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Abstract

This thesis is based on six papers. The first three fall into the field of Asymptotic Geomet-

ric Analysis, the next two — Random Matrix Theory, and the sixth — high-dimensional

Random Walks.

In the first paper, we show that for any ε ∈ (0, 1/2] and natural n there is a linear

subspace E of Rn of dimension at least c lnn/ ln 1
ε

such that E is (1 + ε)-Euclidean with

respect to any 1-symmetric norm in Rn. Here, c > 0 is a universal constant.

In the second paper, we show that, given ε ∈ (0, 1/2], a natural n, the space ℓn∞, and

its random subspace E of dimension m ≥ 2 uniformly distributed on the corresponding

Grassmannian Gn,m, E is (1 + ε)-spherical with probability at least 1/2 only if m satisfies

m ≤ Cε lnn/ ln 1
ε

for some universal constant C > 0.

In the third paper, we show that, given an n-dimensional convex polytope with n + k

vertices (k ≤ n), its Banach–Mazur distance to the Euclidean ball is at least cn/
√
k for

some universal constant c > 0.

In the fourth paper, we prove that there are constants c1, c2 > 0 such that for any

natural n and a 2n × n random matrix A with i.i.d. entries aij satisfying P{|aij − λ| ≤

1} ≤ 1/2 for all λ ∈ R, we have that the smallest singular value smin(A) is greater than

c1
√
n with probability at least 1 − exp(−c2n).

In the fifth paper, we generalize a classical theorem of Bai and Yin regarding almost

sure convergence of the smallest singular values of a sequence of random matrices with

i.i.d. entries. Namely, we remove the assumption that the fourth moment of the matrix

entries is bounded.

In the sixth paper (joint work with Pierre Youssef) we show that, given the standard

n-dimensional Brownian motion BMn(t) in Rn starting at the origin, and a natural N , the

convex hull of BMn(1),BMn(2), . . . ,BMn(N) contains the origin with a high probability

whenever N ≥ exp(Cn), and contains the origin with probability close to zero whenever

N ≤ exp(cn). Here, C, c > 0 are universal constants.
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Preface

This thesis is based on six papers, five of which are sole works of the author and the

sixth is a joint work with Pierre Youssef (presently working at Université Paris Diderot,

France). The publication data for the first five papers, which constitute Chapters 2 and 3

of the thesis, are

1. K. E. Tikhomirov, Almost Euclidean sections in symmetric spaces and concentration

of order statistics, J. Funct. Anal. 265 (2013), no. 9, 2074–2088.

2. K. E. Tikhomirov, The Randomized Dvoretzky’s theorem in ℓn∞ and the χ-distribu-

tion, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics,

2116 (2014), 455–463.

3. K. E. Tikhomirov, On the distance of polytopes with few vertices to the Euclidean

ball, Discrete Comput. Geom. 53 (2015), no. 1, 173–181.

4. K. E. Tikhomirov. The smallest singular value of random rectangular matrices with

no moment assumptions on entries. Israel Journal of Mathematics, 2016. DOI:

10.1007/s11856-016-1287-8.

5. K. Tikhomirov, The limit of the smallest singular value of random matrices with

i.i.d. entries, Adv. Math. 284 (2015), 1–20.

The joint work with Pierre Youssef, which constitutes Chapter 4 of the thesis —

K. Tikhomirov and P.Youssef, When does a discrete-time random walk in Rn absorb

the origin into its convex hull? 2015 — is accepted for publication in the Annals of

Probability. All parts of this work were written in collaboration with P. Youssef, which

makes it impossible to separate our contributions to these results. A permission to include

this work in the thesis was obtained from P. Youssef.
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Notation

⌊r⌋ The largest integer not exceeding r

⌈r⌉ The smallest integer greater or equal to r

Πn The set of all permutations on n elements

N The set of natural numbers (not including zero)

Z The set of integers

R The set of real numbers

R+ The semi-interval [0,∞)

R− The semi-interval (−∞, 0]

Rn n-fold Cartesian product of R equipped with the standard linear space

structure

en1 , e
n
2 , . . . , e

n
n The standard basis vectors in Rn

⟨·, ·⟩n The standard inner product in Rn

convS The convex hull of a set S

Sn−1 (n− 1)-dimensional Euclidean unit sphere

σn−1 The (unique) normalized rotation-invariant Borel measure on Sn−1

Gn,m The Grassmannian of m-dimensional linear subspaces of Rn

µn,m The normalized rotation-invariant Borel measure on Gn,m

Voln(S) Lebesgue n-dimensional volume of a set S

ℓnp Space Rn equipped with the norm ∥(x1, x2, . . . , xn)∥p =
( n∑
i=1

|xi|p
)1/p

(for 1 ≤ p < ∞) or ∥(x1, x2, . . . , xn)∥p = max
i

|xi| (for p = ∞)

Bn
p The closed unit ball in ℓnp

∥ · ∥p→q The operator norm from ℓp to ℓq

ImT Image of a linear operator T

kerT Kernel of a linear operator T

suppx Support of a vector x = (x1, x2, . . . ), i.e. the set {i : xi ̸= 0}
ProjE Orthogonal projection onto a linear subspace E

E ξ Expectation of a random variable ξ

Med ξ Median of ξ

i.i.d. independent identically distributed
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Chapter 1

Introduction

In this thesis, we explore phenomena arising within high-dimensional objects of three

types: first, convex sets and normed spaces; second, random matrices, and, third, convex

hulls of random walks. Accordingly, our work touches three directions within mathemat-

ics: Asymptotic Geometric Analysis (AGA), Spectral Theory of Random Matrices and

Random Walks.

Asymptotic Geometric Analysis, which started its development in the 1970-es, can be

described as the study of high-dimensional convex bodies [80, 86, 114, 5] (see also [78], as

well as [115] where a connection to infinite-dimensional Banach space theory is presented).

Recall that a convex body in Rn is any compact convex set with non-empty interior.

High dimensionality determines central features of the subject. First, it is a variety

of “isomorphic” problems, which are uncommon for low-dimensional geometry [5, p. vii],

although sharp inequalities (isoperimetric inequality on the sphere, the Brunn–Minkowski,

etc. [36]) also play a fundamental role in AGA. Next, it is the concept of randomness.

Let us quote [5]: “...in this theory, randomness and pattern appear together... Objects

created by independent identically distributed random processes, while being different

from one another, are many times indistinguishable and similar in the statistical sense...

The concentration of measure and similar effects caused by the convexity assumption

imply in fact a reduction of the diversity with increasing dimension, and the collapse of

many different possibilities into one, or, in some cases, a few possibilities only.”

In a sense, the situation is similar to the classical law of large numbers or the central

limit theorem in Probability Theory. Let us illustrate the above principle by considering

the volume distribution in the standard cube. Let X = (X1, X2, . . . , Xn) be a random

vector uniformly distributed in the cube [−1, 1]n i.e. such that for any Borel subset A ⊂
[−1, 1]n we have P{X ∈ A} = Voln(A)

2n
. Then the coordinates of X are i.i.d. and each Xi

is uniformly distributed in the interval [−1, 1]. It is easy to see that EXi
2 = 1

3
, so that

1



E ∥X∥22 = n
3
. It can be easily checked that for small values of n the random quantity

3
n
∥X∥22 is not “concentrated” near 1. However, when n grows to infinity, the Weak Law

of Large Numbers tells us that 3
n
∥X∥22 converges to 1 in probability. Geometrically, this

means that for large n most of the volume of the cube [−1, 1]n is located in a thin spherical

shell of radius
√

n/3. In a series of deep results of many researchers (see, in particular,

[84, 57, 58, 34, 49]), it was shown that a similar phenomenon holds for any convex body

K of high dimension, provided that its center of mass is at the origin, and the covariance

matrix of a random vector uniformly distributed in K is the identity (such random vectors

are called isotropic).

Among major research directions within Asymptotic Geometric Analysis are volume

distribution in convex bodies and geometry of their sections and projections. As far as

geometry of sections is concerned, a classical result, which to a large extent stimulated

the development of the field is a theorem of A. Dvoretzky [26]. For L-Euclidean sections

(for a fixed L > 1), an optimal form of the theorem is due to V. Milman [76]; it can be

stated as follows: every n-dimensional origin-symmetric convex body contains a section

of dimension at least f(L) lnn which is L-Euclidean. Here, we say that a convex body K

is L-Euclidean if there is an ellipsoid E such that E ⊂ K ⊂ LE . At the same time, the

structure of almost Euclidean sections (i.e. L-Euclidean with L arbitrarily close to 1) is far

from being understood. In most general form, the question is, given natural m and ε > 0,

determine the smallest n such that any n-dimensional convex body contains a (1 + ε)-

Euclidean m-dimensional section. This problem, as well as the question of estimating

the distance of a polytope with very few vertices to the Euclidean ball are discussed in

Chapter 2 of the thesis.

Certain geometric objects in AGA can be naturally modelled with help of random

matrices (operators). For example, an m-dimensional random subspace of Rn, which is

uniformly distributed on the Grassmannian Gn,m, can be defined as G(Rm), with G being

the standard n×m Gaussian matrix. Another example is a class of “extremal” random

polytopes which are defined as images of standard cross-polytopes of higher dimension

under the action of random linear operators [70]. Let us note here that in Banach space

theory, random polytopes of such type emerged in E. Gluskin’s groundbreaking paper

[39], where the optimal estimate of the diameter of the Minkowski compactum was given.

Those questions belong to a large body of problems, including ones coming from statistics,

numerical analysis and compressed sensing, which lead to development of a branch of the

Random Matrix Theory which is now often called non-asymptotic or non-limiting [91, 117].

As of now, the central objects of study in the non-asymptotic theory are the extremal

(largest and smallest) singular values of a random matrix — objects, considered within

2



the classical random matrix theory as well. However, unlike the classical limiting results

of the spectral theory, in the non-asymptotic theory one is interested in obtaining quan-

titative estimates, usually holding with probability very close to one, perhaps at expense

of sharpness. A crucial feature of this theory is its methodology which is to a large extent

inherited from AGA. For example, covering arguments and arguments involving random

projections, which originated within AGA, play a role in the non-asymptotic theory and

systematically appear in the literature on the subject [91, 117]. At the same time, it

should be emphasized that, on the one hand, extensions of classical limiting theorems

which estimate the speed of convergence (see, for example, [6, Chapter 8]), on the other

hand, the use of techniques from AGA in some questions regarding the limiting behaviour,

make the boundary of non-asymptotic and limiting theories somewhat fuzzy. Our results

on the smallest singular value of random matrices, both in limiting and non-asymptotic

settings, are presented in Chapter 3 of the thesis.

We conclude the foreword with a brief description of Chapter 4, which deals with

geometric properties of convex hulls of random walks in high dimensions. Whereas planar

(two-dimensional) convex hulls have been studied a considerable time period, the question

on high dimensions attracted attention of researchers relatively recently (let us mention

works [29, 30, 54, 53]). The specific problem that we address is the following: given a

random walk in Rn starting at the origin, how many steps it has to make to absorb the

origin into the interior of its convex hull with probability 1/2? The main reason why we

include this work into the thesis is the spectrum of techniques used in the proof: to a

large extent, they come from non-asymptotic random matrix theory and, consequently,

AGA. In particular, we reduce the original question about random walks to a problem

whether the image of certain random operator and certain convex cone have a non-trivial

intersection. We believe that the approach employed in our work will find other uses in

future.

In the following three subsections of the introduction we will describe the contents of

respective chapters in more detail and place the results in a broader context.

1.1 The Banach–Mazur distance to

the Euclidean space

Let us recall that the Banach–Mazur distance between two n-dimensional convex bodies

K1 and K2 is defined as the infimum of λ ≥ 1 such that there is an invertible linear operator

Tλ : Rn → Rn and two vectors xλ and yλ satisfying K1 ⊂ Tλ(K2)+xλ ⊂ λK1+yλ. Clearly,

dist(K1, K2) is invariant with respect to affine transformations of K1 and K2. It can be

3



shown that when both K1 and K2 are origin-symmetric, one can take xλ = yλ = 0 in

the above definition. The Banach–Mazur distance dist(X, Y ) between two n-dimensional

normed spaces X and Y is defined as the distance between their unit balls.

The problem of estimating the Banach–Mazur distance between convex sets has been

an important research direction within the local theory of Banach spaces [114]. The

classical result in this area is a theorem of F. John [52] which can be stated as follows:

if K is an n-dimensional convex body then dist(K,Bn
2 ) ≤ n. Moreover, if K is centrally-

symmetric then dist(K,Bn
2 ) ≤

√
n. At a more technical level, every convex body K is

associated with a unique ellipsoid contained in K whose volume is maximal among all

ellipsoids in K — John’s ellipsoid. The theorem of [52] provides necessary and sufficient

conditions for Bn
2 to be John’s ellipsoid for K in terms of the structure of contact points

of Bn
2 with the boundary of K (see also [9]). In the case when John’s ellipsoid coincides

with Bn
2 , we will say that K is in John’s position. In particular, the result of [52] states

that for K in John’s position we have K ⊂ nBn
2 (K ⊂

√
nBn

2 for origin-symmetric K).

The above estimates for the Banach–Mazur distance to Bn
2 cannot in general be im-

proved as is easily seen by considering n-simplex and n-cube. At the same time, for each k

every convex body of a sufficiently high dimension contains a k-dimensional affine section

which is close to an ellipsoid. This fundamental discovery largely influenced the devel-

opment of Asymptotic Geometric Analysis. Below, when discussing Dvoretzky’s theorem

and its extensions, we will only consider the case of origin-symmetric convex sets and cen-

tral sections, although results for non-symmetric sets also exist (see, for example, [61]).

We will formulate the statements in terms of norms.

Theorem (A. Dvoretzky, [26]). For any ε > 0 and any natural k there is n depending

only on k and ε such that any n-dimensional normed space contains a k-dimensional

(1 + ε)-Euclidean subspace.

In the original paper [26], dependence of n on both k and ε was not optimal. Optimal

relation of n and k was first obtained by V. Milman, whose proof of the above theorem

appeared approximately 10 years later [76]. Milman’s approach is one of the cornerstone

results of the local theory of Banach spaces. To formulate the result, we need the following

definition.

Definition. Let ∥ · ∥ be a norm in Rn. Then we define a quantity k(∥ · ∥) as

k(∥ · ∥) := n

(∫
Sn−1 ∥x∥ dσn−1(x)

supx∈Sn−1 ∥x∥

)2

(see [37, Section 4.3], as well as [86, p. 42] where an equivalent formulation is given in

4



terms of Gaussian variables).

Now, the result of V. Milman [76] can be stated as follows:

Theorem (V. Milman, [76, 80, 98]). Given ε ∈ (0, 1/2], a norm ∥·∥ in Rn, and a random

m-dimensional subspace E uniformly distributed on the Grassmannian Gn,m, we have that

E is (1 + ε)-Euclidean with a probability close to one whenever m ≤ cε2

ln 1
ε

k(∥ · ∥). Here,

c > 0 is a universal constant.

When the unit ball of the norm ∥·∥ is in John’s position, it follows from the Dvoretzky–

Rogers lemma (see, for example, [80, Theorem 3.4] or [86, Lemma 4.13]) that k(∥ · ∥) ≥
c̃ lnn for a universal constant c̃ > 0. Taking ∥ · ∥ = ∥ · ∥∞, it is not difficult to see that

the lower bound on k(∥ · ∥) is in general optimal up to the constant multiple c̃.

The problem of dependence on ε in Dvoretzky’s theorem has received considerable

attention from researchers. Note that there can be various points of view on the question.

First, one may be interested in finding the optimal function fn(ε) such that for any norm

∥ · ∥ in Rn there exists a (1 + ε)-Euclidean subspace of dimension at least fn(ε)k(∥ · ∥).

In this direction, the multiple cε2

ln 1
ε

in the last theorem was improved by Y. Gordon to cε2

[43]; shortly an alternative proof of that result was found by G. Schechtman [97]. On the

other hand, as is shown by T. Figiel [98], for n > ε−4 we have fn(ε) ≤ Cε2 for a universal

constant C > 0.

Another possible point of view is, fixing natural m, find a function Nm(ε) such that for

any ε ∈ (0, 1/2], any normed space of dimension at least Nm(ε) contains an m-dimensional

(1 + ε)-Euclidean subspace. As of now, it is an open question whether one can take

Nm(ε) = h(m)ε−Cm for some universal constant C > 0 and some function h(m). There

are partial results supporting that. For m = 2, it was observed by M. Gromov (see [75])

that one can take N2(ε) = Cε−1/2 for a universal constant C > 0. For m ≥ 4, J. Bourgain

and J. Lindenstrauss [14] showed that, for some function h(m), any 1-symmetric normed

space of dimension at least h(m)ε−(m−1)/2| ln ε|, admits a (1 + ε)-Euclidean subspace of

dimension m. Let us remark that the function h(m) in [14] grows superexponentially with

m.

Further, one can be interested in finding a function h̃(ε) such that any n-dimensional

normed space contains a (1 + ε)-Euclidean subspace of dimension at least h̃(ε) lnn. In

this model, it was shown by G. Schechtman that it is possible to take h̃(ε) = cε/ ln2 1
ε

[100]. The idea of the proof in [100] is to make use of the following alternative: either the

dimension k(∥·∥) of a norm ∥·∥ (with the unit ball in John’s position) is significantly larger

than lnn, or there is a large subspace with a small distance to ℓm∞ (see also [98]). This

5



assertion, in turn, is based on a result of N. Alon and V. Milman regarding embedding of

ℓm∞ into finite-dimensional spaces [3].

Apart from the question of existence of large almost Euclidean subspaces, a natural

problem is to study how the subspaces are arranged. Of course, the arrangement depends

on the position of the unit ball of the norm. For example, it is not difficult to show that if

the unit ball B of a norm ∥ · ∥ contains an m-dimensional 2-Euclidean section then there

is a linear transformation T such that for the random subspace E uniformly distributed

on the Grassmannian Gn,m, the section E∩T (B) is C-Euclidean with probability close to

one. Accordingly, it is natural to fix a canonical position of the unit ball of a norm, say,

John’s position. In this setting, G. Schechtman [99] considered random subspaces of ℓn∞.

In [99], it was shown that a random m-dimensional subspace of ℓn∞ uniformly distributed

on Gn,m, is (1 + ε)-Euclidean with probability close to one as long as m ≤ cε lnn/ ln 1
ε
,

and it is not (1 + ε)-Euclidean with a significant probability provided that m ≥ Cε lnn.

Thus, in this setting the dependence of the dimension on ε is much worse than in the

question of existence (we recall that ℓn∞ contains (1+ε)-Euclidean subspaces of dimension

c lnn/ ln 1
ε
).

An alternative model of randomness was studied in paper [44], where a problem of em-

bedding arbitrary normed spaces into ℓn∞ was considered. Namely, given an m-dimensional

normed space X, the authors of [44] introduced a random operator Γn,m : X → ℓn∞ defined

by

Γn,m(y) =
(
f1(y), f2(y), . . . , fn(y)

)
,

where f1, f2, . . . , fn are independent random points (functionals) uniformly distributed in

the unit ball of the dual space X∗. They showed that if m, n and ε ∈ (0, 1/2] satisfy

the relation n ≥ (8/ε)2m then with high probability the functionals f1, f2, . . . , fn form

an ε-net in BX∗ (i.e. the union of fi + εBX∗ covers BX∗). In turn, this implies that the

Banach–Mazur distance from X to the image ImΓn,m in ℓn∞ is at most 1 + 2ε with high

probability.

In connection with the aforementioned problems and results, one can ask the following

questions:

Question 1. Whether the results of [44] can be generalized to provide random em-

beddings into spaces other than ℓn∞, with optimal dependence on ε?

Question 2. In the setting when a random subspace of ℓn∞ is uniformly distributed

on the corresponding Grassmannian, what is the right dependence of the dimension on ε?

(note that the result of G. Schechtman [99] leaves a gap between cε lnn/ ln 1
ε

and Cε lnn)

These questions are addressed in Sections 2.2 and 2.3 of the thesis. The main result
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of Section 2.2 provides embeddings of ℓm2 into arbitrary 1-symmetric spaces. Namely, let

the random operator Γn,m : Rm → Rn be defined as

Γn,m(y) =
(
⟨y, z1⟩m, ⟨y, z2⟩m, . . . , ⟨y, zn⟩m

)
,

where z1, z2, . . . , zn are independent random vectors uniformly distributed on Sm−1.

Theorem (Theorem 2.6). Let 0 < ε ≤ 1/2 and 3 ≤ m ≤ c lnn/ ln(1/ε), where c > 0 is a

small universal constant. Then with probability close to one the random subspace ImΓn,m

has the property that for any 1-symmetric norm ∥ · ∥ in Rn it is (1 + ε)-Euclidean with

respect to ∥ · ∥.

The proof of the above theorem is based on the use of standard Chernoff–type in-

equalities, together with a classical result of the interpolation theory — the theorem of

Calderon–Mityagin, which allows us to verify certain geometric properties shared by all

symmetric spaces. Let us mention that a relative of Theorem 2.6 which provides explicit

(non-random) almost isometric embeddings of ℓm2 into 1-symmetric normed spaces, was

recently obtained by D. Fresen in [35].

We will call a subspace E ⊂ ℓn∞ (1 + ε)-spherical if

sup
x∈E

∥x∥2=1

∥x∥∞/ inf
x∈E

∥x∥2=1

∥x∥∞ ≤ 1 + ε.

In Section 2.3, we prove the following statement:

Theorem (Theorem 2.13). Let ε ∈ (0, 1/2) and n > 1. Then

1) There is a universal constant c̃ > 0 such that whenever k ≤ c̃ε lnn/ ln 1
ε
, then

µn,m
{
E ∈ Gn,m : E is (1 + ε)-spherical subspace of ℓn∞

}
≥ 1 − 2n−c̃ε;

2) Conversely, if for some m > 1

µn,m
{
E ∈ Gn,m : E is (1 + ε)-spherical subspace of ℓn∞

}
≥ 3

4

then necessarily m ≤ Cε lnn/ ln 1
ε
, where C > 0 is a universal constant.

The first part of the above theorem is proved in [99] and is given here only for com-

pleteness. Our contribution consists in proving the second assertion, which follows from

certain properties of the χ-distribution.
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Finally, let us discuss the contents of Section 2.4 of the thesis. Fix any N ≥ n+ 1 and

let PN be an n-dimensional convex polytope with N vertices. For N ≥ 2n, the Banach–

Mazur distance of PN to the Euclidean ball can be estimated from below by c
√

n
ln N

n

for a

universal constant c > 0 (we refer to [11], [15, Corollary 9.5], [18] or [38]). This bound is

optimal up to the constant multiple: for any n ∈ N and n+1 ≤ N ≤ 2n there is a polytope

PN in Rn with N vertices which is C
√
n/ ln N

n
–Euclidean for a universal constant C > 0

(see [33, p. 96]).

On the other hand, for N < 2n only partial results in this direction were available.

Note that in this case the polytope is necessarily non-symmetric. E. Gluskin and A. Litvak

showed in [40] that the distance of PN to the set of all symmetric convex bodies is at least
cn
N−n . The authors of [40] conjectured that dist(PN , B

n
2 ) ≥ cn√

N−n . The next result confirms

this:

Theorem (Theorem 2.14). Let n ∈ N and let PN be a convex n-dimensional polytope

with N vertices (n + 1 ≤ N ≤ 2n). Then dist(PN , B
n
2 ) ≥ cn/

√
N − n where c > 0 is a

universal constant.

It can be shown that the above estimate is optimal up to the constant factor c. Let us

remark that the question of the distance to the Euclidean ball is naturally connected to

coverings of the sphere Sn−1 by spherical caps of equal radius, which has been considered

by several authors in special cases. This will be discussed in more detail in Section 2.4.

1.2 The extreme singular values of random matrices

Before we start our discussion, let us emphasize that, with multiple connections to Math-

ematical Physics, Computer Science and Statistics, the Random Matrix Theory has de-

veloped into a very broad area of research. For an extensive information on the subject,

we refer to monographs and surveys [6, 85, 117]. Here, we focus our attention only on

those aspects of the theory which are directly related to the results proved in our thesis.

Let M be an N ×n matrix (N ≥ n) with real-valued entries. Then the singular values

si(M) of M are defined as square roots of the eigenvalues of the n×n matrix MTM . We

will arrange them in non-increasing order, counting multiplicities, i.e.

si(M) =
√

λi, where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of MTM.

In particular, the largest and the smallest singular values of M can be defined as

smax(M) = s1(M) = sup
y∈Sn−1

∥My∥2
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and

smin(M) = sn(M) = inf
y∈Sn−1

∥My∥2.

The study of the extremal singular values of random matrices is connected to certain

important questions in statistics and analysis of algorithms (see, in particular, [1, 28, 91,

96, 105]).

Given a square non-singular matrix M , the condition number κ(M) is defined as the

ratio smax(M)/smin(M). This quantity plays a fundamental role in numerical analysis

and, in particular, is used to analyse parameters (precision versus speed) of the Gaussian

elimination (see [28, 96] and references therein). When M is random, the distribution

of κ(M) characterizes the average-case performance and (depending on the model of

randomness) is employed in smooth analysis of algorithms [96, 105]. For the n×n standard

Gaussian matrix G, an explicit formula for the joint distribution of the eigenvalues of GTG

is known [51]. This allowed A. Edelman [27] to compute the probability density function

of the smallest singular value smin(G) and establish convergence of the probability density

of rescaled condition number κ(G)/n (when n → ∞) to the function f(t) = 2t+4
t3

e−2/t−2/t2

[27, Theorem 6.1] (see also [107] for large deviation estimates of the singular values). We

note here that analogous results for a more general class of random square matrices were

obtained by T. Tao and V. Vu in [111]. From the results of A. Edelman it follows, in

particular, that the “typical” value of smin(G) is of order n−1/2 and that P{smin(G) ≤
εn−1/2} ≤ ε for any ε > 0. In context of smooth analysis of algorithms, A. Sankar,

D. Spielman and S.-H. Teng [96] showed that an analogue of the latter estimate holds

for a shifted Gaussian matrix; namely, if A is n× n with independent Gaussian entries of

unit variance (not necessarily centered) then P{smin(A) ≤ εn−1/2} ≤ 2.35ε for all ε > 0.

For various generalization of the aforementioned results, we refer to [95, 112, 113, 87] and

references therein. Let us also mention an important problem of singularity of a random

Bernoulli (±1) matrix which influenced development of the subject; see [60, 55, 109, 16]

for results in that direction.

For rectangular matrices, the study of the extremal singular values has been stimulated

by the problem of approximating the covariance matrix of a distribution by a sample

covariance matrix, as well as by certain questions in high-dimensional convex geometry.

Recall that given an n-dimensional centered random vector X with E ∥X∥22 < ∞, its

covariance matrix is defined as the expectation of the outer product Σ = EXXT . Further,

we say that a random centered vector X (and the underlying distribution) is isotropic if

its covariance matrix is the identity.

In Section 1.1 we have mentioned a theorem of Y. Gordon [43] which improved the
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original dependence on ε in Dvoretzky’s theorem. As a crucial step, Y. Gordon showed

that for the standard N × n (N ≥ n) Gaussian matrix G,

EN − En ≤ E smin(G) ≤ E smax(G) ≤ EN + En,

where Em stands for the expectation of the Euclidean norm of the standard m-dimensional

Gaussian vector. We note that together with a well known concentration inequality in

the Gauss space (see, for example, [117, Corollary 5.35]), the above relation implies

P
{√

N −
√
n− t ≤ smin(G) ≤ smax(G) ≤

√
N +

√
n+ t

}
≥ 1− 2 exp(−ct2), t > 0, (1.1)

for a universal constant c > 0. Similar (but somewhat weaker) estimates are known for

more general subgaussian distributions. Recall that the subgaussian norm of a centered

random variable ξ is defined as ∥ξ∥ψ2 = sup
p≥1

p−1/2
(
E |ξ|p

)1/p
. Further, the subgaussian

norm of a centered n-dimensional random vector X is defined as

∥X∥ψ2 = sup
y∈Sn−1

∥⟨X, y⟩n∥ψ2 .

Now, if A is an N × n random matrix with independent centered isotropic rows (X i)T

(1 ≤ i ≤ N) with ∥X i∥ψ2 ≤ K then

√
N − L

√
n− t ≤ smin(A) ≤ smax(A) ≤

√
N + L

√
n + t

with probability at least 1 − 2 exp(−ct2) for any t > 0 and for L depending only on K

[117, Theorem 5.39]. Note that the left hand side estimate is non-trivial only for tall

matrices with N significantly larger than n. For N ≈ n, strong estimates for smin(A) are

known in case when the entries of A are i.i.d. subgaussian [66, 93].

The above estimates can be interpreted in the context of sample covariance matrices.

Let X be an n-dimensional centered random vector with covariance matrix Σ and let

X1, X2, . . . , XN be a collection of independent vectors equidistributed with X. We define

the sample covariance matrix

Σ̃ =
1

N

N∑
i=1

X i(X i)T .

If we denote by A an N × n matrix with rows (X i)T (1 ≤ i ≤ N) then it is easy to

see that smax(A)2 = Nλmax(Σ̃) and smin(A)2 = Nλmin(Σ̃), where λmax(Σ̃), λmin(Σ̃) are the

largest and the smallest eigenvalues of Σ̃. The principal question is how close the sample

covariance matrix is to Σ; more specifically, given ε > 0, how big the number N

10



should be to guarantee that the operator norm of the difference Σ̃ − Σ is less

than ε∥Σ∥2→2 with probability close to one. Note that the Law of Large Numbers,

together with Lipschitzness of the operator norm, imply that such a number N always

exists. As an example, let us take X to be the standard n-dimensional Gaussian vector.

We have

∥Σ̃ − Idn∥2→2 = max
(
|λmax(Σ̃) − 1|, |λmin(Σ̃) − 1|

)
= max

( 1

N
smax(G)2 − 1, 1 − 1

N
smin(G)2

)
,

where G is the N × n Gaussian matrix with rows (X i)T , i = 1, 2, . . . , N . Together with

(1.1), the above identity implies

∥Σ̃ − Idn∥2→2 ≤ 3

√
n

N
+

5t√
N

with probability at least 1−2 exp(−ct2) for any t ∈ (0,
√
n). Thus, in order to approximate

the covariance matrix with precision ε ∈ (0, 1] in the Gaussian case, Cε−2n samples (for

a sufficiently large universal constant C) is enough.

It is not difficult to see that given any centered random vector X with covariance

matrix Σ, the vector Σ−1/2X is isotropic. Now, let Σ−1/2X1,Σ−1/2X2, . . . ,Σ−1/2XN be a

sample of size N with respect to Σ−1/2X. Note that

 1

N

N∑
i=1

Σ−1/2X i
(
Σ−1/2X i

)T − Idn


2→2

< ε

for some ε ∈ (0, 1] only if

−εΣ ≺ 1

N

N∑
i=1

X i(X i)T − Σ ≺ εΣ,

where M ≺ M ′ means that M ′−M is positive definite. The last relation, in turn, implies

that  1

N

N∑
i=1

X i(X i)T − Σ

2→2

< ε∥Σ∥2→2.

This observation tells us that whenever we want to verify approximation properties of

sample covariance matrices for a class of centered distributions which is closed under

linear bijections, it is enough to consider only isotropic distributions from the class. An

important example of this kind is the class of log-concave distributions.
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Recall that a distribution in Rn is log-concave if its probability density function can be

represented in form exp(−h(x)) (x ∈ Rn), where h(x) is some convex function. Motivated

by the problem of computing the volume of a high-dimensional convex set given by a

separation oracle, R. Kannan, L. Lovász and M. Simonovits [56] considered the question

of approximating the covariance matrix of a log-concave random vector by the sample

covariance matrix. The problem was resolved by R. Adamczak, A. Litvak, A. Pajor and

N. Tomczak-Jaegermann [1]. Taking into account observations made by the authors in

[2], their result can be formulated as follows:

Theorem ([1, 2]). Let X be an isotropic log-concave vector in Rn and X1, X2, . . . , XN

be its independent copies. Then with probability 1 − 2 exp(−c
√
n) we have

 1

N

N∑
i=1

X i(X i)T − Idn


2→2

≤ C

√
n

N
,

where C, c > 0 are universal constants.

Let us note that the above theorem can be reformulated in terms of singular values

as follows: If A is an N × n random matrix whose rows are independent copies of an

isotropic log-concave vector then

√
N − C̃

√
n ≤ smin(A) ≤ smax(A) ≤

√
N + C̃

√
n

with probability at least 1 − 2 exp(−c
√
n). Various generalizations of the above theorem

requiring fewer assumptions on the distribution of X have appeared in past years. A

principal observation made already in [2] was that the above approximation properties

of the sample covariance matrix hold as long as the Euclidean norm of X concentrates

sufficiently well around its expectation and one-dimensional marginals ⟨X, y⟩n (y ∈ Sn−1)

have bounded moments of sufficiently high order. For developments in this direction, we

refer to [106, 74, 47]. The problem of bounding the smallest singular value of a random

matrix with i.i.d. isotropic rows was treated in [59, 118].

Let us turn attention to corresponding limiting results. First, we recall the classical

Marčenko–Pastur law. Given an n× n matrix M with real eigenvalues λ1, λ2, . . . , λn, we

define the spectral distribution FM as

FM(t) =
1

n

⏐⏐{i ≤ n : λi ≤ t
}⏐⏐, t ∈ R.

Theorem (the Marčenko–Pastur law; see [71], [119], [6, Theorem 3.6]). Let (aij) (1 ≤
i, j < ∞) be a set of i.i.d. random variables with zero mean and unit variance and let
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(mn)∞n=1 be an integer sequence with lim
n→∞

n
mn

= z for some z ∈ (0, 1). For every n ∈ N
denote by An the random mn × n matrix in the top left corner of the array (aij). Then

with probability one the sequence of spectral distributions {FAn
TAn} converges pointwise

to a non-random distribution given by

F (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if t ≤ r,

1
2πz

t∫
r

√
(R−τ)(τ−r)

τ
dτ, if r ≤ t ≤ R,

1, if t ≥ R.

where r = (1 −
√
z)2 and R = (1 +

√
z)2.

In particular, the Marčenko–Pastur law implies that, with the above notation, for a

sufficiently large n the matrix An satisfies smax(An) ≥ √
mn+(1−o(1))

√
n and smin(An) ≤

√
mn − (1 − o(1))

√
n with probability close to one, where o(1) stands for a quantity

that goes to zero when n → ∞. A natural question is whether the estimates are sharp,

equivalently, whether the extremal eigenvalues of matrix 1
mn

An
TAn concentrate around the

edges of the Marčenko–Pastur distribution. For smax(An) =
√
λmax(An

TAn), this question

was resolved by Y.Q. Yin, Z.D. Bai and P.R. Krishnaiah in [120]. A corresponding result

for smin was obtained by Z.D. Bai and Y.Q. Yin [8], who also provided a uniform treatment

of both singular values of An. Those are often called the Bai–Yin theorem in the literature.

Theorem (Bai–Yin, [8]). Let (aij)
∞
i,j=1 be a two-dimensional infinite array of i.i.d. random

variables with zero mean, unit variance and a bounded 4th moment. Further, let (mn)∞n=1

be an integer sequence such that lim
n→∞

n
mn

= z ∈ (0, 1). For every n ∈ N, let An be

the mn × n matrix in the top left corner of the array. Then the sequence 1√
mn

smax(An)

converges to 1 +
√
z almost surely. Similarly, the sequence 1√

mn
smin(An) converges to

1 −
√
z almost surely.

Although from the standpoint of approximation of the covariance matrix there is no

need to treat the largest and the smallest eigenvalues (singular values) separately, there

is definitely a theoretical motivation for this. Indeed, on an intuitive level, the largest

singular value is sensitive to spikes — entries of a matrix having a very large value,

whereas the smallest singular value should be “stable” as long as the number of spikes is

not too big. Further, whereas controlling the largest singular value from above requires

certain assumptions on tails of row distributions, the lower bound for smin (again, on

an intuitive level) is likely to depend only on anticoncentration properties of respective
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distributions. Confirming or disproving these intuitive notions can improve one’s under-

standing of spectral properties of random matrices and bring about new techniques for

dealing with heavy-tailed entries. The two results we present in Chapter 3 are devoted to

this problem.

In Section 3.1, we prove a lower bound on the smallest singular value of a random ma-

trix with independent entries which requires only assumptions on the Lévy concentration

function of the entries and no assumptions on moments. Given a real random variable ξ,

the Lévy concentration function of ξ is defined as

Q(ξ, α) = sup
λ∈R

P
{
|ξ − λ| ≤ α

}
, α ≥ 0.

We prove the following theorem:

Theorem (Theorem 3.1). For any real β > 0 and δ > 1 there are u, v > 0 and N0 ∈
N depending only on β and δ with the following property: Let N, n ∈ N satisfy N ≥
max(N0, δn); A = (aij) be an N ×n random matrix with i.i.d. entries, such that for some

α > 0 the concentration function of the entries satisfies

Q(a11, α) ≤ 1 − β.

Then for any non-random N × n matrix B we have

P
{
smin(A + B) ≤ αu

√
N
}
≤ exp(−vN).

The next result is a generalization of the aforementioned theorem of Bai and Yin.

Let us note that for convergence of the (appropriately rescaled) largest singular value to

the right edge of the Marčenko–Pastur distribution the assumption of bounded fourth

moment is necessary [103]. However, as we prove in §3.2, for the smallest singular value

the situation is different:

Theorem (Theorem 3.18). Let (aij) (1 ≤ i, j < ∞) be a set of i.i.d. real valued random

variables with zero mean and unit variance. Further, let (mn)∞n=1 be an integer sequence

with lim
n→∞

n
mn

= z for some z ∈ (0, 1). For every n ∈ N we denote by An the random

mn × n matrix with entries aij (1 ≤ i ≤ mn, 1 ≤ j ≤ n). Then with probability one the

sequence (
mn

−1/2smin(An)
)∞
n=1

converges to 1 −
√
z.

Further generalization of the Bai–Yin theorem has been recently obtained in [20]. In
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particular, the result of [20] implies convergence in probability of (appropriately rescaled)

singular values of random matrices with i.i.d. isotropic log-concave rows to edges of the

Marčenko–Pastur distribution, thereby sharpening the theorem of [1].

Let us note that the proofs of both results in Chapter 3 heavily rely on covering

arguments as well as on studying random projection operators. Thus, our methodology

in treating these problems is largely inherited from Asymptotic Geometric Analysis.

1.3 Convex hulls of random walks in high dimensions

The standard Brownian motion on [0,∞) is a centered Gaussian process BM1(t) such that

for any t, s ∈ [0,∞) we have cov(BM1(t),BM1(s)) = min(t, s). By n-dimensional (n ≥ 1)

Brownian motion BMn(t) we understand a vector of n independent standard Brownian

motions.

Convex hulls of the planar Brownian motion as well as of certain discrete-time 2-

dimensional random walks, have been extensively studied in literature; in particular,

sharp estimates for the perimeter and the area are known. We refer to [69] for a survey

of related results prior to 2010.

In higher dimensions, much less information has been available until recently. In

particular, the expected volume of conv{BMn(t) : 0 ≤ t ≤ 1} was not known until

R. Eldan [30] and Z. Kabluchko and D. Zaporozhets [54] independently showed that

EVoln
(
conv{BMn(t) : 0 ≤ t ≤ 1}

)
=
(π

2

)n/2 1

Γ(n/2 + 1)2
.

Moreover, these papers provide explicit formulas for the expectations of all intristic vol-

umes of the convex hull.

In [29], R. Eldan studied the following question posed by I. Benjamini: Let t1, t2, . . . , tN

be points generated by the Poisson point process in [0, 1] of intensity α. What is the

probability that the convex hull of BMn(ti) (1 ≤ i ≤ N) (where BMn(t) is independent

from the Poisson process) contains the origin? R. Eldan showed that when the intensity

α ≥ exp(Cn lnn), the origin is contained in the convex hull with probability close to one,

whereas, for α ≤ exp(cn/ lnn), the probability is near zero. Analogous questions for the

simple random walk on Zn and for the spherical Brownian motion were also treated in

[29]. In particular, it was shown that for the walk on Zn starting at the origin, after

exp(Cn lnn) steps the probability that the convex hull contains the origin in the interior

is almost one and, for less than exp(cn/ lnn) steps, the probability is close to zero.

The purpose of Chapter 4 of this thesis is to define a novel approach to the above
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problem based on techniques from non-asymptotic random matrix theory and AGA. This

allowed us to strengthen and generalize the aforementioned results of R. Eldan. The first

main result of the Chapter is the following theorem:

Theorem (Theorem 4.1). There exists a constant C > 0 such that for any n ∈ N and

N ≥ exp(Cn) the following holds.

• Setting ti := i/N , i = 1, 2, . . . , N , the set conv{BMn(ti), i ≤ N} contains the origin

in its interior with probability at least 1 − exp(−n).

• The convex hull of the first N steps of the standard random walk on Zn starting at

0, contains the origin in its interior with probability at least 1 − exp(−n).

The first part of this theorem also holds when {ti} is a homogeneous Poisson process

in [0, 1] of intensity at least exp(Cn). Therefore, our result is strictly stronger than the

bound proved in [29]. The first assertion of the above theorem is close to optimal in a

sense that for some universal constants c > 0 and n0 ∈ N and for n ≥ n0 we have

P
{

0 ∈ conv{BMn(t) : t ∈ [1, 2cn]}
}
≤ 1

n
.

We provide a proof of this complementary result in Section 4.6 (let us note that the

techniques used in its proof are completely different from the “random matrix” approach

used to verify the first theorem of the Chapter).

The second main result of Chapter 4 deals with discrete-time random walks on the

sphere. For any θ ∈ (0, π/2), we consider a walk Wθ with values in Sn−1 such that the

angle between two consecutive steps is θ (i.e. ⟨Wθ(j),Wθ(j + 1)⟩n = cos θ, j ∈ N) and

the direction from W (j) to W (j + 1) is chosen uniformly at random in the sense that for

any u ∈ Sn−1, the distribution of Wθ(j + 1) conditioned on Wθ(j) = u is uniform on the

(n− 2)-sphere Sn−1 ∩ {x ∈ Rn : ⟨x, u⟩n = cos θ}.

Theorem (Theorem 4.3). For any θ ∈ (0, π/2), there exist L = L(θ) and n0 = n0(θ)

depending only on θ such that the following holds: Let n ≥ n0 and Wθ be the process with

values in Sn−1 described above. Then for all N ≥ Ln we have

P
{

0 belongs to conv{Wθ(i) : i ≤ N}
}
≥ 1 − exp(−n).

Let us note that recently, a different treatement of the “absorbtion problem” was

proposed by Z. Kabluchko, V. Vysotsky and D. Zaporozhets in [53]. In particular, the

authors were able to obtain formulas giving the probability of the convex hull containing

the origin for a very large class of high-dimensional random walks, including the discretized
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Brownian motion. Nevertheless, we would like to point out that the approach developed

in Chapter 4, although providing less precise estimates compared to [53], is a very natural

(and technically simple) application of standard AGA methods, and in this respect may

be of value for future works on high-dimensional random processes.
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Chapter 2

Asymptotic Geometric Analysis

2.1 Notation

Here, we have grouped together notation specific to this Chapter. A norm ∥ · ∥ in Rn is

unconditional (or 1-unconditional) if

∥(x1, x2, . . . , xn)∥ = ∥(|x1|, |x2|, . . . , |xn|)∥

for any (x1, x2, . . . , xn) ∈ Rn. Further, ∥ · ∥ is said to be symmetric (or 1-symmetric) if it

is unconditional and invariant under permutations of coordinates, i.e.

∥(x1, x2, . . . , xn)∥ = ∥(xσ(1), xσ(2), . . . , xσ(n))∥

for all (x1, x2, . . . , xn) ∈ Rn and any permutation σ ∈ Πn. For two normed n-dimensional

spaces X and Y , the Banach–Mazur distance between X and Y is defined as dist(X, Y ) =

inf ∥T∥X→Y ∥T−1∥Y→X where the infimum is taken over all linear bijections T : X → Y .

By analogy, the Banach–Mazur distance between two n-dimensional convex bodies K1

and K2 (not necessarily symmetric) is defined by

dist(K1, K2) = inf
{
λ ≥ 1 : there is T : Rn → Rn and x, y ∈ Rn

such that K1 ⊂ T (K2) + x ⊂ λK1 + y
}
.

It is not difficult to see that the last definition agrees with one for normed spaces in the

sense that the Banach–Mazur distance between the spaces is equal to the distance between

their unit balls. If a convex body K is at the distance at most L from the Euclidean ball

then we say that K is L-Euclidean. Similarly, if a normed space X is at the distance at

most L from ℓn2 , it will be called L-Euclidean.
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2.2 Almost Euclidean Sections in Symmetric Spaces

and Concentration of Order Statistics 1

2.2.1 Introduction

The classical theorem of A. Dvoretzky [26] states that for arbitrary ε > 0 and m ∈ N
there is a number n = n(m, ε) such that any n-dimensional normed space contains an

m-dimensional (1 + ε)-Euclidean subspace (i.e. its Banach–Mazur distance to ℓm2 is at

most 1 + ε). In subsequent years several alternative proofs of the theorem were found,

the most influential is due to V. Milman [76] (see [98] for more background information).

V. Milman showed that it is possible to take n(m, ε) = exp(m/f(ε)) for certain func-

tion f(ε). Whereas the dependence on m in the last relation is optimal, the behaviour

of f(ε) is unclear. In the original work of V. Milman, f(ε) = cε2/ ln(1/ε) where c is a

universal constant. This was improved by Y. Gordon [43, Theorem 2.8] to f(ε) = cε2 and

later by G. Schechtman [100] to f(ε) = cε/ ln2(1/ε).

Instead of considering the general case, one may wish to estimate n(m, ε) for some

particular family of normed spaces. It is well known that (1 + ε)-Euclidean subspaces of

ℓn∞ cannot have dimension larger than C lnn/ ln(1/ε). Moreover, this bound is optimal in

a sense that these subspaces can be chosen to have dimension at least c lnn/ ln(1/ε) (for

some universal c). The standard construction is to take a linear operator T : Rm → Rn

mapping every y ∈ Rm to (⟨y, z1⟩m, ⟨y, z2⟩m, . . . , ⟨y, zn⟩m), where {z1, z2, . . . , zn} is a fixed
√
ε-net on the unit sphere Sm−1. Then ImT ⊂ ℓn∞ is (1 + Cε)-Euclidean. This approach

was transferred to all spaces with symmetric bases by J. Bourgain and J. Lindenstrauss

[14]. The paper [14] deals with the problem of finding the optimal dependence of n(m, ε)

on ε when m is fixed. It was proved that in the class of symmetric spaces the smallest

possible n(m, ε) does not exceed h(m)ε−(m−1)/2 ln(1/ε), where h(m) is a function of m

only. Disregarding the logarithmic factor ln(1/ε), the bound obtained in [14, Theorem 2]

is optimal with respect to ε. However, in the proof of Theorem 2, h(m) ≥ mcm, giving an

unsatisfactory estimate for n(m, ε) when ln(1/ε)/lnm ≪ 1.

A natural question in connection with embedding ℓm2 into ℓn∞ is whether the embedding

can be randomized. G. Schechtman [99] showed that if for “most” m-dimensional sub-

spaces on the Grassmannian (with respect to the Haar measure) the ℓn∞-norm restricted to

the subspace is (1 + ε)-equivalent to a multiple of ℓn2 -norm, then necessarily m ≤ Cε lnn.

As was observed in [44], the situation changes completely when subspaces are generated

by the random operator Γ mapping every y ∈ Rm to (⟨y, z1⟩m, ⟨y, z2⟩m, . . . , ⟨y, zn⟩m),

1A version of this section has been published. K. E. Tikhomirov, Almost Euclidean sections in sym-
metric spaces and concentration of order statistics, J. Funct. Anal. 265 (2013), no. 9, 2074–2088.
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with z1, z2, . . . , zn being independent random vectors uniformly distributed on Sm−1.

Specifically, Y. Gordon, A. Litvak, A. Pajor and N. Tomczak–Jaegermann proved in

[44] that ImΓ is a (1+ε)-Euclidean subspace of ℓn∞ with a large probability, provided that

m ≤ c lnn/ ln(1/ε) [44, Theorem 4.1]. In fact, the main result of [44] — Theorem 3.3 —

produces similar random embeddings into ℓn∞ for arbitrary normed spaces, not only ℓm2 .

The main motivation for us was to generalize Theorem 4.1 from [44] to all symmetric

spaces. We prove that with a large probability ImΓ (for Γ defined above) is actually a

(1+ε)-Euclidean subspace of any symmetric space (Rn, ∥·∥) as long as m ≤ c lnn/ ln(1/ε)

(Theorem 2.6). That is, we can estimate n(m, ε) in the class of symmetric spaces by ε−Cm,

with C a (large) universal constant. Note that our bound for n(m, ε) is optimal up to the

value of C (since in ℓ∞-case n(m, ε) cannot be less than ε−cm).

The nice behaviour of the operator Γ is a consequence of a much more general con-

centration result. As it turns out, for any n-dimensional random vector with indepen-

dent identically distributed coordinates, “sufficiently good” concentration in ℓn∞ implies

concentration in all symmetric norms (Proposition 2.4). This statement follows from the

Calderon–Mityagin interpolation theorem and the fact that order statistics of vectors with

i.i.d. coordinates are “almost constants”. The concentration property of order statistics

in the form useful for us is an easy consequence of Chernoff’s bounds for the binomial dis-

tribution, [22, Theorem 1], by a standard and well-known probabilistic argument. Let us

remark here that the use of Chernoff’s estimates in geometry of high-dimensional convex

bodies was initiated in papers [79] and [4].

The organization of this section is the following. In §2.2.2 we provide some definitions

and standard results which form a basis for further discussion. In §2.2.3 we prove the

concentration property for vectors with i.i.d. coordinates (Proposition 2.4). In §2.2.4 we

deal with Euclidean subspaces of normed spaces. We show that with a high probability

the subspace ImΓ is almost Euclidean for all symmetric spaces (Theorem 2.6). Finally,

in §2.2.5 we illustrate limitations of this approach by constructing two examples of non-

symmetric spaces where Γ(Sm−1) is not “spherical”.

2.2.2 Preliminaries

Further, we shall assume a standard lattice order for vectors in Rn, namely,

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if ai ≤ bi for all i = 1, 2, . . . , n. (2.1)

For any subset I ⊂ {1, 2, . . . , n}, we define the characteristic function of I in Rn as
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the vector

χI =
∑
i∈I

eni .

Let x = (x1, x2, . . . , xn) be a vector of independent identically distributed (i.i.d.) real-

valued random variables on a probability space (Ω,Σ,P), each xi having a cumulative dis-

tribution function (cdf) F . For any ω ∈ Ω we denote by x∗(ω) = (x∗
1(ω), x∗

2(ω), . . . , x∗
n(ω))

the non-increasing rearrangement of the vector (x1(ω), x2(ω), . . . , xn(ω)), i.e. x∗
i (ω) is the

i-th largest coordinate of x(ω). We call the random variable x∗
i the i-th order statistic of

x, i = 1, 2, . . . , n. It is easy to check [25, Chapter 2] that the distribution function of the

k-th order statistic (k = 1, 2, . . . , n) is given by

Fk(t) =
n∑

i=n−k+1

(
n

i

)
F (t)i[1 − F (t)]n−i =

k−1∑
i=0

(
n

i

)
F (t)n−i[1 − F (t)]i, t ∈ R. (2.2)

In particular, the cdf of the largest order statistic

F1(t) = F (t)n, t ∈ R. (2.3)

For any s ∈ (0, 1), the quantile of order s is defined by

ξs = inf{t : F (t) > s}. (2.4)

When F is continuous and strictly increasing, ξs (as a function of s) is just the inverse of

F . Denote by η = (η1, η2, . . . , ηn) the vector of quantiles of F where

ηk = ξs(k) for s(k) = 1 − (2k − 1)/(2n) (k = 1, 2, . . . , n). (2.5)

We have “(2k−1)/(2n)” instead of “k/n” is the last formula to get a well-defined vector for

any F . Note that η is non-increasing. We will see that, under some additional conditions,

x concentrates near η in any symmetric norm. Here are examples of η for some classical

distributions. If F is the uniform distribution on [0, 1] then ηk = 1 − (2k − 1)/(2n), k =

1, 2, . . . , n. If F is Bernoulli with probability of success 1/2 then ηk = 1 for k ≤ (n+ 1)/2

and ηk = 0 otherwise. In case of the standard normal distribution (with cdf Φ) we have

ηk = Φ−1(1 − (2k − 1)/(2n)); in particular, η1 −
√

2 ln 2n → 0 for n → ∞ [25, p. 264].

Estimates for the distributions of order statistics x∗
k play a key role in the proof of the

main results of the section. Recall that by Chernoff’s theorem [22, Theorem 1], for any
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p ∈ (0, 1) and k ≤ pn

k∑
i=0

(
n

i

)
pi(1 − p)n−i ≤ exp

(
k ln

pn

k
+ (n− k) ln

(1 − p)n

n− k

)
. (2.6)

Now, let ξs be the quantile of order s for some s ∈ (0, 1). Assume for a moment that F

is continuous at ξs, i.e. ξs = max{t : F (t) = s}. Then (2.6), together with the inequality

ln(1 + α) ≤ α− α2/(2 + 2α) (α ≥ 0), implies that for any natural k < (1 − s)n + 1

P{x∗
k < ξs} =

k−1∑
i=0

(
n

i

)
(1 − s)isn−i ≤ exp

(
−((1 − s)n + 1 − k)2

2n(1 − s)

)
. (2.7)

Similarly, using the estimate ln(1 + α) ≤ α − α2/2 (α ≤ 0) for the right-most logarithm

in (2.6), we get: for any k ≥ (1 − s)n

P{x∗
k > ξs} =

n∑
i=k

(
n

i

)
(1 − s)isn−i ≤ exp

(
−(k − (1 − s)n)2

2k

)
. (2.8)

It is not difficult to show that the estimates in (2.7) and (2.8) hold true for discontinuous

F as well.

Clearly, (2.7) and (2.8) imply that for k ≪ ℓ we have x∗
k ≥ ηℓ and x∗

ℓ ≤ ηk with a

large probability. This property shall be described in the next section in terms of dilation

operators.

2.2.3 Dilation operators and concentration of order statistics

Fix any n and any ν ≥ 1 and consider a linear operator Dν : Rn → Rn defined by

Dνe
n
i =

n∑
ℓ=1

µ([ν(i− 1), νi] ∩ [ℓ− 1, ℓ])enℓ , i = 1, 2, . . . , n,

where µ is the Lebesgue measure on R. We say that Dν is a dilation operator. This is a

modification of the definition of dilation operators for rearrangement invariant function

spaces [65, p. 130].

We shall highlight some of the very basic properties of Dν . Let a = (a1, a2, . . . , an) be

a non-increasing sequence. It is not difficult to see that Dνa is also non-increasing and

Dνa ≥ a. In fact, a stronger relation holds. Fix any 1 ≤ k ≤ n and let i = ⌈k/ν⌉. For all
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j > i we have ν(j − 1) ≥ k which implies µ([ν(j − 1), νj] ∩ [k− 1, k]) = 0. It follows that

⟨Dνa, e
n
k⟩n =

n∑
j=1

ajµ([ν(j− 1), νj]∩ [k− 1, k]) =
i∑

j=1

ajµ([ν(j− 1), νj]∩ [k− 1, k]). (2.9)

Note the identity

n∑
i=1

µ([ν(i− 1), νi] ∩ [l − 1, l]) = 1, l = 1, 2, . . . , n. (2.10)

Together with the fact that a is non-increasing, (2.9) and (2.10) yield

⟨Dνa, e
n
k⟩n ≥

i∑
j=1

aiµ([ν(j − 1), νj] ∩ [k − 1, k]) ≥ ai.

Thus,

⟨Dνa, e
n
k⟩n ≥ ai for all 1 ≤ k ≤ n and i = ⌈k/ν⌉. (2.11)

Note that (2.10) implies ∥Dν∥∞→∞ = 1. At the same time, for any i ∈ {1, 2, . . . , n}

∥Dνe
n
i ∥1 ≤ µ([ν(i− 1), νi]) = ν,

so ∥Dν∥1→1 ≤ ν. Applying the Calderon–Mityagin interpolation theorem [65, Theo-

rem 2.a.10], we conclude that for any n-dimensional symmetric space E,

∥Dν∥E→E ≤ max(∥Dν∥1→1, ∥Dν∥∞→∞) ≤ ν. (2.12)

We now return to the probabilistic setting we discussed earlier. Unitil the end of this

section, let x = (x1, x2, . . . , xn) be a random vector of i.i.d. variables with each coordinate

having a cdf F , x∗ be the corresponding vector of order statistics and η be defined by

(2.5) with respect to F .

Proposition 2.1. For any k ∈ N and ν ≥ 1

max
(
P{⟨Dνx

∗, enk⟩n < ηk},P{x∗
k > ⟨Dνη, e

n
k⟩n}

)
≤ exp

(
−k

8

(
1 − 1

ν

)2
)
.

Proof. Let i := ⌈k/ν⌉. By (2.11), ⟨Dνx
∗, enk⟩n ≥ x∗

i and ⟨Dνη, e
n
k⟩n ≥ ηi. Consequently,

P{⟨Dνx
∗, enk⟩n < ηk} ≤ P{x∗

i < ηk} and P{x∗
k > ⟨Dνη, e

n
k⟩n} ≤ P{x∗

k > ηi}.
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By definition, ηk = ξs for s = 1−(2k−1)/(2n). Note that 2(k−i+1/2) ≥ k−i+1 ≥ k−k/ν.

Then, by (2.7),

P{x∗
i < ηk} ≤ exp

(
−((1 − s)n + 1 − i)2

2n(1 − s)

)
= exp

(
−(k − i + 1/2)2

2k − 1

)
≤ exp

(
−k

8

(
1 − 1

ν

)2
)
.

Similarly, by (2.8), for s̃ = 1 − (2i− 1)/(2n),

P{x∗
k > ηi} ≤ exp

(
−(k + ns̃− n)2

2k

)
= exp

(
−(k − i + 1/2)2

2k

)
≤ exp

(
−k

8

(
1 − 1

ν

)2
)
.

For a real-valued random variable z with a cdf Fz we say that z is (ε, δ)–concentrated

around τ ∈ R if

max(P{z ≤ τ − ε},P{z > τ + ε}) ≤ δ,

or, equivalently, max(Fz(τ − ε), 1 − Fz(τ + ε)) ≤ δ.

From (2.3) and the above definition we get: x∗
1 is (ε, δ)-concentrated around some

τ ∈ R iff

F (τ − ε) ≤ δ1/n and F (τ + ε) ≥ (1 − δ)1/n. (2.13)

Take k ≤ (n + 1)/2 such that δ ≤ exp(−(2k − 1) ln 2). Then the left-most inequality in

(2.13) implies

F (τ − ε) ≤ exp(−(2k − 1) ln 2/n) =

(
1

4

)(2k−1)/(2n)

≤ 1 − 2k − 1

2n
.

In view of the definition of η, we get: if x∗
1 is (ε, δ)-concentrated around τ then

τ − ε ≤ ηk for all k satisfying k ≤ (n + 1)/2 and δ ≤ exp(−(2k − 1) ln 2). (2.14)

In particular, if δ ≤ 1/2 then τ − ε ≤ η1. On the other hand, if δ ≤ 1 − exp(−1/2) then
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the right-most inequality in (2.13) gives

F (τ + ε) ≥ exp(−1/(2n)) > 1 − 1/(2n),

whence τ + ε ≥ η1. Thus, if δ ≤ 1 − exp(−1/2) then (ε, δ)-concentration of x∗
1 around

some τ ∈ R implies (2ε, δ)-concentration around η1. Essentially, η1 is the only possible

concentration point for x∗
1.

Lemma 2.2. Let k ≤ (n+ 1)/2 be a natural number and x∗
1 be (ε, δ)-concentrated around

η1, where δ ≤ exp(−(2k − 1) ln 2). Then for any ν > 1

P{x∗ ≤ 2εχ{1,2,...,k} + Dνη} ≥ 1 − 9ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
,

where the order for vectors is defined by (2.1).

Proof. The conditions on δ imply, by (2.14), that ηk ≥ η1 − ε. Since Dνη ≥ η, we obtain

P{x∗
ℓ > 2ε+⟨Dνη, e

n
ℓ ⟩n for some ℓ = 1, . . . , k}

≤ P{x∗
ℓ > 2ε + ηℓ for some ℓ = 1, . . . , k}

≤ P{x∗
1 > 2ε + ηk}

≤ δ < exp(−k/8).

Further, by Proposition 2.1,

P{x∗
ℓ > ⟨Dνη, e

n
ℓ ⟩n for some ℓ = k + 1, . . . , n} ≤

n∑
ℓ=k+1

P
{
x∗
ℓ > ⟨Dνη, e

n
ℓ ⟩n
}

≤
n∑

ℓ=k+1

exp

(
− ℓ

8

(
1 − 1

ν

)2
)

≤ exp(−(k + 1)(1 − 1/ν)2/8)

1 − exp(−(1 − 1/ν)2/8)

≤ 8ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
.
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Combining these estimates, we get

P{x∗ � 2εχ{1,2,...,k} + Dνη}

= P{x∗
ℓ > 2ε + ⟨Dνη, e

n
ℓ ⟩n for some ℓ = 1, . . . , k or

x∗
ℓ > ⟨Dνη, e

n
ℓ ⟩n for some ℓ = k + 1, . . . , n}

<
9ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
.

Lemma 2.3. Let η1 − ηk ≤ ε for some k and ε. Then

P{η ≤ εχ{1,2,...,k−1} + Dνx
∗} ≥ 1 − 9ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
.

Proof. Note that whenever ⟨Dνx
∗, enℓ ⟩n < ηℓ− ε for some ℓ = 1, 2, . . . , k− 1 then, in view

of the conditions on η and monotonicity of Dνx
∗,

⟨Dνx
∗, enk⟩n ≤ ⟨Dνx

∗, enℓ ⟩n < ηℓ − ε ≤ ηk.

Hence, by Proposition 2.1,

P
{
⟨Dνx

∗, enℓ ⟩n < ηℓ − ε for some ℓ = 1, 2, . . . , k − 1 or ⟨Dνx
∗, enk⟩n < ηk

}
= P{⟨Dνx

∗, enk⟩n < ηk}

≤ exp

(
−k

8

(
1 − 1

ν

)2
)
.

Repeating the arguments in the proof of the previous lemma, we get

P
{
⟨Dνx

∗, enℓ ⟩n < ηℓ for some ℓ = k + 1, . . . , n
}

≤
n∑

ℓ=k+1

P
{
⟨Dνx

∗, enℓ ⟩n < ηℓ
}

≤ 8ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
.
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Finally,

P{η � εχ{1,2,...,k−1} + Dνx
∗}

= P{ηℓ > ε + ⟨Dνx
∗, enℓ ⟩n for some ℓ = 1, . . . , k − 1 or

ηℓ > ⟨Dνx
∗, enℓ ⟩n for some ℓ = k, . . . , n}

≤ 9ν2

(ν − 1)2
exp

(
−k

8

(
1 − 1

ν

)2
)
,

and the result follows.

We would like to highlight the difference between the assumptions in Lemmas 2.2

and 2.3. Concentration of x∗
1 in Lemma 2.2 implies that η1 − ηk ≤ ε. On the other hand,

the condition η1 − ηk ≤ ε in Lemma 2.3 does not imply concentration of x∗
1 around η1.

For example, let b be a Bernoulli (0 − 1) random variable with probability of success 1
2n

,

u be an independent variable uniformly distributed on [0;n], and let xi’s be independent

copies of the product ub. It is not difficult to see that η is the null vector in this case, but

P{x∗
1 > n/2} = 1 −

(
1 − 1

4n

)n
≥ 1 − exp(−1/4).

Next, we prove the main result of this section:

Proposition 2.4. Let x be an n-dimensional vector of non-negative i.i.d. random vari-

ables on a probability space (Ω,Σ,P), such that ∥x∥∞ is (ε, δ)-concentrated around ∥η∥∞ >

0 for ε ≤ ∥η∥∞/2 and δ ≤ exp(−(2k − 1) ln 2) for some k ≤ (n + 1)/2. Let θ := ε/∥η∥∞.

Then with probability greater than 1 − 18 exp(−kθ2/8)/θ2, for any symmetric norm ∥ · ∥
in Rn we have

(1 − 2θ)∥η∥ ≤ ∥x∥ ≤ (1 + 6θ)∥η∥. (2.15)

Proof. Consider the event

A =
{
ω ∈ Ω : x∗(ω) ≤ 2εχ{1,2,...,k} + Dνη and η ≤ εχ{1,2,...,k−1} + Dνx

∗(ω)
}
,

where ν = ∥η∥∞/(∥η∥∞ − ε) = 1/(1 − θ). Since x and η are non-negative, for any

unconditional (and, in particular, symmetric) norm ∥ · ∥ in Rn and any ω ∈ A we have

∥x∗(ω)∥ ≤ 2ε∥χ{1,2,...,k}∥ + ∥Dνη∥ and ∥η∥ ≤ ε∥χ{1,2,...,k−1}∥ + ∥Dνx
∗(ω)∥. (2.16)
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By (2.14), η1 = ∥η∥∞ ≤ ηk + ε. Then, by Lemmas 2.2 and 2.3,

P(A) ≥ 1 − 18 exp(−kθ2/8)/θ2.

Let ∥ · ∥ be a symmetric norm in Rn. We shall verify (2.15) for any ω ∈ A. Since η is

non-increasing, χ{1,2,...,k} ≤ η/ηk ≤ η/(∥η∥∞ − ε). Then, in view of (2.12) and (2.16),

∥x(ω)∥ = ∥x∗(ω)∥ ≤ 2ε∥η∥/(∥η∥∞ − ε) + ∥Dνη∥ ≤ (2ε/(∥η∥∞ − ε) + ν)∥η∥.

Note that ∥η∥∞/(∥η∥∞ − ε) ≤ 2, so

2ε/(∥η∥∞ − ε) + ν = 1 + 3ε/(∥η∥∞ − ε) ≤ 1 + 6θ,

and we get the right-most inequality in (2.15). Further, by (2.12) and (2.16),

∥η∥ ≤ ε∥χ{1,2,...,k−1}∥ + ∥Dνx
∗(ω)∥ ≤ ε∥η∥/(∥η∥∞ − ε) + ν∥x(ω)∥.

Hence,
∥η∥∞ − 2ε

∥η∥∞ − ε
∥η∥ ≤ ∥η∥∞

∥η∥∞ − ε
∥x(ω)∥,

implying (1 − 2θ)∥η∥∞ ≤ ∥x(ω)∥, so the left-most inequality in (2.15) is established as

well.

2.2.4 Dependence on ε in Dvoretzky’s theorem

As an application of Proposition 2.4, we prove that in any n-dimensional symmetric space

there are (1 + ε)-Euclidean subspaces of dimension m = c lnn/ ln(1/ε) (with c a universal

constant). Taking into account the ℓn∞ case, this is the optimal order of magnitude for m

in the class of symmetric spaces. Thoughout the section, we assume that the distortion ε

is less than 1/2.

The following lemma is standard (see, for example, [80, Lemma 4.1] for a similar

statement).

Lemma 2.5. Let m > 0 and let N be an ε-net (with respect to the Euclidean metric in

Rm) on Sm−1 for some ε ≤ 1/2. Further, let X be a normed space and T : Rm → X be a

linear operator such that for some M ∈ R+ and δ ∈ [0, 1) we have

(1 − δ)M ≤ ∥Tz∥X ≤ (1 + δ)M for all z ∈ N .
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Then for any y ∈ Sm−1 we have

(1 − 2δ − 2ε)M ≤ ∥Ty∥X ≤ (1 + 2δ + 2ε)M.

Next, pick any m ≥ 2 and n ≥ 1 and consider independent random m-dimensional

vectors z1, z2, . . . , zn defined on a probability space (Ω,Σ,P) and uniformly distributed on

Sm−1. We define a random linear operator Γn,m : Rm → Rn by

Γn,m(y) := (⟨y, zi⟩m)ni=1. (2.17)

When m and n are clear from the context, we will use “Γ” as an alternative notation.

Obviously, for any fixed y ∈ Sm−1, |Γy| = (|⟨y, zi⟩m|)ni=1 is a random vector of non-negative

i.i.d. variables. If η = (η1, η2, . . . , ηk) is the corresponding vector of quantiles defined by

(2.5) then for every k the (normalized) measure of a spherical cap in Sm−1 of geodesic

radius arccos(ηk) is 2k−1
4n

.

The operator Γ was studied in [44] in connection with the problem of embedding spaces

in ℓn∞. Our next theorem can be viewed as an extension of Theorem 4.1 from [44].

Theorem 2.6. Let 0 < ε ≤ 1/2 and 3 ≤ m ≤ lnn/(2 ln(64/ε)). Further, let z1, z2, . . . , zn

be independent random vectors uniformly distributed on Sm−1. Then with probability

greater than 1 − 2(48/ε)m+2 exp(−(128/ε)m−2) the map Γ has the following property: for

any symmetric norm ∥ · ∥ in Rn there exists M = M(m,n, ∥ · ∥) such that

(1 − ε)M ≤ ∥Γy∥ ≤ (1 + ε)M for all y ∈ Sm−1.

Proof. Let ε̃ := ε/16. Clearly, m ≤ lnn/(2 ln(4/ε̃)), so by [44, Theorem 4.1], with

probability greater than 1 − exp(−(8/ε̃)m/2) we have

1 − ε̃ ≤ ∥Γy∥∞ ≤ 1 for any y ∈ Sm−1. (2.18)

Let N be any (non-random) ε̃-net on Sm−1 with |N | ≤ (3/ε̃)m. Fix for a moment any

z ∈ N and consider the random vector |Γz| = (|⟨z, zi⟩m|)ni=1. Let η be the vector of

quantiles defined by (2.5) with respect to the distribution of |⟨z, z1⟩m| (let us point out

that η is completely determined by the numbers m and n). Note that η1 ∈ [1 − ε̃; 1], so

in view of (2.18), ∥Γz∥∞ is (ε̃, exp(−(8/ε̃)m/2))-concentrated around η1 = ∥η∥∞. Define

δ = exp(−(8/ε̃)m/2), k = ⌊(8/ε̃)m/4 ln 2⌋, θ = ε̃/∥η∥∞. It is easy to see that k < (n+1)/2

and

δ = exp

(
−2

(8/ε̃)m

4 ln 2
ln 2

)
≤ exp(−2k ln 2) ≤ exp(−(2k − 1) ln 2).
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Then, by Proposition 2.4, with probability greater than P = 1 − 18 exp(−kθ2/8)/θ2, for

any symmetric norm ∥ · ∥ in Rn we have

(1 − 2θ)∥η∥ ≤ ∥Γz∥ ≤ (1 + 6θ)∥η∥. (2.19)

Clearly, ε̃ ≤ θ and k > (8/ε̃)m/4, so P > 1−18 exp(−(8/ε̃)m−2)/ε̃2. Now, applying (2.19)

to every point z ∈ N and using the estimate θ ≤ 9ε̃/8, we get

(1 − 3ε̃)∥η∥ ≤ ∥Γz∥ ≤ (1 + 7ε̃)∥η∥ for all z ∈ N

with probability greater than 1 − 2(3/ε̃)m+2 exp(−(8/ε̃)m−2). Finally, by Lemma 2.5, the

last identity implies

(1 − 16ε̃)∥η∥ ≤ ∥Γy∥ ≤ (1 + 16ε̃)∥η∥ for all y ∈ Sm−1,

and the proof is complete.

It is easy to see that for m, n and a sufficiently small ε satisfying the conditions of

Theorem 2.6, the subspace ImΓn,m ⊂ Rn is (1+4ε)-Euclidean for any symmetric norm ∥·∥
in Rn with a high probability. In particular, with a large probability Γ(Sm−1) is “almost

spherical” in a sense that sup
y∈Sm−1

∥Γy∥2 ≤ (1 + 4ε) inf
y∈Sm−1

∥Γy∥2 (see [44, Lemma 4.2] for a

direct proof of this fact).

2.2.5 Negative results on concentration

Here, we consider a question which naturally appears in connection with the above results:

can Theorem 2.6 be generalized to a wider class of norms? Specifically, for any n and m

and any ε ∈ (0, 1) let C(n,m, ε) be the collection of all norms in Rn satisfying

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ ≤ 1 + ε

with a large probability (say, greater than 1/2). Obviously, whatever parameters n, m, ε

we take, there are unconditional norms not contained in C(n,m, ε): a simple example is

a weighted ℓn∞-space with the norm ∥(x1, x2, . . . , xn)∥ = ∥(Cx1, x2, . . . , xn)∥∞ for a large

C. On the other hand, this space is not “balanced”. We recall some definitions. For a

norm ∥ · ∥ in Rn, let B be the closed unit ball of ∥ · ∥. We say that B is isotropic if it has
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volume 1 and for any θ ∈ Sn−1

∫
∥x∥≤1

|⟨x, θ⟩n|2 dx = L2

for some L independent of θ. Next, B is in John’s position if the ellipsoid of maximal

volume inscribed in B is the unit Euclidean ball Bn
2 .

We can consider the following problem: given some (large) m and (small) ε > 0, is

it possible to find n0 = n0(m, ε) such that for any n ≥ n0 the set C(n,m, ε) contains all

unconditional norms with unit balls in John’s (or isotropic) position? It turns out that

such n0 does not exist. We will need the following elementary lemma:

Lemma 2.7. Let P ⊂ Rm be a centrally-symmetric convex polytope with at most 2N

facets, and ∥ · ∥P be the corresponding Minkowski functional. Then dist(P,Bm
2 ) ≥ 1 +

(2N)−2/(m−1)/3.

Proof. Without loss of generality, we may assume that Sm−1 is inscribed in P (i.e. touches

every (n− 1)-facet of P ) and

dist(P,Bm
2 ) = sup

∥y∥P=1

∥y∥2 = 1 + ε

for some ε > 0. It is not difficult to show that for θ = arccos 1
1+ε

the contact points

of P and Sm−1 must form a θ-net on Sm−1 (with respect to the geodesic metric). Using

estimates for the measure of caps (see [80, p. 7]), we get

(2N)−1 ≤
√
m− 2

2

θ∫
0

sinm−2 t dt ≤ θm−1 ≤
(
(1 + ε)2 − 1

)(m−1)/2
,

implying ε ≥ (2N)−2/(m−1)/3.

Proposition 2.8. For any m ≥ 8 and n > 642m there is an unconditional norm in Rn

with the unit ball in John’s position such that

P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ < 1 + 2−47/3
}
< 1/2.

Proof. Let k = 642m and define B ⊂ Rk ⊕ Rn−k by

B = (
√
kBk

1 ) ⊕∞ Bn−k
∞ ,
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where Bℓ
p is the unit ball of ∥ · ∥p-norm in Rℓ. Let ∥ · ∥ be the Minkowski functional for

B in Rn = Rk ⊕ Rn−k (i.e., ∥(x, y)∥ = max{k−1/2∥x∥1, ∥y∥∞} for all (x, y) ∈ Rk ⊕ Rn−k)

and denote E = (Rn, ∥ · ∥). Next, we show that B is in John’s position. Note that for

an operator T : ℓn2 −→ E, T (Bn
2 ) is the ellipsoid of maximal volume in B if and only if

∥T∥2→E = 1 and the nuclear norm ν(·) of the inverse T−1 is equal to n (for a proof see

Theorem 14.2 and Proposition 14.3 in [114]). Now, it is easy to check that for the formal

identity operator I : ℓn2 −→ E, ∥I∥2→E = 1 and ν(I−1) = n; thus, B is in John’s position.

Let (Ω,Σ,P) be the probability space for the vectors z1, z2, . . . , zn from the definition

of Γ and denote

A =
{
ω ∈ Ω : ∥Γ(ω)y∥ ≤ 1 for some y ∈ Sm−1

}
.

Using estimates for the measure of spherical caps [80, p. 7], it is easy to check that

E |⟨y0, z1⟩m| ≥ P
{
|⟨y0, z1⟩m| ≥ 1/

√
m
}
/
√
m > 1/(8

√
m) = 8/

√
k for any fixed y0 ∈ Sm−1.

Applying Hoeffding’s inequality [50, Theorem 1], we obtain

P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ ≥ 2 |A
}
· P(A) + P(Ω \ A)

≥ P{∥Γy0∥ ≥ 2}

= P
{
|⟨y0, z1⟩m| + |⟨y0, z2⟩m| + · · · + |⟨y0, zk⟩m| ≥ 2

√
k
}

≥ 1 − P

{
E |⟨y0, z1⟩m| −

1

k

k∑
i=1

|⟨y0, zi⟩m| ≥
6√
k

}
≥ 1 − exp(−72).

Next, for ω ∈ Ω \ A we have

1 < ∥Γ(ω)y∥ = k−1/2
(
|⟨y, z1(ω)⟩m| + |⟨y, z2(ω)⟩m| + · · · + |⟨y, zk(ω)⟩m|

)
for all y ∈ Sm−1.

Note that P =
{
u ∈ Rm : |⟨u, z1(ω)⟩m| + |⟨u, z2(ω)⟩m| + · · · + |⟨u, zk(ω)⟩m| = 1

}
is a

convex polytope with no more than 2k facets and that sup
y∈Sm−1

∥Γ(ω)y∥/ inf
y∈Sm−1

∥Γ(ω)y∥ ≥

dist
(
P,Bm

2

)
, so by Lemma 2.7

sup
y∈Sm−1

∥Γ(ω)y∥/ inf
y∈Sm−1

∥Γ(ω)y∥ ≥ 1 + 2−2k/(m−1)/3 ≥ 1 + 2−47/3.
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The last inequality holds for all ω ∈ Ω \ A, so finally

P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ ≥ 1 + 2−47/3
}

= P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ ≥ 1 + 2−47/3 |A
}
· P(A) + 1 · P(Ω \ A)

≥ 1 − exp(−72).

Proposition 2.9. For any m > 2 + 32π2 and n > 256m there is an unconditional norm

in Rn with the isotropic unit ball and such that

P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ < 2/
√

3
}
< 1/2.

Proof. Take k = n−1 and let B = (
√

(k + 1)(k + 2)/6Bk
1 )⊕∞B1

∞, with the corresponding

Minkowski functional

∥(x1, x2, . . . , xn)∥ = max

{√
6

(k + 1)(k + 2)

k∑
i=1

|xi|, |xn|

}
.

It is not difficult to verify that, for some λ > 0, λB is isotropic. As before, z1, z2 . . . , zn

are the independent random vectors on the probability space (Ω,Σ,P) from the definition

of Γ. Now, for any fixed vector y0 ∈ Sm−1 we have from the concentration inequality on

the sphere (see, for example, [80, Corollary 2.2]):

E (|⟨y0, z1⟩m|) =

1∫
0

P{|⟨y0, z1⟩m| ≥ t} dt

≤
∞∫
0

√
π

2
exp(−t2(m− 2)/2) dt

=
π

2
√
m− 2

≤ 1

8
√

2
.

Then, by Hoeffding’s inequality [50, Theorem 1]

P
{
|⟨y0, z1⟩m| + |⟨y0, z2⟩m| + · · · + |⟨y0, zk⟩m| ≥ k/(4

√
2)
}
≤ exp(−k/64). (2.20)
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Further, let N be a fixed 1/2-net on Sm−1 (with respect to the Euclidean metric in Rm)

with |N | ≤ 5m. Denote

A =
{
ω ∈ Ω : |⟨y, z1(ω)⟩m|+ |⟨y, z2(ω)⟩m|+ · · ·+ |⟨y, zk(ω)⟩m| < k/(4

√
2) for all y ∈ N

}
.

From (2.20) we have P(A) ≥ 1 − 5m exp(−k/64) ≥ 1 − exp(−2m). By successive approx-

imation [80, proof of Lemma 4.1], any y ∈ Sm−1 can be written as y = y1 +
∑∞

i=2 δiyi,

where yi ∈ N and |δi| ≤ 21−i for all i. Then for all ω ∈ A and y ∈ Sm−1 we have

|⟨y, z1(ω)⟩m| + |⟨y, z2(ω)⟩m| + · · · + |⟨y, zk(ω)⟩m| ≤ k/(4
√

2) +
∞∑
i=2

δik/(4
√

2) ≤ k/(2
√

2).

Combining this inequality with the estimate for P(A) we get

P

{√
6

(k + 1)(k + 2)

k∑
i=1

|⟨y, zi⟩m| ≤
√

3

2
for all y ∈ Sm−1

}
≥ 1 − exp(−2m).

On the other hand, sup
y∈Sm−1

|⟨y, zn⟩m| = 1, so in view of the definition of the norm

P
{

sup
y∈Sm−1

∥Γy∥/ inf
y∈Sm−1

∥Γy∥ ≥ 2/
√

3
}
≥ 1 − exp(−2m).
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2.3 The Randomized Dvoretzky’s Theorem in ℓn∞ and

the χ-distribution2

2.3.1 Introduction

The classical theorem of A. Dvoretzky in the version improved and strengthened by

V. Milman, states: there is a function f(ε) > 0 such that for all ε ∈ (0, 1/2), n > 1

and 1 ≤ k ≤ f(ε) lnn, any n-dimensional normed space admits a k-dimensional subspace

which is (1 + ε)-Euclidean.

See [26] and [76], respectively, for the original theorems. A broad perspective of the

subject and its developments can be found in the books [80] and [86], as well as in a recent

survey [98] and references therein.

The bound k ≤ f(ε) lnn is in general optimal with respect to n, but the form of the

function f(ε) is not clear up to this day. The original formula for f(ε) from [76] was

subsequently improved to f(ε) = cε2 in [43] and then to f(ε) = cε/(ln 1
ε
)2 in [100]. As we

showed in Section 2.2, in the class of n-dimensional spaces with a 1-symmetric basis we

have f(ε) = c/ ln 1
ε
.

The problem of optimal dependence on ε in Dvoretzky’s theorem can be “randomized”

as follows: given an n-dimensional normed space X, determine all k such that a random

k-dimensional subspace of X is (1 + ε)-Euclidean with a high probability. Of course, the

solution depends on the definition of “randomness”. For example, in [44] the question was

considered for X = ℓn∞ and a certain probabilistic model which gives (1 + ε)-Euclidean

subspaces with a large probability for all k ≤ c lnn/ ln 1
ε
. However, the distribution of the

random subspaces in [44] is not invariant under rotations. The (unique) rotation invariant

distribution of subspaces of ℓn∞ was studied in [99].

It was proved in [99] that the standard Gaussian vector g = (g1, g2, . . . , gn) in Rn

satisfies

P{∥g∥∞ < (1 − ε)Med ∥g∥∞} ≤ 2 exp(−ncε),

P{∥g∥∞ > (1 + ε)Med ∥g∥∞} ≤ 2n−cε,

where Med ∥g∥∞ is the median of the norm of g in ℓn∞ and c > 0 is a universal constant.

A usual covering argument then implies that a random k-dimensional subspace E ⊂ ℓn∞,

uniformly distributed on the Grassmannian Gn,k, is (1 + ε)-spherical with probability at

2A version of this section has been published. K. E. Tikhomirov, The Randomized Dvoretzky’s theorem
in ℓn∞ and the χ-distribution, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics,
2116 (2014), 455–463.
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least 1 − 2n−c̃ε, provided that k ≤ c̃ ε lnn/ ln 1
ε
. Of course, a natural question is whether

ln 1
ε

in the upper bound for k can be removed. In [99] it was claimed that it is indeed

possible.

The main purpose of this work is to show that in fact ln 1
ε

is necessary and the

bound k ≤ c̃ε lnn/ ln 1
ε

is optimal (up to the choice of the constant). In other words,

if k ≥ max(2, Cε lnn/ ln 1
ε
) then with a substantial probability the random k-dimensional

subspace E ⊂ ℓn∞ uniformly distributed on Gn,k is not (1 + ε)-spherical. To achieve our

goal, we shall link the geometry of “typical” subspaces of ℓn∞ to certain properties of the

χ-distribution.

2.3.2 Preliminaries

Let us start with some notation. The probability space (P,Σ,Ω) is fixed. Everywhere in

this section, g1, g2, . . . are independent standard Gaussian variables and g = (g1, . . . , gn) is

the standard Gaussian vector in Rn. By Med ∥g∥2 (Med ∥g∥∞) we will denote the median

of ∥g∥2 (respectively, the median of ∥g∥∞). Finally, with some abuse of terminology, we

will call a subspace E ⊂ ℓn∞ (1 + ε)-spherical if

sup
x∈E

∥x∥2=1

∥x∥∞/ inf
x∈E

∥x∥2=1

∥x∥∞ ≤ 1 + ε.

From well known estimates for the Gaussian distribution (see, for example, [25, p. 264]

or [32, Lemma VII.1.2]) it follows that for α → 0,

1

α
P
{
|g1| ≥

√
2 ln(1/α) − ln ln(1/α)

4
√

ln(1/α)

}
−→ 0; (2.21)

1

α
P
{
|g1| ≥

√
ln(1/α)

}
−→ ∞. (2.22)

Fix some k > 1. The variable ξ(k) =

√
k∑
i=1

g2i has the χ-distribution with k degrees of

freedom; the distribution density fk of ξ(k) is given by

fk(t) =

⎧⎨⎩ tk−1e−t2/2

2k/2−1Γ(k/2)
, t ≥ 0;

0, otherwise.

where Γ is the Gamma function. It is obvious that P{ξ(k) ≥ τ} ≥ P{|g1| ≥ τ} for all
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τ > 0, so in view of (2.22) for all sufficiently small α > 0,

P
{
ξ(k) ≥

√
ln(1/α)

}
≥ α. (2.23)

We shall use the formula for fk to improve the last estimate. Suppose that τ = τ(α)

satisfies P{ξ(k) ≥ τ} = α, i.e.

α =

∞∫
τ

fk(t) dt.

By (2.23), for small α we have τ ≥
√

ln(1/α) and

α =

∞∫
τ

tk−1e−t
2/2

2k/2−1Γ(k/2)
dt =

∞∫
τ2

tk/2−1e−t/2

2k/2Γ(k/2)
dt ≥

∞∫
τ2

(ln(1/α))ℓe−t/2

2k/2Γ(k/2)
dt

=
(ln(1/α))ℓe−τ

2/2

2ℓΓ(k/2)
,

where ℓ = k
2
− 1. Hence,

τ ≥

√
2 ln(1/α) + 2 ln

(ln(1/α))ℓ

2ℓΓ(k/2)
≥
√

2 ln(1/α) + 2ℓ ln
ln(1/α)

2ℓ + 1
. (2.24)

Clearly, for ℓ ≪ ln(1/α) we have ln(1/α) ≥ ℓ ln ln(1/α)
2ℓ+1

, and (2.24) implies

τ ≥
√

2 ln(1/α) +
ℓ ln ln(1/α)

2ℓ+1

2
√

ln(1/α)
.

Thus, we have shown the following:

Lemma 2.10. There are universal constants α0 > 0 and c0 > 0 such that whenever

α ∈ (0, α0) and 2 ≤ k ≤ c0 ln(1/α) then

P
{
ξ(k) ≥

√
2 ln(1/α) +

(k/2 − 1) ln ln(1/α)
k−1

2
√

ln(1/α)

}
≥ α. (2.25)

2.3.3 Random subspaces of ℓn∞

For natural numbers n and k, let Γnk : Rk → Rn be the standard Gaussian operator given

by

Γnk(z) = Γnk(z1, z2, . . . , zk) =
n∑
i=1

(
k∑
j=1

gijzj

)
eni
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for z = (z1, z2, . . . , zk) ∈ Rk, where {gij} are independent standard Gaussian variables.

The following proposition, together with the results of [99] on the distribution of ∥g∥∞,

is the main tool in proving the central result of the note. It shows that with a substantial

probability, the number

sup
z∈Sk−1

∥Γnkz∥∞/ inf
z∈Sk−1

∥Γnkz∥∞

is noticeably farther from 1 than ∥g∥∞/Med ∥g∥∞:

Proposition 2.11. There are universal constants c > 0 and n0 ∈ N such that for all

n ≥ n0 and all k > 1,

sup
z∈Sk−1

∥Γnkz∥∞/ inf
z∈Sk−1

∥Γnkz∥∞ > 1 +
ck ln c lnn

k

lnn
(2.26)

with probability greater than 1/2.

Proof. By (2.21), there exists α1 > 0 such that for all n ≥ α−1
1 and k ≥ 1,

P
{
∥Γnk(1, 0, . . . , 0)∥∞ ≤

√
2 lnn− ln lnn

4
√

lnn

}
= P

{
|g1| ≤

√
2 lnn− ln lnn

4
√

lnn

}n
>

1

2
+

1

e
. (2.27)

Define n0 = ⌈max(α−1
0 , α−1

1 )⌉ and c = min(c0, 1/24), where α0 and c0 are taken from

Lemma 2.10. Now, fix any n ≥ n0 and k > 1. Note that for k ≥ c0 lnn the statement is

trivial so we will assume that k < c0 lnn. For any point of the probability space ω ∈ Ω,

sup
z∈Sk−1

∥Γnk(ω)z∥∞ = max
i

sup
(z1,...,zk)∈Sk−1

|z1gi1(ω) + · · · + zkgik(ω)|

= max
i

√
gi1(ω)2 + · · · + gik(ω)2

= max
i

ξi(ω),

where ξ1, ξ2, . . . , ξn are independent random variables having the χ-distribution with k
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degrees of freedom. Letting α = 1/n in (2.25), we get:

P
{

max
i

ξi ≥
√

2 lnn +
(k − 2) ln lnn

k−1

4
√

lnn

}
= 1 − P

{
ξ1 ≤

√
2 lnn +

(k − 2) ln lnn
k−1

4
√

lnn

}n
≥ 1 −

(
1 − 1

n

)n
≥ 1 − 1

e
.

Combining the last estimate with (2.27), we get the result.

Further, we will need the following version of the covering argument: Let k > 1 and

N be a θ-net (with respect to the Euclidean norm ∥ · ∥2 in Rk) on Sk−1 for some θ < 1/2.

Next, let X be a normed space and T : Rk → X be a linear operator such that for some

M > 0 and δ ∈ [0, 1)

(1 − δ)M ≤ ∥Ty∥X ≤ (1 + δ)M for all y ∈ N .

Then for any z ∈ Sk−1

(1 − 2δ − 2θ)M ≤ ∥Tz∥X ≤ (1 + 2δ + 2θ)M. (2.28)

For convenience we give a short proof. For every z ∈ Sk−1, there is y ∈ N such that

∥y − z∥2 ≤ θ. Then

∥Tz∥X ≤ ∥Ty∥X + ∥T (y − z)∥X ≤ (1 + δ)M + θ∥T∥,

where ∥T∥ denotes the operator norm from ℓk2 to X. Taking the maximum over z, we

get ∥T∥ ≤ (1 + δ)(1 − θ)−1M . In particular this implies the right hand side inequality in

(2.28). For the left hand side we start with

∥Tz∥X ≥ ∥Ty∥X − ∥T (y − z)∥X ≥ (1 − δ)M − θ∥T∥,

and then use the estimate for ∥T∥ obtained above.

The next statement expresses the well known fact that, for k ≪ n, with a large

probability ∥Γnkz∥2 is almost a constant on the sphere Sk−1. Let C2 > 0 be such that for

all n > 1 the dimension of any 3/2-spherical subspace of ln∞ is bounded from above by

C2 lnn.
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Lemma 2.12. There is a universal constant n1 ∈ N such that for all n ≥ n1 and k ≤
C2 lnn

P
{

sup
z∈Sk−1

∥Γnkz∥2/ inf
z∈Sk−1

∥Γnkz∥2 ≤ 1 +
1

n1/4

}
≥ 3

4
. (2.29)

Proof. By a concentration inequality for Gaussian vectors (see, for example, [86, Theo-

rem 4.7] or [80, Theorem V.1]) and since Med ∥g∥2 ≈
√
n, we have for some C1 > 0, all

n ≥ 1 and the standard Gaussian vector g in Rn:

P{|∥g∥2 − Med ∥g∥2| > θMed ∥g∥2} ≤ 2 exp(−C1θ
2n) for any θ > 0. (2.30)

Then we choose the constant n1 ∈ N so that for all n ≥ n1

1 − 2(48n1/4)C2 lnn exp(−C1

√
n/256) ≥ 3/4.

Fix any n ≥ n1 and 1 ≤ k ≤ C2 lnn; let θ = 1
16n1/4 and N be a θ-net on Sk−1 of

cardinality at most (3/θ)k. For any point z ∈ Sk−1, Γnkz is the standard Gaussian vector

in Rn, so in particular

P
{
|∥Γnky∥2 − Med ∥g∥2| ≤ θMed ∥g∥2 for all y ∈ N

}
≥ 1 − (3/θ)kP

{
|∥g∥2 − Med ∥g∥2| > θMed ∥g∥2

}
≥ 1 − 2(3/θ)k exp(−C1θ

2n).

The covering argument implies that

P
{

sup
z∈Sk−1

∥Γnkz∥2/ inf
z∈Sk−1

∥Γnkz∥2 ≤ 1 + 16θ
}

≥ 1 − 2(3/θ)k exp(−C1θ
2n)

≥ 1 − 2(48n1/4)C2 lnn exp(−C1

√
n/256)

≥ 3

4
,

and the result follows.

To emphasize the geometric character of our main result we shall present it in terms

of the Grassmannians. Note that the probabilistic formulations used until now — which

are more convenient for calculations — still remain in the proof of the theorem. Note

that in view of invariance of the distribution of the Gaussian vector under rotations, we
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have for any Borel subset A ⊂ Gn,k

P
{

ImΓnk ∈ A
}

= µn,k(A). (2.31)

Theorem 2.13. Let ε ∈ (0, 1/2) and n > 1. Then

1) There is a universal constant c̃ > 0 such that whenever k ≤ c̃ε lnn/ ln 1
ε
, then

µn,k{E ∈ Gn,k : E is (1 + ε)-spherical subspace of ℓn∞} ≥ 1 − 2n−c̃ε; (2.32)

2) Conversely, if for some k > 1

µn,k{E ∈ Gn,k : E is (1 + ε)-spherical subspace of ℓn∞} ≥ 3

4
(2.33)

then necessarily k ≤ Cε lnn/ ln 1
ε
, where C > 0 is a universal constant.

Proof. The first part of the theorem is essentially proved in [99]. Indeed, by [99, Propo-

sition 1], for some constant c1 > 0

P
{
|∥g∥∞ − Med ∥g∥∞| > εMed ∥g∥∞

}
≤ 2n−c1ε. (2.34)

When n is small or ε < 1
lnn

, (2.32) is obvious (for a well-chosen constant c̃), so we can

assume that
c1(64 lnn)2

C1n
≤ 1, ε ≥ 1

lnn
, (2.35)

where C1 is taken from (2.30). Pick a natural number k ≤ c1ε lnn
18 ln(1/ε)

. As before, Γnk is the

Gaussian operator. Note that event {ImΓnk is (1 + ε)-spherical} contains the event

{
sup
z∈Sk−1

∥Γnkz∥2/ inf
z∈Sk−1

∥Γnkz∥2 ≤ 1 +
ε

4
and

sup
z∈Sk−1

∥Γnkz∥∞/ inf
z∈Sk−1

∥Γnkz∥∞ ≤ 1 +
ε

4

}
.
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Then in view of (2.31), (2.30), (2.34) and the covering argument for θ = ε/64, we have

µn,k{E ∈ Gn,k : E is (1 + ε)-spherical}

≥ P
{

sup
z∈Sk−1

∥Γnkz∥2/ inf
z∈Sk−1

∥Γnkz∥2 ≤ 1 +
ε

4
and

sup
z∈Sk−1

∥Γnkz∥∞/ inf
z∈Sk−1

∥Γnkz∥∞ ≤ 1 +
ε

4

}
≥ 1 − (3/θ)kP

{
|∥g∥2 − Med ∥g∥2| > θMed ∥g∥2

}
− (3/θ)kP

{
|∥g∥∞ − Med ∥g∥∞| > θMed ∥g∥∞

}
≥ 1 − 2(3/θ)k exp(−C1θ

2n) − 2(3/θ)kn−c1ε.

By (2.35), C1θ
2n ≥ c1ε lnn, hence

P
{

ImΓnk is (1 + ε)-spherical
}
≥ 1 − 4n−c1εn

c1
18
ε ln 3

θ
/ ln 1

ε ≥ 1 − 4n−c1ε/2.

The statement follows by properly defining c̃.

Now, we turn to the second part of the theorem. Suppose that k > 1 satisfies (2.33).

This implies, in particular, that ℓn∞ contains (1 + ε)-Euclidean subspaces of dimension k,

so k ≤ C3 lnn/ ln 1
ε

for a universal constant C3 (see, for example, [98, Claim 3.3]). Let

n0, n1, C2 and c be as they were defined in Proposition 2.11 and Lemma 2.12. The cases

when n or 1/ε is small, can be treated in a trivial way, so further we assume

n ≥ max(n0, n1),
3 lnn

cn1/4
≤ 1, k ≤ c

e
lnn, ε <

c2

3
. (2.36)

Obviously, k ≤ C2 lnn. Then (2.29) and (2.33) give

P
{

sup
z∈Sk−1

∥Γnkz∥∞/ inf
z∈Sk−1

∥Γnkz∥∞ ≤ (1 + ε)(1 + 1/n1/4)
}

≥ P
{

sup
z∈Sk−1

∥Γnkz∥2/ inf
z∈Sk−1

∥Γnkz∥2 ≤ 1 +
1

n1/4
and

sup
x∈ImΓnk
∥x∥2=1

∥x∥∞/ inf
x∈ImΓnk
∥x∥2=1

∥x∥∞ ≤ 1 + ε
}

≥ 1

2
.

Hence, by Proposition 2.11,

1 +
ck ln c lnn

k

lnn
≤ (1 + ε)(1 + 1/n1/4). (2.37)
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If ε ≤ 1/n1/4 then, in view of (2.36) and (2.37), k ≤ k ln c lnn
k

≤ 3 lnn
cn1/4 ≤ 1, leading to

contradiction. Hence, ε > 1/n1/4, and (2.37) yields

k ≤ 3ε lnn

c ln c lnn
k

. (2.38)

In particular (2.38) implies k
lnn

≤ 3
c
ε, so ln c lnn

k
≥ ln c2

3ε
. Substituting it back to (2.38) we

get

k ≤ 3ε lnn

c ln c2

3ε

.

Remark 2.1. The probability 3/4 in the second part of the Theorem can be replaced with

any (fixed) positive number; this only affects the constant.
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2.4 On the Distance of Polytopes with Few Vertices

to the Euclidean Ball3

2.4.1 Introduction

In this section, we consider lower bounds for the Banach–Mazur distance dist(PN , B
n
2 )

when PN is a convex polytope in Rn with N vertices, and N < 2n.

It is known that for all N ≥ 2n, the distance dist(PN , B
n
2 ) can be estimated from

below as

dist(PN , B
n
2 ) ≥ c

√
n

ln N
n

, (2.39)

where c > 0 is a universal constant (see [11], [15, Corollary 9.5], [18] or [38]). The last

relation implies dist(PN , B
n
2 ) ≥ c̃

√
n for any convex polytope with at most 2n vertices.

The bound (2.39) is optimal up to the constant multiple; in fact, for any n ∈ N and

n + 1 ≤ N ≤ 2n there is a polytope PN in Rn with N vertices and dist(PN , B
n
2 ) ≤

C
√

n/ ln N
n

for a universal constant C > 0 (see [33, p. 96] for N ≥ 2n and [13] for

N < 2n).

Now, let us focus on the polytopes PN with N/n ≈ 1. It is known that for an n-simplex

∆, dist(∆, Bn
2 ) = n (see, for example, [46, §7]). The natural question of the distance of

PN (n + 1 ≤ N < 2n) to the set of symmetric convex bodies in Rn was solved in [40].

The main result of [40] implies

dist(PN , B
n
2 ) ≥ cn

N − n
, n + 1 ≤ N ≤ 2n.

However, the above inequality is weaker than (2.39). A.E. Litvak informed us that the

authors of [40] conjectured that (2.39) holds for all N ≥ n + 1. The objective of this

section is to verify this proposition.

The question of estimating the distance dist(PN , B
n
2 ) is closely related to the problem

of optimal covering of Sn−1 by equal spherical caps (for a detailed discussion of coverings

by spherical caps, we refer the reader to [12, Chapter 6]). In fact, our result implies (see

[13] or [12, Lemma 6.5.2]) that for all natural n and N ≥ n + 1, any covering of Sn−1 by

N equal spherical caps of geodesic radius φ satisfies

cosφ ≤ C

√
ln N

n

n
,

3A version of this section has been published. K. E. Tikhomirov, On the distance of polytopes with
few vertices to the Euclidean ball, Discrete Comput. Geom. 53 (2015), no. 1, 173–181.
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where C is a universal constant.

In [13], it was conjectured that for n ≥ 3 and n + 1 ≤ N ≤ 2n, the density of

covering Sn−1 by N equal spherical caps is minimal only if the centers of the caps are

vertices of N −n pairwise orthogonal regular simplices of circumradius one of dimensions⌈
n

N−n

⌉
and

⌊
n

N−n

⌋
(in a less explicit form, the question is asked in [121, A list of open

problems, Problem#17]). The result is well known when N = n+1 (see, for example, [12,

Theorem 6.5.1]). The case N = 2n = 8 is treated in [24]; see [31] for N = 2n = 6 and [101]

for n = 3, N = 5. In [13] the conjecture was verified for N = n + 2. Note that whereas

our result does not completely resolve the question, it shows that the configuration of the

centers of caps described above is “close” to optimal in the following sense: if φmin is the

minimal geodesic radius among all coverings of Sn−1 by N equal caps and φ0 is the radius

corresponding to the above configuration of the centers of caps then cosφ0 ≥ c cosφmin

for a universal constant c > 0.

Throughout the subsection, ∆n
r is a regular n-simplex in Rn inscribed into Sn−1.

2.4.2 Lower bounds for dist(P,Bn
2 )

Note that, for any n ≥ 1 and n + 1 ≤ N ≤ 2n, the quantity
√
n/ ln N

n
is equivalent to

n/
√
N − n. Then the main result of the note can be stated as follows:

Theorem 2.14. Let n ∈ N and let P be a convex n-dimensional polytope with n + k

vertices. Then dist(P,Bn
2 ) ≥ cn/

√
k where c > 0 is a universal constant.

The main step in proving the theorem is to obtain an upper bound for the normalized

measure of spherical simplices contained in a cap of a given radius φ (Proposition 2.19).

Let us first consider several auxiliary statements. The next lemma is taken from [24]:

Lemma 2.15 ([24, Lemma 6]). Let n > 1, φ ∈ (0, π/2) and let C be a spherical cap on

Sn−1 of radius φ. Further, let S ⊂ C be a spherical simplex that has the maximal measure

among all simplices lying within C. Then S is regular.

In what follows, we will need an upper bound for the normalized surface measure

of the set
{
x ∈ Sn−1 : ρx ∈ ∆n

r

}
. We will show that the quantity is small for all

ρ ≫ (n ln(n + 1))−1/2. Note that the case ρ ≫ n−1/2 can be handled trivially. Indeed,

since Voln(∆n
r ) = (n+1)(n+1)/2

n!nn/2 and Voln(Bn
2 ) = πn/2

Γ(n
2
+1)

, for some universal constant c̃ > 0

we have

Voln(∆n
r ) ≤ (c̃

√
n)−nVoln(Bn

2 ).
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Then for ρ ≥ 2
c̃
n−1/2 we get

σn−1

{
x ∈ Sn−1 : ρx ∈ ∆n

r

}
≤ Voln(∆n

r )

Voln(ρBn
2 )

≤ 2−n.

When ρ ≪ n−1/2, a more delicate estimate is required.

We say that an m-dimensional random vector X is Gaussian if every linear combi-

nation of its coordinates is normally distributed. By g we shall denote the standard

Gaussian vector in Rn, i.e. a vector with i.i.d. coordinates, each coordinate having normal

distribution with zero mean and unit variance. Let us recall Slepian’s lemma for Gaussian

processes ([104], [63, Corollary 3.12]):

Lemma 2.16 (Slepian). Let m be a natural number, X = (x1, x2, . . . , xm) and Y =

(y1, y2, . . . , ym) be two m-dimensional Gaussian vectors with zero mean satisfying

Ex2
i = E y2i , i = 1, 2, . . . ,m,

E (xi − xj)
2 ≤ E (yi − yj)

2, 1 ≤ i, j ≤ m.

Then for all λ ∈ R we have

P
{

max
i

yi ≤ λ
}
≤ P

{
max
i

xi ≤ λ
}
.

As an immediate corollary, we get the following upper bound for the standard Gaussian

measure of a regular simplex centered at the origin:

Lemma 2.17. For any ρ > 0 and n > 1

P
{
g ∈ ρ∆n

r

}
≤ exp

(
−c1n exp

(
−ρ2

n2

))
.

Proof. From well known estimates of the normal distribution (see, for example, [32,

Lemma VII.1.2]) it follows that for some universal constant c1 > 0 and the standard

Gaussian vector g

P
{
⟨g, eni ⟩n > τ

}
≥ c1 exp(−τ 2), τ ∈ R, i = 1, 2, . . . , n. (2.40)

Let v1, v2, . . . , vn+1 be vertices of ∆n
r , so that

ρ∆n
r =

{
x ∈ Rn : max

i≤n+1
⟨x,−vi⟩n ≤ ρ

n

}
.
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Since the angles between any two vertices vi, vj (i ̸= j) are obtuse, we have

E (⟨g, vi⟩n − ⟨g, vj⟩n)2 > E (⟨g, eni ⟩n − ⟨g, enj ⟩n)2, 1 ≤ i, j ≤ n.

Then, by Slepian’s lemma and (2.40),

P
{
g ∈ ρ∆n

r

}
= P

{
max
i≤n

⟨g,−vi⟩n ≤ ρ

n

}
≤ P

{
max
i≤n

⟨g, eni ⟩n ≤ ρ

n

}
≤
(

1 − c1 exp
(
−ρ2

n2

))n
≤ exp

(
−c1n exp

(
−ρ2

n2

))
.

In the next lemma, we give a “geometric” version of the above statement:

Lemma 2.18. There are universal constants c2, C3 > 0 such that for any n > 1 and

ρ > 0

σn−1

{
x ∈ Sn−1 : ρx ∈ ∆n

r

}
≤ 2 exp

(
−c2n exp

(
− C3

ρ2n

))
. (2.41)

Proof. Fix n > 1 and ρ > 0. We have

σn−1

{
x ∈ Sn−1 : ρx ∈ ∆n

r

}
= P

{ ρg

∥g∥2
∈ ∆n

r

}
≤ P{∥g∥2 > 2

√
n} + P

{
g ∈ 2

√
n

ρ
∆n
r

}
.

A concentration inequality for Gaussian vectors (see, for example, [86, Theorem 4.7] or

[80, Theorem V.1]) implies that P{∥g∥2 > 2
√
n} ≤ exp(−c̃n) for a universal constant

c̃ > 0. Then, from the above estimates and Lemma 2.17, we obtain

σn−1

{
x ∈ Sn−1 : ρx ∈ ∆n

r

}
≤ 2 exp

(
−c2n exp

(
− 4

ρ2n

))
,

where c2 = min(c1, c̃).

Remark 2.2. It can be shown that the estimate (2.41) is valid for any n-simplex ∆ con-

tained in Bn
2 (for well chosen universal constants c2, C3). However, we will not need the

property, as Lemma 2.15 will allow us to work only with regular simplices.
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Proposition 2.19. Let n ≥ 4 and let S be a spherical simplex on Sn−1 lying within a cap

of radius φ ∈
[
arccos 1√

n
, π
2

)
. Then

σn−1(S) ≤ exp
(
−c4n

2 cos2 φ ln
e

n cos2 φ

)
,

where c4 > 0 is a universal constant.

Proof. Fix any admissible n and φ and let h = cosφ. In view of Lemma 2.15, we can

assume that S is a regular simplex with the center at (0, . . . , 0, 1) and with vertices lying

in the hyperplane H = {x ∈ Rn : ⟨x, enn⟩n = h}. We define auxiliary hyperplanes

Ht = {x ∈ Rn : ⟨x, enn⟩n = t} (h ≤ t ≤ 1). Then, using an estimate σn−1

{
x ∈ Sn−1 :

⟨x, enn⟩n ≥ 1/2
}
≤ exp(−n/8) (see, for example, [80, Corollary 2.2]), we obtain

σn−1(S) =
1

Voln−1(Sn−1)

1∫
h

(1 − t2)−1/2 Voln−2(Ht ∩ S) dt

< exp(−n/8) +
2

Voln−1(Sn−1)

1/2∫
h

Voln−2(Ht ∩ S) dt.

Denote by Proj :
{
x ∈ Sn−1 : ⟨x, enn⟩n > 0

}
−→ H a mapping from the upper hemisphere

onto H given by

Proj(x) =
h

⟨x, enn⟩n
x, x ∈ Sn−1, ⟨x, enn⟩n > 0.

Note that for every t ∈ [h, 1/2], a point x ∈ H belongs to Proj(Ht ∩ S) if and only if t
h
x

belongs to Ht ∩ S. Hence,

Voln−2(Ht ∩ S) =
( t
h

)n−2

Voln−2

(
Proj(Ht ∩ S)

)
. (2.42)

Moreover, the set Proj(Ht ∩S) is precisely the intersection of the regular (n− 1)-simplex

Proj(S) with (n− 2)-sphere
{
x ∈ H : ∥x− henn∥2 = h

√
1−t2
t

}
, and, setting u = h

√
1−t2
t

, we

obtain

Voln−2

(
Proj(Ht ∩ S)

)
= Voln−2

(√
1 − h2∆n−1

r ∩ uSn−2
)

≤ Voln−2

(
∆n−1
r ∩ uSn−2

)
= Voln−2(uSn−2)σn−2

{
x ∈ Sn−2 : ux ∈ ∆n−1

r

}
.
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Now, by Lemma 2.18 we get

Voln−2

(
Proj(Ht ∩ S)

)
≤ 2Voln−2(uSn−2) exp

(
−c2(n− 1) exp

(
− C3

u2(n− 1)

))
.

Returning to the formula for σn−1(S) and making use of (2.42), the last inequality and

the obvious estimate 1 − t2 ≥ 3
4

for t ∈ [0, 1/2], we obtain

σn−1(S) < exp(−n/8) + τn

1/2∫
h

(1 − t2)n/2 exp
(
−c5n exp

(
−C6t

2

h2n

))
dt,

with τn = 6Voln−2(Sn−2)
Voln−1(Sn−1)

, c5 = c2/2 and C6 = 2C3. A standard formula for the surface

area of spheres (see, for example, [23, §7.3]) implies that τn ≤ C7

√
n for some universal

constant C7 > 0. Further, (1 − t2)n/2 ≤ exp(−t2n/2). Hence,

σn−1(S) < exp(−n/8) + C7

√
n

∞∫
0

exp
(
−1

2
t2n− c5n exp

(
−C6t

2

h2n

))
dt.

Let t0 =
√

h2n
2C6

ln e
h2n

. Then

c5 exp
(
−C6t

2
0

h2n

)
= c5

√
h2n

e
≥ 2c5C6

e
t20.

Since the function exp
(
−C6t2

h2n

)
is decreasing on [0,∞), the sum

1

2
t2 + c5 exp

(
−C6t

2

h2n

)
is greater than 2c5C6

e
t20 for all t ∈ [0, t0]. Let c8 = 2c5C6

e
. Then

σn−1(S) < exp(−n/8) + C7

√
nt0 exp

(
−c8t

2
0n
)

+ C7

√
n

∫ ∞

t0

exp
(
−1

2
t2n
)
dt

≤ C9 exp
(
−c10t

2
0n
)
,

for some universal constants C9 ≥ 1 and c10 > 0. Finally, we note that σn−1(S) ≤ 1
2
,

which, together with the last estimate, yields

σn−1(S) ≤ min
(
1/2, C9 exp

(
−c10t

2
0n
))

≤ exp
(
−c11t

2
0n
)
,
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where c11 = c10 ln 2
ln 2C9

. It remains to use the definition of t0.

Remark 2.3. Proposition 2.19 can also be proved using the identity σn−1(S) = P
{
g ∈ C

}
,

where C is the cone in Rn generated by S. The probability that the Gaussian vector g

belongs to C can be estimated with help of Lemma 2.17 and calculations very similar to

the ones above.

Proof of Theorem 2.14. For small n, the statement follows by choosing a sufficiently small

constant c > 0. Hence, we can assume that n ≥ 4. Next, the definition of the Banach–

Mazur distance implies that, given a convex body K in Rn, there is an operator T ∈
GLn(R) and a point x ∈ Rn such that the body K̃ = T (K) + x contains the origin in

its interior, K̃ ⊂ y + Bn
2 for some y ∈ Rn and dist(K,Bn

2 ) = dist(K̃, Bn
2 ) = inf{λ ≥ 1 :

Bn
2 ⊂ λK̃}. Then, clearly, 1

2
K̃ ⊂ Bn

2 and 2dist(K,Bn
2 ) ≥ inf{λ ≥ 1 : Bn

2 ⊂ λ
2
K̃}. Thus,

to prove the theorem, it is enough to check that for any convex polytope P ⊂ Bn
2 with

n + k vertices (1 ≤ k ≤ n) and the origin in its interior, we have

d := inf{λ ≥ 1 : Bn
2 ⊂ λP} ≥ c̃n√

k
.

Without loss of generality, P is simplicial. Let S1,S2, . . . ,Sℓ be spherical simplices

which are central projections of the facets of P onto Sn−1 (here, ℓ is the total number of

the facets). Let φ = arccos min(1
d
, 1√

n
). Then φ ∈ [arccos 1√

n
, π
2
) and each Si is contained

in a cap of radius φ. Hence, in view of Proposition 2.19, we have

1 =
ℓ∑
i=1

σn−1(Si) ≤ ℓ exp
(
−c4n

2 cos2 φ ln
e

n cos2 φ

)
≤ ℓ exp

(
−n(c5n cos2 φ) ln

2e

c5n cos2 φ

)
(2.43)

for some universal constant c5 > 0. The number of facets ℓ necessarily satisfies

ℓ ≤
(
n + k

n

)
≤ exp

(
k ln

e(n + k)

k

)
≤ exp

(
n
k

n
ln

2en

k

)
,

which, together with (2.43), implies

k

n
ln

2en

k
≥ c5n cos2 φ ln

2e

c5n cos2 φ
.

Note that the function f(t) = t ln 2e
t

is strictly increasing on (0, 1], so the above inequality
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yields
k

n
≥ c5n cos2 φ,

hence, in view of the definition of φ, max(
√
n, d) ≥ √

c5n/
√
k. By a simple volumetric

argument, d ≥ c6
√
n for some universal constant c6 ∈ (0, 1], and finally

√
c5c6n√
k

≤ max(c6
√
n, d) ≤ d.
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Chapter 3

The Smallest Singular Value of

Random Matrices

3.1 The Smallest Singular Value of Random Rectan-

gular Matrices with no Moment Assumptions on

Entries1

3.1.1 Introduction

In the last years, spectral properties of random matrices with fixed dimensions (the cor-

responding theory is often called non-asymptotic) have attracted considerable attention

of researchers, whose efforts have been mostly concentrated on studying distributions of

the largest and the smallest singular values. For detailed information on the development

of the subject, we refer the reader to surveys [91, 117].

Let N ≥ n. Given an N × n (N ≥ n) random matrix A, we write smax(A) =

sup
y∈Sn−1

∥Ay∥2; smin(A) = inf
y∈Sn−1

∥Ay∥2. A limiting result of Z.D. Bai and Y.Q. Yin [8]

suggests that for an N × n matrix with i.i.d. mean zero entries with unit variance and a

finite fourth moment, its largest and smallest singular values should “concentrate” near√
N +

√
n and

√
N −

√
n, respectively. In the non-asymptotic setting one is interested,

in particular, in finding the weakest possible conditions on random matrices that would

imply smax .
√
N +

√
n and smin &

√
N −

√
n with a large probability.

For a random N × n matrix A with i.i.d. mean zero subgaussian entries, an elemen-

1A version of this section has been published. K.E. Tikhomirov. The smallest singular value of random
rectangular matrices with no moment assumptions on entries. Israel Journal of Mathematics, 2016. DOI:
10.1007/s11856-016-1287-8.
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tary application of the standard covering argument yields smax(A) ≤ C(
√
N +

√
n) with

an overwhelming probability. Distribution of the smallest singular value when N ≈ n

requires a more delicate analysis. A. Litvak, A. Pajor, M. Rudelson and N. Tomczak-

Jaegermann showed in [66] that if N and n satisfy N/n ≥ 1+h1(lnN)−1 then P{smin(A) ≤
h2

√
N} ≤ exp(−h3N), where h1, h3 depend only on the variance and the subgaussian mo-

ment and h2 — on the moments and the aspect ratio N/n. The approach initiated in [66]

was further developed by M. Rudelson and R. Vershynin who combined it with certain

Littlewood–Offord-type theorems. In [95], Rudelson and Vershynin treated square matri-

ces and later in [93] — rectangular matrices with an arbitrary aspect ratio and i.i.d. mean

zero subgaussian entries, thereby sharpening and generalizing the result of [66]. We note

that the Littlewood–Offord theory has gained an important role in the study of random

matrices primarily due to T. Tao and V. Vu (see, in particular, [108]).

Various estimates for the extremal singular values were obtained when studying the

problem of approximating the covariance matrix of a random vector by the empirical

covariance matrix. Answering a question of R. Kannan, L. Lovász and M. Simonovits, the

authors of [1] treated log-concave random vectors. Later, the log-concavity was replaced

by weaker assumptions (see, in particular, [2, 106, 74, 47]).

Recently, it has become apparent that different conditions are required to bound the

largest and the smallest singular value, and these two questions should be handled sepa-

rately. One of results proved by N. Srivastava and R. Vershynin in [106] provides a lower

estimate for the second moment of smin(A), where A is an N×n matrix with independent

isotropic rows satisfying a (2+ε)-moment condition and certain assumptions on the aspect

ratio N/n. It is important to note that the conditions imposed on A are too weak to imply

the “usual” upper bound smax(A) .
√
N with a large probability [68]. This result of [106]

was strengthened by V. Koltchinskii and S. Mendelson in [59] under similar assumptions on

the matrix. Another theorem of [59] states the following: given an n-dimensional isotropic

random vector X satisfying inf
y∈Sn−1

P{|⟨X, y⟩n| ≥ α} ≥ β for some α, β > 0, there are

H1, h2, h3 > 0 depending only on α, β such that for N ≥ H1n and the N ×n random ma-

trix A with i.i.d. rows distributed like X, one has P{smin(A) ≥ h2

√
N} ≥ 1− exp(−h3N).

We note that a closely related question of bounding random quadratic forms from be-

low was considered by R.I. Oliveira in [82] and that the results of V. Koltchinskii and

S. Mendelson were further strengthened in [118].

The isotropy of a random vector or, more generally, boundedness of variances of its

coordinates is quite a natural assumption which appears as part of requirements on rows

of a matrix in all of the aforementioned papers. However, for a deeper understanding

of non-asymptotic characteristics of random matrices, an important question is whether
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any moment assumptions on entries are really necessary in order to get satisfactory lower

estimates for the smallest singular value.

Unlike in [106] and [59] where the matrix entries within a given row are not necessarily

independent, in this section we consider the classical setting when a rectangular matrix

has i.i.d. entries. However, in contrast with all the mentioned results, the lower estimate

for the smallest singular value that we prove does not use any moment assumptions; the

only requirement is that the distribution of the entries satisfies a “spreading” condition

given in terms of the Lévy concentration function. Moreover, compared to [106] and [59],

we significantly relax the assumptions on the aspect ratio of the matrix.

Given a real random variable ξ, the concentration function of ξ is defined as

Q(ξ, t) = sup
λ∈R

P
{
|ξ − λ| ≤ t

}
, t ≥ 0.

The notion of the concentration function was introduced by P. Lévy [64] in context of

studying distributions of sums of random variables. Note that for a random variable ξ

with zero median satisfying E |ξ|p ≥ m and E |ξ|q ≤ M for some 0 < p < q and m,M > 0,

we have Q(ξ, α) ≤ 1 − β for some α, β > 0 depending only on p, q,m,M . At the same

time, the condition Q(ξ, α) ≤ 1 − β for some α, β > 0 does not imply any upper bounds

on positive moments of ξ.

The main result of the section is the following theorem:

Theorem 3.1. For any real β > 0 and δ > 1 there are u, v > 0 and N0 ∈ N depending

only on β and δ with the following property: Let N, n ∈ N satisfy N ≥ max(N0, δn);

A = (aij) be an N × n random matrix with i.i.d. entries, such that for some α > 0 the

concentration function of the entries satisfies

Q(a11, α) ≤ 1 − β. (3.1)

Then for any non-random N × n matrix B we have

P
{
smin(A + B) ≤ αu

√
N
}
≤ exp(−vN). (3.2)

Adding the non-random component B in the theorem does not increase complexity

of the proof; on the other hand, it demonstrates “shift-invariance” of the lower estimate.

Note that the problem of estimating the smallest singular value of non-random shifts of

square matrices is important in the analysis of algorithms [96, 105, 112, 113].

It is easy to see that a restriction of type (3.1) is necessary for (3.2) to hold. Indeed,

suppose that for some N × n matrix A with i.i.d. entries and some numbers u, v, α > 0,
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(3.2) is true whenever B = λ1N×n, λ ∈ R. Then, obviously,

P
{ N∑
i=1

(ai1 − λ)2 ≤ α2u2N
}
≤ exp(−vN), λ ∈ R,

implying Q(a11, αu) = sup
λ∈R

P
{
|a11 − λ| ≤ αu

}
≤ exp(−v).

Our proof of Theorem 3.1 is based on two key elements: on a modification of a

standard covering (“ε-net”) argument for matrices (Proposition 3.3) and on estimates

of the distance between a random vector and a fixed linear subspace that follow from a

result of [92] (Theorem 3.4 and Corollary 3.6 of the section). Our method is similar in

many aspects to the approach developed in [66] and later in [93], [95]. In particular, as

in the mentioned papers, we decompose the unit sphere Sn−1 into several subsets which

are studied separately from one another. On the other hand, our modification of the

covering argument and its technical realization in regard to splitting a random matrix

into “regular” and “non-regular” parts are apparently new.

We will discuss the main idea of the proof more concretely and in more detail at the

end of §3.1.2, after we state the modified covering argument.

3.1.2 Preliminaries

Throughout the section, (Ω,Σ,P) denotes a probability space. For an N × n matrix D

and a set K ⊂ Rn, D(K) is the image of K in RN under the action of D. Further, colj(D)

is the j-th column of D and spanD is the linear span of columns of D in RN . The N × n

matrix of ones is denoted by 1N×n. For a linear subspace E ⊂ Rn, E⊥ is the orthogonal

complement of E in Rn. In the special case when E is the linear span of a subset {enj }j∈J
(J ⊂ {1, 2, . . . , n}) of the standard unit basis in Rn, we will often write xχJ in place of

ProjE(x). By d(·, ·) we denote the standard Euclidean metric in RN , and set

d(K1, K2) := inf
y1∈K1,y2∈K2

d(y1, y2)

for any two subsets K1, K2 ⊂ RN .

In the section, we define many universal constants and functions that are frequently

referred to later in the text. For convenience, we add to the name of every such constant

or function a subscript indicating the statement where it was defined. For example, C3.12

is the universal constant from Lemma 3.12, etc.

Let K be a subset of Rn and let ε ∈ (0, 1]. A subset N ⊂ K is an ε-net for K

(with respect to the standard Euclidean metric) if for any y ∈ K there is y′ ∈ N with
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∥y− y′∥2 ≤ ε. We will use a well-known fact that any subset K ⊂ Bn
2 admits an ε-net N

for K with cardinality |N | ≤ (3/ε)n.

Given an ε-net N for Sn−1, the matrix A + B from Theorem 3.1 trivially satisfies

smin(A + B) ≥ min
y′∈N

∥Ay′ + By′∥2 − ε∥A + B∥2. This standard ε-net argument is not

applicable in our setting as A + B may have a very large norm with a large probability.

A modification of the method in such a way that ∥A + B∥2 does not participate in the

estimate for smin(A + B) is an important element of our proof. Here we provide a “non-

probabilistic” form of the argument. Given a non-random N × n matrix D, we shall

represent it as a sum of two matrices D1 and D2; then we are able to estimate smin(D)

from below in terms of the norm ∥D1∥2 of the “regular part” of the matrix D and distances

between certain vectors and subspaces in RN (determined by matrices D1 and D2). We

start with a simpler version of the argument:

Lemma 3.2. Let N, n ∈ N, h, ε > 0 and let D1, D2, D be N × n (non-random) matrices

with D = D1 +D2. Further, let N be an ε-net on Sn−1 such that for any y′ ∈ N we have

d
(
D1y

′, spanD2

)
≥ h.

Then

smin(D) ≥ inf
y∈Sn−1

d
(
D1y, spanD2

)
≥ h− ε∥D1∥2.

Proof. Choose any y ∈ Sn−1 and y′ ∈ N such that ∥y − y′∥2 ≤ ε. Then

∥Dy∥2 =
D1y + D2y


2
≥ d

(
D1y, spanD2

)
≥ d

(
D1y

′, spanD2

)
− ε∥D1∥2 ≥ h− ε∥D1∥2.

By taking the infimum over all y ∈ Sn−1, we obtain the result.

Note that Lemma 3.2 cannot be used to handle matrices with the aspect ratio less

than 2. Indeed, the lower estimate smin(D) ≥ inf
y∈Sn−1

d
(
D1y, spanD2

)
is non-trivial only

if spanD1 ∩ spanD2 = 0, which is not true when N < 2n and both D1 and D2 have full

rank. The following strengthening of Lemma 3.2 resolves the problem:

Proposition 3.3. Let N, n ∈ N, S ⊂ Sn−1 and let D1, D2, D be N × n (non-random)

matrices with D = D1+D2. Further, suppose that numbers h, ε > 0, a subset N ⊂ Rn and

a collection of linear subspaces {Ey′ ⊂ Rn : y′ ∈ N} satisfy the following three conditions:

1) y′ ∈ Ey′ for all y′ ∈ N ;

2) for any y′ ∈ N we have

d
(
D1y

′, D(E⊥
y′) + D2(Ey′)

)
≥ h; (3.3)
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3) for any y ∈ S there is y′ ∈ N such that ∥ProjEy′
(y) − y′∥2 ≤ ε.

Then

inf
y∈S

∥Dy∥2 ≥ h− ε∥D1∥2.

Proof. Take any y ∈ S and let y′ ∈ N be such that ∥ProjEy′
(y) − y′∥2 ≤ ε. Then

∥Dy∥2 =
D1(ProjEy′

(y)) +
(
D(ProjE⊥

y′
(y)) + D2(ProjEy′

(y))
)

2

≥ d
(
D1(ProjEy′

(y)), D(E⊥
y′) + D2(Ey′)

)
≥ d

(
D1y

′, D(E⊥
y′) + D2(Ey′)

)
− ε∥D1∥2

≥ h− ε∥D1∥2.

Taking the infimum over S, we get the result.

To apply Proposition 3.3 we need an estimate for the distance between a random

vector in RN with independent coordinates and a fixed linear subspace. For any random

vector X in RN define the concentration function of X by

Q(X, h) = sup
λ∈RN

P
{
∥X − λ∥2 ≤ h

}
, h ≥ 0.

Note that for N = 1 the above definition is consistent with that given in the introduction.

The following result is proved by M. Rudelson and R. Vershynin in [92]:

Theorem 3.4 ([92]). Let X = (X1, X2, . . . , Xm) be a random vector in Rm with indepen-

dent coordinates such that

Q(Xi, h) ≤ η, i = 1, 2, . . . ,m

for some h > 0, η ∈ (0, 1). Then for any d ∈ {1, 2, . . . ,m} and any d-dimensional fixed

subspace E ⊂ Rm we have

Q(ProjEX, h
√
d) ≤ (C3.4η)d,

where C3.4 > 0 is a (sufficiently large) universal constant.

This theorem gives a nontrivial estimate for the concentration only for η sufficiently

close to zero. Below, we provide an elementary extension of this result covering the case

of “more concentrated” coordinates. First, let us recall a theorem of B. Rogozin:
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Theorem 3.5 ([90]). Let k ∈ N, ξ1, ξ2, . . . , ξk be independent random variables and let

h1, h2, . . . , hk > 0 be some real numbers. Then for any h ≥ max
j=1,2,...,k

hj,

Q
( k∑
j=1

ξj, h
)
≤ C3.5h

( k∑
j=1

(
1 −Q(ξj, hj)

)
h2
j

)−1/2

,

where C3.5 > 0 is a universal constant.

Now, an easy application of Theorems 3.4 and 3.5 gives

Corollary 3.6. Let X = (X1, X2, . . . , Xm) be a random vector with independent coordi-

nates such that

Q(Xi, h) ≤ 1 − τ, i = 1, 2, . . . ,m

for some h > 0, τ ∈ (0, 1). Then for any d ∈ {1, 2, . . . ,m}, ℓ ∈ N and any d-dimensional

non-random subspace E ⊂ Rm the concentration function of ProjEX satisfies

Q(ProjEX, h
√
d/ℓ) ≤

(
C3.4C3.5/

√
ℓτ
)d/ℓ

.

Proof. Let X1, X2, . . . , Xℓ be independent copies of X and S = (S1, S2, . . . , Sm) =
ℓ∑

j=1

Xj.

In view of the condition on the coordinates of X and Theorem 3.5, we obtain

Q(Si, h) ≤ C3.5

(
ℓ
(
1 −Q(Xi, h)

))−1/2

≤ C3.5√
ℓτ

, i = 1, 2, . . . ,m.

Then Theorem 3.4 gives

Q(ProjES, h
√
d) ≤

(
C3.4C3.5/

√
ℓτ
)d
.

On the other hand, the definition of S together with the triangle inequality implies that

Q(ProjEX, h
√
d/ℓ)ℓ ≤ Q(ProjES, h

√
d),

and the proof is complete.

Remark 3.1. Note that for any non-zero τ we can choose ℓ ∈ N such that the upper esti-

mate for the concentration function provided by Corollary 3.6 is non-trivial (strictly less

than 1). In fact, a slightly weaker version of Corollary 3.6 still sufficient for our purposes

could be proved using the original result of P. Lévy from [64] instead of Theorem 3.5.
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As an immediate application of Corollary 3.6, we prove a statement about peaky vec-

tors. We call a vector y ∈ Sn−1 θ-peaky for some θ > 0 if ∥y∥∞ ≥ θ. The set of all θ-peaky

unit vectors in Rn shall be denoted by Sn−1
p (θ).

Proposition 3.7 (Peaky vectors). Let δ > 1 and let n,N ∈ N satisfy N ≥ δn. Fur-

ther, assume we are given θ, γ > 0 and let U = (uij) be an N × n random matrix with

independent entries (not necessarily identically distributed), each entry uij satisfying

Q(uij, 1) ≤ 1 − γ.

Then

P
{

inf
y∈Sn−1

p (θ)
∥Uy∥2 ≤ h3.7θ

√
N
}
≤ n exp(−w3.7N),

where the h3.7, w3.7 > 0 depend only on γ and δ.

Proof. By Corollary 3.6, for d = N − n + 1, any ℓ ∈ N and any fixed (n− 1)-dimensional

subspace F ⊂ RN we have

P
{

d(colj(U), F ) ≤
√
d/ℓ
}
≤ Q

(
ProjF⊥(colj(U)),

√
d/ℓ
)

≤
(
C3.4C3.5/

√
ℓγ
)d/ℓ

, j = 1, 2, . . . , n.

Take ℓ := ⌈4C2
3.4C

2
3.5/γ⌉. Since for each j = 1, 2, . . . , n, colj(U) is independent from the

span of the other columns of U , from the above estimate we obtain

P
{

d
(
colj(U), span{colk(U)}k ̸=j

)
≤ h

√
d
}
≤ exp

(
−wd

)
, j = 1, 2, . . . , n

for some h,w > 0 depending only on γ. Let

E =
{
ω ∈ Ω : d

(
colj(U(ω)), span{colk(U(ω))}k ̸=j

)
> h

√
d for all j = 1, 2, . . . , n

}
.

Then P(E) ≥ 1 − n exp(−wd). Take arbitrary ω ∈ E . For any y = (y1, y2, . . . , yn) in

Sn−1
p (θ) there is j = j(y) such that |yj| ≥ θ, hence

∥U(ω)y∥2 = ∥U(ω)(yje
n
j ) + U(ω)(y − yje

n
j )∥2

≥ θd
(
colj(U(ω)), span{colk(U(ω))}k ̸=j

)
> hθ

√
d.

Thus,

P
{

inf
y∈Sn−1

p (θ)
∥Uy∥2 ≤ hθ

√
d
}
≤ n exp(−wd),
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and the statement follows.

Next, we introduce two notions important for us that will be used throughout the rest

of the text. For any number s ∈ R and any Borel subset H ⊂ R, define the H-part of s

as

sH =

⎧⎨⎩s, if s ∈ H,

0, otherwise.

The “complementary” R\H-part of s will be denoted by sH . Obviously, s = sH + sH .

The name and the notation resemble the positive and negative part of a real number; in

fact s+ = sH for H = [0,∞). For a real-valued random variable ξ we define the H-part

of ξ pointwise: ξH(ω) = ξ(ω)H for all ω ∈ Ω. When a variable has a subscript, we will

use parentheses to separate the subscript from the H-part notation, for example (ξ1)H is

the H-part of a random variable ξ1. Given a matrix A = (aij), its H-part AH is defined

entry-wise, i.e. (AH)ij = (aij)H for all admissible i, j.

For any N × n matrices M,M ′ (whether random or not), a Borel set H ⊂ R and a

linear subspace E ⊂ Rn let

VM,M ′(H,E) := (M + M ′)(E⊥) + (MH + M ′)(E).

Note that VM,M ′(H,E) is a linear subspace of RN of dimension at most n. When the

matrices M , M ′ are clear from the context, we shall write V (H,E) in place of VM,M ′(H,E).

When one or both matrices M,M ′ are random, VM,M ′(H,E) is a random subspace in RN

of dimension at most n.

Let us conclude the section by describing the main idea of the proof of Theorem 3.1.

Let S be a subset of Sn−1. As we already noted before, the main obstacle in using the

standard ε-net argument to get a lower estimate for inf
y∈S

∥Ay+By∥2 is the need to control

the norm of the matrix A + B which is not possible unless we impose strong restrictions

on its entries. Proposition 3.3 provides a workaround: we represent A + B as a sum

of two random matrices, “regular” and “irregular”, satisfying certain conditions, so that

the lower bound for inf
y∈S

∥Ay + By∥2 involves the norm of only the “regular” matrix.

The splitting shall be defined with help of the above concept of H-part. Namely, for

some specially chosen λ ∈ R and H ⊂ R we define the “regular” part as (A− λ1N×n)H
and the “irregular” as A + B − (A− λ1N×n)H (which is identical to (A− λ1N×n)H +

B + λ1N×n). The set H shall be bounded which implies boundedness of the entries of

(A− λ1N×n)H . This, together with the appropriately chosen “shift” λ, allows us to easily

control ∥(A− λ1N×n)H∥2 from above. We will define H as the union of two specially
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constructed closed intervals on R. The choice of H depends on the set S and may depend

on the characteristics of the distribution of the entries of A (we leave this problem for the

last section).

The crucial property that our set H shall satisfy is: letting Ã = A − λ1N×n and

B̃ = B + λ1N×n, for certain finite subset of vectors N ⊂ Rn and a collection of linear

subspaces {Ey′ ⊂ Rn}y′∈N (see Proposition 3.3) we have

min
y′∈N

d
(
ÃHy

′, VÃ,B̃(H,Ey′)
)
&

√
N

with a large probability. This restriction on H naturally corresponds to the condition (3.3)

in Proposition 3.3. In practice we shall verify this property of H by proving that for every

vector y ∈ Bn
2 satisfying certain upper bounds on ∥y∥∞ and lower bounds on ∥y∥2 and

for E = span{enj }j∈supp y, the distance d
(
ÃHy, VÃ,B̃(H,E)

)
is large with an overwhelming

probability. This condition demands a “rich” structure from ÃH ; consequently, the set

H cannot be very small in diameter. On the other hand, the “upper” restrictions on H

are dictated by the necessity to control the norm of ÃH . Thus, we have to find a balance

between the two requirements.

In order to estimate the distance between the random vector ÃHy and the random

subspace VÃ,B̃(H,E), we will use Corollary 3.6. However, since in general VÃ,B̃(H,E) is

dependent (in probabilistic sense) on ÃHy, an immediate application of the corollary is

not possible; instead, we will combine it with a conditioning argument, which is presented

in the next section.

3.1.3 The distribution of d
(
AHy, VA,B(H,E)

)
Assume that we are given δ > 1, N, n ∈ N with N ≥ δn, a random N × n matrix A with

i.i.d. entries, a non-random N × n matrix B and a Borel subset H ⊂ R with P{a11 ∈
H} > 0. The purpose of this section is to study the distribution of the distance between a

random vector AHy and the random subspace VA,B(H,E) = (A+B)(E⊥)+(AH +B)(E),

where E = span{enj }j∈supp y. We give sufficient conditions on A, H and y which guarantee

that d
(
AHy, VA,B(H,E)

)
is large with a large probability (Proposition 3.11). Note that

generally AHy and VA,B(H,E) are dependent. In order to overcome this problem, we

apply a decoupling argument.

We adopt the following notation: For any subset W ⊂ {1, 2, . . . , N}×{1, 2, . . . , n} let

ΩW =
{
ω ∈ Ω : aij(ω) ∈ H for all (i, j) ∈ W and aij(ω) ∈ H for all (i, j) /∈ W

}
.
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Given an event E ⊂ Ω with P(E) > 0, we denote by (E ,ΣE ,PE) the probability space

where the σ-algebra ΣE of subsets of E is naturally induced by the σ-algebra Σ on Ω, and

PE is defined by PE(K) = P(E)−1P(K) (K ∈ ΣE).

Lemma 3.8 (Conditional independence). Let A, B and H be as above, y ∈ Rn, E =

span{enj }j∈supp y and let W ⊂ {1, 2, . . . , N} × {1, 2, . . . , n} be such that P(ΩW ) > 0. Then

the random vector AHy in RN and the random subspace VA,B(H,E) ⊂ RN are condi-

tionally independent given event ΩW . Moreover, the coordinates of AHy are conditionally

independent given ΩW .

The proof of the lemma is quite straightforward, so we omit it. Lemma 3.8 shows

that Corollary 3.6 can be applied to AHy and the subspace VA,B(H,E) “inside” each ΩW .

Hence, to give a satisfactory lower estimate for d
(
AHy, VA,B(H,E)

)
on the entire Ω, it is

enough to verify that there is a subset M ⊂ 2{1,2,...,N}×{1,2,...,n} such that the P-measure

of the union of ΩW ’s (W ∈ M) is close to 1 and for each W ∈ M , the restriction of the

vector AHy to ΩW has sufficiently “spread” coordinates. Of course, such a set M may

exist only under certain assumptions on A, H and y. In Lemma 3.9, we formulate those

assumptions using random variables that agree on a part of the probability space and are

independent when restricted to the other part of Ω. Let us remark that, whereas the use

of such variables has some advantages (in our opinion), it should not be regarded as a

necessary ingredient of the proof.

Let ξ, ξ′ be two random variables such that P{ξ ∈ H} > 0. We say that ξ, ξ′ are

conditionally i.i.d. given event {ω ∈ Ω : ξ(ω) ∈ H} and identical on {ω ∈ Ω : ξ(ω) ∈ H}
if the following is true: setting E = {ω ∈ Ω : ξ(ω) ∈ H}, the restrictions of ξ, ξ′ to the

probability space (E ,ΣE ,PE) are i.i.d. and ξ(ω) = ξ′(ω) for ω ∈ Ω \ E . The definition

implies that ξ′ has the same individual distribution (on Ω) as ξ and for any Borel subsets

K,K ′ ⊂ R

P
{

(ξ, ξ′) ∈ K ×K ′} =
P{ξ ∈ H ∩K}P{ξ ∈ H ∩K ′}

P{ξ ∈ H}
+ P{ξ ∈ H ∩K ∩K ′}; (3.4)

in particular, P{(ξ, ξ′) ∈ H × H} = P{(ξ, ξ′) ∈ H × H} = 0. Note that ξH and ξ′H are

equal a.s. on Ω. It is a trivial observation that ξH − ξ′H is symmetrically distributed.

For any event E ⊂ Ω with P(E) > 0 and any random variable ξ on Ω, let QE(ξ, ·) be

the concentration function of the restriction of ξ to the probability space (E ,ΣE ,PE).

Lemma 3.9. Let H be a Borel subset of R; N ≥ δn for some δ > 1 and let A = (aij) be an

N×n random matrix with i.i.d. entries and P{a11 ∈ H} > 0. Further, let A′ = (a′ij) be an

N × n random matrix having the same distribution as A such that 2-dimensional vectors
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(aij, a
′
ij) (1 ≤ i ≤ N , 1 ≤ j ≤ n) are i.i.d. and for any admissible i and j the variables

aij and a′ij are conditionally i.i.d. given event {ω ∈ Ω : aij(ω) ∈ H} and identical on

{ω ∈ Ω : aij(ω) ∈ H}. Let y = (y1, y2, . . . , yn) ∈ Rn and s > 0 be such that

P
{⏐⏐⏐ n∑

j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ > s
}
≥ δ−1/4, i = 1, 2, . . . , N. (3.5)

Define M as the collection of all subsets W ⊂ {1, 2, . . . , N} × {1, 2, . . . , n} satisfying

P(ΩW ) > 0 and
⏐⏐⏐{i ∈ {1, 2, . . . , N} : QΩW

( n∑
j=1

(aij)Hyj,
s

2

)
≤ 1 − τ

}⏐⏐⏐ ≥ Nδ−1/2

with τ = 1
2

(
δ−1/4 − δ−1/3

)
. Then

P
( ⋃
W∈M

ΩW

)
≥ 1 − exp(−w3.9N),

where w3.9 > 0 depends only on δ.

Proof. For each i = 1, 2, . . . , N and J ⊂ {1, 2, . . . , n} let

Ωi
J =

{
ω ∈ Ω : aij(ω) ∈ H for all j ∈ J and aij(ω) ∈ H for all j /∈ J

}
,

and for i = 1, 2, . . . , N define

Li =
{
J ⊂ {1, 2, . . . , n} : P(Ωi

J) > 0 and QΩi
J

( n∑
j=1

(aij)Hyj,
s

2

)
≤ 1 − τ

}
; Ei =

⋃
J∈Li

Ωi
J .

It is not difficult to see that the events Ei ⊂ Ω (i = 1, 2, . . . , N) are independent in view

of independence of the entries of A.

Fix for a moment any i ∈ {1, 2, . . . , N}. One can verify that for any j ∈ {1, 2, . . . , n}
and J ⊂ {1, 2, . . . , n} the variables (aij)H and (a′ij)H are i.i.d. given event Ωi

J . It follows

that

n∑
j=1

(aij)Hyj and
n∑
j=1

(a′ij)Hyj are i.i.d. given Ωi
J , for all J ⊂ {1, 2, . . . , n}. (3.6)

Take any subset J ⊂ {1, 2, . . . , n} satisfying

P(Ωi
J) > 0 and PΩi

J

{⏐⏐⏐ n∑
j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ > s
}
≥ 2τ. (3.7)
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For all λ ∈ R we have, in view of (3.6),

PΩi
J

{
λ− s

2
≤

n∑
j=1

(aij)Hyj ≤ λ +
s

2

}2

= PΩi
J

{
λ− s

2
≤

n∑
j=1

(aij)Hyj ≤ λ +
s

2
and λ− s

2
≤

n∑
j=1

(a′ij)Hyj ≤ λ +
s

2

}
≤ PΩi

J

{⏐⏐⏐ n∑
j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ ≤ s
}

≤ 1 − 2τ,

implying

QΩi
J

( n∑
j=1

(aij)Hyj,
s

2

)
≤

√
1 − 2τ ≤ 1 − τ.

Thus, any J satisfying (3.7) belongs to Li. Clearly,

P
{⏐⏐⏐ n∑

j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ > s
}

=
∑
J

PΩi
J

{⏐⏐⏐ n∑
j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ > s
}
P(Ωi

J),

where the summation is taken over J ⊂ {1, 2, . . . , n} satisfying P(Ωi
J) > 0. Hence, in view

of (3.5) and the above observations we get

δ−1/4 ≤
∑
J

PΩi
J

{⏐⏐⏐ n∑
j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ > s
}
P(Ωi

J)

≤
∑
J∈Li

P(Ωi
J) + 2τ

∑
J /∈Li

P(Ωi
J)

≤ 2τ + P(Ei),

implying P(Ei) ≥ δ−1/3.

We have noted that the events Ei (i = 1, 2, . . . , N) are independent and P(Ei) ≥ δ−1/3

for each i. Now, setting

E =
{
ω ∈ Ω :

⏐⏐{i ∈ {1, 2, . . . , N} : ω ∈ Ei
}⏐⏐ ≥ Nδ−1/2

}
,

we obtain by Bernstein’s (or Hoeffding’s) inequality P(E) ≥ 1 − exp(−w3.9N), where

w3.9 > 0 depends only on δ. Finally, we will show that E ⊂
⋃
W∈M ΩW ∪ Ω0 for a set

Ω0 of zero probability measure. Define Ω0 =
⋃
W ΩW , where the union is taken over all

W such that P(ΩW ) = 0. Fix any ω ∈ E \ Ω0 and let W̃ ⊂ {1, 2, . . . , N} × {1, 2, . . . , n}
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be such that ω ∈ ΩW̃ . In view of the definition of E and the events Ei, there are indices

i1 < i2 < · · · < ik (k ≥ Nδ−1/2) such that w ∈ Ω
iq
Jq

for all q = 1, 2, . . . , k, where

Jq = {j : (iq, j) ∈ W̃} and

Q
Ω

iq
Jq

( n∑
j=1

(aiqj)Hyj,
s

2

)
≤ 1 − τ, q = 1, 2, . . . , k.

Note that, in view of independence of the entries of A and the relation between ΩW̃ and

Ω
iq
Jq

, the conditional distribution of the sum
∑n

j=1 (aiqj)Hyj given event ΩW̃ is the same

as its conditional distribution given Ω
iq
Jq

. Hence,

QΩ
W̃

( n∑
j=1

(aiqj)Hyj,
s

2

)
= Q

Ω
iq
Jq

( n∑
j=1

(aiqj)Hyj,
s

2

)
≤ 1 − τ, q = 1, 2, . . . , k.

The last formula implies that W̃ ⊂ M , so ω ∈
⋃
W∈M ΩW . The proof is complete.

Next, we combine the result of Lemma 3.9 with Corollary 3.6:

Lemma 3.10. Let N, n, δ, H, A,A′, y and s be exactly as in Lemma 3.9 and B be a

non-random N × n matrix. Then

P
{

d
(
AHy, VA,B(H,E)

)
≤ sh3.10

√
N
}
≤ 2 exp

(
−w3.10N

)
,

where E = span{enj }j∈supp y and h3.10 > 0, w3.10 > 0 depend only on δ.

Proof. Let M and τ be defined as in Lemma 3.9 and take any W ∈ M . Let

m =
⏐⏐⏐{i ∈ {1, 2, . . . , N} : QΩW

( n∑
j=1

(aij)Hyj,
s

2

)
≤ 1 − τ

}⏐⏐⏐.
By the definition of M , we have m ≥ Nδ−1/2 ≥

√
δn, hence, taking d = m − n and

ℓ = 4(C3.4C3.5)
2/τ , by Corollary 3.6, for κ = δ−1/2 − δ−1 and any fixed n-dimensional

subspace F ⊂ RN we obtain

PΩW

{
d
(
AHy, F

)
≤ s

2ℓ

√
κN
}
≤ 2−κN/ℓ.

Now, consider the random subspace VA,B(H,E) = (A + B)(E⊥) + (AH + B)(E). Let

us remark that (A + B)(E⊥) is just the linear span of columns of A + B whose indices

do not belong to the support of y, and, similarly, (AH + B)(E) is the span of those

columns of AH +B whose indices belong to the support of y. By Lemma 3.8, VA,B(H,E)
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and the vector AHy are conditionally independent given ΩW , hence the above estimate

immediately implies

PΩW

{
d
(
AHy, VA,B(H,E)

)
≤ s

2ℓ

√
κN
}
≤ 2−κN/ℓ.

Since the relation holds for all W ∈ M , in view of Lemma 3.9 we obtain

P
{

d
(
AHy, VA,B(H,E)

)
≤ s

2ℓ

√
κN
}
≤ 2−κN/ℓ P

( ⋃
W∈M

ΩW

)
+ 1 − P

( ⋃
W∈M

ΩW

)
≤ 2−κN/ℓ + exp(−w3.9N),

and the result follows.

Finally, we can prove the main result of the section:

Proposition 3.11. Let δ > 1, n,N ∈ N, N ≥ δn and let A = (aij) be an N × n random

matrix with i.i.d. entries and B be any non-random N × n matrix. Further, for some

d, r > 0 let H be a Borel subset of R such that H = H1∪H2 for disjoint Borel sets H1, H2

with d(H1, H2) ≥ d and min
(
P{a11 ∈ H1},P{a11 ∈ H2}

)
≥ r. For arbitrary t > 0 define

h3.11 =
1 − δ−1/4

C3.5

√
r

8
td

and let y ∈ Rn be a vector satisfying ∥y∥2 ≥ t, ∥y∥∞ ≤ 2h3.11
d

and E = span{enj }j∈supp y.
Then

P
{

d
(
AHy, VA,B(H,E)

)
≤ h3.10h3.11

√
N
}
≤ 2 exp(−w3.10N).

Proof. Let A′ = (a′ij) be an N × n random matrix having the same distribution as A

such that 2-dimensional vectors (aij, a
′
ij) (1 ≤ i ≤ N , 1 ≤ j ≤ n) are i.i.d. and for any

admissible i and j the variables aij and a′ij are conditionally i.i.d. given event {ω ∈ Ω :

aij(ω) ∈ H} and identical on {ω ∈ Ω : aij(ω) ∈ H}. For every i = 1, 2, . . . , N and

j = 1, 2, . . . , n, in view of formula (3.4) for the joint distribution we get

P
{⏐⏐(aij)H − (a′ij)H

⏐⏐ ≥ d
}
≥ P{aij ∈ H1 and a′ij ∈ H2} + P{aij ∈ H2 and a′ij ∈ H1} ≥ r.

Since (aij)H − (a′ij)H is symmetrically distributed, the above relation implies Q
(
(aij)H −

(a′ij)H ,
d
2

)
≤ 1 − r

2
. Clearly, h3.11 ≥ d|yj |

2
for every coordinate yj of the vector y, hence by
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Theorem 3.5 for all i = 1, 2, . . . , N we have

P
{⏐⏐⏐ n∑

j=1

(
(aij)H − (a′ij)H

)
yj

⏐⏐⏐ ≤ h3.11

}
≤ Q

( n∑
j=1

(
(aij)H − (a′ij)H

)
yj, h3.11

)
≤ C3.5h3.11

(1

4

n∑
j=1

(
1 −Q

((
(aij)H − (a′ij)H

)
yj,

|yj|d
2

))
(yjd)2

)−1/2

≤ C3.5h3.11

(r
8

n∑
j=1

(yjd)2
)−1/2

≤ C3.5h3.11

td

√
8

r
= 1 − δ−1/4.

Thus, vector y satisfies condition (3.5) with s := h3.11. Then, by Lemma 3.10,

P
{

d
(
AHy, VA,B(H,E)

)
≤ h3.10h3.11

√
N
}
≤ 2 exp(−w3.10N).

3.1.4 Decomposition of Sn−1 and proof of Theorem 3.1

Recall that in Section 3.1.2 we defined Sn−1
p (θ) as the set of θ-peaky vectors, that is, unit

vectors in Rn whose ℓn∞-norm is at least θ. We say that a vector y ∈ Sn−1 is m-sparse if

|supp y| ≤ m. Next, y ∈ Sn−1 is almost m-sparse, if there is a subset J ⊂ {1, 2, . . . , n} of

cardinality at most m, such that ∥yχJ∥2 ≥ 1/2. The set of all almost m-sparse vectors

shall be denoted by Sn−1
a (m).

In our proof of Theorem 3.1, we represent Sn−1 as the union of three subsets:

Sn−1 = Sn−1
p (θ) ∪

(
Sn−1
a (

√
N) \ Sn−1

p (θ)
)
∪
(
Sn−1 \ Sn−1

a (
√
N)
)
,

where θ is a function of the parameters β and δ of the theorem. Then the smallest singular

value of A+B can be estimated by bounding separately inf
y
∥Ay +By∥2 over each of the

three subsets.

The reasons for such a representation of Sn−1 are purely technical: Proposition 3.11

proved in the previous section handles vectors with a sufficiently small ℓn∞-norm, so instead

we use Proposition 3.7 to deal with the set Sn−1
p (θ). Further, the separate treatment of

almost
√
N -sparse vectors is convenient because, on the one hand, the construction of the
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set H corresponding to Sn−1
a (

√
N)\Sn−1

p (θ) is trivial compared to Sn−1\Sn−1
a (

√
N); on the

other hand, vectors from Sn−1\Sn−1
a (

√
N) have a useful geometric property (Lemma 3.16)

which the almost sparse vectors generally do not possess. We note that the set Sn−1
a (

√
N)

in the covering of Sn−1 can be replaced with Sn−1
a (Nκ)

)
for any constant power κ ∈ (0, 1);

this would only affect the constants in the final estimate.

In our representation of Sn−1, we follow an idea from [66], where the unit sphere was

split into sets of “close to sparse” and “far from sparse” vectors. A similar splitting was

also employed in [93], [95], where the terms “compressible” and “incompressible” were

used instead. On the other hand, our “borderline”
√
N is much smaller than in the

mentioned papers.

The next elementary lemma shall be used in conjunction with Proposition 3.3.

Lemma 3.12. There is a universal constant C3.12 > 0 with the following property: Let

n,m ∈ N with m ≤ n, ε ∈ (0, 1], S ⊂ Sn−1 and let T ⊂ Bn
2 consist of m-sparse vectors

and satisfy

for any y ∈ S there is x = x(y) ∈ T with yχsuppx = x. (3.8)

Then there is a finite set N ⊂ T of cardinality at most
(
C3.12n
εm

)m
such that for any y ∈ S

there is y′ = y′(y) ∈ N with ∥yχsupp y′ − y′∥2 ≤ ε.

Proposition 3.13 (Vectors from Sn−1
a (

√
N) with a small ℓn∞-norm). For any γ > 0 and

δ > 1 there are N3.13 ∈ N and h3.13 > 0 depending only on γ and δ with the following

property: Let

θ3.13 =
1 − δ−1/4

C3.5

√
γ

8
,

N ≥ max(N3.13, δn), z ∈ R and let A be an N × n random matrix with i.i.d. entries such

that

min
(
P
{
z −

√
N ≤ a11 ≤ z − 1

}
,P
{
z + 1 ≤ a11 ≤ z +

√
N
})

≥ γ.

Then for the set S = Sn−1
a (

√
N) \ Sn−1

p (θ3.13) and any non-random N × n matrix B we

have

P
{

inf
y∈S

∥Ay + By∥2 ≤ h3.13

√
N
}
≤ exp(−w3.10N/2).

Proof. Fix any γ > 0 and δ > 1 and define d := 2, r := γ, t := 1
2
; let h3.11 be as in

Proposition 3.11 and N3.13 = N3.13(γ, δ) be the smallest integer greater than 2
h3.10h3.11

such

that for all N ≥ N3.13

2
(
C3.12N

)3√N ≤ exp(w3.10N/2).

Now, take any n ∈ N and N ≥ max(N3.13, δn); let z and A safisfy conditions of the

lemma and B be any non-random N × n matrix. We will assume that S is non-empty.
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Without loss of generality, z = 0 (otherwise, we replace A, B with A−z1N×n, B+z1N×n).

Define H1 = [−
√
N,−1], H2 = [1,

√
N ], H = H1 ∪ H2. Obviously, d(H1, H2) = d and

min
(
P{a11 ∈ H1},P{a11 ∈ H2}

)
≥ r. Let T ⊂ Bn

2 be the set of
√
N -sparse vectors with

the Euclidean norm at least 1
2

and the maximal norm at most θ3.13. Clearly, T and S

satisfy (3.8), hence, by Lemma 3.12, there is a finite subset N ⊂ T of cardinality at most(
C3.12N

)3√N
such that for any y ∈ S there is y′ = y′(y) ∈ N with ∥yχsupp y′ −y′∥2 ≤ N−2.

Let Ey′ = span{enj }j∈supp y′ (y′ ∈ N ) and define an event

E =
{
ω ∈ Ω : d

(
AH(ω)y′, VA,B(H,Ey′)(ω)

)
> h3.10h3.11

√
N for all y′ ∈ N

}
.

In view of Proposition 3.11, the upper estimate for |N | and the definition of N3.13, we get

P(E) ≥ 1 − 2|N | exp(−w3.10N) ≥ 1 − exp(−w3.10N/2).

Take any ω ∈ E and define D1 = AH(ω), D2 = AH(ω) + B, D = D1 + D2. Since all

entries of D1 are bounded by
√
N by absolute value, we get ∥D1∥2 ≤ N3/2; next, for every

y′ ∈ N
d
(
D1y

′, D(E⊥
y′) + D2(Ey′)

)
> h3.10h3.11

√
N

(note that D(E⊥
y′) + D2(Ey′) = VA,B(H,Ey′)(ω)). Hence, by Proposition 3.3, we obtain

inf
y∈S

∥Dy∥2 > h3.10h3.11

√
N −N−1/2 ≥ 1

2
h3.10h3.11

√
N.

Finally, applying the above argument to all ω ∈ E , we get the result.

As we noted before, construction of the set H corresponding to Sn−1\Sn−1
a (

√
N) is not

so trivial as in the case of almost
√
N -sparse vectors. The reason is that in general the

set Sn−1 \ Sn−1
a (

√
N) is much larger than Sn−1

a (
√
N), and we have to apply more delicate

arguments to get a satisfactory probabilistic estimate. The construction of H for the set

of “far from
√
N -sparse” vectors is contained in the following lemma:

Lemma 3.14. Let ξ be a random variable such that for some z ∈ R, γ > 0, N ∈ N we

have

min
(
P
{
z −

√
N ≤ ξ ≤ z − 1

}
,P
{
z + 1 ≤ ξ ≤ z +

√
N
})

≥ γ.

Then there exists an integer ℓ ∈ [0, ⌊log2

√
N⌋], λ ∈ R and disjoint Borel sets H1, H2 ⊂

[−2ℓ+2; 2ℓ+2] such that d(H1, H2) ≥ 2ℓ, min
(
P{ξ − λ ∈ H1},P{ξ − λ ∈ H2}

)
≥ c3.14γ2−ℓ/8

and E (ξ − λ)H = 0 for H = H1 ∪H2 and a universal constant c3.14 > 0.

Proof. Without loss of generality we can assume that z = 0. Let c3.14 =
( ∞∑
m=0

2−m/8
)−1

.
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Then, by the conditions on ξ, there are ℓ1, ℓ2 ∈ {0, 1, . . . , ⌊log2

√
N⌋} such that

P{ξ ∈ [−2ℓ1+1,−2ℓ1 ]} ≥ c3.14γ2−ℓ1/8; P{ξ ∈ [2ℓ2 , 2ℓ2+1]} ≥ c3.14γ2−ℓ2/8.

Now, define λ as the conditional expectation of ξ given the event M = {ω ∈ Ω : ξ(ω) ∈
[−2ℓ1+1,−2ℓ1 ] ∪ [2ℓ2 , 2ℓ2+1]}, i.e.

λ = P(M)−1

∫
M

ξ(ω)dω.

Let H1 = −λ + [−2ℓ1+1,−2ℓ1 ] and H2 = −λ + [2ℓ2 , 2ℓ2+1]. Note that necessarily λ ∈
[−2ℓ1+1, 2ℓ2+1], hence H1, H2 ⊂ [−2ℓ+2, 2ℓ+2] for ℓ = max(ℓ1, ℓ2). Obviously, d(H1, H2) ≥
2ℓ and for H = H1 ∪H2

E (ξ − λ)H =

∫
{ξ−λ∈H}

(ξ(ω) − λ)dω =

∫
M

(ξ(ω) − λ)dω = 0.

Finally,

min
(
P{ξ − λ ∈ H1},P{ξ − λ ∈ H2}

)
= min

(
P{ξ ∈ [−2ℓ1+1,−2ℓ1 ]},P{ξ ∈ [2ℓ2 , 2ℓ2+1]}

)
≥ c3.14γ2−ℓ/8.

Let us recall a folklore estimate of the norm of a random matrix with bounded mean

zero entries (see, for example, [91, Proposition 2.4]):

Lemma 3.15. Let W = (wij) be an N × n (N ≥ n) random matrix with i.i.d. mean zero

entries; R > 0 and assume that |wij| ≤ R a.s. Then for a universal constant C3.15 > 0

P
{
∥W∥2 ≥ C3.15R

√
N
}
≤ exp(−N).

The next lemma highlights a useful property of the vectors from Sn−1 \ Sn−1
a (

√
N):

Lemma 3.16. For any integer N ≥ n ≥ m ≥ 1 and any y ∈ Sn−1 \ Sn−1
a (

√
N) there is a

set J = J(y) ⊂ {1, 2, . . . , n} such that |J | ≤ m, ∥yχJ∥2 ≥ 1
2

√
m
n
and ∥yχJ∥∞ ≤ 1

⌊N1/4⌋ .

Proof. Take any N ≥ n ≥ m ≥ 1 and y = (y1, y2, . . . , yn) ∈ Sn−1 \ Sn−1
a (

√
N) and let

J ′(y) =
{
j ∈ {1, 2, . . . , n} : |yj| ≤

1

⌊N1/4⌋

}
.
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Obviously, |J ′| ≥ n −
√
N > 0 and, since y is not almost

√
N -sparse, ∥yχJ ′∥2 ≥

√
3/4.

Let {J ′
1, J

′
2, . . . , J

′
p} be any partition of J ′ into pairwise disjoint subsets of cardinality at

most m with p ≤ ⌈n/m⌉. Then, clearly, for some q ∈ {1, 2, . . . , p} we have ∥yχJq∥2 ≥
∥yχJ ′∥2/

√
p > 1

2

√
m
n

. Setting, J(y) = Jq, we get the result.

Proposition 3.17 (The set Sn−1 \ Sn−1
a (

√
N)). For any γ > 0, δ > 1 there are N3.17 ∈

N and h3.17 > 0 depending only on γ and δ with the following property: Let N ≥
max(N3.17, δn) and let A be an N × n random matrix with i.i.d. entries such that

min
(
P
{
z −

√
N ≤ a11 ≤ z − 1

}
,P
{
z + 1 ≤ a11 ≤ z +

√
N
})

≥ γ

for some z ∈ R. Then for any non-random N × n matrix B and the set S = Sn−1 \
Sn−1
a (

√
N) we have

P
{

inf
y∈S

∥Ay + By∥2 ≤ h3.17

√
N
}
≤ exp(−w3.10N/2).

Proof. Fix any γ > 0 and δ > 1. To make the notation more compact, denote f0 :=
(1−δ−1/4)

√
c3.14γ

C3.5
and let τ0 = τ0(γ, δ) be the largest number in (0, 1] such that for all s ≥ 0

(16
√

8C3.12C3.152
s/2

h3.10f0τ
3/2
0

)2−s/4τ0
≤ exp(w3.10/4)

(it is not difficult to see that τ0 is well defined). Then, take N3.17 = N3.17(γ, δ) to be the

smallest positive integer such that for all N ≥ N3.17

1

⌊N1/4⌋
≤

f0
√
τ0

4
√

8
N−3/16 and

48
√

8NC3.12C3.15

h3.10f0τ
3/2
0

≤ exp(w3.10N/4). (3.9)

Let N ≥ N3.17, N ≥ δn and let A be an N × n random matrix with entries satisfying

conditions of the lemma and B be any non-random N × n matrix.

By Lemma 3.14, there is an integer ℓ ∈ [0, ⌊log2

√
N⌋], λ ∈ R and disjoint Borel sets

H1, H2 ⊂ [−2ℓ+2, 2ℓ+2] such that d(H1, H2) ≥ 2ℓ, min
(
P{a11 − λ ∈ H1},P{a11 − λ ∈

H2}
)
≥ c3.14γ2−ℓ/8 and E (a11 − λ)H = 0 for H = H1 ∪ H2. Denote Ã = A − λ1N×n,

B̃ = B + λ1N×n and let

R := 2ℓ+2, d := 2ℓ, r := c3.14γ2−ℓ/8, m :=
⌈ τ0n

2ℓ/4

⌉
, t :=

1

2

√
m

n
, ε :=

h3.10h3.11

2C3.15R
,

where h3.11 is defined as in Proposition 3.11. Assume that S is non-empty and let T ⊂ Bn
2

consist of all m-sparse vectors y ∈ Bn
2 with ∥y∥2 ≥ t and ∥y∥∞ ≤ 2h3.11

d
. The first
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inequality in (3.9) and a simple calculation show that 1
⌊N1/4⌋ ≤ 2h3.11

d
. Hence, in view of

Lemma 3.16, T is non-empty and satisfies (3.8). By Lemma 3.12, there is a finite subset

N ⊂ T of cardinality at most
(
nC3.12

mε

)m
such that for any y ∈ S there is y′ = y′(y) ∈ N

with ∥yχsupp y′ − y′∥2 ≤ ε.

For each y′ ∈ N denote Ey′ = span{enj }j∈supp y′ . By Proposition 3.11,

P
{

d
(
ÃHy

′, VÃ,B̃(H,Ey′)
)
≤ h3.10h3.11

√
N
}
≤ 2 exp(−w3.10N).

Define an event

E =
{
ω ∈ Ω : d

(
ÃH(ω)y′, VÃ,B̃(H,Ey′)(ω)

)
> h3.10h3.11

√
N

for all y′ ∈ N and ∥ÃH(ω)∥2 ≤ C3.15R
√
N
}
.

By the above probability estimates and Lemma 3.15,

P(E) ≥ 1 − exp(−N) − 2|N | exp
(
−w3.10N

)
≥ 1 − exp(−N) − 2

(C3.12n

mε

)m
exp
(
−w3.10N

)
.

Using the definition of ε, m, τ0 and the second inequality in (3.9), we can estimate the

probability as

P(E) ≥ 1 − 3
(8C3.12C3.152

ℓ+ℓ/4

τ0h3.10h3.11

)2−ℓ/4τ0n+1

exp(−w3.10N)

≥ 1 − 3
(16

√
8C3.12C3.152

ℓ/2

h3.10f0τ
3/2
0

)2−ℓ/4τ0n+1

exp(−w3.10N)

≥ 1 − exp(−w3.10N/2).

Take any ω ∈ E and define D1 = ÃH(ω), D2 = ÃH(ω) + B̃, D = A(ω) + B(ω) =

D1 + D2. Then ∥D1∥2 ≤ C3.15R
√
N and for every y′ ∈ N we have

d
(
D1y

′, D(E⊥
y′) + D2(Ey′)

)
> h3.10h3.11

√
N.

Hence, by Proposition 3.3 and the definition of ε, we get

inf
y∈S

∥Dy∥2 > h3.10h3.11

√
N − εC3.15R

√
N =

1

2
h3.10h3.11

√
N ≥

h3.10f0
√
τ0

4
√

8

√
N.

Finally, applying the above argument to the entire set E , we obtain the result.
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Proof of Theorem 3.1. In view of the trivial identity Q(aij, α) = Q(aij/α, 1), it is enough

to prove the theorem for α = 1. Fix any δ > 0 and β > 0, let γ = β/4 and let

N0 = N0(β, δ) be the smallest integer such that N0 ≥ max(N3.13, N3.17) and for all N ≥ N0

N ≤ exp(w3.7N/2) and 3 ≤ exp
(
min(w3.7, w3.10)N/4

)
.

Take any N, n ∈ N with N ≥ max(N0, δn), let A = (aij) be a N × n random matrix with

i.i.d. entries satisfying Q(a11, 1) ≤ 1− β and let B be any non-random N ×n matrix. By

the right-continuity of the cdf of a11, there is z ∈ R such that

P{a11 ≤ z − 1} ≥ β

2
and P{a11 < z − 1} ≤ β

2
.

Then

P{a11 ≥ z + 1} ≥ 1 − P{a11 < z − 1} − Q(a11, 1) ≥ β

2
.

Let us consider three cases.

1) P{z+1 ≤ a11 ≤ z+
√
N} ≤ γ. Then Q(a11,

√
N/8) ≤ Q(a11, (

√
N −1)/2) ≤ 1−γ.

Obviously, any vector on Sn−1 is N−1/2-peaky. Then, applying Proposition 3.7 with the

“scaling factor”
√
N/8, we get

P
{
smin(A + B) ≤ h3.7

√
N/8

}
= P

{
inf

y∈Sn−1
∥Ay + By∥2 ≤ h3.7

√
N/8

}
≤ n exp(−w3.7N)

≤ exp(−w3.7N/2).

2) P{z −
√
N ≤ a11 ≤ z − 1} ≤ γ. Treated as above.

3) min
(
P{z −

√
N ≤ a11 ≤ z − 1},P{z + 1 ≤ a11 ≤ z +

√
N}
)
≥ γ. Define θ3.13 as in

Proposition 3.13. By Proposition 3.7 for peaky vectors,

P
{

inf
y∈Sn−1

p (θ3.13)
∥Ay + By∥2 ≤ h3.7θ3.13

√
N
}
≤ n exp(−w3.7N) ≤ exp(−w3.7N/2).

By Propositions 3.13 and 3.17 for S = Sn−1
a (

√
N) \ Sn−1

p (θ3.13) and S ′ = Sn−1 \ Sn−1
a (

√
N)

we have

P
{

inf
y∈S

∥Ay + By∥2 ≤ h3.13

√
N
}
≤ exp(−w3.10N/2);

P
{

inf
y∈S′

∥Ay + By∥2 ≤ h3.17

√
N
}
≤ exp(−w3.10N/2).
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Combining the estimates, we get for h = min
(
h3.7θ3.13, h3.13, h3.17

)
:

P
{
smin(A + B) ≤ h

√
N
}
≤ exp(−w3.7N/2) + 2 exp(−w3.10N/2)

≤ exp
(
−min(w3.7, w3.10)N/4

)
.

This completes the proof.
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3.2 The Limit of the Smallest Singular Value of Ran-

dom Matrices with i.i.d. Entries2

3.2.1 Introduction

For N ≥ m and an N × m real-valued matrix B, its singular values s1(B), s2(B), . . . ,

sm(B) are the eigenvalues of the matrix
√
BTB arranged in non-increasing order, where

multiplicities are counted. In particular, the largest and the smallest singular values are

given by

smax(B) = sup
y∈Sm−1

∥By∥2 = ∥B∥2; smin(B) = inf
y∈Sm−1

∥By∥2.

In this section, we establish convergence of the smallest singular values of a sequence

random matrices with i.i.d. entries under minimal moment assumptions.

The extreme singular values of random matrices attract considerable attention of re-

searchers both in limiting and non-limiting settings. We refer the reader to surveys and

monographs [6, 85, 91, 117] for extensive information on the spectral theory of random

matrices. Here, we shall focus on the following specific question: for matrices with i.i.d.

entries, what are the weakest possible assumptions on the entries which are sufficient for

the smallest singular value to “concentrate”?

We note that a corresponding problem for the largest singular value (i.e. the operator

norm) was essentially resolved in the i.i.d. case, where finiteness of the fourth moment of

the entries turns out to be crucial both in limiting and non-limiting settings. We refer the

reader to [120] and [7] for results on a.s. convergence of the largest singular value, and [62]

for the non-limiting case (see also [103], [68] for some negative results on concentration of

the operator norm).

For the smallest singular value, its concentration properties are relatively well under-

stood in the i.i.d. case provided that the fourth moment of the matrix entries is bounded.

A classical theorem of Z.D. Bai and Y.Q. Yin [8] (see also [6, Theorem 5.11]) states the fol-

lowing: given an array {aij} (1 ≤ i, j < ∞) of i.i.d. random variables such that E aij = 0,

E aij
2 = 1 and E aij

4 < ∞, and an integer sequence (Nm)∞m=1 with m/Nm −→ z for some

z ∈ (0, 1), the Nm ×m matrices Am = (aij) (1 ≤ i ≤ Nm, 1 ≤ j ≤ m) satisfy

Nm
−1/2smin(Am) −→ 1 −

√
z almost surely.

Further, it is proved in [94, 95] that for square m×m matrices with i.i.d. centered entries

2A version of this section has been published. K. Tikhomirov, The limit of the smallest singular value
of random matrices with i.i.d. entries, Adv. Math. 284 (2015), 1–20.
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with unit variance and a bounded fourth moment, smin(A) is of order m−1/2 with a large

probability.

A natural question in connection with the mentioned results is whether the assumption

on the fourth moment is necessary for the least singular value to “concentrate”; in par-

ticular, whether any assumptions on moments of aij’s higher than the 2-nd are required

for the a.s. convergence in the Bai–Yin theorem. This question is discussed in [6] on p. 6.

Solving the problem was a motivation for our work.

A considerable progress has been made recently in the direction of weakening the

moment assumptions on matrix entries. For square matrices, given a sufficiently large m

and an m × m matrix with i.i.d. entries with zero mean and unit variance, its smallest

singular value is bounded from below by a constant (negative) power of m with probability

close to one [110, Theorem 2.1] (see also [41, Theorem 4.1] for sparse matrices).

For tall rectangular matrices, N. Srivastava and R. Vershynin proved in [106] that for

any ε, η > 0 and an N × m random matrix A with independent isotropic rows Xi such

that sup
y∈Sm−1

E |⟨Xi, y⟩m|2+η ≤ C, the singular value smin(A) satisfies E smin(A)2 ≥ (1−ε)N

provided that the aspect ratio N/m is bounded from below by a certain function of ε

and η. This result of [106] was strengthened by V. Koltchinskii and S. Mendelson [59]

who proved that, under similar assumptions on the matrix, smin(A) ≥ (1 − ε)
√
N with

a very large probability. Moreover, another theorem of [59] states that, for a sufficiently

tall N × m random matrix A with i.i.d. isotropic rows satisfying certain “spreading”

condition, smin(A) &
√
N with probability very close to one. Some further strengthening

of the results of [59] is obtained in [118].

In Section 3.1, we considered a situation when no upper bounds for moments of the

matrix entries are given. Our result can be used to show that in the limiting setup of

the Bai–Yin theorem but without the assumptions on moments higher than the 2-nd, the

sequence
(
Nm

−1/2smin(Am)
)∞
m=1

satisfies

lim inf
m→∞

(
Nm

−1/2smin(Am)
)
≥ r > 0 almost surely,

where r is a certain function of z = limm/Nm and the distribution of aij’s. The same

conclusion can be derived from [59, Theorem 1.4], if we additionally assume that the

limiting aspect ratio z is bounded from above by a sufficiently small positive quantity

(i.e. the matrices are tall). However, both Theorem 3.1 and [59, Theorem 1.4] do not give

the precise asymptotics.

This problem is resolved here. The main result is the following

Theorem 3.18. Let {aij} (1 ≤ i, j < ∞) be a set of i.i.d. real valued random variables
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with zero mean and unit variance. Further, let (Nm)∞m=1 be an integer sequence satisfying

m/Nm −→ z for some z ∈ (0, 1). For every m ∈ N we denote by Am the random Nm×m

matrix with entries aij (1 ≤ i ≤ Nm, 1 ≤ j ≤ m). Then with probability one the sequence

(
Nm

−1/2smin(Am)
)∞
m=1

converges to 1 −
√
z.

Theorem 3.18 in a strong form establishes the asymmetry of the limiting behaviour

of the extreme singular values: whereas the fourth moment is necessary for the operator

norm, the second moment is sufficient for the convergence of the smallest singular value.

Let us briefly describe our approach to proving Theorem 3.18. We shall “approximate”

the matrices Am by matrices with truncated and centered entries. Namely, for M > 0

and all m ≥ 1 let Ãm be the Nm ×m matrix with the entries

ãij = aijχ{|aij |≤M} − E (aijχ{|aij |≤M}), 1 ≤ i ≤ Nm, 1 ≤ j ≤ m,

where χE is the indicator of an event E . If the truncation level M is large enough then it

turns out that for all sufficiently large m we have smin(Ãm) ≈ smin(Am) with probability

close to one. In fact, we need only one-sided estimate for our proof. To be more precise,

we will show that with a large probability the quantity

lim sup
m→∞

Nm
−1/2

(
smin(Ã) − smin(A)

)
is bounded from above by a positive number which depends only on M and can be made

arbitrarily small by increasing the truncation level (in a more technical form, this is stated

in Theorem 3.32 of the note). Then, applying the Bai–Yin theorem [8] to the truncated

matrices Ãm, we get

lim inf
m→∞

Nm
−1/2smin(A) & lim inf

m→∞
Nm

−1/2smin(Ã) & 1 −
√
z almost surely,

which implies the result. Thus, the argument of the paper [8] remains the crucial element

of the proof, although we apply it only to the truncated variables, for which all positive

moments are bounded. Let us emphasize that, whereas a truncation procedure for matri-

ces also appears as a technical step in [8], in our approach the truncation level M is not

a function of m.

Note that the equivalence smin(Am) ≈ smin(Ãm) would follow immediately if the dif-

ference Am − Ãm had the operator norm very small compared to
√
Nm with a large

77



probability. However, the moment assumptions that we impose on aij’s are too weak

to expect a good upper bound for ∥Am − Ãm∥2→2. To overcome this problem, we shall

consider a special non-convex function of the matrix Am − Ãm which has much better

concentration properties than the norm and which shall act as a “replacement” for the

norm in our calculations. This quantity and its concentration properties are discussed in

Section 3.2.3 and are the main novel igredient of this part of the thesis.

3.2.2 Preliminaries

Here, we present some classical or elementary facts, which we include for an easier refer-

encing.

We denote by (Ω,Σ,P) a probability space. Universal constants are denoted by C, c1,

etc. A numerical subscript in the name of a constant determines the statement where the

constant is defined. Similarly, a function defined within a statement and intended to be

used further in the text, has the statement number as a subscript.

Let T be a subset of Rn and ∥ · ∥B be a norm on Rn with the unit ball B. A subset

N ⊂ T is called an ε-net in T with respect to ∥ · ∥B if for any y ∈ T there is y′ ∈ N
satisfying ∥y − y′∥B ≤ ε. We shall omit the reference to ∥ · ∥B when B = Bn

2 .

Lemma 3.19. For any n ∈ N and ε ∈ (0, 1] there exists an ε-net in Bn
2 of cardinality at

most
(
3
ε

)n
.

Lemma 3.20. For any n ∈ N and any T ⊂ Sn−1 there is an n−1/2-net in T with respect

to ∥ · ∥∞ of cardinality at most exp(C3.20n). Here, C3.20 > 0 is a universal constant.

Remark 3.2. Both lemmas above follow from a well known estimate for covering numbers

for pairs of convex sets in Rn (see, for example, [86, Lemma 4.16]). For Lemma 3.20,

the estimate for the pair (Bn
2 , B

n
∞) yields an existence of a (4n)−1/2-net N̄ in Bn

2 with

respect to ∥ · ∥∞ of cardinality at most exp(C3.20n) for a universal constant C3.20 > 0.

Then N ⊂ T can be constructed by picking a point from every non-empty intersection of

the form (y′ + (4n)−1/2Bn
∞) ∩ T , y′ ∈ N̄ .

The next statement, which is sometimes called the Bernstein (or Hoeffding’s) inequal-

ity, can be derived from classical Khintchine’s inequality for the sum of weighted inde-

pendent signs by a symmetrization procedure:

Lemma 3.21 (see, for ex., [117, Proposition 5.10]). Let n ∈ N, M > 0, y = (y1, y2, . . . , yn)

with ∥y∥ = 1, and let a1, a2 . . . , an be independent mean zero random variables with |aj| ≤
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M a.s. (j = 1, 2, . . . , n). Then

P
{⏐⏐⏐ n∑

j=1

ajyj

⏐⏐⏐ ≥ τ
}
≤ 2 exp(−c3.21τ

2/M2), τ > 0,

where c3.21 > 0 is a universal constant.

The lemma below is a law of large numbers, where instead of the arithmetic mean of

a collection of random variables we consider more general weighted sums. As in the case

of the classical weak LLN, the statement can be proved by applying Lévy’s continuity

theorem for characteristic functions.

Lemma 3.22. Let a1, a2, . . . be i.i.d. random variables with zero mean. Then for any

ε > 0 there is δ > 0 depending only on ε and the distribution of aj’s with the following

property: whenever (tj)
∞
j=1 is a sequence of non-negative real numbers such that

∑∞
j=1 tj =

1 and max tj ≤ δ, we have

P
{⏐⏐⏐ ∞∑

j=1

ajtj

⏐⏐⏐ > ε
}
< ε.

Given an m × m random symmetric matrix T with eigenvalues λ1, λ2, . . . , λm, the

empirical spectral distribution of T is the function on R given by

F T (t) =
1

m

⏐⏐{j ≤ m : λj ≤ t
}⏐⏐, t ∈ R.

Theorem 3.23 (Marčenko–Pastur law; see [71], [119], [6, Theorem 3.6]). Let {aij} (1 ≤
i, j ≤ ∞) be a set of i.i.d. random variables with zero mean and unit variance and let

(Nm)∞m=1 be an integer sequence satisfying m/Nm −→ z for some z ∈ (0, 1). For every

m ∈ N denote by Am the random Nm×m matrix with entries aij (1 ≤ i ≤ Nm, 1 ≤ j ≤ m)

and by Tm the matrix 1
Nm

AT
mAm. Then with probability one the sequence of empirical

spectral distributions {F Tm} converges pointwise to a non-random distribution given by

FMP (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if t ≤ r,

1
2πz

t∫
r

√
(R−τ)(τ−r)

τ
dτ, if r ≤ t ≤ R,

1, if t ≥ R.

where r = (1 −
√
z)2 and R = (1 +

√
z)2.

Remark 3.3. Note that the above theorem does not require any assumptions on moments

higher than the 2nd, and so can be applied in our setting. For our proof, we will actually
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need a much weaker result than Theorem 3.23, namely, that lim sup
m→∞

smin(Am)√
Nm

≤ 1 −
√
z

almost surely. The latter can be immediately verified with help of Theorem 3.23: for

every fixed t > (1−
√
z)2, we have lim

m→∞
F Tm(t) = FMP (t) > 0 with probability one, hence

the smallest non-zero eigenvalues λmin(Tm) of matrices Tm satisfy lim sup
m→∞

λmin(Tm) ≤ t

a.s. This implies lim sup
m→∞

smin(Am)√
Nm

≤
√
t a.s., which gives the required estimate by letting

t → (1 −
√
z)2.

3.2.3 Norms of coordinate projections of random vectors

For any N ∈ N and a subset I ⊂ {1, 2, . . . , N}, let us denote by ProjI : RN → RN the

coordinate projection onto the subspace spanned by {eNi }i∈I . Throughout the rest of the

section, we will often use expressions of the form min
|I|≥r

∥ProjIx∥2, where x is some vector in

RN and r is a positive real number. This notation should be interpreted as the minimum

of ∥ProjIx∥2 over all subsets I ⊂ {1, 2, . . . , N} of cardinality at least r.

The goal of this section is to show that, given a sufficiently large random N×n matrix

A with i.i.d. entries with zero mean and unit variance, the quantity

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjIAy∥2 (3.10)

is of order
√
N with a very large probability (the probability shall depend on ε > 0).

It shall act as a “replacement” of the matrix norm ∥A∥2→2 which in our setting may be

much greater than
√
N with probability close to one. We remark here that a quantity

max
|I|=m

∥ProjID∥2→2 = sup
y∈Sn−1

max
|I|=m

∥ProjIDy∥2,

where m ≤ N and D is an N × n random matrix with i.i.d. isotropic log-concave

rows, played a crucial role in the paper [1] by R. Adamczak, A. Litvak, A. Pajor and

N. Tomczak-Jaegermann, dealing with the problem of approximating covariance matrix

of a log-concave random vector by the sample covariance matrix. In our case, however,

the latter quantity is inapplicable as it may not concentrate near
√
N (even for small m).

First, we prove the required estimate for (3.10) under the additional assumption that

the entries of A are symmetrically distributed (Lemma 3.29). Then we generalize the

result to non-symmetric distributions in Proposition 3.30.

Let us outline the proof of Lemma 3.29. A crucial observation (that will be formally

justified later) is that there exist finite sets N1 ⊂ 2Bn
2 and N2 ⊂ Bn

2 ∩ (n−1/4Bn
∞) with

|N1| . n
√
n and |N2| ≤ exp(Cn) such that Sn−1 is a subset of the Minkowski sum N1 +
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N2 + 2√
n
Bn

∞. In this way, estimating the supremum over the unit sphere can be reduced

to considering separately

sup
y∈S

min
|I|≥N−εN/3

∥ProjIAy∥2,

where S = N1,N2,
2√
n
Bn

∞. For S = N1,N2, we shall use estimates for individual vectors

(Lemmas 3.24 and 3.27 below) and then apply the union bound. The cube is treated in

Lemma 3.28.

Lemma 3.24. For each ε ∈ (0, 1] there is N3.24 = N3.24(ε) > 0 depending only on ε with

the following property: let N ≥ N3.24 and let X = (X1, X2, . . . , XN) be a random vector

of independent variables, each Xi having zero mean and unit variance. Then

min
|I|≥N−εN

∥ProjIX∥2 ≤ C3.24

√
N

with probability at least 1 − exp(−c3.24εN), where C3.24, c3.24 > 0 are universal constants.

Proof. Fix any ε ∈ (0, 1] and define N3.24 as the smallest positive integer such that(e
4

)εN
+ exp(−εeN/4) ≤ exp(−εN/3)

for all N ≥ N3.24. Choose any N ≥ N3.24 and let X be as stated above. Set M = 4
ε
. In

view of Markov’s inequality,

P
{
|{i ≤ N : |Xi| ≥

√
M}| ≥ 4N/M

}
≤
(

N

⌈4N/M⌉

)( 1

M

)⌈4N/M⌉
≤
(e

4

)⌈4N/M⌉
.

Let X̃ = (X̃1, X̃2, . . . , X̃N) be a vector of truncations of Xi’s, with

X̃i(ω) =

⎧⎨⎩Xi(ω), if |Xi(ω)| ≤
√
M ;

0, otherwise.

Then, from the above estimate,

P
{

min
|I|≥N−εN

∥ProjIX∥2 > ∥X̃∥2
}
≤ P

{
|{i ≤ N : |Xi| ≥

√
M}| ≥ εN

}
≤
(e

4

)εN
.

Now, let us estimate the Euclidean norm of X̃ using the Laplace transform. Set λ = 1
M

.
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We have

E exp(λ∥X̃∥22) =
N∏
i=1

E exp(λX̃2
i )

=
N∏
i=1

(
1 +

∫ exp(λM)

1

P
{

exp(λX̃2
i ) ≥ τ

}
dτ
)

≤
N∏
i=1

(
1 +

∫ e

1

P
{
X̃2
i ≥ τ − 1

eλ

}
dτ
)

≤
N∏
i=1

(
1 + eλE X̃2

i

)
≤
(
1 + eλ

)N
≤ exp(eN/M).

Hence,

P
{
∥X̃∥2 ≥

√
2eN

}
≤ exp(−eN/M).

Finally, using the definition of N3.24, we get

P
{

min
|I|≥N−εN

∥ProjIX∥2 >
√

2eN
}

≤ P
{

min
|I|≥N−εN

∥ProjIX∥2 > ∥X̃∥2
}

+ P
{
∥X̃∥2 ≥

√
2eN

}
≤
(e

4

)εN
+ exp(−εeN/4)

≤ exp(−εN/3).

Lemma 3.25. For every K > 0 there is L3.25 = L3.25(K) > 0 depending only on K

with the following property: Let N, n ∈ N, N ≥ n, and let A = (aij) be an N × n

random matrix with i.i.d. symmetrically distributed entries with unit variance. For each

y = (y1, y2, . . . , yn) ∈ Sn−1 let Iy : Ω → 2{1,2,...,N} be a random subset of {1, 2, . . . , N}
defined as

Iy =
{
i ≤ N :

n∑
j=1

a2ijy
2
j ≤ 2

}
.

Then for every y ∈ Sn−1 we have

P
{
∥ProjIyAy∥2 ≥ L3.25

√
N
}
≤ exp(−KN).
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Proof. Fix any K > 0 and let N, n and A = (aij) be as stated above. Let rij (1 ≤ i ≤
N, 1 ≤ j ≤ n) be Rademacher variables jointly independent with A, and let Ā denote

the random N × n matrix (rijaij). Then, since aij’s are symmetrically distributed, for

any fixed vector y = (y1, y2, . . . , yn) ∈ Sn−1 the distribution of ∥ProjIyAy∥2 is the same as

that of ∥ProjIyĀy∥2. Define a subset of (non-random) N × n matrices:

My =
{
B = (bij) ∈ RN×n :

n∑
j=1

b2ijy
2
j ≤ 2 for all i = 1, 2, . . . , N

}
and for every B = (bij) ∈ My denote by B̄ the random matrix (rijbij). Note that at

every point ω of the probability space the matrix ProjIy(ω)Ā(ω) belongs to My. Then,

conditioning on aij’s, we get for every τ > 0:

P
{
∥ProjIyAy∥2 ≥ τ

}
= P

{
∥ProjIyĀy∥2 ≥ τ

}
≤ sup

B∈My

P
{
∥B̄y∥2 ≥ τ

}
. (3.11)

Note that for each B ∈ My and i ≤ N , the i-th coordinate of the vector B̄y satisfies in

view of Lemma 3.21:

P
{
|⟨B̄y, eNi ⟩N | ≥ τ

}
≤ 2 exp

(
−c3.21τ

2/2
)
, τ > 0.

A standard application of the Laplace transform then yields

P
{
∥B̄y∥2 ≥ L3.25

√
N
}
≤ exp(−KN)

for some L3.25 > 0 depending only on K. This, together with (3.11), proves the result.

Lemma 3.26. Let ξ be a symmetrically distributed random variable with unit variance.

For every ε > 0 and K > 0 there is δ3.26 = δ3.26(ε,K) > 0 depending on ε, K and the

distribution of ξ with the following property: whenever N, n ∈ N, N ≥ n; A = (aij) is an

N×n random matrix with i.i.d. entries distributed as ξ and y ∈ Sn−1 is a vector satisfying

∥y∥∞ ≤ δ3.26, we have

P{|Iy| ≤ N − εN} ≤ exp(−KN),

where Iy is defined as in Lemma 3.25.

Proof. Fix any K > 0 and ε ∈ (0, 1]. In view of Lemma 3.22, there is δ > 0 such that for

all y = (y1, y2, . . . ) ∈ ℓ2 with ∥y∥2 = 1 and ∥y∥∞ ≤ δ, and for a sequence of independent

83



random variables a1, a2 . . . distributed as ξ, we have

P
{ ∞∑
j=1

a2jy
2
j > 2

}
≤ ε exp

(
−1 −K/ε

)
.

Now, fix N, n ∈ N with N ≥ n and y ∈ Sn−1 with ∥y∥∞ ≤ δ, and let A be defined as

above. Then, using the last estimate, we obtain

P
{
|Iy| ≤ N − εN

}
= P

{⏐⏐{i ≤ N :
∑
j

a2ijy
2
j > 2

}⏐⏐ ≥ εN
}

≤
(

N

⌈εN⌉

)(ε
e

)⌈εN⌉
exp(−KN)

≤ exp(−KN).

As an elementary consequence of Lemmas 3.25 and 3.26 we get

Lemma 3.27. Let ξ be a symmetrically distributed random variable with unit variance.

For every ε > 0 and K > 0 there are δ3.27 = δ3.27(ε,K) > 0 depending on ε, K and the

distribution of ξ, and L3.27 = L3.27(K) > 0 depending only on K such that, whenever

N, n ∈ N, N ≥ n; A = (aij) is an N × n random matrix with i.i.d. entries distributed as

ξ, and y ∈ Sn−1 is a vector satisfying ∥y∥∞ ≤ δ3.27, we have

P
{

min
|I|≥N−εN

∥ProjIAy∥2 ≥ L3.27

√
N
}
≤ exp(−KN).

Lemma 3.28. Let ξ be a symmetrically distributed random variable with unit variance.

For every ε > 0 and K > 0 there are n3.28 = n3.28(ε,K) ∈ N depending on ε, K and

the distribution of ξ, and L3.28 = L3.28(K) > 0 depending only on K such that, whenever

N ≥ n ≥ n3.28 and A = (aij) is an N × n random matrix with i.i.d. entries distributed as

ξ, we have

P
{

min
|I|≥N−εN

sup
y∈Bn

∞

∥ProjIAy∥2 ≥ L3.28

√
nN
}
≤ exp(−KN).

Proof. Fix any K > 0 and ε > 0 and define n3.28 = ⌈δ3.26(ε,K + 1)−2⌉, where δ3.26 > 0 is

taken from Lemma 3.26. Now, choose any N ≥ n ≥ n3.28 and let A = (aij) be an N × n

random matrix with i.i.d. entries distributed as ξ. Let V be the set of vertices of the cube
1√
n
Bn

∞ = [− 1√
n
, 1√

n
]n. In view of Lemma 3.26, any v ∈ V satisfies

P{|Iv| ≤ N − εN} ≤ exp
(
−(K + 1)N

)
.
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Next, by Lemma 3.25, for L = L3.25(K + 2) > 0 we have

P
{
∥ProjIvAv∥2 ≥ L

√
N
}
≤ exp

(
−(K + 2)N

)
for all v ∈ V . Note that for any u, v ∈ V the random sets Iu and Iv coincide everywhere

on Ω. Hence, together with the above estimates, we get

P
{

min
|I|≥N−εN

max
v∈V

∥ProjIAv∥2 ≥ L
√
N
}

≤ exp
(
−(K + 1)N

)
+ P

{
max
v∈V

∥ProjIvAv∥2 ≥ L
√
N
}

≤ exp(−KN).

It remains to note that for any I ⊂ {1, 2, . . . , N} and y ∈ Bn
∞ we have

∥ProjIAy∥2 ≤
√
nmax

v∈V
∥ProjIAv∥2

everywhere on Ω.

In the following statement, we bound the quantity (3.10) assuming that the matrix

entries are symmetrically distributed. As we already mentioned above, to derive an es-

timate for the supremum over the sphere, we shall embed Sn−1 into Minkowski sum of a

multiple of Bn
∞ and two specially chosen finite sets (see (3.12) in the proof below). This

way each vector y ∈ Sn−1 can be “decomposed” as a sum of three vectors with particular

characteristics. This approach is similar to splitting the unit sphere into sets of “close to

sparse” and “far from sparse” vectors introduced in [66] and subsequently used in [93],

[95].

Lemma 3.29. Let ξ be a symmetrically distributed random variable with unit variance,

and let ε ∈ (0, 1]. Then there are N3.29 = N3.29(ε) ∈ N depending on ε and the distribution

of ξ and w3.29 = w3.29(ε) > 0 depending only on ε such that, whenever N ≥ N3.29, n ≤ N

and A = (aij) is an N × n random matrix with i.i.d. entries distributed as ξ, we have

P
{

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjIAy∥2 ≤ C3.29

√
N
}
≥ 1 − exp(−w3.29N),

where C3.29 > 0 is a universal constant.

Proof. Fix ε ∈ (0, 1] and let N3.29 be the smallest integer such that

1) ⌊N1/4
3.29⌋δ3.27(ε/3, 2C3.20) ≥ 1;
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2) N3.29 ≥ max
(
N3.24(ε/3), n3.28(ε/3, 1)

)
;

3) for all N ≥ N3.29,

(12eN)
√
N exp(−c3.24εN/3) + e−C3.20N + e−N ≤ exp

(
−min(c3.24ε/6, C3.20/2, 1/2)N

)
.

Choose N ≥ N3.29. Without loss of generality, we can assume that n = N . Let A be

as stated above.

We say that a vector y ∈ RN is m-sparse if it has at most m non-zero coordinates. It

is not difficult to verify, using Lemma 3.19, that the set of all
√
N -sparse vectors in 2BN

2

admits a N−1/2-net N1 of cardinality at most
(

N
⌊
√
N⌋

)
(6
√
N)

√
N ≤ (12eN)

√
N . Denote

T =
{
y ∈ SN−1 : ∥y∥∞ ≤ 1/⌊N1/4⌋

}
.

By Lemma 3.20, there is a finite subset N2 ⊂ T of cardinality at most exp(C3.20N) such

that for any y ∈ T there is y′ ∈ N2 with ∥y − y′∥∞ ≤ N−1/2.

Now, we claim that

SN−1 ⊂ N1 + N2 +
2√
N
BN

∞, (3.12)

i.e. any vector y = (y1, y2, . . . , yN) ∈ SN−1 can be represented as y = y1 + y2 + y3

for some y1 ∈ N1, y2 ∈ N2 and y3 ∈ 2√
N
BN

∞. Indeed, we can always find a subset

J ⊂ {1, 2, . . . , N} of cardinality ⌊
√
N⌋ such that |yj| ≤ 1/⌊N1/4⌋ whenever j /∈ J . Denote

r =
√

1 − ∥y − ProjJy∥22 and ỹ = ProjJy − r|J |−1/2
∑

j∈J e
N
j . Note that ỹ is

√
N -sparse

and has the Euclidean norm at most 2, so there is y1 ∈ N1 such that ∥ỹ − y1∥∞ ≤
∥ỹ−y1∥2 ≤ N−1/2. Next, the vector y− ỹ satisfies ∥y− ỹ∥2 = 1 and ∥y− ỹ∥∞ ≤ 1/⌊N1/4⌋,
i.e. y − ỹ ∈ T . Hence there is y2 ∈ N2 such that ∥y − ỹ − y2∥∞ ≤ N−1/2. Finally, for the

vector y3 = y − y1 − y2 we get

∥y − y1 − y2∥∞ ≤ ∥ỹ − y1∥∞ + ∥y − ỹ − y2∥∞ ≤ 2√
N
,

so y3 ∈ 2√
N
BN

∞. This proves (3.12).

For each y1 ∈ N1, in view of Lemma 3.24 and the condition N ≥ N3.24(ε/3), we have

P
{

min
|I|≥N−εN/3

∥ProjIAy
1∥2 > 2C3.24

√
N
}
≤ exp(−c3.24εN/3).

Next, for every y2 ∈ N2, Lemma 3.27, with the inequality ⌊N1/4⌋δ3.27(ε/3, 2C3.20) ≥ 1 and
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∥y2∥∞ ≤ 1/⌊N1/4⌋ implies that

P
{

min
|I|≥N−εN/3

∥ProjIAy
2∥2 ≥ L3.27

√
N
}
≤ exp(−2C3.20N)

for some constant L3.27 > 0. Finally, by Lemma 3.28 and in view of the condition

N ≥ n3.28(ε/3, 1) we have

P
{

min
|I|≥N−εN/3

sup
y∈ 1√

N
BN

∞

∥ProjIAy∥2 ≥ L3.28

√
N
}
≤ exp(−N),

where L3.28 > 0 is a universal constant. Let E denote the event

E =
{
ω ∈ Ω : for every y1 ∈ N1 there is a set I1 = I1(y

1) with |I1| ≥ N − εN/3

such that ∥ProjI1A(ω)y1∥2 ≤ 2C3.24

√
N and

for every y2 ∈ N2 there is a set I2 = I2(y
2) with |I2| ≥ N − εN/3

such that ∥ProjI2A(ω)y2∥2 ≤ L3.27

√
N and

there is a set I3 with |I3| ≥ N − εN/3

such that sup
y∈ 2√

N
BN

∞

∥ProjI3A(ω)y∥2 ≤ 2L3.28

√
N
}
.

Then from the above probability estimates and the definition of N3.29 we obtain

P(E) ≥ 1 − (12eN)
√
N exp(−c3.24εN/3) − exp(−C3.20N) − exp(−N) ≥ 1 − exp(−w3.29N),

where w3.29 = min
(
c3.24ε

6
, C3.20

2
, 1
2

)
.

Finally, take any ω ∈ E and any y ∈ SN−1, and let y1 ∈ N1, y
2 ∈ N2 and y3 ∈ 2√

N
BN

∞

satisfy y = y1+y2+y3. Then, by the definition of E , there are sets I1, I2, I3 ⊂ {1, 2, . . . , N}
with |Iℓ| ≥ N − εN/3 (ℓ = 1, 2, 3) such that

∥ProjI1A(ω)y1∥2 ≤ 2C3.24

√
N ;

∥ProjI2A(ω)y2∥2 ≤ L3.27

√
N ;

∥ProjI3A(ω)y3∥2 ≤ 2L3.28

√
N.

Note that the intersection I = I1∩ I2∩ I3 necessarily satisfies |I| ≥ N − εN , and from the

last inequalities we get ∥ProjIA(ω)y∥2 ≤ (2C3.24 +L3.27 + 2L3.28)
√
N . Since our choice of
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y ∈ SN−1 and ω ∈ E was arbitrary, we get

P
{

sup
y∈SN−1

min
|I|≥N−εN

∥ProjIAy∥2 ≤ (2C3.24+L3.27+2L3.28)
√
N
}
≥ P(E) ≥ 1−exp

(
−w3.29N

)
.

Finally, we can state the main result of the section.

Proposition 3.30. Let ξ be a random variable with zero mean and unit variance, and let

ε ∈ (0, 1]. Then there are N3.30 = N3.30(ε) ∈ N depending on ε and the distribution of ξ

and w3.30 = w3.30(ε) > 0 depending only on ε such that, whenever N ≥ N3.30, n ≤ N and

A = (aij) is an N × n random matrix with i.i.d. entries distributed as ξ, we have

P
{

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjIAy∥2 ≤ C3.30

√
N
}
≥ 1 − exp(−w3.30N),

where C3.30 > 0 is a universal constant.

Proof. Fix any ε ∈ (0, 1] and let ξ′ be an independent copy of ξ. Then 1√
2
(ξ − ξ′) is

symmetrically distributed and E
(

1√
2
(ξ − ξ′)

)2
= 1. Let N3.29, w3.29 from Lemma 3.29 be

defined with respect to ε and the distribution of 1√
2
(ξ − ξ′), and let N3.30 be the smallest

integer greater than N3.29 such that exp(w3.29N3.30/2) ≥ 4
3
. Take any N ≥ N3.30 and

n ≤ N and let A be an N × n random matrix with i.i.d. entries distributed as ξ, and A′

be an independent copy of A. We can find a Borel function f : RN×n → Sn−1 such that

for any B ∈ RN×n we have

min
|I|≥N−εN

∥ProjIBf(B)∥2 ≥ sup
y∈Sn−1

min
|I|≥N−εN

∥ProjIBy∥2 − 1

(the term “−1” above allows us to construct a piecewise constant function f , thus avoiding

any measurability questions). Then we define a random vector Ỹ : Ω → Sn−1 as Ỹ (ω) =

f(A(ω)). Conditioning on A, we obtain

P
{

min
|I|≥N−εN

∥ProjIAỸ ∥2 > (
√

2C3.29 + 2)
√
N and ∥A′Ỹ ∥2 ≤ 2

√
N
}

≥ inf
y∈Sn−1

P
{
∥A′y∥2 ≤ 2

√
N
}
P
{

min
|I|≥N−εN

∥ProjIAỸ ∥2 > (
√

2C3.29 + 2)
√
N
}

≥ 3

4
P
{

min
|I|≥N−εN

∥ProjIAỸ ∥2 > (
√

2C3.29 + 2)
√
N
}
,

where the estimate inf
y∈Sn−1

P
{
∥A′y∥2 ≤ 2

√
N
}

≥ 3/4 follows from Markov’s inequality.

Hence, taking into consideration that the entries of A − A′ are distributed as ξ − ξ′ and
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using Lemma 3.29, we get

P
{

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjIAy∥2 > (
√

2C3.29 + 3)
√
N
}

≤ P
{

min
|I|≥N−εN

∥ProjIAỸ ∥2 > (
√

2C3.29 + 2)
√
N
}

≤ 4

3
P
{

min
|I|≥N−εN

∥ProjIAỸ ∥2 > (
√

2C3.29 + 2)
√
N and ∥A′Ỹ ∥2 ≤ 2

√
N
}

≤ 4

3
P
{

min
|I|≥N−εN

∥ProjI(A− A′)Ỹ ∥2 >
√

2C3.29

√
N
}

≤ 4

3
P
{

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjI(A− A′)y∥2 >
√

2C3.29

√
N
}

≤ 4

3
exp(−w3.29N)

≤ exp(−w3.29N/2).

3.2.4 Matrix truncation and proof of Theorem 3.18

In the next statement, we compare the n-th largest singular value of a random N × n

matrix A with bounded entries to smin(ProjIA). Obviously,

smin(ProjIA) ≤ smin(A) for any I ⊂ {1, 2, . . . , N}.

We will need an inequality in the opposite direction when |I|/N ≈ 1. A theorem of

A. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann [66, Theorem 3.1] implies

that for any δ > 1 and M > 0 there are h > 0 and ε > 0 depending only on δ and M

with the following property: whenever N ≥ δn and A is an N × n random matrix with

i.i.d. entries with mean zero, variance one and a.s. bounded by M , we have

P
{

min
|I|≥N−εN

smin(ProjIA) ≥ h
√
N
}
≥ 1 − 2 exp(εN).

This, together with an upper bound for smin(A), gives an estimate

smin(A) ≤ L min
|I|≥N−εN

smin(ProjIA)

with a large probability, where L > 0 depends only on δ and M . However, such an

estimate would be insufficient for our needs, and we shall apply a more direct argument

to get a stronger relation.
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Proposition 3.31. Let ξ be a random variable with zero mean such that |ξ| ≤ M a.s. for

some M > 0. For any η > 0 there are ε3.31 = ε3.31(η,M) > 0 and N3.31 = N3.31(η,M) ∈ N
(both depending only on η and M) with the following property: whenever N ≥ N3.31,

n ≤ N and A = (aij) is an N × n random matrix with i.i.d. entries distributed as ξ, we

have

P
{
smin(A) ≤ min

|I|≥N−ε3.31N
smin(ProjIA) + η

√
N
}
≥ 1 − exp(−ε3.31N).

Proof. Fix any η > 0, let ε = ε3.31(η,M) be the largest number in (0, 1] satisfying

c3.21
2M2

η2 ≥ ε
(
1 + ln

6e

ε

)
,

and N3.31 ∈ N be the smallest number such that N −⌈N − εN⌉ ≥ εN/2 for all N ≥ N3.31.

Let N ≥ N3.31, n ≤ N and A be an N × n random matrix defined as above. We shall

prove the statement by contradiction. Let us assume that

P
{
smin(A) > min

|I|≥N−εN
smin(ProjIA) + η

√
N
}
> exp(−εN).

Cardinality of the set T =
{
I ⊂ {1, 2, . . . , N} : |I| = ⌈N − εN⌉

}
can be estimated as

|T | ≤
(

N

⌈N − εN⌉

)
≤
( eN

N − ⌈N − εN⌉

)N−⌈N−εN⌉
≤
(2e

ε

)εN
.

Hence, our assumption implies that there is a set I0 ∈ T such that

P
{
smin(A) > smin(ProjI0A) + η

√
N
}
> exp(−εN)

(2e

ε

)−εN
. (3.13)

Let f : RN×n → Sn−1 be a Borel function such that for every B ∈ RN×n, f(B) ∈ Sn−1 is

an eigenvector of BTB corresponding to its smallest eigenvalue. So, we have ∥Bf(B)∥2 =

smin(B). Then we define a random vector Ỹ : Ω → Sn−1 as Ỹ (ω) = f(ProjI0A(ω)). It is

not difficult to see that such a definition implies that Ỹ and aij (i /∈ I0, 1 ≤ j ≤ n) are

jointly independent. Hence,

P
{
smin(A) > smin(ProjI0A) + η

√
N
}
≤ P

{
∥AỸ ∥2 > ∥ProjI0AỸ ∥2 + η

√
N
}

≤ P
{
∥Proj{1,2,...,N}\I0AỸ ∥2 > η

√
N
}

≤ sup
y∈Sn−1

P
{
∥Proj{1,2,...,N}\I0Ay∥2 > η

√
N
}
.

Now, for every y = (y1, y2, . . . , yn) ∈ Sn−1, Lemma 3.21 and the standard procedure with
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the Laplace transform give for λ = c3.21
2M2 :

P
{
∥Proj{1,2,...,N}\I0Ay∥2 > η

√
N
}

= P
{∑
i/∈I0

( n∑
j=1

aijyj

)2
> η2N

}

≤

(
E exp

(
λ
(∑n

j=1 a1jyj
)2))N−⌈N−εN⌉

exp(λη2N)

= exp(−λη2N)
(

1 +

∫ ∞

1

P
{⏐⏐⏐ n∑

j=1

a1jyj

⏐⏐⏐ ≥√ln τ/λ
}
dτ
)N−⌈N−εN⌉

≤ exp(−λη2N)
(

1 + 2

∫ ∞

1

exp
(
−c3.21 ln τ

λM2

)
dτ
)N−⌈N−εN⌉

= exp(−λη2N) 3N−⌈N−εN⌉

≤ exp
(
−λη2N + εN ln 3

)
.

Together with (3.13), the last estimate implies

−λη2 + ε ln 3 > −ε− ε ln
2e

ε
.

However, this contradicts our choice of ε. Thus, the initial assumption was wrong, and

the statement is proved.

Let ξ be a random variable with zero mean. Then for any M > 0 we call the variable

ξχ{|ξ|≤M} − E (ξχ{|ξ|≤M})

the centered M-truncation of ξ. Here, χ{|ξ|≤M} is the indicator of the event
{
ω ∈ Ω :

|ξ(ω)| ≤ M
}

.

Denote ξ̃M = ξχ{|ξ|≤M} − E (ξχ{|ξ|≤M}) and θM = ξ − ξ̃M = ξχ{|ξ|>M} + E (ξχ{|ξ|≤M}).

Obviously, E ξ̃M = E θM = 0 and |ξ̃M | ≤ 2M everywhere on Ω for any M > 0. Further, if

the second moment of ξ is bounded then

E ξ̃2M = E (ξχ{|ξ|≤M})
2 −

(
E (ξχ{|ξ|≤M})

)2 −→ E ξ2 and

E θM
2 = E ξ2 − 2E

(
ξ2χ{|ξ|≤M}

)
+ E ξ̃2M −→ 0 when M → ∞.

Theorem 3.32. Let ξ be a random variable with zero mean and unit variance. For any

M > 0 and η > 0 there are N3.32 ∈ N depending on M, η and the distribution of ξ, and

w3.32 > 0 depending only on M and η with the following property: Let N ≥ N3.32, n ≤ N
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and let A = (aij) be an N ×n random matrix with i.i.d. entries distributed as ξ. Further,

let Ã be an N ×n matrix with the entries ãij = aijχ{|aij |≤M}−E (aijχ{|aij |≤M}) and denote

θ = ξχ{|ξ|>M} + E (ξχ{|ξ|≤M}). Then

P
{
smin(A) ≥ smin(Ã) − η

√
N − C3.30

√
NE θ2

}
≥ 1 − exp(−w3.32N).

Proof. Fix any M > 0 and η > 0 and let θ be as above. We will assume that P{θ = 0} < 1;

otherwise the truncation leaves the variable unchanged and there is nothing to prove. Let

N3.31 = N3.31(η, 2M) and ε = ε3.31(η, 2M) be taken from Proposition 3.31. Let also

N3.30 and w3.30 be defined as in Proposition 3.30 with respect to ε and the distribution

of the “normalized tail” θ/
√
E θ2. Now, let N3.32 be the smallest integer greater than

max(N3.31, N3.30) such that for all N ≥ N3.32 we have

exp(−εN) + exp(−w3.30N) ≤ exp
(
−min(ε/2, w3.30/2)N

)
.

Take any N ≥ N3.32, n ≤ N , and let A, Ã be as stated above. By Proposition 3.31,

we have

P
{
smin(Ã) > min

|I|≥N−εN
smin(ProjIÃ) + η

√
N
}
≤ exp(−εN),

and, by Proposition 3.30,

P
{

sup
y∈Sn−1

min
|I|≥N−εN

∥ProjI(A− Ã)y∥2 > C3.30

√
NE θ2

}
≤ exp(−w3.30N).

Combining the two relations, we get

P
{
smin(A) < smin(Ã) − η

√
N − C3.30

√
NE θ2

}
≤ P

{
smin(Ã) > min

|I|≥N−εN
smin(ProjIÃ) + η

√
N
}

+ P
{
smin(A) < min

|I|≥N−εN
smin(ProjIÃ) − C3.30

√
NE θ2

}
≤ exp(−εN)

+ P
{
∃y ∈ Sn−1 : min

|I|≥N−εN
smin(ProjIÃ) − ∥Ay∥2 > C3.30

√
NE θ2

}
≤ exp(−εN)

+ P
{
∃y ∈ Sn−1 : min

|I|≥N−εN
(∥ProjIÃy∥2 − ∥ProjIAy∥2) > C3.30

√
NE θ2

}
≤ exp(−εN) + exp(−w3.30N)

≤ exp
(
−min(ε/2, w3.30/2)N

)
.
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Proof of Theorem 3.18. Let {aij} (1 ≤ i, j < ∞) be a two-dimensional array of i.i.d.

random variables with zero mean and unit variance and let (Nm)∞m=1 be an integer sequence

satisfying m/Nm −→ z for some z ∈ (0, 1). Recall that for every m ∈ N, Am denotes the

random Nm×m matrix with entries aij (1 ≤ i ≤ Nm, 1 ≤ j ≤ m). The Marčenko–Pastur

law (see Theorem 3.23 and Remark 3.3) implies that

lim sup
m→∞

smin(Am)√
Nm

≤ 1 −
√
z almost surely.

Thus, it suffices to prove the lower estimate

lim inf
m→∞

smin(Am)√
Nm

≥ 1 −
√
z a.s.

Now, choose arbitrary η > 0 and let M > 0 be such that

E
(
a11χ{|a11|≤M} − E (a11χ{|a11|≤M})

)2 ≥ (1 − η)2 and

E
(
a11χ{|a11|>M} + E (a11χ{|a11|≤M})

)2 ≤ η2.

For every m ∈ N, let Ãm be the Nm × m matrix of truncated and centered variables

ãij = aijχ{|aij |≤M} − E (aijχ{|aij |≤M}) (1 ≤ i ≤ Nm, 1 ≤ j ≤ m). Theorem 3.32 and the

conditions on the sequence (Nm)∞m=1 imply that there are m0 ∈ N and w > 0 such that

for all k ≥ m0

P
{
smin(Am) ≥ smin(Ãm) − (1 + C3.30)η

√
Nm for all m ≥ k

}
≥ 1 −

∞∑
m=k

exp(−wNm),

where the quantity on the right-hand side goes to 1 as k tends to infinity. Hence, we

obtain

P
{

lim inf
m→∞

smin(Am)√
Nm

≥ lim inf
m→∞

smin(Ãm)√
Nm

− (1 + C3.30)η
}

= 1.

On the other hand, the theorem of Bai and Yin [8] implies that lim
m→∞

smin

(
Ãm)

√
Nm

≥ (1 −
η)(1 −

√
z) a.s. Thus, we come to the estimate

lim inf
m→∞

smin(Am)√
Nm

≥ (1 − η)(1 −
√
z) − (1 + C3.30)η a.s.

Since η > 0 was arbitrary, this proves the result.
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Chapter 4

When does a discrete-time random

walk in Rn absorb the origin into its

convex hull?1

4.1 Introduction

The goal of this Chapter is to study certain convexity aspects of high-dimensional random

walks. Given a discrete-time random walk W (i) with values in Rn, we are interested

in estimating the number of steps N when the origin becomes an interior point of the

convex hull of {W (i)}i≤N . This question was raised by I. Benjamini and considered by

R. Eldan in [29]. Three models of random walks are treated here: a walk given by a

discretization of the standard Brownian motion in Rn, the standard random walk on

Zn and a random walk on the unit sphere Sn−1. We employ a novel approach that

reduces the problem to a question about certain geometric properties of random matrices.

Random matrix theory has strong connections with asymptotic geometric analysis (see,

for example, [19] and [116]); in particular, random matrices appear in Gordon’s escape

theorem [42] and in various estimates of diameters of random sections of convex sets

[77], [83]. The interconnection between random walks, random matrix theory and high-

dimensional convex geometry is at the heart of our work.

The standard Brownian motion BM1(t) (t ∈ [0,∞)) with values in R is defined as a

centered Gaussian process, such that the covariance cov (BM1(t) , BM1(s)) = min(t, s)

for all t, s ∈ [0,∞). The Brownian motion in Rn, denoted by BMn, is a vector of n

1A version of this Chapter is accepted for publication in the Annals of Probability. K. Tikhomirov and
P.Youssef, When does a discrete-time random walk in Rn absorb the origin into its convex hull? 2015,
arXiv:1410.0458
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independent one-dimensional Brownian motions. We refer the reader to [81] for extensive

information on the process BMn. Various properties of the convex hull of the Brownian

motion in high dimensions were studied recently in [29], [30] and [54]; in particular, results

on interior and extremal points of the convex hulls were obtained. It is easy to see that the

interior of conv{BMn(t) : 0 < t < 1} (with “conv” denoting the convex hull) contains the

origin almost surely. In the case when the domain t ∈ (0, 1) is replaced by a finite subset of

the unit interval, the origin is outside of the convex hull with a non-zero probability. Our

work is motivated by the following problem which in a more specific form was considered

by Eldan in [29]:

Let t1 < t2 < · · · < tN be points in [0, 1]. How is the probability that the origin belongs

to the interior of conv{BMn(ti) : i ≤ N} related to the structure of the set {ti}i≤N?

In [29], the numbers N and t1, t2, . . . , tN were generated by a homogeneous Poisson

point process in [0, 1]. It was shown that when the expected number of generated points

N is greater than eCn log(n), the origin belongs to the interior of conv{BMn(ti) : i ≤ N}
with high probability [29, Theorem 3.1]. A related result of [29] dealing with the standard

walk on Zn states that, with probability close to one, eCn log(n) steps are sufficient for the

convex hull of the walk to absorb the origin. It was not clear, however, whether the bound

eCn log(n) was sharp. This question is addressed in the first main theorem of this Chapter:

Theorem 4.1. There exists a constant C > 0 such that for any n ∈ N and N ≥ exp(Cn)

the following holds.

• Setting ti := i/N , i = 1, 2, . . . , N , the set conv{BMn(ti), i ≤ N} contains the origin

in its interior with probability at least 1 − exp(−n).

• The convex hull of the first N steps of the standard random walk on Zn starting at

0, contains the origin in its interior with probability at least 1 − exp(−n).

The first part of this theorem also holds when {ti} is a homogeneous Poisson process

in [0, 1] of intensity at least exp(Cn). Therefore, our result is strictly stronger than the

bound proved in [29].

Let us discuss optimality of the estimates in Theorem 4.1. Regarding the second

assertion, it was proved in [29] that if the number of steps N is less than exp(cn/ log n)

then with probability close to one the origin does not belong to the interior of the convex

hull of the standard walk on Zn.

For the first assertion of Theorem 4.1, we prove that it is optimal in the sense

that the number of points N must be exponential in n in order to have, say, P{0 ∈
conv{BMn(ti), i ≤ N}} ≥ 1/2. More precisely, we prove the following:
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Theorem 4.2. There exist universal constants c > 0 and n0 ∈ N with the following

property: let n ≥ n0 and BMn(t) (0 ≤ t < ∞) be the standard Brownian motion in Rn.

Then

P
{

0 ∈ conv{BMn(t) : t ∈ [1, 2cn]}
}
≤ 1

n
.

Remark 4.1. The bound 1
n

in the above theorem can be replaced with 1
nL for any constant

L > 0 at expense of decreasing c and increasing n0.

The statement of Theorem 4.2 is equivalent to the estimate

P
{

inf
u∈Sn−1

sup
t∈[1,2cn]

⟨u,BMn(t)⟩n < 0
}
≥ 1 − 1

n
, (4.1)

where the quantity in the brackets is the “minimax” of 1-dimensional Gaussian process

⟨u,BMn(t)⟩n indexed over Sn−1 × [1, 2cn]. We note that a comparison theorem for the

minimax of doubly indexed Gaussian processes was obtained in [43] (see also [63, Corol-

lary 3.13 and Theorem 3.16]), and was the central ingredient in proving the escape theorem

of [42].

The second main result of this Chapter deals with discrete-time random walks on the

sphere. For any θ ∈ (0, π/2), we consider a Markov chain Wθ with values in Sn−1 such

that the angle between two consecutive steps is θ (i.e. ⟨Wθ(j),Wθ(j+1)⟩n = cos θ, j ∈ N)

and the direction from W (j) to W (j + 1) is chosen uniformly at random in the sense that

for any u ∈ Sn−1, the distribution of Wθ(j + 1) conditioned on Wθ(j) = u is uniform on

the (n− 2)-sphere Sn−1 ∩ {x ∈ Rn : ⟨x, u⟩n = cos θ}.

Theorem 4.3. For any θ ∈ (0, π/2), there exist L = L(θ) and n0 = n0(θ) depending only

on θ such that the following holds: Let n ≥ n0 and Wθ be the process with values in Sn−1

described above. Then for all N ≥ Ln we have

P
{

0 belongs to conv{Wθ(i) : i ≤ N}
}
≥ 1 − exp(−n).

It follows from dimension considerations that the estimate of the number of steps is

optimal up to a factor depending only on θ. We note here that a related problem for the

standard spherical Brownian motion was studied in [29].

Let us outline the main ideas behind the proofs of Theorems 4.1 and 4.3. The following

simple observation relates the question about random walks to a problem dealing with

random matrices:

Let X(t) (t ∈ [0,∞) or t ∈ N ∪ {0}) be a random process with values in Rn, with

X(0) = 0; let 0 = t0 < t1 < · · · < tN be a collection of non-random points and assume that
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the increments X(ti) −X(ti−1) are independent. Define A as the N × n random matrix

with independent rows obtained by appropriately rescaling the increments X(ti)−X(ti−1),

i = 1, 2, . . . , N . Then there exists a non-random N × N lower-triangular matrix F such

that the rows of FA are precisely X(ti), i = 1, 2, . . . , N . Thus, we can restate our problem

about the convex hull of X(ti)’s in terms of certain properties of the matrix FA. Namely,

the convex hull of X(ti)’s contains the origin in its interior if and only if for any unit

vector y in Rn, the vector FAy has at least one negative coordinate. Geometrically, this

problem is reduced to estimating the probability that the image of A escapes (i.e. does

not intersect) the set F−1(RN
+ )∩SN−1, where RN

+ denotes the cone of positive vectors. For

the standard Brownian motion, A is the N × n standard Gaussian matrix. In this case,

we apply Gordon’s escape theorem [42] which estimates the probability that a random

subspace uniformly distributed on the Grassmannian does not intersect with a given

subset of SN−1. In a more general case, when the image of A is not uniformly distributed,

Gordon’s theorem cannot be applied. To treat that scenario, we prove a statement which

can be seen as an extension of Gordon’s theorem to a broad class of random matrices,

however, with considerable restrictions on the subsets of SN−1:

Theorem 4.4. For any τ, δ ∈ (0, 1] and any K > 1, there exist L and η > 0 depending

only on τ , δ and K with the following property: Let N ≥ Ln and let A be an N × n

random matrix with independent rows (Ri)i≤N satisfying

P{⟨Ri, y⟩n < −τ} ≥ δ, for any y ∈ Sn−1 and any i ≤ N .

Then for any N ×N random matrix F , matrix FA satisfies

P
{
∃y ∈ Sn−1, FAy ∈ RN

+

}
≤ exp(−δ2N/4)

+ P
{
∥A∥2→2 > K

√
N
}

+ P
{
∥F − IdN∥2→2 > η

}
.

We use this result to deal with the random walk on Zn. For the random walks Wθ on

the sphere we follow, with some modifications, the same scheme as for processes in Rn

with independent increments.

The Chapter is organized as follows: Section 4.2 contains preliminaries. Results about

random matrices are given in Section 4.3, while corollaries for the Brownian motion and

the standard random walk on Zn are stated in Section 4.4. In Section 4.5, we consider

random walks on the sphere. Finally, we prove Theorem 4.2 in Section 4.6.
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4.2 Preliminaries

In this section we state some auxiliary facts. For N ≥ n and an N×n matrix A, let smax(A)

and smin(A) be its largest and smallest singular values, respectively, i.e. smax(A) = ∥A∥2→2

(the operator norm of A) and smin(A) = inf
y∈Sn−1

∥Ay∥2. When A is an N × N invertible

matrix, the condition number of A is ∥A∥2→2 · ∥A−1∥2→2. Note that the condition number

is equal to the ratio of the largest and the smallest singular values of A.

Throughout this Chapter, g denotes a standard Gaussian variable. The following

estimate is well known (see, for example, [32, Lemma VII.1.2]):

P{g ≥ t} =
1√
2π

∞∫
t

exp(−r2/2) dr <
1√
2πt

exp(−t2/2), t > 0. (4.2)

A centered random vector X in Rn is isotropic if EX = 0 and the covariance matrix of

X is the identity i.e. EXX t = Idn. The standard Gaussian vector Y in Rn is a random

vector with i.i.d. coordinates having the same law as g. As a corollary of a concentration

inequality for Gaussian variables (see [86, Theorem 4.7] or [80, Theorem V.1]), we have

for any ε > 0:

P
{

(1 − ε)
√
n ≤ ∥Y ∥2 ≤ (1 + ε)

√
n
}
≥ 1 − 2 exp(−c̃ε2n) (4.3)

for a universal constant c̃ > 0. An N × n matrix is called the standard Gaussian matrix

if its entries are i.i.d. having the same law as g. We denote this matrix by G (and recall

that N ≥ n). Then for any t ≥ 0 we have

P
{√

N −
√
n− t ≤ smin(G) ≤ smax(G) ≤

√
N +

√
n + t

}
≥ 1 − 2 exp(−t2/2)

(4.4)

(see, for example, [117, Corollary 5.35]).

Given a vector x ∈ RN , we denote by x+ and x− its positive and negative part,

respectively, i.e.

x+ =
N∑
i=1

max(0, ⟨x, eNi ⟩N) eNi and x− =
N∑
i=1

max(0,−⟨x, eNi ⟩N) eNi .

The following simple observation will be useful in the proof of the main theorems.

Lemma 4.5. Let x, y ∈ RN . Then ∥x−∥2 ≥ ∥y−∥2 − ∥x− y∥2.
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Proof. Writing x = x+ − x− and y = y+ − y−, we obtain

∥x− y∥22 = ∥(x+ − y+) − (x− − y−)∥22
= ∥x− − y−∥22 + ∥x+ − y+∥22 − 2⟨x+ − y+, x− − y−⟩N
≥ ∥x− − y−∥22
≥ (∥y−∥2 − ∥x−∥2)2 ,

where the first inequality in the above formula holds since ⟨x+ − y+, x− − y−⟩N is non-

positive.

Given a compact set S ⊂ RN , the Gaussian width of S is defined by

w(S) := E sup
x∈S

⟨Y, x⟩N ,

where Y is the standard Gaussian vector in RN (see [17], [21], [116]). The following is

a consequence of Urysohn’s inequality (see, for example, Corollary 1.4 in [86]) and the

relation between the Gaussian and the mean width:

√
N − 1

(
VolN(S)

VolN(BN
2 )

)1/N

≤ w(S). (4.5)

Given a convex cone C in RN , the polar cone C∗ of C is defined by

C∗ := {x ∈ RN , ⟨x, y⟩N ≤ 0 for any y ∈ C}.

The next Lemma provides a useful relation between the Gaussian widths of the parts of

a convex cone and its polar enclosed in the unit Euclidean ball. The lemma is proved in

[21] for intersections of cones with the unit sphere (see [21, Lemma 3.7]); we put it here

in a version more convenient for us.

Lemma 4.6. Let C ⊂ RN be a nonempty closed convex cone. Then

w
(
C ∩BN

2

)2
+ w

(
C∗ ∩BN

2

)2 ≤ N.

Proof. For any x ∈ RN , let PCx := arg infy∈C ∥x− y∥2 be the projection of x onto C. It

can be checked that each vector x ∈ RN can be decomposed as

x = PCx + PC∗x, (4.6)

with ⟨PCx, PC∗x⟩N = 0. As before, let Y be the standard Gaussian vector in RN . Having
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decomposition (4.6) in mind, we can write

w(C ∩BN
2 ) = E sup

x∈C∩BN
2

⟨Y, x⟩N ≤ E sup
x∈C∩BN

2

⟨PCY, x⟩N ,

where the last inequality holds since ⟨PC∗Y, x⟩N ≤ 0 for all x ∈ C. We deduce that

w(C ∩BN
2 ) ≤ E ∥PCY ∥2. (4.7)

Now using the decomposition (4.6) and the above inequality, we obtain

w(C ∩BN
2 )2 ≤ E ∥PCY ∥22 = E ∥Y ∥22 − E ∥PC∗Y ∥22 = N − E ∥PC∗Y ∥22. (4.8)

Note that (4.7) applied to the cone C∗ yields w(C∗∩BN
2 )2 ≤ E ∥PC∗Y ∥22. Plugging it into

(4.8), we complete the proof.

4.3 Escape theorems for random matrices

In this section, we estimate the probability that the image of a random N × n matrix

A escapes the intersection of a given cone with the unit sphere SN−1 (we shall restrict

ourselves to considering a special family of convex cones in RN). Similar questions have

attracted considerable attention recently in connection with the theory of compressed

sensing [17].

Given a closed subset S ⊂ SN−1, the problem of estimating the probability P{Im(A)∩
S = ∅} can be treated in different ways. One may look at it as the question of bounding

the diameter of the random section conv(S,−S) ∩ Im(A) of the convex set conv(S,−S):

clearly, Im(A)∩S = ∅ if and only if diam
(
conv(S,−S)∩Im(A)

)
< 2. The study of random

sections of convex sets is a central theme in the area of asymptotic geometric analysis and

its importance has been highlighted in Milman’s proof of Dvoretzky’s theorem [80], [86].

The question of estimating diameters of random sections of proportional dimension was

originally considered in [77] and [83] in the case when the corresponding random subspace

is uniformly distributed on the Grassmannian (i.e. the randomness is given by a standard

Gaussian matrix). More recently, results for much more general distributions of sections

given by kernels and images of random matrices were obtained, among others, in papers

[67] and [73]. In our setting, however, these papers do not seem directly applicable as

they provide estimates for diameters up to a constant multiple: in particular, if a convex

set K, say, satisfies K ⊂ BN
2 ⊂ 2K, and E is a random subspace given by a kernel or

an image of a random matrix, those results only give a trivial bound diam
(
K ∩ E

)
< C
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for a large constant C. At the same time, if S = SN−1 ∩ RN
+ then it is easy to show that

conv(S,−S) ⊂ BN
2 ⊂

√
2 conv(S,−S).

When the matrix A is Gaussian, a way of estimating the probability P{Im(A)∩S = ∅}
which is more suitable in our setting is to apply the following result of Gordon (see

Corollary 3.4 in [42]):

Theorem 4.7 (Gordon’s escape theorem). Let S be a subset of the unit Euclidean sphere

SN−1 in RN . Let E be a random n-dimensional subspace of RN , distributed uniformly

on the Grassmannian with respect to the associated Haar measure. Assume that w(S) <
√
N − n. Then E ∩ S = ∅ with probability at least

1 − 3.5 exp
(
− 1

18

( N − n√
N − n + 1

− w(S)
)2)

.

For the standard Gaussian matrix G, its image is uniformly distributed on the Grass-

mannian, and Gordon’s result provides an efficient estimate of probability P{ImG∩S = ∅},

as long as we have control over the Gaussian width of the set S. In our setting, the choice

of S is determined by the applications to random walks; in fact, S shall always be a spher-

ical simplex satisfying certain additional assumptions. A standard approach would be to

bound w(S) in terms of the covering numbers of S using the classical Dudley’s inequality

(see, for example, [63, Theorem 11.17]). However, in our case the set S is relatively large,

so the upper bound given by Dudley’s inequality is trivial (greater than
√
N). Instead,

we will estimate the Gaussian width of S using the following proposition which is a direct

consequence of Lemma 4.6 and inequality (4.5):

Proposition 4.8. Let C be a convex cone in RN and denote by C∗ its polar cone. Then

w(C ∩BN
2 )2 ≤ N − (N − 1)

(
VolN(C∗ ∩BN

2 )

VolN(BN
2 )

)2/N

.

The next theorem will be applied in §4.4 and §4.5 to the discretized Brownian motion

and to random walks on the sphere.

Theorem 4.9. For any γ ∈ (0, 1] there exist positive L, κ and η depending on γ such

that the following is true: For N ≥ Ln, let F be an N × N random matrix and F̃ be

a deterministic invertible N × N matrix with the condition number satisfying ∥F̃∥2→2 ·
∥F̃−1∥2→2 ≤ γ−1. If G is the N × n standard Gaussian matrix, then

P
{
∃y ∈ Sn−1, FGy ∈ RN

+

}
≤ 5.5 exp(−κN) + P

{F − F̃

2→2

> η∥F̃∥2→2

}
.
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The statement holds with L = 64/γ2, κ = 2L−2/9 and η = γ/4L.

Proof. Let γ ∈ (0, 1) and take L, κ, and η as stated above. In view of Lemma 4.5 we have

P
{
∃y ∈ Sn−1, (FGy)− = 0

}
≤ P

{
∃y ∈ Sn−1, ∥(F̃Gy)−∥2 ≤ ∥(F − F̃ )Gy∥2

}
≤ P

{
∃y ∈ Sn−1, ∥(F̃Gy)−∥2 ≤ η∥F̃∥2→2 · ∥G∥2→2

}
+ P{∥F − F̃∥2→2 > η∥F̃∥2→2}.

Further,

P
{
∃y ∈ Sn−1, ∥(F̃Gy)−∥2 ≤ η∥F̃∥2→2 · ∥G∥2→2

}
≤ P

{
∃y ∈ Sn−1, F̃Gy ∈ RN

+ + η∥F̃∥2→2 · ∥G∥2→2B
N
2

}
≤ P

{
∃y ∈ Sn−1,

Gy

∥Gy∥2
∈ F̃−1(RN

+ ) + η∥F̃∥2→2
∥G∥2→2

smin(G)
F̃−1

(
BN

2

)}
≤ P

{
∃y ∈ Sn−1,

Gy

∥Gy∥2
∈ F̃−1(RN

+ ) + 2η · γ−1BN
2

}
+ P

{
∥G∥2→2 > 2smin(G)

}
≤ P

{
Im(G) ∩

(
F̃−1(RN

+ ) + 2η · γ−1BN
2

)
∩ SN−1 ̸= ∅

}
+ 2e−N/128, (4.9)

where the last estimate follows from (4.4).

To control the probability of escaping in (4.9) with help of Theorem 4.7, we have to

estimate the Gaussian width of the set

Γ :=
(
F̃−1(RN

+ ) + 2η · γ−1BN
2

)
∩ SN−1.

Note that Γ ⊂ (1 + 2η · γ−1)F̃−1(RN
+ ) ∩BN

2 + 2η · γ−1BN
2 . Therefore

w(Γ) ≤ (1 + 2η · γ−1) · w
(
F̃−1(RN

+ ) ∩BN
2

)
+ 2η · γ−1

√
N. (4.10)

It remains to bound the Gaussian width of F̃−1(RN
+ )∩BN

2 . Denote by C the cone F̃−1(RN
+ )

and note that C∗ = F̃ t(RN
− ). Then we have

VolN
(
F̃ t(RN

− ) ∩BN
2

)
= | det(F̃ )| · VolN

(
RN

− ∩ (F̃ t)−1(BN
2 )
)

≥ | det
(
F̃
)
| · ∥F̃∥−N2→2 · VolN

(
RN

− ∩BN
2

)
.

Since | det
(
F̃
)
| ≥ ∥F̃−1∥−N2→2, we get VolN

(
C∗ ∩BN

2

)
≥ (γ/2)N · VolN

(
BN

2

)
. Now, apply-
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ing Proposition 4.8, we deduce that

w(C ∩BN
2 ) ≤

√
(1 − γ2/8)N. (4.11)

Putting (4.10) and (4.11) together, we get that

w(Γ) ≤
(
1 + 4η · γ−1 − γ2/16

)√
N.

The proof is finished by a straightforward application of Theorem 4.7.

As we will see in the next sections, Theorem 4.9 provides a way to deal with the

standard Brownian motion in Rn and random walks Wθ on the sphere. To treat the

standard walk on Zn, we shall derive a statement covering a rather broad class of random

matrices. Let us introduce the following

Definition. A random variable ξ is said to have property P(τ, δ) (or safisfy condition

P(τ, δ)) for some τ, δ ∈ (0, 1] if

P{ξ < −τ} ≥ δ.

A random vector X in Rn is said to have property P(τ, δ) for τ, δ ∈ (0, 1] if for any

y ∈ Sn−1, the random variable ⟨X, y⟩n satisfies P(τ, δ).

Obviously, the above property holds (for some τ and δ) for any non-zero r.v. ξ with

E ξ = 0. As the next elementary lemma shows, with some additional assumptions on

moments of ξ, the numbers τ and δ can be chosen as certain functions of the moments:

Lemma 4.10. Any random variable ξ such that E ξ = 0, E ξ2 = 1 and E |ξ|2+ε ≤ B < ∞
for some ε > 0, has the property P(τ, δ), with τ and δ depending only on ε and B.

Proof. Indeed, an easy calculation shows that such ξ satisfies

∞∫
Lξ

2

P{ξ2 ≥ t} dt ≤ 1

2

for some Lξ > 0 depending only on B and ε. Then

E |ξ| ≥
Lξ∫
0

P{|ξ| ≥ t} dt ≥ 1

2Lξ

Lξ
2∫

0

P{ξ2 ≥ t} dt ≥ 1

4Lξ
,
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implying, as E max(0,−ξ) = 1
2
E |ξ|,

1

8Lξ
≤

∞∫
0

P{ξ ≤ −t} dt

≤
8Lξ∫
0

P{ξ ≤ −t} dt +

∞∫
64Lξ

2

1

2
√
t
P{ξ2 ≥ t} dt

≤
8Lξ∫
0

P{ξ ≤ −t} dt +
1

16Lξ
.

Hence, P{ξ < −2−5Lξ
−1} ≥ 2−8Lξ

−2.

The following theorem will be used to treat the standard walk on Zn:

Theorem 4.11. For any τ, δ ∈ (0, 1] and any K > 1, there exist L and η > 0 depending

only on τ , δ and K with the following property: Let N ≥ Ln and let A be an N × n

random matrix with independent rows having property P(τ, δ). Then for any N × N

random matrix F , matrix FA satisfies

P
{
∃y ∈ Sn−1, FAy ∈ RN

+

}
≤ exp(−δ2N/4)

+ P
{
∥A∥2→2 > K

√
N
}

+ P
{
∥F − IdN∥2→2 > η

}
.

Proof. Define L as the smallest positive number satisfying(3

η

)1/L
≤ exp(δ2/4),

where η :=
√
δ τ

2
√
2K

. Now, take any admissible N ≥ Ln and let A and F be as stated above.

Let N be an η-net on Sn−1 of cardinality at most
(
3
η

)n
. In view of Lemma 4.5 we have

P
{
∃y ∈ Sn−1, FAy ∈ RN

+

}
≤ P

{
∃y ∈ Sn−1, ∥(Ay)−∥2 ≤ ∥(F − IdN)Ay∥2

}
≤ P

{
∃y ∈ Sn−1, ∥(Ay)−∥2 ≤ η∥A∥2→2

}
+ P

{
∥F − IdN∥2→2 > η

}
≤ P

{
∃y′ ∈ N , ∥(Ay′)−∥2 ≤ 2η∥A∥2→2

}
+ P

{
∥F − IdN∥2→2 > η

}
.
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Further,

P
{
∃y′ ∈ N , ∥(Ay′)−∥2 ≤ 2η∥A∥2→2

}
≤ P

{
∃y′ ∈ N , ∥(Ay′)−∥2 ≤ 2Kη

√
N
}

+ P
{
∥A∥2→2 > K

√
N
}
. (4.12)

Fix any y′ ∈ N . For all i = 1, 2, . . . , N , the random variable ⟨Ay′, eNi ⟩N satisfies the

property P(τ, δ). For any i ≤ N , denote by χi the indicator function of the event

{⟨Ay′, eNi ⟩N < −τ}. Then (χi)i≤N are independent and Eχi ≥ δ. Applying Hoeffding’s

inequality (see [50, Theorem 1]), we get

P
{
|{i ≤ N : ⟨Ay′, eNi ⟩N < −τ}| ≤ δN

2

}
≤ P

{ 1

N

∑
i≤N

(χi − Eχi) ≤ −δ

2

}
≤ exp(−δ2N/2).

Therefore for any fixed y′ ∈ N , we have

P
{
∥(Ay′)−∥2 ≤ 2Kη

√
N
}
≤ P

{
|{i ≤ N : ⟨Ay′, eNi ⟩N ≤ −τ}| ≤ 4K2η2N/τ 2

}
≤ exp(−δ2N/2).

Combining the last estimate with (4.12) and the upper estimate for |N |, we get

P
{
∃y ∈ Sn−1, FAy ∈ RN

+

}
≤
(3

η

)n
exp(−δ2N/2) + P

{
∥A∥2→2 > K

√
N
}

+ P
{
∥F − IdN∥2→2 > η

}
.

The result follows by the choice of L.

Remark 4.2. Theorem 4.11, applied to the Gaussian matrix G, gives a weaker form of

Theorem 4.9 (with more restrictions on the choice of F ). Let us emphasize that the

theorems do not require F to be independent from G. This will be important in §4.5.

4.4 Applications to random walks in Rn

In this section, we will apply the statements about random matrices to the Brownian

motion and the standard walk on Zn.

Corollary 4.12. For any K > 1, there are constants L and κ depending only on K such

that the following holds. Let N ≥ Ln and t1, . . . , tN be such that ti ≥ K · ti−1 for any
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i = 2 . . . N and t1 > 0. Then

P
{

0 belongs to the interior of conv{BMn(ti) : i ≤ N}
}
≥ 1 − 5.5 exp(−κN).

Proof. Let cK := 1 + (K − 1)−1/2
∑

j≥0K
−j/2 and γ := c−1

K · (1 + (K − 1)−1/2)−1 be two

constants depending only on K and take L = 64/γ2 and κ := 2L−2/9.

Denote δ1 :=
√
t1 and δi :=

√
ti − ti−1 for any i = 2 . . . N . Observe that for any j < i,

we have δi ≥ K
i−j−1

2

√
K − 1 · δj.

Define F as the N ×N lower triangular matrix whose entries are given by fii = 1 for

any i ≤ N and fij =
δj
δi

for any i > j. One can easily check that ∥F∥2→2 ≤ cK . Moreover,

the inverse of F is a lower bidiagonal matrix with 1 on the main diagonal and (δi/δi+1)i<N

on the diagonal below. Hence ∥F−1∥2→2 ≤ 1 + (K − 1)−1/2, and the condition number of

F satisfies

∥F∥2→2 · ∥F−1∥2→2 ≤ γ−1.

Let (Ri)i≤N be the rows of FG. One can check that Ri = BMn(ti)/δi and therefore

0 ∈ conv{BMn(ti) : i ≤ N} ⇔ 0 ∈ conv{Ri : i ≤ N}

Note that, by a standard separation argument, 0 does not belong to the interior of

conv{Ri : i ≤ N} if and only if rank(FG) < n or there is a vector y ∈ Sn−1 such

that ⟨FGy, eNi ⟩N = ⟨y,Ri⟩n ≥ 0 for any i ≤ N , where (eNi )i≤N denotes the canonical

basis of RN . Since with probability one we have rank(FG) = n, the result follows by

applying Theorem 4.9 with F̃ := F .

Suppose (ti) is a finite increasing sequence of points in [0, 1]. The above statement

tells us that if (ti) contains a geometrically growing subsequence of length Ln for an

appropriate L > 0 then with high probability the origin of Rn is contained in the interior

of BMn(ti)’s. We shall apply this result to the case when the ti’s are generated by the

Poisson point process independent from BMn.

Recall that the homogeneous Poisson point process in [0, 1] of intensity s > 0 is a

random discrete measure Ns on [0, 1] such that 1) for each Borel subset B ⊂ [0, 1], the

random variable Ns(B) has the Poisson distribution with parameter sµ(B), where µ is

the usual Lebesgue measure on R, and 2) for any j ∈ N and pairwise disjoint Borel

sets B1, B2 . . . , Bj ⊂ [0, 1], the random variables Ns(B1), Ns(B2), . . . , Ns(Bj) are jointly
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independent. The measure Ns admits a representation of the form

Ns =
τ∑
i=1

δξi ,

where ξ1, ξ2, . . . are i.i.d. random variables uniformly distributed on [0, 1], δξi is the Dirac

measure with the mass at ξi and τ is the random non-negative integer with the Poisson

distribution with parameter s.

Theorem 3.1 of [29] states that if τ and the points ξ1, ξ2, . . . , ξτ are generated by

the homogeneous PPP in [0, 1] of intensity s ≥ nCn then the convex hull of BMn(ξi)’s

contains the origin in its interior with probability at least 1−n−n. In our next statement,

we weaken the assumptions on s at expense of decreasing the probability to 1− exp(−n):

Corollary 4.13. There is a universal constant C̃ > 0 with the following property: Let

n ∈ N and let BMn(t), t ∈ [0,∞), be the standard Brownian motion in Rn. Further, let

τ and the points ξ1, ξ2, . . . , ξτ be given by the homogeneous Poisson process on [0, 1] of

intensity s ≥ exp(C̃n), which is independent from BMn(t). Then

P
{

0 belongs to the interior of conv{BMn(ξi) : i ≤ τ}
}
≥ 1 − exp(−n).

Proof. Let K := 2 and κ, L be as in Corollary 4.12. Then we define the constant C̃ :=

max
(
32
κ
, 8L

)
. Let n ∈ N and let Ns be as stated above. Take m := ⌊C̃n⌋ and

I1 := [0, K−m+1]; Ij := (Kj−m−1, Kj−m], j = 2, 3, . . . ,m.

From the definition of Ns, we have

P
{
Ns(Ij) > 0 for all j = 1, 2, . . . ,m

}
≥ 1 −

m∑
j=1

exp
(
−sµ(Ij)

)
≥ 1 −m exp

(
−sK−m).

In particular, with probability at least 1 − m exp
(
−sK−m) the set {ξi}τi=1 contains a

subset {ξi1 , ξi2 , . . . , ξim} such that ξij ∈ Ij for every admissible j, hence ξij+2
≥ Kξij for

any j ≤ m− 2. Conditioning on the realization of Ns, we obtain by Corollary 4.12:

P
{

0 belongs to the interior of conv{BMn(ξi) : i ≤ τ}
}

≥ 1 −m exp
(
−sK−m)− 5.5 exp(−κ⌊m/2⌋)

≥ 1 − exp(−n),
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and the proof is complete.

The last result of this section concerns the standard random walk W (j) on Zn, which

is defined as a walk with independent increments such that each increment W (j + 1) −
W (j) is uniformly distributed on the set {±enj }j≤n. We note that the random variables

⟨
√

n/mW (m), y⟩n (m ∈ N, y ∈ Sn−1) are not uniformly subgaussian; to be more precise,

their subgaussian moment depends on the dimension n. At the same time, the vectors

W (m) still have very strong concentration properties as the next lemma shows:

Lemma 4.14. Let W (j) (j ≥ 0) be the standard walk on Zn starting at the origin, and

m ≥ n4 be any fixed integer. Then the vector X :=
√
n/mW (m) is isotropic and satisfies

for any y ∈ Sn−1:

P
{
|⟨X, y⟩n| ≥ t

}
≤ exp

(
−2(mn)1/4

)
+ 2 exp(−t2/4), t > 0.

In particular, E |⟨X, y⟩n|3 ≤ 100 for all y ∈ Sn−1, and X has the property P(τ, δ) for some

universal constants τ, δ.

Proof. The isotropicity of X can be easily checked. Fix for a moment any vector y ∈ Sn−1.

The random variable ⟨X, y⟩n can be represented as

⟨X, y⟩n =
√

n/m
m∑
k=1

sk,

where the variables s1, s2, . . . , sm are i.i.d. and each

sk := ⟨W (k) −W (k − 1), y⟩n

is symmetrically distributed, has variance E sk
2 = 1

n
and takes values in the interval

[−1, 1]. Applying Hoeffding’s inequality to the sum
∑m

k=1 sk
2, we get

P
{ m∑
k=1

sk
2 ≥ 2m

n

}
≤ exp(−2m/n2). (4.13)

Further, since sk is symmetric, the distribution of the sum
∑m

k=1 sk is the same as the dis-

tribution of
∑m

k=1 rksk, where r1, r2, . . . , rm are Rademacher variables jointly independent

with s1, s2, . . . , sm. Conditioning on the values of sk and using (4.13) and the Khintchine
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inequality, we obtain for every t > 0:

P
{⏐⏐⏐ m∑

k=1

sk

⏐⏐⏐ ≥ mt
}

= P
{⏐⏐⏐ m∑

k=1

rksk

⏐⏐⏐ ≥ mt
}

≤ P
{ m∑
k=1

sk
2 ≥ 2m

n

}
+ P

{ m∑
k=1

sk
2 ≤ 2m

n
and

⏐⏐⏐ m∑
k=1

rksk

⏐⏐⏐ ≥ mt
}

≤ exp(−2m/n2) + 2 exp(−mnt2/4).

Whence, in view of the bound m ≥ n2(mn)1/4, we get

P
{
|⟨X, y⟩n| ≥ t

}
≤ exp

(
−2(mn)1/4

)
+ 2 exp(−t2/4), t > 0. (4.14)

The condition (4.14), together with the bound ∥X∥2 ≤
√
mn, gives E |⟨X, y⟩n|3 ≤ 100. It

remains to apply Lemma 4.10.

The next lemma follows from well known concentration inequalities for subexponential

random variables (see, for example, [117, Corollary 5.17]):

Lemma 4.15. There is a universal constant C̃ > 0 such that for any N ∈ N and inde-

pendent centered random variables ξ̃1, ξ̃2, . . . , ξ̃N , each satisfying

P
{
ξ̃i ≥ t

}
≤ 3 exp(−t/4), t > 0, (4.15)

we have

P
{ N∑
i=1

ξ̃i ≥ C̃N
}
≤ 40−N . (4.16)

In the next result, compared to Theorem 1.2 of [29], we decrease the bound on the

number of steps N of the walk on Zn sufficient to absorb the origin with high probability.

Corollary 4.16. There is a universal constant C > 0 with the following property: Let

n,R ∈ N, R ≥ exp(Cn) and let W (j), j ≥ 0, be the standard random walk on Zn starting

at the origin. Then

P
{

0 belongs to the interior of conv{W (j) : j = 1, . . . , R}
}
≥ 1 − 2 exp(−n).

Proof. Definition of constants and the matrix A. Let τ, δ > 0 be taken from Lemma 4.14

and C̃ — from Lemma 4.15. Now, we define K := 2
√
C̃ and let L and η be taken from
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Theorem 4.11. Finally, we define C > 0 as the smallest positive number satisfying

exp(Cn) ≥ (28N)4
⌈ 4

η2
+ 1
⌉N

for any n ∈ N and N = n⌈max(L, 4/δ2)⌉.
Fix any numbers n > 0 and R ≥ exp(Cn), and let N := n⌈max(L, 4/δ2)⌉. Further,

let ti (i = 0, 1, . . . , N) be numbers from {0, 1, . . . , R}, with t0 = 0, t1 = (28N)4 and

ti =
⌈

4
η2

+ 1
⌉
ti−1, i = 2, 3, . . . , N . Denote

Xi :=
√
n(ti − ti−1)

−1/2
(
W (ti) −W (ti−1)

)
, i = 1, 2, . . . , N.

Then the vectors are isotropic, jointly independent and, in view of Lemma 4.14, satisfy

P
{
|⟨Xi, y⟩n| ≥ t

}
≤ exp

(
−2(nti − nti−1)

1/4
)

+ 2 exp(−t2/4), t > 0 (4.17)

for all y ∈ Sn−1. We let A to be the N × n random matrix with rows Xi.

Estimating the norm of A. Let N be a 1/2-net on Sn−1 of cardinality at most 5n. Fix

any y′ ∈ N . For each i = 1, 2, . . . , N , let ξi := ⟨Xi, y
′⟩n2, and let ξ̃i be its truncation at

level (nti − nti−1)
1/4, i.e.

ξ̃i(ω) =

⎧⎨⎩ξi(ω), if ξi(ω) ≤ (nti − nti−1)
1/4,

0, otherwise.

Note that, in view of (4.17), the variables ξ̃i satisfy (4.15), and

P{ξi ̸= ξ̃i} ≤ 3 exp
(
−(nti − nti−1)

1/4/4
)
.

Hence, by (4.16) and the above estimate, we have

P{∥Ay′∥2 ≥
√

C̃N} = P
{ N∑
i=1

ξi ≥ C̃N
}

≤ 40−n + P
{
ξi ̸= ξ̃i for some i ∈ {1, 2, . . . , N}

}
≤ 40−n + 3

N∑
i=1

exp
(
−(nti − nti−1)

1/4/4
)

≤ 40−n + 3N exp
(
−7Nn1/4

)
≤ 20−n.
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Taking the union bound for all y′ ∈ N and applying the standard approximation argu-

ment, we obtain ∥A∥2→2 ≤ 2
√
CN = K

√
N with probability at least 1 − exp(−n).

Construction of the matrix F and application of Theorem 4.11. Let F be the N ×N

non-random lower-triangular matrix, with the entries

fij =

√
tj − tj−1

ti − ti−1

, i ≥ j.

Obviously, FA is the matrix whose i-th row (i = 1, . . . , N) is precisely the vector√
n

ti − ti−1

W (ti).

Then, in view of the definition of ti’s, we have

∥F − IdN∥2→2 ≤
η/2

1 − η/2
≤ η.

Finally, applying Theorem 4.11, we obtain

P
{

0 belongs to the interior of conv{W (j) : j = 1, 2, . . . , R}
}

≥ P
{

0 belongs to the interior of conv{W (ti) : i = 1, 2, . . . , N}
}

= P
{

rankA = n and Im(FA) ∩ Rn
+ = {0}

}
≥ 1 − 2 exp(−n).

4.5 Random walks on the sphere

Let n > 1 and θ ∈ (0, π/2). Here, we consider the Markov chain Wθ taking values on

Sn−1 such that the angle between two consecutive steps is θ i.e. for any i ≥ 1 we have

⟨Wθ(i),Wθ(i + 1)⟩n = cos θ a.s., and the direction from Wθ(i) to Wθ(i + 1) is chosen

uniformly at random. The latter condition means that for any u ∈ Sn−1, the distribution

of Wθ(i+ 1) conditioned on Wθ(i) = u, is uniform on the (n− 2)-sphere Sn−1 ∩ {x ∈ Rn :

⟨x, u⟩n = cos θ}. See [89] for a study of these walks and some of their generalizations.

The question addressed in this section is how many steps it takes for Wθ to absorb

the origin into its convex hull. Note that the answer does not depend on the distribution

of the first vector Wθ(1), and we shall further assume that Wθ(1) is uniformly distributed

on the sphere. The question can be equivalently reformulated as a problem of estimating
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π/2-covering time of Wθ. For φ ∈ (0, π/2], a φ-covering of Sn−1 is any subset S of the

sphere such that the geodesic distance from any point of the sphere to S is at most φ.

Then the φ-covering time for Wθ is the random variable

T = min
{
N : the set {Wθ(i), i ≤ N} is a φ-covering of Sn−1

}
.

A related problem of estimating φ-covering time of the spherical Brownian motion was

considered in [72] and [29], for φ → 0 and φ = π/2, respectively. It is not clear whether the

argument developed in [29] can be adopted to the walks Wθ. Our approach to the above

problem is based on the results of §4.3 and is completely different from the argument in

[29].

The walk Wθ can be constructively described as follows: Let Y1, Y2, . . . be a sequence

of independent standard Gaussian vectors in Rn. Let β1 := ∥Y1∥2 and define

Wθ(1) :=
Y1

∥Y1∥2
=

Y1

β1

.

Further, for any i ≥ 1 let

Wθ(i + 1) :=
αi+1Wθ(i) + Yi+1

βi+1

, (4.18)

where

βi+1 := ∥αi+1Wθ(i) + Yi+1∥2 and

αi+1 := cot θ ∥PiYi+1∥2 − ⟨Yi+1,Wθ(i)⟩n, i ≥ 1,
(4.19)

with Pi denoting the (random) orthogonal projection onto the hyperplane orthogonal to

Wθ(i). It can be easily checked that

βi =
∥Pi−1Yi∥2

sin θ
, i ≥ 2,

and that Wθ is the Markov process described at the beginning of the section. For any

i = 2, 3, . . . the coefficients αi and βi are random variables depending on Yi and Wθ(i−1).

Using (4.2) and (4.3), one can deduce the following concentration inequalities:

Lemma 4.17. There exist a universal constant c > 0 such that for δθ := cmin(1, cot θ)

and for any i = 2, 3, . . . and ε > 0 we have

P
{

(1 − ε)
√
n cot θ ≤ αi ≤ (1 + ε)

√
n cot θ

}
≥ 1 − 2 exp(−δθ

2ε2n)
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and

P
{

(1 − ε) sin θ/
√
n ≤ βi

−1 ≤ (1 + ε) sin θ/
√
n
}
≥ 1 − 2 exp(−δθ

2ε2n).

Moreover, (4.3) immediately implies

P
{

(1 − ε)/
√
n ≤ β1

−1 ≤ (1 + ε)/
√
n
}
≥ 1 − 2 exp(−cε2n), ε > 0, (4.20)

provided that the constant c is sufficiently small. Before we state the main result of the

section, let us consider the following elementary lemma:

Lemma 4.18. For any q ∈ (0, 1) and 0 < ε ≤ 1−q
8

we have

∞∑
k=0

(
(1 + ε)2k+1 − 1

)
qk ≤ 4ε

(1 − q)2
.

Proof. First, note that the conditions on ε and q imply

q(1 + ε)2 ≤ 81q

64
− 9q2

32
+

q3

64
≤ q +

17q

64
− 17q2

64
≤ 1 + q

2
,

whence

1 − q(1 + ε)2 ≥ 1 − q

2
.

Using the last inequality, we obtain

∞∑
k=0

(
(1 + ε)2k+1 − 1

)
qk = (1 + ε)

∞∑
k=0

(
q(1 + ε)2

)k − ∞∑
k=0

qk

=
(1 + ε)

1 − q(1 + ε)2
− 1

1 − q

=
ε + εq + ε2q

(1 − q)(1 − q(1 + ε)2)

≤ 4ε

(1 − q)2
.

Theorem 4.19. For any θ ∈ (0, π/2) there exist n0 = n0(θ) and K = K(θ) depending

only on θ such that the following holds: Let n ≥ n0 and let Wθ be the random walk on

Sn−1 defined above. Then for all N ≥ Kn we have

P
{

0 belongs to conv{Wθ(i) : i ≤ N}
}
≥ 1 − exp(−n).
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Proof. Fix an angle θ ∈ (0, π/2). Let γ := sin θ (1−cos θ)
1+cos θ

and let η, L and κ be as in

Theorem 4.9. Define ε := η sin θ (1−cos θ)2/4 and let n0 be the smallest integer such that

for all n ≥ n0 we have

5.5 exp(−κ⌈Ln⌉) + 4⌈Ln⌉ exp(−δθ
2ε2n) ≤ exp(−µn),

where µ = 1
2

min
(
κ, δθ

2ε2) and δθ is taken from Lemma 4.17.

Fix n ≥ n0. First, we show that Ñ := ⌈Ln⌉ steps is sufficient to get the origin in the

convex hull of Wθ(i) (i ≤ Ñ) with probability 1− exp(−µn). This shall be done by using

the representation (4.18) for the walk Wθ and by applying Theorem 4.9. Then we will

augment the probability estimate to 1 − exp(−n) by increasing the number of steps.

Let G be the standard Ñ×n Gaussian matrix with rows Yi (i ≤ Ñ). We shall construct

a random lower-triangular Ñ × Ñ matrix F such that the i-th row of FG is Wθ(i). Define

F := (fij) with

fij :=

∏i
k=j+1 αk∏i
k=j βk

for j < i ≤ Ñ and fii :=
1

βi
for i ≤ Ñ ,

where αk and βk are given by (4.19). Since FG = (Wθ(1),Wθ(2), . . . ,Wθ(Ñ))t, the origin

does not belong to conv{Wθ(i) : i ≤ Ñ} only if there exists y ∈ Sn−1 such that FGy ∈ RÑ
+ .

Now define F̃ as the Ñ × Ñ lower triangular matrix whose entries are given by

f̃i1 =
(cos θ)i−1

√
n

for any i ≤ Ñ and f̃ij := sin θ
(cos θ)i−j√

n
for 2 ≤ j ≤ i.

It is not difficult to see that

sin θ√
n

≤ ∥F̃∥2→2 ≤
1

(1 − cos θ)
√
n
. (4.21)

Further, let Q be the matrix obtained from F̃ by multiplying the first column of F̃

by sin θ and leaving the other columns unchanged. Then, clearly, smin(Q) ≤ smin(F̃ )

implying ∥F̃−1∥2→2 ≤ ∥Q−1∥2→2. On the other hand, the inverse of Q is a lower bidiagonal

matrix with
√
n

sin θ
on the main diagonal and − cos θ

√
n

sin θ
on the diagonal below. Hence,

∥F̃−1∥2→2 ≤ ∥Q−1∥2→2 ≤ (1 + cos θ)
√
n

sin θ
, and the condition number of F̃ satisfies

∥F̃∥2→2 · ∥F̃−1∥2→2 ≤
1 + cos θ

sin θ (1 − cos θ)
= γ−1.
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Applying Theorem 4.9, we get

P
{
∃y ∈ Sn−1, FGy ∈ RÑ

+

}
≤ 5.5 exp(−κÑ) + P

{F − F̃

2→2

> η∥F̃∥2→2

}
.

It remains to bound the probability P
{F − F̃


2→2

> η∥F̃∥2→2

}
. In view of Lemma 4.17

and (4.20), with probability at least 1 − 4Ñ exp(−δθ
2ε2n) we have

⏐⏐fij − f̃ij
⏐⏐ ≤ ((1 + ε)2(i−j)+1 − 1

)
f̃ij for any j ≤ i.

This, together with Lemma 4.18 and (4.21), implies that

∥F − F̃∥2→2 ≤
1√
n

∞∑
k=0

(
(1 + ε)2k+1 − 1

)
(cos θ)k ≤ 4ε

(1 − cos θ)2
√
n
≤ η∥F̃∥2→2

with probability at least 1 − 4Ñ exp(−δθ
2ε2n). Hence, by the restriction on n0,

P
{
∃y ∈ Sn−1, FGy ∈ RÑ

+

}
≤ 5.5 exp(−κÑ) + 4Ñ exp(−δθ

2ε2n) ≤ exp(−µn),

where µ = 1
2

min
(
κ, δθ

2ε2). Finally, if N ≥ ⌈µ−1⌉Ñ then the above estimate implies

P
{

0 does not belong to conv{Wθ(i) : i ≤ N}
}

≤ P
{

0 does not belong to conv{Wθ(i) : i ≤ Ñ}
}⌈µ−1⌉

≤ exp(−n).

4.6 Minimax of the n-dimensional Brownian motion

In this section we will prove Theorem 4.2 which, as noted in the introduction to this

Chapter, is equivalent to estimate (4.1).

Let us give an informal description of the proof. We construct a random unit vector

v̄ in Rn such that with probability close to one

⟨v̄,BMn(t)⟩n > 0 for any t ∈ [1, 2cn]. (4.22)

The construction procedure shall be divided into a series of steps. At the initial step, we
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produce a random vector v̄0 such that

⟨v̄0,BMn(2i)⟩n > 0 for any i = 0, 1, . . . , cn.

(In fact, v̄0 will satisfy a stronger condition). At a step k, k ≥ 1, we update the vector

v̄k−1 by adding a small perturbation in such a way that

⟨v̄k,BMn(2j2
−k

)⟩n > 0 for any j = 0, 1, . . . , 2kcn.

(Again v̄k will in fact satisfy a stronger condition). Finally, using some standard properties

of the Brownian bridge, we verify that v̄ := v̄log2 lnn satisfies (4.22) with a large probability.

4.6.1 Auxiliary facts

In this paragraph we introduce several auxiliary results that will be used within the proof.

The proof of the next lemma is straightforward, so we omit it.

Lemma 4.20. Let BMn(t) (0 ≤ t < ∞) be the standard Brownian motion in Rn and let

0 < a < b. Fix any s ∈ (a, b) and set

w(s) :=
b− s

b− a
BMn(a) +

s− a

b− a
BMn(b); u(s) := BMn(s) − w(s).

Then the process u(s), s ∈ (a, b), is a Brownian bridge, and

1. u(s) is a centered Gaussian vector with the covariance matrix

(b− s)(s− a)

b− a
Idn.

2. The random vector u(s) is independent from the process BMn(t) indexed over t ∈
(0, a] ∪ [b,∞).

Lemma 4.21. Let d,m ∈ N be such that m ≤ d/2. Let X1, X2, . . . , Xm be independent

standard Gaussian vectors in Rd. Then for any non-random vector b ∈ Sm−1, there exists

a random unit vector ūb ∈ Rd such that

P
{
⟨ūb, Xi⟩d ≥ c4.21

√
d|bi| for all i = 1, 2, . . . ,m

}
≥ 1 − exp(−c4.21d),

where c4.21 is a universal constant and bi’s are the coordinates of b. Moreover, ūb can be

defined as a Borel function of Xi’s and b.
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Proof. Without loss of generality, we can assume that bi ̸= 0 for any i ≤ m and that

Xi’s are linearly independent on the entire probability space. Denote by E the random

affine subspace of Rd spanned by {|bi|−1Xi}i≤m. Define ūb as the unique unit vector in

span{X1, . . . , Xm} such that ūb is orthogonal to E and for any i ≤ m we have

⟨ūb, |bi|−1Xi⟩d = d(0, E),

where d(0, E) stands for the distance from the origin to E. Then we have

∑
i≤m

⟨ūb, Xi⟩d2 =
∑
i≤m

⟨
ūb,

Xi

|bi|
⟩
d

2

|bi|2 =
∑
i≤m

d(0, E)2 · |bi|2 = d(0, E)2. (4.23)

Let G be the d ×m standard Gaussian matrix with columns Xi, i = 1, 2, . . . ,m. Using

the definition of ūb together with (4.23), we obtain for any τ > 0:

P
{
⟨ūb, Xi⟩d ≥ τ

√
d|bi| for all i = 1, 2, . . . ,m

}
= P

{
d(0, E) ≥ τ

√
d
}

= P
{√∑

i≤m

⟨ūb, Xi⟩d2 ≥ τ
√
d
}

= P
{
∥Gtūb∥2 ≥ τ

√
d
}

≥ P
{
smin(G) ≥ τ

√
d
}
,

where the last inequality holds since ūb ∈ ImG. The proof is finished by choosing a

sufficiently small c4.21 := τ and applying (4.4).

Lemma 4.22. Let q ∈ N and r ∈ R with e ≤ r ≤
√

ln q, and let g1, g2, . . . , gq be

independent standard Gaussian variables. Define a random vector b = (b1, b2, . . . , bq) ∈ Rq

by bi := max(0, gi − r), i ≤ q. Then

P
{
∥b∥2 ≤ 4

√
q exp(−r2/8)

}
≥ 1 − exp(−2

√
q).

Proof. Let λ ∈ (0, 1/2). We have

E eλ∥b∥
2
2 =

q∏
i=1

E eλbi
2

=

(
1 +

∫ ∞

1

P{eλb12 ≥ τ}dτ
)q

.
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Next, using (4.2), we get∫ ∞

1

P{eλb21 ≥ τ}dτ ≤ (r − 1)P{g1 > r} +

∫ ∞

r

P{eλb21 ≥ τ}dτ

≤ e−r
2/2 +

∫ ∞

r

P
{
g1 ≥

√
ln τ

λ

}
dτ

≤ e−r
2/2 +

∫ ∞

r

τ−
1
2λdτ

= e−r
2/2 +

r1−
1
2λ

1
2λ

− 1
.

Now, take λ =
(
2 + r2

ln r

)−1
so that 1

2λ
− 1 = r2

2 ln r
. After replacing λ with its value, we

deduce that

E eλ∥b∥
2
2 ≤

(
1 + 2e−r

2/2
)q ≤ exp(2qe−r

2/2). (4.24)

Using Markov’s inequality together with (4.24), we obtain

P{λ∥b∥22 ≥ 4qe−r
2/2} ≤ exp(−2qe−r

2/2) ≤ exp(−2
√
q),

where the last inequality holds since r ≤
√

ln q. To finish the proof, it remains to note

that
4qe−r

2/2

λ
≤ 8qr2e−r

2/2 ≤ 16qe−r
2/4.

4.6.2 Proof of Theorem 4.2

Throughout this part, we assume that c > 0 and n0 ∈ N are appropriately chosen con-

stants (with c sufficiently small and n0 sufficiently large) and n ≥ n0 is fixed. The

admissible values for c and n0 can be recovered from the proof, however, we prefer to

avoid these technical details. Further, in order not to overload the presentation, from

now on we treat certain real-valued parameters are integers. In particular, this concerns

the product cn, as well as several other quantities depending on n (we will point them

out later). To prove relation (4.1), we will construct a random unit vector v̄ ∈ Rn such

that

⟨v̄,BMn(t)⟩n > 0 for any t ∈ [1, 2cn] (4.25)

with probability close to one.
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Let N := cn and define

a0 := 0 and ai := 2i−1, i = 1, 2, . . . , N + 1.

The starting point of the proof is to define a random vector v̄0 such that ⟨v̄0,BMn(ai)⟩n
is large for all i ≤ N + 1. For this, we will use Lemma 4.21 taking all coordinates of

the vector b equal. It will be more convenient to state the next lemma (which is a direct

consequence of Lemma 4.21) with generic parameters m and d instead of N , n.

Lemma 4.23. Let d,m ∈ N with m ≤ d/2 and BMd(t) be the standard Brownian motion

in Rd. Then there exists a random unit vector v̄0 ∈ Rd such that

P
{
⟨v̄0,BMd(ai+1) − BMd(ai)⟩d ≥

c4.21
2

√
dai+1

m
, i = 0, . . .m

}
≥ 1 − exp(−c4.21d).

We note that, conditioned on a realization of BMd(a1), . . . ,BMd(am+1) (hence, v̄0), for

each admissible i ≥ 1 the process

⟨v̄0,BMd

(
ai + t(ai+1 − ai)

)
⟩d, t ∈ [0, 1],

is a (non-centered) Brownian bridge, and standard estimates (see, for example, [102,

p. 34]) together with above lemma imply that given i, we have ⟨v̄0,BMd(ai + t(ai+1 −
ai))⟩d > 0 for all t ∈ [0, 1] with probability at least 1 − 2 exp(−c′′d/m) for a universal

constant c′′. If m ≪ d/ ln d then applying the union bound we get ⟨v̄0,BMd(t)⟩d > 0 for

all 1 ≤ t ≤ am+1 with high probability.

The argument described above is given in [29]. Note that for m ≫ d/ ln d the proba-

bility that the i-th Brownian bridge is not positive becomes too large to apply the union

bound over all i. For this reason, we significantly modified the approach of [29]. Let

M := log2 lnn (we will further treat the quantity as an integer, omitting a truncation op-

eration). Our construction will be iterative: after defining vector v̄0 as described above,

we will produce a sequence of random vectors v̄k, k = 1, . . . ,M , where each v̄k with a

high probability satisfies ⟨v̄k,BMn(t)⟩n > 0 for all t in a certain discrete subset of [1, 2cn].

The subset for v̄k is obtained by zooming in and adding mid-points between every two

neighbouring points of the subset generated for v̄k−1. The size of those discrete subsets

grows with k exponentially, so that the vector v̄ := v̄M will possess the required property

(4.25) with probability close to one. The definition of the subsets is made more precise

below.
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We split the interval [0, aN+1] into blocks. For each admissible i ≥ 0, the i-th block is the

interval [ai, ai+1]. With the i-th block, we associate a sequence of sets I ik, k = 0, 1, . . . ,M,

in the following way: for i = 0 we have I ik = ∅ for all k ≥ 0; for i ≥ 1, we set I i0 = ∅ and

I ik := {21/2kai, 2
2/2kai, 2

3/2kai, . . . , 2
(2k−1)/2kai}, k = 1, 2, . . . ,M.

Given any 0 < k ≤ M , the vector v̄k will be a small perturbation of the vector v̄k−1.

The operation of constructing v̄k will be referred to as the k-th step of the construction.

We must admit that the construction is rather technical. In fact, each step itself is divided

into a sequence of substeps. To make the exposition of the proof as clear as possible, we

won’t provide all the details at once but instead introduce them sequentially.

At each step, to avoid issues connected with probabilistic dependencies, the already

constructed vector v̄k−1 and the perturbation added to it will be defined on disjoint

coordinate subspaces of Rn. Namely, we split Rn into M + 1 coordinate subspaces as

follows

Rn :=
M∏
k=0

RJk

,

where Jk are pairwise disjoint subsets of {1, . . . , n} with |Jk| = c̃n2−k/8 for an appropriate

constant c̃ (chosen so that
∑

k≤M |Jk| = n) and RJk
= span{eni }i∈Jk . Again, for a

lighter exposition we treat the quantities c̃n2−k/8 as integers. For every k ≤ M , define

Projk : Rn → Rn as the orthogonal projection onto RJk
.

Let F,H : N → R+ be a decreasing and an increasing function, respectively, satisfying

the relations

8c F (1)2 = c̃ c4.21
2 and ∀k ≤ M, F (k) ≥ Cf ≥ 2H(k), (4.26)

where Cf > 0 is a constant which will be determined later.

Now, we can state more precisely what we mean by the k-th step of the construction

(k = 0, 1, . . . ,M). The goal of the k-th step is to produce a random unit vector
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v̄k with the following properties:

1. v̄k is supported on
k∏
p=0

RJp

; (4.27)

2. v̄k is measurable with respect to the σ-algebra generated by

Projp(BMn(t)) for all 0 ≤ p ≤ k, t ∈
⋃N
i=0

(
{ai+1} ∪ I ik

)
;

(4.28)

3. The event

Ek :=
{
⟨v̄k,BMn(t) − BMn(ai)⟩n ≥ −H(k + 1)

√
ai and

⟨v̄k,BMn(ai+1) − BMn(ai)⟩n ≥ F (k + 1)
√
ai+1

for all t ∈ I ik and i = 0, 1, . . . , N
}

has probability close to one.

Quantitative estimates of P(Ek) are provided by the following lemma which will be

proved in the next section.

Lemma 4.24 (k-th Step). For a small enough constant c > 0 and a large enough Cf > 0,

there exist F and H satisfying (4.26) such that the following holds. Let 1 ≤ k ≤ M

and assume that a random unit vector v̄k−1 satisfying properties (4.27), (4.28) has been

constructed. Then there exists a random unit vector v̄k satisfying (4.27)—(4.28) and such

that

P(Ek) ≥ P(Ek−1) −
1

n2
.

Proof of Theorem 4.2. In view of the relation (4.26), we have

2F (1) = c4.21

√
c̃

2c
≤ c4.21

√
|J0|
N

.

Hence, in view of Lemma 4.23 (applied with m = N and d = |J0|), there exists a random

unit vector v̄0 ∈ RJ0
measurable with respect to the σ-algebra generated by vectors

Proj0(BMn(ai+1) − BMn(ai)), i = 0, 1, . . . , N , and such that

P(E0) = P
{
⟨v̄0,BMn(ai+1) − BMn(ai)⟩n ≥ F (1)

√
ai+1 for i = 0, 1, . . . , N

}
≥ 1 − exp(−c4.21|J0|)

≥ 1 − 1

n2
.

Applying Lemma 4.24 M times, we obtain a random unit vector v̄M satisfying (4.27)–
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(4.28) such that

P(EM) ≥ 1 − M + 1

n2
.

Note that everywhere on EM , we have

⟨v̄M ,BMn(ai+1)⟩n ≥ ⟨v̄M ,BMn(ai+1) − BMn(ai)⟩n ≥ Cf
√
ai+1

and

⟨v̄M ,BMn(t)⟩n ≥ ⟨v̄M ,BMn(ai)⟩n −
Cf
2

√
ai ≥

Cf
2

√
ai, t ∈ I ik

for all i = 0, 1, . . . , N . Hence, denoting Q := {a1, a2, . . . , aN+1} ∪
⋃N
i=1 I

i
M , we get

EM ⊂
{⟨

v̄M ,
BMn(t)√

t

⟩
n
≥ Cf

4
, t ∈ Q

}
. (4.29)

Now, take any two neighbouring points t1 < t2 from Q. Note that, conditioned on a

realization of vectors BMn(t), t ∈ Q, the random process

X(s) =
⟨
v̄M ,

sBMn(t2) + (1 − s)BMn(t1)√
t2 − t1

⟩
n
−
⟨
v̄M ,

BMn(t1 + s(t2 − t1))√
t2 − t1

⟩
n
,

defined for s ∈ [0, 1], is a standard Brownian bridge. Hence (see, for example, [102, p. 34]),

we have for any τ > 0

P
{
X(s) ≥ τ for some s ∈ [0, 1]

}
= exp(−2τ 2).

Taking τ := 2
√

lnn, we obtain

P
{⟨

v̄M ,BMn(t)
⟩
n
≤ min

(
⟨v̄M ,BMn(t1)⟩n, ⟨v̄M ,BMn(t2)⟩n

)
−2

√
t2 − t1

√
lnn for some t ∈ [t1, t2]

}
≤ 1

n8
.

Finally, note that, in view of (4.29), everywhere on EM we have

(t2 − t1)
−1/2 min

(
⟨v̄M ,BMn(t1)⟩n, ⟨v̄M ,BMn(t2)⟩n

)
− 2

√
lnn

≥ Cf
4

√
t1

t2 − t1
− 2

√
lnn

≥ 2M/2−3Cf − 2
√

lnn

> 0.
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Taking the union bound over all adjacent pairs in Q (clearly, |Q| ≤ n2), we come to the

relation

P
{
⟨v̄M ,BMn(t)⟩n > 0 for all t ∈ [1, 2cn]

}
≥ P(EM) − |Q|

n8
≥ 1 − 1

n
.

4.6.3 Proof of Lemma 4.24

Let M ′ = 1
4

log2 lnn. For every k ≤ M , we split Jk into pairwise disjoint subsets Jkℓ , ℓ ≤
M ′, with |Jkℓ | = c′n2−(k+ℓ)/8 for an appropriate constant c′, chosen so that

∑
ℓ≤M ′ |Jkℓ | =

|Jk| (to make computations lighter, we will treat the quantities c′n2−(k+ℓ)/8, k ≤ M, ℓ ≤
M ′, as integers). For every k ≤ M, ℓ ≤ M ′, define Projkℓ : Rn → Rn as the orthogonal

projection onto RJk
ℓ .

Further, we define two functions f, h : N× N0 → R+ as follows:

1. f is decreasing in both arguments; f(1, 0) = Cf+2−1/2(1−2−1/4)−2Cf ; for each k > 0

and ℓ > 0 we have f(k, ℓ−1)−f(k, ℓ) = Cf2−(k+ℓ)/4; finally, f(k, 0) = lim
ℓ→∞

f(k−1, ℓ)

for all k > 1. The constant Cf > 0 is defined via the relation 8cf(1, 0)2 = c̃c4.21
2,

where c̃ is taken from the definition of sets Jk and c4.21 comes from Lemma 4.21.

2. h is increasing in both arguments; h(1, 0) = 0; for each k > 0 and ℓ > 0 we have

h(k, ℓ) − h(k, ℓ− 1) = Ch2
−(k+ℓ)/4; moreover, h(k, 0) = lim

ℓ→∞
h(k− 1, ℓ) for all k > 1.

The constant Ch is defined by Ch = 2−1/2(1 − 2−1/4)2Cf .

Now define F : N → R and H : N → R by F (k) := f(k, 0) and H(k) := h(k, 0) for

any k ∈ N. Note that F and H satisfy (4.26).

Fix k ≥ 1. Assuming that the vector v̄k−1 is already constructed, the aim is to

construct v̄k such that the event Ek has large probability. The vector v̄k is obtained

via an embedded iteration procedure realized as a sequence of substeps. Namely, we

set v̄k,0 := v̄k−1 and inductively construct random vectors v̄k,ℓ, 1 ≤ ℓ ≤ M ′ and take

v̄k = v̄k,M ′ . Let us give a partial description of the procedure, omitting some details.

For each ℓ = 1, 2, . . . ,M ′ + 1 and every block i = 0, 1, 2, . . . , N the i-th block statistic

is

Bi(k, ℓ) := max
(

0,max
t∈Iik

⟨
v̄k,ℓ−1,

BMn(ai) − BMn(t)
√
ai

⟩
n
− h(k, ℓ),

⟨
v̄k,ℓ−1,

BMn(ai) − BMn(ai+1)√
ai+1

⟩
n

+ f(k, ℓ)
)
.

(4.30)
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Note that the statistic for the zero block is simply

max
(

0,−
⟨
v̄k,ℓ−1,BMn(a1)

⟩
n

+ f(k, ℓ)
)
.

The (N + 1)-dimensional vector
(
B0(k, ℓ), . . . ,BN(k, ℓ)

)
will be denoted by B(k, ℓ). Let

us also denote

I(k, ℓ) :=
{
i : Bi(k, ℓ) ̸= 0

}
.

Note that the event {I(k,M ′ + 1) = ∅} is contained inside Ek. At each substep, using

information about the statistics B(k, ℓ) and choosing an appropriate perturbation of v̄k,ℓ−1

to obtain v̄k,ℓ, we will control the measure of the event {I(k, ℓ + 1) = ∅}, and in this way

will be able to estimate the probability of Ek from below.

Given v̄k,ℓ−1, the goal of the ℓ-th substep is to construct a random unit

vector v̄k,ℓ such that

1. v̄k,ℓ is supported on
∏

(p,q)-(k,ℓ)

RJp
q , where the notation

(p, q) - (k, ℓ) means “p < k or p = k, q ≤ ℓ”;

(4.31)

2. v̄k,ℓ is measurable with respect to the σ-algebra generated by

Projpq(BMn(t)) for all (p, q) - (k, ℓ) and t ∈
⋃N
i=0

(
{ai+1} ∪ I ik

)
;

(4.32)

3. ∥B(k, ℓ + 1)∥2 is typically smaller than ∥B(k, ℓ)∥2.

The third property will be made more precise later. For now, we note that the typical

value of ∥B(k, ℓ)∥2 will decrease with ℓ in such a way that, after the M ′-th substep, the

vector B(k,M ′ + 1) will be zero with probability close to one.

The vector v̄k,ℓ will be defined as

v̄k,ℓ =
v̄k,ℓ−1 + αk,ℓ∆̄k,ℓ√

1 + αk,ℓ2
, (4.33)

where ∆̄k,ℓ is a random unit vector (perturbation) and αk,ℓ := 16−k−ℓ.
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The vector ∆̄k,ℓ will satisfy the following properties:

1. ∆̄k,ℓ is supported on RJk
ℓ ; (4.34)

2. ∆̄k,ℓ is measurable with respect to the σ-algebra generated by

Projpq(BMn(t)) for all admissible (p, q) - (k, ℓ), t ∈
⋃N
i=0

(
{ai+1} ∪ I ik

)
;

(4.35)

3. For any subset I ⊂ {0, 1, . . . , N} such that P{I(k, ℓ) = I} > 0,

∆̄k,ℓ is conditionally independent from the collection of vectors{
Projkℓ (BMn(t) − BMn(ai)), t ∈ I ik ∪ {ai+1}, i /∈ I

}
given the event {I(k, ℓ) = I}.

(4.36)

4. The event

Ek,ℓ :=
{
Bi(k, ℓ + 1) = 0 for all i ∈ I(k, ℓ)

}
has probability close to one.

Again, we will make the last property more precise later.

Let us sum up the construction procedure. We sequentially produce random unit

vectors v̄0 = v̄1,0, v̄1,1, v̄1,2, . . . , v̄1,M ′ = v̄1 = v̄2,0, v̄2,1, v̄2,2, . . . , v̄2,M ′ = v̄2 = v̄3,0, . . . ,

. . . , v̄M,M ′ = v̄M (in the given order). Each next vector is a random perturbation of the

previous one. In a certain sense (quantified with help of order statistics B(k, ℓ)), each

newly produced vector is a refinement of the previous one in such a way that v̄M = v̄ will

possess the required characteristics.

In the next two lemmas, we establish certain important properties of the block statis-

tics.

Lemma 4.25 (Initial substep for block statistics). Fix any 1 ≤ k ≤ M and assume

that a random unit vector v̄k,0 := v̄k−1 satisfying properties (4.27) and (4.28) has been

constructed. Then

P
{
|I(k, 1)| ≤ N exp(−Ch

22k/2/16) and ∥B(k, 1)∥2 ≤
8
√
N

exp(Ch
22k/2/32)

}
≥ P(Ek−1) − 2 exp(−2

√
N).

Proof. Let i > 0 so that I ik ̸= ∅. For each t ∈ I ik \ I ik−1, let tL be the maximal number in

{ai}∪I ik−1 strictly less than t (“left neighbour”) and, similarly, tR be the minimal number
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in I ik−1 ∪ {ai+1} strictly greater than t (“right neighbour”). For every such t, let

wt :=
tR − t

tR − tL
BMn(tL) +

t− tL
tR − tL

BMn(tR); ut := BMn(t) − wt.

It is not difficult to see that

⟨
v̄k,0,

BMn(ai) − wt√
ai

⟩
n

≤ max
(⟨

v̄k,0,
BMn(ai) − BMn(tL)

√
ai

⟩
n
,
⟨
v̄k,0,

BMn(ai) − BMn(tR)
√
ai

⟩
n

)
≤ max

(
0, max

τ∈Iik−1

⟨
v̄k,0,

BMn(ai) − BMn(τ)
√
ai

⟩
n
,

⟨
2v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

⟩
n

)
.

Hence, the i-th block statistic (for i = 0, 1, . . . , N) can be (deterministically) bounded as

Bi(k, 1) ≤ max
(

0, max
t∈Iik−1

⟨
v̄k,0,

BMn(ai) − BMn(t)
√
ai

⟩
n
− h(k, 1),

max
t∈Iik\I

i
k−1

⟨
v̄k,0,

BMn(ai) − wt√
ai

⟩
n
− h(k, 1) + max

t∈Iik\I
i
k−1

⟨
v̄k,0,

−ut√
ai

⟩
n
,

⟨
v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

⟩
n

+ f(k, 1)
)

≤ max
(

0, max
t∈Iik−1

⟨
v̄k,0,

BMn(ai) − BMn(t)
√
ai

⟩
n
− h(k, 0),

⟨
2v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

⟩
n

+ 2f(k, 0)
)

+ max
(

0, max
t∈Iik\I

i
k−1

⟨
v̄k,0,

−ut√
ai

⟩
n

+ h(k, 0) − h(k, 1)
)
.

Let us denote the first summand in the last estimate by ξi, so that

Bi(k, 1) ≤ ξi + max
(

0, max
t∈Iik\I

i
k−1

⟨
v̄k,0,

−ut√
ai

⟩
n

+ h(k, 0) − h(k, 1)
)
.

Note that

Ek−1 =
{
ξi = 0 for all i = 0, 1, . . . , N

}
. (4.37)

Further, the property (4.28) of the vector v̄k,0 = v̄k−1, together with Lemma 4.20 and

the independence of the Brownian motion on disjoint intervals, imply that the Gaussian

variables
⟨
v̄k,0,

−ut√
ai

⟩
n

are jointly independent for t ∈ I ik \ I ik−1, i = 1, 2, . . . , N , and the
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variance of each one can be estimated from above by 21−k. Thus, the vector B(k, 1) can

be majorized coordinate-wise by the vector

(
ξi + max

t∈Iik\I
i
k−1

(0, 2(1−k)/2gt + h(k, 0) − h(k, 1))
)N
i=0

,

where gt (t ∈ I ik \ I ik−1, i = 0, 1, . . . , N) are i.i.d. standard Gaussians (in fact, appropriate

scalar multiples of
⟨
v̄k,0,

−ut√
ai

⟩
n
). Denoting by g the standard Gaussian variable, we get

from the definition of h:

P
{

max
t∈Iik\I

i
k−1

(0, 2(1−k)/2gt + h(k, 0) − h(k, 1)) > 0
}
≤ 2kP{g > Ch2

k/4/2}

≤ 2k exp(−Ch
22k/2/8)

≤ 1

2
exp(−Ch

22k/2/16).

(In the last two inequalities, we assumed that Ch is sufficiently large). Applying Hoeffd-

ing’s inequality to corresponding indicators, we infer

|I(k, 1)| ≤ |{i : ξi ̸= 0}| + N exp(−Ch
22k/2/16)

with probability at least 1− exp(−2
√
N) (we note that, in view of the inequality k ≤ M ,

we have 1
2

exp(−Ch
22k/2/16) ≥ N−1/4). Next, it is not hard to see that the Euclidean

norm of B(k, 1) is majorized (deterministically) by the sum

(ξi)
N
i=0


2

+ 2(1−k)/2(max(0, gt − Ch2
k/4/2)

)
t


2
,

with the second vector having
∑N

i=0 |I ik \ I ik−1| ≤ 2kN coordinates. Applying Lemma 4.22

to the second vector (note that for sufficiently large n we have Ch2
k/4/2 ≤

√
lnN), we get

∥B(k, 1)∥2 ≤
(ξi)

N
i=0


2

+
8
√
N

exp(Ch
22k/2/32)

with probability at least 1−exp(−2
√
N). Combining the estimates with (4.37), we obtain

the result.

Lemma 4.26 (Subsequent substeps for block statistics). Fix any 1 ≤ k ≤ M and

1 < ℓ ≤ M ′ + 1 and assume that the random unit vectors v̄k,ℓ−2 and ∆̄k,ℓ−1 satisfying

properties (4.31)—(4.32) and (4.34)—(4.35)—(4.36), respectively, are constructed, and
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v̄k,ℓ−1 is defined according to formula (4.33). Then

P
{
|I(k, ℓ)| ≤ N exp(−Ch

22(k+ℓ)/2) and ∥B(k, ℓ)∥2 ≤
√
N

exp(Ch
22(k+ℓ)/2)

}
≥ P(Ek,ℓ−1) − 2 exp(−2

√
N).

Moreover,

P
{
I(k, ℓ) ̸= ∅

}
≤ N exp(−Ch

2/αk,ℓ−1) + 1 − P(Ek,ℓ−1).

Proof. To shorten the notation, we will use α in place of αk,ℓ−1 within the proof. Using

the definition of v̄k,ℓ−1 in terms of v̄k,ℓ−2 and ∆̄k,ℓ−1, we get for every i = 0, 1, . . . , N

Bi(k, ℓ) = max
(

0,max
t∈Iik

⟨ v̄k,ℓ−2 + α∆̄k,ℓ−1√
1 + α2

,
BMn(ai) − BMn(t)

√
ai

⟩
n
− h(k, ℓ),

⟨ v̄k,ℓ−2 + α∆̄k,ℓ−1√
1 + α2

,
BMn(ai) − BMn(ai+1)√

ai+1

⟩
n

+ f(k, ℓ)
)

≤ Bi(k, ℓ− 1)√
1 + α2

+ max
(

0,max
t∈Iik

⟨
α∆̄k,ℓ−1,

BMn(ai) − BMn(t)
√
ai

⟩
n

+ h(k, ℓ− 1) − h(k, ℓ),

⟨
α∆̄k,ℓ−1,

BMn(ai) − BMn(ai+1)√
ai+1

⟩
n

+
√

1 + α2f(k, ℓ) − f(k, ℓ− 1)
)
.

Let us denote the second summand by ηi so that

Bi(k, ℓ) ≤
Bi(k, ℓ− 1)√

1 + α2
+ ηi.

Fix for a moment any subset I of {0, 1, . . . , N} such that P{I(k, ℓ − 1) = I} > 0. A

crucial observation is that, conditioned on the event I(k, ℓ−1) = I, the variables ηi, i /∈ I,

are jointly independent. This follows from properties (4.34), (4.36) of ∆̄k,ℓ−1 and from

independence of the Brownian motion on disjoint intervals. Next, the same properties tell

us that, conditioned on I(k, ℓ−1) = I, each variable ⟨∆̄k,ℓ−1,
BMn(ai)−BMn(t)√

ai
⟩n, t ∈ I ik, and

⟨∆̄k,ℓ−1,
BMn(ai)−BMn(ai+1)√

ai+1
⟩n have Gaussian distributions with variances at most 1. Further,

note that, by the choice of α and the functions f and h, we have

√
1 + α2f(k, ℓ) − f(k, ℓ− 1) ≤ h(k, ℓ− 1) − h(k, ℓ) = −Ch2

(−k−ℓ)/4.
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Thus, denoting by g the standard Gaussian variable, we get

P{ηi > 0 | I(k, ℓ− 1) = I} ≤ 2kP{g > α−1Ch2
(−k−ℓ)/4}

≤ 1

2
exp(−Ch

2α−1), i ∈ {0, 1, . . . , N} \ I. (4.38)

Hence, by Hoeffding’s inequality (note that exp(−Ch
22(k+ℓ)/2) > 2N−1/4):

P
{
|{i /∈ I : ηi > 0}| ≥ N exp(−Ch

22(k+ℓ)/2) | I(k, ℓ− 1) = I
}
≤ exp(−2

√
N).

Next, it is not difficult to see that for any τ > 0 and i /∈ I

P{η2i ≥ τ | I(k, ℓ− 1) = I}

≤ 2kP{max(0, αg − Ch2
(−k−ℓ)/4)2 ≥ τ}

≤ 1 − exp
(
−2k+1P{max(0, αg − Ch2

(−k−ℓ)/4)2 ≥ τ}
)

≤ 1 − P
{

max(0, αg − Ch2
(−k−ℓ)/4)2 < τ

}2k+1

≤ P
{2k+1∑
j=1

max(0, αgj − Ch2
(−k−ℓ)/4)2 ≥ τ

}

≤ P
{2k+1∑
j=1

max(0, αgj − 4αCh2
(k+ℓ)/4)2 ≥ τ

}
,

where gj (j = 1, 2, . . . , 2k+1) are i.i.d. copies of g. Hence, the conditional cdf of ∥(ηi)i/∈I∥2
given I(k, ℓ− 1) = I majorizes the cdf of

α
(max(0, gj − 4Ch2

(k+ℓ)/4)
)2k+1N

j=1


2

=: αZ

for i.i.d. standard Gaussians gj, j = 1, 2, . . . , 2k+1N . Applying Lemma 4.22 (note that

4Ch2
(k+ℓ)/4 ≤

√
lnN), we obtain

P
{
∥(ηi)i/∈I∥2 >

√
N

exp(Ch
22(k+ℓ)/2)

⏐⏐ I(k, ℓ− 1) = I
}

≤ P
{
Z >

α−1
√
N

exp(Ch
22(k+ℓ)/2)

⏐⏐ I(k, ℓ− 1) = I
}

≤ P
{
Z >

4
√

2k+1N

exp(2Ch
22(k+ℓ)/2)

⏐⏐ I(k, ℓ− 1) = I
}

≤ exp(−2
√
N).
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Clearly Bi(k, ℓ − 1) = 0 for all i /∈ I given I(k, ℓ − 1) = I. Hence, the above estimates

give

P
{
|I(k, ℓ)| ≥ N exp(−Ch

22(k+ℓ)/2)

or ∥B(k, ℓ)∥2 >
√
N

exp(Ch
22(k+ℓ)/2)

⏐⏐ I(k, ℓ− 1) = I
}

≤ P
{
Bi(k, ℓ) > 0 for some i ∈ I | I(k, ℓ− 1) = I

}
+ 2 exp(−2

√
N).

Summing over all admissible subsets I, we get

P
{
|I(k, ℓ)| ≥ N exp(−Ch

22(k+ℓ)/2) or ∥B(k, ℓ)∥2 >
√
N

exp(Ch
22(k+ℓ)/2)

}
≤ 2 exp(−2

√
N)

+
∑
I

P
{
Bi(k, ℓ) > 0 for some i ∈ I | I(k, ℓ− 1) = I

}
P{I(k, ℓ− 1) = I}

= 2 exp(−2
√
N) + P

{
Bi(k, ℓ) > 0 for some i ∈ I(k, ℓ− 1)

}
= 2 exp(−2

√
N) + 1 − P(Ek,ℓ−1).

By analogous argument, as a corollary of (4.38),

P
{
I(k, ℓ) ̸= ∅

}
≤ N exp(−Ch

2α−1) + 1 − P(Ek,ℓ−1).

The next lemma, which is the heart of the proof, provides a construction procedure

for the perturbation ∆̄k,ℓ. Given vector v̄k,ℓ−1, we examine its block statistics B(k, ℓ),

and define the perturbation in such a way that its inner product with increments of the

Brownian motion is large on bad blocks I(k, ℓ) (in fact, it will be proportional to the

values of corresponding Bi(k, ℓ)), and random on other blocks. This is achieved using

Lemma 4.21.

Lemma 4.27 (Construction of ∆̄k,ℓ). Let 1 ≤ k ≤ M and 1 ≤ ℓ ≤ M ′ and assume that

the random unit vector v̄k,ℓ−1 satisfying properties (4.31) and (4.32) has been constructed.

Then one can construct a random unit vector ∆̄k,ℓ satisfying properties (4.34)—(4.35)—

(4.36) and such that

P(Ek,ℓ) ≥ P(Ek,ℓ−1) − 3 exp(−
√
N) if ℓ > 1, or

P(Ek,ℓ) ≥ P(Ek−1) − 3 exp(−
√
N) if ℓ = 1.
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Proof. Fix for a moment any subset I ⊂ {0, 1, . . . , N} such that the event

ΓI = {I(k, ℓ) = I}

has a non-zero probability. If |I| > N exp(−Ch
22(k+ℓ)/2/32) then define a random vector

∆̄I
k,ℓ on ΓI by setting ∆̄I

k,ℓ := u for an arbitrary fixed unit vector u ∈ RJk
ℓ . Otherwise, if

|I| ≤ N exp(−Ch
22(k+ℓ)/2/32), we proceed as follows:

Define a set of double indices

TI :=
{

(i, p) : i ∈ I \ {0}, p ∈ {1, . . . , 2k − 1}
}
∪
⋃
i∈I

{(i, 0)}.

For each (i, p) ∈ TI , define an increment Xi,p on the probability space (ΓI ,P(·|ΓI)) by

Xi,p :=
Projkℓ

(
BMn(ti,p+1) − BMn(ti,p)

)
√
ti,p+1 − ti,p

,

where ti,p = 2i−1+p2−k
for p = 0, 1, . . . , 2k and i ∈ I \ {0}; additionally, if 0 ∈ I, then

t0,1 = 1 and t0,0 = 0.

Note that B(k, ℓ) is measurable with respect to the σ-algebra generated by processes

ProjqsBMn(t), (q, s) - (k, ℓ− 1), where the notation “-” is taken from (4.31); see formula

(4.30). It implies that Projkℓ (BMn(t)) (on Ω) is independent from the event ΓI ; moreover,

considered on the space (ΓI ,P(·|ΓI)), the set {Xi,p, (i, p) ∈ TI} is a collection of standard

Gaussian vectors, such that all Xi,p and the vector B(k, ℓ) are jointly independent. Let us

define a random vector b̃I ∈ RTI on (ΓI ,P(·|ΓI)) by

b̃Ii,p =

⎧⎨⎩2−k/2Bi(k, ℓ)/∥B(k, ℓ)∥2, if B(k, ℓ) ̸= 0;

0, otherwise.

It is easy to see that ∥b̃I∥2 ≤ 1 (deterministically) and that

|TI | ≤ 2k|I| ≤ 2kN exp(−Ch
22(k+ℓ)/2/32) ≤ 1

2
|Jkℓ |.

(In the last estimate, we used the assumption that Ch is a large constant). Hence, in view

of Lemma 4.21, there exists a random unit vector ∆̄I
k,ℓ on the space (ΓI ,P(·|ΓI)) with
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values in RJk
ℓ , which is a Borel function of Xi,p and b̃I , and such that

P
{
⟨∆̄I

k,ℓ, Xi,p⟩|Jk
ℓ |
≥ c4.21

√
|Jkℓ | b̃

I
i,p for all (i, p) ∈ TI |ΓI

}
≥ 1 − exp(−c4.21|Jkℓ |)

≥ 1 − exp(−
√
N).

It will be convenient for us to denote by Γ̃I the event{
⟨∆̄I

k,ℓ, Xi,p⟩|Jk
ℓ |
≥ c4.21

√
|Jkℓ | b̃

I
i,p for all (i, p) ∈ TI

}
⊂ ΓI .

By glueing together ∆̄I
k,ℓ for all I, we obtain a random vector ∆̄k,ℓ defined on the entire

probability space Ω.

Clearly, ∆̄k,ℓ satisfies properties (4.34) and (4.35). Next, on each ΓI with P(ΓI) > 0

the vector ∆̄k,ℓ was defined as a Borel function of B(k, ℓ) and Projkℓ (BMn(t) − BMn(τ)),

t, τ ∈ I ik∪{ai, ai+1}, i ∈ I, so, in view of independence of the Brownian motion on disjoint

intervals, ∆̄k,ℓ satisfies (4.36).

Finally, we shall estimate the probability of Ek,ℓ. Define

E =
{
|I(k, ℓ)| ≤ N exp(−Ch

22(k+ℓ)/2/32) and

∥B(k, ℓ)∥2 ≤
√
N

exp(Ch
22(k+ℓ)/2/64)

}
.

Note that, according to Lemmas 4.25 and 4.26, the probability of E can be estimated

from below by P(Ek,ℓ−1)− 2 exp(−2
√
N) for ℓ > 1 and P(Ek−1)− 2 exp(−2

√
N) for ℓ = 1.

Take any subset I ⊂ {0, 1, . . . , N} with |I| ≤ N exp(−Ch
22(k+ℓ)/2/32) and such that

Γ̃I ∩ E ≠ ∅, and let ω ∈ Γ̃I ∩ E . If I(k, ℓ) = ∅ at point ω then, obviously, ω ∈ Ek,ℓ.
Otherwise, we have

⟨
∆̄k,ℓ(ω),

BMn(ti,p+1)(ω) − BMn(ti,p)(ω)
√
ti,p+1 − ti,p

⟩
n

≥ c4.212
−k/2

√
|Jkℓ | Bi(k, ℓ)(ω)

∥B(k, ℓ)(ω)∥2
for all (i, p) ∈ TI ,

whence, using the estimate ti,p+1 − ti,p ≥ 2i−k

4
((i, p) ∈ TI), we obtain for any i ∈ I and
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t ∈ I ik ∪ {ai+1}:

⟨
∆̄k,ℓ(ω),BMn(t)(ω) − BMn(ai)(ω)

⟩
n

=
∑

p: ti,p<t

⟨
∆̄k,ℓ(ω),BMn(ti,p+1)(ω) − BMn(ti,p)(ω)

⟩
n

≥ c4.212
−k−1

√
ai+1|Jkℓ | Bi(k, ℓ)(ω)

∥B(k, ℓ)(ω)∥2
.

Further,

c4.212
−k−1

√
|Jkℓ |

∥B(k, ℓ)(ω)∥2
≥ c4.212

−k−1
√
c′n2(−k−ℓ)/8 exp(Ch

22(k+ℓ)/2/64)√
N

≥ 1

αk,ℓ
.

Using the definition of v̄k,ℓ in terms of v̄k,ℓ−1 and ∆̄k,ℓ and the above estimates, we get

⟨
v̄k,ℓ(ω),

BMn(t)(ω) − BMn(ai)(ω)
√
ai

⟩
n

≥ αk,ℓ√
1 + αk,ℓ2

⟨
∆̄k,ℓ(ω),

BMn(t)(ω) − BMn(ai)(ω)
√
ai

⟩
n
− h(k, ℓ) + Bi(k, ℓ)(ω)√

1 + αk,ℓ2

≥ −h(k, ℓ)√
1 + αk,ℓ2

≥ −h(k, ℓ + 1), t ∈ I ik, i ∈ I,

and, similarly,

⟨
v̄k,ℓ(ω),

BMn(ai+1)(ω) − BMn(ai)(ω)
√
ai+1

⟩
n
≥ f(k, ℓ)√

1 + αk,ℓ2
≥ f(k, ℓ + 1), i ∈ I.

Thus, by the definition of the event Ek,ℓ, we get ω ∈ Ek,ℓ.
The above argument shows that

P(Ek,ℓ) ≥
∑
I

P(Γ̃I ∩ E),

where the sum is taken over all I with |I| ≤ N exp(−Ch
22(k+ℓ)/2/32). Finally,∑

I

P(Γ̃I ∩ E) ≥
∑
I

P(ΓI ∩ E) −
∑
I

P(ΓI \ Γ̃I) ≥ P(E) − exp(−
√
N),

and we get the result.

Proof of Lemma 4.24. As before, we set v̄k,0 := v̄k−1. Consecutively applying Lemma 4.27
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and formula (4.33) M ′ times, we obtain a random unit vector v̄k,M ′ satisfying (4.31)

and (4.32). Moreover, the same lemma provides the estimate P(Ek,M) ≥ P(Ek−1) −
3M ′ exp(−

√
N). Then, in view of Lemma 4.26 and the definition of M ′, we have

P
{
I(k,M ′ + 1) ̸= ∅

}
≤ N exp(−Ch

2/αk,M ′) + 1 − P(Ek,M ′) ≤ 1

n2
+ 1 − P(Ek−1).

Combining the above estimate with the definition of Ek, we get for v̄k := v̄k,M ′ that

P(Ek) ≥ P(Ek−1) −
1

n2
.
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Chapter 5

Conclusion

In this thesis, we have considered three directions. In Chapter 2, we have studied almost

Euclidean sections of convex bodies and (in Section 2.4) estimated the distance from a

convex polytope with few vertices to the Euclidean ball. In Chapter 3, we have obtained

bounds (both non-asymptotic and limiting) for the smallest singular value of a random

matrix with i.i.d. heavy-tailed entries. In Chapter 4, we have estimated the number of

steps by a high-dimensional random walk needed to absorb the origin into its convex hull.

All the results are connected via the techniques used in the proofs, which originated

within Asymptotic Geometric Analysis. Namely, we have made an extensive use of cover-

ing arguments and various concentration inequalities for random projections. Thus, the

thesis can be seen as a manifestation of the strength and universality of those methods.

Let us conclude the thesis with some open problems.

Dependence on ε in Dvoretzky’s theorem

Question 1. Given m ≥ 2 and ε ∈ (0, 1], what is the least number n = n(m, ε) such that

any n-dimensional normed space contains a (1 + ε)-Euclidean m-dimensional subspace?

As we have already mentioned, the answer is known for m = 2 and is due to M. Gromov

(see [75]). A result of J. Bourgain and J. Lindenstrauss [14], as well as the theorem of

Section 2.2 (see also [35]), provide (essentially) optimal dependence of n on m and ε within

the class of 1-symmetric normed spaces. In the general setting, the best known result up

to now is due to G. Schechtman [100], however, optimality of that estimate is unclear.

Apart from the problem of existence of large almost Euclidean sections (subspaces),

one may be interested in studying dependence on ε in various randomized constructions

(we proved results in this direction in Sections 2.2 and 2.3). For a n-dimensional origin-

symmetric convex body in John’s position the random m-dimensional section uniformly

distributed on the Grassmannian is (1 + ε)-Euclidean with a high probability provided
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that m ≤ cε2 lnn for a universal constant c > 0 [76, 43, 97]. In this connection, one may

ask the following general question:

Question 2. Let K be an origin-symmetric convex body in some natural position

(other than John’s) and E be an m-dimensional subspace uniformly distributed on the

Grassmannian Gn,m. Under what conditions on m and ε the section E ∩ K is (1 + ε)-

Euclidean with probability close to one?

Let us emphasize that we are interested in a natural position, for example, when the

unit Euclidean ball is an extremal (in some sense) ellipsoid for our convex body (see [114,

Chapter 3], [86, Chapter 3] and [37] for an extensive information on extremal ellipsoids).

Optimal coverings of the sphere by equal spherical caps

Let us mention a problem which was briefly discussed in the introduction to Section 2.4.

Question 3. For n ≥ 2 and n + 1 ≤ N ≤ 2n, let N equal spherical caps of minimal

radius cover Sn−1. Is it true that in this case the centers of the caps are vertices of pairwise

orthogonal ⌈ n
N−n⌉ and ⌊ n

N−n⌋-dimensional regular simplices of circumradius one, with the

total number of the simplices equal to N − n?

As we already mentioned in Section 2.4, this question is directly connected with the

problem of estimating the minimal Banach–Mazur distance of a convex polytope with

N vertices to the Euclidean ball. The above question is stated in [13] (see also [12,

Section 6.6]). The answer is known to be positive in the case N = n + 2 [13] as well as

for n = 2, 3 and for n = N/2 = 4 (see the bibliography in §2.4.1 of this thesis).

The largest singular value of a random matrix

In Chapter 3, we proved two theorems concerning the behaviour of the smallest singular

value of a rectangular random matrix with i.i.d. entries. Let us mention here two open

problems concerning the largest singular value.

Question 4. Let A be an n × n random matrix with independent (but not identical)

centered Gaussian entries. Is it true that the expectation of the largest singular value of

A can be estimated as

E smax(A) ≤ CE max
i

∥Rowi∥2 + CE max
j

∥Columnj∥2,

where Rowi and Columnj are i-th row and j-th column of A, respectively, and C > 0 is a

universal constant?

Partial results in the direction of solving the above question are due to R. Latala [62],

S. Riemer and C. Schütt [88], A. S. Bandeira and R. v. Handel [10].
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Question 5. Let ε, B, L > 0; N ≥ n and let A be an N ×n random matrix with i.i.d.

isotropic rows satisfying

sup
y∈Sn−1

E
⏐⏐⟨y,Rowi⟩n

⏐⏐2+ε ≤ B

and ∥Rowi∥2 ≤ L
√
n a.s. Is it true that with probability close to one we have smax(A) ≤

(1 + δ)
√
N , where δ is a function of ε, B, L and the ratio N/n, such that δ → 0 with

N
n
→ ∞ for any fixed triple ε, B, L?

The last question is directly connected to the problem of approximating the covariance

matrix of a multidimensional distribution by the sample covariance matrix. As of now,

the most general result in this direction yields a positive answer for any ε > 2 [47, 48]. At

the same time, the case 0 < ε ≤ 2 is open. We refer to the introductions to Sections 3.1

and 3.2 of the thesis, as well as paper [47], for more information and further references.
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[49] O. Guédon and E. Milman, Interpolating thin-shell and sharp large-deviation es-

timates for isotropic log-concave measures, Geom. Funct. Anal. 21 (2011), no. 5,

1043–1068. MR2846382

[50] W. Hoeffding, Probability inequalities for sums of bounded random variables, J.

Amer. Statist. Assoc. 58 (1963), 13–30. MR0144363

[51] A. T. James, Distributions of matrix variates and latent roots derived from normal

samples, Ann. Math. Statist. 35 (1964), 475–501. MR0181057

[52] F. John, Extremum problems with inequalities as subsidiary conditions, in Studies

and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, 187–

204, Interscience Publishers, Inc., New York, NY. MR0030135

[53] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, Convex hulls of random walks, hyper-

plane arrangements, and Weyl chambers, Preprint, arXiv:1510.04073

[54] Z. Kabluchko, D. Zaporozhets, Intrinsic volumes of Sobolev balls with applications

to Brownian convex hulls, Preprint, arXiv:1404.6113
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bodies, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 28–37. MR0293374

[77] V. D. Milman, Random subspaces of proportional dimension of finite-dimensional

normed spaces: approach through the isoperimetric inequality, in Banach spaces

(Columbia, Mo., 1984), 106–115, Lecture Notes in Math., 1166, Springer, Berlin.

MR0827766

[78] V. Milman, Randomness and pattern in convex geometric analysis, Doc. Math.

1998, Extra Vol. II, 665–677. MR1648115

[79] V. D. Milman and A. Pajor, Regularization of star bodies by random hyperplane

cut off, Studia Math. 159 (2003), no. 2, 247–261. MR2052221

[80] V. D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed

spaces, Lecture Notes in Mathematics, 1200, Springer, Berlin, 1986. MR0856576

[81] P. Mörters and Y. Peres, Brownian motion, Cambridge Series in Statistical and

Probabilistic Mathematics, Cambridge Univ. Press, Cambridge, 2010. MR2604525

[82] Oliveira, R.I. The lower tail of random quadratic forms, with applications to ordi-

nary least squares and restricted eigenvalue properties. arXiv:1312.2903.

[83] A. Pajor and N. Tomczak-Jaegermann, Subspaces of small codimension of finite-

dimensional Banach spaces, Proc. Amer. Math. Soc. 97 (1986), no. 4, 637–642.

MR0845980

[84] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006),

no. 5, 1021–1049. MR2276533

[85] L. Pastur and M. Shcherbina, Eigenvalue distribution of large random matrices,

Mathematical Surveys and Monographs, 171, Amer. Math. Soc., Providence, RI,

2011. MR2808038

[86] G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge

Tracts in Mathematics, 94, Cambridge Univ. Press, Cambridge, 1989. MR1036275

144



[87] E. Rebrova and K. Tikhomirov, Coverings of random ellipsoids, and invertibility of

matrices with i.i.d. heavy-tailed entries. Preprint. arXiv:1508.06690
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