought to describe

it. Of course, this is a crucial step as it sets the stage for what is to come,

in the sense that what follows may be restricted by this very point of view,

from the point of definition of our object. Sometimes the point of view we

take will prefer analysis that is more topological, sometimes more algebraic,

geometrical or analytical (etc.) in nature.

We start by saying that a circle is just the set of points in the plane equidis-

tant from a given/chosen point, the centre of the circle. Assuming the back-

ground and tools of coordinate geometry, we express and hence translate this

idea into the following definition.

C1 := {(x, y) ∈ R
2�x2 + y

2 = 1}

(the “unit” circle).

Now, someone may come along and say that to her, an algebraic geometer,

the circle is identified as the field

C[x, y]/(x2 + y
2 − 1)

the (polynomial) functions living on the circle. We could even take this one
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step further and refer to the circle by just a “polynumber”, an interpretation

that allows for a very broad and in a sense very pure look at the underlying

object, a view that strips away, if you will, the sometimes unnecessary extra

information implied by a specific contextual setting. Still again, perhaps to an

algebraist, the circle is formed when we quotient out the real numbers by the

integers, i.e.:

S
1 := R/Z.

For me, there is something very appealing in just how concise and elegant look-

ing this definition is. Especially when we realize the particular generalizability

of this idea as we explain below.

We take the real line and intuitively say: we wish to identify two points to

be “essentially the same” if they differ by some integer. In other words, the

elements of our new set under consideration will be all the distinct subsets of

the reals whose elements differ by some integers. As we look at the idea of this

construction, it still somewhat obscures it’s generalizability, until we notice

the following. The integers Z, considered as a group, acts on the real numbers

R, considered as a space, by translation. i.e.: for z ∈ Z and x ∈ R we have:

z ◦ x := x+ z ∈ R.

So now, if we consider the equivalence classes (also called orbits) formed

by this action, we have for x1, x2 ∈ R that

x1 ∼ x2 ⇐⇒ x2 = z ◦ x1 = x1 + z for some z ∈ Z

i.e. x2 ≡ x1 (mod 1). So, essentially, we just take the real interval [0, 1] (a
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fundamental domain for this action) and wrap it up on itself by gluing the

endpoints to each other.

At this point, some will wonder why and how exactly is this point of view

of the circle “better” then the one rooted more in the coordinate geometrical

point of view? Of course, “better” only makes sense once we fix what we want

to do with the object.

Well, at the end of the day, most of us comprehend the meaning of an

object using sets with structure. And a great way to explore that structure,

is through functions.

But, what does this “understanding” really mean and how is it done in

practice?

We could say that to a large extent mathematicians are “sorting machines”.

There is an infinitude of “patterns” out there and the job is to notice the ones

pervasive enough to deserve their names, and then, if other ones differ “non-

essentially” from the originally observed one, we consider them equivalents.

We do this in practice until we discover a new pattern, that does indeed

differ in its ”essential” aspect from the original pattern, hence granting the

introduction of a new name and a new definition for it! Two quotes come into

mind, the first by Gottfried Leibniz: “The work of thought is marvellously

simplified, if we adjust our definitions to our discoveries” and the second by

Henry Poincaré that “Mathematics is the art of giving the same name to

different things.” If I may humbly add, it’s often beneficial to consider the

“dual view” whereby mathematics is sometimes also about giving different

“names” to the same things! Meaning that sometimes it’s beneficial to try

and comprehend or contextualize an “intuitive” idea, like the unit circle, in as

many ways, from as many angles as possible, realizing the wonderful diversity
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of underlying meanings each perspective has to offer. It is often tempting for

humans to want to find “the right view”, the “essential nature” of things set in

stone, with a well-defined meaning. Whereas I think it is beneficial to open our

minds to parallel interpretations, maybe even paradoxical at times, (is light

a particle or wave? is matter continuous or discrete? is everything quantum

mechanical or relativistic or singing the song of a string?) and appreciate the

beauty of the untameable universe, and the utility of thinking about “meaning”

in a more open minded fashion! Quite possibly at times notions like discrete

and continuous, for example, should not be looked upon as mutually exclusive

properties of things, but rather in a complimentary fashion.

To help make things precise, within each category, there are isomorphisms

amongst our objects to do the job of the “essential” sorting. The question is

just how to do this, how do we “probe” mathematical objects to reveal their

“essential identity”? Well, of course this is an age old question, so it usually

helps to put things in some historical perspective.

If, for example, we look at the pre-20th century approach to geometry,

this above process of comprehension took practice by “probing” a manifold by

studying curves on it, i.e.: Let M be a manifold and γ : S1 → M a closed

curve on M .

A great example of this way of thinking is the notion of the fundamental

group, π1(M) of a topological space, that distinguishes spaces by how curves

can live on them and do their “dance” by continuously deforming into one

another; different “dance floors” (topologies) will allow different dances of the

curves. Of course this is made precise by looking at closed curves up to their

homotopy classes, but I digress.

The, shall we say, more “modern” approach is the “dual view”, where we
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comprehend manifolds by the kinds of functions that, so to speak live “on”

them by using them as their domains of definition, rather than functions that

map to them!

If f : M → R (or C or any ring R), then by studying these functions on

M , we can use the algebraic structure of our ring R, to induce an algebraic

structure on the set of functions living on M by adding and multiplying their

images in the ring R:

(f + g)(x) := f(x) + g(x)

and

(f ∗ g)(x) := f(x) ∗ g(x) ∈ R.

Whatever “extra” structure M may possess, say differentiability, conformality,

smoothness, we can request our mapping to respect that extra structure and

be differentiable, conformal, and smooth etc.

Ok, so taking this “modern idea”, how do we apply it to the “comprehen-

sion” of our object, the circle? How do we define a function that lives on the

1-D manifold, the unit circle?

If we used the “coordinate geometrical definition” of the circle, we could

end up with having to define two charts, for example.

Our second way of defining the circle now comes in very handy. A function,

continuous or smooth etc., living on the circle S1 = R/Z, is simply the one

living on R with the extra structure, that it’s going to be invariant under

translations by Z.

(Note here, of course, we are not saying this is “better”, but only saying

it’s different and therefore exposes potentially different aspects of our object.

As a matter of fact it would be equally interesting if the same aspects would
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turn out to be “isomorphically represented” from several distinct approaches.)

Now, this is an idea that very nicely generalizes! What we are really saying

is: take what’s called a universal cover for the geometrical object (a simply

connected covering space of a space X, is a space C such that there is a con-

tinuous map p : C → X which is a local homeomorphism onto it’s image with

trivial fundamental group) we would like to define, and take some symmetry

subgroup of this universal cover (note that this subgroup will be isomorphic

to π1 of the geometrical object) and use the quotient of the universal cover by

the group action.

In the case of the circle we note that it is a connected, real, one dimen-

sional topological space. However, up to homeomorphism we know that R and

S1 are the only possibilities and the only simply connected real one dimen-

sional topological manifold is R. This means that R is the universal cover for

S1 = R/Z. S1 locally looks like R, but its global structure is encapsulated by

π1(S1) = Z.

So, at this point we ask what is the role of Z here? Well, Z is a subgroup of

Aut(R), the automorphism group of R, which we know are translations.This

is, of course, once we fix what aspects of R we are interested in preserving, in

this case I’m thinking of R as an oriented geometrical space.

So, going back to our idea of studying spaces via functions living on them,

so far we have for connected real one dimensional manifolds:

(i) M = R and F (R) =all differentiable functions R → R

(ii) M = S1 = R/Z and F (S1) =all differentiable functions living on S1 :

S1 → R= all differentiable functions living on R with symmetry f(x + n) =

f(x) for ∀n ∈ Z.

So, we can now extend this idea further by looking at “connected, real 2
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dimensional topological manifolds”, better known as surfaces. We will focus

on conformal structure, because of the implied complex differential structure.

That is, a real surface we will regard as a complex curve, since we learn that

complex numbers are more fundamental and beautiful and better behaved

than the reals. Complex differential structure can be reinterpreted as con-

formal structure in R
2, if one prefers. After all, a locally invertible complex-

differentiable map is conformal, i.e, it preserves angles but not usually lengths.

So from now on when we say surface, we think of it as a complex differentiable

curve or, what is essentially the same thing, a real surface with conformal

structure.

Now, using the same recipe as above, the idea is to choose the underlying

geometry as simple as possible by using a simply connected universal cover

and factoring off some symmetry. Up to conformal equivalence, there are

uncountably many different surfaces. But they can be gathered into families

by their topological structure. We know that up to homeomorphism, compact

real surfaces are S2 (genus= 0) ; torus (genus= 1); tori (of all genus= g) and

non-compact real surfaces are R
2 (sphere with one point removed); cylinder

(sphere with 2 points removed); and more generally any compact surface with

any finite number of points removed.

However for universal covers we need the simply connected ones only! For-

tunately we know these by Poincaré’s Uniformization Theorem, which we now

state.

Theorem 2.1: (a) Up to conformal equivalence, the simply connected con-

formal real surfaces are :

(i) S2 = P 1(C)
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(ii) C

(iii) H

(b) Any conformal real surface Σ is conformally equivalent to Σ̃/Γ where

Σ̃ is the universal cover for Σ and Γ is a discrete subgroup of Aut(Σ̃).

Moreover, Σ̃1/Γ1 is conformally equivalent to Σ̃2/Γ2 ⇐⇒ Σ̃1 = Σ̃2 and

Γ1 is conjugate to Γ2. (i.e. Conjugate, meaning: there exists some fixed

g ∈ Aut(Σ̃), such that gΓ1g
−1 = Γ2.)

This is very powerful, as it says that not only is our way of defining the

circle very elegant to have dealt with the “parametrization” issue at hand, but

it’s fully extensible to all surfaces!

Now, all we need to record is the automorphism groups of the above three

universal covers to cover all cases! Here they are:

(i) Aut(P 1(C)) = PSL2(C) with action: z �→ az+b
cz+d

(ii) Aut(C) = �translations,rotations�

(iii) Aut(H) = PSL2(R) with action τ �→ az+b
cz+d

Now, if we recorded up to number of punctures = n and genus = g the

universal covers for surfaces, it becomes suddenly very apparent why we are

interested in studying H! Only (g, n) = (0, 0) (the sphere), (1, 0) (the torus),

and some (0, 1) (the plane) and (0, 2) (some cylinders) have universal cover

P 1 or C!; for all other (g, n), the universal cover is H! The generic geometry

in 2-dimensions is nonEuclidean. The moral of the story is then:

Real functions of a single real variable with infinitely many symmetries are

periodic functions.

Complex analytic (or more generally meromorphic) functions of a single

complex variable with infinitely many symmetries are:
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-periodic functions: functions living on the cylinder (singly-periodic, sym-

metry in one direction via Z such as ez or cos(z) ), or on the torus (doubly-

periodic, with periods Z1+Zτ , examples of such functions are ratios of elliptic

functions).

-modular functions: functions living on a surface H/Γ (with symmetry Γ).

Note that more generally we consider not just analytic, but meromorphic

functions here. There are many reasons for preferring meromorphic to analytic,

one is that they form a field (instead of just a ring), another is that there

are more of them, the only analytic functions on the torus, for example are

constants. Also, as we’ll explain shortly, we may need to add points to H—

he so-called cusps—to regain compactness. Excellent, so here is the generic

pattern:

Functions that live on Σ = Σ/Γ are functions living on Σ with symmetry

Γ i.e. we require the function to be invariant under the group action:

f(γ ◦ z) = f(z)

for ∀γ ∈ Γ. Let’s see a few examples of this:

Example 2.A.1: “the square torus” ≡ C/(Z+ iZ) with functions:

f(z + (m+ in)) = f(z)

“sphere with 3 points removed” ≡ H/Γ(2) with functions:

f

�
aτ + b

cτ + d

�
= f(τ)
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So, what all this finally allows us to do is to have properly contextualized

the definition of modular functions and forms:

A modular function for Γ (a discrete subgroup of PSL2(R)) is a meromor-

phic function (meromorphic at the cusps as well, to be defined later) that lives

on the quotient surface H/Γ.

On the other hand, a modular form for Γ of weight k, is a meromorphic

differential k/2 form on H/Γ.

We, now, will record all these definitions below in a compact form.

2.B Formal definitions

Let’s define now a few mathematical objects that prepare us for the definition

of modular forms.

Definition: Let H = {τ ∈ C| Im(τ) > 0}, be the complex upper half-plane.

It’s important here to note the map q : τ �→ e2πiτ . This change of variables

plays a crucial role in the theory of modular forms as we use it to define an

analytic structure on H ∪ {i∞} about i∞ (note that as τ → i∞, q → 0).

We can define a space D consisting of all meromorphic functions in the

unit disc, that is, a function, f ∈ D having a Laurent expansion at 0. We

then say that a meromorphic function, f : H → C is meromorphic at i∞,

if there are a finite number N of rational numbers ri and fi ∈ D such that

f(τ) =
�N

i=1 q
rifi(q).

Let Γ:=PSL2(Z) = {γ ∈ M2(Z)|ad− bc = 1}/±I. Now that we have these

two objects, H and Γ, we can ask, just how do these objects interact with each

other?
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If we take an element τ ∈ H and γ =
�
a
c
b
d

�
∈ PSL2(Z) then it’s a classical

fact and straightforward to check that via:

τ �→ γ ◦ τ =
aτ + b

cτ + d

we have a group action by Γ on the upper half-plane H by what’s called a

fractional linear transformation.

By a group action we mean: given a group G and a set S, we say that G

acts on S, if we have a function A : G×S → S with the following properties:

(i) for ∀g1, g2 ∈ G and s ∈ S we have A(g1 ◦ g2, s) = A(g1, A(g2, s))

(ii) for e ∈ G (identity element of G) and for ∀s ∈ S we have: A(e, s) = s

Note first, that the fractional linear transformation is certainly a well de-

fined operation on H as cτ + d = 0 ⇒ τ = −d
c ∈ R which is avoided via

Im(τ) > 0. Also, since: im(g ◦ τ) = Im(τ)

|cτ+d|2 the group action indeed maps H

back to itself. We observe that as this group action is not transitive, when we

quotient out by it, it divides H up into interesting equivalence classes, these

are called the orbits of the action.

It is customary to choose a simply connected subset F within H, such that

each equivalence class under Γ is represented in F , but only uniquely. Such a

subset F is called a fundamental domain for the group action.

We will briefly show that:

Lemma 2.1: F := {τ ∈ H�−1/2 ≤ Re(τ) < 1/2 and |τ | > 1} ∪ {|τ | =

1�π/4 ≤ Arg(τ) ≤ π/3} is a fundamental domain for Γ

Proof. (sketch) First, observe that T = ±
�
1
0
1
1

�
and S = ±

�
0
1
−1
0

�
∈ Γ . We see

that

T ◦ τ = τ + 1

15



and

S ◦ τ =
−1

τ
.

So first we note that we can choose any strip of width 1 as a consequence of

the T action, so here we choose the strip:

−1/2 ≤ τ ≤ 1/2 for τ ∈ H (for historic reason and no other).

Now observe that if we choose a point τ in the above strip, the following

happens when we apply the matrix S:

let τ = x+ iy for y > 0 and −1/2 ≤ x < 1/2, then:

S ◦ (x+ iy) =
−1

x+ iy
=

−(x− iy)

x2 + y2
=

−x+ iy

|τ |2
.

So, action by S essentially inverts τ with respect to the unit circle. Points

that start out inside the unit circle are put outside and points outside are

mapped inside the circle by S.

Ok, so far so good, but we have only really taken care of just what happens

by a subgroup of Γ generated by the matrices S and T . We also may need

to keep repeating this process as once we get inside the width 1 strip by T ,

we use S, if necessary to get outside circle, but this may move us back again,

to outside of the vertical strip. So we may use T to move us back in, but

then again we may be in the unit circle. So we use S again. This can be

repeated for a long time, but the point is that it will eventually terminate.

One way to see this is to let Γ̂ = �S, T � < Γ and take γ ∈ Γ̂ and observe that,

Im(γ · τ) = Im(τ)

|cτ+d|2 . As, c, d ∈ Z, |cτ + d| > 0 for c, d non-zero, so there is an

open set around zero that contains no non-zero lattice points, implying that

there is a γ ∈ Γ̂ s.t. Im(γ · τ) is maximal.
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Now, by the help of the T action, raised to sufficient powers, if necessary,

we can assume without loss of generality that our γ · τ lies in the strip −1/2 ≤

Im(γ ·τ) < 1/2. Now, if γ ·τ were not in F , then |γ · τ | < 1, but this contradicts

the maximality assumption on Im(γ · τ) since :

Im

�
γ · τ
|γ · τ |2

�
> Im(γ · τ).

We have to now show that we can’t have two Γ equivalent points in F ,

other than trivially. So assume that ∃γ ∈ Γ with γ · τ1 = τ2 for τ1, τ2 ∈ F with

Im(τ1) ≤ Im(τ2). But this means that |cτ1 + d| ≤ 1. However we see that

this fails for |c| ≥ 2. The only other cases are (i)c = 0, d = ±1, but then ±γ

would be a translation and the only such translation is the identity within the

interior of F ; (ii) c = ±1, d = 0 with γ = ±T kS with either k = 0 and τ1, τ2

on the unit circle, or k = ±1 and τ1 = τ2 = ±1/2 +
√
−3/2 or case (iii) with

c = d = ±1 and τ1 = −1/2+
√
−3/2 in which case γ = ±T k

�
0
1
−1
1

�
, and either

k = 0 and τ1 = τ2 = −1/2+
√
−3/1/2 or a = 1 and τ2 = τ1+1 = 1/2+

√
−3/2;

or case (iv) with c = −d = ±1 and τ1 = 1/2+
√
−3/2 and is handled similarly

to case (iii). All these cases show that the only way τ2 = γ · τ2 in the interior

of F, if γ = 1 with τ1 = τ2, proving the claim.

Also, it remains to be shown that actually surprisingly these are indeed the

only matrices we need to care about, since Γ is generated by them. This follows

from this proof and the Lemma below if we notice that the only points in F

with non-trivial stabilizers are τ = i with Γi = {I, S}; τ = ω = −1/2+
√
−3/2

with Γω = {I, ST, (ST )2}; and τ = −ω with Γ−ω = ±{I, TS, (TS)2}; We call

these points in H with non-trivial stabilizers elliptic points. (for full details

see p.100 in [20])
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Lemma 2.2: Γ = SL2(Z) is generated by the matrices:

T =
�
1
0
1
1

�
and S =

�
0
1
−1
0

�

Proof. Let Γ̂ = �S, T � < Γ be a subgroup of Γ Let γ ∈ Γ. Let τ ∈ F in the

interior of the fundamental domain. Then we have: γ ◦ τ ∈ H ; but we have

already shown above that ∃g ∈ Γ̂ such that

g ◦ (γ ◦ τ) ∈ F.

However, since we started off with τ ∈F and we have by the definition of

a group action (note the faithful action of PSL2(Z) on H as seen in proof of

Lemma 2.1), that: g ◦ (γ ◦ τ) = (g ◦ γ) ◦ τ ∈ F ⇒ g ◦ γ = ±I and hence:

g = ±γ−1 ∈ Γ̂ showing that since g ∈ Γ was an arbitrary element, that each

element of Γ is indeed an element of Γ̂ so

Γ = Γ̂ = �S, T �

as claimed.

Alternatively, and independently of Lemma 2.1. we can see this as follows:

Let γ =
�
a
c
b
d

�
∈ Γ. Take any matrix γ ∈ Γ. We can hit it on the right by

some T k, so that |b| becomes bounded above by |a|/2. Now, hit it on the right

by S, which basically exchanges a and b (and changes a sign, but that’s not

important). Now hit on the right again by some power T k� , so that the new

a and b then satisfy |b|≤ |a|/2, as before. Keep repeating, each time b gets

closer and closer to 0. Eventually b equals 0. In that case, the matrix can be

written as ±ST cS−1. So the net result is that we can solve for the original γ,

and it will involve lots of Ss and T s, but nothing else. So this proves Lemma
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2.2, without needing Lemma 2.1.

It is a crucial observation in the theory that H is “missing” some points.

The ultimate reason is compactness: there are far more holomorphic and mero-

morphic functions on non-compact domains, than compact domains. For ex-

ample, the only holomorphic functions on the Riemann sphere are the con-

stants, but there are lots of holomorphic functions on the plane C (e.g. poly-

nomials, exp(z),...). Now, in the last section we explained that we should think

of a modular function as a meromorphic function on H/Γ. But it is easily seen

from our fundamental domain F that H/Γ is homeomorphic to the plane, i.e.

a sphere with one point missing. This missing point is where the fundamental

domain touches the boundary of H. The boundary of H is the circle R∪{i∞},

which we can clearly visualize under the exponential map. The fundamental

domain touches this at the point i∞. So we should really add i∞ to H! We

in fact should add the whole Γ-orbit of i∞ to H, or we won’t have a Γ action.

(Note: The Γ-orbit of i∞ consists of all rational numbers, together with i∞.)

So define H = H ∪Q ∪ i∞. These extra boundary points are called cusps.

What all this means is that we require our modular forms and functions to

also be meromorphic at the cusps. Meromorphic or holomorphic at other

cusps just means that f |kγ is meromorphic or holomorphic (respectively) at

i∞, for all γ ∈ Γ. Then our forms and functions will really live on the sphere.

The result will be a much richer theory. If we ignore the cusps, the theory

of modular forms would be essentially that of meromorphic functions on the

plane. Therefore including the cusps is the nicer, prettier, more restrictive

option. Fortunately “Nature” agrees: the modular forms coming from number
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theory, algebra, geometry, physics,... all know about the cusps!

Definition: A modular function, f for Γ = PSL2(Z) is a meromorphic func-

tion, everywhere including cusps f : H → C satisfying:

f

�
aτ + b

cτ + d

�
= f(τ) for

�
a

c

b

d

�
∈ Γ.

Definition: A modular form, f for Γ = PSL2(Z) of weight k ∈ Z≥0 and no

multiplier, is a holomorphic function, everywhere, including cusps f : H →

C satisfying:

f

�
aτ + b

cτ + d

�
= (cτ + d)kf(τ) for

�
a

c

b

d

�
∈ Γ.

Observe that a modular form is not exactly invariant under the group action

of the universal cover, the extra factors seemingly appear out of nowhere, but

we see they are there exactly so that the modular function’s differential form

does become invariant under this same action.

Example 2.B.1: for weight k = 2,

f

�
aτ + b

cτ + d

�
d

�
aτ + b

cτ + d

�
= (cτ + d)2f(τ)(cτ + d)−2

dτ = f(τ)dτ

is a differential 1-form on H/Γ.

PSL2(Z) is only one of the possible group of symmetries. Any discrete

subgroup of PSL2(R) would also work, but most of these never seem to arise

naturally. By far the most important ones are the so-called congruence groups,

for reasons we’ll give elsewhere. These are the discrete subgroups of PSL2(R)
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containing some Γ(N) defined shortly. Most modular forms in this thesis (or

indeed in mathematics) are not modular for PSL2(Z), but almost all will be

modular for some congruence group.

Definition: Γ(N) := {
�
a
c
b
d

�
∈ Γ�

�
a
c
b
d

�
≡

�
1
0
0
1

�
(mod N)},where N ∈ N.

Here we mention a few basic observations. Note the following:

Lemma 2.3: Φ : Γ/Γ(N) → SL2(Z/NZ) is an isomorphism.

Proof. Define ρ : Γ → SL2(Z/NZ) by γ =
�
a
c
b
d

�
∈ Γ �→

�
a(mod N)
c (mod N )

b (mod N)
d (mod N )

�
∈

SL2(Z/NZ) is a surjective homomorphism with kernel Γ(N) and hence induces

the isomorphism Φ via the First Isomorphism Theorem, via Φ : γ =

�
a

c

b

d

�
∈

Γ/Γ(N) �→
�

a(mod N)
c (mod N )

b (mod N)
d (mod N )

�
∈ SL2(Z/NZ).

Lemma 2.4: Γ(N) is normal in Γ.

Proof. Follows from Lemma 2.3.

In light of this, in the next section we define the main modular forms used

throughout the exposition.

2.B.1 Jacobi theta functions and the Dedekind eta

Theta functions are quite ubiquitous in mathematics. They have this myste-

rious power to appear in seemingly distinct areas. Just to mention a few:

- the theory of elliptic functions,

- the theory of modular and Jacobi forms,

- analytic number theory,

- the study of Riemann surfaces,
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-in the representation of affine Lie algebras,

-in physics: as the partition functions of strings and two dimensional con-

formal field theories.

The following are the definitions of the Jacobi theta functions we need for

our exposition:

θ3(τ) :=
�

m∈Z

q
m2/2

,

θ2(τ) :=
�

m∈Z

q
(m+1/2)2/2

,

θ4(τ) :=
�

m∈Z

(−1)mqm
2/2

,

η(τ) := q
1/24

�

m∈Z

(−1)mq(3m
2+m)/2 = q

1/24
∞�

n=1

(1− q
n),

ψk(τ) :=
�

m∈Z

q
(m+1/k)2/2 where k ∈ Q is nonzero,

and ψ∞ := θ3 is convenient to define.

Also note that:

ψk = θ3 ⇐⇒ 1

k
∈ Z,

ψk = ψl ⇐⇒ 1

k
± 1

l
∈ Z

(hence we will allow k ∈ Q and k ≥ 2).

Just to calm the analyst in all of us, let’s observe that these series are

indeed convergent, for all τ ∈ H. As a matter of fact for example for θ3(τ), we

get uniform convergence by the Weierstrass M-test : for Im(τ) > � > 0

���qn
2
��� < exp(−π�)n

2

.
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Similarly we can observe this for the other theta-series. As a result we will

define their domains to lie in the complex upper half-plane.

These functions, θ2, θ3, θ4 and η are modular forms of weight k = 1/2 for

Γ(2). In fact, η is modular for PSL2(Z) and θ3 for

Γθ := �S, T 2�.

Γ(2) is a subgroup of PSL2(Z) of index 6, and of Γθ of index 2. The ψks, and

more generally θ2(rτ), θ3(rτ), θ4(rτ), η(rτ) and ψk(rτ) for any positive rational

number r and any rational k, are modular forms for some Γ(N).

We have the following important linear relations:

θ2(τ) = ψ2(τ) (2.1)

θ4(τ) = 2θ3(4τ)− θ3(τ) (2.2)

η(τ) = ψ12(12τ)− ψ12/5(12τ) (2.3)
k�

l=1

ψk/l(τ) = θ3(τ/k
2) (2.4)

k�

l=1

ψ(m/kn+l/k)−1(τ) = ψn/m(τ/k
2). (2.5)

These can be readily verified by brute force. For example, to verify (2.2),

we need θ4(τ) + θ3(τ) = 2θ3(4τ). So as we observe from the definition of θ3

and of θ4 :

θ3 = 1 + 2q1/2 + 2q2 + 2q9/2 + 2q8 + ...

θ4 = 1− 2q1/2 + 2q2 − 2q9/2 + 2q8 + ...

23



We notice that upon summing them, the odd terms cancel out and we are left

with what looks like the definition of θ3 except under the mapping q �→ q4 and

doubled, i.e.:

θ4(τ) + θ3(τ) = 2 + 4q2 + 4q8 + ... = 2
�
1 + 2q2 + 2q8 + ...

�
= 2θ3(4τ).

Another way to verify these identities comes from the following powerful

theorem:

Theorem 2.2: Let f(τ) =
�∞

n=0 fnq
n and g(τ) =

�∞
n=0 gnq

n be two modular

forms for Γ of weight k. Then f = g ⇐⇒ fn = gn for all n < k/12.

This is an immediate consequence of the valence formula (see [29]), which

gives the degree of the divisor of a modular form. There is an analogous

theorem if we replace Γ by other (Fuchsian) groups, such as the Γ(N) discussed

last section. All we need is the valence formula for our Fuchsian group, and

this is given in complete generality in [29].

Now, since for this thesis we are interested in generating identities in the

θ3 and η, we will primarily concentrate on ψk that can be expressed as θ3 or
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η, i.e.:

ψ1(τ) = θ3(τ) = ψ∞(τ) (2.6)

ψ2(τ) = θ2(τ) = θ3

�
τ

4

�
− θ3(τ) (2.7)

ψ3(τ) =
1

2
(θ3

�
τ

9

�
− θ3(τ)) (2.8)

ψ4(τ) =
1

2
θ2

�
τ

4

�
(2.9)

ψ6(τ) =
1

2
(θ2

�
τ

9

�
− θ2(τ)) (2.10)

ψ12(τ) =
1

4
(θ3

�
τ

144

�
− θ3

�
τ

9

�
− θ2

�
τ

9

�
− θ2

�
τ

4

�
+ 2η

�
τ

12

�
)) (2.11)

ψ12/5(τ) =
1

4
(θ3

�
τ

144

�
− θ3

�
τ

9

�
− θ2

�
τ

9

�
− θ2

�
τ

4

�
− 2η

�
τ

12

�
)).(2.12)

These are consequences of the simpler identities defined above; for example:

(2.7) is derivable from (2.1) and (2.4). We will refer to these equations defined

so far as linear relations.

At this point it is important to note the following: Why are we concen-

trating our efforts to these ψk’s? What is so special about them? Why are

they important? Now, of course for different people there are different answers

to this, but here is a rationale for us: Most mathematicians interested in the

study of modular forms are concerned in particular with the ones that have in-

teger coefficients in their so called q-expansions. Modular forms often arise in

number theory, geometry, algebra, physics, combinatorics, etc... as generating

functions for a sequence of dimensions or cardinalities. For example, we can

write fk(τ) :=
�

anq
n where an is the number of ways to write n as a sum of

positive integers. In this case what we end up with is famously a meromorphic

modular form namely q1/24η−1.

Anyway, whatever the motivation may be, once we fix that we are interested
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in modular forms with integer coefficients we need to find a source for such

functions! Now, even though modular forms are known to exist for complex

weights (i.e. k ∈ C ) and Γ = PSL2(Z) replaced with an arbitrary Fuchsian

group of the first kind, still half-integer weight (k = 1
2z for z ∈ Z) modular

forms for congruence groups are the most important of these, as they are

conjectured to be the only ones with integer coefficients.

Fortunately, we know by the Serre-Stark Theorem (see [28]) that every

modular form of half-integer weight, for any congruence group is a finite linear

combination of ψk(nτ)’s. This means that, the method given in this thesis

applies, in theory at least, to all weight half modular forms for congruence

groups. For us, since we are primarily interested in generating identities in the

θ and η it is important to know which ψks are expressible purely in θ3 and η.

This and an algebraic point of view in mind inspires us to define the following.

Let T (n)
3 denote the C-module (i.e. vector space) of functions:

N�

j=1

αjθ3(a1jτ)...θ3(anjτ),

where each αj ∈ C and aij > 0 ∈ Q (otherwise we would no longer find conver-

gence in H and modularity would be lost). We will also define T3 =
�

n T
(n)
3 .

Notice from above that T3 contains all of θ3, θ2, θ4,ψk for k = 1, 2, 3, 4, 6.

We will define T ∗
3 to be the field of fractions of T3. We will be interested in

using lattices to find functions in T3 which are identically zero. If the function

lies in T n
3 it is said to be a degree n identity.

Since our functions θ3, η and in general the ψks are modular forms, we

will utilize their invariance properties with respect to the fractional linear

(“modular”) transformations.
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We have shown above in the modular forms background section in Lemma

2.2, that the entire modular group Γ = PSL2(Z) is generated by two matrices:

T =

�
1

0

1

1

�
corresponding to τ �→ τ + 1

and

S =

�
0

1

−1

0

�
corresponding to τ �→ −1

τ
.

Therefore it is sufficient to record their modular invariance properties with

respect to these two transformations for further reference.

Let Λ be a lattice (defined next chapter) and f be any rapidly decreasing

smooth function on V0(Λ). Then, we have the Poisson Summation formula:

�

λ∈Λ

f(λ) =
1�
|Λ|

�

λ∗∈Λ∗

f̂(λ∗)

with f̂ , the Fourier transform of f , where Λ∗ is the dual lattice, also defined

in the next chapter. Now, choosing Λ = Z and using the Fourier transform

we get: f(x) = exp(−πx2) is f̂(y) = exp(−πy2) ⇒ θ3(
−1
τ ) = ( ti)

1/2θ3(τ) (see

details in [24]).

This allows us to observe that under S we have the following relations for

27



n and k coprime integers, with ζn := e2πi/n:

θ2(
−1

τ
) = (

τ

i
)1/2θ4(τ), (2.13)

θ3(
−1

τ
) = (

τ

i
)1/2θ3(τ), (2.14)

θ4(
−1

τ
) = (

τ

i
)1/2θ2(τ), (2.15)

η(
−1

τ
) = (

τ

i
)1/2η(τ), (2.16)

ψn
k
(
−1

τ
) = (

τ

i
)1/2

n−1�

l=0

ζn
lk
ψn

l
(n2

τ). (2.17)

Under T , and much more elementary, we have the following relations:

θ2(τ + 1) = ζ8θ2(τ), (2.18)

θ3(τ + 1) = θ4(τ), (2.19)

θ4(τ + 1) = θ3(τ), (2.20)

η(τ + 1) = ζ24η(τ), (2.21)

ψn
k
(τ + 2n) = ψn

k
(τ). (2.22)

Let’s derive some of these, for example for θ3(τ) we have the following

derivation: θ3(τ + 1) =
�

n∈Z e
πin2(τ+1) =

�
n∈Z e

πin2τeπin
2
= (−1)nθ3(τ) and

hence:

θ3(τ + 2) = θ3(τ),

as desired. Let’s see another one, for η(τ) we have the following: recall

η(τ) = q
1
24
�∞

n=1(1− qn) and hence: η(τ +1) = e
2πi(τ+1)

24
�∞

n=1(1− e2πi(τ+1)n) =

e
2πi
24 e

2πiτ
24

�∞
n=1(1−e2πi(τ)ne2πin) = ζ24e

2πiτ
24

�∞
n=1(1−e2πi(τ)n1) = ζ24q

1
24
�∞

n=1(1−

qn) = ζ24η(τ), as desired.
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In Chapter 4, we utilize these identities in the simplification and sorting of

identities up to equivalence.

Actually, for θ3, η and ψ k
l
we can find formulas, more generally for any

�
a
c
b
d

�
∈ SL2(Q).

We know (see [30]) that this group is generated by: the matrix S from

above and by τ �→ τ + m
n , therefore we record:

θ3 (a(τ +m/n)) = θ3(an
2
τ) + 2

n−1�

l=1

cos(
al2mπ

n
)ψ2n/l(4an

2
τ),

η(a(τ +m/n)) =
2n−1�

l=0

(−1)lζam(3l2+l+1/12)
2n ψ 12n

6l+1
(12an2

τ),

for a > 0. Now, of course we are interested in rational translations that result

in giving us back θ3 and η. The most complicated amongst these that are still

of use for us is:

θ3(a(τ+
m

6
)) = c1θ3(τ)+(c2−c1)θ3(4aτ)+(c3−c1)θ3(9aτ)+(1+c1−c2−c3)θ3(36aτ),

where c1 = cos(maπ/6), c2 = cos(2maπ/3), c3 = cos(3maπ/2). As a matter

of fact, τ �→ τ + k/12 also sends θ3(aτ) into a linear combination of θ3(a�τ),

but the formula gets really complicated and we won’t use it.

There are also the following useful identities for ψk/� where k and � are

coprime integers.

ψk/�(aτ+a) =






ζ
�2 (2a/k)
4k ψk/�(aτ) if k

2 is odd and k|2a

ζ
�2 (a/k)
2k ψk/�(aτ) if 4|k and k|a

ζ
�2 (a/2k)
k ψk/�(aτ) if k is odd and 2k|a

ψ2k/�(4kτ)− ψ2k/(�+k)(4kτ) if k is odd and a = k

, (2.23)
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where we use the notation ‘k|a’ for ‘k divides a’, etc.

There is a long history of the study of η identities, most of which tend to

look quite complicated. Two of the simplest and oldest ones are

η(2τ)θ4(2τ) = η(τ)2, (2.24)

θ2(τ)θ3(τ)θ4(τ) = 2η(τ)3. (2.25)

In [16] are given nine polynomial identities for η, due to Ramanujan, rang-

ing from degree 8 to degree 24. The simplest is

η(τ)3η(3τ)3η(7τ)η(21τ) + 7η(τ)η(3τ)η(7τ)3η(21τ)3 = η(3τ)4η(7τ)4 − 3η(τ)2η(3τ)2

η(7τ)2η(21τ)2

+ η(τ)4η(21τ)4.

(2.26)

Four additional polynomial identities for η (from degrees 7 to 19) are in [Kr].

The simplest is

η(2τ)6η(8τ)− η(τ)4η(4τ)2η(8τ) = 4η(τ)2η(2τ)η(4τ)2η(16τ)2. (2.27)
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Chapter 3

Gluing Theory and Theta Series

of Lattices

In this section we introduce the necessary theory of lattices and their theta

constants (theta functions) to carry out our method for generating identities

in the θ and η.

We start out with some basic facts about geometrical lattices as they are

one of the backbones underlying our approach to generating identities.

We furthermore introduce relevant results in the theory of gluing of lattices,

as a way to construct and to decompose lattices, later used for generating

identities.

Let τ be a variable that lies in the complex upper half-plane:

H := {τ ∈ C | Im(τ) > 0}

and as usual write q := e2πiτ .
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3.A Lattices

See [13] for an in depth introduction to geometrical lattices.

We have the following definitions:

Definition: A lattice Λ is a non-empty, nowhere dense set of points in some

finite dimensional, real inner product space, V = V (Λ), such that a, b ∈ Λ

and k, l ∈ Z ⇒ ka+ lb ∈ Λ.

Equivalently and more practically for us, a lattice, Λ, is the following Z-

span of vectors:

Λ := {
n�

i=1

nivi | ∀i, ni ∈ Z}

of a basis {v1, v2, ..., vn} in R
n.

Definition: The dual Λ∗ of a lattice Λ is

Λ
∗ := {v ∈ R

n | v·λ ∈ Z, ∀λ ∈ Λ}.

Definition: Λ is called integral if for all u, v ∈ Λ the dot product u·v is an

integer, i.e. u·v ∈ Z. Equivalently, Λ is integral iff Λ ⊆ Λ∗.

Let Λ and Λ� be lattices with bases β and β� respectively. Recall that an

orthogonal transformation T : V → U is a linear transformation between

vector spaces that preserve the inner products, i.e.:

T (vi)·T (vj) = vi·vj

for ∀vi, vj ∈ V . Orthogonal transformations are represented via orthogonal

matrices, A ∈ On(R), in terms of the standard basis vectors of Rn. We recall
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that an orthogonal matrix, A ∈ On(R), is a square matrix with real entries

whose columns and rows are orthogonal unit vectors (i.e. orthonormal vectors).

A
T = A

−1 ⇒ A
T
A = AA

T = I,

where I is the identity matrix.

Definition: We call Λ and Λ� integrally equivalent if there exists an orthogonal

transformation A ∈ On(R) such that A(Λ)=Λ�. We write this as Λ ∼= Λ�.

Definition: The determinant |Λ| of Λ is the determinant of the n× n matrix

{mij} = vi·vj, where {vi} is a basis for Λ. The determinant is independent

of the specific choice of basis (we include proof below) and is a measure of

how densely packed the lattice points are.

Lemma 3.1: The determinant of a lattice Λ is independent of the choice of

basis, {vi} chosen for it.

Proof. Let β� = {v�i} be another basis of Λ. Let P be the change-of-basis

matrix, i.e. v�i =
�

j Pijvj. Then both P and P−1 must be integral matri-

ces. Hence both det(P ) and det(P−1) must be integers, so det(P ) = ±1.

The relation between the matrices m and m� is m� = PmP T , so det(m�) =

(±1)2 det(m) = det(m) and the determinant is well-defined.

Definition: The orthogonal direct sum of Λ and Λ� is:

Λ⊕ Λ
� := {(v, v�) | v ∈ Λ, v

� ∈ Λ
�}
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where the inner product is defined by

(u, u�) · (v, v�) = uv + u
�
v
� ∈ Z.

Definition: We call Λ orthogonal if it has an orthogonal basis, i.e.:

Λ ∼= (
�
K1Z)⊕ ...⊕ (

�
KnZ)

for positive integers: K1, ..., Kn. We denote this lattice via {K1, ..., Kn}.

Note that an orthogonal lattice has determinant |{K1, ..., Kn}| =
�

i Ki.

We have the following useful fact:

Theorem 3.1: Any integral lattice contains an orthogonal sub-lattice of full

dimension.

Proof. Let Λ be an integral lattice. Let β={v1, v2, ..., vn} be a basis for Λ.

We use the Gram-Schmidt orthogonalization process to create a set of

orthogonal vectors, β�={b1, ..., bn} for Λ as follows:

Let: b1 := v1;

b2 := v2 − v1·v2
v1·v1v1;

However even though this new vector is orthogonal to b1, it does not nec-

essarily live in Λ, as v1·v2
v1·v1 is not necessarily in Z anymore. We can easily fix

this via multiplying b2 by v1·v1. i.e. let

b2 := v1·v1(v2 −
v1·v2
v1·v1

v1) = (v1·v1)v2 − (v1·v2)v1;

which, since Λ is integral (i.e. for ∀i, j vi·vj ∈ Z) clearly lies in the Z-span of

β. Similarly we can follow the Gram-Schmidt process for the rest of the basis

34



vectors, multiplying each resultant orthogonal new vector bi by vi−1·vi−1. In

this way we don’t change the orthogonality relations, however ensure that the

vectors still lie in Λ.

Lastly we recall a few definitions that will be useful in section 3.D. A

lattice Λ is called even if for all vectors v ∈ Λ, the norm �v, v� = |v|2 is an

even integer, and the lattice Λ of rank n is unimodular if its fundamental

domain has volume vol(Rn/Λ) = 1, or equivalently, if Λ = Λ�.

3.B Gluing Theory

Gluing theory is a technique for constructing and therefore decomposing lat-

tices (see [13]). Let Λ0 be an integral lattice. Then Λ0 ⊆ Λ0*, therefore we

can consider the quotient lattice, namely Λ0*/ Λ0. It will be an abelian group,

since both Λ∗
0 and Λ0 are. It consists of finitely many (in fact exactly |Λ0|)

distinct cosets:

[g] = g + Λ0, g ∈ Λ
∗
0.

These equivalence classes are called glue classes.

Definition: Let [g1], ..., [gh] be glue classes of some integral lattice Λ0. By the

glued lattice Λ = Λ0[g1, ..., gh] we mean

Λ := Λ0[g1, ..., gh] := Λ0 + Zg1 + · · ·+ Zgh .

The finite group G := �[g1], ..., [gh]� generated by the glue classes is called
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the glue group.

Hence a typical element of the glued lattice Λ is of the form: v+
�h

i=1 migi

for v ∈ Λ0,mi ∈ Z. Observe that the glue group equals Λ/Λ0. We will often

denote the glued lattice by Λ0[G].

Notice that two gluings Λ0[g1, . . . , gm] and Λ0[g�1, . . . , g
�
m� ] are equal as sets

iff the glue groups �g1, . . . , gm� and �g�1, . . . , g�m�� are equal as subsets of Λ∗
0/Λ0.

It’s important to note the following Lemma.

Lemma 3.2: If Λ = Λ0[G], then |Λ0|= |Λ|�G�2.

Proof. See [1].

Note also that provided Λ0 is integral and ∀i, j gi·gj ∈ Z, Λ will be integral.

This is apparent when we observe that vectors v1, v2 ∈ Λ0+Zg1+Zg2+...+Zgh

have the form:

vi = v0i + z1ig1 + z2ig2 + ...+ zhigh

and by the integrality of the base lattice and the assumption above of gi·gj ∈ Z,

we clearly have v1 · v2 ∈ Z as well.

Example 3.B.1: An important example is when the base lattice Λ0 is the

one dimensional lattice Λ0 =
√
kZ for some positive k ∈ Z. Then Λ∗

0 =

(
√
kZ)∗ = (1/

√
k)Z and therefore (

√
kZ)∗/(

√
kZ) ∼= Z/kZ.

To see this, simply map: z/(
√
k)+

√
kZ �→ z+kZ ; this is clearly surjective

and injective since: z + kZ = z� + kZ ⇒ z − z� ∈ kZ and therefore

z/
√
k − z�/

√
k = (z − z�)/

√
k = kz∗/

√
k =

√
kz∗ ∈

√
kZ as desired.
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Now, for 0 ≤ a < k, consider the equivalence class [a] := a√
k
+

√
kZ.

Factoring k = lm, take the gluing (
√
kZ)[m] =

√
kZ + Z

m√
k
=

√
lmZ +

Z
m√
lm

= lm√
lm
Z+ Z

m√
lm

=
�

m
l Z . The glue group in this case is:

�[m]� = {[0/
√
k], [m/

√
k], . . . , [(l − 1)m/

√
k]}.

Orthogonal lattices are direct sums of these one-dimensional lattices. Let

Λ = {
√
K1Z,

√
K2Z,...,

√
KnZ}+Zg1 +Zg2 + ...+Zgm := {K1, K2, ..., Kn}[G]

be the gluing of an orthogonal lattice, where the glue group is denoted by G

and has generators gi. i.e. for each i, we have: gi = ( ai1√
K1

,
ai2√
K2

, ...,
ain√
Kn

) with

aij ∈ Z. For notational convenience we will write this as: [ai1, ai2, ..., ain].

Theorem 3.2: Let {K1, . . . , Kn}[g1, . . . , gm] be a gluing of an orthogonal lat-

tice. Write gi = [ai1, . . . , ain] for the glue vectors, where aij ∈ Z.

Then, we have:

(i) The number m of glue vectors can always be taken to be less than n

(where n is the dimension of our gluing);

(ii) we may take aij = 0 for i > j;

(iii) aii|Ki or aii = 0;

Proof. Let a :=gcd(K1, a11, a21, ..., ai1, ..., am1) where m denotes the number of

glue vectors in the gluing. From elementary number theory we know that we

can write a as the sum:

a = lK1 +
�

i

liai1

where l, li ∈ Z. Now, let g = l(
√
K1, 0, ..., 0) +

�
i ligi ∈ Λ (note Λ =

√
K1Z⊕

...⊕
√
KnZ+Zg1+Zg2+ ...+Zgm) and simply replace our old first glue vector
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g1 with g, i.e.: g�1 := g.

We clearly see that by subtracting a multiple of g�1 from the other gi we

can assume that for i > 1, ai1 = 0, exactly because this new a�11 divides all

ai1s. Repeating this for the rest of the Kj’s by replacing 1 with j, we see that

we can assume aij = 0 for i > j and hence part (i) and (ii) are proved. We

also observe that aii|Ki or aii = 0 proving part (iii).

To justify this, we observe the following: These new generators [g�i]s give

exactly the same gluing as the old ones as they are in the Z-span of the old

ones, as it’s clear by the construction, and vice-versa, we can reconstruct from

the new [g�i]s the old [gi]s using only coefficients from Z as the construction is

fully “reversible”. Therefore the new and old basis vectors are in each others’

Z-spans and hence they generate the same lattice gluing, as desired.

3.C Two-dimensional gluings

For our exposition, we will consider two dimensional lattices as resultants of

gluing a two-dimensional orthogonal lattice. Hence, the general form of the

lattice gluing for our studies is the following:

Λ = {K1, K2}[a1, a2] =
�
K1Z⊕

�
K2Z+ Z(

a1√
K1

,
a2√
K2

).

Let k be the order of the glue vector, g = ( a1√
K1

,
a2√
K2

); then provided k > 1,

K1 = ka1 and a�K2 = ka2 with gcd(k, a�) = 1. Hence we can write our

2-dimensional glued lattice in the following form:

Lemma 3.3: {ka, kb}[a, bb�] = {(m
�

a
k , n

�
b
k ) ∈ R

2|m,n ∈ Z, n ≡ mb�(mod k)}
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Proof. For λ ∈ {ka, kb}[a, bb�] =
√
kaZ⊕

√
kbZ+ Z

�
a√
ka
,

bb�√
kb

�
we have

λ = (
z1ka√
ka

,
z2kb√
kb

) + z0(
a√
ka

,
bb�√
kb

) =

�
(z0 + z1k)

�
a

k
, (z0b

� + z2k)

�
b

k

�

where zi ∈ Z and hence for m := z0+z1k and n := z0b
�+z2k we have m,n ∈ Z

clearly and n−mb� = z0b
� + z2k − (z0 + z1k)b� = (z2 − z1)k ∈ Zk, so n ≡ mb�

(mod k) as desired.

Now, on the other hand, given v = (m
�

a
k , n

�
b
k ) with n ≡ mb� (mod k), we

have: v = (m
�

a
k , n

�
b
k ) = (m

�
a
k , (mb� + kx)

�
b
k ) = ( ma√

ka
, (mb� + kx) b√

kb
) =

(0, xkb√
kb
) +m( a√

ka
,

bb�√
kb
) ∈

√
kaZ⊕

√
kbZ+ Z( a√

ka
,

bb�√
kb
) as desired.

Definition: The minimum norm (length squared) in a lattice is the smallest

value of v·v where v runs through all non-zero lattice vectors.

Lemma 3.4: In our case of lattices of the form:

Λ = {ka, kb}[a, bb�]

with a < b; The minimum norm will be either attained by:

(
√
ka, 0) or by (ma/

√
ka, nb/

√
kb) where 0 < m ≤max{1, k/2}, −b� < n ≤

b� with b�m ≡ n (mod k).

Proof. A typical vector in our lattice has the form: v = (m
�

a/k, n
�
b/k)

with m,n ∈ Z and n ≡ mb� (mod k). Then we have: v · v = m2a/k + n2b/k,

so we need to minimize m2a+ n2b.

In case the minimum norm vector is of the form that one of its coordinates

is zero, it suffices to consider: (m
�

a/k, 0) with 0 ≡ mb� (mod k) and this
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implies that k|m so, m = xk for some x ∈ Z, but then since (xk
�

a/k, 0) is

minimal normed, it implies that the vector has the form (k
�
a/k, 0) = (

√
ka, 0)

as desired.

So, if instead v0 = (m0

�
a/k, n0

�
b/k) is of minimal norm we have the

following inequality hold for all other vectors, v ∈ Λ with respect to v0

that is: v0 · v0 ≤ v · v. So, since ((m0 − k)
�

a/k, n0

�
b/k) ∈ Λ, we have:

(m0−k)2a+n2
0b ≥ m2

0a+n2
0b and from this it follows that: m2

0a−2m0ka+k2a ≥

m2
0a so, k2a ≥ 2m0ka .

Hence: k/2 ≥ m0 and we have our first condition:

0 < m0 ≤ max{1, k/2}.

Also, since ((m0 − 1)
�

a/k, (n0 − b�)
�
b/k) ∈ Λ, we have: (m0 − 1)2a +

(n0 − b�)2b ≥ m2
0a+ n2

0b and from this it follows that a+ b�
2
b ≥ m2

0a+ n2
0b so

a/b(1−m2
0) + b�

2 ≥ n2
0, but since m0 ≥ 1 we have that b�

2 ≥ n2
0. That is:

−b
�
< n0 ≤ b

�

and we have our second condition proved.

Given the lattice gluing Λ =
√
K1Z⊕

√
K2Z + Z ( a√

K1
, b√

K2
), the order of

the glue vector ( a√
K1

,
b√
K2

) is k if k is the smallest positive integer satisfying

k( a√
K1

,
b√
K2

) ∈
√
K1Z⊕

√
K2Z.

Lemma 3.5: Consider the gluing Λ = {K1, K2}[a1, a2]. Then we may require:

(a) either a1 = 0 or both 0 < a1 < K1 and a1|K1;

(b) if a1 �= 0, then the order k of the glue vector [a1, a2] is K1/gcd(a1, K1).
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Proof. Write:

K1 = p1
α1p2

α2 ...pn
αn

a1 = p1
ι1p2

ι2 ...pnιnq1β1q2
β2 ...qjβj

k = p1
κ1p2

κ2 ...pn
κn as their respective unique prime decompositions. Then

with respect to each i ∈ 1, 2, ..., n we have the following:

if αi > ιi, then κi = αi − ιi;

if αi = ιi, then κi = 0;

if αi < ιi, then κi = 0.

Note that dividing K1 by the gcd(a1,K1) ensures exactly this prime decom-

position for k, since the greatest common divisor takes the minimum power for

each common prime into its account, hence we get exactly the above numbers

for κi for each i.

Then for k > 1 we have K1 = ka1 and a�K2 = ka2, hence we can write

Λ = {K1, K2}[a1, a2] = {ka, kb}[a, bb�] = {(m
�

a/k, n
�
b/k) ∈ R

2 | m,n ∈ Z, n ≡ mb
�(mod k)}.

3.D Theta Series (Theta Functions) of Lat-

tices

Definition: The theta series (or theta constant or really theta function) of a

lattice is given by:

Θ(Λ)(τ) :=
�

v∈Λ

q
v·v
2 .
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More generally, the theta series of a glue class [g] of Λ0 is:

Θ([g])(τ) =
�

v∈Λ0

q
(g+v)·(g+v)

2 .

Importantly, if Λ and Λ� are integrally equivalent, then they have identical

theta series.

A more algebraic and equivalent definition of theta series is when it’s de-

fined as the following generating function:

Θ[Λ(τ) :=
�

l

a2lq
l

where am denotes the number of vectors in Λ of norm m. Note that this

definition encodes the distribution of vector norms in the lattice. We might

think that such information suffices to describe a lattice uniquely, however

this isn’t true as for example the lattices E8⊕E8 and D
+
16 have identical theta

series despite being non-isomorphic lattices. (See more on this in chapter 7.)

Example 3.D.1: The 1-dimensional lattice
√
kZ has theta series:

Θ(
√
kZ)(τ) =

�

v∈
√
kZ

q
v·v
2 =

�

v∈
√
kZ

q

√
kz·

√
kz

2 =
�

v∈
√
KZ

q
kz2

2 = θ3(kτ)

and its glue class [a] has theta series:

Θ([a])(τ) = Θ(a/
√
k+

√
kZ)(τ) =

�
v∈

√
kZ q

(g+v)·(g+v)
2 =

�
z∈Z q

(a/
√
k+

√
kz)·(a/

√
k+

√
kz)

2 =
�

z∈Z q
a2/k+2az+kz2

2 =
�

z∈Z q
k(z+a/k)2

2 = ψk/a(kτ).

Example 3.D.2: When Λ is an even, unimodular lattice of rank n, Θ[Λ](τ)

will be a modular form of weight n
2 . Here we only sketch the proof.
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We need to check two conditions for a holomorphic modular form f : H →

C of weight k (remember k ∈ 2Z+)

(a) f(aτ+b
cτ+d) = (cτ + d)kf(τ) for

�
a
c
b
d

�
∈ Γ

(b) f has a power series expansion in the variable q = e2πiτ :
�∞

n=0 anq
n

Proof. (a) It’s suffices to show invariance under the matrices T, S.

Θ[Λ](τ+1) =
�

λ∈Λ e
2πi(τ+1)λ·λ

2 =
�

λ∈Λ e
2πi(τ)λ·λ

2 e
2πiλ·λ

2 = e
2πi(τ)λ·λ

2 = Θ[Λ](τ)

as desired.

For invariance under S, we will have to assume two facts we wont prove:

when Λ is a unimodular lattice of rank n, then n ≡ 0 (mod 8) and Jacobi’s

identity (a corollary of the Poisson summation formula): for any lattice Λ

we have Θ[Λ](−1
τ ) = ( τi )

n
2

1

Vol(Rn/Λ)
Θ[Λ�](τ).

Since in a lattice is unimodular iff Λ = Λ�, this and the above two facts

show:

Θ[Λ](
−1

τ
) = τ

n
2Θ[Λ](τ)

as desired.

(b) It is obvious from the definition of the theta series for an even lattice

that it has a power series expansion in q.

Lemma 3.6: (i) The theta series of a direct sum of glue classes is the product

of the theta series of the individual classes. In particular the glue vector

[g] = [(a1, a2, ..., an)] of an orthogonal lattice {K1, ..., Kn} has theta series

Θ([g])(τ) =
�n

i=1 Θ([ai(g)])(τ) =
�n

i=1 ψkj/aj(kjτ).

(ii) The theta series of the disjoint union of glue classes is the sum of the
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theta series of the individual classes.

Proof. (i) It suffices to prove this for a direct sum of two glue classes. Let

g = (g1, g2) be a glue vector for Λ1 ⊕ Λ2. Then by definition

Θ([g])(τ) =
�

v∈[g]

q
v·v/2 =

�

(v1,v2)∈[(g1,g2)]

q
(v1·v1+v2·v2)/2 =

�

v1∈[g1]

�

v2∈[g2]

q
v1·v1/2qv2·v2/2

which by distributivity equals

�

v1∈[g1]

q
v1·v1/2

�

v2∈[g2]

q
v2·v2/2 = Θ([g1])(τ)Θ([g2])(τ).

(ii) similarly, trivially follows.

Example 3.D.3: : The theta series of the gluing Λ = {K1, ..., Kn}[G] is:

Θ({K1, ..., Kn}[G])(τ) =
�

[g]∈G

Θ([g]) =
�

[g]∈G

n�

j=1

Θ([aj(g)]) =
�

[g]∈G

n�

j=1

ψKj/aj(g)(Kjτ)

where [g] = [(a1(g), ..., an(g))].

Now, given this above, and the fact that any n-dimensional lattice can be

obtained by gluing from an n-dimensional orthogonal sublattice, we can use

this to to get the theta constant of any integral n-dimensional lattice and in

general the theta constant of the glue class of any integral lattice and write it

as a homogeneous degree-n polynomial in the ψk’s. This is key to our approach

to generate theta identities, as described next chapter.
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Chapter 4

Identities via integral

equivalences of geometrical

lattices

4.A General observations on identities in the

ψks

Our interest is in polynomial identities in the ψk’s. Ipsum est, we are interested

in identities of the form:

N�

i=1

ci

ni�

j=1

ψkij(aijτ) = 0

where ci ∈ C, kij ∈ Q, aij ∈ R, aij > 0.

According to Theorem 4.1 in [17], it suffices to consider only the homoge-

neous identities, i.e. the ones with ni = n, which are integral, that is ci, aij ∈ Z.

All the identities given in the paper are homogeneous and integral.
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It is now useful to introduce the space Ψ(n) of all degree-n polynomials

in ψk(mτ) where k,m ∈ Q>0. An identity is any element of Ψ(n) which is

identically 0 as a function of τ .

Once we have a set of polynomial identities {Li(τ) = Ri(τ)} of ψ’s, there

are simple ways to generate other ones. We can take any combinations of:

(i) Linear combinations:

�

i

ciLi(τ) =
�

i

ciRi(τ)

(ii) Products:

�

i

Li(τ) =
�

i

Ri(τ)

(iii) Re-scale the arguments:

Li(aτ) = Ri(aτ)

(iv) Take modular transformations by PSL2(Q)

Li(γ ◦ τ) = Ri(γ ◦ τ)

We say L(τ) = R(τ) generates L�(τ) = R�(τ), if the latter can be obtained

from the former, by these moves. The homogeneous integral identities generate

all others using these operations.

Example 4.A.1: Let’s look at for example the gluing of a one dimensional

lattice Λ0 =
√
mlZ, by the glue class [m]. We find that:
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Θ({lm})[m](τ) =
l−1�

j=0

ψl/j(lmτ) = Θ3(mτ/l).

This is in agreement with the lattice equivalence, shown before:

{lm}[m] ≡ {m/l}.

This illustrates the point made in [GL1], which provides the backbone

of our method: Integral equivalences of gluing of lattices give homogeneous

identities in the ψks. More precisely, given any n-dimensional lattice Λ, each

pair Λ0,Λ1 of n-dimensional orthogonal sublattices implies a homogeneous

identity in the ψks. After all, Λ0[G0] = Λ = Λ1[G1] where Gi = Λ/Λi. The

theta series of each gluing Λi[Gi] can be expressed polynomially in ψks, as we

learned last chapter. These polynomials must agree, hence we get an identity!

In particular for us, the lattice equivalence:

Λl := {ka, kb}[a, bb�] ∼= {lc, ld}[c, dd�] =: ΛR (4.1)

generates the following quadratic identity:

k�

i=1

ψk/i(kaτ)ψk/(b�i)(kbτ) =
l�

j=1

ψl/j(lcτ)ψl/(d�j)(ldτ). (4.2)

This last equation also tells us the order of the glue needed to get identities

involving certain modular functions. As we can see from equations (4.1) and

(4.2) above, glues of order 1,2,3,4,6 gives rise to θ3 identities and glues of order

12 involve both θ3 and η identities. In this thesis we are most interested in

glues where k is 12 and l is 1, 2, 3, 4, 6 or 12, as our primary interest lies in
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generating quadratic identities that contain not only θ3, but η as well, hence

the need for the order 12 glue.

Example 4.A.2: We observe that the glued lattice {2, 2}[1, 1] is just a π/4

rotation from Z
2 and hence, the gluing {2, 2}[1, 1] ∼= Z

2 generates the iden-

tity:

θ2(2τ)
2 + θ3(2τ)

2 = θ3(τ)
2
.

Example 4.A.3: The gluing {2, 2}[1, 1] ∼= Z
2 and {8, 8}[2, 2] ∼= {1, 4} gener-

ate the Jacobi identity : θ42 + θ44 = θ43.

To see this, observe using (4.1) that our equivalence has values: k = 2, a =

1, b = 1, b� = 1, l = 1, c = 1, d = 1, d� = 1. Now, substituting these values in

to our derived formula (4.2) yields:

2�

i=1

ψ2/i(2τ)ψ2/(i)(2τ) =
1�

j=1

ψ1/j(1τ)ψ1/(j)(1τ)

which equates to:

ψ2(2τ)
2 + ψ1(2τ)

2 = ψ1(τ)
2

and now using eq.(2.6) and eq.(2.7) we get:

θ3(2τ)
2 + θ2(2τ)

2 = θ3(τ)
2 (4.3)

Similarly from our second equivalence, we can derive:

θ3(8τ)
2 + θ2(8τ)

2 + 1/2θ2(2τ)
2 = θ3(τ)θ3(4τ) (4.4)

If we consider (4.3) under the mappings: τ �→ 2−1/τ and −1/τ respectively
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produces:

−θ4(τ)
2 + θ3(τ)

2 = 2θ2(2τ)
2 (4.5)

θ4(τ)
2 + θ3(τ)

2 = 2θ3(2τ)
2 (4.6)

Now using (4.3) we can rewrite (4.4) as:

1/2θ2(1/2τ)
2 = θ2(τ)

2 + θ3(τ)
2 (4.7)

And finally, using (4.5),(4.6) and (4.7) we can write:

θ3(τ)
4 − θ4(τ)

4 = (2θ2(2τ)
2)(2θ3(2τ)

2) = θ2(τ)
4 (4.8)

as claimed.

4.A.1 Symmetrization

A final construction permits us to extend significantly the scope of our method.

Take any term Pi on the leftside of equation (4.2) and consider its image under

τ �→ τ + 1:

Pi(τ) = ψk/i(kaτ)ψk/b�i(kbτ) �→ Pi(τ + 1) = ψk/i(kaτ + ka)ψk/b�i(kbτ + kb) .

Assume as usual that the norm [a, b�b] · [a, b�b] = (a + b�2b)/k is an integer.

Then (2.23) tells us:

(i) If k is even, then Pi(τ +1) = ±Pi(τ) if (a+ b�2b)/k is even/odd, respec-

tively;
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(ii) If k is odd and both a, b are even, then Pi(τ + 1) = Pi(τ);

(iii) If k is odd and at least one of a, b are odd then (2.13) does not apply

and the evaluation of Pi(τ + 1) will be more complicated.

By ‘symmetrisation’ we mean to replace (4.2), i.e.
�

i Pi(τ), with
�

i(Pi(τ)+

Pi(τ+1))/2. Define ‘anti-symmetrisation’ similarly. Many terms can drop out,

and what’s left typically is a simpler identity. In particular, suppose the order

k of the left glue in (4.1) is 8 or 12, while the order � of the right glue lies in

{1, 2, 3, 4, 6}. Then (4.2) will not be expressible as a θ3 identity, but provided

the norm (a+ b�2b)/k of the left glue is odd, then the symmetrisation will be a

θ3 identity. If both k, � ∈ {8, 12}, then the resulting symmetrised identity will

be a θ3 identity provided both norms (a+ b�2b)/k and (c+ d�2d)/� are odd. In

these cases, the terms containing η get relegated to the anti-symmetrisation.

In effect, a pure θ3 identity (the symmetrisation) is removed from (4.2), re-

sulting in a simpler η identity. (Anti-)symmetrisation is a way to simplify an

identity.

Similarly, if k = 24 and � ∈ {1, 2, 3, 4, 6, 12}, and the norm (a + b�2b)/k is

odd, then the symmetrised identity will be expressible in terms of η and θ3. If

k = 24 but � ∈ {8, 24}, and both norms (a+ b�2b)/k and (c+ d�2d)/� are odd,

then the resulting identity will likewise be expressible in terms of η and θ3.

4.A.2 A note on degree one identities

We note now that the degree-one identities in Ψ(1) are all known, see [GL1]

for details, here we state the result.

Theorem 4.1: (a) The only degree-one identities involving any number of

ψk(mkτ)s are linearly generated by eq.(2.4) and eq.(2.5).
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(b) The functions θ3(mkτ)s and η(niτ)s are linearly independent:

i.e.
�

i ciθ3(miτ) +
�

j djη(niτ) = 0 ⇐⇒ all ci = dj = 0.

By ‘linearly generated’ we mean that any linear identity I(τ) = 0 can be

written as a linear combination:

�

i

aiIi(miτ) = 0

where each Ii(τ) = 0 is one of the basic identities (2.4) and (2.5). Of course

(b) is an immediate corollary of (a).

Therefore next to consider are the quadratic identities. However there will

almost certainly be infinitely many inequivalent identities in Ψ(2), so [GL1]

tried something simpler: they looked at all quadratic identities involving only

θ3. We describe their results shortly. In this thesis we push the analysis to the

next level: the quadratic identities involving θ3 and η.

4.A.3 Test for equivalence

Note that not all the lattice equivalences given by (4.1) will result in inde-

pendent identities. First, we expand out the identity into θ3’s and η’s. This

automatically takes care of all linear identities, thanks to Theorem 4.1. Note

that all of the operations we are allowed to perform on one identity, in order to

get another identity, is to send a term Aθ3(hτ)θ3(jτ) to a linear combination of

‘comparable’ terms θ3(h�τ)θ3(j�τ), where we call two terms ‘comparable’ if the

ratio h/j either equals 4m9nh�/j� or 4m9nj�/h�, for some integers m,n. This

means that if we have identities involving only θ3 (as in [GL1]), two identities

will necessarily be inequivalent unless each term in one identity is comparable

to some term in the other, and vice versa. For example, we know the identities
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corresponding to the equivalences {2, 2}[1, 1] ∼= {1, 1} and {3, 6}[1, 2] ∼= {1, 2}

cannot be deduced from each other, since 1/1 is incomparable to 1/2 or 2/1.

Although more refined tests are surely possible, in practice, when two iden-

tities are compatible in this sense, it seems they can usually be shown to be

deducible from each other.

For lattice identities, this test is easy to do. Note that all terms on the left

side of (4.2) involve ratios comparable to a/b, while all terms on the right side

of (4.2) involve ratios comparable to c/d. [GL1] considered only τ �→ τ + 1/2,

and not e.g. τ �→ τ +1/3, and thus some identities which that paper regarded

as inequivalent, may turn out to be equivalent in our sense. This analysis says

that [GL1] contains at least 24 inequivalent quadratic θ3 identities. Table 1

collects a lattice representative of each of those 24 identities, together with the

‘class’ (h/j) on each side. Brackets around the numbers emphasize that they

are defined up to the equivalence 4n9mh/j.
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Class Lattice equivalence Class Lattice equivalence

(1)∼(1) {2,2}[4,32]∼={1,1} (2)∼(2) {3,6}[1,2]∼={1,2}

(3)∼(3) {4,12}[1,3]∼={1,3} (5)∼(5) {3,15}[1,5]∼={2,10}[1,5]

(14)∼(14) {6,21}[2,7]∼={3,42}[1,14] (11)∼(11) {4,44}[1,11]∼={3,33}[1,11]

(7)∼(7) {4,28}[1,7]∼={2,14}[1,7] (5/3)∼(15) {12,20}[3,5]∼={2,30}[1,15]

(7/5)∼(35) {20,28}[5,7]∼={3,105}[1,35] (11/5)∼(55) {20,44}[5,11]∼={4,220}[1,55]

(13/3)∼(39) {12,52}[3,13]∼={4,156}[1,39] (31/5)∼(155) {30,186}[5,31]∼={6,210}[1,155]

(29/7)∼(203) {42,174}[7,29]∼={6,1218}[1,203] (25/11)∼(275) {66,150}[11,25]∼={6,1650}[1,275]

(23/13)∼(299) {78,138}[13,23]∼={6,1794}[1,299] (19/17)∼(323) {102,114}[17,19]∼={6,1938}[1,323]

(17)∼(17) {6,102}[1,17]∼={3,51}[1,17] (13/5)∼(65) {30,78}[5,13]∼={3,195}[1,65]

(11/7)∼(77) {42,66}[7,11]∼={3,231}[1,77] (23)∼(23) {6,138}[1,23]∼={4,92}[1,23]

(19/5)∼(95) {30,114}[5,19]∼={4,380}[1,95] (17/7)∼(119) {42,102}[7,17]∼={4,476}[1,119]

(15)∼(15) {54,90}[9,15]∼={4,540}[1,135] (13/11)∼(143) {66,78}[11,13]∼={4,572}[1,143]

Table 1. The quadratic θ3 identities

For the quadratic {θ3, η}-identities considered in this paper, we can say

much more. Any of the operations we can perform on identities will take a

term A η(hτ)η(jτ) to a single term A� η(h�τ)η(j�τ), where h/j equals either

h�/j� or j�/h�. Thus almost every lattice equivalence considered here will yield

an inequivalent identity.
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4.B Quadratic Theta θ3 and Eta η identities

There are infinitely many different lattice equivalences (4.1), even if we restrict

to those of orders 1, 2, 3, 4, 6, 12. But most of these won’t give new identities.

The hardest part of applying this method is to reduce to a finite set of lattice

equivalences. This subsection accomplishes that.

Theorem 4.2 below is the key to finding all quadratic identities coming

from lattice equivalences. It is the first new result in this thesis. We begin

by recording a lemma that explains the constraints we need to assume on the

form of allowable lattice gluings under the equivalence.

Lemma 4.1: Without loss of generality, it suffices to consider lattice equiva-

lences:

Λl := {ka, kb}[a, bb�] ∼= {lc, ld}[c, dd�] =: ΛR

subject to the following constraints:

ab = cd, (4.9)

a ≤ b, c ≤ d, (4.10)

1 ≤ b
� ≤ max{k/2, 1} and 1 ≤ d

� ≤ max{l/2, 1}, (4.11)

a+ b�
2
b

k
and

c+ d�
2
d

l
∈ Z, (4.12)
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gcd(a, b,
a+ b�

2
b

k
) = gcd(c, d,

c+ d�
2
d

l
) = 1, (4.13)

(a, b�, k) �= (c, d�, l), (4.14)

gcd(b�, k) = gcd(d�, l) = 1. (4.15)

Proof. We explain the constraints set up.

Eq.(4.9). is the determinant of the lattices in Λl := {ka, kb}[a, bb�] ∼=

{lc, ld}[c, dd�] =: ΛR and since it’s the determinant of the matrix comprised

of the various basis vector dot-products, our lattice equivalence must preserve

them. The determinant of a gluing is most easily computed from Lemma 3.2.

Eq.(4.10): By symmetry we can assume a ≤ b and c ≤ d.

eq.(4.14:) If the quadruples (a, b, b�, k) were (c, d, d�, l) are equal, then this

theta-identity will be trivial, and can be disregarded. Note that (4.9) says

a = c iff b = d, so (a, b, b�, k) �= (c, d, d�, l) iff eq.(4.14) holds.

eq.(4.12): We can rescale the lattices Λl and ΛR so that they are integral,

hence a+b�2b
k and c+d�2d

l ∈ Z. Now, a lattice is integral if all dot products are

integral, so we can guarantee this, if we require that the dot products of the

basis vectors are integral. β = {v1 = (
�
a/k, b�

�
b/k), v2 = (0,

√
kb)} is a basis

and so we need:

v1·v1 =
a+ b�

2
b

k
∈ Z

v1·v2 = v2·v1 = b
�
b ∈ Z

v2·v2 = kb ∈ Z
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and so the only additional constraint we require is the a+b�2b
k ∈ Z as the rest

of the dot-products are integral anyway. Similarly for the right lattice ΛR we

require:

c+ d�
2
d

l
∈ Z

but so that any smaller rescaling is not integral (rescaling the lattices in Λl :=

{ka, kb}[a, bb�] ∼= {lc, ld}[c, dd�] =: ΛR merely amounts to rescaling the τs in
�k

i=1 ψk/i(kaτ)ψk/(b�i)(kbτ) =
�l

j=1 ψl/j(lcτ)ψl/(d�j)(ldτ)).

To see eq.(4.13), first let p be any prime dividing a, b, and (a + bb�2)/k.

Then p divides all dot products on the left-side ΛL of Λl := {ka, kb}[a, bb�] ∼=

{lc, ld}[c, dd�] =: ΛR. Hence the same must hold for ΛR, and so we get that

p must divide c, d, (c + dd�2)/�. We can rescale ΛL and ΛR, replacing a, b, c, d

with a/p, b/p, c/p, d/p, and all other conditions are obeyed.

Incidentally, note that eq.(4.13) requires that gcd(a, b) must divide k. Also,

if k = 1, 2, 3, 4, 6, then b� = 1 (similarly for � and d�), while if k = 12 then

b� = 1 or 5.

Theorem 4.2: The lattice equivalences

Λl := {ka, kb}[a, bb�] ∼= {lc, ld}[c, dd�] =: ΛR

subject to the constraints of Lemma 4.1 above fall into two classes:

(i) k ≥ 2, c|lcm(km, kn) and c|gcd(ma, nb), klc = m2a + n2b ≤ k2a and

both mad� ≡ ±nc (mod lc) and ∓mc ≡ nbd� (mod lc), for nonzero integers

m,n satisfying 0 < m ≤ max(1, k/2),−b� < n ≤ b�, b�m ≡ n (mod k) and
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some choice of sign. These imply the bounds: a ≤ b ≤ (k2 −m2)lc/n2 and

c ≤ mnk.

(ii) k ≥ l ≥ 2, (m2a + n2b)/k = ((m�)2c + (n�)2d)/l, m2a + n2b ≤ k2a,

(m�)2c + (n�)2d ≤ l2c, e2a + f 2b = klc, aem + bfn = km�c, for integers

m,n,m�, n�, e, f obeying:

-nonzero integers m,n satisfying 0 < m ≤ max(1, k/2), −b� < n ≤ b�,

b�m ≡ n (mod k);

-nonzero integers m�, n� satisfying 0 < m� ≤ l/2, −d� < n� ≤ d�, d�m� ≡ n�

(mod l);

- b’e ≡ f �≡ 0(mod k).

These imply the bounds:

|e| ≤ l/n
�

(m2 + n2)/((m�)2 + (n�)2)(k2 −m2)

|e| ≤ l/n
�
(m2 + n2)/((m�)2 + (n�)2)l2 − e2n2/(k2 −m2)

Proof. First, since we will be working with lattices, it’s convenient to fix the

bases to work with. We have shown above that a general vector in our glued

lattice Λl := {ka, kb}[a, bb�] has the form:

v = (m
�
a/k, n

�
b/k) with n ≡ mb� (mod k) and hence:

v = (m
�

a/k, n
�

b/k) = (m
�

a/k, (mb� + xk)
�
b/k) =

= m(
�

a/k, b�
�

b/k) + x(0,
√
bk) for some x ∈ Z.

Hence β = {(
�

a/k, b�
�

b/k), (0,
√
kb)} is a basis for the glued lattice ΛL as

we clearly see that these vectors span the lattice and are linearly independent.

Now, back to the proof for the sufficient and necessary conditions for the lattice

equivalences.

Let ϕ : ΛL → ΛR be the desired lattice equivalence above. Now, lattice

equivalences preserve dot products and hence a minimum norm vector must be
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mapped to a minimum norm vector (under a surjection), otherwise we would

find the pre-image of the minimum normed vector of ΛR, in ΛL to be less then

the assumed minimum norm in ΛL, reaching a contradiction.

As proven above in Lemma 3.3, the minimum norm in the gluing ΛL will

either be ka attained by (ka/
√
ka, 0) or (m2a+ n2b)/k attained by the vector

(ma/
√
ka, nb/

√
kb). This leads to two possible cases:

Case (i): the minimum norm of ΛR is lc. We will first show that the

minimum norm of ΛL must then be m2a+n2b
k ≤ ka and ϕ( ma√

ka
,
nb
kb ) = ( lc√

lc
, 0).

Note, we have only two possibilities for the form of the minimum norm

vector in ΛL that could possibly map to ( lc√
lc
, 0). So, arguing towards contra-

diction, we assume that ϕ( ka√
ka
, 0) = ( lc√

lc
, 0).

We then have ka = lc since the minimum norms are equal through the

lattice equivalence. (I.e. |( ka√
ka
, 0)|= |( lc√

lc
, 0)|⇒ ka = lc.)

The vectors in ΛL orthogonal to ( ka√
ka
, 0) are of the form Z(0, kb√

kb
). This is

easy to see:

⇐: ( ka√
ka
, 0)·Z(0, kb√

kb
) = 0

⇒: ( ka√
ka
, 0)·( ma√

ka
,

nb√
kb
) = kma2

ka +0 = m i.e. m = 0 in their form; i.e. vectors

of the form: ( ma√
ka
,

nb√
kb
) = (0, nb√

kb
).

Similarly those in ΛR, orthogonal to ( lc√
lc
, 0) are of the form, Z( ld√

ld
, 0) and

we know again by definition of dot-product preservation of the isomorphism

that orthogonal vectors map to orthogonal vectors.

Therefore ϕ sends (0, kb√
kb
) to ±( ld√

ld
, 0) and their norm kb, resp. ld must

equal, kb = ld. We have thus far:

ϕ(0,
kb√
kb

) = (0,± ld√
ld
),
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ϕ(
ka√
ka

, 0) = (
lc√
lc
, 0).

This implies ϕ( a√
ka
,

b�b√
kb
) = ( c√

lc
,+ − b�d√

ld
) and b� = + − d�. Hence from ab =

cd, ka = lc, kb = ld we then get, (a, b�, k) = (c, d�, l) violating one of our above

conditions, (4.8) in Lemma (4.1) above.

Therefore, we have to have ϕ( ma√
ka
,

nb√
kb
) = ( lc√

lc
, 0) and hence

klc = m
2
a+ n

2
b is derived.

Now, since ΛL ≡ ΛR there exists integers m�, n� s.t. d�m� ≡ n� (mod l) such

that

ϕ(
ka√
ka

, 0) = (
m�c√
lc
,
n�d√
ld
)

with ka = (m�2c + n�2d)/l as the norm is preserved under the lattice equiva-

lence.

Also, since the dot product is preserved for any two vectors, we have that:

Before isomorphism (LHS):

(
ma√
ka

,
nb

kb
)·( ka√

ka
, 0) = ma

After isomorphism (RHS) :

(
lc√
lc
, 0)·(m

�c√
lc
,
n�d√
ld
) = m

�
c

so LHS=RHS ⇒ ma = m�c (i.e. m� = ma
c ), that is c|ma. This means that also

d�m� ≡ n�(mod l) becomes: d�ma
c ≡ n�(mod l) ⇐⇒ d�ma ≡ cn�(mod cl) but

n� = ±n ⇒ d�ma = ±cn(mod cl).

59



Now, to see why n� = ±n we see that from the norm condition we had:

ka =
m�2c+ n�2d

l
;

but we just found above that m� = ma
c so after substitution we have kla =

(ma)2

c + n�2d but also ab = cd as per (eq.4.3), so this implies:

n
�2 = (kla− (ma)2/c)

c

ab
=

klc

b
− m2a

b

but

klc = m
2
a+ n

2
b ⇒ n2b

b
= n

2 = n
�2

and as desired we get: n� = ±n.

Similarly, we also find ϕ(0, kb√
kb
) as follows.

ϕ(0,
kb√
kb

) = (x
�

c/l, y
�

d/l)

with y ≡ xd�(mod l). Since ( ma√
ka
,

nb√
kb
)·(0, kb√

kb
) = ( lc√

lc
, 0)·(x

�
c/l, y

�
d/l) i.e.

nb = xc ⇒ x = nb/c and hence y = xd�(l) ⇒ y = nbd�/c(l).

So far ϕ(0, kb√
kb
) = (nb/

√
lc, yd/

√
ld), but since we had ϕ( ka√

ka
, 0) = (m

�c√
lc
,
n�d√
ld
)

also and the vectors being mapped here are orthogonal to each other, implying

that the images’ dot products need be zero also:

ϕ(
ka√
ka

, 0)·ϕ(0, kb√
kb

) = (
m�c√
lc
,
n�d√
ld
)·( nb√

lc
,
yd√
ld
) = 0.

So m�c√
lc

nb√
lc
+ n�dyd

ld = 0 ⇒ m�nb+dn�y
l = 0 ⇒ y = −m�nb

n�d . But, we had that

m� = ma/c from above, and hence: y = −
ma
c nb

n�d . Now, we also found above

that n� = ±n, so y = −
ma
c nb

±nd and since ab = cd ⇒ y = −
ma
c nb

±nd = ∓m. So as
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claimed, we have:

ϕ(0,
kb√
kb

) = (
nb√
lc
,
∓md√

ld
) ∈ ΛR.

Since this vector must be in ΛR, c also must divide nb and ∓m ≡ nbd�

c (mod l).

These conditions are sufficient for the lattice equivalence ΛL
∼= ΛR for the

following reason.

A lattice equivalence is well-defined if we can determine where it send the

basis vectors. We have that β = {(
�

a/k, b�
�
b/k), (0,

√
kb)} is a basis for the

glued lattice ΛL and since the above conditions resulting from the dot prod-

ucts being preserved under ϕ determined the images of (k
�

a/k, 0), (0,
√
kb)

therefore by linearity we can extend these definitions to well define the images

of the basis vectors as desired under the isomorphism.

Next, we choose any prime p dividing c. Let pα, pβ, pγ, pκ, pµ, pν be the

exact powers of p dividing a, b, c, k,m, n respectively. Because c must divide

both ma and nb, we get γ ≤ µ+ α and γ ≤ ν + β.

Now, also p must divide a or b, since it must divide ab = cd. By considering

a+b�2b
k , we get that κ ≥ min {α, β} since if α = 0, then (a+b�

2
b)/k ∈ Z requires

κ = 0 and if, instead say β ≥ α > 0, then gcd(a, b, (a + b�
2
b)/k) = 1 requires

κ ≥ α.

Case (ii):

If the minimum norm of ΛL is ka, and the minimum norm of ΛR is

(m�2c+n�2d)
l , then we just reverse ΛL and ΛR and we are in case (i). Therefore

the only remaining possibility is:

ϕ(
ma√
ka

,
nb√
kb

) = (
m�c√
lc
,
l�c√
ld
)
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here the minimal norm of ΛR is (m�2c+n�2d)
l ≤ lc and the minimal norm of ΛL

is (m2a+n2b)
k ≤ ka.

Now, similarly as in case (i) above, this also gives us the quadratic norm

equation (m2a+ n2b)/k = ((m�)2c+ (n�)2d)/l.

Also as ϕ is a lattice isomorphism, there must exist e, f ∈ Z s.t. ϕ( ea√
ka
,

fb√
kb
) =

( lc√
lc
, 0) with eb� = f (mod k) with e2a + f 2b = klc again as a consequence of

norm preservation.

Also, since ϕ( ma√
ka
,

nb√
kb
) = (m

�c√
lc
,

l�c√
ld
) and ϕ( ea√

ka
,

fb√
kb
) = ( lc√

lc
, 0), dot-product

preservation requires:

aem+ bfn = km
�
c

and norm preservation requires:

e2a+ f 2b

k
= lc.

If k were to divide both e and f , i.e. e = ke�f = kf � we would obtain

k(e�2a+ f �2b) = lc for integers e�, f �.

Now, either b ≥ c or a ≥ c: otherwise, if both a < c and b < c, then

ab < c2 ≤ cd, so ab < cd contradicting our initial assumption that ab = cd.

So assume say that b ≥ c and since k ≥ l, this requires that f � = 0 in

k(e�2a+ f �2b) = lc.

We have so far that:

ϕ(
ke�a√
ka

, 0) = ϕ(e�
√
ak, 0) = (

lc√
lc
, 0) = (

√
lc, 0)

and by linearity e�ϕ(
√
ak, 0) = (

√
lc, 0), and so ϕ(

√
ak, 0) = 1/e�(

√
lc, 0).

But since (
√
lc, 0) is a primitive vector in ΛR (i.e. xv ∈ ΛR iff x ∈ Z) we
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must have 1/e� ∈ Z so e� = ±1.

Therefore, ϕ(
√
ak, 0) = (

√
lc, 0) and hence ϕ takes ΛL ’s x-axis to ΛR’s

x-axis, and hence by orthogonality takes ΛL’s y-axis to ΛR’s y-axis, and this

violates non-triviality (a, b�, k) = (c, d�, l).

Choose any prime p dividing c. Write α, β, γ, for the exact powers of p

dividing a,b,c respectively. Then ab = cd implies α+ β ≥ γ. We want to show

that pγ divides either k2em or k2fn.

Suppose pγ fails to divide all of me, nf and k (otherwise we are done).

If p does not divide a, then pγ must divide b = cd
a because ab = cd; since

now pγ divides both km�c = ema+ fnb and b, it must also divide ema; i.e. p

must divide a, contradicting our hypothesis.

Thus α > 0, and similarly β > 0. So p can’t divide (a+ b�
2
b)/k, otherwise

we contradict gcd(a, b, (a+ b�
2
b)/k) = 1.

So, now, if α = β(≥ γ/2), then pα must divide k, so pγ divides k2, and we

are done.

So we may assume α �= β (without loss of generality assume α < β). Then

pα divides k exactly.

Since pγ+α divides ema+fnb, we either get that pγ divides em (if γ+α ≤ β),

or pβ−α divides em othewise.

So, pγ must divide k2lcmem,fn, and so must c.

Now, (m�2 + n�2)c/l ≤ (m�2c + n�2d)/l = (m2a + n2b)/k ≤ (m2 + n2)b/k

⇒ (m�2 + n�2)c/l ≤ (m2 + n2)b/k ⇒ kc ≤ m2+n2

m�2+n�2 lb , and (m2a+ n2b)/k ≤ ka

implies that n2b/(k2 −m2) ≤ a, so all together:

Since e2a+f2b
k = lc ⇒ f 2b = klc−e2a thus 0 ≤ f 2b = lkc−e2a ≤ m2+n2

m�2+n�2 l
2b−

e2n2b/(k2−m2), giving us the bounds for |e| and |f | as follows: 0 ≤ m2+n2

m�2+n�2 l
2b−
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e2n2b/(k2 −m2) ⇒

|e|≤ l

n

�
m2 + n2

m�2 + n�2 (k
2 −m2)

and

|f |≤
�

m2 + n2

m�2 + n�2 l
2 − e2n2

k2 −m2

as advertised.

Now that we have all these lattice equivalences generated by our theory a

very important question remains, that is which of these lattice equivalences

correspond to the same theta function identities.

First we need to consider when we call two distinct identities equivalent, i.e.

we need to determine the operations we are allowed to perform on identities

that constitutes the equivalence.

What we need is operations which map Ψ(n) to itself. Clearly we should be

able to multiply identities by constants, we should be able to take linear com-

binations of them, rescale the arguments and take modular transformations to

their arguments, as we outlined in section 4.A. above.

4.B.1 List of lattice equivalences calculated from The-

orem 4.2

Here we record in the following tables the lattice equivalences generated from

Theorem (4.2.). The lattice equivalences are recorder in the format of equation

(4.1), i.e.:

Λl := {ka, kb}[a, bb�] ∼= {lc, ld}[c, dd�] =: ΛR.
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Next to the equivalences we record their “class” attributes,

(a/b) ∼ (c/d)

corresponding to the ratios of the arguments on left and right hand sides of

the generated identities, (eq.4.2). This is an easy test to spot inequivalent

identities, as identities belonging to different classes are surely independent

from each other as explained above in section 4.1.A, as all of the allowable

range of transformations we can do to go between identities preserves the ratios

of the arguments on each side of the identities, up to some scaling. Using this

test we have counted 131 inequivalent identities. For the Sage source code

used to generate these identities refer to Appendix B.
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Class Lattice equivalence Class Lattice equivalence

8∼(2) {48,384}[4,32]∼={3,384}[1,128] 8∼(2) {48,384}[4,160]∼={12,384}[2,64]

3∼(3) {36,108}[3,45]∼={9,27}[3,9] 5/4∼(5) {192,240}[16,20]∼={3,960}[1,320]

20∼(5) {48,960}[4,400]∼={15,192}[5,64] 7/2∼(14) {96,336}[8,28]∼={3,672}[1,224]

20∼(5) {48,960}[4,80]∼={60,192}[10,32] 2∼(2) {48,96}[4,8]∼={1,32}[1,32]

14∼(14) {48,672}[4,56]∼={84,96}[14,16] 14∼(14) {48,672}[4,280]∼={21,96}[7,32]

1∼(1) {72,72}[6,6]∼={1,36}[1,36] 1∼(1) {72,72}[6,30]∼={9,36}[3,12]

5∼(5) {24,120}[2,10]∼={1,20}[1,20] 65∼(13/5) {24,1560}[2,130]∼={39,60}[13,20]

45/7∼315 {252,1620}[21,135]∼={36,11340}[3,945] 65∼(13/5) {24,1560}[2,650]∼={15,156}[5,52]

13/5∼(65) {120,312}[10,26]∼={3,780}[1,260] 77∼(11/7) {24,1848}[2,154]∼={33,84}[11,28]

11/7∼(77) {168,264}[14,22]∼={3,924}[1,308] 77∼(11/7) {24,9240}[2,770]∼={21,132}[7,44]

17∼(17) {24,408}[2,34]∼={3,204}[1,68] 17∼(17) {24,2040}[2,170]∼={12,51}[4,17]

9/7∼(7) {252,324}[21,27]∼={4,2268}[1,567] 63∼(7) {36,2268}[3,945]∼={28,324}[7,81]

9/7∼63 {252,324}[21,135]∼={36,2268}[3,189] 3∼(3) {36,108}[3,9]∼={1,27}[1,27]

55∼(11/5) {36,1980}[3,165]∼={44,180}[11,45] 5/3∼(15) {108,180}[9,15]∼={2,270}[1,135]

15∼(15) {36,540}[3,225]∼={10,54}[5,27] 55∼(11/5) {36,1980}[3,165]∼={44,180}[11,45]

15∼15 {36,540}[3,45]∼={36,540}[3,225] 15∼(15) {36,540}[3,45]∼={54,90}[9,15]

15∼(15) {36,540}[3,45]∼={4,540}[1,135] 5/3∼(15) {108,180}[9,75]∼={18,270}[3,45]

5/3∼(15) {108,180}[9,75]∼={20,108}[5,27] 195/9∼(195) {108,2340}[9,195]∼={36,7020}[3,585]

39∼(39) {36,1404}[3,117]∼={52,108}[13,27] 13/3∼(39) {108,468}[9,39]∼={4,1404}[1,351]

13/3∼39 {108,468}[9,195]∼={36,1404}[3,117]

11/5∼(55) {180,396}[15,33]∼={4,1980}[1,495] 11/5∼(55) {180,396}[15,165]∼={36,220}[9,55]

55∼(11/5) {36,1980}[3,825]∼={20,396}[5,99] 11/5∼55 {180,396}[15,165]∼={36,1980}[3,825]

11/5∼55 {180,396}[15,165]∼={36,1980}[3,165] 7∼(7) {36,252}[3,21]∼={2,126}[1,63]

7∼(7) {36,252}[3,105]∼={18,126}[3,21] 7∼(7) {36,252}[3,105]∼={14,18}[7,9]

7∼(7) {36,1260}[3,105]∼={14,18}[7,9] 7∼(7) {228,1500}[19,125]∼={12,142500}[1,11875]

175/17∼425/7 {204,2100}[17,875]∼={84,5100}[7,2125]

119/25∼2975 {300,1428}[25,119]∼={12,35700}[1,2975] 25/11∼(275) {132,300}[11,25]∼={3,825}[1,275]

275∼(25/11) {12,3300}[1,275]∼={33,75}[11,25] 575∼(25/23) {12,6900}[1,575]∼={92,100}[23,25]

25/23∼(575) {276,300}[23,25]∼={4,2300}[1,575] 1175∼(47/25) {12,14100}[1,1175]∼={150,282}[25,47]

47/25∼(1175) {300,564}[25,47]∼={6,7050}[1,1175] 95/49∼4655 {588,1140}[49,95]∼={12,55860}[1,4655]

245/19∼931/5 {228,2940}[19,1225]∼={60,11172}[5,4655] 7/5∼(35) {60,84}[5,7]∼={1,35}[1,35]

35∼(7/5) {12,420}[1,35]∼={20,28}[5,7] 35∼(7/5) {12,420}[1,175]∼={5,7}[5,7]

35∼(35) {12,420}[1,35]∼={3,105}[1,35] 7/5∼(7/5) {60,84}[5,35]∼={15,21}[5,7]

91/5∼(35/13) {60,1092}[5,91]∼={78,210}[13,35] 455∼(35/13) {12,5460}[1,455]∼={52,140}[13,35]

Table 2. Lattice equivalences and their attributes
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Class Lattice equivalence Class Lattice equivalence

455∼(65/7) {60,1092}[5,455]∼={28,260}[7,65] 35/13∼(91/5) {156,420}[13,175]∼={30,546}[5,91]

65/7∼(91/5) {84,780}[7,325]∼={20,364}[5,91] 65/7∼(455) {84,780}[7,65]∼={6,2730}[1,455]

455∼(65/7) {12,5460}[1,2275]∼={42,390}[7,65] 91/5∼(35/13) {60,1092}[5,91]∼={78,210}[13,35]

35/13∼(455) {156,420}[13,35]∼={4,1820}[1,455] 259/5∼(185/7) {60,3108}[5,1295]∼={42,1110}[7,185]

1295∼(37/35) {12,15540}[1,1295]∼={210,222}[35,37] 37/35∼(1295) {420,444}[35,37]∼={6,7770}[1,1295]

55/17∼(935) {204,660}[17,55]∼={6,5610}[1,935] 185/7∼(259/5) {84,2220}[7,925]∼={30,1554}[5,259]

109/35∼3815 {420,1308}[35,109]∼={12,45780}[1,3815] 545/7∼763/5 {84,6540}[7,2725]∼={60,9156}[5,3815]

935∼(55/17) {12,11220}[1,4675]∼={102,330}[17,55] 85/11∼(187/5) {132,1020}[11,425]∼={30,1122}[5,187]

187/5∼(85/11) {60,2244}[5,187]∼={66,510}[11,85] 89/55∼4895 {660,1068}[55,89]∼={12,58740}[1,4895]

445/11∼979/5 {132,5340}[11,2225]∼={60,11748}[5,979] 79/65∼5135 {780,948}[65,79]∼={12,61620}[1,25675]

395/13∼1027/5 {156,4740}[13,1975]∼={60,12324}[5,1027] 295/17∼1003/5 {204,3540}[17,1475]∼={60,12036}[5,5015]

85/59∼5015 {708,1020}[59,85]∼={12,60180}[1,5015] 19/5∼95 {60,228}[5,95]∼={12,1140}[1,95]

19/5∼(95) {60,228}[5,19]∼={2,190}[1,95] 95∼(19/5) {12,1140}[1,475]∼={10,38}[5,19]

115/29∼3335 {348,1380}[29,115]∼={12,40020}[1,16675] 145/23∼667/5 {276,1740}[23,725]∼={60,8004}[5,667]

155∼(31/5) {12,1860}[1,775]∼={15,93}[5,31] 31/5∼(155) {60,372}[5,31]∼={3,465}[1,155]

215∼(43/5) {12,2580}[1,1075]∼={20,172}[5,43] 43/5∼(215) {60,516}[5,43]∼={4,860}[1,215]

67/5∼(335) {60,804}[5,67]∼={6,2010}[1,335] 335∼(67/5) {12,4020}[1,1675]∼={30,402}[5,67]

139/5∼695 {60,1668}[5,139]∼={12,8340}[1,3475] 1127∼(49/23) {12,13524}[1,1127]∼={138,294}[23,49]

49/23∼(1127) {276,588}[23,49]∼={6,6762}[1,1127] 133/11∼1463 {132,1596}[11,133]∼={12,17556}[1,1463]

385/19∼1045/7 {228,4620}[19,385]∼={84,12540}[7,1045] 737/7∼469/11 {84,8844}[7,737]∼={132,5628}[11,2345]

77/67∼5159 {804,924}[67,77]∼={12,61908}[1,25795] 91/53∼4823 {636,1092}[53,91]∼={12,57876}[1,24115]

371/13∼689/7 {156,4452}[13,1855]∼={84,8268}[7,689] 17/7∼(119) {84,204}[7,17]∼={2,238}[1,119]

119∼(17/7) {12,1428}[1,595]∼={14,34}[7,17] 29/7∼(203) {84,348}[7,29]∼={3,609}[1,203]

203∼(29/7) {12,2436}[1,1015]∼={21,87}[7,29] 41/7∼(287) {84,492}[7,41]∼={4,1148}[1,287]

287∼(41/7) {12,3444}[1,1435]∼={28,164}[7,41] 137/7∼959 {84,1644}[7,137]∼={12,11508}[1,4795]

121/23∼2783 {276,1452}[23,121]∼={12,33396}[1,2783] 11∼(11) {12,132}[1,11]∼={1,11}[1,11]

11∼(11) {12,132}[1,55]∼={4,44}[1,11]

11∼(11) {12,132}[1,55]∼={3,33}[1,11] 13/11∼(143) {132,156}[11,13]∼={2,286}[1,143]

143∼(143) {12,1716}[1,143]∼={22,26}[11,13] 407∼(37/11) {12,4884}[1,407]∼={44,148}[11,37]

37/11∼(407) {132,444}[11,37]∼={4,1628}[1,407] 671∼(61/11) {12,8052}[1,671]∼={66,366}[11,61]

61/11∼(671) {132,732}[11,61]∼={6,4026}[1,671] 299∼(23/13) {12,3588}[1,299]∼={39,69}[13,23]

23/13∼(299) {156,276}[13,23]∼={3,897}[1,299] 767∼(59/13) {12,9204}[1,767]∼={78,354}[13,59]

59/13∼(767) {156,708}[13,59]∼={6,4602}[1,767] 131/13∼1703 {156,1572}[13,131]∼={12,20436}[1,1703]

323∼(19/17) {12,3876}[1,1615]∼={51,57}[17,19] 19/17∼(323) {204,228}[17,19]∼={3,969}[1,323]

31/17∼(527) {204,372}[17,31]∼={4,2108}[1,527] 527∼(31/17) {12,6324}[1,2635]∼={68,124}[17,31]

127/17∼2159 {204,1524}[17,127]∼={12,25908}[1,10795] 551∼(29/19) {12,6612}[1,2755]∼={76,116}[19,29]

29/19∼(551) {228,348}[19,29]∼={4,2204}[1,551] 1007∼(53/19) {12,12084}[1,5035]∼={114,318}[19,53]

53/19∼(1007) {228,636}[19,53]∼={6,6042}[1,1007] 23∼(23) {12,276}[1,115]∼={6,138}[1,23]

23∼(23) {12,276}[1,23]∼={2,46}[1,23] 23∼(23) {12,276}[1,115]∼={4,92}[1,23]

1247∼(43/29) {12,14964}[1,6235]∼={174,258}[29,43] 43/29∼(1247) {348,516}[29,43]∼={6,7482}[1,1247]

41/31∼(1271) {372,492}[31,41]∼={6,7626}[1,1271] 1271∼(41/31) {12,15252}[1,6355]∼={186,246}[31,41]

113/31∼3503 {372,1356}[31,113]∼={12,42036}[1,17515] 107/37∼3959 {444,1284}[37,107]∼={12,47508}[1,3959]

103/41∼4223 {492,1236}[41,103]∼={12,50676}[1,21115] 101/43∼4343 {516,1212}[43,101]∼={12,52116}[1,21715]

47∼(47) {12,564}[1,47]∼={4,188}[1,47] 47 ∼ (47) {12,564}[1,235]∼={6,282}[1,47]

97/47∼4559 {564,1164}[47,97]∼={12,54708}[1,4559] 83/61∼5063 {732,996}[61,83]∼={12,60756}[1,5063]

71∼(71) {12,852}[1,71]∼={6,426}[1,71] 73/71∼5183 {852,876}[71,73]∼={12,62196}[1,5183]

17∼(17) {24,408}[2,170]∼={12,51}[4,17]
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Table 2 (cont)

It would be interesting to symmetrise these identities, and see if any new

purely θ3 identities arise since [GL1] conjecture they have all of them, so this

would be a serious test of their conjecture.
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Chapter 5

Generalizations

5.A Investigation of the Modular Derivative

To help us identify identities that are equivalent we investigate what happens

to an identity in the θ and ηs under the action of the modular derivative, as

described below. The hope is that taking modular derivatives may be another

effective way to generate equivalent identities.

The modular derivative which we shall denote by capital D from now on

is defined in general by:

D = Dk = q
d

dq
− k

12
E2(τ)

where q = e2πiτ and E2(τ) is the Eisenstein series and k is the weight of our

modular form.

Suppose we want to find examples of holomorphic modular forms for Γ

of weight k. Eisenstein series are the “natural” examples that come to mind

when we are required to construct modular forms by brute force methods.
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At this point, it’s convenient for notational efficiency to define the so called

slash operator |k as follows:

f |kγ := (cτ + d)−k
f(

aτ + b

cτ + d
)

for γ =
�
a
c
b
d

�
∈ Γ.

Notice that functions that are modular are going to be invariant under the

action of the slash operator and this is why we bothered with its definition.

Now, for Γ, we define the following subgroup

G0 :=

��
1

0

1

1

��
= {

�
1

0

k

1

�
�k ∈ Z}.

The idea here is that if we can find an “initial” function, f that is invariant

under G0 we can create a new function by defining its values to be equal to

the sum of all f values under translation by the group action, i.e. “average”

over the group elements. A priori, there is no reason for our initial function

to be invariant under G0. The point though is that if we have to sum over the

whole group Γ, there will be little or no chance for convergence. It is easy to

get functions f invariant under G0, and so for such functions we don’t need to

sum over the full group, but rather over G/G0, which is easy to describe and

also quite a bit smaller. Let’s make this precise.

One of the simplest functions to take that is already invariant under our

group “right out of the box” is just f(τ) = 1 as it’s trivially invariant under

|kγ for any γ ∈ G0.

Now, we will simply average over all group elements by slashing the function
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1 by them and adding the results up into a series, as follows:

Ek(τ) :=
1

2

�

γ∈Γ/G0

1|kγ =
1

2

�

c,d∈Z;(c.d)=1

(cτ + d)−k
.

What we end up with then, are functions that are clearly invariant under

“slashing” (except for E2 as seen below). These series are called the Eisenstein

series of weight k correspondingly.

We have the following convergence properties for these series:

Ek(τ) =






0 if k is odd

diverges if k ≤ 0

converges not absolutely if k = 2

absolutely convergent if k = 4, 6, 8

So for k ≥ 2, Ek is holomorphic throughout H including cusps. But the

failure of absolute convergence at k = 2 means that E2 is not invariant under

the slash operator – in other words, it is not modular, but Ek, for k = 4, 6, 8, ...

is a modular form of weight k.

In particular for us, E2 is a holomorphic and it is not quite a modular form

of weight 2 as we mentioned above, it is what’s called quasi-modular and it

behaves as follows:

E2(
aτ + b

cτ + d
) = (cτ + d)2E2(τ)−

6ic

π
(cτ + d).

Continuing, we need to explain the “fancy” definition of the modular

derivative and why the “ordinary derivative” fails for us.
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5.A.1 The Ramanujan differential operator

One of the key properties of modular forms is that they have what’s called

their q-expansions:

f(τ) =
∞�

n=0

anq
n
.

Let’s observe what happens to f , if we just go ahead and take its ordinary

derivative with respect to τ :

d

dτ
f(τ) = 2πi

∞�

n=0

annq
n
.

This suggests to define: � := 1
2πi

d
dτ = q

d
dq . Let’s see what happens if we take

this prime operation to a modular form, f , of weight k. By definition of

modularity we have for f :

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ)

then, taking prime to both sides, we get:

f
�(
aτ + b

cτ + d
) = (cτ + d)k+2

f
�(τ) +

kc

2πi
(cτ + d)k+1

f(τ).

Therefore we see that f � is no longer a modular form, but it is what we call,

quasi-modular. Recall just what we observed for E2 above.

So, instead we define the Ramanujan differential operator to be:

Dk =
1

2πi

d

dτ
− k

12
E2(τ).

This operator takes modular forms for Γ of weight k to modular forms for Γ
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of weight k + 2.

Lemma 5.1: (i)D takes weight-k modular forms to weight-k + 2 modular

forms.

(ii) D is a derivation: (i.e. if f is weight-k, and g is weight k�, then

Dk+k�(fg) = gDkf + fDk�g).

5.A.2 Application of D to identities

Now, we are in position to investigate modular derivatives of our theta func-

tions and their utility, if any, in determining identities up to equivalence. We

will start with examining the modular derivative of θ3. As we know, θ3 is a

modular form of weight k = 1/2. Since, Dk = q
d
dq −

k
12E2(τ) =

1
2πi

d
dτ −

1
24E2(τ)

we seek the derivative of θ3 with respect to the variable τ .

As it appears, there are few ways to go about calculating the derivative.

We know from theory that modular forms for Γ(2) are polynomials in θ43(τ)

and θ44(τ). In particular, a modular form of weight 2 for Γ(2) will be a linear

combination of θ43(τ) and θ44(τ). Therefore, θ
−1
i (τ)Dθi(τ) must be expressible

as aiθ3(τ)4 + biθ4(τ)4, for some constants ai, bi, for each choice of i = 2, 3, 4.

Note that for all modular forms f of weight k, f−1Dkf will be a meromor-

phic modular form of weight 2, for the same group as f . That ratio will have

poles in H at any point where f has a zero. It is very rare for a modular form to

have no zeros in H, but this is true for all of θ3, θ2, θ4, η. So for f(τ) = θ3(mτ)

or f(τ) = η(mτ) etc, that ratio will be a holomorphic modular form of weight

2. This is somewhat special. No zeros in H (only at one of the cusps)!

The simplest thing to do with modular forms is to check the first few

coefficients, utilizing the power of Theorem 2.2 above. Now, Γ(2) has index 6
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in Γ, so it suffices to verify that the coefficients up to q6k/12 = q1 vanish! This

follows from the valence formula. But for Γ(2), it’s simplest just to solve for

ai, bi directly. In particular, to get the modular derivative of θ3(τ), we compare

the coefficients in the q1/2-expansion of θ−1
3 (τ)Dθ3(τ) so that they match with

a3θ3(τ)4 + b3θ4(τ)4 and adjust a3 and b3 accordingly. We get that a3 = 1/24

and b3 = 1/12 producing:

θ
−1
3 (τ)Dθ3(τ) =

1

24
θ
4
3(τ)−

1

12
θ
4
4(τ)

and hence the modular derivative of θ3 is:

Dθ3(τ) = θ3(τ)

�
1

24
θ
4
3(τ)−

1

12
θ
4
4(τ)

�
. (5.1)

Similarly we find the modular derivative of θ4(τ) to be:

Dθ4(τ) = θ4(τ)

�
1

24
θ
4
4(τ)−

1

12
θ
4
3(τ)

�
. (5.2)

Note that another way to get the θ4 derivative is to use the modular symmetry

by τ �→ τ + 1 and apply it to both sides of eq.(5.1) since we know that

θ3(τ + 1) = θ4(τ) by eq.(2.19) from Section 2 above.

Now, it is also convenient to know that the modular derivative of η is zero!

We can see this by noting that 1
ηD(η) will be a holomorphic modular form

(because η vanishes nowhere in H) of weight 2, for PSL2(Z). The only such

modular form is 0 (this follows from the valance formula, see p.117 of [20]).

This gives rise to an alternative way to calculate the modular derivatives, since

for example using Pockhammer symbols we are able to express θ3 purely in

terms of η.
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Let’s now calculate again (just for fun and to see this distinct approach) the

modular derivative of θ4 using the vanishing of η under the modular derivative.

To do this, it would be convenient to have θ4 expressed purely in terms of ηs.

We find exactly this, using the historic identity:

η(2τ)θ4(2τ) = η(τ)2.

Alternatively we could also use the identity θ4(τ) = 2θ3(4τ)− θ3(τ) as we now

have the modular derivative of θ3 derived above readily available. Many other

ways exist of course. We have:

Dθ4(τ) = D(
η(τ/2)2

η(τ)
) = θ4{1/48E2(τ/2)− 1/12E2(τ)} (5.3)

after using the quotient rule. Notice here again that the modular derivative

of θ3 would follow from eq.(5.3) under τ �→ τ + 1 as well.

Now, since the modular derivative operation raises the degree of our iden-

tities by two, (as evidenced by the appearance of E2s), we would leave the

space of quadratic identities, unless, and this was our hope all along, the same

pattern repeats itself in the modular derivatives of the other θ functions; so

that they all get multiplied by the same linear combination of functions that

we found for the other θ-derivatives. This way we could “cancel” this com-

mon factors in the derivatives on both sides after factoring them out and our

identities would remain quadratic.

What we found above, unfortunately is that even though we did get back

θ4 up to some linear combination multiple of itself, the combination is not the

same as it was in the case of θ3. This is apparent in comparing the coefficients
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of θ3 to that of θ4 in the formulas (5.1) and (5.2) respectively.

This means that modular derivatives do not appear to be an effective way

to go between quadratic identities in the η and θ3.

5.B An observation on η

There is an interesting result we have stumbled across about the Dedekind η

function as a result of investigating some of the resultant identities generated

by our lattice method.

We begin by investigating the identity generated by the lattice equivalence:

{72, 72}[6, 6] ∼= {1, 36}[1, 36]

and here is what we get after disassembling this equivalence: k = 12, a =

6, b = 6, b� = 1, l = 1, c = 1, d = 36, d� = 1, implying the following identity via

equation (4.2).:

{θ3(τ/2)− θ3(8τ)− θ2(8τ)− θ2(18τ) + 2η(6τ)}2 + 4{θ2(8τ)− θ2(72τ)}2

+{θ3(τ/2)− θ3(8τ)− θ2(8τ)− θ2(18τ)− 2η(6τ)}2 + 4θ2(18τ)
2

+4{θ3(8τ)− θ3(72τ)}2 + 8θ2(72τ)
2

+8θ3(72τ)
2 = 8θ3(τ)θ3(36τ)

(5.4)
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which after some rearrangement becomes:

η
2(τ) = θ3(τ/6)θ3(6τ)− 1/2{[θ2(4/3τ)− θ2(12τ)]

2 − θ2(3τ)
2 − [θ3(4/3τ)− θ3(12τ)]

2}

−θ2(12τ)
2 − θ3(12τ)

2 − 1/4[θ3(τ/12)− θ3(4/3τ)− θ2(4/3τ)− θ2(3τ)]
2
.

(5.5)

So, this means that, although η is not expressible as a linear combination

of θ3’s (as shown in [GL2]), its square is expressible quadratically in the θ3’s

This is not that interesting, until we notice an old identity involving the square

of η, namely:

η(2τ)θ4(2τ) = η
2(τ)

and combine the two to produce:

η(2τ) =
η2(τ)

θ4(2τ)
=

RHS of eq.(5.5) above

θ4(2τ)
. (5.6)

Well, what this says then, is that the Dedekind eta belongs to the field of

fractions of the ring generated by θ3, whereas it does not belong to the ring

T3, only its square. Recall that, η doesn’t belong to the ring T3, because all

linear identities are known by Theorem 4.1.

It isn’t easy to find other examples of something satisfying those 3 proper-

ties. One ring that does indeed have them, is the ring

2Z[
√
2].

To our knowledge and literature search, we are the first to document this

peculiar fact about the “nature” of η.
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5.C A story leading up to Dirichlet “twists”

And now, another philosophical interlude or fairy tale if you will, some may

call “motivation” to support our following generalizations.

Mathematics throughout the ages, involved the interplay between the con-

crete and the abstract and in my opinion it is crucial to keep the interplay

between these two active, especially nowadays when we are equipped with

entire arsenals of intricately complex machinery of our “abstractions”.

What do I mean here? If we trace back the evolution of thought, inevitably

we will find progressions of thinking that starts in some way or form with some

patterns observable in our “real” world. To not play upon any sophistication

here, let’s just take the example of caveman counting on their wall, for example

via vertical sticks the number of prey hunted down. Sooner or later, from this

“real life” scenario, as we are observing from an evolutionary perspective and

generations and generations are being brought up with this way of patterning,

something interesting happens. A symbolism independent of the direct life

meaning (in this case number of animals hunted down), starts to take a life of

its own inside the heads of people using them! No longer will a person need to

tie the sticks on the wall to animals hunted down, but the sticks will become a

meaningful end to themselves! And hence the process of “abstraction” begins!

Suddenly, patterns are going to be observed within these symbolic abstracted

entities themselves, independent of the “real-life meaning” and such notions as

numbers and number systems will emerge. “Operations” get defined on these

“systems”. Going from the very pragmatic and practical to the abstract as

the hunter understands that if he had 3 sticks on his wall and his rival had 2

yesterday and today he hunted 2 and his rival 3, then he will be able to “add”
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those sticks on his wall and figure out that “equality” must take place between

the “number” of animals he hunted down and the ones that his rival did.

What is important to notice here, is that what was initially “concrete”

eventually became “abstract” via some kind of symbolic “representation” of

it, and this abstract idea starts to have a life of its own and in a sense will

become again “concrete” to the next generation of thinkers to whom it will

already be taught as “facts” or “real” things and the process goes on and

on. Notice something very similar happening in the context of math, as things

that were at one time considered abstractions and hard to comprehend and find

relatable or “real”, like the complex numbers, become the bread and butter of

the next generation of mathematicians who are brought up using them.

Now as systems of abstract entities evolve with time and thought, like stick

representations become numbers and numbers eventually morph into mathe-

matics field theories, it becomes increasingly harder and harder in a sense to

notice within the concrete structures of the time, the “new abstractions” that

are going to lead to “meaningful” mathematics. This is where mathematics

becomes somewhat of an art form. The more established structures we have

at our disposal, the more patterns we can notice within the infinitude of them,

but the harder it becomes to make up the “right” new “definitions” and notice

the “right” new ”axioms”.

Inherently mathematics is a field of categorization. Mathematicians do

a lot of categorization of our ideas. Of course it is highly non-trivial how

exactly we need to go about our categorizations in accordance with the above

expressed need toward meaningful mathematics, but let’s examine here below

some heuristic reasoning that lead us to a particular end result.

Let’s assume that we are given the notion of a series to begin with. Let’s
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follow a possible, but contrived “evolutionary” route of the progression of

abstractions from this starting point on, and maybe learn something on the

way. We begin by taking a typical abstracted notion of a series: Sn =
�n

i=0 ai.

Then we look at the concrete examples and start to play:

(a) Sn =
�n

i=0 i

(b) Sn =
�n

i=0 i
2

(c) Sn =
�n

i=0 i
k

Well, (a) is very “natural”, as it’s just the sum of the progression of integers.

To get to (b), we could notice that within Z there is also the ability via another

binary operation to multiply integers, so we should perhaps play with that.

And once we try (b) we can always ask the ”generalized” version of the same

question, hence (c).

Mathematics is also an interplay between the “constant” and the “vari-

able” just as it’s the interplay between the “concrete” and the “abstract”,

the “discrete” and the “continuous” . So knowing that these patterns are in

general “principle facts” within the whole of mathematics, it is always instruc-

tive in my opinion to ask ourselves just how these things are present in our

current line of investigation, and if they are not, how we could include them

meaningfully, if at all.

So, with this in mind let’s again have a look at our original series and try

to look at it from this perspective:

Sn =
�n

i=0 ai what is the “constant” and what is the “variable” in this

form?

We are essentially adding up using the underlying notion of the progression

of integers i = 0, ..., i = n things ai that depend on them, i.e. some functions of

i. Let’s look at the particular “generalization” that leads to: Sn =
�n

i=0 aix
i.
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Here, we noticed that we can add a variable x to help us with the play

and get another generalization that gives us an extra “degree of freedom” to

play with. Now, this is not just a mindless exchange of a freed up constant

into a variable, as this define the rudiments of power series, for example. But

needless to say, the point is that we can not know a-priori what will or will

not be, so for this reason we can’t stop playing with this kinds of “exchanges”

in mathematics.

By the time we are looking at entities likes sums and such, we must already

have had some kind of working “theory” or at least some kind of framework

in mind that we wish to expand and prove results in and with. If this newly

generalized form of the series (for examples’ sake) enables us to prove previ-

ously unseen results with a possibly even larger scope of results covered, then

undoubtedly our generalization or “exchange” had utility. (It’s quite obvious

that power series, for example, have enormous utility.)

Let’s keep on going even further, so far, quite mindlessly just using substi-

tutions and change of variables and see what we get:

Sn =
n�

i=0

aiq
i where q = e

2πiτ
.

This q substitution makes sense from the point of view of Fourier series, any

periodic function can be written in that way.

Let’s now focus on what is the “essential feature/ structure” that is the

guiding ”light” of our sum: Perhaps it is this “progression”:

i = 0, ..., n.
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Well, one of the things about elements of N is that they are discrete! We now

again remind ourselves that math is also born from the interplay of not just the

constant and the variable, but the discrete and the continuous and there are

many examples of both forms to generalize. Here we can for example extend N

to allow for Z and suddenly we are having to deal with interesting phenomena

like singularities theory and calculating complicated integrals using residues.

Let’s now look at yet a different aspect of the “form”, we call series. Let’s

see how we could generalize Z in the definition of the above series. What may

be one particular essential feature of Z that we can potentially expand our

generalization, progression into?

What do we know about Z? What is it an example of? I.e. what structure

does Z possess? Let’s look back at our “meta organizing principles” (at least

the ones we are playing with here, for the sake of exercise) for some inspiration!

We started off by the comparison of concrete to that of the abstract. So let’s

ask now the reverse, that is, what abstraction is Z a concrete example of?

Remember here the “dual” approach of the Poincaré quote we mentioned in

the introduction.

One possible answer is that Z is one of the most elementary examples of

what is better known as a geometrical lattice! We note here again that this

question opens up another can of worms and each can leads to new and exciting

directions! We just happen to chose the direction we do, as it’s relevant to our

end goal in mind, as of course Z is also an example of many other structures,

besides a lattice.

So, now, can we generalize the notion of series using this particular infor-

mation?

Let Λ be any geometric lattice. Let’s extend our notion of “discrete” sum-
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mation of things over general lattices

S(Λ)(τ) =
�

v∈Λ

q
v·v

and we arrive at the definition of theta series of lattices.

Going yet in a different direction, we could attack the integrality inherent

in the definition of θ3 and “exchange” Z with yet a different “aspect” of its

structure. Namely, what we have in mind is what’s called Dirichlet twists.

We take the structure of Z preserved under a particular homomorpism such

that its image lets us play with elements in the upper half plane and this way

can interface with our q variable compatibly in the definition of theta series.

We stop here the “philosophical progression” and expand on this direction.

Of course note that we could take quite a detour here if we instead of choosing

to generalize from one discrete entity Z to another discrete one Λ, we took the

route that we generalized from discrete to a continuous entity where we would

land in the field of functional analysis, in case we instead chose to play with

the replacement of the discrete notion of summation with that of continuous

integrals.

5.D Dirichlet “twists”

A very interesting generalization involves the ”twists” of θ3 by what’s called

Dirichlet characters. These characters play a big role in the theory of modular

forms – for example they can twist modular forms. They are a key tool in

proving that there are infinitely many primes in every arithmetic progression

i, i+ n, i+ 2n, ...(when gcd(i, n) = 1).
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Choose any positive integer N ∈ N, then the numbers {1 ≤ n ≤ N}

coprime to N form a group (Z/NZ)× given by multiplication mod N . With

this, we can now define:

Definition: A Dirichlet Character χ mod N is: any 1-dimensional complex

representation of (Z/NZ)× i.e. we have this homomorphism

χ : (Z/NZ)× → C
×
.

We call m the period of a Dirichlet character χ if it is the smallest positive

integer with this property: whenever i, j are coprime to N and i ≡ j(mod

m), then χ(i) = χ(j). χ will have period dividing N . If the period is exactly

N , we call χ primitive mod N . Now, in order to utilize this in our definition

of θ3 as a form of associating “something” to each z ∈ Z, we need to extend

this definition to all of Z which is possible as follows:

χ(z) = χ(zmodN) if gcd(z,N) = 1;

χ(z) = 0 if gcd(z,N) > 1.

Definition: χ is even if χ(−1) = 1 and odd if χ(−1) = −1.

Note that there will be the same number of Dirichlet characters mod N ,

as the size of (Z/NZ)×.

Now we are in position to define how Dirichlet characters “twist” θ3:

θ(χ, τ) :=
1

2

�

n∈Z

χ(z)q
n2

2 =
1

2

N�

a=1

χ(a)ψN/a(N
2
τ) (5.7)
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for χ nontrivial and even and

θ(χ, τ) :=
1

2

�

z∈Z

nχ(z)q
n2

2 =
N

2

N�

a=1

χ(a)ψN/a(N
2
τ) (5.8)

for χ odd.

Here is a fascinating example:

Example 5.D.1: As a warmup, let’s find all Dirichlet characters mod 12.

First note that (Z/12Z)× = {±1,±5}. The multiplicative group (Z/12Z)x

is the direct product of the order-2 subgroup generated by -1, and the order-

2 subgroup generated by 5. So any homomorphism (Z/12Z)× → C
× is

uniquely determined by its values on those generators. Since 7 = −5 is the

product of −1 and 5 mod 12, χ(7) = χ(−1)χ(5). Because −1 has order 2, it

must be sent to±1. Similarly, 5 has order 2 (since 52 ≡ 1 (mod 12)), so it too

must be sent to either ±1. Because −1 and 5 are independent generators,

any of those 4 possible choices of signs defines a Dirichlet character. If both

−1 and 5 get sent to the same value, then the character will have period

6, not 12. The choice −1 �→ −1 and 5 �→ 1 is also imprimitive, as it has

period 4. The only primitive character at modulus 12 corresponds to the

remaining choice:

χ(±1) = 1 and χ(±5) = −1.

This is fascinating once we let χ, τ/12 do its twist to θ3(τ), as follows:

θ(χ, τ/12) =
1

2

12�

a=1

χ(a)ψ12/a(12τ) =
1

2
{2ψ12(12τ)− 2ψ12/5(12τ)} = η(τ)
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which we obtain via our linear identity (2.3) above.

Hence, interestingly the twist of θ3 associated to the above unique primitive

Dirichlet Character mod 12, reproduced η(τ).

Next, note that these formulae above can be inverted. For N even and n

coprime to N we get:

ψN/n(τ) =
2

ϕ(N)

�

χ

χ(n)θ(χ, τ/N2) (5.9)

and for N odd and n coprime to N we get:

ψN/n(τ) =
2

Nϕ(N)

�

χ

χ(n) θ(χ, τ/N2) ) (5.10)

where the sums are over all characters χ (primitive and imprimitive) of (Z/NZ)×.

These ‘twisted’ theta functions are thus modular forms, and any n-dimensional

Euclidean integral lattice, and any of its (finite-order) glue classes, can be ex-

pressed as a homogeneous polynomial of degree n in them.

5.E Jacobi forms

Another possible generalization of the material presented here, similarly as

was done in [GL2], is to introduce another variable z ∈ C, creating Jacobi

forms, namely

ϑ3(z, τ) :=
�

Z

e
2mπiz+πiτm2

;

ψk(z, τ) :=
�

Z

e
2(m+1/k)πiz+πiτ(m+1/k)2

.
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The resulting identities though are quite complicated, because the specific

rotation involved in the integral equivalence of lattices will be captured in the

z-dependence.
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Chapter 6

Conclusions

As we now see, finding identities is a non-trivial feat. They either come to

life by being “stumbled upon” as byproducts of examining certain theories,

or we have to find systematic ways to generate them, as the other alternative

of producing them via “brute force” methods, like Ramanujan did, are very

timely and even though may be resultant of flashes of genius, they do not

really shed light on the structural underpinnings that govern them.

We are therefore very fortunate to have systematics methods at our dis-

posals to generate them, like the lattice method developed by the authors of

[GL1].

What we have done here for the most part, is a generalization of their

lattice method to quadratic identities that, unlike was done in [GL1,] includes

not only θ3 identities, but identities involving both θ3 and η.

We not only utilized their lattice gluing decomposition idea to generate

these identities, but we have spelled out (based on the same underlying idea) a

general framework to be able to deal with identities, not only in the quadratic,

but of any degree n.
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We also examined ways to go in between these identities up to equivalence.

We have looked at the idea of utilizing the modular symmetries of the functions

we are dealing with and utilizing them in symmetrizations of the identities to

reduce their complexities. This is manifest either by the disappearance of the

ηs from the original identity to the symmetrized one or simply by the reduction

in the number of terms involved in the identity.

We have examined another possible idea to go between identities, namely

the application of the modular derivative, albeit here we arrived at a negative

conclusion of their utility.

One of the particularly interesting finding in this paper is the observation

we took on the nature of η belonging to the field of fractions of T3. This

is quite unexpected and came out purely from examining some of the newly

generated identities and matching and connecting them in various ways to

older known/historic identities.

Finally, we mention probably the most significant possible generalization

of what we were doing here, namely the Dirichlet Twists, as they provide a

more general framework and a better “language” within which generation of

identities extend beyond the scope we examined. They provide the platform

for any n-dimensional Euclidean integral lattice, and any of its (finite-order)

glue classes to be expressed as a homogeneous polynomials of degree n in them.

Thus they provide the natural generalization of our lattice technique to glues

of arbitrary order. We would obtain long lists of polynomial identities in the

θ(χ, τ).
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Chapter 7

Appendix A: An interesting

application of lattices: “Can

you hear the shape of drums?”

Let’s recall Mark Kac’s famous question: “Can one hear the shape of a drum?”

This was an exciting sounding applied rephrase of the age old math question

whether the eigenvalues of the Laplacian for the Dirichlet problem determined

by a planar domain determine the shape of that domain?

I chose to talk about this here as I find this a fascinating interplay between

lattice theory, modular forms, geometry and physics! In no way is this material

new, or original, nor is my exposition of it, as most of the material here closely

follows similar expositions in [21] [31] and [32].

It turns out this questions was harder to answer than it appeared first, as

it took about half a century for mathematicians to conclude with the answer

in the originally posed 2D planar context. However, interestingly enough,

the answer came apparent first in the context of generalizing the question to
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arbitrary Riemann manifolds. John Milnor provided the first counterexamples

in the form of two 16-dimensional tori that “sounded” the same, even though

they possessed different shapes.

I would like to present here a tentative progression of ideas one could

potentially follow as a, so to speak “schedule of discovery” that could have

been followed in finding the conclusive answer to the question for the generic

planar domain. My reason for doing so is that via this example I will be able

to point out generic methodological approaches in doing research in theoretical

mathematics. In a way I will try to point out some heuristics that take place

in such endeavours.

First, we set out to solve a reduced problem: Can we hear the shape of a

string? We do this often in mathematics as there are invaluable insights one

can gain by doing so.

The answer is a resounding yes! , as it’s well known that the partial

differential equation for the string gives the superposition of sine and cosine

waves for the general solution, we show this now below.

A vibrating string of length L can be idealized by the interval [O,L] of real

numbers. We are satisfied to have a working model for this system, if we find

a function f(x, t) for positive t, that shall express the amplitude of the string

at an given time t and location x. Since the endpoints are fixed we have the

boundary conditions: f(o, t) = f(l, t) = 0 for all t time. We know that this

system needs to satisfy the wave equation:

∂2f

∂x2
=

∂2f

∂t2
.

The standard way to seek solutions for this system is to assume via sepa-
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ration of variables to seek stationary solutions, f(x, t) = g(x)g(t), where the

general shape of the wave remains stationary, g(x), and it’s amplitude is ad-

justed by h(t). We represent the fixed endpoints here via the g(0) = g(L) = 0

requirement.

When we substitute this above separation assumption into the wave equa-

tion, we get:

g(x)h��(t) = g
��(x)h(t) i.e. g��(x)/g(x) = h

��(t)/h(t).

Since the LHS is purely a function of x and the RHS is purely a function of

t, the only way to make sense of this is to set them both equal to a constant,

as we can see by differentiation of the LHS by x and the RHS by t. We can

show that this constant needs be negative, so it’s convenient to set both sides

equal −λ Thus, we get:

g
��(x) = −λg(x) (7.1)

h
��(t) = −λh(t). (7.2)

One can check that the functions sin(
√
λx) and cos(

√
λx) are solutions

of the spatial equation, and, in fact, the general solution turns out to be a

combination of these:

g(x) = A ∗ sin(
√
λx) + B ∗ cos(

√
λx)

with A,B constants. From the boundary condition g(0) = 0, it follows (since

cos(0) = 1 andsin(0) = 0) that B = 0, so g(x) = A ∗ sin(
√
λx).

The boundary condition g(L) = 0 implies that
√
λL must be an integral

92



multiple of π, i.e.
√
λL = nπ, so λ must be a number of the form λ = (nπL )2.

The general solution of equation (7.2) is:

h(t) = C ∗ sin(
√
λt) +D ∗ cos(

√
λt)

here the constants C,D are determined by the initial configuration and velocity

of the string. h(t) represents a periodic oscillation of frequency
√
λ/2π But the

same λ as in (7.1) appears in (7.2), so it follows that h represents an oscillation

of frequency
√
λ/2π = n/2L So, the basic waveform g is given by a sinusoidal

function, but its frequency n/2π must be carefully chosen in order that the

function be zero at 0 and L. Thus the frequencies at which the string can

vibrate are: 1/2L, 2/2L, 3/2L, ... and so on.

We have thus solved the one-dimensional analogue of Kac’s question: The

shape of a stretched string is captured completely by its length L, and we can

recover L from the spectrum as half of the reciprocal of the lowest frequency.

Thus one can hear the shape of a string!

Naturally, going up a dimension, we explore the 2-dimensional version of

this problem, for the generic 2D-planar domain as posed in the original ques-

tion we are interested in answering. We set up a PDE very similar to the 1D

version, except here the spatial derivative is replaced by the Laplacian

∇ =
∂2

∂2x
+

∂2

∂2y

i.e. ∂2f
∂2t = ∇f .

We would proceed in theory similar as in the 1D case and once we get the

allowable λs from the spatial equation, the temporal equation is, just as above
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with the allowable λs from the spatial case. However, we soon discover that

mathematicians do not have an exact solution for spatial equation: ∇g = −λg

for a general planar domain! Numerical approximation do exist, however, the

trick is that we can’t expect the shape of any random planar domain to be

captured by a finite number of numbers (frequencies and only finite degree of

accuracy) we would gain by the numerical solutions! This is in contrast with

the 1D case, where the ”shape” of a string is essentially captured by just the

single number, the length, L, of the string!

The lack of this solution in conjunction with the lack of obvious counterex-

amples leads to yet again extension/generalization of the problem to higher

dimensions, that of n-dimensional manifolds. So, we ask, can we hear the

shape of a Riemannian manifold? If the answer is affirmative, then clearly

this must be a harder problem, since our original question is just a sub-case.

On the other hand, if the answer is negative, then we may have allowed for the

study of wider scope of counterexamples, from which we may draw learning

onto the 2D case. In 1964, John Milnor exhibited a pair of isospectral 16-

dimensional manifolds. Milnor’s examples are constructed by gluing together

opposite faces of a cleverly chosen 16-dimensional “parallelogram” to produce

flat tori.

How does this relate to lattice theory? Well, we know a lattice is a subset

in R
n of n linearly independent vectors, {v1, ..., vn} So if we take a lattice in

some Euclidean space, we can construct a quotient manifold out of the space

by ”rolling the space up” around the lattice points, i.e. we identify 2 points as

being the same if their difference lies on a lattice point. So, similarly in R
16 of

Milnor’s example, there exist two dissimilar lattices, E8 ⊕ E8 and D
+
16 whose

quotient tori happen to be isospectral! We can describe Dn as the sublattice

94



of Z
n consisting of all points (m1, ...,mn) with

�
i mi even. So Dn is the

checkerboard lattice. One of the glue classes ofDn is (1/2, 1/2, ..., 1/2)+Dn.D
+
n

isDn[1/2, ..., 1/2]. This is integral iff 4|n, in which case it is self-dual. D+
4 = Z

4

and D
+
8 = E8.

The reason is that the spectrum of the quotient manifold happens to be

determined entirely by the number of vectors of each length in the lattice we

are quotienting out by, so in essence determined by its theta function!

ΘΛ(q) =
�

l

alq
l

where q = e2πiz and al is the number of vectors in Λ of length l.

So, accordingly, we call a lattice property “audible” if it’s determined by

the theta function.

The main problem was, then, to find in which dimensions do exist dissimilar

lattices that have the same theta function! Equivalently, the same number of

vectors of every length!

Now, the connection to modular forms happens as we realize that the theta

functions of even unimodular lattices (lattices that have every length squared

even and have just one point per unit volume) are modular forms for the full

modular group PSL2(Z) i.e.

Θ(
az + b

cz + d
) = (cz + d)n/2Θ(z)

for every 2× 2 matrix
�
a
c
b
d

�
∈ PSL2(Z) with determinant 1 where n is the

dimension of the lattice.

Now, since in 16-dimensions there happens to be only one such function
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up to scalars, namely:

Θ(q) = 1 + 480
�

n

σ7(n)q
2n

where σ7(n) is the sum of the 7-th powers of the divisors of n (i.e. σ7(n) =
�

d|n d
7), therefore every 16-dimensional unimodular lattice must have this

very theta function (!), since the coefficient of q0, the number of vectors in

each lattice of length zero is 1. So, just to reiterate, both of these lattice’s

theta series must be modular forms with their q-expansions starting with a 1,

but there is only one such function, in 16-dimensions!

Now, we can look at the geodesic on a Riemannian manifold as the natural

analogue of a straight line in the Euclidean plane, i.e. a curve that does

not deviate from the direction in which it is travelling. The list of vibration

frequencies of a vibrating manifold is closely related to the list of lengths of

closed geodesics on the manifold; (this is plausible, as one might expect waves

to propagate along geodesics.) Milnor’s two 16-dimensional tori were chosen

so that the list of lengths of closed geodesics was the same for each. It can be

shown that two flat tori with the same geodesic lengths must be isospectral,

so it follows that Milnor’s tori both vibrate at exactly the same frequencies!

In 1984, Toshikazu Sunada of Tohoku University realized that an idea from

group theory could be brought to bear on the problem of constructing isospec-

tral manifolds. Sunada’s technique involved permutation representations and

linear representations of groups.

A permutation representation for a group G, is just a homomorphism that

assigns to each group element g a permutation on a fixed set X.

A linear representation of a group G, is a homomorphism that assigns to
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each element g in the group a linear transformation T on a fixed vector space

V ; since each linear transformation can be represented by a matrix, we are in

effect assigning to each element g in the group an n× n matrix M .

Notice that given a permutation representation for G, we can always define

a corresponding linear representation, via letting the columns of our linear

transformation matrixM to be determined by seeing that if the permutation,g,

on the set of numbers 1 to n exchanges i toj, then our i-th column will have

a 1 in the j-th row and rest zeros.

The interesting fact for us is that it can happen that two distinct permuta-

tion representation give rise to linear representations that are isomorphic and

as it turns out, this way a key thing to notice towards a solution to the prob-

lem of constructing isospectral regions! Although Sunada’s technique was very

interesting, it was believed that it offered no insight on Kac’s original ques-

tion, as the the spaces manufactured by the method could not be regions in

the Euclidean plane. In 1989, however, Pierre Berard of the Institut Fourier

in Grenoble, France, discovered a new proof of Sunada’s theorem that per-

mitted wider application of the method. In 1990, Scott Wolpert et al. used

Berard’s discovery to construct a pair of isospectral planar regions that are

not geometrically congruent, hence answering the questions:

One cannot hear the shape of a drum!

We will now outline the construction of these geometrically distinct planar

domains that sound the same. Let G be the free group generated by the

products of α, β, γ Let X be the set {1, 2, 3, 4, 5, 6, 7} Let now:

α correspond to the following permutation on X: (26)(37)

β correspond to the following permutation on X: (24)(35)

γ correspond to the following permutation on X: (12)(56).
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Now, we can associate to this set X and these permutations αβ, γ a Cayley

graph faithfully encoding the information of the permutations. Just draw

vertices labelled with the elements from our set X and connect them with edges

corresponding to our permutations α, β, γ respectively, when two numbers are

permuted with either one of these permutations. Based on this diagram, we are

ready now to construct one of the planar regions, as follows. We start with the

“topmost” vertex 7, from the Cayley diagram. We associate to each number

from our set X a triangle, with sides labelled, α, β, γ respectively. Now, we

take this number 7 labelled triangle and reflect it into a copy of itself along

each of it’s α, β, γ labelled edges, according to which number the permutations

corresponding to that side maps the number 7 into, and label the resultant

triangle with the image of 7 under the permutation corresponding to the edge

we are reflecting with respect to. So, 7 goes to 3 by α and is left untouched by

β and γ, hence we reflect our triangle labelled 7 along it’s α side to a reflected

copy of itself, labelled 3 and do not create reflected copies along the sides

corresponding to β, γ.

Next, we take the just drawn reflected triangle labelled 3 and see what each

permutation does to it. We observe that other than α taking it back to 7, it’s

only β that moves it, γ leaves it untouched. So since β maps 3 to 5, we reflect

our triangle labelled 3 along it’s β side to a copy of itself, now labelled 5, and

do not create a reflected copy along the γ side. We keep on going according

to this recipe, to reach our first planar domain D1.

Now, as it turns out that G has another permutation representation, where:

α� correspond to the following permutation on X: (57)(46)

β� correspond to the following permutation on X: (24)(35)

γ� correspond to the following permutation on X: (12)(56);
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This has the property that the linear representation corresponding to this

permutation representation is isomorphic to the linear representation we get

from the first permutation representation. It’s clear, as we compare the re-

spective Cayley graphs that the permutation representations they represent

are distinct ones!

Now, just as we did before for the first representation, we can create our

second planar region D2, corresponding to this representation’s Cayley graph,

exactly analogous to what we did above. The magic is that since these regions

were created from distinct permutation representations that have isomorphic

linear representations, we can use a transplantation argument, proposed by

Buser to show that they are isospectral regions!

Assume, that a waveform φ is defined for the region D1. Since D1 is made

by reflection of the same ”model triangle” through it’s edges multiple times,

according to the recipe dictated by our permutations, we can observe few

things.

For ease of argument, we denote the waveform φ’s restrictions to each of

the 7 separate model triangle regions, by A,B,C...,G

(i)First, since the outer edges of our region is fixed from vibrating, the

waveform φ takes the value zero on those edges.

(ii) Second, since φ is a valid waveform on D1, it smoothly transitions

through inner edges.

Notice, that any linear combinations of the separate components A,B,...,G

of φ defined on the model triangle will create again a valid waveform for the

model triangle.

We are seeking to transplant this waveform φ defied for D1 onto a valid

form defined on D2. Note that any proposed transplanted waveform will have
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to obey conditions (i) and (ii) on D2 (i.e. needs be zero on the outer edges and

smoothly transition across inner boarders.) Here we check these conditions for

the proposed transplant solution: On the first topmost triangle the proposed

waveform is: B-C+D check (i): On the β (green) edge: we see from D1 that

B and C agree on the green β inner boundary as they need to transition

smoothly and hence B+-C=0 ; we also note that D is zero on the green β

boundary; so all together B-C+D is indeed zero on the green=β boundary

edge as desired. On the γ (blue) edge: from the region D1 we observe: B is

zero C=D and hence, B-C+D=0 as desired. On the α (red) edge: note this is

an inner boundary edge for this triangle, so we resort to check condition (ii)

here. check (ii): On the α (red) inner edge: the proposed solution is A+C+E

for the adjacent triangle, so we need to check smooth transition; Note from

D1 that A smoothly transition to B and D smoothly transition to E; now C

on the α=red edge is zero on D1, but we can use what’s called a reflection

principle to extend a waveform smoothly through it’s boundary by taking it’s

negative value on the mirror imaged reflected domain, and still get a valid

waveform on the reflected extended domain. Hence, here we see that B-C+D

smoothly transition to A+C+E as once again: A to B + E to D + C to -C

are all smooth transitions and hence by the linear superposition principle their

combination is not only a valid waveform, but a smoothly transitioning one

through the boundary edge.

Similarly we can check that the proposed transplant waveform work well

for the D2 domain.

So what does this show? Well, we started with a waveform with λ eigen-

value corresponding to a certain frequency of vibration on D1; we considered

the restriction of this waveform onto each of the domain’s 74 sub-triangle
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regions in order to define a valid waveform on D2 via superposition of the

model regions waves. Since superposition does not change the corresponding

eigenvalue/frequency of vibration we managed to be able to assign to each

Laplacian of λ eigenvalue on D1 a valid Laplacian of the same eigenvalue on

the sister domain D2.

By symmetry of the argument we can argue that the λ eigenspaces for

the regions D1 and D2 have the same dimension, just reverse the mapping

direction via the same procedure to transplant solutions on D2 to D1.

So far we have only provided a solution that we checked works, but how

do we get one?

Well, we work backwards trying to constrain our solution by the conditions

(i) and (ii) and in hopes of the theory propsed by Buser of distinct permutation

representations having isomorphic linear representation we know that there

must exist solutions obeying these constraints, with this in mind, we proceed

as follows:

On D2, starting with the topmost triangle, we note that it happens to be

it’s red edge that is an inner transition edge, so we look for already smooth

transitioning waveforms on inner red boundary edges existing within D1. We

find that red=α edge inner separates triangle regions A to B and E to D. So as

a first trial, we could propose that B+D could work for the topmost triangle

and A+E for the below reflected one. However this only satisfies our second

constrain (ii) and upon checking constrain (i) we realize that: on the green β

edge, B goes to C and D goes to zero and hence the only way we will remain

consistent with requirement (i) is to add a -C waveform to our mix in order to

compensate for the effect of getting a C across the boundary via the extension

principle. It turns out that this ± C does actually create a fully consistent
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waveform across all other triangles as we work our way through reflections.

It is interesting to consider questions analogous to whether one can hear

the shape of a drum, especially from what we learned from history of the

exploration of the above question with the drum. There lies a wide spectrum

of questions to explore, once we consider the following scheme:

Consider “objects” X (manifolds or some such, say from geometry) to which

we can sensibly attach the notion of a spectrum. Consider now, in addition to

our object x ∈ X some additional ”linked” property p, that our object possess.

Ask the questions:

How is the spectrum of the object x reflected in the linking of x top? So,

specifically for example: Once, p is known, what can we tell about the object

x, holding the spectrum constant? Or:

Once, the object x is known with certain spectrum, what can we tell about

property p?

For example, we could have our object x, some nonlinear classical mechan-

ical system and the property, p dynamics of the system.

So, we know that if one makes a seemingly insignificant modification to

the initial conditions, the system’s long-time behaviour is affected drastically.

It is of interest to comprehend if and how chaos shows up in the spectrum of

the associated quantum-mechanical system.
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Chapter 8

Appendix B: Sage source code

Here are the lattice equivalences generated from Theorem 4.2 above, in the

following format:

[k, l, a, b, c, d, b�, d�,m, n]

and underneath:

[ka, kb][a, bb�]

[lc, ld][c, dd�]

corresponding to the variables identified in the theorem. Refer to equation

(4.1.). These were calculated in Sage. We attach here the sage output and a

sample algorithm for each part (i) and (ii) of the Theorem as the other ones

are similar.

Satisfying part (i) constraints for k,l,a,b,c,d,b’,d’ pozitive integers in The-

orem 4.2:

sage:

for k in [12]:
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..for l in [12]:

... for B in [1,5]:

... for D in [1,5]:

... for m in [1,..,floor(k/2)]:

... for n in [1,..,B]:

... for c in [1,..,k*m*n]:

... for b in

[1,..,floor((k^2-m^2)*l*c/(n^2))]:

... a=1

... while (a+B^2*b)%k!=0:

... a=a+1

... while a<=b:

... if (lcm(k*m,k*n)%c==0 and gcd(m*a,n*b)%c==0 and

(B*m-n)%k==0 and k*l*c==m^2*a+n^2*b and

m^2*a+n^2*b<=k^2*a and ((m*a*D+n*c)%(l*c)==0 or

(m*a*D-n*c)%(l*c)==0) and ((-m*c-n*b*D)%(l*c)==0 or

(m*c-n*b*D)%(l*c)==0) and

gcd(a,gcd(b,int((a+B^2*b)/k)))==gcd(c,gcd(D,int((c+D^2*(a*b/c))/l)))==1

and gcd(B,k)==gcd(D,l)==1 and c*c<=a*b and

(vector([a,B,k])==vector([c,D,l]))==false

and (a+B^2*b)%k==0 and (c+D^2*(a*b/c))%l==0 ):

... print [k,l,a,b,c,int(a*b/c),B,D,m,n]

... print [k*a,k*b,a,b*B];[l*c,l*int(a*b/c),c,int(a*b/c)*D]

... a=a+k
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f o r k=12, l =12:

[ 1 2 , 12 , 71 , 73 , 1 , 5183 , 1 , 1 , 1 , 1 ]

[ 852 , 876 , 71 , 73 ]

[ 1 2 , 62196 , 1 , 5183 ]

[ 1 2 , 12 , 61 , 83 , 1 , 5063 , 1 , 1 , 1 , 1 ]

[ 732 , 996 , 61 , 83 ]

[ 1 2 , 60756 , 1 , 5063 ]

[ 1 2 , 12 , 59 , 85 , 1 , 5015 , 1 , 1 , 1 , 1 ]

[ 708 , 1020 , 59 , 85 ]

[ 1 2 , 60180 , 1 , 5015 ]

[ 1 2 , 12 , 49 , 95 , 1 , 4655 , 1 , 1 , 1 , 1 ]

[ 588 , 1140 , 49 , 95 ]

[ 1 2 , 55860 , 1 , 4655 ]

[ 1 2 , 12 , 47 , 97 , 1 , 4559 , 1 , 1 , 1 , 1 ]

[ 564 , 1164 , 47 , 97 ]

[ 1 2 , 54708 , 1 , 4559 ]

[ 1 2 , 12 , 37 , 107 , 1 , 3959 , 1 , 1 , 1 , 1 ]

[ 444 , 1284 , 37 , 107 ]

[ 1 2 , 47508 , 1 , 3959 ]

[ 1 2 , 12 , 35 , 109 , 1 , 3815 , 1 , 1 , 1 , 1 ]

[ 420 , 1308 , 35 , 109 ]

[ 1 2 , 45780 , 1 , 3815 ]

[ 1 2 , 12 , 25 , 119 , 1 , 2975 , 1 , 1 , 1 , 1 ]

[ 300 , 1428 , 25 , 119 ]
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[ 1 2 , 35700 , 1 , 2975 ]

[ 1 2 , 12 , 23 , 121 , 1 , 2783 , 1 , 1 , 1 , 1 ]

[ 276 , 1452 , 23 , 121 ]

[ 1 2 , 33396 , 1 , 2783 ]

[ 1 2 , 12 , 13 , 131 , 1 , 1703 , 1 , 1 , 1 , 1 ]

[ 156 , 1572 , 13 , 131 ]

[ 1 2 , 20436 , 1 , 1703 ]

[ 1 2 , 12 , 11 , 133 , 1 , 1463 , 1 , 1 , 1 , 1 ]

[ 132 , 1596 , 11 , 133 ]

[ 1 2 , 17556 , 1 , 1463 ]

[ 1 2 , 12 , 19 , 245 , 5 , 931 , 5 , 5 , 5 , 1 ]

[ 228 , 2940 , 19 , 1225 ]

[ 6 0 , 11172 , 5 , 4655 ]

[ 1 2 , 12 , 17 , 295 , 5 , 1003 , 5 , 5 , 5 , 1 ]

[ 204 , 3540 , 17 , 1475 ]

[ 6 0 , 12036 , 5 , 5015 ]

[ 1 2 , 12 , 7 , 545 , 5 , 763 , 5 , 5 , 5 , 1 ]

[ 8 4 , 6540 , 7 , 2725 ]

[ 6 0 , 9156 , 5 , 3815 ]

f o r k=12, l=6

[ 12 , 6 , 35 , 37 , 1 , 1295 , 1 , 1 , 1 , 1 ]
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[ 4 20 , 444 , 35 , 37 ]

[ 6 , 7770 , 1 , 1295 ]

[ 1 2 , 6 , 31 , 41 , 1 , 1271 , 1 , 1 , 1 , 1 ]

[ 372 , 492 , 31 , 41 ]

[ 6 , 7626 , 1 , 1271 ]

[ 1 2 , 6 , 29 , 43 , 1 , 1247 , 1 , 1 , 1 , 1 ]

[ 348 , 516 , 29 , 43 ]

[ 6 , 7482 , 1 , 1247 ]

[ 1 2 , 6 , 25 , 47 , 1 , 1175 , 1 , 1 , 1 , 1 ]

[ 300 , 564 , 25 , 47 ]

[ 6 , 7050 , 1 , 1175 ]

[ 1 2 , 6 , 23 , 49 , 1 , 1127 , 1 , 1 , 1 , 1 ]

[ 276 , 588 , 23 , 49 ]

[ 6 , 6762 , 1 , 1127 ]

[ 1 2 , 6 , 19 , 53 , 1 , 1007 , 1 , 1 , 1 , 1 ]

[ 228 , 636 , 19 , 53 ]

[ 6 , 6042 , 1 , 1007 ]

[ 1 2 , 6 , 17 , 55 , 1 , 935 , 1 , 1 , 1 , 1 ]

[ 204 , 660 , 17 , 55 ]

[ 6 , 5610 , 1 , 935 ]

[ 1 2 , 6 , 13 , 59 , 1 , 767 , 1 , 1 , 1 , 1 ]

[ 156 , 708 , 13 , 59 ]

[ 6 , 4602 , 1 , 767 ]

[ 1 2 , 6 , 11 , 61 , 1 , 671 , 1 , 1 , 1 , 1 ]

[ 132 , 732 , 11 , 61 ]
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[ 6 , 4026 , 1 , 671 ]

[ 1 2 , 6 , 7 , 65 , 1 , 455 , 1 , 1 , 1 , 1 ]

[ 8 4 , 780 , 7 , 65 ]

[ 6 , 2730 , 1 , 455 ]

[ 1 2 , 6 , 5 , 67 , 1 , 335 , 1 , 1 , 1 , 1 ]

[ 6 0 , 804 , 5 , 67 ]

[ 6 , 2010 , 1 , 335 ]

[ 1 2 , 6 , 1 , 71 , 1 , 71 , 1 , 1 , 1 , 1 ]

[ 1 2 , 852 , 1 , 71 ]

[ 6 , 426 , 1 , 71 ]

[ 1 2 , 6 , 9 , 15 , 3 , 45 , 5 , 1 , 3 , 3 ]

[ 108 , 180 , 9 , 75 ]

[ 1 8 , 270 , 3 , 45 ]

[ 1 2 , 6 , 3 , 21 , 3 , 21 , 5 , 1 , 3 , 3 ]

[ 3 6 , 252 , 3 , 105 ]

[ 1 8 , 126 , 3 , 21 ]

[ 1 2 , 6 , 1 , 47 , 1 , 47 , 5 , 1 , 5 , 1 ]

[ 1 2 , 564 , 1 , 235 ]

[ 6 , 282 , 1 , 47 ]

[ 1 2 , 6 , 13 , 35 , 5 , 91 , 5 , 1 , 5 , 1 ]

[ 156 , 420 , 13 , 175 ]

[ 3 0 , 546 , 5 , 91 ]

[ 1 2 , 6 , 11 , 85 , 5 , 187 , 5 , 1 , 5 , 1 ]

[ 132 , 1020 , 11 , 425 ]

[ 3 0 , 1122 , 5 , 187 ]
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[ 1 2 , 6 , 7 , 185 , 5 , 259 , 5 , 1 , 5 , 1 ]

[ 8 4 , 2220 , 7 , 925 ]

[ 3 0 , 1554 , 5 , 259 ]

k=6, l=12

[ 6 , 12 , 35 , 37 , 1 , 1295 , 1 , 1 , 1 , 1 ]

[ 210 , 222 , 35 , 37 ]

[ 1 2 , 15540 , 1 , 1295 ]

[ 6 , 12 , 25 , 47 , 1 , 1175 , 1 , 1 , 1 , 1 ]

[ 150 , 282 , 25 , 47 ]

[ 1 2 , 14100 , 1 , 1175 ]

[ 6 , 12 , 23 , 49 , 1 , 1127 , 1 , 1 , 1 , 1 ]

[ 138 , 294 , 23 , 49 ]

[ 1 2 , 13524 , 1 , 1127 ]

[ 6 , 12 , 13 , 59 , 1 , 767 , 1 , 1 , 1 , 1 ]

[ 7 8 , 354 , 13 , 59 ]

[ 1 2 , 9204 , 1 , 767 ]

[ 6 , 12 , 11 , 61 , 1 , 671 , 1 , 1 , 1 , 1 ]

[ 6 6 , 366 , 11 , 61 ]

[ 1 2 , 8052 , 1 , 671 ]

[ 6 , 12 , 31 , 41 , 1 , 1271 , 1 , 5 , 1 , 1 ]

[ 186 , 246 , 31 , 41 ]

[ 1 2 , 15252 , 1 , 6355 ]
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[ 6 , 12 , 29 , 43 , 1 , 1247 , 1 , 5 , 1 , 1 ]

[ 174 , 258 , 29 , 43 ]

[ 1 2 , 14964 , 1 , 6235 ]

[ 6 , 12 , 19 , 53 , 1 , 1007 , 1 , 5 , 1 , 1 ]

[ 114 , 318 , 19 , 53 ]

[ 1 2 , 12084 , 1 , 5035 ]

[ 6 , 12 , 17 , 55 , 1 , 935 , 1 , 5 , 1 , 1 ]

[ 102 , 330 , 17 , 55 ]

[ 1 2 , 11220 , 1 , 4675 ]

[ 6 , 12 , 7 , 65 , 1 , 455 , 1 , 5 , 1 , 1 ]

[ 4 2 , 390 , 7 , 65 ]

[ 1 2 , 5460 , 1 , 2275 ]

[ 6 , 12 , 5 , 67 , 1 , 335 , 1 , 5 , 1 , 1 ]

[ 3 0 , 402 , 5 , 67 ]

[ 1 2 , 4020 , 1 , 1675 ]

l =12, l=4

[ 12 , 4 , 23 , 25 , 1 , 575 , 1 , 1 , 1 , 1 ]

[ 276 , 300 , 23 , 25 ]

[ 4 , 2300 , 1 , 575 ]

[ 1 2 , 4 , 21 , 27 , 1 , 567 , 1 , 1 , 1 , 1 ]

[ 252 , 324 , 21 , 27 ]

[ 4 , 2268 , 1 , 567 ]

[ 1 2 , 4 , 19 , 29 , 1 , 551 , 1 , 1 , 1 , 1 ]
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[ 2 28 , 348 , 19 , 29 ]

[ 4 , 2204 , 1 , 551 ]

[ 1 2 , 4 , 17 , 31 , 1 , 527 , 1 , 1 , 1 , 1 ]

[ 204 , 372 , 17 , 31 ]

[ 4 , 2108 , 1 , 527 ]

[ 1 2 , 4 , 15 , 33 , 1 , 495 , 1 , 1 , 1 , 1 ]

[ 180 , 396 , 15 , 33 ]

[ 4 , 1980 , 1 , 495 ]

[ 1 2 , 4 , 13 , 35 , 1 , 455 , 1 , 1 , 1 , 1 ]

[ 156 , 420 , 13 , 35 ]

[ 4 , 1820 , 1 , 455 ]

[ 1 2 , 4 , 11 , 37 , 1 , 407 , 1 , 1 , 1 , 1 ]

[ 132 , 444 , 11 , 37 ]

[ 4 , 1628 , 1 , 407 ]

[ 1 2 , 4 , 9 , 39 , 1 , 351 , 1 , 1 , 1 , 1 ]

[ 108 , 468 , 9 , 39 ]

[ 4 , 1404 , 1 , 351 ]

[ 1 2 , 4 , 7 , 41 , 1 , 287 , 1 , 1 , 1 , 1 ]

[ 8 4 , 492 , 7 , 41 ]

[ 4 , 1148 , 1 , 287 ]

[ 1 2 , 4 , 5 , 43 , 1 , 215 , 1 , 1 , 1 , 1 ]

[ 6 0 , 516 , 5 , 43 ]

[ 4 , 860 , 1 , 215 ]

[ 1 2 , 4 , 3 , 45 , 1 , 135 , 1 , 1 , 1 , 1 ]

[ 3 6 , 540 , 3 , 45 ]
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[ 4 , 540 , 1 , 135 ]

[ 1 2 , 4 , 1 , 47 , 1 , 47 , 1 , 1 , 1 , 1 ]

[ 1 2 , 564 , 1 , 47 ]

[ 4 , 188 , 1 , 47 ]

[ 1 2 , 4 , 21 , 27 , 9 , 63 , 5 , 1 , 3 , 3 ]

[ 252 , 324 , 21 , 135 ]

[ 3 6 , 252 , 9 , 63 ]

[ 1 2 , 4 , 15 , 33 , 9 , 55 , 5 , 1 , 3 , 3 ]

[ 180 , 396 , 15 , 165 ]

[ 3 6 , 220 , 9 , 55 ]

[ 1 2 , 4 , 9 , 39 , 9 , 39 , 5 , 1 , 3 , 3 ]

[ 108 , 468 , 9 , 195 ]

[ 3 6 , 156 , 9 , 39 ]

[ 1 2 , 4 , 3 , 45 , 9 , 15 , 5 , 1 , 3 , 3 ]

[ 3 6 , 540 , 3 , 225 ]

[ 3 6 , 60 , 9 , 15 ]

[ 1 2 , 4 , 1 , 23 , 1 , 23 , 5 , 1 , 5 , 1 ]

[ 1 2 , 276 , 1 , 115 ]

[ 4 , 92 , 1 , 23 ]

[ 1 2 , 4 , 9 , 15 , 5 , 27 , 5 , 1 , 5 , 1 ]

[ 108 , 180 , 9 , 75 ]

[ 2 0 , 108 , 5 , 27 ]

[ 1 2 , 4 , 7 , 65 , 5 , 91 , 5 , 1 , 5 , 1 ]

[ 8 4 , 780 , 7 , 325 ]

[ 2 0 , 364 , 5 , 91 ]

112



[ 1 2 , 4 , 3 , 165 , 5 , 99 , 5 , 1 , 5 , 1 ]

[ 3 6 , 1980 , 3 , 825 ]

[ 2 0 , 396 , 5 , 99 ]

[ 1 2 , 4 , 21 , 27 , 1 , 567 , 1 , 1 , 1 , 1 ]

[ 252 , 324 , 21 , 27 ]

[ 4 , 2268 , 1 , 567 ]

[ 1 2 , 4 , 17 , 31 , 1 , 527 , 1 , 1 , 1 , 1 ]

[ 204 , 372 , 17 , 31 ]

[ 4 , 2108 , 1 , 527 ]

[ 1 2 , 4 , 13 , 35 , 1 , 455 , 1 , 1 , 1 , 1 ]

[ 156 , 420 , 13 , 35 ]

[ 4 , 1820 , 1 , 455 ]

[ 1 2 , 4 , 9 , 39 , 1 , 351 , 1 , 1 , 1 , 1 ]

[ 108 , 468 , 9 , 39 ]

[ 4 , 1404 , 1 , 351 ]

[ 1 2 , 4 , 5 , 43 , 1 , 215 , 1 , 1 , 1 , 1 ]

[ 6 0 , 516 , 5 , 43 ]

[ 4 , 860 , 1 , 215 ]

[ 1 2 , 4 , 1 , 47 , 1 , 47 , 1 , 1 , 1 , 1 ]

[ 1 2 , 564 , 1 , 47 ]

[ 4 , 188 , 1 , 47 ]

k=4, l=12

[ 4 , 12 , 23 , 25 , 1 , 575 , 1 , 1 , 1 , 1 ]
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[ 9 2 , 100 , 23 , 25 ]

[ 1 2 , 6900 , 1 , 575 ]

[ 4 , 12 , 13 , 35 , 1 , 455 , 1 , 1 , 1 , 1 ]

[ 5 2 , 140 , 13 , 35 ]

[ 1 2 , 5460 , 1 , 455 ]

[ 4 , 12 , 11 , 37 , 1 , 407 , 1 , 1 , 1 , 1 ]

[ 4 4 , 148 , 11 , 37 ]

[ 1 2 , 4884 , 1 , 407 ]

[ 4 , 12 , 19 , 29 , 1 , 551 , 1 , 5 , 1 , 1 ]

[ 7 6 , 116 , 19 , 29 ]

[ 1 2 , 6612 , 1 , 2755 ]

[ 4 , 12 , 17 , 31 , 1 , 527 , 1 , 5 , 1 , 1 ]

[ 6 8 , 124 , 17 , 31 ]

[ 1 2 , 6324 , 1 , 2635 ]

[ 4 , 12 , 7 , 41 , 1 , 287 , 1 , 5 , 1 , 1 ]

[ 2 8 , 164 , 7 , 41 ]

[ 1 2 , 3444 , 1 , 1435 ]

[ 4 , 12 , 5 , 43 , 1 , 215 , 1 , 5 , 1 , 1 ]

[ 2 0 , 172 , 5 , 43 ]

[ 1 2 , 2580 , 1 , 1075 ]

k=12, l=3

[ 12 , 3 , 17 , 19 , 1 , 323 , 1 , 1 , 1 , 1 ]
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[ 2 04 , 228 , 17 , 19 ]

[ 3 , 969 , 1 , 323 ]

[ 1 2 , 3 , 16 , 20 , 1 , 320 , 1 , 1 , 1 , 1 ]

[ 192 , 240 , 16 , 20 ]

[ 3 , 960 , 1 , 320 ]

[ 1 2 , 3 , 14 , 22 , 1 , 308 , 1 , 1 , 1 , 1 ]

[ 168 , 264 , 14 , 22 ]

[ 3 , 924 , 1 , 308 ]

[ 1 2 , 3 , 13 , 23 , 1 , 299 , 1 , 1 , 1 , 1 ]

[ 156 , 276 , 13 , 23 ]

[ 3 , 897 , 1 , 299 ]

[ 1 2 , 3 , 11 , 25 , 1 , 275 , 1 , 1 , 1 , 1 ]

[ 132 , 300 , 11 , 25 ]

[ 3 , 825 , 1 , 275 ]

[ 1 2 , 3 , 10 , 26 , 1 , 260 , 1 , 1 , 1 , 1 ]

[ 120 , 312 , 10 , 26 ]

[ 3 , 780 , 1 , 260 ]

[ 1 2 , 3 , 8 , 28 , 1 , 224 , 1 , 1 , 1 , 1 ]

[ 9 6 , 336 , 8 , 28 ]

[ 3 , 672 , 1 , 224 ]

[ 1 2 , 3 , 7 , 29 , 1 , 203 , 1 , 1 , 1 , 1 ]

[ 8 4 , 348 , 7 , 29 ]

[ 3 , 609 , 1 , 203 ]

[ 1 2 , 3 , 5 , 31 , 1 , 155 , 1 , 1 , 1 , 1 ]

[ 6 0 , 372 , 5 , 31 ]
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[ 3 , 465 , 1 , 155 ]

[ 1 2 , 3 , 4 , 32 , 1 , 128 , 1 , 1 , 1 , 1 ]

[ 4 8 , 384 , 4 , 32 ]

[ 3 , 384 , 1 , 128 ]

[ 1 2 , 3 , 2 , 34 , 1 , 68 , 1 , 1 , 1 , 1 ]

[ 2 4 , 408 , 2 , 34 ]

[ 3 , 204 , 1 , 68 ]

[ 1 2 , 3 , 1 , 35 , 1 , 35 , 1 , 1 , 1 , 1 ]

[ 1 2 , 420 , 1 , 35 ]

[ 3 , 105 , 1 , 35 ]

[ 1 2 , 3 , 5 , 7 , 5 , 7 , 5 , 1 , 1 , 5 ]

[ 6 0 , 84 , 5 , 35 ]

[ 1 5 , 21 , 5 , 7 ]

[ 1 2 , 3 , 6 , 6 , 3 , 12 , 5 , 1 , 3 , 3 ]

[ 7 2 , 72 , 6 , 30 ]

[ 9 , 36 , 3 , 12 ]

[ 1 2 , 3 , 3 , 9 , 3 , 9 , 5 , 1 , 3 , 3 ]

[ 3 6 , 108 , 3 , 45 ]

[ 9 , 27 , 3 , 9 ]

[ 1 2 , 3 , 1 , 11 , 1 , 11 , 5 , 1 , 5 , 1 ]

[ 1 2 , 132 , 1 , 55 ]

[ 3 , 33 , 1 , 11 ]

[ 1 2 , 3 , 4 , 80 , 5 , 64 , 5 , 1 , 5 , 1 ]

[ 4 8 , 960 , 4 , 400 ]

[ 1 5 , 192 , 5 , 64 ]
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[ 1 2 , 3 , 2 , 130 , 5 , 52 , 5 , 1 , 5 , 1 ]

[ 2 4 , 1560 , 2 , 650 ]

[ 1 5 , 156 , 5 , 52 ]

k=3, l=12

[ 3 , 12 , 13 , 23 , 1 , 299 , 1 , 1 , 1 , 1 ]

[ 3 9 , 69 , 13 , 23 ]

[ 1 2 , 3588 , 1 , 299 ]

[ 3 , 12 , 11 , 25 , 1 , 275 , 1 , 1 , 1 , 1 ]

[ 3 3 , 75 , 11 , 25 ]

[ 1 2 , 3300 , 1 , 275 ]

[ 3 , 12 , 17 , 19 , 1 , 323 , 1 , 5 , 1 , 1 ]

[ 5 1 , 57 , 17 , 19 ]

[ 1 2 , 3876 , 1 , 1615 ]

[ 3 , 12 , 7 , 29 , 1 , 203 , 1 , 5 , 1 , 1 ]

[ 2 1 , 87 , 7 , 29 ]

[ 1 2 , 2436 , 1 , 1015 ]

[ 3 , 12 , 5 , 31 , 1 , 155 , 1 , 5 , 1 , 1 ]

[ 1 5 , 93 , 5 , 31 ]

[ 1 2 , 1860 , 1 , 775 ]

k=12, l=2
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[ 1 2 , 2 , 11 , 13 , 1 , 143 , 1 , 1 , 1 , 1 ]

[ 132 , 156 , 11 , 13 ]

[ 2 , 286 , 1 , 143 ]

[ 1 2 , 2 , 9 , 15 , 1 , 135 , 1 , 1 , 1 , 1 ]

[ 108 , 180 , 9 , 15 ]

[ 2 , 270 , 1 , 135 ]

[ 1 2 , 2 , 7 , 17 , 1 , 119 , 1 , 1 , 1 , 1 ]

[ 8 4 , 204 , 7 , 17 ]

[ 2 , 238 , 1 , 119 ]

[ 1 2 , 2 , 5 , 19 , 1 , 95 , 1 , 1 , 1 , 1 ]

[ 6 0 , 228 , 5 , 19 ]

[ 2 , 190 , 1 , 95 ]

[ 1 2 , 2 , 3 , 21 , 1 , 63 , 1 , 1 , 1 , 1 ]

[ 3 6 , 252 , 3 , 21 ]

[ 2 , 126 , 1 , 63 ]

[ 1 2 , 2 , 1 , 23 , 1 , 23 , 1 , 1 , 1 , 1 ]

[ 1 2 , 276 , 1 , 23 ]

[ 2 , 46 , 1 , 23 ]

k=2, l=12

[ 2 , 12 , 11 , 13 , 1 , 143 , 1 , 1 , 1 , 1 ]

[ 2 2 , 26 , 11 , 13 ]
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[ 1 2 , 1716 , 1 , 143 ]

[ 2 , 12 , 7 , 17 , 1 , 119 , 1 , 5 , 1 , 1 ]

[ 1 4 , 34 , 7 , 17 ]

[ 1 2 , 1428 , 1 , 595 ]

[ 2 , 12 , 11 , 13 , 1 , 143 , 5 , 1 , 1 , 1 ]

[ 2 2 , 26 , 11 , 65 ]

[ 1 2 , 1716 , 1 , 143 ]

k=12, l=1

[ 12 , 1 , 6 , 6 , 1 , 36 , 1 , 1 , 1 , 1 ]

[ 7 2 , 72 , 6 , 6 ]

[ 1 , 36 , 1 , 36 ]

[ 1 2 , 1 , 5 , 7 , 1 , 35 , 1 , 1 , 1 , 1 ]

[ 6 0 , 84 , 5 , 7 ]

[ 1 , 35 , 1 , 35 ]

[ 1 2 , 1 , 4 , 8 , 1 , 32 , 1 , 1 , 1 , 1 ]

[ 4 8 , 96 , 4 , 8 ]

[ 1 , 32 , 1 , 32 ]

[ 1 2 , 1 , 3 , 9 , 1 , 27 , 1 , 1 , 1 , 1 ]

[ 3 6 , 108 , 3 , 9 ]

[ 1 , 27 , 1 , 27 ]

[ 1 2 , 1 , 2 , 10 , 1 , 20 , 1 , 1 , 1 , 1 ]

[ 2 4 , 120 , 2 , 10 ]

[ 1 , 20 , 1 , 20 ]
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[ 1 2 , 1 , 1 , 11 , 1 , 11 , 1 , 1 , 1 , 1 ]

[ 1 2 , 132 , 1 , 11 ]

[ 1 , 11 , 1 , 11 ]

Satisfying part (ii) constraints for k,l,a,b,c,d,b’,d’,m,n,m’,n’ pozitive inte-

gers in the theorem:

sage:

for k in [12]:

... for l in [12]:

... for B in [1,5]:

... for D in [1,5]:

... for m in [1,..,floor(k/2)]:

... for n in [-B+1,..,-1,1,..,B]:

... for M in [1,..,floor(l/2)]:

... for N in [-D+1,...,-1,1,..,D]:

... for e in

[-floor((l/n*sqrt(((m^2+n^2)/(M^2+N^2))*(k^2-m^2)))),..,

-1,1,..,floor(l/n*sqrt(((m^2+n^2)/(M^2+N^2))*(k^2-m^2)))]:

... for f in

[-floor(sqrt(((m^2+n^2)/(M^2+N^2))*l^2-e^2*n^2/(k^2-m^2))),

..,-1,1,..,floor(sqrt(((m^2+n^2)/(M^2+N^2))*l^2-(e^2*n^2)/(k^2-m^2)))]:

... for c in [7,..,25]:

... if (e*m-(e^2)*n/f)!=0:

... a=c*(k*M-k*l*n/f)/(e*m-e^2*n/f)

... b=(k*l*c-(e^2)*a)/f^2

... d=int(a*b/c)
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... if (a<=b and c<=d and a*b==c*d

and (m^2*a+n^2*b)/k==(M^2*c+N^2*d)/l and m^2*a+n^2*b<=k^2*a

and M^2*c+N^2*d<=l^2*c and k^2*lcm(e*m,f*n)%c==0 and

(D*M-N)%l==0 and (B*e-f)%k==0 and f%k!=0 and

gcd(a,gcd(b,int((a+B^2*b)/k)))==gcd(c,gcd(D,int((c+D^2*(a*b/c))/l)))==1

and gcd(B,k)==gcd(D,l)==1

and c*c<=a*b and (vector([a,B,k])==vector([c,D,l]))==false

and (a+B^2*b)%k==0 and (c+D^2*(a*b/c))%l==0 ):

... print [k,a,b,B,l,c,d,D,m,n,M,N,e,f]

... print [k*a,k*b,a,b*B];[l*c,l*(a*b/c),c,(a*b/c)*D]

k=12, l=12

[ 12 , 7 , 737 , 1 , 12 , 11 , 469 , 5 , 1 , 1 , 5 , 1 , 1 1 , 1 ]

[ 8 4 , 8844 , 7 , 737 ]

[ 132 , 5628 , 11 , 2345 ]

[ 1 2 , 7 , 689 , 1 , 12 , 13 , 371 , 5 , 1 , 1 , 5 , 1 , 13 , 1 ]

[ 8 4 , 8268 , 7 , 689 ]

[ 156 , 4452 , 13 , 1855 ]

[ 1 2 , 8 , 28 , 1 , 12 , 4 , 56 , 5 , 4 , 1 , 5 , 1 , 4 , 4 ]

[ 9 6 , 336 , 8 , 28 ]

[ 4 8 , 672 , 4 , 280 ]

[ 1 2 , 3 , 45 , 1 , 12 , 3 , 45 , 5 , 5 , 1 , 5 , 1 , 3 , 3 ]

[ 3 6 , 540 , 3 , 45 ]

[ 3 6 , 540 , 3 , 225 ]
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[ 1 2 , 3 , 21 , 5 , 12 , 3 , 21 , 1 , 1 , 1 , 1 , 1 , 9 , 3 ]

[ 3 6 , 252 , 3 , 105 ]

[ 3 6 , 252 , 3 , 21 ]

[ 1 2 , 3 , 9 , 5 , 12 , 3 , 9 , 1 , 1 , 1 , 1 , 1 , 6 , 6 ]

[ 3 6 , 108 , 3 , 45 ]

[ 3 6 , 108 , 3 , 9 ]

[ 1 2 , 9 , 15 , 5 , 12 , 9 , 15 , 1 , 1 , 1 , 1 , 1 , 3 , 9 ]

[ 108 , 180 , 9 , 75 ]

[ 108 , 180 , 9 , 15 ]

[ 1 2 , 8 , 28 , 5 , 12 , 4 , 56 , 1 , 2 , 1 , 1 , 1 , 4 , 4 ]

[ 9 6 , 336 , 8 , 140 ]

[ 4 8 , 672 , 4 , 56 ]

[ 1 2 , 16 , 20 , 5 , 12 , 4 , 80 , 1 , 2 , 1 , 1 , 1 , 4 , 4 ]

[ 192 , 240 , 16 , 100 ]

[ 4 8 , 960 , 4 , 80 ]

[ 1 2 , 11 , 469 , 5 , 12 , 7 , 737 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 132 , 5628 , 11 , 2345 ]

[ 8 4 , 8844 , 7 , 737 ]

[ 1 2 , 13 , 371 , 5 , 12 , 7 , 689 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 156 , 4452 , 13 , 1855 ]

[ 8 4 , 8268 , 7 , 689 ]

[ 1 2 , 5 , 667 , 1 , 12 , 23 , 145 , 5 , 1 , 1 , 2 , 2 , 2 3 , 1 ]

[ 6 0 , 8004 , 5 , 667 ]

[ 276 , 1740 , 23 , 725 ]
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[ 1 2 , 3 , 189 , 1 , 12 , 21 , 27 , 5 , 1 , 1 , 2 , 2 , 2 1 , 3 ]

[ 3 6 , 2268 , 3 , 189 ]

[ 252 , 324 , 21 , 135 ]

[ 1 2 , 7 , 737 , 1 , 12 , 11 , 469 , 5 , 1 , 1 , 5 , 1 , 1 1 , 1 ]

[ 8 4 , 8844 , 7 , 737 ]

[ 132 , 5628 , 11 , 2345 ]

[ 1 2 , 7 , 689 , 1 , 12 , 13 , 371 , 5 , 1 , 1 , 5 , 1 , 13 , 1 ]

[ 8 4 , 8268 , 7 , 689 ]

[ 156 , 4452 , 13 , 1855 ]

[ 1 2 , 4 , 128 , 1 , 12 , 16 , 32 , 5 , 4 , 1 , 2 , 2 , 8 , 4 ]

[ 4 8 , 1536 , 4 , 128 ]

[ 192 , 384 , 16 , 160 ]

[ 1 2 , 20 , 64 , 1 , 12 , 16 , 80 , 5 , 4 , 1 , 2 , 2 , 8 , 4 ]

[ 240 , 768 , 20 , 64 ]

[ 192 , 960 , 16 , 400 ]

[ 1 2 , 3 , 117 , 1 , 12 , 9 , 39 , 5 , 5 , 1 , 2 , 2 , 9 , 3 ]

[ 3 6 , 1404 , 3 , 117 ]

[ 108 , 468 , 9 , 195 ]

[ 1 2 , 9 , 15 , 5 , 12 , 9 , 15 , 1 , 1 , 1 , 1 , 1 , 3 , 9 ]

[ 108 , 180 , 9 , 75 ]

[ 108 , 180 , 9 , 15 ]

[ 1 2 , 11 , 469 , 5 , 12 , 7 , 737 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 132 , 5628 , 11 , 2345 ]

[ 8 4 , 8844 , 7 , 737 ]

[ 1 2 , 13 , 371 , 5 , 12 , 7 , 689 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]
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[ 1 56 , 4452 , 13 , 1855 ]

[ 8 4 , 8268 , 7 , 689 ]

[ 1 2 , 3 , 189 , 5 , 12 , 21 , 27 , 5 , 1 , 1 , 2 , 2 , 2 1 , 3 ]

[ 3 6 , 2268 , 3 , 945 ]

[ 252 , 324 , 21 , 135 ]

[ 1 2 , 4 , 80 , 5 , 12 , 16 , 20 , 5 , 1 , 2 , 3 , 3 , 1 6 , 4 ]

[ 4 8 , 960 , 4 , 400 ]

[ 192 , 240 , 16 , 100 ]

[ 1 2 , 4 , 56 , 5 , 12 , 8 , 28 , 5 , 1 , 2 , 5 , 1 , 8 , 4 ]

[ 4 8 , 672 , 4 , 280 ]

[ 9 6 , 336 , 8 , 140 ]

[ 1 2 , 3 , 21 , 1 , 12 , 3 , 21 , 5 , 5 , 1 , 2 , 2 , 9 , 3 ]

[ 3 6 , 252 , 3 , 21 ]

[ 3 6 , 252 , 3 , 105 ]

[ 1 2 , 3 , 45 , 1 , 12 , 3 , 45 , 5 , 5 , 1 , 5 , 1 , 3 , 3 ]

[ 3 6 , 540 , 3 , 45 ]

[ 3 6 , 540 , 3 , 225 ]

[ 1 2 , 3 , 21 , 5 , 12 , 3 , 21 , 1 , 1 , 1 , 1 , 1 , 9 , 3 ]

[ 3 6 , 252 , 3 , 105 ]

[ 3 6 , 252 , 3 , 21 ]

[ 1 2 , 3 , 9 , 5 , 12 , 3 , 9 , 1 , 1 , 1 , 1 , 1 , 6 , 6 ]

[ 3 6 , 108 , 3 , 45 ]

[ 3 6 , 108 , 3 , 9 ]
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k=12, l=6

[ 12 , 5 , 187 , 1 , 6 , 11 , 85 , 1 , 1 , 1 , 1 , 1 , 1 1 , 1 ]

[ 6 0 , 2244 , 5 , 187 ]

[ 6 6 , 510 , 11 , 85 ]

[ 1 2 , 4 , 80 , 1 , 6 , 10 , 32 , 1 , 1 , 1 , 1 , 1 , 1 0 , 2 ]

[ 4 8 , 960 , 4 , 80 ]

[ 6 0 , 192 , 10 , 32 ]

[ 1 2 , 3 , 45 , 1 , 6 , 9 , 15 , 1 , 1 , 1 , 1 , 1 , 9 , 3 ]

[ 3 6 , 540 , 3 , 45 ]

[ 5 4 , 90 , 9 , 15 ]

[ 1 2 , 5 , 91 , 1 , 6 , 13 , 35 , 1 , 1 , 1 , 1 , 1 , 13 , 1 ]

[ 6 0 , 1092 , 5 , 91 ]

[ 7 8 , 210 , 13 , 35 ]

[ 1 2 , 3 , 45 , 5 , 6 , 9 , 15 , 1 , 1 , 1 , 1 , 1 , 9 , 3 ]

[ 3 6 , 540 , 3 , 225 ]

[ 5 4 , 90 , 9 , 15 ]

[ 1 2 , 5 , 259 , 5 , 6 , 7 , 185 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 6 0 , 3108 , 5 , 1295 ]

[ 4 2 , 1110 , 7 , 185 ]

[ 1 2 , 4 , 32 , 5 , 6 , 2 , 64 , 1 , 5 , 1 , 1 , 1 , 2 , 2 ]

[ 4 8 , 384 , 4 , 160 ]

[ 1 2 , 384 , 2 , 64 ]

[ 1 2 , 1 , 23 , 5 , 6 , 1 , 23 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 1 2 , 276 , 1 , 115 ]
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[ 6 , 138 , 1 , 23 ]

[ 1 2 , 4 , 56 , 1 , 6 , 14 , 16 , 1 , 1 , 1 , 1 , 1 , 14 , 2 ]

[ 4 8 , 672 , 4 , 56 ]

[ 8 4 , 96 , 14 , 16 ]

[ 1 2 , 6 , 5 , 187 , 11 , 85 , 1 , 1 , 1 , 1 ]

[ 6 0 , 2244 , 5 , 187 ]

[ 6 6 , 510 , 11 , 85 ]

[ 1 2 , 6 , 4 , 80 , 10 , 32 , 1 , 1 , 1 , 1 ]

[ 4 8 , 960 , 4 , 80 ]

[ 6 0 , 192 , 10 , 32 ]

[ 1 2 , 6 , 3 , 45 , 9 , 15 , 1 , 1 , 1 , 1 ]

[ 3 6 , 540 , 3 , 45 ]

[ 5 4 , 90 , 9 , 15 ]

[ 1 2 , 6 , 5 , 91 , 13 , 35 , 1 , 1 , 1 , 1 ]

[ 6 0 , 1092 , 5 , 91 ]

[ 7 8 , 210 , 13 , 35 ]

[ 1 2 , 6 , 4 , 56 , 14 , 16 , 1 , 1 , 1 , 1 ]

[ 4 8 , 672 , 4 , 56 ]

[ 8 4 , 96 , 14 , 16 ]

k=12, l=4

[ 12 , 1 , 35 , 1 , 4 , 5 , 7 , 1 , 1 , 1 , 1 , 1 , 1 0 , 2 ]

[ 1 2 , 420 , 1 , 35 ]
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[ 2 0 , 28 , 5 , 7 ]

[ 1 2 , 3 , 189 , 5 , 4 , 7 , 81 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 3 6 , 2268 , 3 , 945 ]

[ 2 8 , 324 , 7 , 81 ]

[ 1 2 , 1 , 11 , 5 , 4 , 1 , 11 , 1 , 5 , 1 , 1 , 1 , 2 , 2 ]

[ 1 2 , 132 , 1 , 55 ]

[ 4 , 44 , 1 , 11 ]

[ 1 2 , 5 , 91 , 5 , 4 , 7 , 65 , 1 , 5 , 1 , 1 , 1 , 7 , 1 ]

[ 6 0 , 1092 , 5 , 455 ]

[ 2 8 , 260 , 7 , 65 ]

[ 1 2 , 3 , 165 , 1 , 4 , 11 , 45 , 1 , 1 , 1 , 1 , 1 , 1 1 , 1 ]

[ 3 6 , 1980 , 3 , 165 ]

[ 4 4 , 180 , 11 , 45 ]

[ 1 2 , 1 , 35 , 1 , 4 , 5 , 7 , 1 , 1 , 1 , 1 , 1 , 1 0 , 2 ]

[ 1 2 , 420 , 1 , 35 ]

[ 2 0 , 28 , 5 , 7 ]

[ 1 2 , 3 , 117 , 1 , 4 , 13 , 27 , 1 , 1 , 1 , 1 , 1 , 13 , 1 ]

[ 3 6 , 1404 , 3 , 117 ]

[ 5 2 , 108 , 13 , 27 ]

k=12, l=3

[ 12 , 3 , 2 , 154 , 11 , 28 , 1 , 1 , 1 , 1 , 1 , 1 , 1 1 , 1 ]

[ 2 4 , 1848 , 2 , 154 ]
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[ 3 3 , 84 , 11 , 28 ]

[ 1 2 , 3 , 2 , 130 , 13 , 20 , 1 , 1 , 1 , 1 , 1 , 1 , 13 , 1 ]

[ 2 4 , 1560 , 2 , 130 ]

[ 3 9 , 60 , 13 , 20 ]

k=12, l=2

[ 12 , 1 , 143 , 1 , 2 , 11 , 13 , 1 , 1 , 1 , 1 , 1 , 1 1 , 1 ]

[ 1 2 , 1716 , 1 , 143 ]

[ 2 2 , 26 , 11 , 13 ]
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